WO2019065415A1 - Corrosion suppression method for copper-based material - Google Patents

Corrosion suppression method for copper-based material Download PDF

Info

Publication number
WO2019065415A1
WO2019065415A1 PCT/JP2018/034655 JP2018034655W WO2019065415A1 WO 2019065415 A1 WO2019065415 A1 WO 2019065415A1 JP 2018034655 W JP2018034655 W JP 2018034655W WO 2019065415 A1 WO2019065415 A1 WO 2019065415A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
corrosion
based material
ammonia
amine
Prior art date
Application number
PCT/JP2018/034655
Other languages
French (fr)
Japanese (ja)
Inventor
信太郎 森
倩 林
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to JP2018549586A priority Critical patent/JP6485605B1/en
Publication of WO2019065415A1 publication Critical patent/WO2019065415A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds

Definitions

  • the present invention relates to a method of inhibiting corrosion of a copper-based material. More specifically, the present invention relates to a method of suppressing corrosion of a copper-based material by ammonia by using a film-forming amine alone or in combination with a neutralizing amine.
  • Patent Document 1 discloses a specific N-monosubstituted alkylene diamine as a corrosion inhibitor for copper-containing metal piping
  • Patent Document 2 discloses fats and oils. An emulsified emulsion is disclosed.
  • the present inventors have found that the application of film-forming amines reduces the corrosion of copper-based materials due to ammonia attack. That is, the present invention is as follows.
  • the filmable amine used in the present invention preferably includes those represented by the following general formula (1).
  • R 1- [NH (R 2 )-] n- NH 2 (1)
  • R 1 represents a long-chain alkyl group having 12 to 18 carbon atoms
  • R 2 represents an alkyl group having 1 to 4 carbon atoms
  • n is an integer of 0 to 7.
  • the alkyl group of R 1 may be linear or branched, but is preferably linear, and may be saturated or unsaturated but is preferably an unsaturated alkyl group.

Abstract

The corrosion suppression method for a copper-based material adds a film-forming amine compound to the water system of a boiler that uses copper-based material.

