JPWO2019065415A1 - Method for inhibiting corrosion of copper-based materials - Google Patents

Method for inhibiting corrosion of copper-based materials Download PDF

Info

Publication number
JPWO2019065415A1
JPWO2019065415A1 JP2018549586A JP2018549586A JPWO2019065415A1 JP WO2019065415 A1 JPWO2019065415 A1 JP WO2019065415A1 JP 2018549586 A JP2018549586 A JP 2018549586A JP 2018549586 A JP2018549586 A JP 2018549586A JP WO2019065415 A1 JPWO2019065415 A1 JP WO2019065415A1
Authority
JP
Japan
Prior art keywords
copper
based material
film
ammonia
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018549586A
Other languages
Japanese (ja)
Other versions
JP6485605B1 (en
Inventor
信太郎 森
倩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority claimed from PCT/JP2018/034655 external-priority patent/WO2019065415A1/en
Application granted granted Critical
Publication of JP6485605B1 publication Critical patent/JP6485605B1/en
Publication of JPWO2019065415A1 publication Critical patent/JPWO2019065415A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

銅系材料を用いたボイラの水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法である。This is a method for inhibiting corrosion of a copper-based material in which a film-forming amine is added to a water system of a boiler using a copper-based material.

Description

本発明は、銅系材料の腐食抑制方法に関する。詳しくは皮膜性アミン単独、または中和性アミンと併用することにより、アンモニアによる銅系材料の腐食を抑制する方法に関する。   The present invention relates to a method for inhibiting corrosion of a copper-based material. Specifically, the present invention relates to a method for suppressing corrosion of a copper-based material by ammonia by using a film-forming amine alone or in combination with a neutralizing amine.

ボイラを始めとする蒸気発生器の缶体や給水配管等(以下、単に「ボイラ」という)の金属部材、例えば、銅製又は銅合金製の熱交換器や配管等は、冷却水と接触することにより腐食を受ける。そのため腐食を抑制する技術開発が数多く行われており、例えば銅を含む金属配管の腐食抑制剤として、特許文献1では特定のN−モノ置換アルキレンジアミンが開示されおり、特許文献2では油脂類を乳化したエマルションが開示されている。   Metal members of boilers and other steam generator cans and water supply pipes (hereinafter simply referred to as “boilers”), such as copper or copper alloy heat exchangers and pipes, should be in contact with cooling water. Due to corrosion. Therefore, many technological developments that suppress corrosion have been performed. For example, Patent Document 1 discloses a specific N-monosubstituted alkylenediamine as a corrosion inhibitor for metal pipes containing copper, and Patent Document 2 discloses fats and oils. An emulsified emulsion is disclosed.

ところで、上記腐食要因の一つとしてpHがある。ボイラ水のpH調整は、ボイラ給水等にpH調整剤を注入することにより、ボイラ水のpHを所定のアルカリ性範囲に維持することによりなされる。pH調整剤としては、NaOHやKOH、リン酸ナトリウムやリン酸カリウム等の固形物質や揮発性アミンやアンモニア等の揮発性物質が用いられる。
ボイラ給水のpH調整にアンモニアを用いる場合、復水器内の空気抽出部の近傍で、凝縮水の水滴内にアンモニアと非凝縮性ガス(特に酸素)が濃縮するため、冷却管(細管)がバッフル部近傍で溝状に激しく腐食する現象(アンモニアアタック)が発生する。そこで、アンモニアアタックの対策として、アンモニアの代替にアミンが適用される事例が増えている。
また、アンモニアアタックの対策として、アンモニアアタックが発生しやすい復水器内の空気抽出部近傍に、復水の一部を噴霧し、複水器の細管とバッフルプレートとの空隙部に滞留するアンモニアを洗い流す方法が提案されている(例えば、特許文献3参照)。
Incidentally, one of the corrosion factors is pH. The pH adjustment of boiler water is performed by maintaining the pH of boiler water in a predetermined alkaline range by injecting a pH adjusting agent into boiler feed water or the like. As the pH adjuster, solid substances such as NaOH and KOH, sodium phosphate and potassium phosphate, and volatile substances such as volatile amine and ammonia are used.
When ammonia is used to adjust the pH of boiler feedwater, ammonia and non-condensable gas (especially oxygen) concentrate in the water droplets of condensed water in the vicinity of the air extraction section in the condenser. In the vicinity of the baffle, a phenomenon of severe corrosion (ammonia attack) occurs in a groove shape. Thus, as a countermeasure against ammonia attack, there are an increasing number of cases in which amine is applied as a substitute for ammonia.
As a countermeasure against ammonia attack, a part of the condensate is sprayed in the vicinity of the air extraction part in the condenser where ammonia attack is likely to occur, and the ammonia stays in the gap between the narrow tube of the double condenser and the baffle plate. There has been proposed a method of washing away (see, for example, Patent Document 3).

