JP7099473B2 - A resin composition and a method for producing a three-dimensional model using the resin composition. - Google Patents

A resin composition and a method for producing a three-dimensional model using the resin composition. Download PDF

Info

Publication number
JP7099473B2
JP7099473B2 JP2019550494A JP2019550494A JP7099473B2 JP 7099473 B2 JP7099473 B2 JP 7099473B2 JP 2019550494 A JP2019550494 A JP 2019550494A JP 2019550494 A JP2019550494 A JP 2019550494A JP 7099473 B2 JP7099473 B2 JP 7099473B2
Authority
JP
Japan
Prior art keywords
resin composition
particles
resin
thin layer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019550494A
Other languages
Japanese (ja)
Other versions
JPWO2019088243A1 (en
Inventor
啓介 溝口
和也 磯部
員也 永田
和昭 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Publication of JPWO2019088243A1 publication Critical patent/JPWO2019088243A1/en
Application granted granted Critical
Publication of JP7099473B2 publication Critical patent/JP7099473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/165Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、樹脂組成物、およびこれを用いた立体造形物の製造方法に関する。 The present invention relates to a resin composition and a method for producing a three-dimensional model using the resin composition.

近年、複雑な形状の立体造形物を比較的容易に製造できる様々な方法が開発されており、このような手法を利用したラピッドプロトタイピングやラピッドマニュファクチュアリングが注目されている。 In recent years, various methods have been developed that can relatively easily produce three-dimensional objects having complicated shapes, and rapid prototyping and rapid manufacturing using such methods are attracting attention.

従来、これらの造形物作製方法は、モデリングの分野で広く使用されてきたが、近年、これらの手法を直接製造に展開する動きが活発になっている。立体造形物を直接製造に使用するためには、高強度かつ高延性でさらには造形精度が高いことが求められる。 Conventionally, these methods for producing shaped objects have been widely used in the field of modeling, but in recent years, there has been an active movement to develop these methods directly into manufacturing. In order to directly use a three-dimensional model for direct production, it is required to have high strength, high ductility, and high modeling accuracy.

各種立体造形物の製造方法の中でも、粉末床溶融結合法をはじめとする樹脂粒子を使用した方法は、他の方式に比べて比較的高い造形精度で立体造形物を作製できることが知られている。例えば、粉末床溶融結合法では、樹脂粒子を平らに敷き詰めて薄層を形成する。そして、当該薄層に、パターン状(立体造形物を厚さ方向に微分割したパターン状)にレーザ光を照射する。これにより、レーザ光が照射された領域の樹脂粒子を選択的に焼結または溶融結合(以下、単に「溶融結合」とも称する)させる。そして、得られた造形物層上に樹脂粒子をさらに敷き詰め、同様にレーザ光照射を行う。これらの手順を繰り返すことで、造形物層が積み上げられ、所望の形状の立体造形物が得られる。 Among various methods for producing three-dimensional objects, it is known that a method using resin particles such as a powder bed melt-bonding method can produce a three-dimensional object with relatively high modeling accuracy as compared with other methods. .. For example, in the powder bed melt bonding method, resin particles are spread flat to form a thin layer. Then, the thin layer is irradiated with laser light in a pattern (a pattern in which a three-dimensional model is finely divided in the thickness direction). As a result, the resin particles in the region irradiated with the laser beam are selectively sintered or melt-bonded (hereinafter, also simply referred to as “melt-bonding”). Then, resin particles are further spread on the obtained modeled object layer, and laser light irradiation is performed in the same manner. By repeating these steps, the shaped object layers are piled up, and a three-dimensional shaped object having a desired shape can be obtained.

しかしながら、上記薄層形成の際、樹脂粒子を隙間なく並べたとしても、樹脂粒子は通常球状である。そのため、隣り合う樹脂粒子どうしの接触面積が非常に少なく、樹脂粒子どうしの界面において、熱が伝わり難い。したがって、薄層にレーザ光を照射した際の溶融状態や、温度にばらつきが生じやすいという課題があった。また同様に、既に形成された造形物層と、新たに形成された薄層(樹脂粒子)との接触面積も少ない。そのため、これらの間でも互いに熱が伝わり難い。したがって、先に形成された造形物層と後に形成される造形物層との間で、熱収縮の度合いが相違し、反り(以下、このようにして発生する反りを「熱反り」とも称する)が発生する、という課題もあった。 However, when the thin layer is formed, the resin particles are usually spherical even if the resin particles are arranged without gaps. Therefore, the contact area between the adjacent resin particles is very small, and it is difficult for heat to be transferred at the interface between the resin particles. Therefore, there is a problem that the molten state and the temperature tend to vary when the thin layer is irradiated with the laser beam. Similarly, the contact area between the already formed shaped object layer and the newly formed thin layer (resin particles) is also small. Therefore, it is difficult for heat to be transferred to each other even between them. Therefore, the degree of heat shrinkage differs between the previously formed model layer and the later model layer, and the warp (hereinafter, the warp generated in this way is also referred to as "heat warp"). There was also the problem that.

一方、立体造形物の製造方法として、樹脂組成物をフィラメント状に溶融押出しし、ステージ上に、立体造形物を厚さ方向に微分割した薄層を形成して立体造形物を得る方法(熱溶解積層方式)も知られている。このような樹脂組成物に、各種フィラーを添加することで、得られる立体造形物に導電性を付与したり、得られる立体造形物の弾性率を高めることが提案されている(特許文献1)。 On the other hand, as a method for producing a three-dimensional model, a method in which a resin composition is melt-extruded into a filament and a thin layer obtained by finely dividing the three-dimensional model in the thickness direction is formed on a stage to obtain the three-dimensional model (heat). Fused deposition modeling method) is also known. It has been proposed to add various fillers to such a resin composition to impart conductivity to the obtained three-dimensional model and increase the elastic modulus of the obtained three-dimensional model (Patent Document 1). ..

特開2016-28887号公報Japanese Unexamined Patent Publication No. 2016-28887

また近年、樹脂粒子を利用した、別の立体造形物の製造方法として、以下のような方法も提案されている。まず、樹脂粒子を平らに敷き詰めて薄層を形成する。そして、当該薄層のうち、硬化させたい領域(所望の立体造形物を厚さ方向に微分割したパターン状)にのみ、赤外光吸収剤等を含む結合用流体を塗布する。一方で、結合用流体を塗布しない領域には、結合用流体よりエネルギー吸収の少ない剥離用流体を塗布する。その後、赤外光の照射を行い、結合用流体を塗布した領域の粉末材料のみを加熱溶融させる。そして、これらの工程を繰り返すことで、造形物層が積み上げられ、所望の立体造形物が得られる(以下、当該方法を「MJF方式」とも称する)。当該方法においても、隣り合う粒子どうしの熱伝導性を高めることは難しく、造形物層内の溶融状態にばらつきが生じたり、熱反りが発生したりする、といった課題が生じやすかった。 Further, in recent years, the following methods have been proposed as another method for manufacturing a three-dimensional model using resin particles. First, the resin particles are spread flat to form a thin layer. Then, the binding fluid containing an infrared light absorber or the like is applied only to the region of the thin layer to be cured (a pattern in which a desired three-dimensional model is finely divided in the thickness direction). On the other hand, the exfoliation fluid, which absorbs less energy than the coupling fluid, is applied to the region where the coupling fluid is not applied. After that, irradiation with infrared light is performed, and only the powder material in the region coated with the binding fluid is heated and melted. Then, by repeating these steps, the shaped object layers are piled up to obtain a desired three-dimensional shaped object (hereinafter, the method is also referred to as "MJF method"). Even in this method, it is difficult to increase the thermal conductivity between adjacent particles, and problems such as variation in the molten state in the modeled object layer and thermal warpage are likely to occur.

そこで、上述の立体造形物の製造方法に用いられる樹脂粒子の内部に、特許文献1のようにフィラーを含めること等が考えられる。しかしながら、一般的なフィラーを添加しただけでは、隣り合う樹脂粒子間の熱伝導性を高めることは難しく、フィラーを添加することで、却って立体造形物の延性が低くなる、という課題も生じやすかった。 Therefore, it is conceivable to include a filler inside the resin particles used in the above-mentioned method for manufacturing a three-dimensional model, as in Patent Document 1. However, it is difficult to increase the thermal conductivity between adjacent resin particles only by adding a general filler, and the addition of a filler tends to cause a problem that the ductility of a three-dimensional model is rather lowered. ..

本発明は、上記課題を鑑みてなされたものである。すなわち本発明は、高強度、かつ高延性であり、さらには熱反り等がなく、寸法精度の高い立体造形物を得るための樹脂組成物の提供、およびこれを用いた立体造形物の製造方法の提供を目的とする。 The present invention has been made in view of the above problems. That is, the present invention provides a resin composition for obtaining a three-dimensional model having high strength, high ductility, no thermal warpage, and high dimensional accuracy, and a method for manufacturing the three-dimensional model using the resin composition. The purpose is to provide.

本発明は、以下の樹脂組成物を提供する。
[1]粒子状の樹脂組成物を含む薄層の形成および前記薄層へのエネルギー照射の繰り返しによって、立体造形物を形成する立体造形法に使用される樹脂組成物であって、熱可塑性樹脂を含む粒子、および厚み50~500nmである平板状粒子を含む、樹脂組成物。
The present invention provides the following resin compositions.
[1] A resin composition used in a three-dimensional modeling method for forming a three-dimensional model by repeatedly forming a thin layer containing a particulate resin composition and repeatedly irradiating the thin layer with energy, and is a thermoplastic resin. A resin composition comprising particles containing, and flat particles having a thickness of 50 to 500 nm.

[2]前記平板状粒子は、幅が1~10μmである、[1]に記載の樹脂組成物。
[3]前記平板状粒子が、前記熱可塑性樹脂を含む粒子の周囲に付着している、[1]または[2]に記載の樹脂組成物。
[4]前記平板状粒子が、前記熱可塑性樹脂を含む粒子の内部に含まれている、[1]~[3]のいずれかに記載の樹脂組成物。
[2] The resin composition according to [1], wherein the flat particle has a width of 1 to 10 μm.
[3] The resin composition according to [1] or [2], wherein the flat plate-like particles are attached around the particles containing the thermoplastic resin.
[4] The resin composition according to any one of [1] to [3], wherein the flat plate-shaped particles are contained inside the particles containing the thermoplastic resin.

[5]前記平板状粒子は、マグネシウムを含むケイ酸塩化合物である、[1]~[4]のいずれかに記載の樹脂組成物。
[6]前記平板状粒子は、タルクである、[1]~[5]のいずれかに記載の樹脂組成物。
[7]前記熱可塑性樹脂が、結晶性樹脂である、[1]~[6]のいずれかに記載の樹脂組成物。
[8]前記熱可塑性樹脂が、オレフィン樹脂である、[1]~[7]のいずれかに記載の樹脂組成物。
[5] The resin composition according to any one of [1] to [4], wherein the tabular particles are silicate compounds containing magnesium.
[6] The resin composition according to any one of [1] to [5], wherein the flat particle is talc.
[7] The resin composition according to any one of [1] to [6], wherein the thermoplastic resin is a crystalline resin.
[8] The resin composition according to any one of [1] to [7], wherein the thermoplastic resin is an olefin resin.

本発明は、以下の立体造形物、および立体造形物の製造方法を提供する。
[9]上記[1]~[8]のいずれかに記載の樹脂組成物の硬化物を含む、立体造形物。
[10]上記[1]~[8]のいずれかに記載の樹脂組成物を含む薄層を形成する薄層形成工程と、前記薄層にレーザ光を選択的に照射して、複数の前記樹脂組成物が溶融結合した造形物層を形成するレーザ光照射工程と、を含み、前記薄層形成工程、および前記レーザ光照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、立体造形物の製造方法。
[11]上記[1]~[8]のいずれかに記載の樹脂組成物を含む薄層を形成する薄層形成工程と、エネルギー吸収剤を含む結合用流体、および前記結合用流体よりエネルギー吸収の少ない剥離用流体を、前記薄層の互いに隣接する領域に塗布する流体塗布工程と、前記流体塗布工程後の前記薄層にエネルギーを照射し、前記結合用流体を塗布した領域の前記熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、を含み、前記薄層形成工程、前記流体塗布工程、および前記エネルギー照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、立体造形物の製造方法。
The present invention provides the following three-dimensional model and a method for manufacturing the three-dimensional model.
[9] A three-dimensional model containing a cured product of the resin composition according to any one of the above [1] to [8].
[10] A thin layer forming step of forming a thin layer containing the resin composition according to any one of the above [1] to [8], and the plurality of said thin layers by selectively irradiating the thin layer with laser light. A three-dimensional modeling is performed by repeating the thin layer forming step and the laser light irradiation step a plurality of times, including a laser light irradiation step of forming a shaped object layer in which the resin composition is melt-bonded, and laminating the shaped object layers. A method for manufacturing a three-dimensional model that forms an object.
[11] A thin layer forming step for forming a thin layer containing the resin composition according to any one of the above [1] to [8], a binding fluid containing an energy absorber, and energy absorption from the binding fluid. The thermoplasticity of the region in which the thinning fluid is applied to the regions adjacent to each other in the thin layer, and the thin layer is irradiated with energy after the fluid coating step and the binding fluid is applied. An energy irradiation step of melting a resin to form a shaped object layer is included, and the thin layer forming step, the fluid coating step, and the energy irradiation step are repeated a plurality of times, and the shaped object layer is laminated to form a three-dimensional structure. A method for manufacturing a three-dimensional model that forms a model.

