JP6589959B2 - Corrosion prevention method - Google Patents

Corrosion prevention method Download PDF

Info

Publication number
JP6589959B2
JP6589959B2 JP2017200426A JP2017200426A JP6589959B2 JP 6589959 B2 JP6589959 B2 JP 6589959B2 JP 2017200426 A JP2017200426 A JP 2017200426A JP 2017200426 A JP2017200426 A JP 2017200426A JP 6589959 B2 JP6589959 B2 JP 6589959B2
Authority
JP
Japan
Prior art keywords
film
cooling water
alkalinity
water system
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017200426A
Other languages
Japanese (ja)
Other versions
JP2019073764A (en
Inventor
たかし 吉川
たかし 吉川
直宏 永井
直宏 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2017200426A priority Critical patent/JP6589959B2/en
Priority to PCT/JP2018/038065 priority patent/WO2019078104A1/en
Priority to TW107136162A priority patent/TW201923150A/en
Publication of JP2019073764A publication Critical patent/JP2019073764A/en
Application granted granted Critical
Publication of JP6589959B2 publication Critical patent/JP6589959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、冷却水系に接した金属部材、特に炭素鋼等の鉄系金属部材の表面に防食皮膜を形成してその腐食を抑制する腐食防止方法に関する。   The present invention relates to a corrosion prevention method for suppressing corrosion by forming an anticorrosive film on the surface of a metal member in contact with a cooling water system, particularly an iron-based metal member such as carbon steel.

開放循環冷却水系に設けられた金属部材、例えば、炭素鋼、銅、又は銅合金製の熱交換器、反応釜や配管は、冷却水と接触することにより腐食を受けることから、一般に、薬剤添加による防食処理が施されている。
例えば、炭素鋼製の熱交換器、反応釜や配管の腐食を抑制するために、オルトリン酸塩、ヘキサメタリン酸塩、ヒドロキシエチリデンホスホン酸塩、ホスホノブタントリカルボン酸塩等のリン化合物が冷却水系に添加されている。亜鉛塩や重クロム酸塩のような重金属塩を単独で又は併用して添加する場合もある。
しかし、このようなリン化合物や亜鉛塩などを添加する防食処理では、水質を汚染し、環境に重篤な影響を与える可能性がある。
Metal members provided in an open circulating cooling water system, such as heat exchangers, reaction kettles and piping made of carbon steel, copper, or copper alloys, are generally corroded by contact with cooling water. Corrosion protection treatment is applied.
For example, phosphorous compounds such as orthophosphate, hexametaphosphate, hydroxyethylidene phosphonate, phosphonobutane tricarboxylate are added to the cooling water system to suppress corrosion of carbon steel heat exchangers, reaction kettles and piping. It has been added. A heavy metal salt such as zinc salt or dichromate may be added alone or in combination.
However, the anticorrosion treatment in which such a phosphorus compound or zinc salt is added may contaminate water quality and seriously affect the environment.

一方、環境負荷を低減した処理方法として、リン化合物や亜鉛塩に頼らず、水質成分を調整することにより、防食効果を改善する方法が、以下の特許文献1〜3に提案されている。   On the other hand, the following patent documents 1 to 3 propose methods for improving the anticorrosion effect by adjusting water quality components without depending on phosphorus compounds and zinc salts as treatment methods with reduced environmental load.

特許文献1には、開放循環冷却水系において、ランゲリア指数が1.5以上でかつシリカ濃度とカルシウム硬度の積が2000以上となるように水質を調整し、マレイン酸とイソブチレンとの共重合体を添加する金属の腐食抑制方法が開示されている。
特許文献2には、ランゲリア指数が1.5以上で、かつシリカ濃度とカルシウム硬度の積が2000以上となるように調整された水系に、マレイン酸系重合体Aと、マレイン酸系単量体と非イオン性モノエチレン系不飽和単量体との共重合体Bとを特定の割合で添加する金属の腐食抑制方法が開示されている。
特許文献3には、リン酸塩と亜鉛塩とMアルカリ度成分とが添加され、全リン酸濃度及び全亜鉛濃度をそれぞれ1mg/L以下、かつ30℃におけるランゲリア指数を1.2以上とする水系の金属腐食抑制方法が開示されている。
In Patent Document 1, in an open circulation cooling water system, the water quality is adjusted so that the Langelia index is 1.5 or more and the product of silica concentration and calcium hardness is 2000 or more, and a copolymer of maleic acid and isobutylene is prepared. A method for inhibiting corrosion of a metal to be added is disclosed.
In Patent Document 2, a maleic acid polymer A and a maleic acid monomer are added to an aqueous system in which the Langellia index is 1.5 or more and the product of silica concentration and calcium hardness is 2000 or more. And a method for inhibiting corrosion of a metal in which a copolymer B of a nonionic monoethylenically unsaturated monomer is added at a specific ratio.
In Patent Document 3, a phosphate, a zinc salt, and an M alkalinity component are added, the total phosphoric acid concentration and the total zinc concentration are each 1 mg / L or less, and the Langeria index at 30 ° C. is 1.2 or more. An aqueous metal corrosion suppression method is disclosed.

しかし、特許文献1〜3の方法は、いずれもカルシウム硬度が低い水質においては、カルシウム硬度やシリカ濃度、ランゲリア指数を一定値にするために、多量の薬剤を添加する必要がある。   However, all of the methods of Patent Documents 1 to 3 require that a large amount of chemicals be added in order to keep the calcium hardness, the silica concentration, and the Langeria index constant in water quality with low calcium hardness.

