WO2019225325A1 - Observation device, method for operating observation device, and observation control program - Google Patents

Observation device, method for operating observation device, and observation control program Download PDF

Info

Publication number
WO2019225325A1
WO2019225325A1 PCT/JP2019/018490 JP2019018490W WO2019225325A1 WO 2019225325 A1 WO2019225325 A1 WO 2019225325A1 JP 2019018490 W JP2019018490 W JP 2019018490W WO 2019225325 A1 WO2019225325 A1 WO 2019225325A1
Authority
WO
WIPO (PCT)
Prior art keywords
medium
observation
amount
unit
phase difference
Prior art date
Application number
PCT/JP2019/018490
Other languages
French (fr)
Japanese (ja)
Inventor
兼太 松原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2020521148A priority Critical patent/JPWO2019225325A1/en
Publication of WO2019225325A1 publication Critical patent/WO2019225325A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present disclosure relates to an observation apparatus that observes an observation object accommodated in a container, an operation method of the observation apparatus, and an observation control program.
  • pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and differentiation-induced cells are photographed with a microscope, etc.
  • a determination method has been proposed.
  • pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are attracting attention as cells that can be applied in regenerative medicine, drug development, disease elucidation, etc. Yes.
  • photographing cells with a microscope in order to obtain a wide-field image with a high magnification, for example, the inside of a culture vessel such as a well plate is scanned with an imaging optical system, and an image for each observation position is photographed. It has been proposed to perform so-called tiling photography that combines images for each observation position.
  • phase contrast microscope for example, as a microscope used when photographing cells.
  • ring-shaped illumination light is irradiated onto an observation target, and direct light and diffracted light that have passed through the observation target are incident on a phase plate.
  • the direct light is attenuated by the ring part of the phase plate, and the diffracted light passes through the transparent part of the phase plate, and the direct light and the diffracted light are imaged to form an image with a contrast of light and dark. You can shoot.
  • the shape pattern of the meniscus formed on the liquid surface of the culture solution varies depending on the amount of the culture solution. If the shape pattern of the meniscus is different, the effect on the direct light and diffracted light incident on the phase plate will be different when observing the observation target with a phase contrast microscope. Will change.
  • the amount of the medium may not be constant due to variations in humans when manually placed by the user and due to a malfunction of the electric pipette when placed with the electric pipette.
  • the amount of the medium may vary due to evaporation of the medium.
  • the height of the culture medium is calculated by extracting the contour of the bottom surface of the culture vessel and the contour of the surface of the culture medium in the photographed image, so that the amount of the medium can be determined without adding a new configuration.
  • a method of grasping is disclosed.
  • Patent Document 2 by adjusting the refraction of light caused by the liquid surface shape by estimating the liquid surface shape of the liquid in the container based on the luminance distribution of the phase difference image to be observed, A method for capturing a phase difference image in which the influence of a meniscus is suppressed is disclosed.
  • Patent Document 3 discloses a method of estimating a medium amount based on RGB (Red-Green-Blue) signal values of a color image, and outputting an abnormal signal when the estimated value of the medium amount is out of the set range. Yes.
  • Patent Document 1 the amount of the medium is grasped without adding a new configuration, but it is necessary to acquire an image for grasping the amount of the medium separately from the cell observation image.
  • Patent Document 2 describes a method for estimating the liquid level shape in the container, but does not describe estimating the liquid amount in the container, and an appropriate amount in which the medium amount is set in advance. It is not described about detecting whether or not.
  • Patent Document 3 discloses a container observation system for acquiring a color image representing an entire observation region used for estimating a medium amount in addition to a microscopic observation system for acquiring a sample observation image for observing a sample with a microscope. is required.
  • the present disclosure has been made in view of the above circumstances, and an observation apparatus, an operation method of the observation apparatus, and observation control that can detect a container having an excessive or insufficient amount of a medium without acquiring an image other than a phase difference image.
  • the purpose is to provide a program.
  • the observation device of the present disclosure includes a receiving unit that receives shape information of a container that contains an observation target including a culture medium; An acquisition unit for acquiring phase difference image information representing an observation object accommodated in a container corresponding to the shape information received by the reception unit; A detection unit that detects whether or not the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit is out of a threshold range corresponding to the shape information received by the reception unit;
  • the threshold range is a threshold range selected from a plurality of threshold ranges of a predetermined amount of medium for each shape information of different types of containers.
  • container shape information means information that can specify the amount of the storage unit that stores the observation target.
  • the observation device of the present disclosure adjusts the medium amount of the container detected to be out of the threshold range to an appropriate amount when the detection unit detects that the detection unit is out of the threshold range, or the medium in the container You may provide the adjustment part which performs the presentation for adjusting quantity to an appropriate quantity.
  • the observation apparatus of this indication may be provided with the alerting
  • notify that the amount of medium is excessive or insufficient indicates that the medium amount is increased, the medium amount is decreased, and the medium is replaced. To include.
  • the “notification unit” includes a display that displays a message or the like visually, a sound reproduction device that displays an audible display by outputting sound, a printer that records on a recording medium such as paper, and displays it permanently and visually.
  • observation device of the present disclosure again displays image information representing an observation target housed in a container that is detected to be out of the threshold range by the detection unit after the medium amount is adjusted to an appropriate amount. You may get it.
  • the detection unit may acquire luminance distribution information based on the phase difference image information, and estimate the medium amount based on a relationship between the preset luminance distribution information and the medium amount. it can.
  • the threshold range may be provided for each imaging condition for imaging the observation target.
  • the relationship between the phase difference image information and the amount of medium is set for each shape information of different types of containers and for each coordinate position of the observation region in the container.
  • the detection unit may estimate the medium amount from the set relationship.
  • the detection unit uses the phase difference image information representing the entire container, May be estimated.
  • the detection unit may estimate the amount of the culture medium using phase difference image information that represents the central region of the container.
  • the operation method of the observation device of the present disclosure is an operation method of the observation device including a reception unit, an acquisition unit, and a detection unit,
  • the accepting unit accepts shape information of the container containing the observation object including the culture medium
  • the acquisition unit acquires phase difference image information representing an observation object accommodated in a container corresponding to the shape information received by the reception unit
  • the detection unit detects whether or not the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit is out of the threshold range corresponding to the shape information received by the reception unit. , Including a threshold range selected from a plurality of threshold ranges of a predetermined amount of medium for each shape information of different types of containers.
  • An observation control program of the present disclosure includes a computer, It functions as a reception unit, an acquisition unit, and a detection unit included in the observation apparatus.
  • the operation method of the observation apparatus may be provided as a program that causes a computer to execute the method.
  • Another observation device includes a memory for storing instructions for causing a computer to execute, A processor configured to execute stored instructions, the processor comprising: Accept the shape information of the container containing the observation target including the culture medium, Obtain phase difference image information representing an observation object accommodated in a container corresponding to the received shape information, A process for detecting whether or not the amount of the medium estimated based on the acquired phase difference image information is out of the threshold range corresponding to the received shape information is performed. It is the range of the threshold value selected from the range of the some threshold value of the culture medium amount preset for every shape information.
  • the shape information of the container containing the observation target including the culture medium is received, the phase difference image information representing the observation target stored in the container corresponding to the received shape information is acquired, and the acquired phase difference is acquired.
  • the amount of the medium estimated based on the image information is a threshold range corresponding to the received shape information, and from a plurality of threshold ranges of the medium amount set in advance for each shape information of different types of containers Since it is detected whether or not the selected threshold value is deviated, a container deviating from the threshold value can be detected as an excessive or insufficient medium amount container without acquiring an image other than the phase difference image.
  • the observation object can be imaged with an appropriate amount of medium, which reduces the image quality of the captured image. Can be suppressed.
  • Diagram showing the scanning position of the observation position on the well plate with a solid line Schematic block diagram showing the configuration of the medium amount detection unit
  • the flowchart which shows the process by the culture medium amount detection part of FIG. The figure for explaining the processing of the microscope observation system Diagram for explaining the medium amount estimation method
  • the flowchart which shows the process by the culture medium amount detection part of FIG. Conceptual diagram showing an example of an aspect in which an observation control program is installed in a microscope control device from a storage medium in which the observation control program is stored
  • a microscope observation system includes a microscope device 1, a microscope control device 2, a display device 3, and an input device 4, as shown in FIG.
  • the microscope control device 2 includes the observation device of the present disclosure.
  • the microscope apparatus 1 is a phase contrast microscope, and acquires, for example, a phase contrast image of cultured cells as an observation target.
  • the microscope apparatus 1 includes an illumination light irradiation unit 10, an imaging optical system 30, a stage 61, and a photographing unit 40, as shown in FIG.
  • an observation container S such as cells and a culture vessel 71 containing a culture medium C as a medium are installed.
  • a rectangular opening is formed at the center of the stage 61.
  • the culture vessel 71 is installed on the member forming the opening, and the phase difference image of the observation target S in the culture vessel 71 is configured to pass through the opening.
  • a cultured cell group (cell colony) is arranged as the observation target S.
  • the cultured cells include pluripotent stem cells such as iPS cells and ES cells, nerves induced to differentiate from stem cells, skin, myocardium and liver cells, and skin, retina, heart muscle, blood cells, nerves and the like removed from the human body.
  • organ cells There are organ cells.
  • a plurality of wells corresponding to the container of the present disclosure
  • a petri dish, a flask, a dish, or the like may be used.
  • a well plate 70 in which a plurality of wells are arranged is used, and each well of the well plate 70 corresponds to the culture vessel 71.
  • the culture vessel 71 may be collectively referred to as the well 71.
  • the bottom surface in the culture container 71 is the installation surface P1 of the observation object S, and the observation object S is arranged on the installation surface P1.
  • the culture solution 71 is filled in the culture vessel 71.
  • the cells to be cultured in the culture medium are the observation objects S.
  • the observation objects S are not limited to those in the culture liquid, but water, formalin, ethanol, methanol, and the like.
  • the cells fixed in the liquid may be the observation object S.
  • the illumination light irradiation unit 10 irradiates the observation target S accommodated in the culture vessel 71 on the stage 61 with illumination light for so-called phase difference measurement, and in this embodiment, the phase difference Ring-shaped illumination light is irradiated as illumination light for measurement.
  • the illumination light irradiation unit 10 of the present embodiment has a white light source 11 that emits white light for phase difference measurement and a ring-shaped slit, and the white light emitted from the white light source 11 is incident thereon.
  • the slit plate 12 that emits ring-shaped illumination light, and the ring-shaped illumination light emitted from the slit plate 12 are incident, and the condenser lens 13 that irradiates the incident ring-shaped illumination light to the observation object S is provided.
  • the slit plate 12 is provided with a ring-shaped slit that transmits white light to the light-shielding plate that blocks the white light emitted from the white light source 11, and the ring shape is obtained when the white light passes through the slit. Illumination light is formed.
  • the condenser lens 13 converges the ring-shaped illumination light emitted from the slit plate 12 toward the observation target S.
  • the imaging optical system 30 forms an image of the observation target S in the culture vessel 71 on the photographing unit 40, and includes an objective lens 31, a phase plate 32, and an imaging lens 33.
  • the phase plate 32 is obtained by forming a phase ring on a transparent plate that is transparent with respect to the wavelength of the ring-shaped illumination light. Note that the size of the slit of the slit plate 12 described above is in a conjugate relationship with this phase ring.
  • phase film that shifts the phase of incident light by 1 ⁇ 4 wavelength and a neutral density filter that attenuates incident light are formed in a ring shape.
  • the phase is shifted by 1 ⁇ 4 wavelength and its brightness is weakened.
  • most of the diffracted light diffracted by the observation object S passes through the transparent plate portion of the phase plate 32, and its phase and brightness do not change.
  • the imaging lens 33 receives direct light and diffracted light that have passed through the phase plate 32, and forms an image of these lights on the imaging unit 40.
  • the imaging unit 40 receives the image of the observation target S formed by the imaging lens 33 and receives the observation target S.
  • An image sensor that captures S and outputs a phase difference image is provided.
  • the image sensor a charge-coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor, or the like can be used.
  • CCD charge-coupled device
  • CMOS complementary metal-oxide semiconductor
  • FIG. 2 is a diagram showing the scanning position of the observation position with a solid line when the well plate 70 having six wells 71 is used.
  • the imaging optical system 30 moves along a solid line 77 from the scanning start point 75 to the scanning end point 76. That is, the observation position of the observation region on the culture vessel 50 by the imaging optical system 30 is scanned in the positive direction in the X direction (right direction in FIG. 2) and then moved in the Y direction (downward direction in FIG. 2). , Reverse negative direction Scanning is performed in the left direction in FIG.
  • the observation position moves again in the Y direction and is scanned again in the positive direction.
  • the imaging optical system 30 scans the inside of the culture vessel 50 in a two-dimensional manner by repeatedly performing reciprocal movement in the X direction and movement in the Y direction.
  • phase difference images of the observation regions at different observation positions are taken.
  • the phase difference image for each observation area is output to the microscope control device 2 by the control unit 21 and stored in the secondary storage unit 25. Note that the phase difference image acquired by the imaging unit 40 is stored in association with the coordinate position on the well plate 70 so that it can be determined which well 71 is imaged in the well plate 70.
  • the phase difference image for each observation region in the well plate 70 is acquired by moving the stage 61.
  • the present invention is not limited to this, and the imaging optical system 30 is moved with respect to the stage 61. By doing so, a phase difference image for each observation region may be acquired.
  • both the stage 61 and the imaging optical system 30 may be moved.
  • scanning is performed using the scanning locus shown in FIG. 2, but the present disclosure is not limited thereto, and scanning may be performed using another scanning locus such as a spiral shape.
  • the microscope control device 2 includes a computer including a CPU (Central Processing Unit) 20, a primary storage unit 24, a secondary storage unit 25, an external I / F (Interface) 28, and the like.
  • the CPU 20 includes a control unit 21, a medium amount detection unit 22, and an image processing unit 23, and controls the entire microscope observation system.
  • the control unit 21 acquires the phase difference image of the observation target S by controlling the illumination light irradiation unit 10, the drive unit 62 that drives the stage 61, the imaging optical system 30, and the imaging unit 40.
  • the control unit 21 also functions as a display control unit that causes the display device 3 to display one composite phase difference image generated by combining the phase difference images of the respective observation positions photographed by the microscope device 1. . Further, the control unit 21 causes the photographing unit 40 to photograph the observation target S.
  • the culture container 71 is a plurality of wells 71 arranged in the well plate 70
  • the control unit 21 causes the imaging unit 40 to image each observation region in each well 71 to represent the well 71. A plurality of phase difference images are acquired.
  • the medium amount detection unit 22 detects excessive medium amount and insufficient medium amount.
  • the medium amount detection unit 22 will be described in detail later.
  • the medium amount detection unit 22 can detect both an excessive amount of medium and an insufficient amount of medium.
  • the present disclosure is not limited to this, and the medium amount detection unit 22 has an excessive amount of medium. Only a shortage of the medium may be detected.
  • the image processing unit 23 performs various processes such as gamma correction, luminance / color difference conversion, and compression processing on the image signal acquired by the photographing unit 40. Further, the image processing unit 23 outputs an image signal obtained by performing various processes to the control unit 21 for each frame at a specific frame rate. Further, the image processing unit 23 generates one composite image representing the whole well 71 by combining the phase difference images of the respective observation regions photographed by the microscope apparatus 1.
  • the image processing unit 23 according to the present embodiment performs a process of creating a luminance profile representing a luminance distribution with respect to the position of the image based on the composite image. As the luminance distribution, any one of an absolute value, a relative value, and a variance value of the entire image can be used, and a luminance profile can be created using a known technique.
  • the display device 3 displays the composite image generated by the image processing unit 23 and includes, for example, a liquid crystal display. Further, the display device 3 may be configured by a touch panel and may also be used as the input device 4.
  • the input device 4 includes a mouse and a keyboard, and receives various setting inputs by the user.
  • the primary storage unit 24 is a volatile memory used as a work area or the like when executing various programs.
  • An example of the primary storage unit 24 is a RAM (Random Access Memory).
  • the secondary storage unit 25 is a non-volatile memory that stores various programs, various parameters, and the like in advance, and stores appropriate range information 26 of the present disclosure.
  • an embodiment of the observation control program 27 of the present disclosure is installed.
  • the microscope control apparatus 2 functions when the observation control program 27 is executed by the CPU 20.
  • An example of the secondary storage unit 25 is an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a flash memory.
  • the external I / F 28 controls transmission / reception of various information between the microscope apparatus 1 and the microscope control apparatus 2.