Description

銅系材料の腐食抑制方法Corrosion control method for copper based materials
 本発明は、銅系材料の腐食抑制方法に関する。詳しくは皮膜性アミン単独、または中和性アミンと併用することにより、アンモニアによる銅系材料の腐食を抑制する方法に関する。 The present invention relates to a method of inhibiting corrosion of a copper-based material. More specifically, the present invention relates to a method of suppressing corrosion of a copper-based material by ammonia by using a film-forming amine alone or in combination with a neutralizing amine.
 ボイラを始めとする蒸気発生器の缶体や給水配管等(以下、単に「ボイラ」という)の金属部材、例えば、銅製又は銅合金製の熱交換器や配管等は、冷却水と接触することにより腐食を受ける。そのため腐食を抑制する技術開発が数多く行われており、例えば銅を含む金属配管の腐食抑制剤として、特許文献1では特定のN-モノ置換アルキレンジアミンが開示されおり、特許文献2では油脂類を乳化したエマルションが開示されている。 Metal members of steam generator cans and water supply piping etc. (hereinafter simply referred to as “boiler”) including boilers, for example, heat exchangers and pipes made of copper or copper alloy, etc. should be in contact with cooling water Are subject to corrosion. Therefore, there have been many technological developments to suppress corrosion, for example, Patent Document 1 discloses a specific N-monosubstituted alkylene diamine as a corrosion inhibitor for copper-containing metal piping, and Patent Document 2 discloses fats and oils. An emulsified emulsion is disclosed.
 ところで、上記腐食要因の一つとしてpHがある。ボイラ水のpH調整は、ボイラ給水等にpH調整剤を注入することにより、ボイラ水のpHを所定のアルカリ性範囲に維持することによりなされる。pH調整剤としては、NaOHやKOH、リン酸ナトリウムやリン酸カリウム等の固形物質や揮発性アミンやアンモニア等の揮発性物質が用いられる。
 ボイラ給水のpH調整にアンモニアを用いる場合、復水器内の空気抽出部の近傍で、凝縮水の水滴内にアンモニアと非凝縮性ガス(特に酸素)が濃縮するため、冷却管(細管)がバッフル部近傍で溝状に激しく腐食する現象(アンモニアアタック)が発生する。そこで、アンモニアアタックの対策として、アンモニアの代替にアミンが適用される事例が増えている。
 また、アンモニアアタックの対策として、アンモニアアタックが発生しやすい復水器内の空気抽出部近傍に、復水の一部を噴霧し、複水器の細管とバッフルプレートとの空隙部に滞留するアンモニアを洗い流す方法が提案されている(例えば、特許文献3参照)。
By the way, there is pH as one of the above-mentioned corrosion factors. The pH adjustment of the boiler water is performed by maintaining the pH of the boiler water in a predetermined alkaline range by injecting a pH adjuster into the boiler feed water or the like. As a pH adjuster, solid substances such as NaOH, KOH, sodium phosphate and potassium phosphate, and volatile substances such as volatile amines and ammonia are used.
When ammonia is used to adjust the pH of the boiler feed water, the ammonia and non-condensable gas (especially oxygen) are concentrated in the water droplets of the condensed water in the vicinity of the air extraction unit in the condenser. A groove-like phenomenon (ammonia attack) occurs in the vicinity of the baffle portion. Therefore, as a countermeasure against ammonia attack, an increasing number of cases are used where an amine is used instead of ammonia.
In addition, as a measure against ammonia attack, ammonia is sprayed near the air extraction part in the condenser where ammonia attack is likely to occur, and ammonia is retained in the gap between the capillary of the double condenser and the baffle plate A method of washing out the water has been proposed (see, for example, Patent Document 3).
特許6134921号公報Patent 6134921 gazette 特開2013-19042号公報Unexamined-Japanese-Patent No. 2013-19042 特開2013-190166号公報JP, 2013-190166, A
 しかしながら、アミンは有機体であるため、高温高圧の環境下で長期間存在する場合には、一部が加熱分解してアンモニアを生成する欠点がある。そのため、従来の技術では復水器内のアンモニアアタックの事例は低減したものの、完全にはなくなっていない。
 また、特許文献1ではアミン系腐食抑制剤による銅系材料の腐食抑制を謳っているものの海水系であることを前提としており、特許文献2では油脂類を腐食抑制剤に適用することより銅系材料の腐食を抑制している。この様にいずれの文献にも銅系材料のアンモニアアタックを抑制するためにアミン系腐食抑制剤を用いる記載はなく、アミン系腐食抑制剤による銅系材料の腐食抑制方法にはさらなる改善の余地が有る。
However, since the amine is an organic substance, there is a disadvantage that when it is present for a long time in a high temperature and high pressure environment, a part thereof is thermally decomposed to form ammonia. Therefore, in the prior art, although the case of ammonia attack in the condenser has been reduced, it has not been completely eliminated.
Moreover, in patent document 1, it is premised that it is seawater system of what suppresses the corrosion suppression of copper-based material by an amine-based corrosion inhibitor, and in patent document 2, it is copper-based by applying fats and oils to a corrosion inhibitor. It suppresses corrosion of materials. As described above, there is no description using an amine-based corrosion inhibitor to suppress the ammonia attack of a copper-based material in any of the documents, and there is room for further improvement in the method for inhibiting copper-based material corrosion with an amine-based corrosion inhibitor. There is.