特許6134921号公報Japanese Patent No. 6134921 特開2013−19042号公報JP 2013-19042 A 特開2013−190166号公報JP 2013-190166 A

しかしながら、アミンは有機体であるため、高温高圧の環境下で長期間存在する場合には、一部が加熱分解してアンモニアを生成する欠点がある。そのため、従来の技術では復水器内のアンモニアアタックの事例は低減したものの、完全にはなくなっていない。
また、特許文献1ではアミン系腐食抑制剤による銅系材料の腐食抑制を謳っているものの海水系であることを前提としており、特許文献2では油脂類を腐食抑制剤に適用することより銅系材料の腐食を抑制している。この様にいずれの文献にも銅系材料のアンモニアアタックを抑制するためにアミン系腐食抑制剤を用いる記載はなく、アミン系腐食抑制剤による銅系材料の腐食抑制方法にはさらなる改善の余地が有る。
However, since amine is an organic substance, when it exists for a long time in an environment of high temperature and high pressure, there is a drawback that a part of it is thermally decomposed to produce ammonia. For this reason, in the conventional technology, although the number of cases of ammonia attack in the condenser has been reduced, it has not completely disappeared.
Moreover, although patent document 1 presupposes that it is a seawater type | system | group, although it is calling for the corrosion suppression of the copper-type material by an amine-type corrosion inhibitor, in patent document 2, it is copper type | system | group by applying fats and oils to a corrosion inhibitor. The corrosion of the material is suppressed. As described above, none of the documents describes the use of an amine-based corrosion inhibitor to suppress the ammonia attack of a copper-based material, and there is room for further improvement in the method for inhibiting the corrosion of a copper-based material using an amine-based corrosion inhibitor. Yes.

そこで本発明は、アンモニアアタックを抑制できる銅系材料の腐食抑制方法を提供することを課題とする。   Then, this invention makes it a subject to provide the corrosion suppression method of the copper-type material which can suppress an ammonia attack.

本発明者らは、上記課題を解決すべく検討を重ねた結果、皮膜性アミンの適用により、アンモニアアタックによる銅系材料の腐食低減を見出した。
すなわち、本発明は下記のとおりである。
As a result of repeated studies to solve the above problems, the present inventors have found that application of a film-forming amine reduces the corrosion of a copper-based material due to ammonia attack.
That is, the present invention is as follows.

1.銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法。
2.アンモニア濃度と銅の溶出量に応じて、前記皮膜性アミンの添加濃度を調整する、上記1に記載の銅系材料の腐食抑制方法。
3.前記皮膜性アミンを2種以上添加する、上記1又は2に記載の銅系材料の腐食抑制方法。
4.前記アンモニアを含有する水系に、さらに中和性アミンを添加する、上記1〜3のいずれかに記載の銅系材料の腐食抑制方法。
5.前記水系が海水系ではない、上記1〜4のいずれかに記載の銅系材料の腐食抑制方法。
6.前記皮膜性アミンの添加が、細管に向けて行う噴霧添加である、上記1〜5のいずれかに記載の銅系材料の腐食抑制方法。
1. A method for inhibiting corrosion of a copper-based material, wherein a film-forming amine is added to an aqueous system containing ammonia of a boiler using a copper-based material.
2. The method for inhibiting corrosion of a copper-based material according to 1 above, wherein the concentration of the film-forming amine added is adjusted according to the ammonia concentration and the copper elution amount.
3. The method for inhibiting corrosion of a copper-based material according to 1 or 2 above, wherein two or more kinds of the film-forming amine are added.
4). The method for inhibiting corrosion of a copper-based material according to any one of 1 to 3, wherein a neutralizing amine is further added to the aqueous system containing ammonia.
5. The method for inhibiting corrosion of a copper-based material according to any one of 1 to 4, wherein the water system is not a seawater system.
6). The method for inhibiting corrosion of a copper-based material according to any one of 1 to 5 above, wherein the addition of the film-forming amine is spray addition performed toward a thin tube.