  • the CPU 20, the primary storage unit 24, and the secondary storage unit 25 are connected to the bus line 29. External I / F 28 is also connected to the bus line 29.
  • the observation control program 27 is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) and a CD-ROM (Compact Disc Read Only Memory), and is installed in the computer from the recording medium.
  • a recording medium such as a DVD (Digital Versatile Disc) and a CD-ROM (Compact Disc Read Only Memory)
  • the observation control program 27 is stored in a storage device or network storage of a server computer connected to the network in a state where it can be accessed from the outside, and is installed after being downloaded to the computer in response to a request from the outside. You may be made to do.
  • the appropriate range information 26 is information on a range of a plurality of threshold values for a predetermined amount of medium for each shape information of different types of culture vessels 71.
  • a table that associates the shape information of the culture vessel 71 with the appropriate range information is stored in the secondary storage unit 25.
  • the accommodation amount of each well accommodation unit varies depending on the number of the wells 71 arranged on the well plate 70. Further, even if the number of wells 71 is the same in the well plate 70, the shape of each well may differ depending on the manufacturer. Further, the shape of the well 71 may differ depending on the position of the well 71 of the well plate 70.
  • the shape of the well is different, for example, when the culture solution C is contained in the well as a medium, the shape pattern of the meniscus formed on the liquid surface of the culture solution C is different. If the meniscus shape pattern is different, the effect on the direct light and the diffracted light incident on the phase plate 32 will be different when observing the observation object with the microscope apparatus 1, so that the image quality of the phase difference image will be different. End up.
  • the control unit 21 is provided for each type of the well plate 70 in which 96, 48, 24, 12, and 6 wells 71 are arranged for each manufacturer. For each position of each well 71 on the plate 70, an appropriate medium amount threshold range is stored as the appropriate range information 26.
  • the control unit 21 stores a different amount of medium in advance in the photographing unit 40 for each manufacturer and for each type of well plate 70 and for each position of each well 71 on the well plate 70.
  • the phase difference image is acquired by photographing the well 71, and the lower limit value and the upper limit value of the amount of culture medium in which the phase difference image having an appropriate image quality for observing the observation target can be acquired from the acquired phase difference image. It is memorized as “threshold range of medium amount”.
  • the “medium amount threshold range” is provided for each imaging condition for imaging an observation target.
  • the magnification of the objective lens 31 of the microscope apparatus 1 is high, the size of the slit of the phase plate 32 becomes narrow, so that the axis shift with respect to the change of the medium amount, that is, the optical axis of the observation light transmitted through the culture vessel and the imaging optics.
  • the sensitivity of deviation between the optical axis of the system becomes high. In other words, the amount of light that passes through the phase plate 32 increases, and the luminance of the acquired phase difference image increases. Therefore, the influence of the change in the medium amount on the phase difference image is increased. Therefore, the range of the medium amount threshold is set for each magnification of the objective lens 31.
  • control unit 21 is based on the phase difference image representing the well 71 acquired by photographing the well 71 containing different amounts of the medium, which is performed to determine the range of the medium amount threshold value as described above.
  • the image processing unit 23 creates a luminance profile, and the control unit 21 stores the medium amount and the luminance profile in the phase difference image in association with each other in the secondary storage unit 25 (see FIG. 6).
  • the medium amount and the luminance profile are stored as a table in which each is associated.
  • a table in which the medium amount and the luminance profile are associated with each other is stored.
  • the present disclosure is not limited to this, and the table may not be used as long as the medium amount can be derived from the luminance profile.
  • a table in which the shape information of the well 71 is associated with the appropriate range information 26 is stored.
  • the present disclosure is not limited to this, and if the appropriate range information 26 can be derived from the shape information of the well 71, It is not necessary to use a table.
  • the detection part 52 mentioned later reads the appropriate range information 26 of the well 71 which has the shape information from the secondary memory
  • the general-purpose computer may be implemented by a dedicated computer.
  • the dedicated computer may be firmware that executes a program recorded in a nonvolatile memory such as a built-in ROM (Read Only Memory) or a flash memory.
  • a dedicated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (field programmable gate arrays) that permanently stores a program for executing at least a part of the functions of the microscope control device 2 May be provided.
  • the program instructions stored in the dedicated circuit may be combined with the program instructions executed by a general-purpose CPU programmed to use the program of the dedicated circuit.
  • program instructions may be executed by any combination of hardware configurations of computers.
  • FIG. 3 is a schematic block diagram showing the configuration of the medium amount detection unit 22.
  • the medium amount detection unit 22 includes a reception unit 50, an acquisition unit 51, a detection unit 52, and a notification unit 53.
  • the receiving unit 50 receives the shape information of the well 71 that contains the observation target including the culture medium.
  • the receiving unit 50 receives the shape information of the well plate 70 installed on the stage 61, which is input from the input device 4 by the user, as the shape information of the well 71. Further, the shape information of the well 71 is not input by the user, but a barcode or the like is given to the well plate 70, and the reception unit 50 can read the barcode, for example, and is connected to the external I / F 28.
  • the shape information may be received by reading a barcode given to the well plate 70 via the external device.
  • the shape information of the well 71 may be information that can identify the amount of accommodation of the accommodation unit that accommodates the observation target, and may be, for example, a manufacturer's model number as long as it is associated with the accommodation amount in advance. It may be a production number.
  • the acquisition unit 51 acquires a phase difference image representing an observation object accommodated in the well 71 corresponding to the shape information received by the reception unit 50.
  • the acquisition unit 51 is a phase difference image acquired by the imaging unit 40, and is a well plate 70 that has received shape information by the reception unit 50, and is a well plate 70 disposed on the stage 61. Phase difference image information representing the observation object accommodated in each well 71 is acquired.
  • the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit 51 is within a threshold range corresponding to the shape information received by the reception unit 50, and different types of wells 71 are used. It is detected whether or not the shape information is out of the threshold range selected from the plurality of threshold ranges of the medium amount set in advance for each shape information. The detection process performed by the detection unit 52 as to whether or not the predetermined amount of the medium amount is out of the predetermined range will be described in detail later.
  • the notification unit 53 notifies that the medium amount is excessive or insufficient when the detection unit 52 detects that the medium amount is outside the preset threshold range of the medium amount.
  • the notification unit 53 includes the display device 3, and specifically displays the words “excess medium amount” or “insufficient medium amount” as an example in response to a command from the control unit 21.
  • the notification unit 53 that is, the display device 3 displays the words “excess medium amount” or “insufficient medium amount”, but the present disclosure is not limited to this, "Please increase the media", "Please reduce the amount of medium”, “Please replace the medium”, etc. may be displayed.
  • the notification unit 53 is not limited to the one configured by the display device 3, and the notification unit 53 is a communication device such as an audio reproduction device, a printer, an email, a telephone, or the like connected via the external I / F 28. It may be configured by means, an indicator lamp, or the like, or may be configured by combining at least two or more of the display, the sound reproduction device, the printer, the communication means, and the indicator lamp.
  • FIG. 4 is a flowchart showing processing by the medium amount detection unit 22 of FIG. 3
  • FIG. 5 is a diagram for explaining processing of the microscope observation system
  • FIG. 6 is a diagram for explaining a medium amount estimating method.
  • the receiving unit 50 acquires the shape information of the well 71 as described above (step S1).
  • the accepting unit 50 accepts the shape of each of the 96 wells 71 arranged on the well plate 70 shown in FIG. 5 as shape information (step S1).
  • the acquisition unit 51 reads out and acquires the phase difference images for each of the plurality of observation regions stored in the secondary storage unit 25 by causing the imaging unit 40 to image the well plate 70 by the control unit 21 (step S2).
  • one well 71 is represented by nine observation areas A1 to A9 as shown in FIG.
  • the acquisition unit 51 acquires a combined image obtained by combining the phase difference images representing the nine observation regions as a phase difference image representing the well 71.
  • the number of observation regions is not limited to nine, and may be, for example, 16 observation regions, 25 observation regions, or depending on the performance of the microscope apparatus 1 and imaging conditions. It is changed appropriately.
  • the detection unit 52 estimates the amount of medium (step S3). For example, as illustrated in FIG. 5, the acquisition unit 51 acquires a phase difference image of the entire well 71 ⁇ / b> A in the fifth row from the top and the fifth column from the left in FIG. 5 of the well plate 70. The detection unit 52 causes the image processing unit 23 to create a luminance profile based on the acquired phase difference image via the control unit 21, and acquires the generated luminance profile.
  • the detection unit 52 refers to the luminance profile stored in the secondary storage unit 25 in association with the medium amount, and estimates the medium amount of the luminance profile acquired above.
  • a correlation function may be used to obtain the correlation between these brightness profiles.
  • the inflection points in the luminance profiles acquired as described above are obtained when stored in the secondary storage unit 25, and the luminance values of the inflection points corresponding to these luminance profiles are obtained. Find the total difference.
  • the total value mentioned above is calculated
  • the detection part 52 specifies the culture medium quantity with the highest correlation with the brightness
  • the detection unit 52 has a medium amount threshold range corresponding to the shape information of the well 71 received by the receiving unit 50 from the medium amount threshold range stored in the appropriate range information 26, and Further, in FIG. 5 of the well plate 70, the range of the medium amount threshold of the well 71 corresponding to the position of the well 71A in the fifth row from the top and the fifth column from the left is read, and the estimated medium amount is within the above threshold range. It is detected whether it is outside (step S4).
  • the detection unit 52 detects an excessive medium amount or an insufficient medium amount (step S5). That is, the detecting unit 52 detects an excessive amount of the medium if the estimated amount of the medium is larger than the upper limit value of the threshold range, and detects an insufficient amount of the medium if the estimated amount is smaller than the lower limit value of the threshold range.
  • the notification unit 53 notifies the display device 3 of the words “excessive amount of medium” or “insufficient amount of medium” via the control unit 21, thereby notifying that the amount of medium is excessive or insufficient (step S6), the processing by the medium amount detection unit 22 ends.
  • step S4 when the detection unit 52 detects in step S4 that the estimated medium amount is within the above-described threshold range (step S4; NO), the medium amount is not excessive or insufficient, and is an appropriate amount, so the medium amount detection unit The process by 22 is completed.
  • the above process is performed on all 96 wells 71 to detect whether or not the medium amount is out of the threshold range, thereby detecting whether or not the medium amount is an appropriate amount.
  • the medium in the well 71A is reduced or added to adjust the medium amount, or the medium amount is exchanged.
  • the well 71A can be adjusted to an appropriate medium amount.
  • the observation target can be photographed with an appropriate amount of medium, so that deterioration of the image quality of the phase difference image can be suppressed.
  • the acquisition unit 51 may acquire again the phase difference image information representing the observation target accommodated in the well 71A after the medium amount in the well 71A is adjusted to an appropriate amount.
  • the user operates the input device 4 to input that the well 71A has an appropriate amount of medium.
  • the control unit 21 detects that the well 71A has an appropriate amount of medium, that is, detects that the amount of medium in the well 71 is within the above-described threshold value range, the control unit 21 causes the photographing unit 40 to image the well 71A again.
  • the acquisition unit 51 acquires the captured phase difference image. Thereby, the phase difference image in which the image quality is lowered due to the excessive amount of medium or the insufficient amount of the medium can be changed to a phase difference image with improved image quality, which is taken with an appropriate amount of medium.
  • the detection unit 52 detects whether or not the medium amount is out of the threshold range, but the present disclosure is not limited to this, and the detection unit 52 has a medium whose estimated medium amount is appropriate. You may detect how much more and less than the amount threshold range. In this case, the notification unit 53 notifies how much or how much is insufficient. Thereby, since the user can know how much the amount of the medium is reduced or can be adjusted to an appropriate amount of the medium, the amount of the medium can be easily adjusted.
  • the luminance profile based on the image information representing the entire well 71 is used.
  • the present disclosure is not limited to this, and for example, the well 71
  • the luminance profile based on the phase difference image information of the central region of the observation region A5 in FIG. 5 can be used.
  • the control unit 21 causes the image processing unit 23 to create a luminance profile based on the phase difference image representing the central region of the well 71, that is, the observation region A5, and the control unit 21 determines the medium amount and the luminance in the phase difference image.
  • the profile is associated with and stored in the secondary storage unit 25.
  • the detection unit 52 is not limited to the phase difference image information of the center region of the well 71, that is, the observation region A5 in FIG. Any one of the phase difference image information of 9 may be used. In addition, phase difference image information of two or more observation regions among the observation regions A1 to 9 representing the well 71 may be used. However, since the phase difference image information in the central region of the well 71, that is, the observation region A5 in FIG. 5 represents the change in the medium amount in the well 71, it is more preferable to use the phase difference image information in the central region of the well 71. preferable.
  • the detection unit 52 it is more accurate to estimate the medium amount based on the phase difference image information representing the whole well 71 than to estimate the medium amount based on the phase difference image information representing the central region of the well 71. It is more preferable because it is good.
  • the process of creating a luminance profile for example, in which the medium amount is estimated based on the phase difference image information representing the central region of the well 71 rather than the medium amount is estimated based on the phase difference image information representing the entire well 71. Since the speed is high, the calculation cost can be reduced.
  • a medium amount estimation method can be selected according to the user's desire.
  • the culture medium amount and luminance profile in the phase difference image showing the well 71 are matched and memorize
  • the medium amount and the phase difference image in the phase difference image representing the well 71 may be associated with each other and stored in the secondary storage unit 25.
  • a luminance profile based on the phase difference image may be created from the phase difference image stored in the secondary storage unit 25 and referred to.
  • FIG. 7 is a schematic block diagram showing the configuration of the medium amount detection unit of the second embodiment.
  • the culture medium amount detection part of this embodiment is provided with the adjustment part 54 instead of the alerting
  • the adjusting unit 54 of the present embodiment sets the appropriate amount of the medium in the culture vessel 71 that is detected to be out of the threshold range. Make a presentation for adjustment. Specifically, the detection unit 52 of the present embodiment detects how much the estimated medium amount is larger or insufficient than the appropriate medium amount threshold range, and the detection unit 52 detects the above threshold range. When it is detected that the medium is out of the range, the adjustment unit 54 outputs the excess or deficiency of the medium detected by the detection unit 52 to the control unit 21.
  • FIG. 8 is a flowchart showing processing by the medium amount detection unit of FIG.
  • the processing from step S21 to step S25 is the same as the processing from step S1 to step S5 in FIG.
  • the adjustment unit 54 When the detection unit 52 detects how much the medium amount estimated in step S25 is larger or insufficient than the appropriate medium amount threshold range and detects an excessive medium amount or an insufficient medium amount, the adjustment unit 54 outputs an appropriate amount of the medium amount by outputting the excess or deficiency of the medium detected by the detection unit 52 to the control unit 21 (step S26), and the processing by the medium amount detection unit 22 ends. To do.
  • control unit 21 can know how much medium is insufficient or insufficient in the well 71A shown in FIG. 5, how much the control unit 21 is in the display device 3, for example, It can be displayed whether it is insufficient. Thereby, since the user can know how much the amount of the medium is increased or added, an appropriate amount of the medium can be obtained, so that the amount of the medium can be easily adjusted.
  • the control unit 21 outputs an excessive or insufficient amount of the medium to this device.
  • the well 71A can be automatically set to an appropriate medium amount.
  • the adjustment part 54 of this embodiment may be comprised by the apparatus which inject
  • the adjustment unit 54 It is possible to automatically adjust the medium amount of the well 71 in which the medium amount is excessive or the medium amount is insufficient to an appropriate amount.
  • observation control program 27 is read from the secondary storage unit 25 .
  • the observation control program 27 may be stored in an arbitrary portable storage medium 250 such as versatile disc-Read Only Memory).
  • the observation control program 27 of the storage medium 250 is installed in the microscope control apparatus 2, and the installed observation control program 27 is executed by the CPU 21.
  • observation control program 27 is stored in a storage unit such as another computer or server device connected to the microscope apparatus 1 via a communication network (not shown), and the observation control program 27 responds to the request of the microscope apparatus 1. It may be downloaded in response. In this case, the downloaded observation control program 27 is executed by the CPU 21.
  • observation control process described in the above embodiments is merely an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, and the processing order may be changed within a range not departing from the spirit.
  • observation control process is realized by a software configuration using a computer
  • the technology of the present disclosure is not limited to this.
  • the observation control process may be executed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit).
  • the observation control process may be executed by a combination of a software configuration and a hardware configuration.
  • Microscope device 2 Microscope control device 3
  • Display device 4 input devices 10
  • White light source 12 Slit plate 13
  • Condenser lens 21 Control unit 22
  • Medium volume detector 23 Image processing section 24
  • Primary storage unit 25 Secondary storage 26
  • Observation control program 28 External I / F 29 Bus line 30
  • Objective lens 32 Phase plate 33
  • Imaging lens 40 50 reception desk 50 culture vessels 51 Acquisition Department 52 Detector 53 Notification Department 54 Adjustment unit 61 stages 62 Drive unit 70 well plate 71 each well 71 Culture vessel 71 well 75 Scanning start point 76 Scan end point 77
  • Solid line 250 storage media A1 to A9 Observation area C culture solution P1 installation surface