本発明の樹脂組成物によれば、高強度、かつ高延性であり、さらには熱反り等がなく、寸法精度の高い立体造形物を製造することができる。 According to the resin composition of the present invention, it is possible to produce a three-dimensional model having high strength, high ductility, no thermal warpage, etc., and high dimensional accuracy.

1.樹脂組成物
本発明の樹脂組成物は、粉末床溶融結合方式やMJF方式等、樹脂を含む粒子を溶融結合させて立体造形物を製造する方法に用いられる。本発明の樹脂組成物には、熱可塑性樹脂を含む粒子(以下、単に「樹脂粒子」とも称する)、および平板状粒子が含まれる。ここで、本明細書において、平板状粒子とは、対向する2つの主平面を有し、これら2つの主平面の間の距離(厚み)が、主平面の最大径(以下、「幅」とも称する)および最小径に対して十分に小さい粒子をいう。
1. 1. Resin Composition The resin composition of the present invention is used in a method for producing a three-dimensional model by melt-bonding particles containing a resin, such as a powder bed melt-bonding method and an MJF method. The resin composition of the present invention includes particles containing a thermoplastic resin (hereinafter, also simply referred to as “resin particles”), and tabular particles. Here, in the present specification, the flat particle has two main planes facing each other, and the distance (thickness) between these two main planes is the maximum diameter (hereinafter, "width") of the main planes. ) And particles that are sufficiently small for the minimum diameter.

前述のように、粉末床溶融結合方式やMJF方式では、樹脂粒子からなる薄層を形成し、当該薄層にエネルギーを照射する。これにより、隣り合う樹脂粒子どうしを溶融結合させて、立体造形物を厚さ方向に微分割した造形物層を得る。しかしながら、樹脂粒子は通常球状であることから、隣り合う樹脂粒子どうしの接触面積が非常に少なく、熱が伝わり難い。その結果、造形物層内で、各樹脂粒子の溶融状態や温度がばらつきやすい、という課題があった。さらに、先に形成された造形物層と、後に形成される造形物層との間の熱伝導性も低く、これらの熱収縮の度合いの相違によって、熱反りが生じやすい、という課題もあった。 As described above, in the powder bed melt bonding method and the MJF method, a thin layer made of resin particles is formed, and the thin layer is irradiated with energy. As a result, the adjacent resin particles are melt-bonded to each other to obtain a modeled object layer in which the three-dimensional modeled object is finely divided in the thickness direction. However, since the resin particles are usually spherical, the contact area between the adjacent resin particles is very small, and heat is difficult to transfer. As a result, there is a problem that the molten state and temperature of each resin particle tend to vary in the modeled object layer. Further, there is also a problem that the thermal conductivity between the previously formed model layer and the later model layer is low, and thermal warpage is likely to occur due to the difference in the degree of heat shrinkage between them. ..

このような課題に対し、本発明の樹脂組成物には、樹脂粒子と共に、厚さが50nm~500nmである平板状粒子が含まれる。当該平板状粒子は、その厚みが十分に薄いことから、平板状粒子内で温度が均一になりやすい。そして、このような平板状粒子によって、隣り合う樹脂粒子の温度を均一化することが可能となる。つまり、本発明の樹脂組成物では、各樹脂粒子の溶融状態が均一になりやすく、得られる立体造形物の寸法精度や強度が高まる。 To solve such a problem, the resin composition of the present invention contains, together with the resin particles, flat-plate particles having a thickness of 50 nm to 500 nm. Since the flat plate-shaped particles are sufficiently thin, the temperature tends to be uniform in the flat plate-shaped particles. Then, such flat plate-shaped particles make it possible to make the temperatures of adjacent resin particles uniform. That is, in the resin composition of the present invention, the molten state of each resin particle tends to be uniform, and the dimensional accuracy and strength of the obtained three-dimensional model are improved.

また同様に、本発明の樹脂組成物によれば、先に形成された造形物層と、その上に配置される樹脂組成物を含む薄層との温度も均一化されやすくなる。その結果、先に形成される造形物層と後に形成される造形物層との間で、熱収縮の度合いがばらつき難くなり、熱反り等が発生し難くなることでも寸法精度が高まる。 Similarly, according to the resin composition of the present invention, the temperature of the previously formed shaped object layer and the thin layer containing the resin composition arranged on the previously formed layer can be easily made uniform. As a result, the degree of heat shrinkage is less likely to vary between the first formed model layer and the later formed model layer, and thermal warpage and the like are less likely to occur, which also enhances dimensional accuracy.

また、得られる立体造形物内に、上記厚みの平板状粒子が含まれると、立体造形物の弾性率が高くなり、立体造形物の強度が高くなる。さらに、従来の一般的な球状のセラミック粒子が立体造形物に含まれる場合、立体造形物に引っ張り応力等がかかると、樹脂とセラミック粒子との弾性率の違いによって、樹脂とセラミック粒子との間に隙間や亀裂が生じやすい。そして、このような隙間や亀裂が繋がることで、立体造形物が破断しやすくなる。これに対し、平板状粒子を含む立体造形物に引張応力がかかると、平板状粒子は、その引張方向と平行に配列する性質を有する。したがって、平板状粒子を含む立体造形物では、引張応力がかかった際に、樹脂と当該平板状粒子との間に隙間や亀裂が生じ難く、立体造形物の延性が高まる、という利点もある。 Further, when the obtained three-dimensional model contains the flat plate particles having the above thickness, the elastic modulus of the three-dimensional model is increased and the strength of the three-dimensional object is increased. Furthermore, when conventional general spherical ceramic particles are included in the three-dimensional model, when tensile stress or the like is applied to the three-dimensional model, the difference in elastic modulus between the resin and the ceramic particles causes the resin and the ceramic particles to be separated from each other. Gap and cracks are likely to occur. Then, by connecting such gaps and cracks, the three-dimensional model is likely to break. On the other hand, when a tensile stress is applied to a three-dimensional object containing flat plate-shaped particles, the flat plate-shaped particles have a property of arranging in parallel with the tensile direction thereof. Therefore, the three-dimensional model containing the flat-plate particles has an advantage that gaps and cracks are unlikely to occur between the resin and the flat-plate particles when a tensile stress is applied, and the ductility of the three-dimensional model is enhanced.

また、本発明の樹脂組成物において、樹脂粒子に含まれる熱可塑性樹脂が結晶性樹脂である場合、造形物層形成の際に溶融した熱可塑性樹脂が、平板状粒子を核剤として結晶成長しやすくなる。その結果、立体造形物に均一な結晶構造の樹脂が含まれやすくなり、立体造形物の強度や延性が均一化されやすくなる。また、いびつな結晶成長が抑制されることで、寸法精度も高まりやすくなる。 Further, in the resin composition of the present invention, when the thermoplastic resin contained in the resin particles is a crystalline resin, the thermoplastic resin melted during the formation of the model layer is crystallized by using the flat plate particles as a nucleating agent. It will be easier. As a result, the resin having a uniform crystal structure is likely to be contained in the three-dimensional model, and the strength and ductility of the three-dimensional model are likely to be uniform. In addition, by suppressing the distorted crystal growth, the dimensional accuracy is likely to be improved.

ここで、本発明の樹脂組成物では、上記平板状粒子が、樹脂粒子の内部に含まれていてもよい。また、上記平板状粒子が、樹脂粒子の周囲に付着していてもよい。さらに、上記平板状粒子が、樹脂粒子の内部および樹脂粒子の周囲に含まれていてもよい。ただし、平板状粒子が樹脂粒子の周囲に付着していると、造形物層形成の際に、隣り合う樹脂粒子どうしの間に平板状粒子が含まれやすくなる。その結果、隣り合う樹脂粒子の温度や溶融状態がより均一化されやすくなる観点から好ましい。なお、平板状粒子が樹脂粒子の内部にも含まれている場合、得られる立体造形物の強度がより高まりやすくなる。 Here, in the resin composition of the present invention, the flat plate-like particles may be contained inside the resin particles. Further, the flat plate-shaped particles may be attached to the periphery of the resin particles. Further, the flat plate particles may be contained inside the resin particles and around the resin particles. However, if the flat plate-shaped particles are attached around the resin particles, the flat plate-shaped particles are likely to be included between the adjacent resin particles when the model layer is formed. As a result, it is preferable from the viewpoint that the temperature and the molten state of the adjacent resin particles are more likely to be made uniform. When the flat plate particles are also contained inside the resin particles, the strength of the obtained three-dimensional model is likely to increase.

なお、平板状粒子が樹脂粒子の周囲に付着している場合、樹脂粒子の表面積に対して10~80%の領域に平板状粒子が付着していることが好ましい。樹脂粒子の表面積に対して、平板状粒子が付着している領域の面積が80%以下であれば、立体造形物の作製の際に、樹脂粒子どうしが十分に溶融結合しやすくなる。一方、樹脂粒子の表面積に対して10%以上の領域が平板状粒子で覆われていると、平板状粒子による熱伝導性が高まり、隣り合う樹脂粒子の温度や溶融状態が均一になりやすくなる。なお、平板状粒子が樹脂粒子の周囲に、どの程度付着しているかは、樹脂粒子の粒子径、平板状粒子を平面視視したときの面積、熱可塑性樹脂と平板状粒子との含有比等から算出可能である。また、平板状粒子が周囲に付着している樹脂粒子について、溶剤等で樹脂を溶解させて、平板状粒子の含有量や形状を特定し、これらと樹脂粒子の形状(粒径等)とから、平板状樹脂粒子が付着している面積を算出してもよい。以下、当該樹脂組成物に含まれる平板状粒子および熱可塑性樹脂、さらにその他の成分等について詳しく説明する。 When the flat plate-shaped particles are attached to the periphery of the resin particles, it is preferable that the flat plate-shaped particles are attached to a region of 10 to 80% of the surface area of the resin particles. When the area of the region to which the flat plate particles are attached is 80% or less with respect to the surface area of the resin particles, the resin particles are sufficiently easily melt-bonded to each other during the production of the three-dimensional model. On the other hand, when a region of 10% or more of the surface area of the resin particles is covered with the flat plate-shaped particles, the thermal conductivity of the flat plate-shaped particles is increased, and the temperature and the molten state of the adjacent resin particles are likely to be uniform. .. The extent to which the flat plate particles adhere to the periphery of the resin particles is determined by the particle size of the resin particles, the area when the flat plate particles are viewed in a plan view, the content ratio of the thermoplastic resin and the flat plate particles, etc. It can be calculated from. In addition, for the resin particles to which the flat plate particles are attached to the surroundings, the resin is dissolved with a solvent or the like to specify the content and shape of the flat plate particles, and these and the shape (particle size, etc.) of the resin particles are used. , The area to which the flat resin particles are attached may be calculated. Hereinafter, the flat particles and the thermoplastic resin contained in the resin composition, and other components and the like will be described in detail.

(平板状粒子)
本発明の樹脂組成物に含まれる平板状粒子は、厚みが50~500nmであり、かつ平板状の粒子であれば特に制限されない。平板状粒子の厚みは、100~400nmであることがより好ましく、150~300nmであることがさらに好ましい。平板状粒子の厚みが50nm以上であると、得られる立体造形物の強度が高まりやすい。一方、平板状粒子の厚みが500nm以下であると、熱伝導性が良好になりやすい。
(Plate particles)
The flat plate-shaped particles contained in the resin composition of the present invention are not particularly limited as long as they have a thickness of 50 to 500 nm and are flat plate-shaped particles. The thickness of the tabular particles is more preferably 100 to 400 nm, and even more preferably 150 to 300 nm. When the thickness of the flat plate particles is 50 nm or more, the strength of the obtained three-dimensional model tends to increase. On the other hand, when the thickness of the flat plate particles is 500 nm or less, the thermal conductivity tends to be good.

平板状粒子を平面視したときの形状は、円形状であってもよく、楕円状であってもよく、多角形状であってもよい。これらの中でも、楕円状であることがより好ましい。また、平板状粒子を平面視したときの粒子の幅(平均最大径)は、1~10μmであることが好ましく、2~8μmであることがより好ましく、3~6μmであることがさらに好ましい。平板状粒子の幅(平均最大径)が過度に大きいと、立体造形物の寸法精度が低下したり、平板状粒子が、樹脂粒子の溶融結合を阻害しやすくなる。一方、平板状粒子の幅(平均最大径)が小さすぎると、平板状粒子によって、隣り合う樹脂粒子に十分に熱を伝えられないことがある。 The shape of the flat plate particles in a plan view may be a circular shape, an elliptical shape, or a polygonal shape. Among these, an elliptical shape is more preferable. The width (average maximum diameter) of the tabular particles when viewed in a plan view is preferably 1 to 10 μm, more preferably 2 to 8 μm, and even more preferably 3 to 6 μm. If the width (average maximum diameter) of the flat plate-shaped particles is excessively large, the dimensional accuracy of the three-dimensional model is lowered, and the flat plate-shaped particles tend to inhibit the melt-bonding of the resin particles. On the other hand, if the width (average maximum diameter) of the flat plate particles is too small, the flat plate particles may not sufficiently transfer heat to the adjacent resin particles.