本発明によれば、ボイラの通常運転中に、アンモニアアタックによる銅系材料の腐食抑制を効果的に行うことが可能となる腐食抑制方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the corrosion control method which becomes possible [performing the corrosion suppression of the copper-type material by ammonia attack effectively] during the normal driving | operation of a boiler can be provided.

本発明の実施例で使用した評価装置を示す図である。It is a figure which shows the evaluation apparatus used in the Example of this invention. 本発明の実施例の評価結果を示すpHに対する銅の溶出量のグラフである。It is a graph of the elution amount of copper with respect to pH which shows the evaluation result of the Example of this invention.

本発明は、銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法に係る発明である。
[銅系材料を用いたボイラ]
銅系材料としては、復水器の細管だけでなく、給水加熱器や給水ポンプのインペラに用いられているものをも対象とすることができる。
また、本発明の腐食抑制方法の対象材料は、銅系材料だけでなく、アルミ系材料が含まれていてもよい。なお、従来技術で適用されている皮膜性アミンがアルミ系材料の腐食を低減することは“J., Power Plant Chemistry 2014, 16(6), 361”等で知られている。
The present invention is an invention relating to a method for inhibiting corrosion of a copper-based material in which a film-forming amine is added to an aqueous system containing ammonia of a boiler using a copper-based material.
[Boiler using copper-based material]
As the copper-based material, not only a condenser thin tube but also a material used for a feed water heater or a feed pump impeller can be targeted.
Moreover, the target material of the corrosion inhibiting method of the present invention may include not only a copper-based material but also an aluminum-based material. In addition, it is known in “J., Power Plant Chemistry 2014, 16 (6), 361” that a film-forming amine applied in the prior art reduces corrosion of an aluminum-based material.

[水系]
本発明の腐食抑制方法が適用される水系の水質には特に制限はないが、イオン交換水等を用いることができ、好ましくは脱気したイオン交換水等を水系で好適に適用することができる。また、水系は海水系ではないことが好ましい。
水系の溶存酸素濃度は、ボイラの腐食を効果的に抑制する観点から、500μg/L以下であることが好ましく、100μg/L以下であることがより好ましく、さらに好ましくは70μg/L以下である。溶存酸素濃度は、例えば給水を脱気することにより調整することができる。
[Water system]
The water quality of the aqueous system to which the corrosion inhibiting method of the present invention is applied is not particularly limited, but ion exchange water or the like can be used, and preferably degassed ion exchange water or the like can be suitably applied in the aqueous system. . Moreover, it is preferable that a water system is not a seawater system.
The aqueous dissolved oxygen concentration is preferably 500 μg / L or less, more preferably 100 μg / L or less, and still more preferably 70 μg / L or less, from the viewpoint of effectively suppressing boiler corrosion. The dissolved oxygen concentration can be adjusted, for example, by degassing the feed water.

[皮膜性アミン]
本発明において用いる皮膜性アミンは、好ましくは下記一般式(1)で表されるものが挙げられる。
−[NH(R)−]−NH …(1)
式(1)中、Rは炭素数12〜18の長鎖アルキル基を示し、Rは炭素数1〜4のアルキル基を示す。nは0〜7の整数である。上記Rのアルキル基は、直鎖状又は分岐状であってもよいが好ましくは直鎖状であり、また飽和又は不飽和であってもよいが好ましくは不飽和アルキル基である。
皮膜性アミンとして具体的には、オクタデシルアミン、N−オクタデセニルプロパン−1,3−ジアミン等の長鎖アルキルアミンが挙げられる。皮膜性アミンは1種のみを用いてもよく、2種以上を併用してもよい。
[Film-forming amine]
Examples of the film-forming amine used in the present invention include those represented by the following general formula (1).
R 1 — [NH (R 2 ) —] n —NH 2 (1)
In formula (1), R 1 represents a long chain alkyl group having 12 to 18 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms. n is an integer of 0-7. The alkyl group for R 1 may be linear or branched, but is preferably linear, and may be saturated or unsaturated, but is preferably an unsaturated alkyl group.
Specific examples of film-forming amines include long-chain alkylamines such as octadecylamine and N-octadecenylpropane-1,3-diamine. Only 1 type may be used for a film-forming amine and it may use 2 or more types together.