腐食を抑制する他の方法として、皮膜性アミンを用いる方法があり、この方法は主としてボイラ水系における金属の腐食抑制に適用されている。皮膜性アミンによる防食のメカニズムは、皮膜性アミンが金属の表面にアミノ基を介して吸着して単分子又は多分子層の緻密な皮膜を形成することにより金属と水の接触を防止することで、金属の腐食を抑制するというものである(非特許文献1)。   As another method for suppressing corrosion, there is a method using a film-forming amine, and this method is mainly applied to metal corrosion suppression in a boiler water system. The mechanism of corrosion protection by film-forming amines is to prevent contact between metal and water by forming film-forming amines adsorbing on the metal surface via amino groups to form a dense monomolecular or multi-layer film. In other words, metal corrosion is suppressed (Non-Patent Document 1).

特公平4−33868号公報Japanese Patent Publication No. 4-33868 特開2007−119835号公報Japanese Patent Laid-Open No. 2007-119835 特開2009−299161号公報JP 2009-299161 A

腐食センターニュース No.054(2010年8月) 水処理技術(1)「ボイラおよび周辺設備の腐食・防食」川村 文夫Corrosion Center News No. 054 (August 2010) Water treatment technology (1) “Corrosion and corrosion protection of boilers and peripheral equipment” Fumio Kawamura

前述の通り、リン化合物や亜鉛塩などを添加する防食処理では、水質を汚染し環境に重篤な影響を与える可能性がある。一方、これらの物質を使用せずに水質調整を行って防食効果を改善する場合、特にカルシウム硬度の低い冷却水系で防食効果を発揮させるためには、多量の薬剤を添加する必要があり、経済的ではない。   As described above, the anticorrosion treatment in which a phosphorus compound or zinc salt is added may contaminate water quality and seriously affect the environment. On the other hand, when adjusting the water quality without using these substances to improve the anticorrosion effect, it is necessary to add a large amount of chemicals in order to exert the anticorrosion effect especially in the cooling water system having a low calcium hardness. Not right.

皮膜性アミンを用いて金属の表面に防食皮膜を形成する方法は、皮膜性アミンの必要量は基本的には金属の表面積に比例し、一旦防食皮膜が形成された後の皮膜性アミンの必要量は少なくて足りるため、薬剤コストを抑えることができるが、腐食抑制効果を発揮し得る緻密な防食皮膜の形成の可否は、水系の水質に大きく影響されるため、冷却水系等への適用は困難であった。   The method of forming an anticorrosive film on the surface of a metal using a film-forming amine is that the required amount of film-forming amine is basically proportional to the surface area of the metal, and the film-forming amine is required once the anticorrosion film is formed. Since the amount is small enough, the cost of chemicals can be reduced. It was difficult.

本発明は、リン化合物、亜鉛塩といった環境負荷となる薬剤を用いることなく、皮膜性アミンによる防食皮膜の形成で冷却水系に接する金属部材の腐食を抑制する腐食防止方法であって、水質調整のための薬剤添加量を大幅に低減することができる腐食防止方法を提供することを課題とする。   The present invention is a corrosion prevention method for suppressing corrosion of a metal member in contact with a cooling water system by forming an anticorrosion film with a film-forming amine without using chemicals that cause environmental burden such as phosphorus compounds and zinc salts. It is an object of the present invention to provide a corrosion prevention method capable of significantly reducing the amount of chemical added for the purpose.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、皮膜性アミンによる防食処理では、皮膜性アミンのみでは防食皮膜を形成し得ず、防食皮膜の形成、防食効果の維持にはMアルカリ度成分を必要とすることを知見した。そして、皮膜性アミンとMアルカリ度成分との併用による防食処理について更に検討した結果、皮膜性アミンによる処理を開始する初期処理時にのみ、冷却水系のMアルカリ度、更にはpHを所定の条件にすれば、その後の保持処理時には薬剤の添加を不要或いはごく少量の薬剤添加で防食効果を維持することができることを見出した。
本発明に従った皮膜性アミンによる防食皮膜の形成による腐食防止方法では、所定以上のMアルカリ度と皮膜性アミン濃度があれば防食皮膜を形成して防食効果を得ることができるため、環境負荷を低減し、安価な防食処理が可能となる。特に、冷却水系では、補給水由来のMアルカリ度が濃縮されるため、防食皮膜形成のためのMアルカリ度の調整のためには、濃縮が上がる前の初期段階だけ不足するMアルカリ度成分を投入すれば良い。よって、その後は、薬剤としては通常皮膜性アミンの添加のみで済む。
As a result of intensive studies to solve the above problems, the present inventors have been unable to form an anticorrosion film with a film-forming amine alone in the anticorrosion treatment with a film-forming amine, but to form an anticorrosion film and maintain the anticorrosion effect. Has found that it requires an M alkalinity component. Further, as a result of further investigation on the anticorrosion treatment using the combination of the film-forming amine and the M alkalinity component, the M alkalinity of the cooling water system and further the pH are set to predetermined conditions only at the initial treatment for starting the treatment with the film-forming amine. In this way, it was found that the anticorrosion effect can be maintained by adding no chemical or adding a very small amount of chemical during the subsequent holding treatment.
In the corrosion prevention method by forming the anticorrosive film with the film-forming amine according to the present invention, the anticorrosion effect can be obtained by forming the anti-corrosion film if the M alkalinity and the film-forming amine concentration are higher than the predetermined value. And an inexpensive anticorrosion treatment becomes possible. In particular, in the cooling water system, M alkalinity derived from makeup water is concentrated. Therefore, in order to adjust the M alkalinity for the formation of the anticorrosive film, the M alkalinity component that is insufficient only in the initial stage before concentration is increased You just have to put it in. Therefore, after that, it is usually only necessary to add a film-forming amine as a drug.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。   The present invention has been achieved based on such findings, and the gist thereof is as follows.