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Multimedia (AREA)
  • Microscoopes, Condenser (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

The present invention provides an observation device, a method for operating an observation device and an observation control program which allow for the detection of the excess or shortage of the volume of a medium. The observation device comprises: a reception unit for receiving the shape information of a container storing an observation target including a medium; an acquisition unit for acquiring phase-difference image information indicating an observation target stored in the container corresponding to the shape information received by the reception unit; and a detection unit for detecting whether or not the medium volume estimated on the basis of the phase-difference image information acquired by the acquisition unit deviates from the threshold range corresponding to the shape information received by the reception unit. The threshold range is selected from a plurality of threshold ranges for the volume of a medium which is predetermined for each type of shape information corresponding to different types of containers.

Description

観察装置、観察装置の作動方法、及び観察制御プログラムObservation apparatus, operation method of observation apparatus, and observation control program

 本開示は、容器内に収容された観察対象を観察する観察装置、観察装置の作動方法、及び観察制御プログラムに関する。

The present disclosure relates to an observation apparatus that observes an observation object accommodated in a container, an operation method of the observation apparatus, and an observation control program.

 従来、ES(Embryonic Stem)細胞及びiPS(Induced Pluripotent Stem)細胞等の多能性幹細胞や分化誘導された細胞等を顕微鏡等で撮影し、その画像の特徴を捉えることで細胞の分化状態などを判定する方法が提案されている。そして、ES細胞及びiPS細胞等の多能性幹細胞は、種々の組織の細胞に分化する能力を備えており、再生医療、薬の開発、病気の解明などにおいて応用が可能な細胞として注目されている。細胞を顕微鏡により撮影する際には、高倍率な広視野画像を取得するため、例えばウェルプレート等の培養容器の範囲内を結像光学系によって走査し、観察位置毎の画像を撮影した後、その観察位置毎の画像を結合する、いわゆるタイリング撮影を行うことが提案されている。

Conventionally, pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced Pluripotent Stem) cells and differentiation-induced cells are photographed with a microscope, etc. A determination method has been proposed. And pluripotent stem cells such as ES cells and iPS cells have the ability to differentiate into cells of various tissues, and are attracting attention as cells that can be applied in regenerative medicine, drug development, disease elucidation, etc. Yes. When photographing cells with a microscope, in order to obtain a wide-field image with a high magnification, for example, the inside of a culture vessel such as a well plate is scanned with an imaging optical system, and an image for each observation position is photographed. It has been proposed to perform so-called tiling photography that combines images for each observation position.

 上述したように細胞を撮影する際に使用される顕微鏡には、例えば位相差顕微鏡がある。一般的な位相差顕微鏡においては、リング状の照明光が観察対象に照射され、観察対象を通過した直接光と回折光が位相板に入射される。そして、直接光は位相板のリング部分によって減光され、回折光は位相板の透明な部分を通過し、この直接光と回折光とが結像されることによって明暗のコントラストのついた像を撮影することができる。

As described above, there is a phase contrast microscope, for example, as a microscope used when photographing cells. In a general phase contrast microscope, ring-shaped illumination light is irradiated onto an observation target, and direct light and diffracted light that have passed through the observation target are incident on a phase plate. The direct light is attenuated by the ring part of the phase plate, and the diffracted light passes through the transparent part of the phase plate, and the direct light and the diffracted light are imaged to form an image with a contrast of light and dark. You can shoot.

 位相差顕微鏡によって培地を含む観察対象を観察する場合、例えば培地が培養液である場合には、培養液の量によって、培養液の液面に形成されるメニスカスの形状パターンが異なってしまう。メニスカスの形状パターンが異なると、位相差顕微鏡により観察対象を観察する場合に、位相板に入射される直接光と回折光とに与える影響が異なってしまうので、培養液の量によって撮影画像の画質が変わってしまう。

When an observation target including a culture medium is observed with a phase contrast microscope, for example, when the culture medium is a culture solution, the shape pattern of the meniscus formed on the liquid surface of the culture solution varies depending on the amount of the culture solution. If the shape pattern of the meniscus is different, the effect on the direct light and diffracted light incident on the phase plate will be different when observing the observation target with a phase contrast microscope. Will change.

 しかしながら、培養容器に培養液を入れる際に、ユーザの手動により入れる場合には人によるばらつきにより、電動ピペットで入れる場合には電動ピペットの不具合により、培地量が一定ではない場合がある。また培地の蒸発等により、培地量が変動する場合もある。このように培地量が変動する要素が複数あるため、培養容器に収容された培地量が適切な量であるか否かを把握することが非常に重要である。

However, when the culture solution is put into the culture container, the amount of the medium may not be constant due to variations in humans when manually placed by the user and due to a malfunction of the electric pipette when placed with the electric pipette. In addition, the amount of the medium may vary due to evaporation of the medium. As described above, since there are a plurality of factors that change the amount of the medium, it is very important to grasp whether or not the amount of the medium stored in the culture container is an appropriate amount.

 一方、培養容器に収容された培地量を把握するためには、重量を測定してモニターする方法があるが、重量を測定するためのセンサを必要とするため、顕微鏡装置の構造が複雑になる。

On the other hand, in order to grasp the amount of medium contained in the culture vessel, there is a method of measuring and monitoring the weight, but since a sensor for measuring the weight is required, the structure of the microscope apparatus becomes complicated. .

 そこで、例えば特許文献1には、撮影画像において培養容器の底面の輪郭と培地の表面の輪郭を抽出することによって培地の高さを算出することにより、新たな構成を付加することなく培地量を把握する方法が開示されている。また、特許文献2には、観察対象の位相差画像の輝度分布に基づいて、容器内の液体の液面形状を推定することによって、液面形状に起因する光の屈折を調整することにより、メニスカスの影響を抑制した位相差画像を撮像する方法が開示されている。特許文献3には、カラー画像のRGB(Red-Green-Blue)信号値に基づいて培地量を推定し、培地量の推定値が設定範囲から外れる場合に異常信号を出力する方法が開示されている。

Therefore, for example, in Patent Document 1, the height of the culture medium is calculated by extracting the contour of the bottom surface of the culture vessel and the contour of the surface of the culture medium in the photographed image, so that the amount of the medium can be determined without adding a new configuration. A method of grasping is disclosed. Further, in Patent Document 2, by adjusting the refraction of light caused by the liquid surface shape by estimating the liquid surface shape of the liquid in the container based on the luminance distribution of the phase difference image to be observed, A method for capturing a phase difference image in which the influence of a meniscus is suppressed is disclosed. Patent Document 3 discloses a method of estimating a medium amount based on RGB (Red-Green-Blue) signal values of a color image, and outputting an abnormal signal when the estimated value of the medium amount is out of the set range. Yes.

国際公開WO2008/146474号International Publication WO2008 / 146474 特開2017-151132号公報JP 2017-151132 A 国際公開WO2007/055317号International Publication No. WO2007 / 055317

 しかしながら、特許文献1には、新たな構成を付加することなく培地量を把握しているが、培地量を把握するための画像を細胞観察画像とは別に取得する必要がある。また、特許文献2には、容器内の液面形状を推定する方法は記載されているが、容器内の液量を推定することは記載されておらず、培地量が予め設定された適正量であるか否かを検出することについては記載されていない。特許文献3は、試料を顕微鏡観察するための試料観察画像を取得するための顕微観察系の他に、培地量を推定するために用いる観察領域全体を表すカラー画像を取得するための容器観察系が必要である。

However, in Patent Document 1, the amount of the medium is grasped without adding a new configuration, but it is necessary to acquire an image for grasping the amount of the medium separately from the cell observation image. Further, Patent Document 2 describes a method for estimating the liquid level shape in the container, but does not describe estimating the liquid amount in the container, and an appropriate amount in which the medium amount is set in advance. It is not described about detecting whether or not. Patent Document 3 discloses a container observation system for acquiring a color image representing an entire observation region used for estimating a medium amount in addition to a microscopic observation system for acquiring a sample observation image for observing a sample with a microscope. is required.

 本開示は上記事情に鑑みなされたものであり、位相差画像以外の画像を取得することなく、培地量の過多又は不足の容器を検出することができる観察装置及び観察装置の作動方法並びに観察制御プログラムを提供することを目的とする。

The present disclosure has been made in view of the above circumstances, and an observation apparatus, an operation method of the observation apparatus, and observation control that can detect a container having an excessive or insufficient amount of a medium without acquiring an image other than a phase difference image. The purpose is to provide a program.

 本開示の観察装置は、培地を含む観察対象を収容した容器の形状情報を受け付ける受付部と、

 受付部が受け付けた形状情報に対応する容器に収容された観察対象を表す位相差画像情報を取得する取得部と、

 取得部により取得された位相差画像情報に基づいて推定された培地量が、受付部が受け付けた形状情報に対応する閾値の範囲から外れるか否かを検出する検出部を備え、

 閾値の範囲は、異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲である。

The observation device of the present disclosure includes a receiving unit that receives shape information of a container that contains an observation target including a culture medium;

An acquisition unit for acquiring phase difference image information representing an observation object accommodated in a container corresponding to the shape information received by the reception unit;

A detection unit that detects whether or not the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit is out of a threshold range corresponding to the shape information received by the reception unit;

The threshold range is a threshold range selected from a plurality of threshold ranges of a predetermined amount of medium for each shape information of different types of containers.

 なお、本開示において、「容器の形状情報」は、観察対象を収容する収容部の収容量を特定できる情報を意味する。

In the present disclosure, “container shape information” means information that can specify the amount of the storage unit that stores the observation target.

 また、本開示の観察装置は、検出部が閾値の範囲から外れることを検出した場合に、閾値の範囲から外れることが検出された容器の培地量を適正量に調整するか、または容器の培地量を適正量に調整するための提示を行なう調整部を備えてもよい。

Further, the observation device of the present disclosure adjusts the medium amount of the container detected to be out of the threshold range to an appropriate amount when the detection unit detects that the detection unit is out of the threshold range, or the medium in the container You may provide the adjustment part which performs the presentation for adjusting quantity to an appropriate quantity.

 また、本開示の観察装置は、検出部が閾値の範囲から外れることを検出した場合に、培地量の過多又は不足であることを報知する報知部を備えてもよい。

Moreover, the observation apparatus of this indication may be provided with the alerting | reporting part which alert | reports that the amount of culture media is excessive or insufficient when it detects that a detection part remove | deviates from the range of a threshold value.

 なお、本開示において、「培地量の過多又は不足であることを報知する」は、培地量を増やすように報知すること、培地量を減らすように報知すること、及び培地を交換するように報知することも含む。

In the present disclosure, “notify that the amount of medium is excessive or insufficient” indicates that the medium amount is increased, the medium amount is decreased, and the medium is replaced. To include.

 また、本開示において、「報知部」は、メッセージ等を可視表示させるディスプレイ、音声が出力されることにより可聴表示させる音声再生装置、用紙等の記録媒体に記録して永久可視表示させるプリンタ、メールや電話等の通信手段及び表示灯等を意味し、上記ディスプレイ、上記音声再生装置、上記プリンタ、上記通信手段及び上記表示灯のうちの少なくとも2つ以上を組み合わせてもよい。

Further, in the present disclosure, the “notification unit” includes a display that displays a message or the like visually, a sound reproduction device that displays an audible display by outputting sound, a printer that records on a recording medium such as paper, and displays it permanently and visually. Means a communication means such as a telephone, a display lamp, etc., and at least two or more of the display, the sound reproduction device, the printer, the communication means and the display light may be combined.

