JPWO2019088034A1 - Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program - Google Patents

Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program Download PDF

Info

Publication number
JPWO2019088034A1
JPWO2019088034A1 JP2019550377A JP2019550377A JPWO2019088034A1 JP WO2019088034 A1 JPWO2019088034 A1 JP WO2019088034A1 JP 2019550377 A JP2019550377 A JP 2019550377A JP 2019550377 A JP2019550377 A JP 2019550377A JP WO2019088034 A1 JPWO2019088034 A1 JP WO2019088034A1
Authority
JP
Japan
Prior art keywords
observation area
observation
container
degree
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2019550377A
Other languages
Japanese (ja)
Inventor
佑介 和多田
佑介 和多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2019088034A1 publication Critical patent/JPWO2019088034A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

観察領域設定装置、撮像制御装置、観察領域設定装置の作動方法、及び観察領域設定プログラムにおいて、撮影画像のデータ量の増大や撮影時間の長時間化を防止する。容器内に収容された観察対象に対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定するに際し、重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定する。In the observation area setting device, the imaging control device, the operation method of the observation area setting device, and the observation area setting program, it is possible to prevent an increase in the amount of data of the captured image and an increase in the imaging time. For the observation target housed in the container, a part of a new observation area adjacent to the previously set observation area is overlapped with respect to the previously set observation area, and new observation areas are sequentially set. When doing so, the degree of overlap of the overlapping overlapping areas is set larger as the degree of inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area is larger. To do.

Description

本発明は、タイリング撮影において各観察領域を設定する技術に関するものである。 The present invention relates to a technique for setting each observation area in tiling photography.

ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞等の多能性幹細胞は、種々の組織の細胞に分化する能力を備えたものであり、再生医療、薬の開発、および病気の解明等において応用が可能なものとして注目されている。 Pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells have the ability to differentiate into cells of various tissues, such as regenerative medicine, drug development, and elucidation of diseases. It is attracting attention as something that can be applied in.

そして、ES細胞およびiPS細胞等の多能性幹細胞、または分化誘導された細胞等を顕微鏡等で撮像し、その画像の特徴を捉えることで細胞の分化状態等を評価する方法が提案されている。 Then, a method has been proposed in which pluripotent stem cells such as ES cells and iPS cells, or cells in which differentiation has been induced are imaged with a microscope or the like, and the differentiation state of the cells is evaluated by capturing the characteristics of the images. ..

一方、上述したように細胞を顕微鏡で撮像する際、高倍率な広視野画像を取得するため、いわゆるタイリング撮影を行うことが提案されている。具体的には、例えばウェルプレート等が設置されたステージを、結像光学系に対して移動させることによってウェル内の各観察領域を走査して各観察領域を撮影した後、観察領域毎の撮影画像を繋ぎ合わせて合成画像を生成する方法が提案されている。 On the other hand, as described above, when imaging cells with a microscope, it has been proposed to perform so-called tiling imaging in order to acquire a high-magnification wide-field image. Specifically, for example, by moving a stage on which a well plate or the like is installed with respect to an imaging optical system, each observation area in the well is scanned to photograph each observation area, and then each observation area is photographed. A method of joining images to generate a composite image has been proposed.

ここで、顕微鏡観察において用いられる培養容器の底面には歪みがあるため、観察領域毎にオートフォーカス制御を行って焦点位置を合わせる必要がある。特許文献1には培養容器の底面の位置を予め測定しておき、自動的に培養容器の底面に焦点を合せて撮影を行う方法が開示されている。 Here, since the bottom surface of the culture vessel used for microscopic observation is distorted, it is necessary to perform autofocus control for each observation region to adjust the focus position. Patent Document 1 discloses a method in which the position of the bottom surface of the culture vessel is measured in advance and the bottom surface of the culture vessel is automatically focused for photographing.

一方、例えば全ての観察領域において観察領域の中心にフォーカスを合わせた場合には、培養容器の底面の歪み度合が大きいほど、観察領域の周辺部にフォーカスが合わずに周辺部がボケた画像が撮像されてしまう。そこで、タイリング撮影を行う際に、フォーカスが合わない領域に、他の観察領域で撮影した撮影画像の一部を一定量重複させ、重複領域についてはより画質の良い撮影画像を選択して合成画像を生成することが行われている。 On the other hand, for example, when the center of the observation area is focused in all the observation areas, the larger the degree of distortion of the bottom surface of the culture vessel, the more the peripheral part of the observation area is not focused and the peripheral part is blurred. It will be imaged. Therefore, when performing tiling shooting, a certain amount of shot images taken in other observation areas are overlapped in the out-of-focus area, and a shot image with better image quality is selected and combined for the overlapped area. An image is being generated.

特開昭63−106615号公報JP-A-63-106615

しかしながら、上記重複させる領域すなわち重複領域が大き過ぎると、観察対象を全て撮影した際に撮影画像の枚数が増加して、データ量の増大や撮影時間の長時間化が生じる場合がある。 However, if the overlapping area, that is, the overlapping area is too large, the number of captured images increases when all the observation targets are photographed, which may increase the amount of data and lengthen the photographing time.

本発明は上記事情に鑑みなされたものであり、隣り合う観察領域における重複領域の重複度合を好適に設定することにより、撮影画像のデータ量の増大や撮影時間の長時間化を防止することを目的とする。 The present invention has been made in view of the above circumstances, and by appropriately setting the degree of overlap of overlapping regions in adjacent observation regions, it is possible to prevent an increase in the amount of data in a captured image and a lengthening of the shooting time. The purpose.

本発明の観察領域設定装置は、容器内に収容された観察対象に対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定する観察領域設定部と、
重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定する重複度合設定部とを備える。
The observation area setting device of the present invention overlaps a part of a new observation area adjacent to the observation area set earlier with respect to the observation area set earlier with respect to the observation target housed in the container. An observation area setting unit that sequentially sets new observation areas,
The degree of overlap of the overlapping overlapping areas is set as the degree of inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area increases. It has a setting unit.

なお、本発明において「先に設定された観察領域」は、「新たな観察領域」が設定されるよりも前に設定された領域のことをいい、「先に」は時系列的な関係を意味する。また、本発明において「並び方向」は、先に設定された観察領域と新たな観察領域のそれぞれ中心を結ぶ線に沿った方向のことをいう。 In the present invention, the "previously set observation area" refers to the area set before the "new observation area" is set, and the "previously" has a time-series relationship. means. Further, in the present invention, the "arrangement direction" refers to a direction along a line connecting the centers of the previously set observation area and the new observation area.

また、本発明の観察領域設定装置は、容器の底面の形状情報を受け付ける形状情報受付部を備え、
重複度合設定部が、形状情報受付部から入力された形状情報に基づいて傾斜度合を取得してもよい。
Further, the observation area setting device of the present invention includes a shape information receiving unit that receives shape information of the bottom surface of the container.
The degree of overlap setting unit may acquire the degree of inclination based on the shape information input from the shape information receiving unit.

また、本発明の観察領域設定装置は、傾斜度合が、先に設定された観察領域に位置する容器の底面の前記並び方向における両端の高さの差に基づく値であってもよい。 Further, in the observation area setting device of the present invention, the degree of inclination may be a value based on the difference in height between both ends in the alignment direction of the bottom surface of the container located in the observation area set earlier.

また、本発明の観察領域設定装置は、傾斜度合が、先に設定された観察領域の新たな観察領域を設定する側の一辺を含む領域で、かつ先に設定された観察領域と一致する大きさの領域に位置する容器の底面の前記並び方向における両端の高さの差に基づく値であってもよい。 Further, in the observation area setting device of the present invention, the degree of inclination is a region including one side of the previously set observation area on the side where a new observation area is set, and has a size that matches the previously set observation area. It may be a value based on the difference in height between both ends in the alignment direction of the bottom surface of the container located in the area.

また、本発明の観察領域設定装置は、観察領域が容器よりも小さい領域であってもよい。 Further, the observation area setting device of the present invention may have an observation area smaller than that of the container.

また、本発明の観察領域設定装置においては、容器が、ディッシュ、ウェルプレートまたはフラスコであってもよい。 Further, in the observation area setting device of the present invention, the container may be a dish, a well plate or a flask.

本発明の撮像制御装置は、上記の観察領域設定装置と、
容器内に収容された観察対象を、観察領域設定装置により設定された観察領域毎に撮像部に撮像させる制御部とを備える。
The imaging control device of the present invention includes the above-mentioned observation area setting device and
It is provided with a control unit for causing the imaging unit to take an image of the observation target housed in the container for each observation area set by the observation area setting device.