[1] 冷却水系に皮膜性アミンとMアルカリ度成分を共存させて該冷却水系に接する金属部材の表面に防食皮膜を形成して該金属部材の腐食を抑制する腐食防止方法であって、
該Mアルカリ度成分として中和性アミンを用い、該防食皮膜を形成する初期処理時の該冷却水系のMアルカリ度を90mg/L as CaCO以上に調整することを特徴とする腐食防止方法。
[1] A corrosion prevention method for suppressing corrosion of a metal member by forming a corrosion prevention film on the surface of a metal member in contact with the cooling water system by coexisting a film-forming amine and an M alkalinity component in the cooling water system,
A method for preventing corrosion, comprising using a neutralizing amine as the M alkalinity component and adjusting the M alkalinity of the cooling water system during initial treatment for forming the anticorrosion film to 90 mg / L as CaCO 3 or more.

[2] [1]において、前記初期処理時の前記冷却水系のpHを9.5以上とすることを特徴とする腐食防止方法。 [2] The method for preventing corrosion according to [1], wherein the pH of the cooling water system during the initial treatment is set to 9.5 or more.

[3] 冷却水系に皮膜性アミンとMアルカリ度成分を共存させて該冷却水系に接する金属部材の表面に防食皮膜を形成して該金属部材の腐食を抑制する腐食防止方法であって、
該Mアルカリ度成分として無機アルカリを用い、該防食皮膜を形成する初期処理時の該冷却水系のMアルカリ度を120mg/L as CaCO以上、pHを9.5以上に調整することを特徴とする腐食防止方法。
[3] A corrosion prevention method for suppressing corrosion of the metal member by forming a corrosion prevention film on the surface of the metal member in contact with the cooling water system by coexisting a film-forming amine and an M alkalinity component in the cooling water system,
An inorganic alkali is used as the M alkalinity component, and the M alkalinity of the cooling water system during initial treatment for forming the anticorrosion film is adjusted to 120 mg / L as CaCO 3 or more, and the pH is adjusted to 9.5 or more. How to prevent corrosion.

[4] [1]ないし[3]のいずれかにおいて、前記初期処理時に前記冷却水系に前記皮膜性アミンを10mg/L以上添加し、その後、該初期処理時の該冷却水系の皮膜性アミン濃度を0.1mg/Lを超える濃度に維持することを特徴とする腐食防止方法。 [4] In any one of [1] to [3], at least 10 mg / L of the film-forming amine is added to the cooling water system during the initial treatment, and then the film-forming amine concentration of the cooling water system during the initial treatment Is maintained at a concentration exceeding 0.1 mg / L.

[5] [1]ないし[4]のいずれかにおいて、前記初期処理後、形成された防食皮膜を保持する保持処理時において、前記冷却水系のMアルカリ度を30mg/L as CaCO以上、皮膜性アミン濃度を0.1mg/L以上に維持することを特徴とする腐食防止方法。 [5] In any one of [1] to [4], the M alkalinity of the cooling water system is 30 mg / L as CaCO 3 or more in the holding treatment for holding the formed anticorrosion coating after the initial treatment. A corrosion prevention method characterized in that the concentration of the reactive amine is maintained at 0.1 mg / L or more.

本発明によれば、皮膜性アミンとMアルカリ度成分を用いて、リン化合物や亜鉛塩といった環境負荷となる薬剤を必要とすることなく、防食皮膜の形成で高い防食効果を得ることができる。本発明によれば、防食皮膜形成までの初期処理時に水質調整用の薬剤の添加が必要とされるが、防食皮膜が形成された後の保持処理時には水質調整のために薬剤を添加する必要はなく、或いは少ない薬剤添加量で防食効果を維持することができる。
このようなことから、本発明によれば、環境負荷を低減すると共に薬剤コストを抑えた経済的な処理で、高い防食効果を長期間安定に得ることができる。
According to the present invention, it is possible to obtain a high anticorrosion effect by forming an anticorrosion film without using an agent that causes environmental burden such as a phosphorus compound or a zinc salt using a film-forming amine and an M alkalinity component. According to the present invention, it is necessary to add a chemical for adjusting the water quality during the initial treatment until the formation of the anticorrosive film, but it is necessary to add a chemical for adjusting the water quality during the retention treatment after the anticorrosive film is formed. The anticorrosion effect can be maintained with no or a small amount of drug added.
For this reason, according to the present invention, it is possible to stably obtain a high anticorrosive effect for a long period of time by economical treatment that reduces the environmental load and suppresses the drug cost.

以下に、本発明の腐食防止方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the corrosion prevention method of the present invention will be described in detail.

本発明の腐食防止方法では、冷却水系に皮膜性アミンとMアルカリ度成分を共存させてこの冷却水系に接する金属部材の表面に防食皮膜を形成して金属部材の腐食を抑制するに当たり、防食皮膜を形成する初期処理時において、Mアルカリ度成分として中和性アミンを用いる場合は、冷却水系のMアルカリ度を90mg/L as CaCO以上に調整し、Mアルカリ度成分として無機アルカリを用いる場合は、冷却水系のMアルカリ度を120mg/L as CaCO以上、pHを9.5以上に調整する。 In the corrosion prevention method of the present invention, a corrosion-resistant film is formed by inhibiting the corrosion of a metal member by forming a corrosion-resistant film on the surface of the metal member in contact with the cooling water system by coexisting a film-forming amine and an M alkalinity component in the cooling water system. When neutralizing amine is used as the M alkalinity component during the initial treatment to form the water, the M alkalinity of the cooling water system is adjusted to 90 mg / L as CaCO 3 or more, and the inorganic alkali is used as the M alkalinity component Adjusts the M alkalinity of the cooling water system to 120 mg / L as CaCO 3 or more and the pH to 9.5 or more.