本発明の腐食抑制方法は、後述するアンモニア濃度と銅の溶出量に応じて、皮膜性アミンの添加濃度を調整することができる。
また、皮膜性アミンの添加濃度はアンモニア濃度に応じて変更してもよい。例えば、給水のpHがJIS上限の9.4(低圧給水加熱器が銅合金で高圧給水加熱器が鋼鋼管製の場合)である場合、給水中のアンモニア濃度は復水器空気抽出部で100〜500倍に濃縮される(引用文献:The ASME Hnadbook on Water Technology for Thermal Power System, p976 (1989))。復水器空気抽出部のアンモニアの到達濃度を実機ボイラで予想するのは困難であるため、実際には皮膜性アミン注入量の変更により復水中に検出される銅濃度が上昇しないことや、定期的な渦流探傷での減肉が認められないことで確認する必要がある。
このように、皮膜性アミン注入量の計算式の算出は、本分野における当業者の技術範囲内において現場毎に調整することができる。皮膜性アミン添加濃度の変動要素としてはアンモニア濃度の他に、溶存酸素濃度や共存するアミン、流量、水温、及び流速等が挙げられる。
The corrosion inhibiting method of the present invention can adjust the additive concentration of the film-forming amine in accordance with the ammonia concentration and copper elution amount described later.
Moreover, you may change the addition density | concentration of film-forming amine according to ammonia concentration. For example, when the pH of the feed water is 9.4, which is the upper limit of JIS (when the low pressure feed water heater is a copper alloy and the high pressure feed water heater is made of steel pipe), the ammonia concentration in the feed water is 100 at the condenser air extraction unit. It is concentrated to 500 times (cited reference: The ASME Hnadbook on Water Technology for Thermal Power System, p976 (1989)). Since it is difficult to predict the concentration of ammonia in the condenser air extractor with an actual boiler, the concentration of copper detected in the condensate does not actually increase due to changes in the amount of medicinal amine injection. It is necessary to confirm that there is no thinning due to typical eddy current testing.
Thus, the calculation of the formula for calculating the coating amine injection amount can be adjusted for each site within the technical scope of those skilled in the art. In addition to the ammonia concentration, the fluctuation factors of the film-forming amine addition concentration include dissolved oxygen concentration, coexisting amine, flow rate, water temperature, flow rate, and the like.

上記のとおり皮膜性アミンの添加濃度は適宜設定すればよいが、給水量に対して通常0.01〜10mg/L程度、特に0.1〜1mg/Lの範囲であることが好ましい。添加量が0.01mg/L以上であれば皮膜性アミンによる腐食効果を十分に得ることができ、10mg/L以下であれば系統内に粘着性の付着物が生じるおそれもない。   As described above, the addition concentration of the film-forming amine may be set as appropriate, but it is usually in the range of about 0.01 to 10 mg / L, particularly 0.1 to 1 mg / L with respect to the amount of water supply. If the addition amount is 0.01 mg / L or more, the corrosive effect by the film-forming amine can be sufficiently obtained, and if it is 10 mg / L or less, there is no possibility that sticky deposits are generated in the system.

また適用する皮膜性アミンは、揮発度や吸着量が異なるもの(例えば、“J.,Power Plant Chemistry 2014, 16(5),284”参照)をブレンドすることで、より早く広範囲の復水器細管にいきわたらせることができる。したがって、ボイラの水系に皮膜性アミンを2種以上添加してもよく、例えば、オクタデシルアミンとN−オクタデセニルプロパン−1,3−ジアミンの組合せが好適である。   In addition, the film-forming amines to be applied are blended with those with different volatilities and adsorption amounts (for example, refer to “J., Power Plant Chemistry 2014, 16 (5), 284”), so that a wide range of condensers can be used more quickly. It can be spread through tubules. Therefore, two or more kinds of film-forming amines may be added to the boiler water system. For example, a combination of octadecylamine and N-octadecenylpropane-1,3-diamine is preferable.

[中和性アミン]
本発明の腐食抑制方法において、皮膜性アミンは中和性アミンと併用してもよい。中和性アミンとしては、モノエタノールアミン(MEA)、シクロへキシルアミン(CHA)、モルホリン(MOR)、ジエチルエタノールアミン(DEEA)、モノイソプロパノールアミン(MIPA)、3−メトキシプロピルアミン(MOPA)、2−アミノ−2−メチル−1−プロパノール(AMP)、ジグリコールアミン(DGA)等の中和性アミン(揮発性アミン)等を用いることができる。中和性アミンは1種のみを用いてもよく、2種以上を併用してもよい。
[Neutralizing amine]
In the corrosion inhibiting method of the present invention, the film-forming amine may be used in combination with a neutralizing amine. Examples of neutralizing amines include monoethanolamine (MEA), cyclohexylamine (CHA), morpholine (MOR), diethylethanolamine (DEEA), monoisopropanolamine (MIPA), 3-methoxypropylamine (MOPA), 2 -Neutralizing amines (volatile amines) such as amino-2-methyl-1-propanol (AMP) and diglycolamine (DGA) can be used. Only one type of neutralizing amine may be used, or two or more types may be used in combination.