なお、本発明の撮像制御装置は、容器の底面の形状情報を記憶する形状情報記憶部を備えていてもよい。 The imaging control device of the present invention may include a shape information storage unit that stores shape information of the bottom surface of the container.

また、この場合、形状情報記憶部が、容器の識別情報と容器の底面の形状情報とを対応づけたテーブルを記憶していてもよい。 Further, in this case, the shape information storage unit may store a table in which the identification information of the container and the shape information of the bottom surface of the container are associated with each other.

本発明の観察領域設定装置の作動方法は、
観察領域設定部と重複度合設定部とを備える観察領域設定装置の作動方法であって、
観察領域設定部が、容器内に収容された観察対象に対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定し、
重複度合設定部が、重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定する。
The method of operating the observation area setting device of the present invention is as follows.
It is an operation method of an observation area setting device including an observation area setting unit and an overlap degree setting unit.
The observation area setting unit newly overlaps a part of the new observation area adjacent to the observation area set earlier with respect to the observation area set earlier with respect to the observation target housed in the container. Observation area is set sequentially,
The degree of overlap setting unit determines the degree of overlap of the overlapping overlapping areas, and the degree of inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area is large. Set as large as possible.

なお、本発明による観察領域設定装置の作動方法をコンピュータに実行させるプログラムとして提供してもよい。 In addition, you may provide it as a program which causes a computer to execute the operation method of the observation area setting apparatus by this invention.

本発明による他の観察領域設定装置は、コンピュータに実行させるための命令を記憶するメモリと、
記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
容器内に収容された観察対象に対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定するに際し、
重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定する処理を実行する。
Another observation area setting device according to the present invention includes a memory for storing instructions to be executed by a computer and a memory.
The processor comprises a processor configured to execute a stored instruction.
For the observation target housed in the container, a part of the new observation area adjacent to the previously set observation area is overlapped with respect to the previously set observation area, and new observation areas are sequentially set. In doing so
The process of setting the degree of overlap of the overlapping overlapping areas to be larger as the degree of inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area is larger. Run.

本発明によれば、容器内に収容された観察対象に対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定するに際し、重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定することにより、隣り合う観察領域における重複領域の重複度合を容器の形状に合わせて好適に設定することができるので、撮影画像のデータ量の増大や撮影時間の長時間化を防止することができる。 According to the present invention, with respect to the observation target housed in the container, a part of a new observation area adjacent to the previously set observation area is overlapped with respect to the previously set observation area. When setting various observation areas in sequence, the degree of overlap of the overlapping overlapping areas is determined by the inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area. By setting the larger the degree, the degree of overlap of the overlapping areas in the adjacent observation areas can be appropriately set according to the shape of the container, so that the amount of data of the captured image is increased and the shooting time is lengthened. Can be prevented.

本発明の画像処理装置を適用した顕微鏡観察システムの一実施形態の概略構成を示す図The figure which shows the schematic structure of one Embodiment of the microscope observation system which applied the image processing apparatus of this invention. ウェルプレートにおける各観察領域の走査軌跡を示す図The figure which shows the scanning locus of each observation area in a well plate 培養容器の底面の形状情報を説明するための図Diagram for explaining shape information of the bottom surface of the culture vessel 観察領域設定部の構成を示す概略ブロック図Schematic block diagram showing the configuration of the observation area setting unit 培養容器における観察領域毎の重複領域について説明する図The figure explaining the overlapping area for each observation area in a culture vessel. 取得された撮影画像の一例を示す図The figure which shows an example of the acquired photographed image 培養容器に対して設定された複数の重複領域を示す図Diagram showing multiple overlapping regions set for the culture vessel 図7における左上隅にある観察画像の一部拡大図A partially enlarged view of the observation image in the upper left corner of FIG. 図7における右上隅にある観察画像の一部拡大図A partially enlarged view of the observation image in the upper right corner of FIG. 傾斜度合を算出する他の方法を説明する図A diagram illustrating another method of calculating the degree of inclination 本実施形態において行われる処理を示すフローチャートFlowchart showing the processing performed in this embodiment

以下、本発明の実施形態について説明する。図1は本発明の実施形態による観察領域設定装置を適用した顕微鏡観察システムの概略構成を示す図である。本実施形態の顕微鏡観察システムは、図1に示すように、顕微鏡装置1、顕微鏡制御装置2、入力装置3、および表示装置4を備える。なお、顕微鏡制御装置2が本発明の撮像制御装置に対応する。 Hereinafter, embodiments of the present invention will be described. FIG. 1 is a diagram showing a schematic configuration of a microscope observation system to which the observation area setting device according to the embodiment of the present invention is applied. As shown in FIG. 1, the microscope observation system of the present embodiment includes a microscope device 1, a microscope control device 2, an input device 3, and a display device 4. The microscope control device 2 corresponds to the image pickup control device of the present invention.

本実施形態において、顕微鏡装置1は位相差顕微鏡であり、観察対象として、例えば培養された細胞の位相差画像を撮影画像として撮像するものである。具体的には、顕微鏡装置1は、図1に示すように、照明光照射部10、結像光学系30、ステージ61、および撮像部40を備える。 In the present embodiment, the microscope device 1 is a phase-contrast microscope, and as an observation target, for example, a phase-contrast image of cultured cells is imaged as a captured image. Specifically, as shown in FIG. 1, the microscope device 1 includes an illumination light irradiation unit 10, an imaging optical system 30, a stage 61, and an imaging unit 40.

ステージ61上には、細胞等の観察対象Sおよび培養液Cが収容された培養容器60が設置される。ステージ61の中央には、矩形の開口が形成されている。この開口を形成する部材の上に培養容器60が設置され、培養容器60内の観察対象Sの撮影画像が開口を通過するように構成されている。 A culture container 60 containing an observation target S such as cells and a culture solution C is installed on the stage 61. A rectangular opening is formed in the center of the stage 61. The culture container 60 is installed on the member forming the opening, and the photographed image of the observation target S in the culture container 60 is configured to pass through the opening.

ステージ61上に設置された培養容器60内には、観察対象Sとして、培養された細胞群(細胞コロニー)が配置される。培養された細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞等がある。培養容器60としては、例えば複数のウェル(本発明の容器に相当する)を有するウェルプレートが用いられるが、これに限らず、シャーレやフラスコ、ディッシュ等を用いるようにしてもよい。なお、本実施形態においては、複数のウェルが配列されたウェルプレートを培養容器60として用いるものとする。 In the culture vessel 60 installed on the stage 61, a cultured cell group (cell colony) is arranged as an observation target S. The cultured cells include pluripotent stem cells such as iPS cells and ES cells, nerves induced to differentiate from stem cells, skin, myocardium and liver cells, and skin, retina, myocardium, blood cells, nerves and nerves extracted from the human body. There are cells of organs. As the culture container 60, for example, a well plate having a plurality of wells (corresponding to the container of the present invention) is used, but the culture dish 60 is not limited to this, and a petri dish, a flask, a dish or the like may be used. In this embodiment, a well plate in which a plurality of wells are arranged is used as the culture vessel 60.

ステージ61上に設置された培養容器60は、培養容器60内の底面が観察対象Sの設置面P1であり、設置面P1に観察対象Sが配置される。培養容器60内には培養液Cが満たされている。なお、本実施形態においては、培養液中で培養される細胞を観察対象Sとしたが、観察対象Sとしてはこのような培養液中のものに限らず、水、ホルマリン、エタノール、およびメタノール等の液体中において固定された細胞を観察対象Sとしてもよい。 In the culture vessel 60 installed on the stage 61, the bottom surface of the culture vessel 60 is the installation surface P1 of the observation target S, and the observation target S is arranged on the installation surface P1. The culture container 60 is filled with the culture solution C. In the present embodiment, the cells cultured in the culture medium are set as the observation target S, but the observation target S is not limited to those in such a culture solution, and water, formalin, ethanol, methanol, etc. The cells fixed in the liquid of the above may be the observation target S.

照明光照射部10は、ステージ61上の培養容器60内に収容された観察対象Sに対して、いわゆる位相差計測のための照明光を照射するものであり、本実施形態では、その位相差計測用の照明光としてリング状照明光を照射する。 The illumination light irradiation unit 10 irradiates the observation target S housed in the culture vessel 60 on the stage 61 with illumination light for so-called phase difference measurement, and in the present embodiment, the phase difference thereof. A ring-shaped illumination light is irradiated as an illumination light for measurement.