 そこで本発明は、アンモニアアタックを抑制できる銅系材料の腐食抑制方法を提供することを課題とする。 Then, this invention makes it a subject to provide the corrosion suppression method of the copper-type material which can suppress an ammonia attack.
 本発明者らは、上記課題を解決すべく検討を重ねた結果、皮膜性アミンの適用により、アンモニアアタックによる銅系材料の腐食低減を見出した。
 すなわち、本発明は下記のとおりである。
As a result of investigations to solve the above problems, the present inventors have found that the application of film-forming amines reduces the corrosion of copper-based materials due to ammonia attack.
That is, the present invention is as follows.
1.銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法。
2.アンモニア濃度と銅の溶出量に応じて、前記皮膜性アミンの添加濃度を調整する、上記1に記載の銅系材料の腐食抑制方法。
3.前記皮膜性アミンを2種以上添加する、上記1又は2に記載の銅系材料の腐食抑制方法。
4.前記アンモニアを含有する水系に、さらに中和性アミンを添加する、上記1~3のいずれかに記載の銅系材料の腐食抑制方法。
5.前記水系が海水系ではない、上記1~4のいずれかに記載の銅系材料の腐食抑制方法。
6.前記皮膜性アミンの添加が、細管に向けて行う噴霧添加である、上記1~5のいずれかに記載の銅系材料の腐食抑制方法。
1. A method of inhibiting corrosion of a copper-based material, wherein a film-forming amine is added to a water system containing ammonia of a boiler using a copper-based material.
2. The method for suppressing corrosion of a copper-based material according to 1 above, wherein the addition concentration of the film-forming amine is adjusted according to the ammonia concentration and the elution amount of copper.
3. The method for suppressing corrosion of a copper-based material according to the above 1 or 2, wherein two or more kinds of the film forming amines are added.
4. The method for suppressing corrosion of a copper-based material according to any one of 1 to 3, wherein a neutralizing amine is further added to the ammonia-containing water system.
5. The method for suppressing corrosion of a copper-based material according to any one of the above 1 to 4, wherein the water system is not a seawater system.
6. The method for suppressing corrosion of a copper-based material according to any one of the above 1 to 5, wherein the addition of the film-forming amine is a spray addition toward a capillary.
 本発明によれば、ボイラの通常運転中に、アンモニアアタックによる銅系材料の腐食抑制を効果的に行うことが可能となる腐食抑制方法を提供することができる。 According to the present invention, it is possible to provide a corrosion suppression method capable of effectively suppressing corrosion of a copper-based material due to ammonia attack during normal operation of a boiler.
本発明の実施例で使用した評価装置を示す図である。It is a figure which shows the evaluation apparatus used in the Example of this invention. 本発明の実施例の評価結果を示すpHに対する銅の溶出量のグラフである。It is a graph of the elution amount of copper with respect to pH which shows the evaluation result of the Example of this invention.
 本発明は、銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法に係る発明である。
[銅系材料を用いたボイラ]
 銅系材料としては、復水器の細管だけでなく、給水加熱器や給水ポンプのインペラに用いられているものをも対象とすることができる。
 また、本発明の腐食抑制方法の対象材料は、銅系材料だけでなく、アルミ系材料が含まれていてもよい。なお、従来技術で適用されている皮膜性アミンがアルミ系材料の腐食を低減することは“J., Power Plant Chemistry 2014, 16(6), 361”等で知られている。
This invention is invention which concerns on the corrosion suppression method of the copper-type material which adds film-forming amine to the water system containing ammonia of the boiler using copper-type material.
[Boiler using copper-based material]
As the copper-based material, not only the narrow tube of the condenser, but also the one used for the feed water heater or the impeller of the feed water pump can be targeted.
Moreover, the target material of the corrosion control method of the present invention may include not only copper-based materials but also aluminum-based materials. In addition, it is known by "J., Power Plant Chemistry 2014, 16 (6), 361" etc. that the film-forming amine applied by the prior art reduces corrosion of aluminum material.
[水系]
 本発明の腐食抑制方法が適用される水系の水質には特に制限はないが、イオン交換水等を用いることができ、好ましくは脱気したイオン交換水等を水系で好適に適用することができる。また、水系は海水系ではないことが好ましい。
 水系の溶存酸素濃度は、ボイラの腐食を効果的に抑制する観点から、500μg/L以下であることが好ましく、100μg/L以下であることがより好ましく、さらに好ましくは70μg/L以下である。溶存酸素濃度は、例えば給水を脱気することにより調整することができる。
[Water system]
The water quality of the water system to which the corrosion control method of the present invention is applied is not particularly limited, but ion exchange water etc. can be used, and preferably deaerated ion exchange water etc. can be suitably applied in the water system. . Moreover, it is preferable that the water system is not a seawater system.
The dissolved oxygen concentration of the water system is preferably 500 μg / L or less, more preferably 100 μg / L or less, and still more preferably 70 μg / L or less, from the viewpoint of effectively suppressing the corrosion of the boiler. The dissolved oxygen concentration can be adjusted, for example, by degassing the water supply.