 また、本開示の観察装置は、取得部が、培地量が適正量に調整された後に、検出部により閾値の範囲から外れることが検出された容器に収容された観察対象を表す画像情報を再度取得してもよい。

In addition, the observation device of the present disclosure again displays image information representing an observation target housed in a container that is detected to be out of the threshold range by the detection unit after the medium amount is adjusted to an appropriate amount. You may get it.

 また、本開示の観察装置は、検出部が、位相差画像情報に基づいた輝度分布情報を取得し、予め設定された輝度分布情報と培地量との関係に基づいて培地量を推定することができる。

In the observation device of the present disclosure, the detection unit may acquire luminance distribution information based on the phase difference image information, and estimate the medium amount based on a relationship between the preset luminance distribution information and the medium amount. it can.

 また、本開示の観察装置は、閾値の範囲が、観察対象を撮影する撮影条件毎に設けられていてもよい。

In the observation device according to the present disclosure, the threshold range may be provided for each imaging condition for imaging the observation target.

 また、本開示の観察装置は、異なる種類の容器の形状情報毎、及び容器における観察領域の座標位置毎に、位相差画像情報と培地量との関係が設定されており、

 検出部が、設定された関係から培地量を推定してもよい。

Further, in the observation device of the present disclosure, the relationship between the phase difference image information and the amount of medium is set for each shape information of different types of containers and for each coordinate position of the observation region in the container,

The detection unit may estimate the medium amount from the set relationship.

 また、本開示の観察装置は、検出部が、容器全体を表す位相差画像情報を用いて培地量

を推定してもよい。

Further, in the observation apparatus according to the present disclosure, the detection unit uses the phase difference image information representing the entire container,

May be estimated.

 また、本開示の観察装置は、検出部が、容器の中心領域を表す位相差画像情報を用いて培地量を推定してもよい。

In the observation device of the present disclosure, the detection unit may estimate the amount of the culture medium using phase difference image information that represents the central region of the container.

 本開示の観察装置の作動方法は、受付部、取得部、及び検出部を備える観察装置の作動方法であって、

 受付部が、培地を含む観察対象を収容した容器の形状情報を受け付け、

 取得部が、受付部が受け付けた形状情報に対応する容器に収容された観察対象を表す位相差画像情報を取得し、

 検出部が、取得部により取得された位相差画像情報に基づいて推定された培地量が、受付部が受け付けた形状情報に対応する閾値の範囲から外れるか否かを検出し、閾値の範囲は、異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲であることを含む。

The operation method of the observation device of the present disclosure is an operation method of the observation device including a reception unit, an acquisition unit, and a detection unit,

The accepting unit accepts shape information of the container containing the observation object including the culture medium,

The acquisition unit acquires phase difference image information representing an observation object accommodated in a container corresponding to the shape information received by the reception unit,

The detection unit detects whether or not the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit is out of the threshold range corresponding to the shape information received by the reception unit. , Including a threshold range selected from a plurality of threshold ranges of a predetermined amount of medium for each shape information of different types of containers.

 本開示の観察制御プログラムは、コンピュータを、

 上記観察装置に含まれる受付部、取得部、及び検出部として機能させる。

An observation control program of the present disclosure includes a computer,

It functions as a reception unit, an acquisition unit, and a detection unit included in the observation apparatus.

 なお、本開示による観察装置の作動方法をコンピュータに実行させるプログラムとして提供してもよい。

Note that the operation method of the observation apparatus according to the present disclosure may be provided as a program that causes a computer to execute the method.

 本開示による他の観察装置は、コンピュータに実行させるための命令を記憶するメモリと、

 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、

 培地を含む観察対象を収容した容器の形状情報を受け付け、

 受け付けた形状情報に対応する容器に収容された観察対象を表す位相差画像情報を取得し、

 取得された位相差画像情報に基づいて推定された培地量が、上記受け付けた形状情報に対応する閾値の範囲から外れるか否かを検出する処理を実行し、閾値の範囲は、異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲である。

Another observation device according to the present disclosure includes a memory for storing instructions for causing a computer to execute,

A processor configured to execute stored instructions, the processor comprising:

Accept the shape information of the container containing the observation target including the culture medium,

Obtain phase difference image information representing an observation object accommodated in a container corresponding to the received shape information,

A process for detecting whether or not the amount of the medium estimated based on the acquired phase difference image information is out of the threshold range corresponding to the received shape information is performed. It is the range of the threshold value selected from the range of the some threshold value of the culture medium amount preset for every shape information.

 本開示によれば、培地を含む観察対象を収容した容器の形状情報を受け付け、受け付けた形状情報に対応する容器に収容された観察対象を表す位相差画像情報を取得し、取得された位相差画像情報に基づいて推定された培地量が、上記受け付けた形状情報に対応する閾値の範囲であって、かつ異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値から外れるか否かを検出するので、位相差画像以外の画像を取得することなく、閾値から外れた容器を培地量の過多又は不足の容器として検出することができる。これにより培地量の過多又は不足の容器において、培地量を調整したり、培地を交換したりすることにより、適切な培地量で観察対象を撮影することができるので、撮影画像の画質の低下を抑制することができる。

According to the present disclosure, the shape information of the container containing the observation target including the culture medium is received, the phase difference image information representing the observation target stored in the container corresponding to the received shape information is acquired, and the acquired phase difference is acquired. The amount of the medium estimated based on the image information is a threshold range corresponding to the received shape information, and from a plurality of threshold ranges of the medium amount set in advance for each shape information of different types of containers Since it is detected whether or not the selected threshold value is deviated, a container deviating from the threshold value can be detected as an excessive or insufficient medium amount container without acquiring an image other than the phase difference image. As a result, by adjusting the amount of medium or exchanging the medium in a container with an excessive or insufficient amount of medium, the observation object can be imaged with an appropriate amount of medium, which reduces the image quality of the captured image. Can be suppressed.

本開示の観察装置を適用した顕微鏡観察システムの一実施形態の概略構成を示す図The figure which shows schematic structure of one Embodiment of the microscope observation system to which the observation apparatus of this indication is applied. ウェルプレートにおける観察位置の走査位置を実線で示した図Diagram showing the scanning position of the observation position on the well plate with a solid line 培地量検出部の構成を示す概略ブロック図Schematic block diagram showing the configuration of the medium amount detection unit 図3の培地量検出部による処理を示すフローチャートThe flowchart which shows the process by the culture medium amount detection part of FIG. 顕微鏡観察システムの処理を説明するための図The figure for explaining the processing of the microscope observation system 培地量推定方法を説明するための図Diagram for explaining the medium amount estimation method 第2の実施形態の培地量検出部の構成を示す概略ブロック図The schematic block diagram which shows the structure of the culture medium amount detection part of 2nd Embodiment. 図7の培地量検出部による処理を示すフローチャートThe flowchart which shows the process by the culture medium amount detection part of FIG. 観察制御プログラムが記憶された記憶媒体から観察制御プログラムが顕微鏡制御装置にインストールされる態様の一例を示す概念図Conceptual diagram showing an example of an aspect in which an observation control program is installed in a microscope control device from a storage medium in which the observation control program is stored

 以下、本開示の観察装置、観察装置の作動方法及び観察制御プログラムの一実施形態を適用した顕微鏡観察システムについて、図面を参照しながら詳細に説明する。本開示の一実施形態の顕微鏡観察システムは、図1に示すように、顕微鏡装置1、顕微鏡制御装置2、表示装置3、および入力装置4を備える。なお、顕微鏡制御装置2が本開示の観察装置を含む。

Hereinafter, a microscope observation system to which an embodiment of the observation device, the operation method of the observation device, and the observation control program of the present disclosure is applied will be described in detail with reference to the drawings. A microscope observation system according to an embodiment of the present disclosure includes a microscope device 1, a microscope control device 2, a display device 3, and an input device 4, as shown in FIG. Note that the microscope control device 2 includes the observation device of the present disclosure.

 本実施形態において、顕微鏡装置1は位相差顕微鏡であり、観察対象として、例えば培養された細胞の位相差画像を取得するものである。具体的には、顕微鏡装置1は、図1に示すように、照明光照射部10、結像光学系30、ステージ61、および撮影部40を備える。

In the present embodiment, the microscope apparatus 1 is a phase contrast microscope, and acquires, for example, a phase contrast image of cultured cells as an observation target. Specifically, the microscope apparatus 1 includes an illumination light irradiation unit 10, an imaging optical system 30, a stage 61, and a photographing unit 40, as shown in FIG.

 ステージ61上には、細胞等の観察対象Sおよび培地として培養液Cが収容された培養容器71が設置される。ステージ61の中央には、矩形の開口が形成されている。この開口を形成する部材の上に培養容器71が設置され、培養容器71内の観察対象Sの位相差画像が開口を通過するように構成されている。

On the stage 61, an observation container S such as cells and a culture vessel 71 containing a culture medium C as a medium are installed. A rectangular opening is formed at the center of the stage 61. The culture vessel 71 is installed on the member forming the opening, and the phase difference image of the observation target S in the culture vessel 71 is configured to pass through the opening.

 ステージ61上に設置された培養容器71内には、観察対象Sとして、培養された細胞群(細胞コロニー)が配置される。培養された細胞としては、iPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された皮膚、網膜、心筋、血球、神経および臓器の細胞等がある。

培養容器71としては、例えばウェルプレート上に配列された複数のウェル(本開示の容器に相当する)が用いられるが、これに限らず、シャーレやフラスコ、ディッシュ等を用いるようにしてもよい。なお、本実施形態においては、複数のウェルが配列されたウェルプレート70を使用し、ウェルプレート70の各ウェルが培養容器71に対応する。以下、培養容器71をウェル71と総称して説明する場合もある。

In the culture vessel 71 installed on the stage 61, a cultured cell group (cell colony) is arranged as the observation target S. The cultured cells include pluripotent stem cells such as iPS cells and ES cells, nerves induced to differentiate from stem cells, skin, myocardium and liver cells, and skin, retina, heart muscle, blood cells, nerves and the like removed from the human body. There are organ cells.

As the culture container 71, for example, a plurality of wells (corresponding to the container of the present disclosure) arranged on a well plate are used, but not limited thereto, a petri dish, a flask, a dish, or the like may be used. In the present embodiment, a well plate 70 in which a plurality of wells are arranged is used, and each well of the well plate 70 corresponds to the culture vessel 71. Hereinafter, the culture vessel 71 may be collectively referred to as the well 71.

 ステージ61上に設置された培養容器71は、培養容器71内の底面が観察対象Sの設置面P1であり、設置面P1に観察対象Sが配置される。培養容器71内には培養液Cが満たされている。なお、本実施形態においては、培養液中において培養される細胞を観察対象Sとしたが、観察対象Sとしてはこのような培養液中のものに限らず、水、ホルマリン、エタノール、およびメタノール等の液体中において固定された細胞を観察対象Sとしてもよい。

In the culture container 71 installed on the stage 61, the bottom surface in the culture container 71 is the installation surface P1 of the observation object S, and the observation object S is arranged on the installation surface P1. The culture solution 71 is filled in the culture vessel 71. In the present embodiment, the cells to be cultured in the culture medium are the observation objects S. However, the observation objects S are not limited to those in the culture liquid, but water, formalin, ethanol, methanol, and the like. The cells fixed in the liquid may be the observation object S.

 照明光照射部10は、ステージ61上の培養容器71内に収容された観察対象Sに対して、いわゆる位相差計測のための照明光を照射するものであり、本実施形態では、その位相差計測用の照明光としてリング状照明光を照射する。

The illumination light irradiation unit 10 irradiates the observation target S accommodated in the culture vessel 71 on the stage 61 with illumination light for so-called phase difference measurement, and in this embodiment, the phase difference Ring-shaped illumination light is irradiated as illumination light for measurement.

 具体的には、本実施形態の照明光照射部10は、位相差計測用の白色光を出射する白色光源11、リング形状のスリットを有し、白色光源11から出射された白色光が入射されてリング状照明光を出射するスリット板12、およびスリット板12から出射されたリング状照明光が入射され、入射されたリング状照明光を観察対象Sに対して照射するコンデンサレンズ13を備える。

Specifically, the illumination light irradiation unit 10 of the present embodiment has a white light source 11 that emits white light for phase difference measurement and a ring-shaped slit, and the white light emitted from the white light source 11 is incident thereon. The slit plate 12 that emits ring-shaped illumination light, and the ring-shaped illumination light emitted from the slit plate 12 are incident, and the condenser lens 13 that irradiates the incident ring-shaped illumination light to the observation object S is provided.

 スリット板12は、白色光源11から出射された白色光を遮光する遮光板に対して白色光を透過するリング形状のスリットが設けられたものであり、白色光がスリットを通過することによってリング状照明光が形成される。コンデンサレンズ13は、スリット板12から出射されたリング状照明光を観察対象Sに向かって収束させる。

The slit plate 12 is provided with a ring-shaped slit that transmits white light to the light-shielding plate that blocks the white light emitted from the white light source 11, and the ring shape is obtained when the white light passes through the slit. Illumination light is formed. The condenser lens 13 converges the ring-shaped illumination light emitted from the slit plate 12 toward the observation target S.

 結像光学系30は、培養容器71内の観察対象Sの像を撮影部40に結像するものであり、対物レンズ31、位相板32および結像レンズ33を備える。

The imaging optical system 30 forms an image of the observation target S in the culture vessel 71 on the photographing unit 40, and includes an objective lens 31, a phase plate 32, and an imaging lens 33.

 位相板32は、リング状照明光の波長に対して透明な透明板に対して位相リングを形成したものである。なお、上述したスリット板12のスリットの大きさは、この位相リングと共役な関係にある。

The phase plate 32 is obtained by forming a phase ring on a transparent plate that is transparent with respect to the wavelength of the ring-shaped illumination light. Note that the size of the slit of the slit plate 12 described above is in a conjugate relationship with this phase ring.

 位相リングは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成されたものである。位相板32に入射された直接光は位相リングを通過することによって位相が1/4波長ずれ、かつその明るさが弱められる。一方、観察対象Sによって回折された回折光は大部分が位相板32の透明板の部分を通過し、その位相および明るさは変化しない。

In the phase ring, a phase film that shifts the phase of incident light by ¼ wavelength and a neutral density filter that attenuates incident light are formed in a ring shape. When the direct light incident on the phase plate 32 passes through the phase ring, the phase is shifted by ¼ wavelength and its brightness is weakened. On the other hand, most of the diffracted light diffracted by the observation object S passes through the transparent plate portion of the phase plate 32, and its phase and brightness do not change.

 結像レンズ33は、位相板32を通過した直接光および回折光が入射され、これらの光を撮影部40に結像する。

The imaging lens 33 receives direct light and diffracted light that have passed through the phase plate 32, and forms an image of these lights on the imaging unit 40.