具体的には、本実施形態の照明光照射部10は、位相差計測用の白色光を出射する白色光源11、リング形状のスリットを有し、白色光源11から出射された白色光が入射されてリング状照明光を出射するスリット板12、およびスリット板12から出射されたリング状照明光が入射され、入射されたリング状照明光を観察対象Sに対して照射するコンデンサレンズ13を備える。 Specifically, the illumination light irradiation unit 10 of the present embodiment has a white light source 11 that emits white light for phase difference measurement and a ring-shaped slit, and the white light emitted from the white light source 11 is incident on the white light source 11. A slit plate 12 that emits ring-shaped illumination light, and a condenser lens 13 that receives ring-shaped illumination light emitted from the slit plate 12 and irradiates the incident ring-shaped illumination light onto the observation target S.

スリット板12は、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられたものであり、白色光がスリットを通過することによってリング状照明光が形成される。コンデンサレンズ13は、スリット板12から出射されたリング状照明光を観察対象Sに向かって収束させる。 The slit plate 12 is provided with a ring-shaped slit that transmits white light to a light-shielding plate that blocks white light emitted from the white light source 11, and the white light passes through the slit to form a ring shape. Illumination light is formed. The condenser lens 13 converges the ring-shaped illumination light emitted from the slit plate 12 toward the observation target S.

結像光学系30は、培養容器60内の観察対象Sの像を撮像部40に結像するものであり、対物レンズ31、位相板32および結像レンズ33を備える。 The imaging optical system 30 forms an image of the observation target S in the culture vessel 60 on the imaging unit 40, and includes an objective lens 31, a phase plate 32, and an imaging lens 33.

位相板32は、リング状照明光の波長に対して透明な透明板に対して位相リングを形成したものである。なお、上述したスリット板12のスリットの大きさは、この位相リングと共役な関係にある。 The phase plate 32 is formed by forming a phase ring on a transparent plate that is transparent to the wavelength of ring-shaped illumination light. The size of the slit of the slit plate 12 described above has a conjugate relationship with this phase ring.

位相リングは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成されたものである。位相板32に入射された直接光は位相リングを通過することによって位相が1/4波長ずれ、かつその明るさが弱められる。一方、観察対象Sによって回折された回折光は大部分が位相板32の透明板の部分を通過し、その位相および明るさは変化しない。 The phase ring is formed by forming a ring-shaped phase film that shifts the phase of the incident light by 1/4 wavelength and a dimming filter that dims the incident light. The direct light incident on the phase plate 32 passes through the phase ring, so that the phase shifts by 1/4 wavelength and the brightness thereof is weakened. On the other hand, most of the diffracted light diffracted by the observation target S passes through the transparent plate portion of the phase plate 32, and its phase and brightness do not change.

結像レンズ33は、位相板32を通過した直接光および回折光が入射され、これらの光を撮像部40に結像する。 Direct light and diffracted light that have passed through the phase plate 32 are incident on the imaging lens 33, and these lights are imaged on the imaging unit 40.

撮像部40は、結像レンズ33によって結像された観察対象Sの像を受光し、観察対象Sを撮像して位相差画像を観察画像として出力する撮像素子を備える。撮像素子としては、CCD(charge-coupled device)イメージセンサ、およびCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等を用いることができる。 The image pickup unit 40 includes an image pickup device that receives an image of the observation target S imaged by the imaging lens 33, images the observation target S, and outputs a phase difference image as an observation image. As the image pickup device, a CCD (charge-coupled device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like can be used.

ここで、ステージ61は、駆動部62により駆動されて、水平面内において直交するX方向およびY方向に移動する。ステージ61の移動によって、ウェルプレートの各ウェル内における、ウェルよりも小さい各観察領域が走査され、観察領域毎の撮影画像が撮像部40により取得される。この際、隣り合う観察領域の一部を重複させて、各観察領域が走査される。なお隣り合う観察領域の重複領域については後で詳細に説明する。そして観察領域毎の撮影画像は顕微鏡制御装置2に出力される。 Here, the stage 61 is driven by the drive unit 62 and moves in the X and Y directions orthogonal to each other in the horizontal plane. By moving the stage 61, each observation area smaller than the well in each well of the well plate is scanned, and the captured image for each observation area is acquired by the imaging unit 40. At this time, each observation area is scanned by overlapping a part of the adjacent observation areas. The overlapping regions of adjacent observation regions will be described in detail later. Then, the captured image for each observation area is output to the microscope control device 2.

図2は、6つのウェル71を有するウェルプレート70を用いた場合における、各観察領域の走査軌跡を実線77で示した図である。図2に示すように、ウェルプレート70内の各観察領域は、ステージ61のX方向およびY方向の移動によって走査開始点75から走査終了点76までの実線77に沿って走査される。 FIG. 2 is a diagram showing a scanning locus of each observation region as a solid line 77 when a well plate 70 having six wells 71 is used. As shown in FIG. 2, each observation region in the well plate 70 is scanned along the solid line 77 from the scanning start point 75 to the scanning end point 76 by the movement of the stage 61 in the X and Y directions.

なお、本実施形態においては、ステージ61を移動させることによってウェル内の観察領域毎の撮影画像を取得するようにしたが、これに限らず、結像光学系30をステージ61に対して移動させることによって観察領域毎の撮影画像を取得するようにしてもよい。または、ステージ61と結像光学系30の両方を移動させるようにしてもよい。また、本実施形態においては、図2に示す走査軌跡で走査したが、本発明はこれに限らず、例えば渦巻き状等、他の走査軌跡で走査してもよい。 In the present embodiment, the captured image for each observation area in the well is acquired by moving the stage 61, but the present invention is not limited to this, and the imaging optical system 30 is moved with respect to the stage 61. By doing so, the captured image for each observation area may be acquired. Alternatively, both the stage 61 and the imaging optical system 30 may be moved. Further, in the present embodiment, scanning is performed using the scanning locus shown in FIG. 2, but the present invention is not limited to this, and scanning may be performed using another scanning locus such as a spiral shape.

顕微鏡制御装置2は、CPU(Central Processing Unit)20、一次記憶部24、二次記憶部25及び外部I/F(Interface)28等を備えたコンピュータから構成される。CPU20は、制御部21、観察領域設定装置22及び画像処理部23を備え、顕微鏡観察システムの全体を制御する。一次記憶部24は、各種プログラムの実行時のワークエリア等として用いられる揮発性のメモリである。一次記憶部24の一例としては、RAM(Random Access Memory)が挙げられる。二次記憶部25は、各種プログラム及び各種パラメータ等を予め記憶した不揮発性のメモリであり、本発明の形状情報記憶部の一例である形状情報26が記憶されている。また二次記憶部25には、本発明の観察領域設定プログラム27の一実施形態がインストールされている。この観察領域設定プログラム27がCPU20によって実行されることによって観察領域設定装置22が機能する。二次記憶部25の一例としては、EEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリ等が挙げられる。外部I/F28は顕微鏡装置1と顕微鏡制御装置2との間の各種情報の送受信を司る。CPU20、一次記憶部24、及び二次記憶部25は、バスライン29に接続されている。また、外部I/F28も、バスライン29に接続されている。 The microscope control device 2 is composed of a computer including a CPU (Central Processing Unit) 20, a primary storage unit 24, a secondary storage unit 25, an external I / F (Interface) 28, and the like. The CPU 20 includes a control unit 21, an observation area setting device 22, and an image processing unit 23, and controls the entire microscope observation system. The primary storage unit 24 is a volatile memory used as a work area or the like when executing various programs. An example of the primary storage unit 24 is a RAM (Random Access Memory). The secondary storage unit 25 is a non-volatile memory in which various programs, various parameters, and the like are stored in advance, and the shape information 26, which is an example of the shape information storage unit of the present invention, is stored. Further, an embodiment of the observation area setting program 27 of the present invention is installed in the secondary storage unit 25. The observation area setting device 22 functions when the observation area setting program 27 is executed by the CPU 20. Examples of the secondary storage unit 25 include EEPROM (Electrically Erasable Programmable Read-Only Memory), flash memory, and the like. The external I / F 28 controls the transmission and reception of various information between the microscope device 1 and the microscope control device 2. The CPU 20, the primary storage unit 24, and the secondary storage unit 25 are connected to the bus line 29. The external I / F 28 is also connected to the bus line 29.