[皮膜性アミン]
 本発明において用いる皮膜性アミンは、好ましくは下記一般式(1)で表されるものが挙げられる。
  R-[NH(R)-]-NH   …(1)
 式(1)中、Rは炭素数12~18の長鎖アルキル基を示し、Rは炭素数1~4のアルキル基を示す。nは0~7の整数である。上記Rのアルキル基は、直鎖状又は分岐状であってもよいが好ましくは直鎖状であり、また飽和又は不飽和であってもよいが好ましくは不飽和アルキル基である。
 皮膜性アミンとして具体的には、オクタデシルアミン、N-オクタデセニルプロパン-1,3-ジアミン等の長鎖アルキルアミンが挙げられる。皮膜性アミンは1種のみを用いてもよく、2種以上を併用してもよい。
[Film-forming amine]
The filmable amine used in the present invention preferably includes those represented by the following general formula (1).
R 1- [NH (R 2 )-] n- NH 2 (1)
In the formula (1), R 1 represents a long-chain alkyl group having 12 to 18 carbon atoms, and R 2 represents an alkyl group having 1 to 4 carbon atoms. n is an integer of 0 to 7. The alkyl group of R 1 may be linear or branched, but is preferably linear, and may be saturated or unsaturated but is preferably an unsaturated alkyl group.
Specific examples of film-forming amines include long-chain alkyl amines such as octadecylamine and N-octadecenylpropane-1,3-diamine. The filmable amine may be used alone or in combination of two or more.
 本発明の腐食抑制方法は、後述するアンモニア濃度と銅の溶出量に応じて、皮膜性アミンの添加濃度を調整することができる。
 また、皮膜性アミンの添加濃度はアンモニア濃度に応じて変更してもよい。例えば、給水のpHがJIS上限の9.4(低圧給水加熱器が銅合金で高圧給水加熱器が鋼鋼管製の場合)である場合、給水中のアンモニア濃度は復水器空気抽出部で100~500倍に濃縮される(引用文献:The ASME Hnadbook on Water Technology for Thermal Power System, p976 (1989))。復水器空気抽出部のアンモニアの到達濃度を実機ボイラで予想するのは困難であるため、実際には皮膜性アミン注入量の変更により復水中に検出される銅濃度が上昇しないことや、定期的な渦流探傷での減肉が認められないことで確認する必要がある。
 このように、皮膜性アミン注入量の計算式の算出は、本分野における当業者の技術範囲内において現場毎に調整することができる。皮膜性アミン添加濃度の変動要素としてはアンモニア濃度の他に、溶存酸素濃度や共存するアミン、流量、水温、及び流速等が挙げられる。
The corrosion inhibiting method of the present invention can adjust the addition concentration of film-forming amine according to the ammonia concentration and the elution amount of copper described later.
In addition, the concentration of the filming amine may be changed according to the ammonia concentration. For example, when the pH of the feed water is 9.4, which is the upper limit of JIS (when the low pressure feed water heater is a copper alloy and the high pressure feed water heater is made of steel pipe), the ammonia concentration in the feed water is 100 at the condenser air extraction unit. Concentrated to ~ 500-fold (Reference: The ASME Hdbook on Water Technology for Thermal Power System, p976 (1989)). Since it is difficult to predict the final concentration of ammonia in the condenser air extraction unit with a real machine boiler, in fact the copper concentration detected in the condensate does not increase due to the change in the amount of filming amine injection, It is necessary to confirm by the fact that thickness reduction in the typical eddy current flaw detection is not recognized.
Thus, the calculation of the formula for filmable amine injection can be adjusted from site to site within the skill of one skilled in the art. As a variable factor of the filmable amine addition concentration, in addition to the ammonia concentration, the dissolved oxygen concentration, the coexisting amine, the flow rate, the water temperature, the flow rate and the like can be mentioned.
 上記のとおり皮膜性アミンの添加濃度は適宜設定すればよいが、給水量に対して通常0.01~10mg/L程度、特に0.1~1mg/Lの範囲であることが好ましい。添加量が0.01mg/L以上であれば皮膜性アミンによる腐食効果を十分に得ることができ、10mg/L以下であれば系統内に粘着性の付着物が生じるおそれもない。 As described above, the addition concentration of the film-forming amine may be set appropriately, but it is preferably in the range of usually about 0.01 to 10 mg / L, particularly 0.1 to 1 mg / L with respect to the amount of water supplied. If the addition amount is 0.01 mg / L or more, the corrosion effect of the film-forming amine can be sufficiently obtained, and if 10 mg / L or less, there is no possibility that the adhesive deposit is generated in the system.
 また適用する皮膜性アミンは、揮発度や吸着量が異なるもの(例えば、“J.,Power Plant Chemistry 2014, 16(5),284”参照)をブレンドすることで、より早く広範囲の復水器細管にいきわたらせることができる。したがって、ボイラの水系に皮膜性アミンを2種以上添加してもよく、例えば、オクタデシルアミンとN-オクタデセニルプロパン-1,3-ジアミンの組合せが好適である。 Also, the film-forming amine to be applied is faster and wider-range condenser by blending those having different volatility and adsorption amount (see, for example, “J., Power Plant Chemistry 2014, 16 (5), 284”). It can be made to live in a tubule. Accordingly, two or more kinds of film-forming amines may be added to the water system of the boiler, and for example, a combination of octadecylamine and N-octadecenylpropane-1,3-diamine is preferable.
[中和性アミン]
 本発明の腐食抑制方法において、皮膜性アミンは中和性アミンと併用してもよい。中和性アミンとしては、モノエタノールアミン(MEA)、シクロへキシルアミン(CHA)、モルホリン(MOR)、ジエチルエタノールアミン(DEEA)、モノイソプロパノールアミン(MIPA)、3-メトキシプロピルアミン(MOPA)、2-アミノ-2-メチル-1-プロパノール(AMP)、ジグリコールアミン(DGA)等の中和性アミン(揮発性アミン)等を用いることができる。中和性アミンは1種のみを用いてもよく、2種以上を併用してもよい。