 撮影部40は、結像レンズ33によって結像された観察対象Sの像を受光し、観察対象

Sを撮影して位相差画像を出力する撮像素子を備える。撮像素子としては、CCD(charge-coupled device)イメージセンサ、およびCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサ等を用いることができる。

The imaging unit 40 receives the image of the observation target S formed by the imaging lens 33 and receives the observation target S.

An image sensor that captures S and outputs a phase difference image is provided. As the image sensor, a charge-coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor, or the like can be used.

 また、ステージ61は、駆動部62により駆動されて、水平面内において互いに直交するX方向およびY方向に移動する。図2は、6つのウェル71を有するウェルプレート70を用いた場合における、観察位置の走査位置を実線で示した図である。図2に示すように、結像光学系30は、走査開始点75から走査終了点76まで実線77に沿って移動する。すなわち、結像光学系30による培養容器50上の観察領域の観察位置は、X方向の正方向(図2の右方向)に走査された後、Y方向(図2の下方向)に移動し、逆の負方向

(図2の左方向)に走査される。次いで、観察位置は、再びY方向に移動し、再び正方向に走査される。このように、結像光学系30は、X方向についての往復移動とY方向への移動を繰り返し行うことによって、培養容器50内を2次元状に走査する。

The stage 61 is driven by the drive unit 62 and moves in the X direction and the Y direction orthogonal to each other in the horizontal plane. FIG. 2 is a diagram showing the scanning position of the observation position with a solid line when the well plate 70 having six wells 71 is used. As shown in FIG. 2, the imaging optical system 30 moves along a solid line 77 from the scanning start point 75 to the scanning end point 76. That is, the observation position of the observation region on the culture vessel 50 by the imaging optical system 30 is scanned in the positive direction in the X direction (right direction in FIG. 2) and then moved in the Y direction (downward direction in FIG. 2). , Reverse negative direction

Scanning is performed in the left direction in FIG. Next, the observation position moves again in the Y direction and is scanned again in the positive direction. As described above, the imaging optical system 30 scans the inside of the culture vessel 50 in a two-dimensional manner by repeatedly performing reciprocal movement in the X direction and movement in the Y direction.

 すなわち、ステージ61の移動によって、ウェルプレート70の各ウェル71内における、ウェル71よりも小さい観察領域の観察位置が実線77に沿って移動するため、異なる観察位置における観察領域の位相差画像が撮影部40により取得される。そして、観察領域毎の位相差画像は制御部21によって顕微鏡制御装置2に出力されて、二次記憶部25に記憶される。なお、撮影部40により取得された位相差画像は、ウェルプレート70において、どのウェル71を撮影した画像であるか判別可能に、ウェルプレート70上の座標位置と対応付けて記憶される。

That is, as the stage 61 moves, the observation position of the observation region smaller than the well 71 in each well 71 of the well plate 70 moves along the solid line 77, so that phase difference images of the observation regions at different observation positions are taken. Acquired by the unit 40. The phase difference image for each observation area is output to the microscope control device 2 by the control unit 21 and stored in the secondary storage unit 25. Note that the phase difference image acquired by the imaging unit 40 is stored in association with the coordinate position on the well plate 70 so that it can be determined which well 71 is imaged in the well plate 70.

 本実施形態においては、ステージ61を移動させることによってウェルプレート70内の観察領域毎の位相差画像を取得するようにしたが、これに限らず、結像光学系30をステージ61に対して移動させることによって観察領域毎の位相差画像を取得するようにしてもよい。または、ステージ61と結像光学系30の両方を移動させるようにしてもよい。また、本実施形態においては、図2に示す走査軌跡により走査したが、本開示はこれに限らず、例えば渦巻き状等、他の走査軌跡により走査してもよい。

In the present embodiment, the phase difference image for each observation region in the well plate 70 is acquired by moving the stage 61. However, the present invention is not limited to this, and the imaging optical system 30 is moved with respect to the stage 61. By doing so, a phase difference image for each observation region may be acquired. Alternatively, both the stage 61 and the imaging optical system 30 may be moved. In the present embodiment, scanning is performed using the scanning locus shown in FIG. 2, but the present disclosure is not limited thereto, and scanning may be performed using another scanning locus such as a spiral shape.

 顕微鏡制御装置2は、CPU(Central Processing Unit)20、一次記憶部24、二次記憶部25及び外部I/F(Interface)28等を備えたコンピュータから構成される。CPU20は、制御部21、培地量検出部22及び画像処理部23を備え、顕微鏡観察システムの全体を制御する。

The microscope control device 2 includes a computer including a CPU (Central Processing Unit) 20, a primary storage unit 24, a secondary storage unit 25, an external I / F (Interface) 28, and the like. The CPU 20 includes a control unit 21, a medium amount detection unit 22, and an image processing unit 23, and controls the entire microscope observation system.

 制御部21は、照明光照射部10、ステージ61を駆動する駆動部62、結像光学系30および撮影部40の駆動を制御して観察対象Sの位相差画像を取得する。また、制御部21は、顕微鏡装置1によって撮影された各観察位置の位相差画像を結合することによって生成された1枚の合成位相差画像を表示装置3に表示させる表示制御部としても機能する。また制御部21は、撮影部40に観察対象Sを撮影させる。本実施形態においては、培養容器71はウェルプレート70に配列された複数のウェル71であるため、制御部21は各ウェル71内における各観察領域を撮影部40に撮影させて、ウェル71を表す複数の位相差画像を取得する。

The control unit 21 acquires the phase difference image of the observation target S by controlling the illumination light irradiation unit 10, the drive unit 62 that drives the stage 61, the imaging optical system 30, and the imaging unit 40. The control unit 21 also functions as a display control unit that causes the display device 3 to display one composite phase difference image generated by combining the phase difference images of the respective observation positions photographed by the microscope device 1. . Further, the control unit 21 causes the photographing unit 40 to photograph the observation target S. In the present embodiment, since the culture container 71 is a plurality of wells 71 arranged in the well plate 70, the control unit 21 causes the imaging unit 40 to image each observation region in each well 71 to represent the well 71. A plurality of phase difference images are acquired.

 培地量検出部22は、培地量過多及び培地量不足を検出する。なお、培地量検出部22については後で詳細に説明する。なお、本実施形態においては、培地量検出部22は培地量過多と培地量不足の両方を検出可能としたが、本開示はこれに限られるものではなく、培地量検出部22は培地量過多のみを検出してもよいし、培地量不足のみを検出してもよい。

The medium amount detection unit 22 detects excessive medium amount and insufficient medium amount. The medium amount detection unit 22 will be described in detail later. In the present embodiment, the medium amount detection unit 22 can detect both an excessive amount of medium and an insufficient amount of medium. However, the present disclosure is not limited to this, and the medium amount detection unit 22 has an excessive amount of medium. Only a shortage of the medium may be detected.

 画像処理部23は、撮影部40によって取得された画像信号に対して、ガンマ補正、輝度・色差変換、及び圧縮処理等の各種処理を行う。また、画像処理部23は、各種処理を行って得た画像信号を特定のフレームレートで1フレーム毎に制御部21に出力する。また、画像処理部23は、顕微鏡装置1によって撮影された各観察領域の位相差画像を結合することによって、ウェル71全体を表す1枚の合成画像を生成する。本実施形態の画像処理部23は、この合成画像に基づいて、画像の位置に対する輝度分布を表す輝度プロファイルを作成する処理を行う。輝度分布は、輝度値の絶対値、相対値、画像全体の分散値のうちのいずれかを使用することができ、輝度プロファイルは公知の技術を使用して作成することができる。

The image processing unit 23 performs various processes such as gamma correction, luminance / color difference conversion, and compression processing on the image signal acquired by the photographing unit 40. Further, the image processing unit 23 outputs an image signal obtained by performing various processes to the control unit 21 for each frame at a specific frame rate. Further, the image processing unit 23 generates one composite image representing the whole well 71 by combining the phase difference images of the respective observation regions photographed by the microscope apparatus 1. The image processing unit 23 according to the present embodiment performs a process of creating a luminance profile representing a luminance distribution with respect to the position of the image based on the composite image. As the luminance distribution, any one of an absolute value, a relative value, and a variance value of the entire image can be used, and a luminance profile can be created using a known technique.

 表示装置3は、画像処理部23により生成された合成画像を表示するものであり、例えば液晶ディスプレイ等を備える。また、表示装置3をタッチパネルによって構成し、入力装置4と兼用するようにしてもよい。

The display device 3 displays the composite image generated by the image processing unit 23 and includes, for example, a liquid crystal display. Further, the display device 3 may be configured by a touch panel and may also be used as the input device 4.

 入力装置4は、マウスおよびキーボード等を備え、ユーザによる種々の設定入力を受け付けるものである。

The input device 4 includes a mouse and a keyboard, and receives various setting inputs by the user.

 一次記憶部24は、各種プログラムの実行時のワークエリア等として用いられる揮発性のメモリである。一次記憶部24の一例としては、RAM(Random Access Memory)が挙げられる。二次記憶部25は、各種プログラム及び各種パラメータ等を予め記憶した不揮発性のメモリであり、本開示の適正範囲情報26が記憶されている。また二次記憶部25には、本開示の観察制御プログラム27の一実施形態がインストールされている。この観察制御プログラム27がCPU20によって実行されることによって顕微鏡制御装置2が機能する。二次記憶部25の一例としては、EEPROM(Electrically Erasable Programmable Read-Only Memory)又はフラッシュメモリ等が挙げられる。外部I/F28は顕微鏡装置1と顕微鏡制御装置2との間の各種情報の送受信を司る。CPU20、一次記憶部24、及び二次記憶部25は、バスライン29に接続されている。また、外部I/F

28も、バスライン29に接続されている。

The primary storage unit 24 is a volatile memory used as a work area or the like when executing various programs. An example of the primary storage unit 24 is a RAM (Random Access Memory). The secondary storage unit 25 is a non-volatile memory that stores various programs, various parameters, and the like in advance, and stores appropriate range information 26 of the present disclosure. In the secondary storage unit 25, an embodiment of the observation control program 27 of the present disclosure is installed. The microscope control apparatus 2 functions when the observation control program 27 is executed by the CPU 20. An example of the secondary storage unit 25 is an EEPROM (Electrically Erasable Programmable Read-Only Memory) or a flash memory. The external I / F 28 controls transmission / reception of various information between the microscope apparatus 1 and the microscope control apparatus 2. The CPU 20, the primary storage unit 24, and the secondary storage unit 25 are connected to the bus line 29. External I / F

28 is also connected to the bus line 29.

 観察制御プログラム27は、DVD(Digital Versatile Disc)及びCD-ROM(Compact Disc Read Only Memory)などの記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。又は、観察制御プログラム27は、ネットワークに接続されたサーバコンピュータの記憶装置もしくはネットワークストレージに対して、外部からアクセス可能な状態で記憶され、外部からの要求に応じてコンピュータにダウンロードされた後に、インストールされるようにしてもよい。

The observation control program 27 is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) and a CD-ROM (Compact Disc Read Only Memory), and is installed in the computer from the recording medium. Alternatively, the observation control program 27 is stored in a storage device or network storage of a server computer connected to the network in a state where it can be accessed from the outside, and is installed after being downloaded to the computer in response to a request from the outside. You may be made to do.

 適正範囲情報26は、異なる種類の培養容器71の形状情報毎に予め設定された培地量の複数の閾値の範囲の情報である。本実施形態においては、培養容器71の形状情報と適正範囲情報とを対応づけたテーブルを二次記憶部25に記憶しておく。例えば、培養容器71が、ウェルプレート70上に配列された各ウェル71である場合、ウェルプレート70上に配列されたウェル71の個数によって、各ウェルの収容部の収容量が異なる。またウェルプレート70においてウェル71の個数が同じであっても、製造メーカが異なると各ウェルの形状が異なる場合もある。また、ウェルプレート70のウェル71の位置によってもウェル71の形状が異なる場合もある。ウェルの形状が異なると、例えば培地として培養液Cがウェルに収容された場合に、培養液Cの液面に形成されるメニスカスの形状パターンが異なってしまう。メニスカスの形状パターンが異なると、顕微鏡装置1で観察対象を観察する場合に、位相板32に入射される直接光と回折光とに与える影響が異なってしまうので、位相差画像の画質が異なってしまう。

The appropriate range information 26 is information on a range of a plurality of threshold values for a predetermined amount of medium for each shape information of different types of culture vessels 71. In the present embodiment, a table that associates the shape information of the culture vessel 71 with the appropriate range information is stored in the secondary storage unit 25. For example, when the culture container 71 is each well 71 arranged on the well plate 70, the accommodation amount of each well accommodation unit varies depending on the number of the wells 71 arranged on the well plate 70. Further, even if the number of wells 71 is the same in the well plate 70, the shape of each well may differ depending on the manufacturer. Further, the shape of the well 71 may differ depending on the position of the well 71 of the well plate 70. If the shape of the well is different, for example, when the culture solution C is contained in the well as a medium, the shape pattern of the meniscus formed on the liquid surface of the culture solution C is different. If the meniscus shape pattern is different, the effect on the direct light and the diffracted light incident on the phase plate 32 will be different when observing the observation object with the microscope apparatus 1, so that the image quality of the phase difference image will be different. End up.

 従って、制御部21は、一例として、製造メーカ毎に、96個、48個、24個、12個、及び6個のウェル71がそれぞれ配列されたウェルプレート70の種類毎であって、かつウェルプレート70上の各ウェル71の位置毎に、適切な培地量の閾値の範囲を適正範囲情報26として記憶させる。なお、制御部21は、予め製造メーカ毎に、かつウェルプレート70の種類毎であって、かつウェルプレート70上の各ウェル71の位置毎に、異なる量の培地を収容して撮影部40にウェル71を撮影させて位相差画像を取得しておき、取得した位相差画像のうち観察対象を観察するために適切な画質の位相差画像が取得できた培地量の下限値及び上限値を上記「培地量の閾値の範囲」として記憶させる。

Therefore, for example, the control unit 21 is provided for each type of the well plate 70 in which 96, 48, 24, 12, and 6 wells 71 are arranged for each manufacturer. For each position of each well 71 on the plate 70, an appropriate medium amount threshold range is stored as the appropriate range information 26. The control unit 21 stores a different amount of medium in advance in the photographing unit 40 for each manufacturer and for each type of well plate 70 and for each position of each well 71 on the well plate 70. The phase difference image is acquired by photographing the well 71, and the lower limit value and the upper limit value of the amount of culture medium in which the phase difference image having an appropriate image quality for observing the observation target can be acquired from the acquired phase difference image. It is memorized as “threshold range of medium amount”.