<初期処理・保持処理>
本発明において、初期処理とは、皮膜性アミンにより、処理対象となる冷却水系内の該冷却水系と接する金属部材の表面全体に防食皮膜を形成させる処理をさす。
ここで、金属部材の表面全体とは、配管、熱交換器、反応釜などをいう。
また、初期処理とは、中和性アミンや無機アルカリを用いて十分にMアルカリ度を上げ、高濃度の皮膜性アミンを添加することで金属部材の表面全体に防食皮膜が形成される処理のことである。
<Initial processing / holding processing>
In the present invention, the initial treatment refers to a treatment for forming an anticorrosive film on the entire surface of the metal member in contact with the cooling water system in the cooling water system to be treated with a film-forming amine.
Here, the entire surface of the metal member means a pipe, a heat exchanger, a reaction kettle, or the like.
In addition, the initial treatment is a treatment in which the M alkalinity is sufficiently increased using a neutralizing amine or an inorganic alkali, and an anticorrosive film is formed on the entire surface of the metal member by adding a high concentration film-forming amine. That is.

また、保持処理とは、上記の初期処理後、冷却水系内の金属部材の表面全体に形成された防食皮膜を保持(維持)する処理である。   The holding process is a process for holding (maintaining) the anticorrosive film formed on the entire surface of the metal member in the cooling water system after the initial process.

<水質調整>
本発明においては、初期処理時に冷却水系の水質調整を行うことにより、冷却水系に接する金属部材の表面に安定な防食皮膜を効率的に形成する。
<Water quality adjustment>
In the present invention, by adjusting the water quality of the cooling water system during the initial treatment, a stable anticorrosive film is efficiently formed on the surface of the metal member in contact with the cooling water system.

防食皮膜を形成する初期処理時には十分なMアルカリ度が必要であり、Mアルカリ度成分として後述の中和性アミンを使用する場合は、冷却水系のMアルカリ度が90mg/L as CaCO以上、pHが好ましくは9.5以上となるように水質調整する。通常の場合、中和性アミンを冷却水系のMアルカリ度が90mg/L as CaCO以上となるように添加した場合、pHは9.5以上となるため、別途アルカリ剤を添加する必要はない。
一方、Mアルカリ度成分として後述の無機アルカリを使用する場合には、冷却水系のMアルカリ度が120mg/L as CaCO以上、pHが9.5以上となるように水質調整する。この場合、後述の炭酸塩、重炭酸塩によりMアルカリ度成分120mg/L as CaCO以上に調整し、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物によりpHを9.5以上に調整することが好ましい。
Sufficient M alkalinity is required at the initial treatment for forming the anticorrosive film, and when the neutralizing amine described later is used as the M alkalinity component, the M alkalinity of the cooling water system is 90 mg / L as CaCO 3 or more, The water quality is adjusted so that the pH is preferably 9.5 or higher. Normally, when neutralizing amine is added so that the M alkalinity of the cooling water system is 90 mg / L as CaCO 3 or more, the pH is 9.5 or more, so there is no need to add an alkali agent separately. .
On the other hand, when the inorganic alkali described later is used as the M alkalinity component, the water quality is adjusted so that the M alkalinity of the cooling water system is 120 mg / L as CaCO 3 or more and the pH is 9.5 or more. In this case, the M alkalinity component is adjusted to 120 mg / L as CaCO 3 or higher with the carbonate and bicarbonate described later, and the pH is adjusted to 9.5 or higher with alkali metal hydroxides such as sodium hydroxide and potassium hydroxide. It is preferable to do.

なお、中和性アミンと無機アルカリを併用してもよく、この場合は、冷却水系のMアルカリ度が120mg/L as CaCO以上、pHが9.5以上となるように水質調整する。 In this case, the water quality is adjusted so that the M alkalinity of the cooling water system is 120 mg / L as CaCO 3 or more and the pH is 9.5 or more.

Mアルカリ度成分として中和性アミンを用いる場合、一般的には、皮膜性アミンと共に、必要量の中和性アミンを冷却水系に添加してMアルカリ度を調整する。   When a neutralizing amine is used as the M alkalinity component, generally, a necessary amount of neutralizing amine is added to the cooling water system together with the film-forming amine to adjust the M alkalinity.

Mアルカリ度成分として無機アルカリを用いる場合は、重炭酸ナトリウムや炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム等の補給水中のMアルカリ度を利用することもできる。冷却水系の補給水中にこれらのMアルカリ度成分が含まれる場合は、Mアルカリ度120mg/L as CaCO以上、pH9.5以上の水質とするための不足分の無機アルカリを添加すればよい。 When an inorganic alkali is used as the M alkalinity component, the M alkalinity in the makeup water such as sodium bicarbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide and the like can be used. When these M alkalinity components are contained in the replenishing water of the cooling water system, an insufficient amount of inorganic alkali for making the water quality of M alkalinity 120 mg / L as CaCO 3 or more and pH 9.5 or more may be added.

Mアルカリ度成分として中和性アミン、無機アルカリのいずれを用いる場合も、皮膜性アミンは、冷却水系の皮膜性アミン濃度として10mg/L以上を目安に添加することが好ましい。皮膜性アミンの添加で金属部材表面に防食皮膜が形成されることで、冷却水系の皮膜性アミン濃度が低下するが、初期処理時は、冷却水系の皮膜性アミン濃度が2mg/L以下とならないように皮膜性アミン濃度を維持することが好ましい。従って、皮膜性アミンの消耗が激しい場合は、必要に応じて適宜皮膜性アミンを追加添加する。   When either neutralizing amine or inorganic alkali is used as the M alkalinity component, the film-forming amine is preferably added at a cooling water-based film-forming amine concentration of 10 mg / L or more. By adding a film-forming amine, an anticorrosion film is formed on the surface of the metal member, so that the concentration of the cooling-water-based film-forming amine is reduced. Thus, it is preferable to maintain the film-forming amine concentration. Accordingly, when the consumption of the film-forming amine is severe, an additional film-forming amine is added as necessary.