[Neutralizing amine]
In the corrosion inhibiting method of the present invention, the filming amine may be used in combination with the neutralizing amine. As neutralizing amines, monoethanolamine (MEA), cyclohexylamine (CHA), morpholine (MOR), diethylethanolamine (DEEA), monoisopropanolamine (MIPA), 3-methoxypropylamine (MOPA), 2 Neutralizing amines (volatile amines) such as amino-2-methyl-1-propanol (AMP) and diglycolamine (DGA) can be used. The neutralizing amine may be used alone or in combination of two or more.
[pH調整剤]
 本発明の腐食抑制方法は、pH調整に用いられるアンモニアによるアンモニアアタックを抑制する効果を奏するものであり、ボイラの水系にはアンモニアが含有されている。したがって、本発明の水系にはpH調整剤としてアンモニアが用いられるが、脱酸素剤の熱分解に由来するアンモニアでpH調整を行ってもよい。
 pH調整剤はアンモニア1種のみを用いてもよく、アンモニアとその他のpH調整剤1種以上とを併用してもよい。アンモニアと併用することができるpH調整剤としては、水酸化カリウム、水酸化ナトリム、炭酸カリウム、炭酸ナトリム等が挙げられる。
 アンモニア濃度は、所望するpHに調整することができればよく一概には特定できないが、給水中の濃度が通常0.1~1,000mg/L程度、好ましくは1~500mg/Lである。
 また、本発明の腐食抑制方法は、銅系材料への保護皮膜を形成し腐食を抑制する観点から、pHが通常8.5~10.3程度、好ましくは9.0~9.4の水系で好適に適用することができる。
[PH adjuster]
The corrosion suppression method of the present invention has the effect of suppressing ammonia attack by ammonia used for pH adjustment, and the water system of the boiler contains ammonia. Therefore, although ammonia is used as a pH adjuster in the water system of the present invention, pH adjustment may be performed with ammonia derived from the thermal decomposition of the oxygen scavenger.
The pH adjuster may use only one type of ammonia, or ammonia may be used in combination with one or more other pH adjusters. Examples of pH adjusters that can be used in combination with ammonia include potassium hydroxide, sodium hydroxide, potassium carbonate, sodium carbonate and the like.
The ammonia concentration is not particularly limited as long as it can be adjusted to a desired pH, but the concentration in the feed water is usually about 0.1 to 1,000 mg / L, preferably 1 to 500 mg / L.
In addition, the corrosion inhibiting method of the present invention is a water system having a pH of usually about 8.5 to 10.3, preferably 9.0 to 9.4, from the viewpoint of forming a protective film on a copper-based material to inhibit corrosion. Can be suitably applied.
[脱酸素剤]
 本発明の腐食抑制方法において、皮膜性アミンは脱酸素剤と併用してもよい。脱酸素剤としては、ヒドラジンやカルボヒドラジド等のヒドラジン誘導体を用いることができる。また、非ヒドラジン系脱酸素剤として、ハイドロキノン、1-アミノピロリジン、1-アミノ-4-メチルピペラジン、N,N-ジエチルヒドロキシルアミン、イソプロピルヒドロキシルアミン、エリソルビン酸又はその塩、アスコルビン酸又はその塩等を用いることもできる。脱酸素剤は1種のみを用いてもよく、2種以上を併用してもよい。
[Oxygen scavenger]
In the corrosion inhibiting method of the present invention, the film-forming amine may be used in combination with an oxygen scavenger. As the oxygen scavenger, hydrazine derivatives such as hydrazine and carbohydrazide can be used. Also, as non-hydrazine-based oxygen scavengers, hydroquinone, 1-aminopyrrolidine, 1-amino-4-methylpiperazine, N, N-diethylhydroxylamine, isopropylhydroxylamine, erythorbic acid or salts thereof, ascorbic acid or salts thereof, etc. Can also be used. One type of oxygen scavenger may be used, or two or more types may be used in combination.
[その他の添加剤]
 本発明の目的が損なわれない範囲で、必要に応じて腐食抑制剤の慣用成分やその他の補助添加成分を添加してもよい。その他の添加剤としては、各種の可溶化剤、金属イオン封鎖剤、スケール防止剤、スケール除去剤及び凍結防止剤等が挙げられる。
[Other additives]
As long as the object of the present invention is not impaired, conventional components of the corrosion inhibitor and other auxiliary additives may be added as required. Other additives include various solubilizers, sequestering agents, scale inhibitors, scale removers, antifreeze agents, and the like.
[添加方法等]
 本発明の腐食抑制方法において、上述の皮膜性アミンや任意成分である中和性アミン、pH調整剤、脱酸素剤等の皮膜性アミンを含む薬剤は、各成分2種以上を同一箇所に添加する場合、予め混合して添加してもよく、各々別々に添加してもよい。また、連続的又は間欠的に添加することができる。
 また、上記皮膜性アミンの添加は、細管に向けて行う噴霧添加であってもよい。皮膜性アミンの他に上記任意成分を用いる場合も同様に、上記皮膜性アミンを含む薬剤を細管に向けて噴霧添加することができる。
 上記皮膜性アミンを細管に向けて噴霧添加することにより、アンモニアアタックが発生しやすい空気抽出部近傍の銅系材料の細管を、上記皮膜性アミンで直接コーティングすることができ、銅系材料とアンモニアとの直接接触を防ぐことができる。また、銅系材料の細管等のアンモニアアタックが発生しやすい箇所に限定して、上記皮膜性アミンを噴霧することで経済的に無駄がなく、効率的な腐食抑制が可能となる。
 噴霧添加の方法は、特に限定されない。例えば、スプレーノズルを用いて蒸気中の対象の箇所(細管等)に噴霧することができる。噴霧添加は連続的あるいは断続的のいずれでもかまわないが、上記皮膜性アミンを含む薬剤の吸脱着の観点から、一定の濃度を水系内に維持できるような連続的な噴霧添加であることが好ましい。
 また水系内の水温は、通常0~70℃程度、好ましくは40~60℃である。
 また水系の流速は、通常0.1~3.0m/s程度である。
[Addition method, etc.]
In the corrosion inhibiting method of the present invention, two or more kinds of each component are added to the same place in the chemical including the filmable amine described above, the neutralizing amine which is an optional component, the pH adjustor, the oxygen scavenger and the like When using, it may be mixed in advance and may be added separately. Moreover, it can add continuously or intermittently.