[pH調整剤]
本発明の腐食抑制方法は、pH調整に用いられるアンモニアによるアンモニアアタックを抑制する効果を奏するものであり、ボイラの水系にはアンモニアが含有されている。したがって、本発明の水系にはpH調整剤としてアンモニアが用いられるが、脱酸素剤の熱分解に由来するアンモニアでpH調整を行ってもよい。
pH調整剤はアンモニア1種のみを用いてもよく、アンモニアとその他のpH調整剤1種以上とを併用してもよい。アンモニアと併用することができるpH調整剤としては、水酸化カリウム、水酸化ナトリム、炭酸カリウム、炭酸ナトリム等が挙げられる。
アンモニア濃度は、所望するpHに調整することができればよく一概には特定できないが、給水中の濃度が通常0.1〜1,000mg/L程度、好ましくは1〜500mg/Lである。
また、本発明の腐食抑制方法は、銅系材料への保護皮膜を形成し腐食を抑制する観点から、pHが通常8.5〜10.3程度、好ましくは9.0〜9.4の水系で好適に適用することができる。
[PH adjuster]
The corrosion suppression method of the present invention has an effect of suppressing ammonia attack by ammonia used for pH adjustment, and ammonia is contained in the water system of the boiler. Therefore, ammonia is used as the pH adjuster in the aqueous system of the present invention, but the pH may be adjusted with ammonia derived from the thermal decomposition of the oxygen scavenger.
A pH adjuster may use only 1 type of ammonia, and may use ammonia and 1 or more types of other pH adjusters together. Examples of pH adjusters that can be used in combination with ammonia include potassium hydroxide, sodium hydroxide, potassium carbonate, and sodium carbonate.
The ammonia concentration is not generally specified as long as it can be adjusted to a desired pH, but the concentration in the feed water is usually about 0.1 to 1,000 mg / L, preferably 1 to 500 mg / L.
Moreover, the corrosion suppression method of the present invention is an aqueous system having a pH of usually about 8.5 to 10.3, preferably 9.0 to 9.4, from the viewpoint of forming a protective film on a copper-based material and suppressing corrosion. Can be suitably applied.

[脱酸素剤]
本発明の腐食抑制方法において、皮膜性アミンは脱酸素剤と併用してもよい。脱酸素剤としては、ヒドラジンやカルボヒドラジド等のヒドラジン誘導体を用いることができる。また、非ヒドラジン系脱酸素剤として、ハイドロキノン、1−アミノピロリジン、1−アミノ−4−メチルピペラジン、N,N−ジエチルヒドロキシルアミン、イソプロピルヒドロキシルアミン、エリソルビン酸又はその塩、アスコルビン酸又はその塩等を用いることもできる。脱酸素剤は1種のみを用いてもよく、2種以上を併用してもよい。
[Oxygen scavenger]
In the corrosion inhibiting method of the present invention, the film-forming amine may be used in combination with an oxygen scavenger. As the oxygen scavenger, hydrazine derivatives such as hydrazine and carbohydrazide can be used. In addition, as non-hydrazine-based oxygen absorbers, hydroquinone, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N, N-diethylhydroxylamine, isopropylhydroxylamine, erythorbic acid or a salt thereof, ascorbic acid or a salt thereof, etc. Can also be used. Only one oxygen scavenger may be used, or two or more oxygen scavengers may be used in combination.

[その他の添加剤]
本発明の目的が損なわれない範囲で、必要に応じて腐食抑制剤の慣用成分やその他の補助添加成分を添加してもよい。その他の添加剤としては、各種の可溶化剤、金属イオン封鎖剤、スケール防止剤、スケール除去剤及び凍結防止剤等が挙げられる。
[Other additives]
As long as the object of the present invention is not impaired, a conventional component of a corrosion inhibitor and other auxiliary additive components may be added as necessary. Examples of other additives include various solubilizers, sequestering agents, scale inhibitors, scale removers, and antifreeze agents.