また、平板状粒子を平面視したときの平均最小径は、1~6μmであることが好ましく、2~5μmであることがより好ましい。 Further, the average minimum diameter when the flat plate particles are viewed in a plan view is preferably 1 to 6 μm, and more preferably 2 to 5 μm.

なお、平板状粒子の平均厚みと平均最大径(幅)との比(幅/厚み)は、5~15であることが好ましく、10~12であることがより好ましい。一方、平板状粒子の平均厚みと平均最小径との比(最小径/厚み)は、5~13であることが好ましく、6~11であることがより好ましい。平板状粒子の厚みと、幅や平均最小径との比が上記範囲であると、平板状粒子の熱伝導性が良好になりやすい。 The ratio (width / thickness) of the average thickness of the flat plate particles to the average maximum diameter (width) is preferably 5 to 15, and more preferably 10 to 12. On the other hand, the ratio (minimum diameter / thickness) of the average thickness of the flat plate particles to the average minimum diameter is preferably 5 to 13, and more preferably 6 to 11. When the ratio of the thickness of the flat plate particles to the width and the average minimum diameter is within the above range, the thermal conductivity of the flat plate particles tends to be good.

平板状粒子物の厚みや最大径、幅は、例えば以下のように特定される。熱可塑性樹脂を溶解可能な溶剤等を用いて、熱可塑性樹脂を除去し、平板状粒子のみを取り出す。なお、樹脂が溶剤に溶けにくい場合には、必要に応じて加熱を行う。そして、当該平板状粒子の量が15質量%となるように、プロピレン樹脂と乾式混合する。そして、公知の小型混練機および射出成形機を用い、例えば長さ175mmのダンベル試験片を作製する。ただし、試験片の形状は、平板状粒子の断面を100以上測定可能であれば特に制限されない。そして、当該試験片を液体窒素に10分以上浸して、当該液体窒素中で凍結させながら割る。当該破断面に存在する平板状粒子について、100個の厚み、100個の最大径(幅)、および100個の平均最小径等をそれぞれ電子顕微鏡(SEM)にて観察し、ヒストグラムを作成する。そして、これらのデータから、平均値をそれぞれについて算出し、平均値を平板状粒子の厚み、幅、および平均最小径として採用する。 The thickness, maximum diameter, and width of the flat particle are specified as follows, for example. The thermoplastic resin is removed using a solvent or the like capable of dissolving the thermoplastic resin, and only the flat particles are taken out. If the resin is difficult to dissolve in the solvent, heat it if necessary. Then, it is dry-mixed with the propylene resin so that the amount of the flat plate particles is 15% by mass. Then, using a known small kneader and injection molding machine, for example, a dumbbell test piece having a length of 175 mm is produced. However, the shape of the test piece is not particularly limited as long as the cross section of the flat plate particles can be measured by 100 or more. Then, the test piece is immersed in liquid nitrogen for 10 minutes or more and cracked while freezing in the liquid nitrogen. For the flat plate particles existing in the fracture surface, 100 thicknesses, 100 maximum diameters (widths), 100 average minimum diameters, etc. are observed with an electron microscope (SEM), and a histogram is created. Then, the average value is calculated for each of these data, and the average value is adopted as the thickness, width, and average minimum diameter of the flat plate particles.

平板状粒子の例には、一般に層状粘土鉱物と称される各種粒子が含まれる。平板状粒子の具体例には、カオリン;タルク;マイカ;モンモリロナイト、バイデライト、ヘクトライト、サポナイト、ノントロナイト、スチーブンサイト等のスメクタイト系鉱物;バーミキュライト;ベントナイト;カネマイト、ケニアナイト、マカナイト等の層状ケイ酸ナトリウム;Na型テトラシリシックフッ素雲母、Li型テトラシリシックフッ素雲母、Na型フッ素テニオライト、Li型フッ素テニオライト等の雲母族粘土鉱物;等が含まれる。このような平板状粒子は、天然の鉱物から得られたものであってもよく、化学的に合成されたものであってもよい。さらに、平板状粒子は、表面がアンモニウム塩等で修飾(表面処理)されたものであってもよい。 Examples of tabular particles include various particles generally referred to as layered clay minerals. Specific examples of the plate-like particles include kaolin; talc; mica; montmorillonite, byderite, hectrite, saponite, nontronite, stephensite and other smectite minerals; vermiculite; bentonite; canemite, kenyanite, macanite and the like. Sodium acid; Na-type tetrasilicic fluorine mica, Li-type tetrasilisic fluorine mica, Na-type fluorine teniolite, Li-type fluorine teniolite and other mica-type clay minerals; and the like are included. Such tabular particles may be obtained from natural minerals or may be chemically synthesized. Further, the surface of the flat plate particles may be modified (surface treated) with an ammonium salt or the like.

これらの中でも、熱伝導率が0.5~5.0W・m-1・K-1である化合物が好ましい。平板状粒子が上記熱伝導率を有すると、平板状粒子によって、隣り合う樹脂粒子の温度等が均一化されやすくなる。Among these, compounds having a thermal conductivity of 0.5 to 5.0 W · m -1 · K -1 are preferable. When the flat plate-shaped particles have the above-mentioned thermal conductivity, the temperature of the adjacent resin particles can be easily made uniform by the flat plate-shaped particles.

また特に熱伝導性が良好であるとの観点から、マグネシウムを含むケイ酸塩化合物であることが好ましく、タルク、マイカであることが好ましい。なお、平板状粒子の成分分析は、例えばX線光電子分光分析法XPS(X-ray Photoelectron Spectroscopy)やESCA(Electron Spectroscopy for Chemical Analysis,エスカ)により行うことができる。具体的な装置としては、VGサイエンティフィックス社製のESCALAB-200R光電子分光装置等が含まれる。 Further, from the viewpoint of particularly good thermal conductivity, a silicate compound containing magnesium is preferable, and talc and mica are preferable. The component analysis of the plate-shaped particles can be performed by, for example, X-ray photoelectron spectroscopy XPS (X-ray Photoelectron Spectroscopy) or ESCA (Electron Spectroscopy for Chemical Analysis, Esca). Specific devices include an ESCALAB-200R photoelectron spectroscope manufactured by VG Scientific.

平板状粒子は、樹脂組成物の全量100質量部に対して、5~40質量部含まれることが好ましく、10~20質量部含まれることがより好ましい。樹脂組成物中の平板状粒子の量が少なすぎると、上述の熱伝導性が十分に発揮され難くなったり、立体造形物の強度が十分に高まり難くなることがある。一方、平板状粒子の量が過剰である場合、相対的に熱可塑性樹脂の量が減少するため、熱可塑性樹脂が十分に溶融結合できず、立体造形物の強度が低下することがある。 The tabular particles are preferably contained in an amount of 5 to 40 parts by mass, more preferably 10 to 20 parts by mass, based on 100 parts by mass of the total amount of the resin composition. If the amount of the flat plate particles in the resin composition is too small, it may be difficult to sufficiently exhibit the above-mentioned thermal conductivity, or it may be difficult to sufficiently increase the strength of the three-dimensional model. On the other hand, when the amount of the flat plate particles is excessive, the amount of the thermoplastic resin is relatively reduced, so that the thermoplastic resin cannot be sufficiently melt-bonded, and the strength of the three-dimensional model may be lowered.

(熱可塑性樹脂)
樹脂組成物に含まれる熱可塑性樹脂の種類は、立体造形物の形成方法に応じて適宜選択される。当該熱可塑性樹脂としては、一般的な粉末床溶融結合方式用の樹脂組成物に含まれる樹脂や、MJF方式用の樹脂組成物に含まれる樹脂とすることができ、樹脂粒子には、熱可塑性樹脂が一種のみ含まれていてもよく、二種以上含まれていてもよい。
(Thermoplastic resin)
The type of the thermoplastic resin contained in the resin composition is appropriately selected according to the method for forming the three-dimensional model. The thermoplastic resin can be a resin contained in a resin composition for a general powder bed melt-bonding method or a resin contained in a resin composition for the MJF method, and the resin particles are thermoplastic. Only one type of resin may be contained, or two or more types may be contained.

ただし、熱可塑性樹脂の溶融温度が高すぎると、立体造形物の作製時に、樹脂粒子を溶融させるために高温までエネルギー照射する必要が生じ、立体造形物の作製に時間がかかったりすること等がある。そこで、熱可塑性樹脂の溶融温度は、300℃以下であることが好ましく、230℃以下であることがより好ましい。一方、得られる立体造形物の耐熱性等の観点から、熱可塑性樹脂の溶融温度は100℃以上であることが好ましく、150℃以上であることがより好ましい。溶融温度は、熱可塑性樹脂の種類等によって調整することができる。 However, if the melting temperature of the thermoplastic resin is too high, it may be necessary to irradiate energy to a high temperature in order to melt the resin particles when manufacturing the three-dimensional model, and it may take time to manufacture the three-dimensional model. be. Therefore, the melting temperature of the thermoplastic resin is preferably 300 ° C. or lower, more preferably 230 ° C. or lower. On the other hand, from the viewpoint of heat resistance and the like of the obtained three-dimensional model, the melting temperature of the thermoplastic resin is preferably 100 ° C. or higher, more preferably 150 ° C. or higher. The melting temperature can be adjusted depending on the type of the thermoplastic resin and the like.

ここで、熱可塑性樹脂は結晶性の樹脂であってもよく、非晶性の樹脂であってもよいが、上述のように、熱可塑性樹脂が結晶性樹脂であると、平板状粒子を核剤として、均一な結晶を形成しやすくなる、という利点がある。結晶性樹脂の例には、ポリアミド12、ポリ乳酸、ポリプロピレン等のポリオレフィン樹脂、ポリフェニレンサルファイド(PPS)、ポリブチレンテレフタレート等が含まれる。これらの中でも、平板状粒子と結晶構造が近く、平板状粒子を核剤として均一に結晶化しやすいとの観点から、ポリアミド12またはオレフィン樹脂が好ましく、特にポリプロピレン樹脂であることが好ましい。 Here, the thermoplastic resin may be a crystalline resin or an amorphous resin, but as described above, when the thermoplastic resin is a crystalline resin, the flat particles are nucleated. As an agent, it has an advantage that it becomes easy to form uniform crystals. Examples of the crystalline resin include polyamide 12, polylactic acid, polyolefin resins such as polypropylene, polyphenylene sulfide (PPS), polybutylene terephthalate and the like. Among these, polyamide 12 or an olefin resin is preferable, and polypropylene resin is particularly preferable, from the viewpoint that the crystal structure is close to that of the flat plate particles and the flat plate particles can be easily crystallized uniformly as a nucleating agent.

ここで、熱可塑性樹脂は、樹脂組成物の全量100質量部に対して、60~95質量部含まれることが好ましく、80~90質量部含まれることがより好ましい。樹脂組成物中の熱可塑性樹脂の量が少なすぎると、立体造形物の強度が低下しやすくなる。一方、樹脂組成物の量が多すぎると、相対的に平板状粒子の量が減少し、上述の熱伝導性を発揮することが難しくなる。 Here, the thermoplastic resin is preferably contained in an amount of 60 to 95 parts by mass, more preferably 80 to 90 parts by mass, based on 100 parts by mass of the total amount of the resin composition. If the amount of the thermoplastic resin in the resin composition is too small, the strength of the three-dimensional model tends to decrease. On the other hand, if the amount of the resin composition is too large, the amount of the flat plate-like particles is relatively reduced, and it becomes difficult to exhibit the above-mentioned thermal conductivity.

また、熱可塑性樹脂を含む樹脂粒子の形状は特に制限されないが、立体造形物の寸法精度を高めるとの観点から、その形状は球状であることが好ましい。さらに、当該樹脂粒子の大きさ(直径)は、20~100μmであることが好ましく、30~70μmであることがより好ましい。樹脂粒子の大きさが100μm以下であると、微細な構造の立体造形物を作製することが可能となる。一方、樹脂粒子の大きさは、十分な流動性を有し、かつ製造コストや取り扱い性が良好になる等の観点から20μm以上であることが好ましい。上記平均粒子径は、動的光散乱法により測定した体積平均粒子径とする。体積平均粒子径は、湿式分散機を備えたレーザ回折式粒度分布測定装置(マイクロトラックベル社製、MT3300EXII)により測定することができる。 The shape of the resin particles containing the thermoplastic resin is not particularly limited, but the shape is preferably spherical from the viewpoint of improving the dimensional accuracy of the three-dimensional model. Further, the size (diameter) of the resin particles is preferably 20 to 100 μm, more preferably 30 to 70 μm. When the size of the resin particles is 100 μm or less, it is possible to produce a three-dimensional model having a fine structure. On the other hand, the size of the resin particles is preferably 20 μm or more from the viewpoint of having sufficient fluidity and improving manufacturing cost and handleability. The average particle size is the volume average particle size measured by the dynamic light scattering method. The volume average particle size can be measured by a laser diffraction type particle size distribution measuring device (MT3300EXII manufactured by Microtrac Bell) equipped with a wet disperser.