Moreover, the addition of the film-forming amine may be spray addition toward the narrow tube. When the above optional components are used in addition to the filmable amine, the drug containing the filmable amine can be similarly spray-directed toward the narrow tube.
The thin film amine in the vicinity of the air extraction portion where the ammonia attack tends to occur can be directly coated with the thin film amine by spraying the thin film amine toward the thin tube, the copper material and ammonia It can prevent direct contact with people. Further, by spraying the film-forming amine only at a position where ammonia attack is likely to occur, such as a thin tube of a copper-based material, there is no economical waste, and efficient corrosion can be suppressed.
The method of spray addition is not particularly limited. For example, a spray nozzle can be used to spray onto a target location (such as a capillary tube) in the steam. The spray addition may be either continuous or intermittent, but from the viewpoint of adsorption and desorption of the drug containing the filmable amine, it is preferable to be continuous spray addition which can maintain a constant concentration in the water system. .
The water temperature in the water system is usually about 0 to 70 ° C., preferably 40 to 60 ° C.
The flow velocity of the water system is usually about 0.1 to 3.0 m / s.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
<実験条件>
 皮膜性アミンの適用により、アンモニアと銅系材料が共存する際の腐食を大幅に低減する方法の検証方法として、図1に示すような評価装置を作製した。
 試験は、評価部の溶存酸素濃度が100μg/Lとなるように脱気したイオン交換水を用い、アンモニアでpHを調整した試験液に皮膜性アミン(表1及び図2中「FFA」と略記する)を添加し、ステンレス製チューブBに導入してステンレス製の予熱槽2で50℃まで加温した後、評価部となる長さ1mの銅チューブAに導入し、50℃の水槽1に流通させここで溶出する金属銅の溶出量を、誘導結合プラズマ(ICP)発光分光分析装置で測定した。
 なお、表1及び図2中、FFAとしてN-オクタデセニルプロパン-1,3-ジアミン(Akzo Nobel社製、製品名「Duomeen(登録商標)OL」)を用いた。
<Experimental conditions>
An evaluation apparatus as shown in FIG. 1 was manufactured as a verification method of a method of significantly reducing corrosion when ammonia and a copper-based material coexist by applying a film-forming amine.
In the test, a film-forming amine (abbreviated as “FFA” in Table 1 and FIG. 2) was used in a test solution in which the pH was adjusted with ammonia using ion-exchanged water degassed so that the dissolved oxygen concentration in the evaluation part would be 100 μg / L. ) Is introduced into a stainless steel tube B and heated to 50 ° C. in a stainless steel preheating tank 2 and then introduced into a copper tube A of 1 m in length serving as an evaluation part, and the water tank 1 at 50 ° C. The elution amount of metallic copper which was circulated and eluted here was measured by an inductively coupled plasma (ICP) emission spectrometer.
In Table 1 and FIG. 2, N-octadecenylpropane-1,3-diamine (manufactured by Akzo Nobel, product name "Duomeen (registered trademark) OL)" was used as FFA.
<結果・考察>
 試験結果として、銅溶出量(μg/L)、アンモニア濃度(mg/L)、pH値を表1に示す。また、得られた試験結果からpHに対する銅溶出量のグラフを図2に示す。
 表1及び図2から、ブランクで銅の溶出量が急増するpH10.3以上の領域でも、皮膜性アミンの適用により、銅の溶出を大幅に抑制していることが分かる。具体的には、pHが約10.5の状態では、銅の溶出量がブランクの1/5程度まで低減できることを確認した。つまり、復水器の空気抽出部のようなアンモニアが濃縮するような場所でも、アンモニアアタックを抑制できることを確認した。
<Results / Discussion>
As test results, copper elution amount (μg / L), ammonia concentration (mg / L) and pH value are shown in Table 1. Moreover, the graph of the copper elution amount with respect to pH is shown in FIG. 2 from the obtained test result.
It can be seen from Table 1 and FIG. 2 that, even in the region of pH 10.3 or more where the elution amount of copper rapidly increases in the blank, the elution of copper is largely suppressed by the application of the film-forming amine. Specifically, it was confirmed that the elution amount of copper can be reduced to about 1⁄5 of that of the blank when the pH is about 10.5. That is, it has been confirmed that the ammonia attack can be suppressed even in a place where the ammonia is concentrated, such as the air extraction unit of the condenser.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 A:銅チューブ
 B:ステンレスチューブ
 1:評価部水槽(50℃)
 2:ステンレス製予熱槽(50℃)
 3:ヒーター付き水槽
 4:熱電対(温度計)
 P:ポンプ
DO:溶存酸素測定装置
A: Copper tube B: Stainless tube 1: Evaluation tank (50 ° C)
2: Stainless steel preheating tank (50 ° C)
3: Water tank with heater 4: Thermocouple (thermometer)
P: Pump DO: Dissolved oxygen measuring device