 また、上記「培地量の閾値の範囲」は、観察対象を撮像する撮像条件毎に設けられている。顕微鏡装置1の対物レンズ31の倍率が高い場合には、位相板32のスリットの大きさが狭くなるので、培地量の変化に対する軸ずれ、すなわち培養容器を透過した観察光の光軸と撮影光学系の光軸との間にずれの感度が高くなってしまう。つまり、位相板32を通らずに通過する光が多くなってしまい、取得された位相差画像の輝度が高くなってしまうので、培地量の変化が位相差画像に与える影響が高くなる。従って、培地量の閾値の範囲は、対物レンズ31の倍率毎に設定する。

The “medium amount threshold range” is provided for each imaging condition for imaging an observation target. When the magnification of the objective lens 31 of the microscope apparatus 1 is high, the size of the slit of the phase plate 32 becomes narrow, so that the axis shift with respect to the change of the medium amount, that is, the optical axis of the observation light transmitted through the culture vessel and the imaging optics. The sensitivity of deviation between the optical axis of the system becomes high. In other words, the amount of light that passes through the phase plate 32 increases, and the luminance of the acquired phase difference image increases. Therefore, the influence of the change in the medium amount on the phase difference image is increased. Therefore, the range of the medium amount threshold is set for each magnification of the objective lens 31.

 ここで、制御部21は、上記のようにして培地量の閾値の範囲を求めるために行った、異なる量の培地を収容したウェル71の撮影により取得したウェル71を表す位相差画像に基づいて画像処理部23に輝度プロファイルを作成させ、制御部21は、その位相差画像における培地量と輝度プロファイルとを対応付けて二次記憶部25に記憶させる(図6参照)。ここで、培地量と輝度プロファイルとは、各々を対応付けたテーブルとして記憶する。なお、本実施形態では、培地量と輝度プロファイルとを対応付けたテーブルを記憶するが、本開示はこれに限られず、輝度プロファイルから培地量が導出できれば、テーブルを使用しなくてもよい。

Here, the control unit 21 is based on the phase difference image representing the well 71 acquired by photographing the well 71 containing different amounts of the medium, which is performed to determine the range of the medium amount threshold value as described above. The image processing unit 23 creates a luminance profile, and the control unit 21 stores the medium amount and the luminance profile in the phase difference image in association with each other in the secondary storage unit 25 (see FIG. 6). Here, the medium amount and the luminance profile are stored as a table in which each is associated. In the present embodiment, a table in which the medium amount and the luminance profile are associated with each other is stored. However, the present disclosure is not limited to this, and the table may not be used as long as the medium amount can be derived from the luminance profile.

 なお、本実施形態では、ウェル71の形状情報と適正範囲情報26とを対応付けたテーブルを記憶するが、本開示はこれに限られず、ウェル71の形状情報から適正範囲情報26が導出できれば、テーブルを使用しなくてもよい。そして、後述する検出部52が、後述する受付部50が受け付けたウェル71の形状情報に基づいて、その形状情報を有するウェル71の適正範囲情報26を二次記憶部25から読み出す。

In the present embodiment, a table in which the shape information of the well 71 is associated with the appropriate range information 26 is stored. However, the present disclosure is not limited to this, and if the appropriate range information 26 can be derived from the shape information of the well 71, It is not necessary to use a table. And the detection part 52 mentioned later reads the appropriate range information 26 of the well 71 which has the shape information from the secondary memory | storage part 25 based on the shape information of the well 71 which the reception part 50 mentioned later received.

 また、上記では、汎用コンピュータが顕微鏡制御装置2として機能する場合について説明したが、専用コンピュータによって実施されてもよい。専用コンピュータは、内蔵されたROM(Read Only Memory)やフラッシュメモリなど、不揮発メモリに記録されたプログラムを実行するファームウェアであってもよい。さらに、この顕微鏡制御装置2の少なくとも一部の機能を実行するためのプログラムを永久的に記憶するASIC(Application Specific Integrated Circuit :特定用途向け集積回路)やFPGA(field  programmable  gate  arrays)などの専用回路を設けるようにしてもよい。あるいは、専用回路に記憶されたプログラム命令と、専用回路のプログラムを利用するようにプログラムされた汎用のCPUによって実行されるプログラム命令と組み合わせるようにしてもよい。以上のように、コンピュータのハードウェア構成をどのように組み合わせてプログラム命令を実行してもよい。

In the above description, the case where the general-purpose computer functions as the microscope control apparatus 2 has been described. However, the general-purpose computer may be implemented by a dedicated computer. The dedicated computer may be firmware that executes a program recorded in a nonvolatile memory such as a built-in ROM (Read Only Memory) or a flash memory. Furthermore, a dedicated circuit such as an ASIC (Application Specific Integrated Circuit) or FPGA (field programmable gate arrays) that permanently stores a program for executing at least a part of the functions of the microscope control device 2 May be provided. Alternatively, the program instructions stored in the dedicated circuit may be combined with the program instructions executed by a general-purpose CPU programmed to use the program of the dedicated circuit. As described above, program instructions may be executed by any combination of hardware configurations of computers.

 ここで培地量検出部22について詳細に説明する。図3は、培地量検出部22の構成を示す概略ブロック図である。図3に示すように、培地量検出部22は、受付部50、取得部51、検出部52、及び報知部53を備える。

Here, the medium amount detection unit 22 will be described in detail. FIG. 3 is a schematic block diagram showing the configuration of the medium amount detection unit 22. As shown in FIG. 3, the medium amount detection unit 22 includes a reception unit 50, an acquisition unit 51, a detection unit 52, and a notification unit 53.

 受付部50は、培地を含む観察対象を収容したウェル71の形状情報を受け付ける。受付部50は、ユーザによって入力装置4から入力された、ステージ61上に設置したウェルプレート70の形状情報をウェル71の形状情報として受け付ける。また、ウェル71の形状情報については、ユーザが入力するのではなく、ウェルプレート70にバーコードなどを付与し、受付部50が、例えばバーコードを読取可能であり、かつ外部I/F28に接続された外部機器を介して、ウェルプレート70に付与されたバーコードを読み取ることにより形状情報を受け付けてもよい。なお、ウェル71の形状情報は、観察対象を収容する収容部の収容量を特定できる情報であればよく、予め上記収容量と対応付けられていれば、例えば製造メーカの型式番号であってもよいし、製造番号であってもよい。

The receiving unit 50 receives the shape information of the well 71 that contains the observation target including the culture medium. The receiving unit 50 receives the shape information of the well plate 70 installed on the stage 61, which is input from the input device 4 by the user, as the shape information of the well 71. Further, the shape information of the well 71 is not input by the user, but a barcode or the like is given to the well plate 70, and the reception unit 50 can read the barcode, for example, and is connected to the external I / F 28. The shape information may be received by reading a barcode given to the well plate 70 via the external device. Note that the shape information of the well 71 may be information that can identify the amount of accommodation of the accommodation unit that accommodates the observation target, and may be, for example, a manufacturer's model number as long as it is associated with the accommodation amount in advance. It may be a production number.

 取得部51は、受付部50が受け付けた形状情報に対応するウェル71に収容された観察対象を表す位相差画像を取得する。本実施形態において、取得部51は、撮影部40により取得された位相差画像であり、受付部50が形状情報を受け付けたウェルプレート70であって、ステージ61上に配置されたウェルプレート70の各ウェル71に収容された観察対象を表す位相差画像情報を取得する。

The acquisition unit 51 acquires a phase difference image representing an observation object accommodated in the well 71 corresponding to the shape information received by the reception unit 50. In the present embodiment, the acquisition unit 51 is a phase difference image acquired by the imaging unit 40, and is a well plate 70 that has received shape information by the reception unit 50, and is a well plate 70 disposed on the stage 61. Phase difference image information representing the observation object accommodated in each well 71 is acquired.

 検出部52は、取得部51により取得された位相差画像情報に基づいて推定された培地量が、受付部50が受け付けた形状情報に対応する閾値の範囲であって、かつ異なる種類のウェル71の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲から外れるか否かを検出する。なお、検出部52による予め設定された培地量の閾値の範囲から外れるか否かの検出処理については後で詳細に説明する。

In the detection unit 52, the amount of the medium estimated based on the phase difference image information acquired by the acquisition unit 51 is within a threshold range corresponding to the shape information received by the reception unit 50, and different types of wells 71 are used. It is detected whether or not the shape information is out of the threshold range selected from the plurality of threshold ranges of the medium amount set in advance for each shape information. The detection process performed by the detection unit 52 as to whether or not the predetermined amount of the medium amount is out of the predetermined range will be described in detail later.

 報知部53は、検出部52が予め設定された培地量の閾値の範囲から外れることを検出した場合に、培地量の過多又は不足であることを報知する。本実施形態において、報知部53は表示装置3で構成されており、具体的には制御部21からの指令により、一例として「培地量過多」又は「培地量不足」の文言を表示する。なお、本実施形態においては、報知部53、すなわち表示装置3は「培地量過多」又は「培地量不足」の文言を表示したが、本開示はこれに限られるものでななく、「培地量を増やして下さい」、「培地量を減らして下さい」、及び「培地を交換して下さい」等と表示してもよい。また、報知部53は、表示装置3で構成されるものに限定されるものではなく、報知部53は、外部I/F28を介して接続される音声再生装置、プリンタ、メールや電話等の通信手段、及び表示灯等により構成されてもよいし、上記ディスプレイ、上記音声再生装置、上記プリンタ、上記通信手段及び上記表示灯のうちの少なくとも2つ以上を組み合わせて構成されてもよい。

The notification unit 53 notifies that the medium amount is excessive or insufficient when the detection unit 52 detects that the medium amount is outside the preset threshold range of the medium amount. In the present embodiment, the notification unit 53 includes the display device 3, and specifically displays the words “excess medium amount” or “insufficient medium amount” as an example in response to a command from the control unit 21. In the present embodiment, the notification unit 53, that is, the display device 3 displays the words “excess medium amount” or “insufficient medium amount”, but the present disclosure is not limited to this, "Please increase the media", "Please reduce the amount of medium", "Please replace the medium", etc. may be displayed. Further, the notification unit 53 is not limited to the one configured by the display device 3, and the notification unit 53 is a communication device such as an audio reproduction device, a printer, an email, a telephone, or the like connected via the external I / F 28. It may be configured by means, an indicator lamp, or the like, or may be configured by combining at least two or more of the display, the sound reproduction device, the printer, the communication means, and the indicator lamp.

 次いで、本実施形態の培地量検出部22による処理について説明する。図4は図3の培地量検出部22による処理を示すフローチャート、図5は顕微鏡観察システムの処理を説明するための図、図6は培地量推定方法を説明するための図である。

Next, processing by the medium amount detection unit 22 of the present embodiment will be described. FIG. 4 is a flowchart showing processing by the medium amount detection unit 22 of FIG. 3, FIG. 5 is a diagram for explaining processing of the microscope observation system, and FIG. 6 is a diagram for explaining a medium amount estimating method.

 まず、受付部50が、上述のようにしてウェル71の形状情報を取得する(ステップS1)。本実施形態において、受付部50は、図5に示すウェルプレート70上に配列された96個の各ウェル71の形状を形状情報として受け付ける(ステップS1)。

First, the receiving unit 50 acquires the shape information of the well 71 as described above (step S1). In the present embodiment, the accepting unit 50 accepts the shape of each of the 96 wells 71 arranged on the well plate 70 shown in FIG. 5 as shape information (step S1).

 次いで、制御部21が撮影部40にウェルプレート70を撮影させて二次記憶部25に記憶させた複数の観察領域毎の位相差画像を、取得部51が読み出して取得する(ステップS2)。本実施形態においては、1つのウェル71は、図5に示すように、A1~A9の9つの観察領域により表される。取得部51は、この9つの観察領域をそれぞれ表す位相差画像が合成された合成画像を、ウェル71を表す位相差画像として取得する。なお、観察領域の数は9つに限られるものではなく、例えば16個の観察領域であってもよいし、25個の観察領域であってもよいし、顕微鏡装置1の性能や撮影条件によって適宜変更される。

Next, the acquisition unit 51 reads out and acquires the phase difference images for each of the plurality of observation regions stored in the secondary storage unit 25 by causing the imaging unit 40 to image the well plate 70 by the control unit 21 (step S2). In the present embodiment, one well 71 is represented by nine observation areas A1 to A9 as shown in FIG. The acquisition unit 51 acquires a combined image obtained by combining the phase difference images representing the nine observation regions as a phase difference image representing the well 71. Note that the number of observation regions is not limited to nine, and may be, for example, 16 observation regions, 25 observation regions, or depending on the performance of the microscope apparatus 1 and imaging conditions. It is changed appropriately.

 次に、検出部52が培地量を推定する(ステップS3)。例えば、取得部51が、図5に示すように、ウェルプレート70の図5中、上から5行目、左から5列目のウェル71A全体の位相差画像を取得する。検出部52は、制御部21を介して画像処理部23に取得した位相差画像に基づいた輝度プロファイルを作成させ、作成された輝度プロファイルを取得する。

Next, the detection unit 52 estimates the amount of medium (step S3). For example, as illustrated in FIG. 5, the acquisition unit 51 acquires a phase difference image of the entire well 71 </ b> A in the fifth row from the top and the fifth column from the left in FIG. 5 of the well plate 70. The detection unit 52 causes the image processing unit 23 to create a luminance profile based on the acquired phase difference image via the control unit 21, and acquires the generated luminance profile.

 次に、検出部52は、培地量と対応付けて二次記憶部25に記憶された輝度プロファイルを参照して、上記で取得した輝度プロファイルの培地量を推定する。二次記憶部25に記憶された輝度プロファイルと、上記で取得した輝度プロファイルとの相関関係を求める方法としては、例えば相関関数を用いて、これらの輝度プロファイルの相関関係を求めるようにすればよい。また、相関関数を用いた方法に限らず、例えば、二次記憶部25に記憶されたと上記で取得した輝度プロファイルにおける変曲点を求め、これらの輝度プロファイルの対応する変曲点の輝度値の差の合計値を求める。そして、予め二次記憶部25に記憶された異なる培地量毎の複数の輝度プロファイルのそれぞれについて上述した合計値を求め、その合計値が最も小さい輝度プロファイルを最も相関が高い輝度プロファイルとして特定するようにしてもよい。

Next, the detection unit 52 refers to the luminance profile stored in the secondary storage unit 25 in association with the medium amount, and estimates the medium amount of the luminance profile acquired above. As a method for obtaining the correlation between the brightness profile stored in the secondary storage unit 25 and the brightness profile acquired above, for example, a correlation function may be used to obtain the correlation between these brightness profiles. . In addition to the method using the correlation function, for example, the inflection points in the luminance profiles acquired as described above are obtained when stored in the secondary storage unit 25, and the luminance values of the inflection points corresponding to these luminance profiles are obtained. Find the total difference. And the total value mentioned above is calculated | required about each of several brightness | luminance profile for every different culture medium amount previously memorize | stored in the secondary memory | storage part 25, and the brightness | luminance profile with the smallest total value is specified as a brightness | luminance profile with the highest correlation. It may be.