(その他の成分)
樹脂組成物には、本発明の目的および効果を損なわない範囲で、上記平板状粒子および熱可塑性樹脂以外の成分が含まれていてもよい。その他の成分の例には、各種添加剤、充填剤等が含まれる。
(Other ingredients)
The resin composition may contain components other than the above-mentioned flat particles and the thermoplastic resin as long as the object and effect of the present invention are not impaired. Examples of other components include various additives, fillers and the like.

各種添加剤の例には、酸化防止剤、酸性化合物及びその誘導体、滑剤、紫外線吸収剤、光安定剤、核剤、難燃剤、衝撃改良剤、発泡剤、着色剤、有機過酸化物、展着剤、粘着剤等が含まれる。樹脂組成物には、これらが一種のみ含まれてもよく、二種以上含まれていてもよい。また、これらは、本発明の目的を損なわない範囲で、樹脂粒子の表面に塗布されていてもよい。 Examples of various additives include antioxidants, acidic compounds and derivatives thereof, lubricants, UV absorbers, light stabilizers, nucleating agents, flame retardants, impact improvers, foaming agents, colorants, organic peroxides, and exhibitions. Includes dressing agents, adhesives, etc. The resin composition may contain only one of these, or may contain two or more of them. Further, these may be applied to the surface of the resin particles as long as the object of the present invention is not impaired.

充填材の例には、上述の平板状粒子に相当しない無機系の粒子や、各種繊維等が含まれる。その例には、タルク、炭酸カルシウム、炭酸亜鉛、ワラストナイト、シリカ、アルミナ、酸化マグネシウム、ケイ酸カルシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノ珪酸ナトリウム、珪酸マグネシウム、ガラスバルーン、ガラスカットファイバー、ガラスミルドファイバー、ガラスフレーク、ガラス粉末、炭化ケイ素、窒化ケイ素、石膏、石膏ウィスカー、焼成カオリン、カーボンブラック、酸化亜鉛、三酸化アンチモン、ゼオライト、ハイドロタルサイト、金属繊維、金属ウィスカー、金属粉、セラミックウィスカー、チタン酸カリウム、窒化ホウ素、グラファイト、炭素繊維等の無機充填材;多糖類のナノファイバー等の有機充填剤;各種ポリマー等が含まれる。樹脂組成物には、これらが一種のみ含まれてもよく、二種以上含まれていてもよい。ただし、これらの量は、上述の平板状粒子より少ない量であることが好ましい。 Examples of the filler include inorganic particles that do not correspond to the above-mentioned flat particles, various fibers, and the like. Examples include talc, calcium carbonate, zinc carbonate, wallastnite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, magnesium silicate, glass balloons, glass cut fiber, Glass milled fiber, glass flakes, glass powder, silicon carbide, silicon nitride, gypsum, gypsum whisker, calcined kaolin, carbon black, zinc oxide, antimony trioxide, zeolite, hydrotalcite, metal fiber, metal whisker, metal powder, ceramic Inorganic fillers such as whiskers, potassium titanate, boron nitride, graphite and carbon fibers; organic fillers such as polysaccharide nanofibers; various polymers and the like are included. The resin composition may contain only one of these, or may contain two or more of them. However, these amounts are preferably smaller than the above-mentioned flat particles.

また、粉末床溶融結合法に用いられる樹脂組成物には、レーザ吸収剤等が含まれていてもよい。レーザ吸収剤の例には、カーボン粉末、ナイロン樹脂粉末、顔料、および染料等が含まれる。これらのレーザ吸収剤は、樹脂組成物中に一種類のみ含まれていてもよく、二種類以上含まれていてもよい。 Further, the resin composition used in the powder bed melt bonding method may contain a laser absorber or the like. Examples of laser absorbers include carbon powders, nylon resin powders, pigments, dyes and the like. Only one kind of these laser absorbers may be contained in the resin composition, or two or more kinds thereof may be contained.

(樹脂組成物の製造方法)
上記樹脂組成物の製造方法は特に制限されず、平板状粒子が樹脂粒子の周囲に付着している態様であるか、平板状粒子が樹脂粒子の内部に含まれている態様であるかによって適宜選択される。例えば、平板状粒子が樹脂粒子の周囲に付着している樹脂組成物は、樹脂粒子を予め作製し、当該樹脂粒子と平板状粒子とを公知の方法で混合することで作製することができる。一方、平板状粒子が樹脂粒子の内側に含まれている樹脂組成物は、平板状粒子と樹脂とを溶融混練し、これらを凍結粉砕機等により粉砕することで作製することができる。また、平板状粒子が樹脂粒子の内側および周囲に存在する樹脂組成物は、これらの方法を組み合わせることにより作製することができる。
(Manufacturing method of resin composition)
The method for producing the resin composition is not particularly limited, and is appropriate depending on whether the tabular particles are attached to the periphery of the resin particles or the tabular particles are contained inside the resin particles. Be selected. For example, the resin composition in which the flat plate particles are attached around the resin particles can be prepared by preparing the resin particles in advance and mixing the resin particles and the flat plate particles by a known method. On the other hand, the resin composition in which the flat plate-shaped particles are contained inside the resin particles can be produced by melt-kneading the flat plate-shaped particles and the resin and pulverizing them with a freeze crusher or the like. Further, a resin composition in which the flat plate particles are present inside and around the resin particles can be produced by combining these methods.

2.立体造形物の製造方法
上述の樹脂組成物は、前述のように、粉末床結合溶融方式、またはMJF方式による立体造形物の製造方法に用いることができる。以下、上記樹脂組成物を用いた立体造形方法について、それぞれ説明するが、本発明は、これらの方法に制限されない。
2. 2. Method for Producing a Three-dimensional Model The above-mentioned resin composition can be used in a method for producing a three-dimensional model by a powder bed bond melting method or an MJF method as described above. Hereinafter, three-dimensional modeling methods using the above resin compositions will be described, but the present invention is not limited to these methods.

2-1.粉末床結合溶融方式による立体造形物の製造方法
粉末床結合溶融方式による立体造形物の製造方法では、前記樹脂組成物を用いる以外は、通常の粉末床結合溶融方式と同様に行うことができる。具体的には、(1)前述の樹脂組成物を含む薄層を形成する薄層形成工程と、(2)樹脂組成物を含む薄層にレーザ光を選択的に照射して、前記粒子状の樹脂組成物どうしが溶融結合した造形物層を形成するレーザ光照射工程と、を含む方法とすることができる。そして工程(1)および工程(2)を複数回繰り返し、造形物層を積層することで、立体造形物を製造することができる。なお、当該立体造形物の製造方法は、必要に応じて、他の工程を含んでいてもよく、例えば樹脂組成物を予備加熱する工程等を含んでいてもよい。
2-1. Method for manufacturing a three-dimensional model by a powder bed bond melting method The method for manufacturing a three-dimensional model by a powder bed bond melting method can be performed in the same manner as a normal powder bed bond melting method except that the resin composition is used. Specifically, (1) a thin layer forming step of forming a thin layer containing the above-mentioned resin composition, and (2) the thin layer containing the resin composition is selectively irradiated with laser light to form the particles. It can be a method including a laser light irradiation step of forming a molded product layer in which the resin compositions of the above are melt-bonded to each other. Then, by repeating the step (1) and the step (2) a plurality of times and laminating the modeled object layer, a three-dimensional modeled object can be manufactured. The method for producing the three-dimensional model may include other steps, if necessary, and may include, for example, a step of preheating the resin composition.

・薄層形成工程(工程(1))
本工程では、樹脂組成物を含む薄層を形成する。たとえば、立体造形装置の粉末供給部から供給された樹脂組成物を、リコータによって造形ステージ上に平らに敷き詰める。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。なお、上記樹脂組成物は、必要に応じて別途、フローエージェントやレーザ吸収剤と混合して用いてもよい。
・ Thin layer forming step (step (1))
In this step, a thin layer containing the resin composition is formed. For example, the resin composition supplied from the powder supply unit of the three-dimensional modeling apparatus is spread flat on the modeling stage by a recoater. The thin layer may be formed directly on the build stage or may be formed so as to be in contact with the powder material already spread or the already formed build layer. If necessary, the resin composition may be separately mixed with a flow agent or a laser absorber.

薄層の厚さは、所望の造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の精度に応じて任意に設定することができるが、通常、0.01mm以上0.30mm以下である。薄層の厚さを0.01mm以上とすることで、次の造形物層を形成するためのレーザ光照射によって下の層の樹脂組成物が溶融結合されることを防ぐことができ、さらには均一な粉体の敷き詰めが可能となる。また、薄層の厚さを0.30mm以下とすることで、レーザ光のエネルギーを薄層の下部まで伝導させて、薄層を構成する樹脂組成物を、厚み方向の全体にわたって十分に溶融結合させることができる。前記観点からは、薄層の厚さは0.01mm以上0.10mm以下であることがより好ましい。また、薄層の厚み方向の全体にわたってより十分に樹脂組成物を溶融結合させ、造形物層の割れをより生じ難くする観点からは、薄層の厚さは、後述するレーザ光のビームスポット径との差が0.10mm以内になるよう設定することが好ましい。 The thickness of the thin layer is the same as the thickness of the desired model layer. The thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured, but is usually 0.01 mm or more and 0.30 mm or less. By setting the thickness of the thin layer to 0.01 mm or more, it is possible to prevent the resin composition of the lower layer from being melt-bonded by laser light irradiation for forming the next modeled object layer, and further. It is possible to spread uniform powder. Further, by setting the thickness of the thin layer to 0.30 mm or less, the energy of the laser beam is conducted to the lower part of the thin layer, and the resin composition constituting the thin layer is sufficiently melt-bonded over the entire thickness direction. Can be made to. From the above viewpoint, the thickness of the thin layer is more preferably 0.01 mm or more and 0.10 mm or less. Further, from the viewpoint of melting and bonding the resin composition more sufficiently over the entire thickness direction of the thin layer and making it more difficult for the modeled object layer to crack, the thickness of the thin layer is the beam spot diameter of the laser beam described later. It is preferable to set so that the difference from the above is within 0.10 mm.

ここで、樹脂組成物と混合可能なレーザ吸収剤の例には、カーボン粉末、ナイロン樹脂粉末、顔料、および染料等が含まれる。レーザ吸収剤の量は、上記樹脂組成物の溶融結合が容易になる範囲で適宜設定することができる。例えば、熱可塑性樹脂の全質量に対して、0質量%より多く3質量%未満とすることができる。レーザ吸収剤は、一種のみ用いてもよく、二種以上を組み合わせて用いてもよい。 Here, examples of the laser absorber that can be mixed with the resin composition include carbon powder, nylon resin powder, pigment, dye and the like. The amount of the laser absorber can be appropriately set within a range that facilitates melt bonding of the resin composition. For example, it can be more than 0% by mass and less than 3% by mass with respect to the total mass of the thermoplastic resin. The laser absorber may be used alone or in combination of two or more.

一方、樹脂組成物と混合可能なフローエージェントは、摩擦係数が小さく、自己潤滑性を有する材料であればよい。このようなフローエージェントの例には、二酸化ケイ素および窒化ホウ素が含まれる。これらのフローエージェントは、一種のみ用いてもよく、二種を組み合わせて用いてもよい。フローエージェントの量は、樹脂粒子等の流動性を向上させ、かつ樹脂粒子の溶融結合が十分に生じる範囲で適宜設定することができる。たとえば、熱可塑性樹脂の質量に対して、0質量%より多く2質量%未満とすることができる。 On the other hand, the flow agent that can be mixed with the resin composition may be a material having a small friction coefficient and self-lubricating property. Examples of such flow agents include silicon dioxide and boron nitride. These flow agents may be used alone or in combination of two. The amount of the flow agent can be appropriately set within a range in which the fluidity of the resin particles and the like is improved and the melt bonds of the resin particles are sufficiently generated. For example, it can be more than 0% by mass and less than 2% by mass with respect to the mass of the thermoplastic resin.