このような初期処理後の保持処理時においては、Mアルカリ度30mg/L as CaCO以上、皮膜性アミン濃度0.1mg/L以上の水質を維持することで、既に形成された防食皮膜を安定に維持して防食効果を持続させることができる。
この保持処理時においては、冷却水系の濃縮でMアルカリ度が上昇する傾向があるため、通常、Mアルカリ度成分の追加添加は不要である。また、皮膜性アミンについても、追加添加することなく通常1mg/L以上の濃度を維持し得るが、皮膜性アミン濃度が低下する傾向がある場合は適宜必要量の皮膜性アミンを追加添加する。
At the time of such a holding treatment after the initial treatment, the already formed anticorrosion film can be stabilized by maintaining the water quality of M alkalinity 30 mg / L as CaCO 3 or more and film-forming amine concentration 0.1 mg / L or more. The anticorrosion effect can be maintained by maintaining the above.
At the time of this holding treatment, the M alkalinity tends to increase due to the concentration of the cooling water system, and therefore it is usually unnecessary to add an M alkalinity component. Further, the concentration of the film-forming amine can be normally maintained at 1 mg / L or more without additional addition. However, when the film-forming amine concentration tends to decrease, a necessary amount of the film-forming amine is appropriately added.

このように、本発明によれば、初期処理時に必要量の薬剤を添加するのみで、その後の保持処理時には、薬剤を全く添加することなく、或いはごく少量の薬剤添加で防食効果を持続させることができる。   As described above, according to the present invention, the anticorrosion effect can be maintained only by adding a necessary amount of drug at the initial processing, and without adding any drug at the time of the subsequent holding process, or by adding a very small amount of drug. Can do.

なお、上記の水質調整の説明において、皮膜性アミン濃度やMアルカリ度は、下限のみで、上限を特に限定していないが、初期処理、保持処理のいずれにおいても、Mアルカリ度、皮膜性アミン濃度は低い程防食効果が低下し、高い程防食効果が向上する。Mアルカリ度、皮膜性アミン濃度を高くするためには、薬剤添加量が多くなり、薬剤コストが高くつくため、Mアルカリ度、皮膜性アミン濃度の上限は防食効果と薬剤コストの兼ね合いで適宜決定される。なお、保持処理時のpHについては、作業環境の安全性、薬剤コスト、銅防食等の観点から10以下とすることが好ましい。   In the description of the water quality adjustment, the film-forming amine concentration and the M alkalinity are only the lower limit, and the upper limit is not particularly limited. The lower the concentration, the lower the anticorrosion effect, and the higher the concentration, the better the anticorrosion effect. In order to increase the M alkalinity and film-forming amine concentration, the amount of drug added increases, and the drug cost increases. Therefore, the upper limit of the M alkalinity and film-forming amine concentration is determined appropriately in accordance with the anticorrosive effect and the drug cost. Is done. In addition, about pH at the time of a holding | maintenance process, it is preferable to set it as 10 or less from viewpoints, such as safety | security of a working environment, chemical | medical agent cost, and copper anticorrosion.

<冷却水系>
本発明において、処理対象とする冷却水系は、密閉循環冷却水系でも良いし、開放循環冷却水系でも良い。また、冷却水系の水は純水、軟水、工業用水など特に限定されない。いずれの冷却水系でもブローや飛散水などで抜けた分、破壊された皮膜の再形成などで消耗した分を補うため、上記の水質となるように薬剤の追加添加を行う。
<Cooling water system>
In the present invention, the cooling water system to be treated may be a closed circulating cooling water system or an open circulating cooling water system. The cooling water system water is not particularly limited, such as pure water, soft water, and industrial water. In any cooling water system, in order to make up for the amount lost by blowing or splashing water, and the amount consumed by re-forming the destroyed film, additional chemicals are added to achieve the above water quality.

なお、処理対象とする冷却水系のMアルカリ度成分、pH、皮膜性アミン濃度以外の水質については、特に制限はないが、一般的に冷却水で採用される水質であることが好ましい。   In addition, although there is no restriction | limiting in particular about water quality other than M alkalinity component, pH, and film-forming amine density | concentration of the cooling water system made into a process target, It is preferable that it is the water quality generally employ | adopted with cooling water.

<金属部材>
本発明において、防食対象とする金属部材には特に制限はなく、炭素鋼等の鉄系金属部材であっても良く、銅系金属部材であっても良いが、皮膜性アミンにより腐食抑制に有効な防食皮膜を形成し易いことから、本発明は炭素鋼等の鉄系金属部材の腐食抑制に有効である。
<Metal member>
In the present invention, there is no particular limitation on the metal member to be protected against corrosion, and it may be an iron-based metal member such as carbon steel or a copper-based metal member. Therefore, the present invention is effective in inhibiting corrosion of ferrous metal members such as carbon steel.

<皮膜性アミン>
皮膜性アミンとは、金属表面に防食性の皮膜を形成し得るアミンである。本発明で用いる皮膜性アミンとしては特に制限はなく、通常、ボイラ水系の防食処理等に用いられている皮膜性アミンをいずれも好適に用いることができる。一般的な皮膜性アミンは、長鎖脂肪族アミン類(脂肪族アミンやジアミン類)等の1種又は2種以上が用いられる。
<Film-forming amine>
A film-forming amine is an amine capable of forming a corrosion-resistant film on a metal surface. The film-forming amine used in the present invention is not particularly limited, and any film-forming amine that is usually used for boiler water-based anticorrosion treatment or the like can be suitably used. As the general film-forming amine, one type or two or more types such as long-chain aliphatic amines (aliphatic amines and diamines) are used.