[添加方法等]
本発明の腐食抑制方法において、上述の皮膜性アミンや任意成分である中和性アミン、pH調整剤、脱酸素剤等の皮膜性アミンを含む薬剤は、各成分2種以上を同一箇所に添加する場合、予め混合して添加してもよく、各々別々に添加してもよい。また、連続的又は間欠的に添加することができる。
また、上記皮膜性アミンの添加は、細管に向けて行う噴霧添加であってもよい。皮膜性アミンの他に上記任意成分を用いる場合も同様に、上記皮膜性アミンを含む薬剤を細管に向けて噴霧添加することができる。
上記皮膜性アミンを細管に向けて噴霧添加することにより、アンモニアアタックが発生しやすい空気抽出部近傍の銅系材料の細管を、上記皮膜性アミンで直接コーティングすることができ、銅系材料とアンモニアとの直接接触を防ぐことができる。また、銅系材料の細管等のアンモニアアタックが発生しやすい箇所に限定して、上記皮膜性アミンを噴霧することで経済的に無駄がなく、効率的な腐食抑制が可能となる。
噴霧添加の方法は、特に限定されない。例えば、スプレーノズルを用いて蒸気中の対象の箇所(細管等)に噴霧することができる。噴霧添加は連続的あるいは断続的のいずれでもかまわないが、上記皮膜性アミンを含む薬剤の吸脱着の観点から、一定の濃度を水系内に維持できるような連続的な噴霧添加であることが好ましい。
また水系内の水温は、通常0〜70℃程度、好ましくは40〜60℃である。
また水系の流速は、通常0.1〜3.0m/s程度である。
[Addition method, etc.]
In the method for inhibiting corrosion according to the present invention, two or more kinds of each component are added to the same place in the above-described film-forming amine, and optional components such as neutralizing amine, pH adjuster, oxygen scavenger and the like. When doing, it may mix and add beforehand and may add each separately. Moreover, it can add continuously or intermittently.
Further, the addition of the film-forming amine may be spray addition performed toward the narrow tube. Similarly, when the above-mentioned optional component is used in addition to the film-forming amine, the drug containing the film-forming amine can be sprayed and added to the capillary tube.
By spray-adding the film-forming amine toward the capillary tube, the copper-based material capillary tube in the vicinity of the air extraction portion where ammonia attack is likely to occur can be directly coated with the film-forming amine. Direct contact with can be prevented. Further, spraying the above-mentioned film-forming amine is limited to a portion where ammonia attack is likely to occur, such as a thin tube of a copper-based material, so that it is economically efficient and efficient corrosion inhibition is possible.
The method of spray addition is not particularly limited. For example, it can spray on the target location (a thin tube etc.) in vapor | steam using a spray nozzle. The spray addition may be either continuous or intermittent, but from the viewpoint of adsorption / desorption of the drug containing the film-forming amine, it is preferable that the spray addition is a continuous spray addition capable of maintaining a constant concentration in the aqueous system. .
The water temperature in the aqueous system is usually about 0 to 70 ° C, preferably 40 to 60 ° C.
The flow rate of the aqueous system is usually about 0.1 to 3.0 m / s.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

<実験条件>
皮膜性アミンの適用により、アンモニアと銅系材料が共存する際の腐食を大幅に低減する方法の検証方法として、図1に示すような評価装置を作製した。
試験は、評価部の溶存酸素濃度が100μg/Lとなるように脱気したイオン交換水を用い、アンモニアでpHを調整した試験液に皮膜性アミン(表1及び図2中「FFA」と略記する)を添加し、ステンレス製チューブBに導入してステンレス製の予熱槽2で50℃まで加温した後、評価部となる長さ1mの銅チューブAに導入し、50℃の水槽1に流通させここで溶出する金属銅の溶出量を、誘導結合プラズマ(ICP)発光分光分析装置で測定した。
なお、表1及び図2中、FFAとしてN−オクタデセニルプロパン−1,3−ジアミン(Akzo Nobel社製、製品名「Duomeen(登録商標)OL」)を用いた。
<Experimental conditions>
An evaluation apparatus as shown in FIG. 1 was produced as a verification method for a method of significantly reducing corrosion when ammonia and a copper-based material coexist by applying a film-forming amine.
In the test, ion-exchanged water degassed so that the dissolved oxygen concentration in the evaluation part was 100 μg / L was used, and a test liquid whose pH was adjusted with ammonia was abbreviated as “FFA” in Table 1 and FIG. Is added to the stainless steel tube B and heated to 50 ° C. in the stainless steel preheating tank 2, and then introduced into the copper tube A having a length of 1 m, which becomes the evaluation part, and is added to the 50 ° C. water tank 1. The amount of metallic copper that was circulated and eluted here was measured with an inductively coupled plasma (ICP) emission spectrometer.
In Table 1 and FIG. 2, N-octadecenylpropane-1,3-diamine (manufactured by Akzo Nobel, product name “Duomeen (registered trademark) OL”) was used as FFA.