・レーザ光照射工程(工程(2))
本工程では、樹脂組成物を含む薄層のうち、造形物層を形成すべき位置にレーザ光を選択的に照射し、照射された位置の樹脂組成物を溶融結合させる。溶融した樹脂組成物は、隣接する樹脂組成物(樹脂粒子)と溶融し合って溶融結合体を形成し、造形物層となる。このとき、レーザ光のエネルギーを受け取った樹脂組成物(樹脂粒子)は、すでに形成された造形物層とも溶融結合するため、隣り合う層間の接着も生じる。
-Laser light irradiation process (process (2))
In this step, among the thin layers containing the resin composition, the laser beam is selectively irradiated to the position where the modeled object layer should be formed, and the resin composition at the irradiated position is melt-bonded. The melted resin composition melts with the adjacent resin composition (resin particles) to form a melt-bonded body, and becomes a modeled product layer. At this time, since the resin composition (resin particles) that has received the energy of the laser beam is melt-bonded to the already formed shaped object layer, adhesion between adjacent layers also occurs.

レーザ光の波長は、樹脂組成物が吸収する波長の範囲内で設定すればよい。このとき、レーザ光の波長と、樹脂組成物の吸収率が最も高くなる波長との差が小さくなるようにすることが好ましいが、一般的に熱可塑性樹脂は様々な波長域の光を吸収するため、COレーザ等の波長帯域の広いレーザ光を用いることが好ましい。たとえば、レーザ光の波長は、例えば0.8μm以上12μm以下とすることができる。The wavelength of the laser beam may be set within the range of the wavelength absorbed by the resin composition. At this time, it is preferable to make the difference between the wavelength of the laser beam and the wavelength at which the absorption rate of the resin composition is highest small, but in general, the thermoplastic resin absorbs light in various wavelength ranges. Therefore, it is preferable to use a laser beam having a wide wavelength band such as a CO 2 laser. For example, the wavelength of the laser beam can be, for example, 0.8 μm or more and 12 μm or less.

レーザ光の出力時のパワーは、後述するレーザ光の走査速度において、前記樹脂組成物(樹脂粒子)が十分に溶融結合する範囲内で設定すればよい。具体的には、5.0W以上60W以下とすることができる。レーザ光のエネルギーを低くして、製造コストを低くし、かつ、製造装置の構成を簡易なものにする観点からは、レーザ光の出力時のパワーは30W以下であることが好ましく、20W以下であることがより好ましい。 The power at the time of output of the laser light may be set within a range in which the resin composition (resin particles) is sufficiently melt-bonded at the scanning speed of the laser light described later. Specifically, it can be 5.0 W or more and 60 W or less. From the viewpoint of lowering the energy of the laser beam, lowering the manufacturing cost, and simplifying the configuration of the manufacturing apparatus, the power at the time of outputting the laser beam is preferably 30 W or less, and 20 W or less. It is more preferable to have.

レーザ光の走査速度は、製造コストを高めず、かつ、装置構成を過剰に複雑にしない範囲内で設定すればよい。具体的には、1m/秒以上10m/秒以下とすることが好ましく、2m/秒以上8m/秒以下とすることがより好ましく、3m/秒以上7m/秒以下とすることがさらに好ましい。
レーザ光のビーム径は、製造しようとする立体造形物の精度に応じて適宜設定することができる。
The scanning speed of the laser beam may be set within a range that does not increase the manufacturing cost and does not excessively complicate the device configuration. Specifically, it is preferably 1 m / sec or more and 10 m / sec or less, more preferably 2 m / sec or more and 8 m / sec or less, and further preferably 3 m / sec or more and 7 m / sec or less.
The beam diameter of the laser beam can be appropriately set according to the accuracy of the three-dimensional model to be manufactured.

・工程(1)および工程(2)の繰返しについて
立体造形物の製造の際には、上述の工程(1)および工程(2)を、任意の回数繰り返す。これにより、造形物層が積層されて、所望の立体造形物が得られることとなる。
-Repeat of steps (1) and (2) When manufacturing a three-dimensional model, the above steps (1) and (2) are repeated any number of times. As a result, the modeled object layers are laminated to obtain a desired three-dimensional modeled object.

・予備加熱工程
前述のように、粉末床結合溶融方式による立体造形物の製造方法では、樹脂組成物を予備加熱する工程を行ってもよい。樹脂組成物の予備加熱は、上記薄層形成(工程(1))後に行ってもよく、薄層形成(工程(1))前に行ってもよい。また、これらの両方で行ってもよい。
-Preheating step As described above, in the method for producing a three-dimensional model by the powder bed bond melting method, a step of preheating the resin composition may be performed. The preheating of the resin composition may be performed after the thin layer formation (step (1)) or before the thin layer formation (step (1)). Moreover, you may do both of these.

予備加熱温度は、樹脂組成物どうしが溶融結合しないように、熱可塑性樹脂の溶融温度より低い温度とする。予備加熱温度は、熱可塑性樹脂の溶融温度に応じて適宜選択され、例えば、50℃以上300℃以下とすることができ、100℃以上230℃以下であることがより好ましく、150℃以上190℃以下であることがさらに好ましい。 The preheating temperature is set to a temperature lower than the melting temperature of the thermoplastic resin so that the resin compositions do not melt and bond with each other. The preheating temperature is appropriately selected according to the melting temperature of the thermoplastic resin, and can be, for example, 50 ° C. or higher and 300 ° C. or lower, more preferably 100 ° C. or higher and 230 ° C. or lower, and 150 ° C. or higher and 190 ° C. or lower. The following is more preferable.

またこのとき、加熱時間は1~30秒とすることが好ましく、5~20秒とすることがより好ましい。上記温度で上記時間、予備加熱を行うことで、レーザエネルギー照射時に樹脂組成物(樹脂粒子)が溶融するまでの時間を短くすることができ、少ないレーザエネルギー量で立体造形物を製造することが可能となる。 At this time, the heating time is preferably 1 to 30 seconds, more preferably 5 to 20 seconds. By preheating at the above temperature for the above time, the time until the resin composition (resin particles) melts during laser energy irradiation can be shortened, and a three-dimensional model can be manufactured with a small amount of laser energy. It will be possible.

・その他
なお、溶融結合中の樹脂組成物の酸化等によって、立体造形物の強度が低下することを防ぐ観点からは、少なくとも工程(2)は減圧下または不活性ガス雰囲気中で行うことが好ましい。減圧するときの圧力は10-2Pa以下であることが好ましく、10-3Pa以下であることがより好ましい。このとき、使用することができる不活性ガスの例には、窒素ガスおよび希ガスが含まれる。これらの不活性ガスのうち、入手の容易さの観点からは、窒素(N)ガス、ヘリウム(He)ガスまたはアルゴン(Ar)ガスが好ましい。製造工程を簡略化する観点からは、工程(1)および工程(2)の両方を減圧下または不活性ガス雰囲気中で行うことが好ましい。
-Others From the viewpoint of preventing the strength of the three-dimensional model from being lowered due to oxidation of the resin composition during melt bonding, it is preferable to perform at least step (2) under reduced pressure or in an inert gas atmosphere. .. The pressure at the time of depressurization is preferably 10-2 Pa or less, and more preferably 10 -3 Pa or less. Examples of the inert gas that can be used at this time include nitrogen gas and noble gas. Of these inert gases, nitrogen (N 2 ) gas, helium (He) gas or argon (Ar) gas is preferable from the viewpoint of easy availability. From the viewpoint of simplifying the manufacturing process, it is preferable to perform both the step (1) and the step (2) under reduced pressure or in an atmosphere of an inert gas.

2-2.MJF方式による立体造形物の製造方法
本実施形態の立体造形物の製造方法は、(1)上述の樹脂組成物を含む薄層を形成する薄層形成工程と、(2)エネルギー吸収剤を含む結合用流体、および結合用流体よりエネルギー吸収の少ない剥離用流体を、薄層の互いに隣接する領域に塗布する流体塗布工程と、(3)流体塗布工程後の薄層にエネルギーを照射し、結合用流体の塗布領域の熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、を含む。なお、当該立体造形物の製造方法は、必要に応じて、他の工程を含んでいてもよく、例えば樹脂組成物を予備加熱する工程等を含んでいてもよい。
2-2. Method for producing a three-dimensional model by the MJF method The method for producing a three-dimensional model of the present embodiment includes (1) a thin layer forming step for forming a thin layer containing the above-mentioned resin composition, and (2) an energy absorber. A fluid coating step of applying a binding fluid and a peeling fluid having less energy absorption than the binding fluid to adjacent regions of the thin layer, and (3) irradiating the thin layer after the fluid coating step with energy to bond. It comprises an energy irradiation step of melting the thermoplastic resin in the application area of the fluid to form a model layer. The method for producing the three-dimensional model may include other steps, if necessary, and may include, for example, a step of preheating the resin composition.

(1)薄層形成工程
本工程では、上述の樹脂組成物を主に含む薄層を形成する。薄層の形成方法は、所望の厚みの層を形成可能であれば特に制限されない。例えば、本工程は、立体造形装置の樹脂組成物供給部から供給された樹脂組成物を、リコータによって造形ステージ上に平らに敷き詰める工程とすることができる。薄層は、造形ステージ上に直接形成してもよいし、すでに敷き詰められている粉末材料またはすでに形成されている造形物層の上に接するように形成してもよい。
(1) Thin layer forming step In this step, a thin layer mainly containing the above-mentioned resin composition is formed. The method for forming the thin layer is not particularly limited as long as a layer having a desired thickness can be formed. For example, this step can be a step of laying the resin composition supplied from the resin composition supply unit of the three-dimensional modeling apparatus flat on the modeling stage by a recoater. The thin layer may be formed directly on the build stage or may be formed so as to be in contact with the powder material already spread or the already formed build layer.

薄層の厚さは、所望の造形物層の厚さと同じとする。薄層の厚さは、製造しようとする立体造形物の精度に応じて任意に設定することができるが、通常、0.01mm以上0.30mm以下である。薄層の厚さを0.01mm以上とすることで、新たな造形物層を形成するためのエネルギー照射(後述のエネルギー照射工程におけるエネルギー照射)によって、既に作製した造形物層が溶融することを防ぐことができる。また、薄層の厚さが0.01mm以上であると、粉末材料を均一に敷き詰めやすくなる。また、薄層の厚さを0.30mm以下とすることで、後述のエネルギー照射工程において、エネルギー(例えば赤外光)を薄層の下部まで伝導させることが可能となる。これにより、所望の領域(結合用流体を塗布する領域)の熱可塑性樹脂を、厚み方向の全体にわたって溶融させることが可能となる。前記観点からは、薄層の厚さは0.01mm以上0.20mm以下であることがより好ましい。 The thickness of the thin layer is the same as the thickness of the desired model layer. The thickness of the thin layer can be arbitrarily set according to the accuracy of the three-dimensional model to be manufactured, but is usually 0.01 mm or more and 0.30 mm or less. By setting the thickness of the thin layer to 0.01 mm or more, the already produced modeled object layer is melted by energy irradiation for forming a new modeled object layer (energy irradiation in the energy irradiation step described later). Can be prevented. Further, when the thickness of the thin layer is 0.01 mm or more, it becomes easy to spread the powder material uniformly. Further, by setting the thickness of the thin layer to 0.30 mm or less, it becomes possible to conduct energy (for example, infrared light) to the lower part of the thin layer in the energy irradiation step described later. This makes it possible to melt the thermoplastic resin in a desired region (region to which the binding fluid is applied) over the entire thickness direction. From the above viewpoint, the thickness of the thin layer is more preferably 0.01 mm or more and 0.20 mm or less.

(2)流体塗布工程
本工程では、上記薄層形成工程で形成した薄層の互いに隣接する領域に、エネルギー吸収剤を含む結合用流体、および結合用流体よりエネルギー吸収の少ない剥離用流体をそれぞれ塗布する。具体的には、造形物層を形成すべき位置に選択的に結合用流体を塗布し、造形物層を形成しない領域に、剥離用流体を塗布する。結合用流体を塗布する領域の周囲に隣接して剥離用流体を塗布することで、剥離用流体を塗布した領域では、樹脂粒子が溶融結合し難くなる。結合用流体および剥離用流体のうち、どちらを先に塗布してもよいが、得られる立体造形物の寸法精度の観点から、結合用流体を先に塗布することが好ましい。
(2) Fluid application step In this step, a binding fluid containing an energy absorber and a peeling fluid having less energy absorption than the binding fluid are applied to the regions adjacent to each other of the thin layers formed in the thin layer forming step. Apply. Specifically, the binding fluid is selectively applied to the position where the modeled object layer should be formed, and the peeling fluid is applied to the region where the modeled object layer is not formed. By applying the peeling fluid adjacent to the periphery of the region to which the bonding fluid is applied, it becomes difficult for the resin particles to be melt-bonded in the region to which the peeling fluid is applied. Either the binding fluid or the peeling fluid may be applied first, but from the viewpoint of the dimensional accuracy of the obtained three-dimensional model, it is preferable to apply the binding fluid first.

結合用流体および剥離用流体の塗布方法は特に制限されず、例えばディスペンサーによる塗布や、インクジェット法による塗布、スプレー塗布等とすることができるが、高速で所望の領域に結合用流体および剥離用流体を塗布可能であるとの観点から少なくとも一方を、インクジェット法で塗布することが好ましく、両方をインクジェット法で塗布することがより好ましい。 The method of applying the binding fluid and the peeling fluid is not particularly limited, and for example, coating by a dispenser, coating by an inkjet method, spray coating, or the like can be performed, but the bonding fluid and the peeling fluid can be applied to a desired region at high speed. From the viewpoint that the above can be applied, it is preferable to apply at least one by an inkjet method, and it is more preferable to apply both by an inkjet method.