Claims (6)

  1.  銅系材料を用いたボイラのアンモニアを含有する水系に、皮膜性アミンを添加する銅系材料の腐食抑制方法。 A method of inhibiting corrosion of a copper-based material, wherein a film-forming amine is added to a water system containing ammonia of a boiler using a copper-based material.
  2.  アンモニア濃度と銅の溶出量に応じて、前記皮膜性アミンの添加濃度を調整する、請求項1に記載の銅系材料の腐食抑制方法。 The method for suppressing corrosion of a copper-based material according to claim 1, wherein the addition concentration of the film-forming amine is adjusted in accordance with the ammonia concentration and the elution amount of copper.
  3.  前記皮膜性アミンを2種以上添加する、請求項1又は2に記載の銅系材料の腐食抑制方法。 The corrosion inhibiting method of the copper-type material of Claim 1 or 2 which adds 2 or more types of said filmable amines.
  4.  前記アンモニアを含有する水系に、さらに中和性アミンを添加する、請求項1~3のいずれかに記載の銅系材料の腐食抑制方法。 The method for suppressing corrosion of a copper-based material according to any one of claims 1 to 3, wherein a neutralizing amine is further added to the aqueous system containing ammonia.
  5.  前記水系が海水系ではない、請求項1~4のいずれかに記載の銅系材料の腐食抑制方法。 The method for suppressing corrosion of a copper-based material according to any one of claims 1 to 4, wherein the water system is not a seawater system.
  6.  前記皮膜性アミンの添加が、細管に向けて行う噴霧添加である、請求項1~5のいずれかに記載の銅系材料の腐食抑制方法。
     