これらのうち、特に長鎖脂肪族アミン類が、腐食抑制効果の観点から好ましい。長鎖脂肪族アミンの長鎖脂肪族基の炭素数は10〜22、特に12〜20であることが好ましい。この炭素数が10未満の場合は、金属部材に対して皮膜を形成しにくく、腐食抑制機能が不十分になる可能性がある。逆に、炭素数が22を超えるものは、薬注時の取り扱い性に劣る傾向がある。   Of these, long-chain aliphatic amines are particularly preferable from the viewpoint of the corrosion inhibition effect. The long chain aliphatic group of the long chain aliphatic amine has preferably 10 to 22 carbon atoms, particularly preferably 12 to 20 carbon atoms. When this carbon number is less than 10, it is difficult to form a film on the metal member, and the corrosion inhibiting function may be insufficient. Conversely, those having more than 22 carbon atoms tend to be inferior in handleability during drug injection.

長鎖脂肪族アミンを構成する長鎖脂肪族基は、不飽和結合を含んでいてもよい。また、この長鎖脂肪族アミンを構成するアミノ基は、その水素部分がメチル基やエチル基などの炭化水素基により適宜置換されていてもよい。さらに、この長鎖脂肪族アミンは、脂肪酸塩であってもよい。この場合、脂肪酸塩を構成する脂肪酸としては、例えば、オレイン酸、ラウリン酸およびステアリン酸を挙げることができる。   The long chain aliphatic group constituting the long chain aliphatic amine may contain an unsaturated bond. In the amino group constituting the long-chain aliphatic amine, the hydrogen portion may be appropriately substituted with a hydrocarbon group such as a methyl group or an ethyl group. Further, the long chain aliphatic amine may be a fatty acid salt. In this case, examples of the fatty acid constituting the fatty acid salt include oleic acid, lauric acid, and stearic acid.

長鎖脂肪族アミンのうち、好ましいものとしては、例えば、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ヘプタデシルアミン、ヘキサデシルアミン、オクタデシルアミン、ノナデシルアミン、エイコシルアミン、ドコシルアミンなどの飽和脂肪族アミン、オレイルアミン、リシノレイルアミン、リノレイルアミン、リノレニルアミンなどの不飽和脂肪族アミン、ヤシ油アミン、硬化牛脂アミンなどの混合アミンなどを挙げることができる。また、N−オレイル−1,3−ジアミノプロパン、N−タロウ−1,3−ジアミノプロパン、N−ココ−1,3−ジアミノプロパン等のアミノ基に長鎖脂肪族基を有するものであってよい。また、N−タロウ−1,3−ジアミノプロパン−エチレンオキサイド付加物等のアルキレンオキサイド付加物であってもよい。   Among the long-chain aliphatic amines, preferred are saturated aliphatic amines such as dodecylamine, tridecylamine, tetradecylamine, heptadecylamine, hexadecylamine, octadecylamine, nonadecylamine, eicosylamine, docosylamine and the like. , Oleylamine, ricinoleylamine, linoleylamine, unsaturated aliphatic amines such as linoleylamine, mixed amines such as coconut oil amine and hardened tallow amine. Moreover, it has a long chain aliphatic group in an amino group such as N-oleyl-1,3-diaminopropane, N-tallow-1,3-diaminopropane, N-coco-1,3-diaminopropane, and the like. Good. Further, it may be an alkylene oxide adduct such as N-tallow-1,3-diaminopropane-ethylene oxide adduct.

これらの皮膜性アミンは水に溶けにくいため、溶剤に溶かして使用しても良いし、水中にエマルションとして分散させて使用しても良い。   Since these film-forming amines are hardly soluble in water, they may be used by dissolving in a solvent, or may be used by being dispersed as an emulsion in water.

<Mアルカリ度成分>
本発明で用いるMアルカリ度成分としては、無機アルカリでも、有機アルカリである中和性アミン(酸成分を中和し得るアミン)でもよい。
<M alkalinity component>
The M alkalinity component used in the present invention may be an inorganic alkali or an organic alkali neutralizing amine (an amine capable of neutralizing an acid component).

無機アルカリとしては、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)等の炭酸塩、重炭酸ナトリウム(NaHCO)、重炭酸カリウム(KHCO)等の重炭酸塩や、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等のアルカリ金属水酸化物、水酸化カルシウム(Ca(OH))等のカルシウム化合物の1種又は2種以上が挙げられるが、Mアルカリ度の調整のために炭酸塩、重炭酸塩を用い、これらの弱アルカリ性化合物と共に、必要に応じて、水酸化ナトリウム、水酸化カリウム等の強アルカリ性化合物を併用してpH調整することが好ましい。 Examples of the inorganic alkali include carbonates such as sodium carbonate (Na 2 CO 3 ) and potassium carbonate (K 2 CO 3 ), bicarbonates such as sodium bicarbonate (NaHCO 3 ) and potassium bicarbonate (KHCO 3 ), water Examples include alkali metal hydroxides such as sodium oxide (NaOH) and potassium hydroxide (KOH), and one or more calcium compounds such as calcium hydroxide (Ca (OH) 2 ). For the adjustment, it is preferable to adjust the pH by using carbonates and bicarbonates together with these weak alkaline compounds and, if necessary, strong alkaline compounds such as sodium hydroxide and potassium hydroxide.

中和性アミンとしては、ジメチルアミノエタノール(DMEA)、ジエチルエタノールアミン(DEEA)、モノイソプロパノールアミン(MIPA)、モノエタノールアミン(MEA)、シクロへキシルアミン(CHA)、モルホリン(MOR)、メトキシプロピルアミン(MOPA)、2−アミノ−2−メチル−1−プロパノール(AMP)等の1種又は2種以上を用いることができる。   As neutralizing amines, dimethylaminoethanol (DMEA), diethylethanolamine (DEEA), monoisopropanolamine (MIPA), monoethanolamine (MEA), cyclohexylamine (CHA), morpholine (MOR), methoxypropylamine 1 type (s) or 2 or more types, such as (MOPA) and 2-amino-2-methyl-1-propanol (AMP), can be used.