結合用流体および剥離用流体の塗布量は、それぞれ薄層1mm当たり、0.1~50μLであることが好ましく、0.2~40μLであることがより好ましい。結合用流体および剥離用流体の塗布量が当該範囲であると、造形物層を形成する領域、および造形物層を形成しない領域の粉末材料に、それぞれ結合用流体および剥離用流体を十分に含浸させることができ、寸法精度の良好な立体造形物を形成することができる。The coating amounts of the binding fluid and the peeling fluid are preferably 0.1 to 50 μL, and more preferably 0.2 to 40 μL, respectively, per 1 mm 3 of the thin layer. When the application amount of the binding fluid and the peeling fluid is within the above range, the powder material in the region forming the shaped object layer and the region not forming the shaped object layer is sufficiently impregnated with the binding fluid and the peeling fluid, respectively. It is possible to form a three-dimensional model with good dimensional accuracy.

本工程で塗布する結合用流体は、従来のMJF方式に用いられる結合用流体と同様とすることができ、例えばエネルギー吸収剤と、溶媒と、を少なくとも含む組成物とすることができる。結合用流体は、必要に応じて公知の分散剤等を含んでいてもよい。 The binding fluid applied in this step can be the same as the binding fluid used in the conventional MJF method, and can be, for example, a composition containing at least an energy absorber and a solvent. The binding fluid may contain a known dispersant or the like, if necessary.

エネルギー吸収剤は、後述するエネルギー照射工程において照射されるエネルギーを吸収し、結合用流体が塗布された領域の温度を効率的に高めることが可能なものであれば特に制限されない。エネルギー吸収剤の具体例には、カーボンブラック、ITO(スズ酸化インジウム)、ATO(アンチモン酸化スズ)等の赤外線吸収剤、シアニン色素,アルミニウムや亜鉛を中心に持つフタロシアニン色素,各種ナフタロシアニン化合物,平面四配位構造を有するニッケルジチオレン錯体,スクアリウム色素,キノン系化合物,ジインモニウム化合物,アゾ化合物等の赤外線吸収色素が含まれる。これらの中でも、汎用性や結合用流体が塗布された領域の温度を効率的に高めることができるとの観点から、赤外線吸収剤が好ましく、カーボンブラックであることがさらに好ましい。 The energy absorber is not particularly limited as long as it can absorb the energy irradiated in the energy irradiation step described later and efficiently raise the temperature of the region to which the binding fluid is applied. Specific examples of energy absorbers include carbon black, infrared absorbers such as ITO (indium tin oxide) and ATO (antimony tin oxide), cyanine pigments, phthalocyanine pigments mainly composed of aluminum and zinc, various naphthalocyanine compounds, and flat surfaces. Infrared absorbing dyes such as nickel dithiolene complex having a tetracoordinate structure, squalium dye, quinone compound, diinmonium compound, and azo compound are included. Among these, an infrared absorber is preferable, and carbon black is more preferable, from the viewpoint of versatility and the ability to efficiently increase the temperature of the region to which the binding fluid is applied.

エネルギー吸収剤の形状は特に制限されないが、粒子状であることが好ましい。また、その平均粒子径は0.1~1.0μmであることが好ましく、0.1~0.5μmであることがより好ましい。エネルギー吸収剤の平均粒子径が過度に大きいと、結合用流体を薄層上に塗布した際、エネルギー吸収剤が樹脂粒子の隙間に入り込み難くなる。一方、エネギー吸収剤の平均粒子径が0.1μm以上であると、後述するエネルギー照射工程で、効率良く熱可塑性樹脂に熱を伝えることができ、周囲の熱可塑性樹脂を溶融させることが可能となる。 The shape of the energy absorber is not particularly limited, but it is preferably in the form of particles. The average particle size thereof is preferably 0.1 to 1.0 μm, more preferably 0.1 to 0.5 μm. If the average particle size of the energy absorber is excessively large, it becomes difficult for the energy absorber to enter the gaps between the resin particles when the bonding fluid is applied onto the thin layer. On the other hand, when the average particle size of the energy absorber is 0.1 μm or more, heat can be efficiently transferred to the thermoplastic resin in the energy irradiation step described later, and the surrounding thermoplastic resin can be melted. Become.

結合用流体は、エネルギー吸収剤を0.1~10.0質量%含むことが好ましく、1.0~5.0質量%含むことがより好ましい。エネルギー吸収剤の量が0.1質量%以上であると、後述のエネルギー照射工程で、結合用流体が塗布された領域の温度を十分に高めることが可能となる。一方、エネルギー吸収剤の量が10.0質量%以下であると、結合用流体内でエネルギー吸収剤が凝集すること等が少なく、結合用流体の塗布安定性が高まりやすくなる。 The binding fluid preferably contains an energy absorber in an amount of 0.1 to 10.0% by mass, more preferably 1.0 to 5.0% by mass. When the amount of the energy absorber is 0.1% by mass or more, it is possible to sufficiently raise the temperature of the region to which the binding fluid is applied in the energy irradiation step described later. On the other hand, when the amount of the energy absorbent is 10.0% by mass or less, the energy absorbent is less likely to aggregate in the binding fluid, and the coating stability of the binding fluid is likely to be improved.

一方、溶媒は、エネルギー吸収剤を分散可能であり、さらに樹脂組成物中の熱可塑性樹脂等を溶解し難い溶媒であれば特に制限されず、例えば水とすることができる。 On the other hand, the solvent is not particularly limited as long as it can disperse the energy absorber and is difficult to dissolve the thermoplastic resin or the like in the resin composition, and can be, for example, water.

結合用流体は、上記溶媒を90.0~99.9質量%含むことが好ましく、95.0~99.0質量%含むことがより好ましい。結合用流体中の溶媒量が90.0質量%以上であると、結合用流体の流動性が高くなり、例えばインクジェット法等で塗布しやすくなる。 The binding fluid preferably contains the above solvent in an amount of 90.0 to 99.9% by mass, more preferably 95.0 to 99.0% by mass. When the amount of the solvent in the binding fluid is 90.0% by mass or more, the fluidity of the binding fluid becomes high, and it becomes easy to apply by, for example, an inkjet method.

結合用流体の粘度は、0.5~50.0mPa・sであることが好ましく、1.0~20.0mPa・sであることがより好ましい。結合用流体の粘度が0.5mPa・s以上であると、結合用流体を薄層に塗布した際の拡散が抑制されやすくなる。一方で、結合用流体の粘度が50.0mPa・s以下であると、結合用流体の塗布安定性が高まりやすくなる。 The viscosity of the binding fluid is preferably 0.5 to 50.0 mPa · s, more preferably 1.0 to 20.0 mPa · s. When the viscosity of the binding fluid is 0.5 mPa · s or more, diffusion when the binding fluid is applied to the thin layer is likely to be suppressed. On the other hand, when the viscosity of the coupling fluid is 50.0 mPa · s or less, the coating stability of the coupling fluid tends to increase.

一方、本工程で塗布する剥離用流体は、相対的に、結合用流体よりエネルギー吸収の少ない流体であればよく、例えば水を主成分とする流体等とすることができる。 On the other hand, the peeling fluid applied in this step may be a fluid having relatively less energy absorption than the coupling fluid, and may be, for example, a fluid containing water as a main component.

剥離用流体は、水を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。剥離用流体中の水の量が90質量%以上であると、例えばインクジェット法等で塗布しやすくなる。 The exfoliating fluid preferably contains 90% by mass or more of water, and more preferably 95% by mass or more. When the amount of water in the peeling fluid is 90% by mass or more, it becomes easy to apply by, for example, an inkjet method.

(3)エネルギー照射工程
本工程では、上記流体塗布工程後の薄層、すなわち結合用流体および剥離用流体が塗布された薄層に、エネルギーを一括照射する。このとき、結合用流体が塗布された領域では、エネルギー吸収剤がエネルギーを吸収し、当該領域の温度が部分的に上昇する。そして、当該領域の熱可塑性樹脂のみが溶融し、造形物層が形成される。
(3) Energy irradiation step In this step, energy is collectively irradiated to the thin layer after the fluid coating step, that is, the thin layer coated with the binding fluid and the peeling fluid. At this time, in the region where the binding fluid is applied, the energy absorber absorbs the energy, and the temperature of the region partially rises. Then, only the thermoplastic resin in the region is melted to form a modeled object layer.

本工程で照射するエネルギーの種類は、結合用流体が含むエネルギー吸収剤の種類に応じて適宜選択される。当該エネルギーの具体例には、赤外光、白色光等が含まれる。これらの中でも、結合用流体を塗布した領域では、効率よく熱可塑性樹脂を溶融させることが可能である一方で、剥離用流体を塗布した領域では、薄層の温度が上昇し難いとの観点から赤外光であることが好ましく、波長780~3000nmの光であることがより好ましく、波長800~2500nmの光であることがより好ましい。 The type of energy to be irradiated in this step is appropriately selected according to the type of energy absorber contained in the binding fluid. Specific examples of the energy include infrared light, white light and the like. Among these, from the viewpoint that the thermoplastic resin can be efficiently melted in the region coated with the bonding fluid, while the temperature of the thin layer does not easily rise in the region coated with the stripping fluid. Infrared light is preferable, light having a wavelength of 780 to 3000 nm is more preferable, and light having a wavelength of 800 to 2500 nm is more preferable.

また、本工程でエネルギーを照射する時間は、粉末材料が含む熱可塑性樹脂の種類に応じて適宜選択されるが、通常、5~60秒であることが好ましく、10~30秒であることがより好ましい。エネルギー照射時間を5秒以上とすることで、十分に熱可塑性樹脂を溶融させて、これらを結合させることが可能となる。一方で、60秒以下とすることで、効率よく立体造形物を製造することが可能となる。 The time for irradiating energy in this step is appropriately selected depending on the type of the thermoplastic resin contained in the powder material, but is usually preferably 5 to 60 seconds, preferably 10 to 30 seconds. More preferred. By setting the energy irradiation time to 5 seconds or more, it becomes possible to sufficiently melt the thermoplastic resin and combine them. On the other hand, if the time is 60 seconds or less, it becomes possible to efficiently manufacture a three-dimensional model.

・予備加熱工程
MJF方式においても、樹脂組成物を予備加熱する工程を行ってもよい。樹脂組成物の予備加熱は、上記薄層形成(工程(1))後に行ってもよく、薄層形成(工程(1))前に行ってもよい。また、これらの両方で行ってもよい。予備加熱を行うことで、(3)エネルギー照射工程で照射するエネルギー量を少なくすることが可能となる。またさらに、短時間で効率良く造形物層を形成することが可能となる。予備加熱温度は、熱可塑性樹脂の溶融温度より低い温度であり、かつ(2)流体塗布工程で塗布する結合用流体や剥離用流体が含む溶媒の沸点より低い温度であることが好ましい。具体的には、熱可塑性樹脂の融点や、結合用流体や剥離用流体が含む溶媒の沸点より、50℃~5℃低い温度であることが好ましく、30℃~5℃低い温度であることがより好ましい。またこのとき、加熱時間は1~60秒とすることが好ましく、3~20秒とすることがより好ましい。加熱温度および加熱時間を上記範囲とすることで、(3)エネルギー照射工程におけるエネルギー照射量を低減することができる。
-Preheating step Also in the MJF method, a step of preheating the resin composition may be performed. The preheating of the resin composition may be performed after the thin layer formation (step (1)) or before the thin layer formation (step (1)). Moreover, you may do both of these. By performing preheating, it is possible to reduce the amount of energy to be irradiated in the (3) energy irradiation step. Furthermore, it becomes possible to efficiently form a modeled object layer in a short time. The preheating temperature is preferably a temperature lower than the melting temperature of the thermoplastic resin and lower than the boiling point of the solvent contained in (2) the bonding fluid or the peeling fluid to be applied in the fluid coating step. Specifically, the temperature is preferably 50 ° C. to 5 ° C. lower than the melting point of the thermoplastic resin and the boiling point of the solvent contained in the bonding fluid or the peeling fluid, and is preferably 30 ° C. to 5 ° C. lower. More preferred. At this time, the heating time is preferably 1 to 60 seconds, more preferably 3 to 20 seconds. By setting the heating temperature and the heating time within the above ranges, the amount of energy irradiation in the (3) energy irradiation step can be reduced.

以下において、本発明の具体的な実施例を説明する。なお、これらの実施例によって、本発明の範囲は限定して解釈されない。 Hereinafter, specific examples of the present invention will be described. It should be noted that these examples do not limit the scope of the present invention.