観察領域設定プログラム27は、DVD(Digital Versatile Disc)及びCD−ROM(Compact Disc Read Only Memory)などの記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。又は、観察領域設定プログラム27は、ネットワークに接続されたサーバコンピュータの記憶装置もしくはネットワークストレージに対して、外部からアクセス可能な状態で記憶され、外部からの要求に応じてコンピュータにダウンロードされた後に、インストールされるようにしてもよい。 The observation area setting program 27 is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) and a CD-ROM (Compact Disc Read Only Memory), and is installed in a computer from the recording medium. Alternatively, the observation area setting program 27 is stored in a storage device or network storage of a server computer connected to the network in a state of being accessible from the outside, and is downloaded to the computer in response to a request from the outside. It may be installed.

形状情報26は、培養容器60の底面すなわち設置面P1の形状情報である。培養容器60の底面の形状情報は、たとえばレーザ変位計などを用いて予め計測される。図3は培養容器60の底面の形状情報を説明するための図である。本実施形態の形状情報は、図3に示すように培養容器60の底面60aをX−Y方向に10μm×10μmの空間分解能で計測された情報とする。なお、形状情報の空間分解能はこれに限られるものではない。また、培養容器60の底面60aの形状情報の計測方法としては、レーザ変位計による計測に限らず、共焦点方式および分光干渉方式などその他の方式を用いて計測するようにしてもよい。 The shape information 26 is the shape information of the bottom surface of the culture container 60, that is, the installation surface P1. The shape information of the bottom surface of the culture vessel 60 is measured in advance using, for example, a laser displacement meter. FIG. 3 is a diagram for explaining the shape information of the bottom surface of the culture vessel 60. As shown in FIG. 3, the shape information of the present embodiment is information obtained by measuring the bottom surface 60a of the culture vessel 60 in the XY directions with a spatial resolution of 10 μm × 10 μm. The spatial resolution of the shape information is not limited to this. Further, the method of measuring the shape information of the bottom surface 60a of the culture vessel 60 is not limited to the measurement by the laser displacement meter, and the measurement may be performed by using other methods such as a confocal method and a spectral interference method.

また、培養容器60の底面60sの形状情報は、ステージ61上に培養容器60が設置された際に、顕微鏡装置1に設けられたレーザ変位計によって計測するようにしてもよいし、培養容器60の識別情報と予め計測された形状情報とを対応づけたテーブルを二次記憶部25に記憶しておいてもよい。そして、ユーザが、入力装置3を用いてステージ61上に設置した培養容器60の識別情報を設定入力し、その識別情報を有する培養容器60の形状情報を二次記憶部25から読み出すようにしてもよい。また、培養容器60の識別情報については、ユーザが設定入力するのではなく、培養容器60にバーコードなどを付与し、そのバーコードを読み取ることによって識別情報を取得するようにしてもよい。なお培養容器60の識別情報は、例えば製造メーカの型式番号であってもよいし、製造番号であってもよい。 Further, the shape information of the bottom surface 60s of the culture vessel 60 may be measured by a laser displacement meter provided in the microscope device 1 when the culture vessel 60 is installed on the stage 61, or the culture vessel 60 may be measured. A table in which the identification information of the above is associated with the shape information measured in advance may be stored in the secondary storage unit 25. Then, the user sets and inputs the identification information of the culture container 60 installed on the stage 61 using the input device 3, and reads out the shape information of the culture container 60 having the identification information from the secondary storage unit 25. May be good. Further, the identification information of the culture container 60 may be obtained by assigning a bar code or the like to the culture container 60 and reading the bar code instead of inputting the setting by the user. The identification information of the culture container 60 may be, for example, the model number of the manufacturer or the serial number.

また、上記では、汎用コンピュータが顕微鏡制御装置2として機能する場合について説明したが、専用コンピュータによって実施されてもよい。専用コンピュータは、内蔵されたROM(Read Only Memory)やフラッシュメモリなど、不揮発メモリに記録されたプログラムを実行するファームウェアであってもよい。さらに、この顕微鏡制御装置2の少なくとも一部の機能を実行するためのプログラムを永久的に記憶するASIC(Application Specific Integrated Circuit :特定用途向け集積回路)やFPGA(field programmable gate arrays)などの専用回路を設けるようにしてもよい。あるいは、専用回路に記憶されたプログラム命令と、専用回路のプログラムを利用するようにプログラムされた汎用のCPUによって実行されるプログラム命令と組み合わせるようにしてもよい。以上のように、コンピュータのハードウェア構成をどのように組み合わせてプログラム命令を実行してもよい。 Further, although the case where the general-purpose computer functions as the microscope control device 2 has been described above, it may be carried out by the dedicated computer. The dedicated computer may be firmware that executes a program recorded in the non-volatile memory such as a built-in ROM (Read Only Memory) or a flash memory. Furthermore, dedicated circuits such as ASICs (Application Specific Integrated Circuits) and FPGAs (field programmable gate arrays) that permanently store programs for executing at least some of the functions of the microscope control device 2. May be provided. Alternatively, the program instructions stored in the dedicated circuit may be combined with the program instructions executed by the general-purpose CPU programmed to use the program of the dedicated circuit. As described above, program instructions may be executed in any combination of computer hardware configurations.

制御部21は、照明光照射部10、ステージ61を駆動する駆動部62、結像光学系30および撮像部40の駆動を制御して観察対象Sの撮影画像を取得する。また、制御部21は、顕微鏡装置1によって撮像された各観察位置の位相差画像を結合することによって生成された1枚の合成位相差画像を表示装置4に表示させる表示制御部としても機能する。また制御部21は、撮像部40に観察対象Sを撮像させる。本実施形態においては、培養容器60は複数のウェルが配列されたウェルプレートであるため、制御部21は各ウェル内における各観察領域を撮像部40に撮像させる。 The control unit 21 controls the drive of the illumination light irradiation unit 10, the drive unit 62 for driving the stage 61, the imaging optical system 30, and the imaging unit 40 to acquire a captured image of the observation target S. The control unit 21 also functions as a display control unit that displays a single composite retardation image generated by combining the phase difference images of each observation position captured by the microscope device 1 on the display device 4. .. Further, the control unit 21 causes the imaging unit 40 to image the observation target S. In the present embodiment, since the culture vessel 60 is a well plate in which a plurality of wells are arranged, the control unit 21 causes the imaging unit 40 to image each observation region in each well.

観察領域設定装置22は、培養容器60に対する観察領域を設定する。図4は観察領域設定装置22の構成を示す概略ブロック図である。図4に示すように、観察領域設定装置22は、観察領域設定部50、重複度合設定部51及び形状情報受付部52を備える。形状情報受付部52は、二次記憶部25に記憶された形状情報26から培養容器60の底面の形状情報を読み出して取得する。なお本実施形態の観察領域設定装置22は形状情報受付部52を備えるものとしたが、本発明はこれに限られるものではなく、形状情報受付部52を備えていなくても良い。この場合、CPU20からの指令により必要に応じて二次記憶部25から形状情報26が読み出される。 The observation area setting device 22 sets an observation area for the culture vessel 60. FIG. 4 is a schematic block diagram showing the configuration of the observation area setting device 22. As shown in FIG. 4, the observation area setting device 22 includes an observation area setting unit 50, an overlap degree setting unit 51, and a shape information reception unit 52. The shape information receiving unit 52 reads and acquires the shape information of the bottom surface of the culture container 60 from the shape information 26 stored in the secondary storage unit 25. Although the observation area setting device 22 of the present embodiment is provided with the shape information receiving unit 52, the present invention is not limited to this, and the shape information receiving unit 52 may not be provided. In this case, the shape information 26 is read out from the secondary storage unit 25 as needed by a command from the CPU 20.

観察領域設定部50は、培養容器60に収容された観察対象Sに対して、先に設定された観察領域に対してこの観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定する。ここで図5に培養容器60における観察領域毎の重複領域について説明する図、図6に取得された撮影画像の一例を示す図をそれぞれ示す。なお本実施形態においては、培養容器60は複数のウェルが配列されたウェルプレートであるため、各ウェル内において観察領域が設定される。図5においては、ウェルの底面の両端をそれぞれ端A、端Bとし、底面の中心を中心Oとする。 The observation area setting unit 50 newly overlaps a part of a new observation area adjacent to the observation area set earlier with respect to the observation target S housed in the culture container 60. The observation area is set sequentially. Here, FIG. 5 shows a diagram for explaining the overlapping region for each observation region in the culture vessel 60, and FIG. 6 shows a diagram showing an example of the captured image acquired. In the present embodiment, since the culture vessel 60 is a well plate in which a plurality of wells are arranged, an observation area is set in each well. In FIG. 5, both ends of the bottom surface of the well are defined as ends A and B, respectively, and the center of the bottom surface is defined as the center O.