なお、前述の通り、無機アルカリと中和性アミンとを併用してもよい。   As described above, an inorganic alkali and a neutralizing amine may be used in combination.

以下に実施例及び比較例を挙げて、本発明をより具体的に説明する。
以下の実施例及び比較例では、試験水中に試験片を浸漬して回転させることにより、試験片を腐食させる回転腐食試験装置を用いて、以下の手順で腐食試験を行った。腐食速度の単位はmdd(mg/dm/day)とし、10mdd以下を防食効果十分として判断した。
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
In the following examples and comparative examples, the corrosion test was performed in the following procedure using a rotary corrosion test apparatus that corrodes the test piece by immersing and rotating the test piece in test water. The unit of the corrosion rate was mdd (mg / dm 2 / day), and 10 mdd or less was judged as a sufficient anticorrosion effect.

[腐食試験手順]
(1) 1Lビーカーに純水1.0Lを入れた。
(2) (1)のビーカーに塩化ナトリウム水溶液(塩化物イオン濃度0.1重量%)5ml、硫酸ナトリウム水溶液(硫酸イオン0.1重量%)5mlを添加した。またMアルカリ度成分として重炭酸ナトリウム(NaHCO)水溶液(Mアルカリ度として5%)、ジメチルアミノエタノール(DMEA)溶液(Mアルカリ度として5%)、又はモノイソプロパノールアミン(MIPA)溶液(Mアルカリ度として5%)を所定量添加した(ただし、比較例9,10では添加せず。)。また皮膜性アミンとしてN−オレイル−1,3−ジアミノプロパンを10mg/L添加した(ただし、比較例7,8,10では添加せず。)。ビーカー内の水は常に撹拌子で混ぜながら各成分を添加した。
同じMアルカリ度溶液でpHを変える場合は、重炭酸ナトリウム(NaHCO)溶液で設定したMアルカリ度となるよう調整し、水酸化ナトリウム溶液の添加でpHを調整した。
(3) (2)で作成したビーカーを50℃の恒温水槽に入れた。
(4) 支持棒に軟鋼試験片(50mm×30mm×1mm)を取り付け、(3)のビーカー内の試験水に浸るようにした。
(5) (4)の支持棒を145rpmの回転速度で回転させて試験を開始した。
(6) 7日間の試験後、試験片を取り出して腐食減量から腐食速度を算出した。
[Corrosion test procedure]
(1) 1.0 L of pure water was put into a 1 L beaker.
(2) 5 ml of an aqueous sodium chloride solution (chloride ion concentration: 0.1 wt%) and 5 ml of an aqueous sodium sulfate solution (sulfate ion: 0.1 wt%) were added to the beaker of (1). Further, as an M alkalinity component, an aqueous solution of sodium bicarbonate (NaHCO 3 ) (M alkalinity 5%), a dimethylaminoethanol (DMEA) solution (M alkalinity 5%), or a monoisopropanolamine (MIPA) solution (M alkalinity) 5%) was added in a predetermined amount (however, it was not added in Comparative Examples 9 and 10). Further, 10 mg / L of N-oleyl-1,3-diaminopropane was added as a film-forming amine (however, it was not added in Comparative Examples 7, 8, and 10). Each component was added while always mixing the water in the beaker with a stirring bar.
When changing the pH in the same M alkalinity solution was adjusted to be M alkalinity set by sodium bicarbonate (NaHCO 3) solution and the pH was adjusted by addition of sodium hydroxide solution.
(3) The beaker created in (2) was placed in a constant temperature water bath at 50 ° C.
(4) A mild steel test piece (50 mm × 30 mm × 1 mm) was attached to the support rod and immersed in the test water in the beaker of (3).
(5) The test was started by rotating the support rod of (4) at a rotation speed of 145 rpm.
(6) After the test for 7 days, the test piece was taken out and the corrosion rate was calculated from the corrosion weight loss.

[実施例1〜7、比較例1〜10]
実施例1〜7及び比較例1〜10では、上記腐食試験手順のうち、(3)の工程において、表1に示すMアルカリ度成分を表1に示すMアルカリ度となるように添加し、必要に応じて水酸化ナトリウム溶液を添加して表1に示す初期pHに調整した。
各例で求められた腐食速度を表1に示す。
[Examples 1-7, Comparative Examples 1-10]
In Examples 1 to 7 and Comparative Examples 1 to 10, among the corrosion test procedures, in the step (3), the M alkalinity component shown in Table 1 was added so as to have the M alkalinity shown in Table 1, A sodium hydroxide solution was added as necessary to adjust the initial pH shown in Table 1.
Table 1 shows the corrosion rates determined in each example.