[実施例1]
熱可塑性樹脂として、ポリアミド12(PA12、ダイセル・エボニック社製、ダイアミドL1600(「ダイアミド」は同社の登録商標)を準備した。当該熱可塑性樹脂を、湿式分散機を備えたレーザー回折式粒度分布測定装置(シンパティック(SYMPATEC)社製、ヘロス(HELOS))にて測定した平均粒子径が50μmの値になるまで、機械的粉砕法で粉砕した。
次にカオリン(林化成社製、ASPR400P)を、自由粉砕機(奈良機械社製、M-2)にて、50nmの厚み、0.5μmの幅になるまで粉砕した。その後、当該平板状粒子をヘンシェルミキサー(日本コークス工業社製)にて上記樹脂粒子と混ぜ合わせ、樹脂組成物1を作製した。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
[Example 1]
As a thermoplastic resin, polyamide 12 (PA12, manufactured by Daicel Evonik, Daiamide L1600 (“Diamid” is a registered trademark of the same company) was prepared. The thermoplastic resin was measured by a laser diffraction type particle size distribution equipped with a wet disperser. It was pulverized by a mechanical pulverization method until the average particle size measured by an apparatus (HELOS manufactured by SYMPATEC) reached a value of 50 μm.
Next, kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a free crusher (M-2 manufactured by Nara Machinery Co., Ltd.) to a thickness of 50 nm and a width of 0.5 μm. Then, the flat plate particles were mixed with the above resin particles by a Henschel mixer (manufactured by Nippon Coke Industries, Ltd.) to prepare a resin composition 1. The mass ratio of the thermoplastic resin to the flat particles was 85:15.

[実施例2]
カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、500nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物2を作製した。
[Example 2]
The same resin as in Example 1 except that kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a free crusher (M-2 manufactured by Nara Machinery Co., Ltd.) to a thickness of 500 nm and a width of 0.5 μm. Composition 2 was prepared.

[実施例3]
カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、50nmの厚み、1μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物3を作製した。
[Example 3]
Kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a bead mill (UAM015 manufactured by Hiroshima Metal & Machinery Co., Ltd.), and the resin composition was pulverized to a thickness of 50 nm and a width of 1 μm, as in Example 1. 3 was prepared.

[実施例4]
カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、300nmの厚み、5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物4を作製した。
[Example 4]
Kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a bead mill (UAM015 manufactured by Hiroshima Metal & Machinery Co., Ltd.), and the resin composition was pulverized to a thickness of 300 nm and a width of 5 μm, as in Example 1. 4 was prepared.

[実施例5]
カオリン(林化成社製、ASPR400P)をビーズミル(広島メタル&マシナリー社製、UAM015)にて粉砕し、500nmの厚み、10μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物5を作製した。
[Example 5]
Kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a bead mill (UAM015 manufactured by Hiroshima Metal & Machinery Co., Ltd.), and the resin composition was pulverized to a thickness of 500 nm and a width of 10 μm, as in Example 1. 5 was prepared.

[実施例6]
カオリン(林化成社製、ASPR400P)の代わりに平板状粒子としてマイカ(ヤマグチマイカ社製、A-11)を粉砕し、厚み300nm、幅5μmのマイカを用いた以外は、実施例1と同様に樹脂組成物6を用いた。
[Example 6]
Same as Example 1 except that mica (manufactured by Yamaguchi Mica, A-11) was crushed as flat particles instead of kaolin (manufactured by Hayashi Kasei Co., Ltd., ASPR400P) and mica having a thickness of 300 nm and a width of 5 μm was used. The resin composition 6 was used.

[実施例7]
カオリン(林化成社製、ASPR400P)の代わりにタルク(林化成社製、ミクロンホワイト#5000)を用い、厚み300nm、幅5μmのタルクを用いた以外は、実施例1と同様に樹脂組成物7を得た。
[Example 7]
Resin composition 7 as in Example 1 except that talc (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) was used instead of kaolin (manufactured by Hayashi Kasei Co., Ltd., Micron White # 5000) and talc having a thickness of 300 nm and a width of 5 μm was used. Got

[実施例8]
熱可塑性樹脂として、ポリプロピレン樹脂ペレット(サンアロマー社製、PM600A)を用い、当該熱可塑性樹脂を凍結粉砕機にて、平均粒径50μmになるまで粉砕した。一方、タルク(林化成社製、ミクロンホワイト#5000)を厚み300nm、幅5μmになるまで実施例1と同様に粉砕し、これらを混ぜ合わせて、樹脂組成物8を得た。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
[Example 8]
As the thermoplastic resin, polypropylene resin pellets (PM600A manufactured by SunAllomer Ltd.) were used, and the thermoplastic resin was pulverized with a freeze crusher until the average particle size became 50 μm. On the other hand, talc (micron white # 5000 manufactured by Hayashi Kasei Co., Ltd.) was pulverized in the same manner as in Example 1 until the thickness became 300 nm and the width became 5 μm, and these were mixed to obtain a resin composition 8. The mass ratio of the thermoplastic resin to the flat particles was 85:15.

[実施例9]
ポリプロピレン樹脂ペレット(サンアロマー社製、PM600A)90質量部とタルク(林化成社製、ミクロンホワイト#5000(厚み3000nm、幅10μm))10質量部とを、混練機(Xplore社製、MC15)にて混練し、タルク含有ポリプロピレン樹脂ペレットを作製した。そして、ポリプロピレン樹脂ペレットを凍結粉砕機にて、平均粒径50μmになるまで粉砕した。一方、タルク(林化成社製、ミクロンホワイト#5000)を厚み300nm、幅5μmになるまで実施例1と同様に粉砕し、これらを混ぜ合わせて、樹脂組成物9を得た。熱可塑性樹脂と平板状粒子との質量比は、85:15とした。
[Example 9]
90 parts by mass of polypropylene resin pellets (SunAllomer, PM600A) and 10 parts by mass of talc (Micron White # 5000 (thickness 3000 nm, width 10 μm), manufactured by Hayashi Kasei), using a kneader (Xplore, MC15). Kneading was performed to prepare talc-containing polypropylene resin pellets. Then, the polypropylene resin pellets were pulverized with a freeze crusher until the average particle size became 50 μm. On the other hand, talc (micron white # 5000 manufactured by Hayashi Kasei Co., Ltd.) was pulverized in the same manner as in Example 1 until the thickness became 300 nm and the width became 5 μm, and these were mixed to obtain a resin composition 9. The mass ratio of the thermoplastic resin to the flat particles was 85:15.

[比較例1]
カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、10nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物10を作製した。
[Comparative Example 1]
The same resin as in Example 1 except that kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a free crusher (M-2 manufactured by Nara Machinery Co., Ltd.) to a thickness of 10 nm and a width of 0.5 μm. The composition 10 was prepared.

[比較例2]
カオリン(林化成社製、ASPR400P)を自由粉砕機(奈良機械社製、M-2)にて、550nmの厚み、0.5μmの幅になるまで粉砕した以外は、実施例1と同様に樹脂組成物11を作製した。
[Comparative Example 2]
The same resin as in Example 1 except that kaolin (ASPR400P manufactured by Hayashi Kasei Co., Ltd.) was pulverized with a free crusher (M-2 manufactured by Nara Machinery Co., Ltd.) to a thickness of 550 nm and a width of 0.5 μm. The composition 11 was prepared.

[評価]
上述の樹脂組成物1~11について、以下の粉末床溶融結合法で立体造形物を作製し、弾性向上率、破断伸び、および反りについて評価した。
(1)立体造形物の作製
作製した樹脂組成物をホットプレート上に設置した造形ステージ上に敷き詰めて厚さ0.1mmの薄層を形成し、ホットプレートの温度を調整することで、予備加熱温度150℃にそれぞれ加熱した。この薄層に、以下の条件で、YAG波長用ガルバノメータスキャナを搭載したCOレーザから縦15mm×横20mmの範囲にレーザ光を照射して、造形物層を作製した。上記工程を高さ55mmになるまで繰り返し、積層された立体造形物をそれぞれ製造した。
[レーザ光の出射条件]
レーザ出力 :12W
レーザ光の波長 :10.6μm
ビーム径 :薄層表面で170μm
[レーザ光の走査条件]
走査速度 :2000mm/sec
ライン数 :1ライン
[evaluation]
For the above-mentioned resin compositions 1 to 11, three-dimensional shaped objects were prepared by the following powder bed melt-bonding method, and the elasticity improvement rate, breaking elongation, and warpage were evaluated.
(1) Preparation of three-dimensional model The prepared resin composition is spread on a modeling stage installed on a hot plate to form a thin layer with a thickness of 0.1 mm, and preheating is performed by adjusting the temperature of the hot plate. Each was heated to a temperature of 150 ° C. This thin layer was irradiated with laser light in a range of 15 mm in length × 20 mm in width from a CO 2 laser equipped with a galvanometer scanner for YAG wavelength under the following conditions to prepare a modeled object layer. The above steps were repeated until the height reached 55 mm, and laminated three-dimensional objects were manufactured.
[Laser light emission conditions]
Laser output: 12W
Wavelength of laser light: 10.6 μm
Beam diameter: 170 μm on the thin layer surface
[Laser light scanning conditions]
Scanning speed: 2000 mm / sec
Number of lines: 1 line

(2)弾性率および破断伸びの測定
得られた立体造形物を引張試験機(エーアンドディー社製、テンシロンRTC-1250)に設置して、1mm/分の速度で縦方向(造形物層の積層方向に垂直)に引っ張り、弾性率を測定した。さらに、同装置で、50mm/分の速度で縦方向(造形物層の積層方向に垂直)に引っ張り、破断伸びを測定した。そして、弾性率および破断伸びについて、それぞれ以下の基準で評価した。なお、ブランクとは、各平板状粒子を含まない以外は、実施例または各比較例と同一の樹脂粒子を用いて作製した立体造形物である。
(2) Measurement of elastic modulus and elongation at break The obtained three-dimensional model was installed in a tensile tester (Tencilon RTC-1250, manufactured by A & D Co., Ltd.) in the vertical direction (of the model layer) at a speed of 1 mm / min. It was pulled in the direction perpendicular to the stacking direction) and the elastic modulus was measured. Further, the device was used to pull in the vertical direction (perpendicular to the stacking direction of the model layer) at a speed of 50 mm / min, and the elongation at break was measured. Then, the elastic modulus and the elongation at break were evaluated according to the following criteria, respectively. The blank is a three-dimensional model produced by using the same resin particles as in the examples or each comparative example except that the flat particles are not included.

(弾性率)
◎:弾性率がブランクの弾性率に比べ30%以上向上した。
○:弾性率がブランクの弾性率に比べ10%以上向上した。
×:弾性率はブランクの弾性率に対して向上しなかった。
(Elastic modulus)
⊚: The elastic modulus was improved by 30% or more as compared with the elastic modulus of the blank.
◯: The elastic modulus was improved by 10% or more as compared with the elastic modulus of the blank.
X: The elastic modulus did not improve with respect to the elastic modulus of the blank.

(破断伸び)
◎:破断伸びが50%以上であった
○:破断伸びが10%以上50%未満であった
×:破断伸びが10%未満であった
(Breaking elongation)
⊚: Breaking elongation was 50% or more ○: Breaking elongation was 10% or more and less than 50% ×: Breaking elongation was less than 10%

(3)造形特性の評価(熱反り)
得られた立体造形物について、デジタルノギス(株式会社ミツトヨ製、スーパキャリパCD67-S PS/PM、「スーパキャリパ」は同社の登録商標)で縦方向および横方向の寸法を測定した。製造しようとした寸法(縦15mm×横20mm×高さ55mm)と測定された縦横の寸法との差を平均して、以下の基準で、立体造形物の寸法精度(熱反りの有無)を評価した。
◎:寸法差の平均が0.1mm未満であった
○:寸法差の平均が0.1mm以上0.5mm未満であった
×:寸法差の平均が0.5mm以上であった
(3) Evaluation of modeling characteristics (heat warpage)
The vertical and horizontal dimensions of the obtained three-dimensional model were measured with a digital caliper (manufactured by Mitutoyo Co., Ltd., Super Caliper CD67-S PS / PM, "Super Caliper" is a registered trademark of the same company). By averaging the difference between the dimensions to be manufactured (length 15 mm x width 20 mm x height 55 mm) and the measured length and width dimensions, the dimensional accuracy (presence or absence of thermal warpage) of the three-dimensional model is evaluated based on the following criteria. did.
⊚: The average dimensional difference was less than 0.1 mm ◯: The average dimensional difference was 0.1 mm or more and less than 0.5 mm ×: The average dimensional difference was 0.5 mm or more

Figure 0007099473000001
Figure 0007099473000001

表1に示されるように、樹脂粒子の周囲に、平板状粒子が付着していたとしても、その厚みが薄い場合には、得られる立体造形物の弾性率を向上させることができなかった(比較例1)。平板状粒子があまりにも薄いと、その添加効果が十分に発揮されないと考えられる。一方で、平板状粒子の厚みが厚く、球状に近づくと、破断伸びが低くなったり、熱反りが生じやすかった(比較例2)。 As shown in Table 1, even if the flat plate-like particles were attached around the resin particles, the elastic modulus of the obtained three-dimensional model could not be improved if the thickness was thin (the elastic modulus of the obtained three-dimensional model could not be improved). Comparative example 1). If the flat particles are too thin, it is considered that the addition effect is not sufficiently exhibited. On the other hand, when the plate-like particles were thick and approached a spherical shape, the elongation at break was low and thermal warpage was likely to occur (Comparative Example 2).