通常、被写界深度が浅い場合に、例えば図5に示すようにaからbまでの1つの観察領域において中心fにフォーカスを合わせると、撮影部40によって撮影された撮影画像は、図6に斜線で示すようにa側及びb側の周辺部がボケた画像となってしまう。 Normally, when the depth of field is shallow, for example, when the center f is focused in one observation area from a to b as shown in FIG. 5, the captured image captured by the photographing unit 40 is shown in FIG. As shown by the diagonal lines, the peripheral parts on the a side and the b side become blurred images.

そこで、撮影画像においてボケやすい上記周辺部に対応する観察領域に、隣り合う観察領域を重複させて順次観察領域を設定することにより、撮影部40に重複領域を含む撮影画像を複数撮影させて、重複領域において画質の良い方の撮影画像を選択可能にしている。 Therefore, by overlapping adjacent observation areas with the observation area corresponding to the peripheral portion that is easily blurred in the captured image and sequentially setting the observation area, the photographing unit 40 is made to shoot a plurality of captured images including the overlapping region. It is possible to select the captured image with better image quality in the overlapping area.

ここで図7に培養容器60に対して設定された複数の重複領域を示す図を示す。本実施形態においては、上述したように、隣り合う観察領域の一部を重複させて、各観察領域が走査される。このため、図7に示すように、培養容器60がウェルプレート70である場合において、1つのウェル71の各観察領域に対応する複数の撮影画像が取得されるが、各観察領域Gi(iは観察領域の数)は隣り合う観察領域と重複する重複領域を含むものとなっている。なお、図7においては、走査方向に沿って、上の行(1行目)の左端から順に観察領域G1〜G5、2行目の右端から順にG6〜G12、3行目の左端から順にG13〜G21、4行目の右端から順にG22〜G30、5行目の左端から順にG31〜G39、6行目の右端から順にG40〜G48、7行目の左端から順にG49〜G57、8行目の右端から順にG58〜G64、9行目の左端から順にG65〜G69が設定されている。なお図7においては、図面上は重複領域の幅dは全て同じ大きさで示されているが、実際には重複度合設定部51によって異なる大きさに設定される。 Here, FIG. 7 shows a diagram showing a plurality of overlapping regions set for the culture vessel 60. In the present embodiment, as described above, each observation area is scanned by overlapping a part of the adjacent observation areas. Therefore, as shown in FIG. 7, when the culture vessel 60 is the well plate 70, a plurality of captured images corresponding to each observation region of one well 71 are acquired, but each observation region Gi (i is The number of observation regions) includes overlapping regions that overlap with adjacent observation regions. In FIG. 7, the observation areas G1 to G5 are in order from the left end of the upper row (first row) along the scanning direction, G6 to G12 are in order from the right end of the second row, and G13 is in order from the left end of the third row. ~ G21, G22 to G30 in order from the right end of the 4th line, G31 to G39 in order from the left end of the 5th line, G40 to G48 in order from the right end of the 6th line, G49 to G57, 8th line in order from the left end of the 7th line. G58 to G64 are set in order from the right end of, and G65 to G69 are set in order from the left end of the 9th line. In FIG. 7, the widths d of the overlapping regions are all shown to have the same size on the drawing, but they are actually set to different sizes by the overlapping degree setting unit 51.

ここで重複度合設定部51による重複度合の設定方法について説明する。図8は図7における左上隅にある観察画像の拡大図、図9は図7における右上隅にある観察画像の拡大図である。図8に示すように、図7における左上隅にある観察領域G1とその右に隣接する観察領域G2との重複領域を重複領域K1、観察領域G2とその右に隣接する観察領域G3との重複領域をK2とする場合、観察領域G1が本発明の先に設定された観察領域、観察領域G1に対して観察領域G2が新たな観察領域となり、観察領域G2を先に設定された観察領域とすると観察領域G3が観察領域G2に対して新たな観察領域となる。 Here, a method of setting the degree of duplication by the degree of duplication setting unit 51 will be described. 8 is an enlarged view of the observation image in the upper left corner of FIG. 7, and FIG. 9 is an enlarged view of the observation image in the upper right corner of FIG. 7. As shown in FIG. 8, the overlapping area between the observation area G1 in the upper left corner of FIG. 7 and the observation area G2 adjacent to the right thereof is the overlapping area K1, and the overlapping area between the observation area G2 and the observation area G3 adjacent to the right side thereof. When the region is K2, the observation region G1 becomes the observation region set earlier in the present invention, the observation region G2 becomes a new observation region with respect to the observation region G1, and the observation region G2 becomes the observation region set earlier. Then, the observation area G3 becomes a new observation area with respect to the observation area G2.

重複度合設定部51は、重複する領域つまり図8においては重複領域K1と重複領域K2の重複度合を設定する。なお1つの観察領域に対して重複領域が例えば20〜30%の割合で設定されることが好ましい。重複度合設定部51は、先ず観察領域G1に位置する培養容器60(本実施形態ではウェル71)の底面の形状情報から、観察領域G1と観察領域G2の並び方向すなわち図7及び図8中の矢印M1の方向(X方向)における観察領域G1の両端の辺の中心位置に対応する底面の高さを取得し、この両端の高さの差を算出する。本実施形態においては、この高さの差の値を重複領域K1の傾斜度合とする。ここでは、観察領域G1の両端の辺の中心位置に対応する底面の高さを取得したが、これに限らず、両端の辺それぞれに対応する位置の底面の高さの平均値を求め、その高さの平均値の差を両端の高さの差としてもよい。なお傾斜度合は観察領域の両端の高さの差そのものの値を使用するものに限られず、例えば重複領域K1における高さの差の値を基準として新たに値を設定してもよい。 The overlap degree setting unit 51 sets the overlap degree of the overlapping region, that is, the overlap region K1 and the overlap region K2 in FIG. It is preferable that the overlapping region is set at a ratio of, for example, 20 to 30% with respect to one observation region. First, from the shape information of the bottom surface of the culture vessel 60 (well 71 in this embodiment) located in the observation region G1, the overlap degree setting unit 51 determines the alignment direction of the observation region G1 and the observation region G2, that is, in FIGS. 7 and 8. The height of the bottom surface corresponding to the center position of the sides of both ends of the observation area G1 in the direction of the arrow M1 (X direction) is acquired, and the difference in height between both ends is calculated. In the present embodiment, the value of this height difference is defined as the degree of inclination of the overlapping region K1. Here, the height of the bottom surface corresponding to the center position of the sides of both ends of the observation area G1 was acquired, but the present invention is not limited to this, and the average value of the heights of the bottom surfaces of the positions corresponding to each of the sides of both ends is obtained. The difference in the average height may be the difference in height at both ends. The degree of inclination is not limited to using the value of the height difference itself at both ends of the observation region, and for example, a new value may be set based on the value of the height difference in the overlapping region K1.

重複領域K2の傾斜度合も重複領域K1と同様にして算出する。すなわち観察領域G2の矢印M1の方向における両端の高さを取得し、この両端の高さの差を算出して傾斜度合とする。ここで本実施形態の培養容器60(ウェル71)の底面は、図5に示す形状を有するものであるとすると、矢印M1の方向において培養容器60の中心からより離れている方が底面の傾斜が大きいので、上記算出した傾斜度合は重複領域K1が重複領域K2よりも大きくなる。 The degree of inclination of the overlapping region K2 is also calculated in the same manner as in the overlapping region K1. That is, the heights of both ends in the direction of the arrow M1 of the observation area G2 are acquired, and the difference between the heights of both ends is calculated and used as the degree of inclination. Here, assuming that the bottom surface of the culture container 60 (well 71) of the present embodiment has the shape shown in FIG. 5, the bottom surface is inclined when the bottom surface is further away from the center of the culture container 60 in the direction of arrow M1. Is large, so that the overlap region K1 is larger than the overlap region K2 in the calculated inclination degree.