<結果・考察>
試験結果として、銅溶出量(μg/L)、アンモニア濃度(mg/L)、pH値を表1に示す。また、得られた試験結果からpHに対する銅溶出量のグラフを図2に示す。
表1及び図2から、ブランクで銅の溶出量が急増するpH10.3以上の領域でも、皮膜性アミンの適用により、銅の溶出を大幅に抑制していることが分かる。具体的には、pHが約10.5の状態では、銅の溶出量がブランクの1/5程度まで低減できることを確認した。つまり、復水器の空気抽出部のようなアンモニアが濃縮するような場所でも、アンモニアアタックを抑制できることを確認した。
<Results and discussion>
As test results, copper elution amount (μg / L), ammonia concentration (mg / L), and pH value are shown in Table 1. Moreover, the graph of the copper elution amount with respect to pH from the obtained test result is shown in FIG.
From Table 1 and FIG. 2, it can be seen that the elution of copper is greatly suppressed by application of the film-forming amine even in the region of pH 10.3 or more where the elution amount of copper rapidly increases in the blank. Specifically, it was confirmed that when the pH was about 10.5, the copper elution amount could be reduced to about 1/5 that of the blank. That is, it was confirmed that ammonia attack can be suppressed even in a place where ammonia is concentrated, such as an air extraction part of a condenser.

Figure 2019065415
Figure 2019065415

A:銅チューブ
B:ステンレスチューブ
1:評価部水槽(50℃)
2:ステンレス製予熱槽(50℃)
3:ヒーター付き水槽
4:熱電対(温度計)
P:ポンプ
DO:溶存酸素測定装置
A: Copper tube B: Stainless steel tube 1: Evaluation part water tank (50 ° C.)
2: Stainless steel preheating tank (50 ° C)
3: Water tank with heater 4: Thermocouple (thermometer)
P: Pump DO: Dissolved oxygen measuring device

1.銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法であって、
ンモニア濃度と銅の溶出量に応じて、前記皮膜性アミンの添加濃度を調整する、銅系材料の腐食抑制方法。
.前記皮膜性アミンを2種以上添加する、上記1に記載の銅系材料の腐食抑制方法。
.前記アンモニアを含有する水系に、さらに中和性アミンを添加する、上記1又は2に記載の銅系材料の腐食抑制方法。
.前記水系が海水系ではない、上記1〜のいずれかに記載の銅系材料の腐食抑制方法。
.前記皮膜性アミンの添加が、細管に向けて行う噴霧添加である、上記1〜のいずれかに記載の銅系材料の腐食抑制方法。
1. A copper-based material corrosion-inhibiting method of adding a film-forming amine to a water-based water-containing ammonia system using a copper-based material ,
Depending on the amount of elution of ammonia concentration and copper, it adjusts the addition concentration of the coating amine, corrosion inhibiting method for a copper-based material.
2 . 2. The method for inhibiting corrosion of a copper-based material according to 1 above, wherein two or more kinds of the film-forming amine are added.
3 . 3. The method for inhibiting corrosion of a copper-based material according to 1 or 2 , wherein a neutralizing amine is further added to the aqueous system containing ammonia.
4 . 4. The method for inhibiting corrosion of a copper-based material according to any one of 1 to 3 , wherein the aqueous system is not a seawater system.
5 . The method for inhibiting corrosion of a copper-based material according to any one of 1 to 4 above, wherein the addition of the film-forming amine is spray addition performed toward a thin tube.

Claims (6)

銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法。   A method for inhibiting corrosion of a copper-based material, wherein a film-forming amine is added to an aqueous system containing ammonia of a boiler using a copper-based material. アンモニア濃度と銅の溶出量に応じて、前記皮膜性アミンの添加濃度を調整する、請求項1に記載の銅系材料の腐食抑制方法。   The method for inhibiting corrosion of a copper-based material according to claim 1, wherein an addition concentration of the film-forming amine is adjusted according to an ammonia concentration and an elution amount of copper. 前記皮膜性アミンを2種以上添加する、請求項1又は2に記載の銅系材料の腐食抑制方法。   The method for inhibiting corrosion of a copper-based material according to claim 1 or 2, wherein two or more kinds of the film-forming amine are added. 前記アンモニアを含有する水系に、さらに中和性アミンを添加する、請求項1〜3のいずれかに記載の銅系材料の腐食抑制方法。   The method for inhibiting corrosion of a copper-based material according to any one of claims 1 to 3, wherein a neutralizing amine is further added to the aqueous system containing ammonia. 前記水系が海水系ではない、請求項1〜4のいずれかに記載の銅系材料の腐食抑制方法。   The method for inhibiting corrosion of a copper-based material according to any one of claims 1 to 4, wherein the aqueous system is not a seawater system. 前記皮膜性アミンの添加が、細管に向けて行う噴霧添加である、請求項1〜5のいずれかに記載の銅系材料の腐食抑制方法。