これに対し、厚みが50nm以上500nm以下である平板状粒子を樹脂粒子の外側に含む樹脂組成物によれば、弾性率、破断伸び、および反りのいずれの評価も良好であった(実施例1~9)。上記厚みの平板状粒子が含まれることで、得られる立体造形物の強度が高まったと考えられる。また、粒子が平板状であるため、立体造形物に引張強度がかかったときに、立体造形物内で、樹脂の伸び方向に平板状粒子が配列しやすく、樹脂と平板状粒子との間に隙間が生じ難かったと推察される。さらに、樹脂粒子の周囲に平板状粒子が付着していることから、立体造形物の製造の際、樹脂粒子どうしの熱伝導性や、樹脂粒子と(既に形成された)造形物層との間における熱伝導性が良好になり、熱反りが生じ難くなったと推察される。 On the other hand, according to the resin composition containing the flat plate particles having a thickness of 50 nm or more and 500 nm or less on the outside of the resin particles, the elastic modulus, the elongation at break, and the warp were all evaluated well (Example 1). ~ 9). It is considered that the strength of the obtained three-dimensional model was increased by including the flat-plate particles having the above thickness. Further, since the particles are flat, the flat particles are easily arranged in the elongation direction of the resin in the three-dimensional model when tensile strength is applied to the three-dimensional model, and the flat particles are between the resin and the flat particles. It is presumed that it was difficult to create a gap. Furthermore, since the flat plate particles are attached around the resin particles, the thermal conductivity between the resin particles and the space between the resin particles and the (already formed) modeled object layer are observed during the production of the three-dimensional object. It is presumed that the thermal conductivity in the above was improved and thermal warpage was less likely to occur.

さらに、その結晶構造が似ているポリプロピレンおよびタルク(平板状粒子)を用いた実施例8および9では、破断伸びが良好であり、さらには熱反りが生じ難かった。当該樹脂組成物では、立体造形物の製造の際、樹脂粒子が溶融すると、平板状粒子が核剤となって、再結晶化する。その結果、立体造形物内に、均一な構造の結晶が多数含まれることとなり、均一に熱が伝わったり、均一に荷重が加わったりしやすく、これらの結果が良好になったと推察される。 Further, in Examples 8 and 9 using polypropylene and talc (plate-like particles) having similar crystal structures, the elongation at break was good and the thermal warpage was less likely to occur. In the resin composition, when the resin particles are melted during the production of the three-dimensional model, the flat plate-like particles become nucleating agents and are recrystallized. As a result, a large number of crystals having a uniform structure are contained in the three-dimensional model, and it is easy for heat to be transferred uniformly and a load to be applied uniformly, and it is presumed that these results are good.

本出願は、2017年11月6日出願の特願2017-213710号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority under Japanese Patent Application No. 2017-213710 filed on November 6, 2017. All the contents described in the application specification are incorporated in the application specification.

本発明に係る樹脂組成物によれば、粉末床溶融結合法、およびMJF法のいずれの方法によっても、精度よく立体造形物を形成することが可能である。そのため、本発明は、立体造形法のさらなる普及に寄与するものと思われる。

According to the resin composition according to the present invention, it is possible to accurately form a three-dimensional model by either the powder bed melt-bonding method or the MJF method. Therefore, the present invention is considered to contribute to the further spread of the three-dimensional modeling method.

Claims (11)

粒子状の樹脂組成物を含む薄層の形成および前記薄層へのエネルギー照射の繰り返しによって、立体造形物を形成する立体造形法に使用される樹脂組成物であって、
熱可塑性樹脂を含む粒子、および
厚み50~500nmであり、かつ前記厚みに対する最大径の割合が5~20である平板状粒子を含
前記平板状粒子が層状粘土鉱物であり、
前記樹脂組成物100質量部に対する、前記平板状粒子の量が、10~40質量部である、
樹脂組成物。
A resin composition used in a three-dimensional modeling method for forming a three-dimensional model by repeatedly forming a thin layer containing a particulate resin composition and repeatedly irradiating the thin layer with energy.
It contains particles containing a thermoplastic resin and flat particles having a thickness of 50 to 500 nm and having a maximum diameter ratio of 5 to 20 with respect to the thickness .
The flat particles are layered clay minerals.
The amount of the flat particle is 10 to 40 parts by mass with respect to 100 parts by mass of the resin composition.
Resin composition.
前記平板状粒子は、前記最大径が1~10μmである、
請求項1に記載の樹脂組成物。
The flat particle has a maximum diameter of 1 to 10 μm.
The resin composition according to claim 1.
前記平板状粒子が、前記熱可塑性樹脂を含む粒子の周囲に付着している、
請求項1または2に記載の樹脂組成物。
The tabular particles are attached around the particles containing the thermoplastic resin.
The resin composition according to claim 1 or 2.
前記平板状粒子が、前記熱可塑性樹脂を含む粒子の内部に含まれている、
請求項1~3のいずれか一項に記載の樹脂組成物。
The tabular particles are contained inside the particles containing the thermoplastic resin.
The resin composition according to any one of claims 1 to 3.
前記平板状粒子は、マグネシウムを含むケイ酸塩化合物である、
請求項1~4のいずれか一項に記載の樹脂組成物。
The tabular particles are silicate compounds containing magnesium.
The resin composition according to any one of claims 1 to 4.
前記平板状粒子は、タルクである、
請求項1~5のいずれか一項に記載の樹脂組成物。
The tabular particles are talc.
The resin composition according to any one of claims 1 to 5.
前記熱可塑性樹脂が、結晶性樹脂である、
請求項1~6のいずれか一項に記載の樹脂組成物。
The thermoplastic resin is a crystalline resin.
The resin composition according to any one of claims 1 to 6.
前記熱可塑性樹脂が、オレフィン樹脂である、
請求項1~7のいずれか一項に記載の樹脂組成物。
The thermoplastic resin is an olefin resin.
The resin composition according to any one of claims 1 to 7.
請求項1~8のいずれか一項に記載の樹脂組成物の硬化物を含む、
立体造形物。
A cured product of the resin composition according to any one of claims 1 to 8.
Three-dimensional model.
請求項1~8のいずれか一項に記載の樹脂組成物を含む薄層を形成する薄層形成工程と、
前記薄層にレーザ光を選択的に照射して、複数の前記樹脂組成物が溶融結合した造形物層を形成するレーザ光照射工程と、
を含み、
前記薄層形成工程、および前記レーザ光照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、
立体造形物の製造方法。
A thin layer forming step for forming a thin layer containing the resin composition according to any one of claims 1 to 8.
A laser light irradiation step of selectively irradiating the thin layer with a laser beam to form a molded product layer in which a plurality of the resin compositions are melt-bonded.
Including
The thin layer forming step and the laser light irradiation step are repeated a plurality of times, and the shaped object layer is laminated to form a three-dimensional shaped object.
Manufacturing method for three-dimensional objects.
請求項1~8のいずれか一項に記載の樹脂組成物を含む薄層を形成する薄層形成工程と、
エネルギー吸収剤を含む結合用流体、および前記結合用流体よりエネルギー吸収の少ない剥離用流体を、前記薄層の互いに隣接する領域に塗布する流体塗布工程と、
前記流体塗布工程後の前記薄層にエネルギーを照射し、前記結合用流体を塗布した領域の前記熱可塑性樹脂を溶融させて造形物層を形成するエネルギー照射工程と、
を含み、
前記薄層形成工程、前記流体塗布工程、および前記エネルギー照射工程を複数回繰り返し、前記造形物層を積層することで立体造形物を形成する、
立体造形物の製造方法。
A thin layer forming step for forming a thin layer containing the resin composition according to any one of claims 1 to 8.
A fluid coating step of applying a binding fluid containing an energy absorber and a peeling fluid having less energy absorption than the binding fluid to adjacent regions of the thin layer.
An energy irradiation step of irradiating the thin layer after the fluid coating step with energy and melting the thermoplastic resin in the region to which the bonding fluid is applied to form a model layer.
Including
The thin layer forming step, the fluid coating step, and the energy irradiation step are repeated a plurality of times, and the shaped object layer is laminated to form a three-dimensional shaped object.
Manufacturing method for three-dimensional objects.
JP2019550494A 2017-11-06 2018-11-02 A resin composition and a method for producing a three-dimensional model using the resin composition. Active JP7099473B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017213710 2017-11-06
JP2017213710 2017-11-06
PCT/JP2018/040797 WO2019088243A1 (en) 2017-11-06 2018-11-02 Resin composition and method for producing three-dimensional model using same

Publications (2)

Publication Number Publication Date
JPWO2019088243A1 JPWO2019088243A1 (en) 2020-11-26
JP7099473B2 true JP7099473B2 (en) 2022-07-12

Family

ID=66332160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550494A Active JP7099473B2 (en) 2017-11-06 2018-11-02 A resin composition and a method for producing a three-dimensional model using the resin composition.

Country Status (2)

Country Link
JP (1) JP7099473B2 (en)
WO (1) WO2019088243A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517414A (en) 2014-04-30 2017-06-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Calculation model and three-dimensional (3D) printing method
WO2017180166A1 (en) 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3143090B1 (en) * 2014-05-15 2020-10-07 Northwestern University Ink compositions for three-dimensional printing and methods of forming objects using the ink compositions
JP6860774B2 (en) * 2014-07-14 2021-04-21 学校法人同志社 Fused Deposition Modeling Filament Manufacturing Method for 3D Printers
JP5972335B2 (en) * 2014-10-14 2016-08-17 花王株式会社 Soluble material for 3D modeling
JP2017052870A (en) * 2015-09-09 2017-03-16 株式会社リコー Active energy ray-curable composition
KR20180103882A (en) * 2016-01-20 2018-09-19 도레이 카부시키가이샤 Polyarylene sulfide resin fine particles and process for producing the same
JP6811637B2 (en) * 2017-02-14 2021-01-13 東京インキ株式会社 Resin molding materials for 3D modeling equipment and filaments for 3D modeling equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017517414A (en) 2014-04-30 2017-06-29 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Calculation model and three-dimensional (3D) printing method
WO2017180166A1 (en) 2016-04-15 2017-10-19 Hewlett-Packard Development Company, L.P. Composite particulate build materials

Also Published As

Publication number Publication date
JPWO2019088243A1 (en) 2020-11-26
WO2019088243A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
JP7010243B2 (en) A resin composition and a method for manufacturing a three-dimensional model using the resin composition.
JP6655714B2 (en) Resin molding and laser powder additive manufacturing device
JP6958217B2 (en) Manufacturing method of resin powder for three-dimensional modeling and three-dimensional modeling
US20190177510A1 (en) Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production process therefor
JP2020506090A (en) Improving adhesion and coalescence between loads in 3D-printed plastic parts
JP7107325B2 (en) Resin composition for three-dimensional modeling, three-dimensional modeled article, and method for producing three-dimensional modeled article
JP2021524399A (en) How to make a three-dimensional object from a poly (allylene sulfide) polymer
Sengupta et al. Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations
JP7099473B2 (en) A resin composition and a method for producing a three-dimensional model using the resin composition.
CN105291449B (en) Composite molded article and its manufacturing method
JP6037263B2 (en) Inorganic organic composite composition
CN110142968B (en) 3D printing material and preparation method thereof
JP2018199283A (en) Method for manufacturing three-dimensional object, powder material used for the same, and coupling fluid
JP2021524400A (en) Methods for Producing 3D Objects from Poly (Allylene Sulfide) Polymers
JP7172134B2 (en) POWDER MATERIAL AND METHOD FOR MANUFACTURING 3D PRODUCT USING THE SAME
JP7136186B2 (en) Method for producing thermoplastic resin-containing particles, resin composition for three-dimensional modeling, and method for producing three-dimensional object using the same
WO2019117016A1 (en) Method for producing three-dimensional molded object, and powder material used therein
JP6922946B2 (en) Resin member and manufacturing method of resin member
TWI838230B (en) Alumina-based thermally conductive disc-shaped particles and manufacturing method thereof, thermally conductive composition, articles, liquid composition, thermally conductive film, and components for electronic equipment
Zhang et al. Effect of multidimensional filler hybridization on the mechanical properties of thermoplastic polyurethane composites prepared by selective laser sintering
JP7205492B2 (en) 3D object manufacturing method and powder material used therefor
An et al. Multi Jet Fusion of surface-modified ZnO nanorod–reinforced PA12 nanocomposites
KR20190108994A (en) method for manufacturing ceramics nano fused compositee heat-release film
JP7463971B2 (en) Resin composition and method for producing three-dimensional object using same
JP2023014051A (en) Powder composition, method for manufacturing three-dimensional molding by powder bed melting bonding method using the same, and three-dimensional molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R150 Certificate of patent or registration of utility model

Ref document number: 7099473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150