従って重複度合設定部51は重複領域K1が重複領域K2よりも大きくなるように、重複領域K2の幅d2を重複領域K1の幅d1よりも小さく設定する。同様にして、図7に示す重複領域K1〜K4の幅d1〜d4を設定する。なお、最初の幅すなわち重複領域K1の幅d1については、観察領域G1に対して重複領域K1が例えば20〜30%の割合で設定されるように予め定められ、例えば二次記憶部25に記憶された初期設定の値を読み出しても良い。また、二次記憶部25に高さの差と幅dとの関係を定めた対応テーブルを記憶しておき、この対応テーブルに基づいて幅d1を設定してもよい。 Therefore, the overlap degree setting unit 51 sets the width d2 of the overlap region K2 to be smaller than the width d1 of the overlap region K1 so that the overlap region K1 is larger than the overlap region K2. Similarly, the widths d1 to d4 of the overlapping regions K1 to K4 shown in FIG. 7 are set. The initial width, that is, the width d1 of the overlapping region K1, is predetermined so that the overlapping region K1 is set at a ratio of, for example, 20 to 30% with respect to the observation region G1, and is stored in the secondary storage unit 25, for example. You may read the default value that has been set. Further, the secondary storage unit 25 may store a correspondence table in which the relationship between the height difference and the width d is determined, and the width d1 may be set based on the correspondence table.

次に重複度合設定部51は、図9における重複領域K5と重複領域K6の重複度合を設定する。重複度合設定部51は、先ず観察領域G5に位置する培養容器60(本実施形態ではウェル71)の底面の形状情報から、観察領域G5と観察領域G6の並び方向すなわち図7及び図8中の矢印M2の方向(Y方向)における観察領域G5の両端の辺の中心位置に対応する底面の高さを取得し、この両端の高さの差を算出する。本実施形態においては、この高さの差の値を重複領域K5の傾斜度合とする。さらに重複領域K6の傾斜度合も重複領域K5と同様にして算出する。すなわち観察領域G6の矢印M2の方向における観察領域G6の両端の辺の中心位置に対応する底面の高さを取得し、この両端の高さの差を算出して傾斜度合とする。 Next, the overlap degree setting unit 51 sets the overlap degree of the overlap region K5 and the overlap region K6 in FIG. 9. First, from the shape information of the bottom surface of the culture vessel 60 (well 71 in this embodiment) located in the observation region G5, the overlap degree setting unit 51 determines the alignment direction of the observation region G5 and the observation region G6, that is, in FIGS. 7 and 8. The height of the bottom surface corresponding to the center position of the sides of both ends of the observation area G5 in the direction of the arrow M2 (Y direction) is acquired, and the difference in height between both ends is calculated. In the present embodiment, the value of this height difference is defined as the degree of inclination of the overlapping region K5. Further, the degree of inclination of the overlapping region K6 is also calculated in the same manner as in the overlapping region K5. That is, the height of the bottom surface corresponding to the center position of the sides of both ends of the observation area G6 in the direction of the arrow M2 of the observation area G6 is acquired, and the difference between the heights of both ends is calculated and used as the degree of inclination.

ここで本実施形態の培養容器60(ウェル71)の底面は、図5に示す形状を有するものであるとすると、矢印M2の方向において培養容器60の中心からより離れている方が底面の傾斜が大きいので、上記算出した傾斜度合は重複領域K5が重複領域K6よりも大きくなる。 Here, assuming that the bottom surface of the culture container 60 (well 71) of the present embodiment has the shape shown in FIG. 5, the bottom surface is inclined when the bottom surface is further away from the center of the culture container 60 in the direction of arrow M2. Is large, so that the overlap area K5 is larger than the overlap area K6 in the calculated inclination degree.

そして重複度合設定部51は重複領域K5が重複領域K6よりも大きくなるように、重複領域K6の幅d6を重複領域K5の幅d5よりも小さく設定する。矢印M3の方向に走査して観察される観察領域G6からG12については、観察領域G7と観察領域G8との重複領域K8から、観察領域K10と観察領域K11との重複領域K11までの重複領域はそれぞれ、図7に示す重複領域K1〜K4の幅d1〜d4と同様の幅を設定する。観察領域G6と観察領域G7との重複領域K7の幅d7、及び、観察領域G11と観察領域G12との重複領域K12の幅d12は、上記の方法と同様に設定する。以上のようにして図7の矢印M1の方向(矢印M3の方向を走査するものも含む)及び矢印M2の方向についてそれぞれ列及び行毎に重複領域Kの幅dを設定する。 Then, the overlap degree setting unit 51 sets the width d6 of the overlap region K6 to be smaller than the width d5 of the overlap region K5 so that the overlap region K5 is larger than the overlap region K6. Regarding the observation areas G6 to G12 observed by scanning in the direction of the arrow M3, the overlapping area from the overlapping area K8 between the observation area G7 and the observation area G8 to the overlapping area K11 between the observation area K10 and the observation area K11 is The same widths as the widths d1 to d4 of the overlapping regions K1 to K4 shown in FIG. 7 are set respectively. The width d7 of the overlapping region K7 between the observation region G6 and the observation region G7 and the width d12 of the overlapping region K12 between the observation region G11 and the observation region G12 are set in the same manner as in the above method. As described above, the width d of the overlapping region K is set for each column and row in the direction of the arrow M1 in FIG. 7 (including the one scanning the direction of the arrow M3) and the direction of the arrow M2, respectively.

なお本実施形態においては、図7の矢印M1の方向(矢印M3の方向を走査するものも含む)及び矢印M2の方向についてそれぞれ列及び行毎に重複領域Kの幅dを設定したが、本発明はこれに限られるものではなく、列と行のいずれか一方毎に重複領域Kの幅dを設定しても良いし、各観察領域毎に矢印M1の方向及び矢印M2の方向についてそれぞれ重複領域Kの幅dを設定してもよい。 In the present embodiment, the width d of the overlapping region K is set for each column and row in the direction of arrow M1 (including the one scanning the direction of arrow M3) and the direction of arrow M2 in FIG. 7, respectively. The invention is not limited to this, and the width d of the overlapping region K may be set for each of the column and the row, and the direction of the arrow M1 and the direction of the arrow M2 are overlapped for each observation region. The width d of the area K may be set.

また本実施形態においては、傾斜度合を取得する際に、先に設定された観察領域すなわち観察領域が走査される際に先に走査される観察領域の高さの差を算出したが、本発明はこれに限られるものではない。ここで図10に傾斜度合を算出する他の方法を説明する図を示す。 Further, in the present embodiment, when the degree of inclination is acquired, the difference in height of the observation area set earlier, that is, the observation area scanned first when the observation area is scanned is calculated. Is not limited to this. Here, FIG. 10 shows a diagram illustrating another method of calculating the degree of inclination.

重複度合設定部51は、図10に示すように、観察領域G1の観察領域G2を設定する側の一辺hを含み、かつ観察領域G1と一致する大きさの領域Ghに位置する培養容器60(本実施形態ではウェル71)の底面の形状情報から、観察領域G1と観察領域G2の並び方向における領域Ghの両端の辺の中心位置に対応する底面の高さを取得し、この両端の辺の中心位置に対応する底面の高さの差を算出して傾斜度合としてもよい。上記領域Ghの位置についてはユーザによって適宜変更可能とする。 As shown in FIG. 10, the overlap degree setting unit 51 includes a side h of the observation region G1 on the side where the observation region G2 is set, and is located in a region Gh having a size corresponding to the observation region G1 ( In the present embodiment, the height of the bottom surface corresponding to the center position of the sides of both ends of the region Gh in the alignment direction of the observation area G1 and the observation area G2 is obtained from the shape information of the bottom surface of the well 71), and the heights of the bottom surfaces are obtained. The difference in the height of the bottom surface corresponding to the center position may be calculated and used as the degree of inclination. The position of the area Gh can be appropriately changed by the user.

以上のように観察領域設定装置22は構成されており、重複度合設定部51によって設定された重複度合に基づいて、観察領域設定部50が培養容器60に収容された観察対象Sに対して観察領域を順次設定する。本実施形態においては、隣り合う観察領域における重複領域の重複度合を培養容器60の形状に合わせて好適に設定することができるので、撮影画像のデータ量の増大や撮影時間の長時間化を防止することができる。 The observation area setting device 22 is configured as described above, and the observation area setting unit 50 observes the observation target S housed in the culture vessel 60 based on the degree of overlap set by the overlap degree setting unit 51. Set the area sequentially. In the present embodiment, the degree of overlap of the overlapping regions in the adjacent observation regions can be preferably set according to the shape of the culture vessel 60, so that it is possible to prevent an increase in the amount of data of the captured image and a lengthening of the imaging time. can do.