The method for inhibiting corrosion of a copper-based material according to any one of claims 1 to 5, wherein the addition of the film-forming amine is spray addition performed toward a thin tube.

JP2018549586A 2017-09-27 2018-09-19 Method for inhibiting corrosion of copper-based materials Active JP6485605B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017186770 2017-09-27
JP2017186770 2017-09-27
PCT/JP2018/034655 WO2019065415A1 (en) 2017-09-27 2018-09-19 Corrosion suppression method for copper-based material

Publications (2)

Publication Number Publication Date
JP6485605B1 JP6485605B1 (en) 2019-03-20
JPWO2019065415A1 true JPWO2019065415A1 (en) 2019-11-14

Family

ID=65803000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018549586A Active JP6485605B1 (en) 2017-09-27 2018-09-19 Method for inhibiting corrosion of copper-based materials

Country Status (1)

Country Link
JP (1) JP6485605B1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3860430A (en) * 1973-11-05 1975-01-14 Calgon Corp Filming amine emulsions
JPS57171668A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Undercoating treatment for steel material
US4657785A (en) * 1985-12-11 1987-04-14 Nalco Chemical Company Use of benzo and tolyltriazole as copper corrosion inhibitors for boiler condensate systems
GB2204864A (en) * 1987-04-29 1988-11-23 Ciba Geigy Ag Corrosion inhibition
JP2000160369A (en) * 1998-11-20 2000-06-13 Tosoh Corp Anticorrosive
JP5478537B2 (en) * 2011-02-23 2014-04-23 内外化学製品株式会社 Metal corrosion prevention or inhibitor and method using the same
JP2013019042A (en) * 2011-07-14 2013-01-31 Kurita Water Ind Ltd Method for preventing corrosion in steam condensation system, and corrosion inhibitor used for the method
JP2014037585A (en) * 2012-08-17 2014-02-27 Fujifilm Corp Antioxidation treatment method and method of manufacturing semiconductor product using the same
JP6134921B1 (en) * 2015-09-17 2017-05-31 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive for seawater copper alloy piping

Also Published As

Publication number Publication date
JP6485605B1 (en) 2019-03-20

Similar Documents

Publication Publication Date Title
TWI515340B (en) Anticorrosive method for boiler
JPH0630768B2 (en) Oxygen scavenger composition and method
TWI810253B (en) steam condensation method
JP6699234B2 (en) Boiler water treatment method
JP6485605B1 (en) Method for inhibiting corrosion of copper-based materials
SG192140A1 (en) Anti-corrosive agent for boilers
WO2019065415A1 (en) Corrosion suppression method for copper-based material
JP2011033301A (en) Corrosion suppressing method and corrosion suppressing device for boiler device
JP6134921B1 (en) Anticorrosion method and anticorrosive for seawater copper alloy piping
JP4305440B2 (en) Anticorrosive for reducing erosion and corrosion and method for reducing the same
US20200362514A1 (en) Method for improving efficiency of steam heating, and papermaking method
KR101226307B1 (en) Inhibition of corrosion in fluid systems
NL8500613A (en) PREVENTION OF CORROSION.
JP2006274337A (en) Treatment agent and treatment method for boiler water
Suslov et al. Complex amine-based reagents
WO2023228525A1 (en) Method for improving heat-transfer efficiency of heat exchanger
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
JP5849409B2 (en) Boiler water treatment agent and boiler water treatment method
WO2013140913A1 (en) Water treatment method for boiler having economizer
KR20240028354A (en) Method for improving heat transfer efficiency using steam
JP2013067830A (en) Corrosion inhibit method of economizer in boiler
JP2019196541A (en) Corrosion inhibitor for boiler system and corrosion inhibiting method
JP2017213549A (en) Method for preventing trouble in seawater system, trouble preventive, and kit for trouble prevention
JP2017128755A (en) Deoxidizing agent and deoxidation treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181010

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181010

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250