     
    The method for suppressing corrosion of a copper-based material according to any one of claims 1 to 5, wherein the addition of the film-forming amine is a spray addition toward a capillary.

PCT/JP2018/034655 2017-09-27 2018-09-19 Corrosion suppression method for copper-based material WO2019065415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018549586A JP6485605B1 (en) 2017-09-27 2018-09-19 Method for inhibiting corrosion of copper-based materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-186770 2017-09-27
JP2017186770 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019065415A1 true WO2019065415A1 (en) 2019-04-04

Family

ID=65903228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034655 WO2019065415A1 (en) 2017-09-27 2018-09-19 Corrosion suppression method for copper-based material

Country Status (2)

Country Link
TW (1) TW201915218A (en)
WO (1) WO2019065415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214507A1 (en) 2021-04-09 2022-10-13 Merck Patent Gmbh Materials for organic electroluminescent devices

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075653A (en) * 1973-11-05 1975-06-20
JPS57171668A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Undercoating treatment for steel material
US4657785A (en) * 1985-12-11 1987-04-14 Nalco Chemical Company Use of benzo and tolyltriazole as copper corrosion inhibitors for boiler condensate systems
JPS63290284A (en) * 1987-04-29 1988-11-28 チバ−ガイキー アクチエンゲゼルシヤフト Method for suppressing corrosion of copper or copper-containing alloy
JP2000160369A (en) * 1998-11-20 2000-06-13 Tosoh Corp Anticorrosive
JP2012172227A (en) * 2011-02-23 2012-09-10 Naigai Kagaku Seihin Kk Metal corrosion preventing or inhibiting agent, and method for using the same
JP2013019042A (en) * 2011-07-14 2013-01-31 Kurita Water Ind Ltd Method for preventing corrosion in steam condensation system, and corrosion inhibitor used for the method
JP2014037585A (en) * 2012-08-17 2014-02-27 Fujifilm Corp Antioxidation treatment method and method of manufacturing semiconductor product using the same
JP6134921B1 (en) * 2015-09-17 2017-05-31 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive for seawater copper alloy piping

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075653A (en) * 1973-11-05 1975-06-20
JPS57171668A (en) * 1981-04-14 1982-10-22 Nippon Steel Corp Undercoating treatment for steel material
US4657785A (en) * 1985-12-11 1987-04-14 Nalco Chemical Company Use of benzo and tolyltriazole as copper corrosion inhibitors for boiler condensate systems
JPS63290284A (en) * 1987-04-29 1988-11-28 チバ−ガイキー アクチエンゲゼルシヤフト Method for suppressing corrosion of copper or copper-containing alloy
JP2000160369A (en) * 1998-11-20 2000-06-13 Tosoh Corp Anticorrosive
JP2012172227A (en) * 2011-02-23 2012-09-10 Naigai Kagaku Seihin Kk Metal corrosion preventing or inhibiting agent, and method for using the same
JP2013019042A (en) * 2011-07-14 2013-01-31 Kurita Water Ind Ltd Method for preventing corrosion in steam condensation system, and corrosion inhibitor used for the method
JP2014037585A (en) * 2012-08-17 2014-02-27 Fujifilm Corp Antioxidation treatment method and method of manufacturing semiconductor product using the same
JP6134921B1 (en) * 2015-09-17 2017-05-31 株式会社片山化学工業研究所 Anticorrosion method and anticorrosive for seawater copper alloy piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022214507A1 (en) 2021-04-09 2022-10-13 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
TW201915218A (en) 2019-04-16

Similar Documents

Publication Publication Date Title
JP6215511B2 (en) Anticorrosive for boiler
JPH0630768B2 (en) Oxygen scavenger composition and method
US11204207B2 (en) Vapor condensation method
WO2015122264A1 (en) Scale removal method and scale removal agent for steam generating facilities
JP6699234B2 (en) Boiler water treatment method
WO2019065415A1 (en) Corrosion suppression method for copper-based material
JP5453990B2 (en) Corrosion inhibiting method and corrosion inhibiting apparatus for boiler equipment
JP6485605B1 (en) Method for inhibiting corrosion of copper-based materials
JP6134921B1 (en) Anticorrosion method and anticorrosive for seawater copper alloy piping
JP3855961B2 (en) Oxygen absorber and deoxygenation method
US4689201A (en) Prevention of corrosion
JP4305440B2 (en) Anticorrosive for reducing erosion and corrosion and method for reducing the same
KR101226307B1 (en) Inhibition of corrosion in fluid systems
JP2006274337A (en) Treatment agent and treatment method for boiler water
JP6144399B1 (en) Steam condensate corrosion inhibitor and corrosion inhibition method
JP2013068341A (en) Method for preventing corrosion of economizer in boiler
US5194223A (en) Methods for inhibiting the corrosion of iron-containing and copper-containing metals in boiler feedwater systems
JP2019196541A (en) Corrosion inhibitor for boiler system and corrosion inhibiting method
JP5849409B2 (en) Boiler water treatment agent and boiler water treatment method
JP2013067830A (en) Corrosion inhibit method of economizer in boiler
JP5900064B2 (en) Water treatment method for a boiler having an economizer
TW202346784A (en) Method for improving heat-transfer efficiency of heat exchanger
JP5274786B2 (en) Boiler treating agent composition and anticorrosion method for boiler system
JP6589959B2 (en) Corrosion prevention method
JP2017128755A (en) Deoxidizing agent and deoxidation treatment method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018549586

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18863566

Country of ref document: EP

Kind code of ref document: A1