次に、図1に戻って、画像処理部23は、撮像部16によって取得された画像信号に対して、ガンマ補正、輝度・色差変換、及び圧縮処理等の各種処理を行う。また、画像処理部23は、各種処理を行って得た画像信号を特定のフレームレートで1フレーム毎に制御部21に出力する。また、画像処理部23は、顕微鏡装置1によって撮像された各観察領域の位相差画像を結合することによって、1枚の合成画像を生成する。なお重複領域については、重複部分の画像がより画質のよい方を選択する。例えばコントラストが最も高い撮影画像を重複領域の画像として使用してもよいし、培養容器60の中心に最も近い側の撮影画像の重複部分を重複領域の画像として使用してもよい。なお観察領域の周辺部にボケた画像のない、つまり画質のよい合成画像を生成するためには、重複領域を大きく設定すればよい。しかしながら重複画像を大きく設定すると撮影枚数が多くなるので、撮影に時間がかかる。本発明のように容器の傾斜が大きいほど重複度合を大きく設定することで合成画像の高画質を維持し、かつ撮影画像のデータ量の増大や撮影時間の長時間化を防止することができる。 Next, returning to FIG. 1, the image processing unit 23 performs various processing such as gamma correction, luminance / color difference conversion, and compression processing on the image signal acquired by the imaging unit 16. Further, the image processing unit 23 outputs an image signal obtained by performing various processes to the control unit 21 for each frame at a specific frame rate. Further, the image processing unit 23 generates one composite image by combining the phase difference images of each observation region captured by the microscope device 1. As for the overlapping area, the image of the overlapping portion having better image quality is selected. For example, the captured image having the highest contrast may be used as the image of the overlapping region, or the overlapping portion of the captured image on the side closest to the center of the culture vessel 60 may be used as the image of the overlapping region. In order to generate a composite image with no blurred image in the peripheral portion of the observation area, that is, with good image quality, the overlapping area may be set large. However, if the duplicate image is set large, the number of shots increases, so that it takes time to shoot. By setting the degree of overlap to be larger as the inclination of the container is larger as in the present invention, it is possible to maintain the high image quality of the composite image and prevent an increase in the amount of data of the photographed image and a lengthening of the photographing time.

入力装置3は、マウスおよびキーボード等を備え、ユーザによる種々の設定入力を受け付けるものである。 The input device 3 includes a mouse, a keyboard, and the like, and accepts various setting inputs by the user.

表示装置4は、画像処理部53により生成された合成画像を表示するものであり、例えば液晶ディスプレイ等を備える。また、表示装置4をタッチパネルによって構成し、入力装置3と兼用するようにしてもよい。 The display device 4 displays a composite image generated by the image processing unit 53, and includes, for example, a liquid crystal display or the like. Further, the display device 4 may be configured by a touch panel and may also be used as the input device 3.

次いで、本実施形態において行われる観察領域設定装置22による処理について説明する。図11は本実施形態において行われる処理を示すフローチャートである。まず、形状情報受付部52が、培養容器60の底面の形状情報を取得する(ステップS1)。次いで、重複度合設定部51が、ステップS1において取得した形状情報から、先に設定された観察領域すなわち図8においては観察領域G1に位置する培養容器60の底面の高さの差を算出し(ステップS2)、この高さの差を傾斜度合として取得する(ステップS3)。 Next, the processing performed by the observation area setting device 22 in the present embodiment will be described. FIG. 11 is a flowchart showing the processing performed in the present embodiment. First, the shape information receiving unit 52 acquires the shape information of the bottom surface of the culture container 60 (step S1). Next, the overlap degree setting unit 51 calculates the difference in height of the bottom surface of the culture vessel 60 located in the observation region G1 in the observation region set earlier, that is, the observation region G1 in FIG. 8 from the shape information acquired in step S1 ( Step S2), the difference in height is acquired as the degree of inclination (step S3).

そして重複度合設定部51が上述したようにして観察領域毎に重複度合を決定し(ステップS4)、観察領域設定部50が重複度合設定部51により決定された重複度合に基づいて観察領域を順次設定して(ステップS5)処理を終了する。観察領域設定装置22は以上のようにして観察領域を設定する。 Then, the overlap degree setting unit 51 determines the overlap degree for each observation area as described above (step S4), and the observation area setting unit 50 sequentially sets the observation area based on the overlap degree determined by the overlap degree setting unit 51. Set (step S5) and end the process. The observation area setting device 22 sets the observation area as described above.

顕微鏡制御装置2は、制御部21が、観察領域設定装置22によって設定された観察領域毎に撮像部40に撮像させて、複数の観察領域毎の撮像画像を取得し、画像処理部23が複数の撮影画像を繋ぎ合わせて合成画像Gsを生成する。そして、生成された合成画像Gsは、表示装置4に表示され、観察に供される。 In the microscope control device 2, the control unit 21 causes the imaging unit 40 to take an image for each observation area set by the observation area setting device 22, acquires images captured for each of a plurality of observation areas, and a plurality of image processing units 23 A composite image Gs is generated by joining the captured images of. Then, the generated composite image Gs is displayed on the display device 4 and is used for observation.

なお、上記実施形態は、本発明を位相差顕微鏡に適用したものであるが、本発明は、位相差顕微鏡に限らず、微分干渉顕微鏡および明視野顕微鏡等のその他の顕微鏡に適用することができる。 Although the above embodiment applies the present invention to a phase-contrast microscope, the present invention can be applied not only to a phase-contrast microscope but also to other microscopes such as a differential interference microscope and a bright-field microscope. ..

以下、本実施形態の作用効果について説明する。 Hereinafter, the action and effect of this embodiment will be described.

培養容器60内に収容された観察対象Sに対して、先に設定された観察領域に対して先に設定された観察領域に隣り合う新たな観察領域の一部を重複させて新たな観察領域を順次設定するに際し、重複する重複領域の重複度合を、先に設定された観察領域と新たな観察領域との並び方向における先に設定された観察領域に位置する容器の底面の傾斜度合が大きいほど大きく設定することにより、隣り合う観察領域における重複領域の重複度合を容器の形状に合わせて好適に設定することができるので、撮影画像のデータ量の増大や撮影時間の長時間化を防止することができる。 With respect to the observation target S housed in the culture vessel 60, a part of a new observation area adjacent to the observation area set earlier with respect to the observation area set earlier is overlapped to form a new observation area. The degree of overlap of the overlapping overlapping areas is large in the degree of inclination of the bottom surface of the container located in the previously set observation area in the alignment direction of the previously set observation area and the new observation area. By setting the size as large as possible, the degree of overlap of the overlapping areas in the adjacent observation areas can be appropriately set according to the shape of the container, so that it is possible to prevent an increase in the amount of data of the captured image and a long shooting time. be able to.

1 顕微鏡装置
2 顕微鏡制御装置
3 入力装置
4 表示装置
10 照明光照射部
11 白色光源
12 スリット板
13 コンデンサレンズ
21 制御部
22 画像処理装置
30 結像光学系
31 対物レンズ
32 位相板
33 結像レンズ
40 撮像部
50 観察領域設定部
51 重複度合設定部
60 培養容器
60a 底面
61 ステージ
62 領域
70 ウェルプレート
71 ウェル
75 走査終了点
76 走査開始点
77 走査軌跡を示す実線
A0,A1 矢印
C 培養液
Gi 観察領域
Gs 合成画像
K 重複領域
d 重複領域の幅
P1 設置面(底面)
S 観察対象
M1、M2,M3 並び方向
1 Microscope device 2 Microscope control device 3 Input device 4 Display device 10 Illumination light irradiation unit 11 White light source 12 Slit plate 13 Condenser lens 21 Control unit 22 Image processing device 30 Imaging optical system 31 Objective lens 32 Phase plate 33 Imaging lens 40 Imaging unit 50 Observation area setting unit 51 Overlap degree setting unit 60 Culture vessel 60a Bottom surface 61 Stage 62 Area 70 Well plate 71 Well 75 Scanning end point 76 Scanning start point 77 Solid line showing scanning trajectory A0, A1 Arrow C Culture solution Gi Observation area Gs composite image K Overlapping area d Overlapping area width P1 Installation surface (bottom surface)
S Observation target M1, M2, M3 Arrangement direction

Claims (11)