 そして、検出部52は、上記で取得した輝度プロファイルとの相関が最も高い培地量を特定し、その特定した培地量をウェル71A内の培地量として推定する。

And the detection part 52 specifies the culture medium quantity with the highest correlation with the brightness | luminance profile acquired above, and presumes the specified culture medium quantity as the culture medium quantity in the well 71A.

 次に、検出部52は、適正範囲情報26に記憶された培地量の閾値の範囲の中から、受付部50が受け付けたウェル71の形状情報に対応する培地量の閾値の範囲であって、かつウェルプレート70の図5中、上から5行目、左から5列目のウェル71Aの位置に対応するウェル71の培地量の閾値の範囲を読み出して、推定した培地量が上記閾値の範囲外か否かを検出する(ステップS4)。

Next, the detection unit 52 has a medium amount threshold range corresponding to the shape information of the well 71 received by the receiving unit 50 from the medium amount threshold range stored in the appropriate range information 26, and Further, in FIG. 5 of the well plate 70, the range of the medium amount threshold of the well 71 corresponding to the position of the well 71A in the fifth row from the top and the fifth column from the left is read, and the estimated medium amount is within the above threshold range. It is detected whether it is outside (step S4).

 検出部52が、推定した培地量が上記閾値の範囲外だと検出した場合(ステップS4;YES)、検出部52は培地量過多又は培地量不足を検出する(ステップS5)。すなわち、検出部52は、推定した培地量が上記閾値の範囲の上限値よりも多ければ、培地量過多を検出し、上記閾値の範囲の下限値よりも少なければ培地量不足を検出する。

When the detection unit 52 detects that the estimated medium amount is outside the above-described threshold range (step S4; YES), the detection unit 52 detects an excessive medium amount or an insufficient medium amount (step S5). That is, the detecting unit 52 detects an excessive amount of the medium if the estimated amount of the medium is larger than the upper limit value of the threshold range, and detects an insufficient amount of the medium if the estimated amount is smaller than the lower limit value of the threshold range.

 次に、報知部53が、制御部21を介して表示装置3に「培地量過多」又は「培地量不足」の文言を表示させることにより、培地量過多又は培地量不足を報知して(ステップS6)、培地量検出部22による処理が終了する。

Next, the notification unit 53 notifies the display device 3 of the words “excessive amount of medium” or “insufficient amount of medium” via the control unit 21, thereby notifying that the amount of medium is excessive or insufficient (step S6), the processing by the medium amount detection unit 22 ends.

 一方、ステップS4において、検出部52が、推定した培地量が上記閾値の範囲内であると検出した場合(ステップS4;NO)、培地量は過多でも不足でもなく、適正量なので培地量検出部22による処理が終了する。

On the other hand, when the detection unit 52 detects in step S4 that the estimated medium amount is within the above-described threshold range (step S4; NO), the medium amount is not excessive or insufficient, and is an appropriate amount, so the medium amount detection unit The process by 22 is completed.

 同様にして96個全てのウェル71に対して上記処理を行って、培地量が上記閾値の範囲から外れる否かを検出することにより、培地量が適正量かどうかを検出する。

Similarly, the above process is performed on all 96 wells 71 to detect whether or not the medium amount is out of the threshold range, thereby detecting whether or not the medium amount is an appropriate amount.

 上記によれば、ユーザは、図5に示すウェル71Aにおいて培地量過多及び培地量不足を知ることができるので、ウェル71Aの培地を減らすか又は足して培地量を調整したり、培地量を交換したりすることにより、ウェル71Aを適切な培地量にすることができる。これにより、適切な培地量で観察対象を撮影することができるので、位相差画像の画質の低下を抑制することができる。

According to the above, since the user can know that the medium amount is excessive and the medium amount is insufficient in the well 71A shown in FIG. 5, the medium in the well 71A is reduced or added to adjust the medium amount, or the medium amount is exchanged. By doing so, the well 71A can be adjusted to an appropriate medium amount. As a result, the observation target can be photographed with an appropriate amount of medium, so that deterioration of the image quality of the phase difference image can be suppressed.

 なお、取得部51は、ウェル71Aの培地量が適正量に調整された後に、ウェル71Aに収容された観察対象を表す位相差画像情報を再度取得してもよい。この場合、例えばユーザが入力装置4を操作することにより、ウェル71Aを適切な培地量にしたことを入力する。制御部21は、ウェル71Aが適切な培地量であることを検出すると、すなわち、ウェル71の培地量が上記閾値の範囲内であることを検出すると、撮影部40に再度ウェル71Aの撮影を行わせ、取得部51は撮影された位相差画像を取得する。これにより、培地量過多又は培地量不足により画質が低下した位相差画像を、適切な培地量で撮影された、画質が向上した位相差画像に変えることができる。

The acquisition unit 51 may acquire again the phase difference image information representing the observation target accommodated in the well 71A after the medium amount in the well 71A is adjusted to an appropriate amount. In this case, for example, the user operates the input device 4 to input that the well 71A has an appropriate amount of medium. When the control unit 21 detects that the well 71A has an appropriate amount of medium, that is, detects that the amount of medium in the well 71 is within the above-described threshold value range, the control unit 21 causes the photographing unit 40 to image the well 71A again. The acquisition unit 51 acquires the captured phase difference image. Thereby, the phase difference image in which the image quality is lowered due to the excessive amount of medium or the insufficient amount of the medium can be changed to a phase difference image with improved image quality, which is taken with an appropriate amount of medium.

 上記実施形態において、検出部52は、培地量の閾値の範囲から外れるか否かを検出したが、本開示はこれに限られるものではなく、検出部52は、推定した培地量が適切な培地量の閾値の範囲よりもどのくらい多いのか、及び不足しているのかを検出してもよい。

この場合、報知部53は、どのくらい多いのか、又は不足しているのかを報知する。これにより、ユーザは培地量をどの程度減らす、又は足せば適切な培地量にできるのかを知ることができるので、培地量の調整を容易に行うことができる。

In the above-described embodiment, the detection unit 52 detects whether or not the medium amount is out of the threshold range, but the present disclosure is not limited to this, and the detection unit 52 has a medium whose estimated medium amount is appropriate. You may detect how much more and less than the amount threshold range.

In this case, the notification unit 53 notifies how much or how much is insufficient. Thereby, since the user can know how much the amount of the medium is reduced or can be adjusted to an appropriate amount of the medium, the amount of the medium can be easily adjusted.

 また、上記実施形態においては、検出部52が培地量を推定する際に、ウェル71全体を表す画像情報に基づく輝度プロファイルを用いたが、本開示はこれに限られるものではなく、例えばウェル71の中心領域、すなわち図5の観察領域A5の位相差画像情報に基づく輝度プロファイルを使用することができる。この場合、制御部21は、ウェル71の中心領域すなわち観察領域A5を表す位相差画像に基づいて画像処理部23に輝度プロファイルを作成させ、制御部21は、その位相差画像における培地量と輝度プロファイルとを対応付けて二次記憶部25に記憶させる。

In the above embodiment, when the detection unit 52 estimates the medium amount, the luminance profile based on the image information representing the entire well 71 is used. However, the present disclosure is not limited to this, and for example, the well 71 The luminance profile based on the phase difference image information of the central region of the observation region A5 in FIG. 5 can be used. In this case, the control unit 21 causes the image processing unit 23 to create a luminance profile based on the phase difference image representing the central region of the well 71, that is, the observation region A5, and the control unit 21 determines the medium amount and the luminance in the phase difference image. The profile is associated with and stored in the secondary storage unit 25.

 なお、検出部52は、ウェル71の中心領域すなわち図5の観察領域A5の位相差画像情報に限られず、ウェル71の周辺部すなわち図5の観察領域A5以外の観察領域A1~4,A6~9のいずれかの位相差画像情報を使用してもよい。またウェル71を表す観察領域A1~9のうちの2つ以上の観察領域の位相差画像情報を使用してもよい。ただし、ウェル71の中心領域すなわち図5の観察領域A5の位相差画像情報が最もウェル71の培地量の変化を表しているため、ウェル71の中心領域の位相差画像情報を使用することがより好ましい。

The detection unit 52 is not limited to the phase difference image information of the center region of the well 71, that is, the observation region A5 in FIG. Any one of the phase difference image information of 9 may be used. In addition, phase difference image information of two or more observation regions among the observation regions A1 to 9 representing the well 71 may be used. However, since the phase difference image information in the central region of the well 71, that is, the observation region A5 in FIG. 5 represents the change in the medium amount in the well 71, it is more preferable to use the phase difference image information in the central region of the well 71. preferable.

 また、検出部52においては、ウェル71全体を表す位相差画像情報に基づいて培地量を推定する方がウェル71の中心領域を表す位相差画像情報に基づいて培地量を推定するよりも精度が良いのでより好ましい。しかしながら、ウェル71の中心領域を表す位相差画像情報に基づいて培地量を推定する方がウェル71全体を表す位相差画像情報に基づいて培地量を推定するよりも輝度プロファイルを作成する処理等の速度が速いので計算コストを低減することができる。本開示においては、ユーザの所望に応じて、培地量の推定方法を選択することができる。

Further, in the detection unit 52, it is more accurate to estimate the medium amount based on the phase difference image information representing the whole well 71 than to estimate the medium amount based on the phase difference image information representing the central region of the well 71. It is more preferable because it is good. However, the process of creating a luminance profile, for example, in which the medium amount is estimated based on the phase difference image information representing the central region of the well 71 rather than the medium amount is estimated based on the phase difference image information representing the entire well 71. Since the speed is high, the calculation cost can be reduced. In the present disclosure, a medium amount estimation method can be selected according to the user's desire.

 また、上記実施形態においては、ウェル71を表す位相差画像における培地量と輝度プロファイルとを対応付けて二次記憶部25に記憶されているが、本開示はこれに限られない。一例として、図6に示す様に、ウェル71を表す位相差画像における培地量と位相差画像とを対応付けて二次記憶部25に記憶させてもよい。この場合、検出部52が培地量を推定する際に、二次記憶部25に記憶された位相差画像からこの位相差画像に基づく輝度プロファイルを作成して参照すればよい。

Moreover, in the said embodiment, although the culture medium amount and luminance profile in the phase difference image showing the well 71 are matched and memorize | stored in the secondary memory | storage part 25, this indication is not restricted to this. As an example, as shown in FIG. 6, the medium amount and the phase difference image in the phase difference image representing the well 71 may be associated with each other and stored in the secondary storage unit 25. In this case, when the detection unit 52 estimates the medium amount, a luminance profile based on the phase difference image may be created from the phase difference image stored in the secondary storage unit 25 and referred to.

 次に、培地量検出部22の他の実施形態について説明する。図7は第2の実施形態の培地量検出部の構成を示す概略ブロック図である。なお本実施形態の培地量検出部は、上述した実施形態の培地量検出部22の報知部53に換えて調整部54を備えており、その他の構成については上記実施形態と同様であるため、ここでの説明は省略し、異なる箇所についてのみ詳細に説明する。

Next, another embodiment of the medium amount detection unit 22 will be described. FIG. 7 is a schematic block diagram showing the configuration of the medium amount detection unit of the second embodiment. In addition, since the culture medium amount detection part of this embodiment is provided with the adjustment part 54 instead of the alerting | reporting part 53 of the culture medium amount detection part 22 of embodiment mentioned above, since it is the same as that of the said embodiment about other structures, The description here is omitted, and only different parts will be described in detail.

 本実施形態の調整部54は、検出部52が培地量の閾値の範囲から外れるか否かを検出した場合に、上記閾値の範囲から外れることが検出された培養容器71の培地量を適正量に調整するための提示を行なう。具体的には、本実施形態の検出部52は、推定した培地量が適切な培地量の閾値の範囲よりもどのくらい多い、又は不足しているのかを検出し、検出部52が上記閾値の範囲から外れることを検出した場合に、調整部54が検出部52により検出された培地の過多量又は不足量を制御部21に対して出力する。

When the detecting unit 52 detects whether or not the medium amount is out of the threshold range, the adjusting unit 54 of the present embodiment sets the appropriate amount of the medium in the culture vessel 71 that is detected to be out of the threshold range. Make a presentation for adjustment. Specifically, the detection unit 52 of the present embodiment detects how much the estimated medium amount is larger or insufficient than the appropriate medium amount threshold range, and the detection unit 52 detects the above threshold range. When it is detected that the medium is out of the range, the adjustment unit 54 outputs the excess or deficiency of the medium detected by the detection unit 52 to the control unit 21.

 次いで、本実施形態の培地量検出部22による処理について説明する。図8は図7の培地量検出部による処理を示すフローチャートである。なお、図8において、ステップS21~ステップS25の処理は、図4のステップS1~ステップS5と同じ処理であるため、ここでの説明は省略する。

Next, processing by the medium amount detection unit 22 of the present embodiment will be described. FIG. 8 is a flowchart showing processing by the medium amount detection unit of FIG. In FIG. 8, the processing from step S21 to step S25 is the same as the processing from step S1 to step S5 in FIG.

 検出部52が、ステップS25において推定した培地量が適切な培地量の閾値の範囲よりもどのくらい多いのか、又は不足しているのかを検出して培地量過多又は培地量不足を検出すると、調整部54が検出部52により検出された培地の過多量又は不足量を制御部21に対して出力することにより培地量の適正量を提示して(ステップS26)、培地量検出部22による処理が終了する。

When the detection unit 52 detects how much the medium amount estimated in step S25 is larger or insufficient than the appropriate medium amount threshold range and detects an excessive medium amount or an insufficient medium amount, the adjustment unit 54 outputs an appropriate amount of the medium amount by outputting the excess or deficiency of the medium detected by the detection unit 52 to the control unit 21 (step S26), and the processing by the medium amount detection unit 22 ends. To do.

 上記によれば、制御部21が、図5に示すウェル71Aにおいて培地がどのくらい多いのか、又は不足しているのかを知ることができるので、制御部21は例えば表示装置3にどのくらい多いのか、又は不足しているのかを表示させることができる。これにより、ユーザは培地量をどの程度増やしたり足したりすれば適切な培地量にできるのかを知ることができるので、培地量の調整を容易に行うことができる。

According to the above, since the control unit 21 can know how much medium is insufficient or insufficient in the well 71A shown in FIG. 5, how much the control unit 21 is in the display device 3, for example, It can be displayed whether it is insufficient. Thereby, since the user can know how much the amount of the medium is increased or added, an appropriate amount of the medium can be obtained, so that the amount of the medium can be easily adjusted.

 また、外部I/F28に、例えば電動マイクロピペット等のウェル71に培地を電動で注入する装置が接続されている場合には、制御部21がこの装置に培地の過多量又は不足量を出力することにより、自動的にウェル71Aを適切な培地量にすることができる。

Further, when a device for electrically injecting the medium into the well 71 such as an electric micropipette is connected to the external I / F 28, the control unit 21 outputs an excessive or insufficient amount of the medium to this device. Thus, the well 71A can be automatically set to an appropriate medium amount.