容器内に収容された観察対象に対して、先に設定された観察領域に対して該観察領域に隣り合う新たな観察領域の一部を重複させて前記新たな観察領域を順次設定する観察領域設定部と、
前記重複する重複領域の重複度合を、前記先に設定された観察領域と前記新たな観察領域との並び方向における前記先に設定された観察領域に位置する前記容器の底面の傾斜度合が大きいほど大きく設定する重複度合設定部とを備える観察領域設定装置。
For the observation target housed in the container, the observation area in which the new observation area is sequentially set by overlapping a part of the new observation area adjacent to the observation area with respect to the previously set observation area. Setting part and
The degree of overlap of the overlapping overlapping regions is such that the greater the degree of inclination of the bottom surface of the container located in the previously set observation region in the arrangement direction of the previously set observation region and the new observation region. An observation area setting device including an overlap degree setting unit for setting a large amount.
前記容器の底面の形状情報を受け付ける形状情報受付部を備え、
前記重複度合設定部が、前記形状情報受付部から入力された前記形状情報に基づいて前記傾斜度合を取得する請求項1記載の観察領域設定装置。
A shape information receiving unit for receiving shape information on the bottom surface of the container is provided.
The observation area setting device according to claim 1, wherein the overlap degree setting unit acquires the inclination degree based on the shape information input from the shape information receiving unit.
前記傾斜度合が、前記先に設定された観察領域に位置する前記容器の底面の前記並び方向における両端の高さの差に基づく値である請求項1又は2記載の観察領域設定装置。 The observation area setting device according to claim 1 or 2, wherein the degree of inclination is a value based on the difference in height between both ends of the bottom surface of the container located in the previously set observation area in the alignment direction. 前記傾斜度合が、前記先に設定された観察領域の前記新たな観察領域を設定する側の一辺を含む領域で、かつ前記先に設定された観察領域と一致する大きさの領域に位置する前記容器の底面の前記並び方向における両端の高さの差に基づく値である請求項1又は2記載の観察領域設定装置。 The degree of inclination is located in a region including one side of the previously set observation region on the side where the new observation region is set, and in a region having a size corresponding to the previously set observation region. The observation area setting device according to claim 1 or 2, which is a value based on the difference in height between both ends in the alignment direction of the bottom surface of the container. 前記観察領域が前記容器よりも小さい領域である請求項1〜4いずれか1項記載の観察領域設定装置。 The observation area setting device according to any one of claims 1 to 4, wherein the observation area is smaller than the container. 前記容器が、ディッシュ、ウェルプレートまたはフラスコである請求項1〜5いずれか1項記載の観察領域設定装置。 The observation area setting device according to any one of claims 1 to 5, wherein the container is a dish, a well plate, or a flask. 上記請求項1〜6いずれか1項記載の観察領域設定装置と、
前記容器内に収容された観察対象を、前記観察領域設定装置により設定された観察領域毎に撮像部に撮像させる制御部とを備える撮像制御装置。
The observation area setting device according to any one of claims 1 to 6 and
An imaging control device including a control unit that causes an imaging unit to image an observation target housed in the container for each observation area set by the observation area setting device.
前記容器の底面の形状情報を記憶する形状情報記憶部を備える請求項7記載の撮像制御装置。 The imaging control device according to claim 7, further comprising a shape information storage unit that stores shape information of the bottom surface of the container. 前記形状情報記憶部が、前記容器の識別情報と前記容器の底面の形状情報とを対応づけたテーブルを記憶している請求項8記載の撮像制御装置。 The imaging control device according to claim 8, wherein the shape information storage unit stores a table in which the identification information of the container and the shape information of the bottom surface of the container are associated with each other. 観察領域設定部と重複度合設定部とを備える観察領域設定装置の作動方法であって、
前記観察領域設定部が、容器内に収容された観察対象に対して、先に設定された観察領域に対して該観察領域に隣り合う新たな観察領域の一部を重複させて前記新たな観察領域を順次設定し、
前記重複度合設定部が、前記重複する重複領域の重複度合を、前記先に設定された観察領域と前記新たな観察領域との並び方向における前記先に設定された観察領域に位置する前記容器の底面の傾斜度合が大きいほど大きく設定する観察領域設定装置の作動方法。
It is an operation method of an observation area setting device including an observation area setting unit and an overlap degree setting unit.
The observation area setting unit overlaps a part of a new observation area adjacent to the observation area with respect to the previously set observation area with respect to the observation target housed in the container, and the new observation. Set the area sequentially,
The overlap degree setting unit sets the overlap degree of the overlapping overlapping regions of the container located in the previously set observation region in the alignment direction of the previously set observation region and the new observation region. How to operate the observation area setting device that sets the larger the inclination of the bottom surface.
コンピュータを、
容器内に収容された観察対象に対して、先に設定された観察領域に対して該観察領域に隣り合う新たな観察領域の一部を重複させて前記新たな観察領域を順次設定する観察領域設定手段と、
前記重複する重複領域の重複度合を、前記先に設定された観察領域と前記新たな観察領域との並び方向における前記先に設定された観察領域に位置する前記容器の底面の傾斜度合が大きいほど大きく設定する重複度合設定手段として機能させるための観察領域設定プログラム。
Computer,
For the observation target housed in the container, the observation area in which the new observation area is sequentially set by overlapping a part of the new observation area adjacent to the observation area with respect to the previously set observation area. Setting means and
The degree of overlap of the overlapping overlapping regions is such that the greater the degree of inclination of the bottom surface of the container located in the previously set observation region in the alignment direction of the previously set observation region and the new observation region. An observation area setting program for functioning as a means for setting a large degree of overlap.
JP2019550377A 2017-11-06 2018-10-29 Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program Abandoned JPWO2019088034A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017214065 2017-11-06
JP2017214065 2017-11-06
PCT/JP2018/040156 WO2019088034A1 (en) 2017-11-06 2018-10-29 Observation area setting device, imaging control device, method for operating observation area setting device, and observation area setting program

Publications (1)

Publication Number Publication Date
JPWO2019088034A1 true JPWO2019088034A1 (en) 2020-11-19

Family

ID=66331865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019550377A Abandoned JPWO2019088034A1 (en) 2017-11-06 2018-10-29 Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program

Country Status (2)

Country Link
JP (1) JPWO2019088034A1 (en)
WO (1) WO2019088034A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201530A (en) * 2012-03-23 2013-10-03 Canon Inc Imaging device and control method of the same
JP2016173511A (en) * 2015-03-17 2016-09-29 キヤノン株式会社 Image acquisition device, and image acquisition method using the same
JP2017161385A (en) * 2016-03-10 2017-09-14 株式会社Screenホールディングス Imaging arrangement determination method in imaging device, and imaging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013201530A (en) * 2012-03-23 2013-10-03 Canon Inc Imaging device and control method of the same
JP2016173511A (en) * 2015-03-17 2016-09-29 キヤノン株式会社 Image acquisition device, and image acquisition method using the same
JP2017161385A (en) * 2016-03-10 2017-09-14 株式会社Screenホールディングス Imaging arrangement determination method in imaging device, and imaging device

Also Published As

Publication number Publication date
WO2019088034A1 (en) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2018012130A1 (en) Image processing method, image processing device, imaging device, and imaging method
JP6675279B2 (en) Imaging apparatus and method, and imaging control program
JP2007233098A (en) Image acquisition device, image acquisition method, and image acquisition program
JP6815477B2 (en) Microscope device and observation method and microscope device control program
JP6619315B2 (en) Observation apparatus and method, and observation apparatus control program
WO2017195442A1 (en) Imaging device and method, and imaging device control program
JPWO2018179946A1 (en) Observation device, observation control method, and observation control program
WO2019202979A1 (en) Observation device, observation device operation method, and observation control program
JPWO2019088034A1 (en) Observation area setting device, imaging control device, operation method of observation area setting device, and observation area setting program
JP2018019319A (en) Image processing method, image processing device, and imaging device
WO2018061635A1 (en) Observation device and method, and observation device control program
WO2017199537A1 (en) Observation device and method, and observation device control program
JP7195269B2 (en) Observation device, method of operating observation device, and observation control program
WO2019225325A1 (en) Observation device, method for operating observation device, and observation control program
US11061214B2 (en) Cell observation apparatus and method
JPWO2019088030A1 (en) Shooting control device, operation method of shooting control device, and shooting control program
JP7167369B2 (en) Image processing device, method and program
JPWO2019069823A1 (en) Imaging device, operation method of imaging device, and imaging control program
JP2016161610A (en) Imaging device and method
JPWO2019065050A1 (en) Observation device, observation method and observation program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20201222