 なお、本実施形態の調整部54が、上述した電動マイクロピペット等のウェル71に培地を電動で注入する装置により構成されていてもよい。この場合、ステップS25において推定した培地量が適切な培地量の閾値の範囲よりもどのくらい多いのか、又は不足しているのかを検出して培地量過多又は培地量不足を検出すると、調整部54は培地量過多又は培地量不足が検出されたウェル71の培地量を自動的に適正量に調整することができる。

In addition, the adjustment part 54 of this embodiment may be comprised by the apparatus which inject | pours a culture medium electrically into wells 71, such as an electric micropipette mentioned above. In this case, when detecting how much the medium amount estimated in step S25 is larger than or less than the appropriate medium amount threshold range and detecting an excessive medium amount or an insufficient medium amount, the adjustment unit 54 It is possible to automatically adjust the medium amount of the well 71 in which the medium amount is excessive or the medium amount is insufficient to an appropriate amount.

 なお、本実施形態は上述した実施形態の報知部53に換えて調整部54を備えているが、本開示はこれに限られるものではなく、報知部53と調整部54の両方を備えていても良い。

In addition, although this embodiment is provided with the adjustment part 54 instead of the alerting | reporting part 53 of embodiment mentioned above, this indication is not restricted to this, Both the alerting | reporting part 53 and the adjustment part 54 are provided. Also good.

 また、上記各実施形態では、観察制御プログラム27を二次記憶部25から読み出す場合を例示したが、必ずしも最初から二次記憶部25に記憶させておく必要はない。例えば、図9に示すように、SSD(Solid State Drive)、USB(Universal Serial Bus)メモリ、又はDVD-ROM(Digital 

versatile disc-Read Only Memory)等の任意の可搬型の記憶媒体250に先ずは観察制御プログラム27を記憶させておいてもよい。この場合、記憶媒体250の観察制御プログラム27が顕微鏡制御装置2にインストールされ、インストールされた観察制御プログラム27がCPU21によって実行される。

In each of the above embodiments, the case where the observation control program 27 is read from the secondary storage unit 25 is exemplified, but it is not always necessary to store the observation control program 27 in the secondary storage unit 25 from the beginning. For example, as shown in FIG. 9, an SSD (Solid State Drive), a USB (Universal Serial Bus) memory, or a DVD-ROM (Digital)

First, the observation control program 27 may be stored in an arbitrary portable storage medium 250 such as versatile disc-Read Only Memory). In this case, the observation control program 27 of the storage medium 250 is installed in the microscope control apparatus 2, and the installed observation control program 27 is executed by the CPU 21.

 また、通信網(図示省略)を介して顕微鏡装置1に接続される他のコンピュータ又はサーバ装置等の記憶部に観察制御プログラム27を記憶させておき、観察制御プログラム27が顕微鏡装置1の要求に応じてダウンロードされるようにしてもよい。この場合、ダウンロードされた観察制御プログラム27はCPU21によって実行される。

In addition, the observation control program 27 is stored in a storage unit such as another computer or server device connected to the microscope apparatus 1 via a communication network (not shown), and the observation control program 27 responds to the request of the microscope apparatus 1. It may be downloaded in response. In this case, the downloaded observation control program 27 is executed by the CPU 21.

 また、上記各実施形態で説明した観察制御処理はあくまでも一例である。従って、主旨を逸脱しない範囲内において不要なステップを削除したり、新たなステップを追加したり、処理順序を入れ替えたりしてもよいことは言うまでもない。

In addition, the observation control process described in the above embodiments is merely an example. Therefore, it goes without saying that unnecessary steps may be deleted, new steps may be added, and the processing order may be changed within a range not departing from the spirit.

 また、上記各実施形態では、コンピュータを利用したソフトウェア構成により観察制御処理が実現される場合を例示したが、本開示の技術はこれに限定されるものではない。例えば、コンピュータを利用したソフトウェア構成に代えて、FPGA(Field-Programmable Gate Array)又はASIC(Application Specific Integrated Circuit)等のハードウェア構成のみによって、観察制御処理が実行されるようにしてもよい。観察制御処理がソフトウェア構成とハードウェア構成との組み合わせた構成によって実行されるようにしてもよい。

Further, in each of the above embodiments, the case where the observation control process is realized by a software configuration using a computer is illustrated, but the technology of the present disclosure is not limited to this. For example, instead of a software configuration using a computer, the observation control process may be executed only by a hardware configuration such as an FPGA (Field-Programmable Gate Array) or an ASIC (Application Specific Integrated Circuit). The observation control process may be executed by a combination of a software configuration and a hardware configuration.

 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

All documents, patent applications and technical standards mentioned in this specification are to the same extent as if each individual document, patent application and technical standard were specifically and individually stated to be incorporated by reference. Incorporated by reference in the book.

1    顕微鏡装置

2    顕微鏡制御装置

3    表示装置

4    入力装置

10  照明光照射部

11  白色光源

12  スリット板

13  コンデンサレンズ

21  制御部

22  培地量検出部

23  画像処理部

24  一次記憶部

25  二次記憶部

26  適正範囲情報

27  観察制御プログラム

28  外部I/F

29  バスライン

30  結像光学系

31  対物レンズ

32  位相板

33  結像レンズ

40  撮影部

50  受付部

50  培養容器

51  取得部

52  検出部

53  報知部

54  調整部

61  ステージ

62  駆動部

70  ウェルプレート

71  各ウェル

71  培養容器

71  ウェル

75  走査開始点

76  走査終了点

77  実線

250      記憶媒体

A1~A9  観察領域

C    培養液

P1  設置面

S    観察対象

1 Microscope device

2 Microscope control device

3 Display device

4 input devices

10 Illumination light irradiation part

11 White light source

12 Slit plate

13 Condenser lens

21 Control unit

22 Medium volume detector

23 Image processing section

24 Primary storage unit

25 Secondary storage

26 Appropriate range information

27 Observation control program

28 External I / F

29 Bus line

30 Imaging optics

31 Objective lens

32 Phase plate

33 Imaging lens

40 Shooting Department

50 reception desk

50 culture vessels

51 Acquisition Department

52 Detector

53 Notification Department

54 Adjustment unit

61 stages

62 Drive unit

70 well plate

71 each well

71 Culture vessel

71 well

75 Scanning start point

76 Scan end point

77 Solid line

250 storage media

A1 to A9 Observation area

C culture solution

P1 installation surface

S Observation target

Claims (11)


  1.  培地を含む観察対象を収容した容器の形状情報を受け付ける受付部と、

     前記受付部が受け付けた形状情報に対応する容器に収容された観察対象を表す位相差画像情報を取得する取得部と、

     前記取得部により取得された位相差画像情報に基づいて推定された培地量が、前記受付部が受け付けた形状情報に対応する閾値の範囲から外れるか否かを検出する検出部を備え、

     前記閾値の範囲は、異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲である観察装置。

    A reception unit for receiving shape information of a container containing an observation target including a culture medium;

    An acquisition unit for acquiring phase difference image information representing an observation object accommodated in a container corresponding to the shape information received by the reception unit;

    A detection unit that detects whether or not the amount of medium estimated based on the phase difference image information acquired by the acquisition unit is out of a threshold range corresponding to the shape information received by the reception unit;

    The threshold value range is an observation apparatus that is a threshold value range selected from a plurality of threshold value ranges of a predetermined amount of medium for each shape information of different types of containers.

  2.  前記検出部が前記閾値の範囲から外れることを検出した場合に、前記前記閾値の範囲から外れることが検出された前記容器の培地量を適正量に調整するか、または前記容器の培地量を適正量に調整するための提示を行なう調整部を備える請求項1に記載の観察装置。

    When the detection unit detects that the detection unit is out of the threshold range, the medium amount in the container that is detected to be out of the threshold range is adjusted to an appropriate amount, or the medium amount in the container is set appropriately. The observation apparatus according to claim 1, further comprising an adjustment unit that makes a presentation for adjusting the amount.

  3.  前記検出部が前記閾値の範囲から外れることを検出した場合に、前記培地量の過多又は不足であることを報知する報知部を備える請求項1又は2に記載の観察装置。

    The observation apparatus according to claim 1, further comprising a notification unit that notifies that the amount of the medium is excessive or insufficient when the detection unit detects that the medium is out of the threshold range.

  4.  前記取得部は、培地量が適正量に調整された後に、前記検出部により前記閾値の範囲から外れることが検出された容器に収容された観察対象を表す画像情報を再度取得する請求項1から3のいずれか1項に記載の観察装置。

    The acquisition unit re-acquires image information representing an observation target stored in a container that is detected to be out of the threshold range by the detection unit after the medium amount is adjusted to an appropriate amount. 4. The observation apparatus according to any one of items 3.

  5.  前記検出部は、前記位相差画像情報に基づいた輝度分布情報を取得し、

     予め設定された輝度分布情報と培地量との関係に基づいて培地量を推定する請求項1から4のいずれか1項に記載の観察装置。

    The detection unit obtains luminance distribution information based on the phase difference image information,

    The observation apparatus according to any one of claims 1 to 4, wherein the culture medium amount is estimated based on a relationship between preset luminance distribution information and the culture medium amount.

  6.  前記閾値の範囲が、観察対象を撮影する撮影条件毎に設けられている請求項1から5のいずれか1項に記載の観察装置。

    The observation device according to claim 1, wherein the threshold range is provided for each imaging condition for imaging an observation target.

  7.  異なる種類の容器の形状情報毎、及び容器における観察領域の座標位置毎に、前記位相差画像情報と培地量との関係が設定されており、

     前記検出部は、前記設定された関係から培地量を推定する請求項1から6のいずれか1項に記載の観察装置。

    For each shape information of different types of containers, and for each coordinate position of the observation region in the container, the relationship between the phase difference image information and the amount of medium is set,

    The observation device according to claim 1, wherein the detection unit estimates a medium amount from the set relationship.

  8.  前記検出部は、前記容器全体を表す位相差画像情報を用いて培地量を推定する請求項7に記載の観察装置。

    The observation device according to claim 7, wherein the detection unit estimates a medium amount using phase difference image information representing the entire container.

  9.  前記検出部は、前記容器の中心領域を表す位相差画像情報を用いて培地量を推定する請求項7に記載の観察装置。

    The observation device according to claim 7, wherein the detection unit estimates a medium amount using phase difference image information representing a central region of the container.

  10.  受付部、取得部、及び検出部を備える観察装置の作動方法であって、

     前記受付部は、培地を含む観察対象を収容した容器の形状情報を受け付け、

     前記取得部は、前記受付部が受け付けた形状情報に対応する容器に収容された観察対象

    を表す位相差画像情報を取得し、

     前記検出部は、前記取得部により取得された位相差画像情報に基づいて推定された培地量が、前記受付部が受け付けた形状情報に対応する閾値の範囲から外れるか否かを検出し、前記閾値の範囲は、異なる種類の容器の形状情報毎に予め設定された培地量の複数の閾値の範囲から選択された閾値の範囲であることを含む、観察装置の作動方法。

    An operation method of an observation apparatus including a reception unit, an acquisition unit, and a detection unit,

    The reception unit receives shape information of a container containing an observation target including a culture medium,

    The acquisition unit is an observation object stored in a container corresponding to the shape information received by the reception unit.

    Phase difference image information representing

    The detection unit detects whether the amount of medium estimated based on the phase difference image information acquired by the acquisition unit is out of a threshold range corresponding to the shape information received by the reception unit, The method of operating an observation apparatus, wherein the threshold range includes a threshold range selected from a plurality of threshold ranges of a predetermined amount of medium for each shape information of different types of containers.

  11.  コンピュータを、

     請求項1から請求項9の何れか1項に記載の観察装置に含まれる前記受付部、前記取得部、及び前記検出部として機能させるための観察制御プログラム。

    Computer

    The observation control program for functioning as the said reception part, the said acquisition part, and the said detection part which are contained in the observation apparatus of any one of Claims 1-9.
PCT/JP2019/018490 2018-05-21 2019-05-09 Observation device, method for operating observation device, and observation control program WO2019225325A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020521148A JPWO2019225325A1 (en) 2018-05-21 2019-05-09 Observation device, operation method of observation device, and observation control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018097126 2018-05-21
JP2018-097126 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225325A1 true WO2019225325A1 (en) 2019-11-28

Family

ID=68617145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018490 WO2019225325A1 (en) 2018-05-21 2019-05-09 Observation device, method for operating observation device, and observation control program

Country Status (2)

Country Link
JP (1) JPWO2019225325A1 (en)
WO (1) WO2019225325A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270220A1 (en) * 2021-06-24 2022-12-29 富士フイルム株式会社 Cell quality evaluation apparatus, cell quality evaluation method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055317A1 (en) * 2005-11-11 2007-05-18 Nikon Corporation Culture apparatus
WO2008146474A1 (en) * 2007-05-24 2008-12-04 Nikon Corporation Observation device
WO2016084551A1 (en) * 2014-11-26 2016-06-02 富士フイルム株式会社 Phase-difference microscope
WO2017145487A1 (en) * 2016-02-26 2017-08-31 富士フイルム株式会社 Microscope and observation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007055317A1 (en) * 2005-11-11 2007-05-18 Nikon Corporation Culture apparatus
WO2008146474A1 (en) * 2007-05-24 2008-12-04 Nikon Corporation Observation device
WO2016084551A1 (en) * 2014-11-26 2016-06-02 富士フイルム株式会社 Phase-difference microscope
WO2017145487A1 (en) * 2016-02-26 2017-08-31 富士フイルム株式会社 Microscope and observation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270220A1 (en) * 2021-06-24 2022-12-29 富士フイルム株式会社 Cell quality evaluation apparatus, cell quality evaluation method, and program

Also Published As

Publication number Publication date
JPWO2019225325A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
EP3318912B1 (en) Phase contrast microscope and imaging method
US10330907B2 (en) Cell imaging control device, method, and program
EP3062147B1 (en) Photographing device and method
JP5177138B2 (en) Observation device
JP6815477B2 (en) Microscope device and observation method and microscope device control program
JP2017015856A (en) Phase-contrast microscope and imaging method
WO2017145487A1 (en) Microscope and observation method
WO2019225325A1 (en) Observation device, method for operating observation device, and observation control program
JP6619315B2 (en) Observation apparatus and method, and observation apparatus control program
WO2018061429A1 (en) Captured image evaluation device, method, and program
JP6993423B2 (en) Shooting control device, operation method of shooting control device, and shooting control program
US11061214B2 (en) Cell observation apparatus and method
JP2018054968A (en) Observation device and method, as well as observation device control program
US20200217781A1 (en) Imaging device, and operation method and imaging control program of imaging device
WO2019088034A1 (en) Observation area setting device, imaging control device, method for operating observation area setting device, and observation area setting program
US11127180B2 (en) Image processing apparatus, method, and program
JP6785984B2 (en) Observation device, observation method and observation program
JP6707207B2 (en) Observation device, observation method, and observation program
JP6534295B2 (en) Imaging apparatus and method, and imaging control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521148

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19807311

Country of ref document: EP

Kind code of ref document: A1