Figure 0006589959
Figure 0006589959

表1より明らかなように、皮膜性アミンを添加しても、初期Mアルカリ度、初期pHが本発明の条件を満たさない比較例1〜6,9では、十分な腐食抑制効果は得られない。皮膜性アミンを添加していない比較例7,8,10では、防食皮膜を形成し得ないため、やはり腐食抑制効果は得られない。これに対して、皮膜性アミンを添加すると共に初期処理時の水質を本発明の規定範囲に調整した実施例1〜7では、金属部材の腐食を効果的に抑制することができる。
なお、上記実施例では、いずれもビーカー内での腐食試験を行っているため、(3)の工程後、7日間のビーカー内の試験水のMアルカリ度には殆ど変化はなかったが、7日間の試験後のN−オレイル−1,3−ジアミノプロパンの濃度は1mg/L程度にまで低下していた。
また、初期処理後、試験水を入れ替えて保持処理も含めた試験を実施した。試験水のMアルカリ度を30〜150mg/L as CaCO、pHを8〜9で更に5日間同様の試験を継続したが、腐食速度は、いずれの実施例でも10mdd以下であり、防食効果の持続効果を確認することができた。
As is apparent from Table 1, even when a film-forming amine is added, in Comparative Examples 1 to 6 and 9 where the initial M alkalinity and the initial pH do not satisfy the conditions of the present invention, a sufficient corrosion inhibitory effect cannot be obtained. . In Comparative Examples 7, 8, and 10 in which no film-forming amine is added, an anticorrosion film cannot be formed, and thus a corrosion inhibiting effect cannot be obtained. On the other hand, in Examples 1 to 7 in which the film-forming amine is added and the water quality during the initial treatment is adjusted to the specified range of the present invention, the corrosion of the metal member can be effectively suppressed.
In each of the above examples, since the corrosion test was performed in the beaker, the M alkalinity of the test water in the beaker for 7 days was almost unchanged after the step (3). The concentration of N-oleyl-1,3-diaminopropane after the day test was reduced to about 1 mg / L.
In addition, after the initial treatment, the test water was replaced and the test including the holding treatment was performed. The same test was continued for 5 days with M alkalinity of the test water of 30 to 150 mg / L as CaCO 3 and pH of 8 to 9, but the corrosion rate was 10 mdd or less in any of the examples. The sustained effect was confirmed.

Claims (5)

冷却水系に皮膜性アミンとMアルカリ度成分を共存させて該冷却水系に接する金属部材の表面に防食皮膜を形成して該金属部材の腐食を抑制する腐食防止方法であって、
該Mアルカリ度成分として中和性アミンを用い、
該防食皮膜を形成する初期処理時に該冷却水系に該皮膜性アミンを10mg/L以上添加し、かつ該初期処理時の該冷却水系のMアルカリ度を90mg/L as CaCO以上に調整することを特徴とする腐食防止方法。
A corrosion prevention method for suppressing corrosion of the metal member by forming a corrosion prevention film on the surface of the metal member in contact with the cooling water system by coexisting a film-forming amine and an M alkalinity component in the cooling water system,
Using a neutralizing amine as the M alkalinity component,
Adding 10 mg / L or more of the film-forming amine to the cooling water system during the initial treatment for forming the anticorrosion film, and adjusting the M alkalinity of the cooling water system during the initial treatment to 90 mg / L as CaCO 3 or more. Corrosion prevention method characterized by
請求項1において、前記初期処理時の前記冷却水系のpHを9.5以上とすることを特徴とする腐食防止方法。   2. The corrosion prevention method according to claim 1, wherein the pH of the cooling water system during the initial treatment is set to 9.5 or more. 冷却水系に皮膜性アミンとMアルカリ度成分を共存させて該冷却水系に接する金属部材の表面に防食皮膜を形成して該金属部材の腐食を抑制する腐食防止方法であって、
該Mアルカリ度成分として無機アルカリを用い、
該防食皮膜を形成する初期処理時に該冷却水系に該皮膜性アミンを10mg/L以上添加し、かつ該初期処理時の該冷却水系のMアルカリ度を120mg/L as CaCO以上、pHを9.5以上に調整することを特徴とする腐食防止方法。
A corrosion prevention method for suppressing corrosion of the metal member by forming a corrosion prevention film on the surface of the metal member in contact with the cooling water system by coexisting a film-forming amine and an M alkalinity component in the cooling water system,
An inorganic alkali is used as the M alkalinity component,
10 mg / L or more of the film-forming amine is added to the cooling water system during the initial treatment for forming the anticorrosion film, and the M alkalinity of the cooling water system during the initial treatment is 120 mg / L as CaCO 3 or more, and the pH is 9 Corrosion prevention method characterized by adjusting to 5 or more.
請求項1ないし3のいずれか1項において、前記初期処理時に前記冷却水系に前記皮膜性アミンを10mg/L以上添加し、その後、該初期処理時の該冷却水系の皮膜性アミン濃度を0.1mg/Lを超える濃度に維持することを特徴とする腐食防止方法。   4. The film-forming amine is added to the cooling water system at 10 mg / L or more during the initial treatment according to claim 1, and then the film-forming amine concentration of the cooling water system during the initial treatment is set to 0. A corrosion prevention method characterized by maintaining a concentration exceeding 1 mg / L. 請求項1ないし4のいずれか1項において、前記初期処理後、形成された防食皮膜を保持する保持処理時において、前記冷却水系のMアルカリ度を30mg/L as CaCO以上、皮膜性アミン濃度を0.1mg/L以上に維持することを特徴とする腐食防止方法。 5. The M alkalinity of the cooling water system is 30 mg / L as CaCO 3 or more and the film-forming amine concentration in the holding treatment for holding the formed anticorrosion film after the initial treatment according to claim 1. Is maintained at 0.1 mg / L or more.
JP2017200426A 2017-10-16 2017-10-16 Corrosion prevention method Active JP6589959B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017200426A JP6589959B2 (en) 2017-10-16 2017-10-16 Corrosion prevention method
PCT/JP2018/038065 WO2019078104A1 (en) 2017-10-16 2018-10-12 Corrosion prevention method
TW107136162A TW201923150A (en) 2017-10-16 2018-10-15 Corrosion prevention method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017200426A JP6589959B2 (en) 2017-10-16 2017-10-16 Corrosion prevention method

Publications (2)

Publication Number Publication Date
JP2019073764A JP2019073764A (en) 2019-05-16
JP6589959B2 true JP6589959B2 (en) 2019-10-16

Family

ID=66173653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017200426A Active JP6589959B2 (en) 2017-10-16 2017-10-16 Corrosion prevention method

Country Status (3)

Country Link
JP (1) JP6589959B2 (en)
TW (1) TW201923150A (en)
WO (1) WO2019078104A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910577B1 (en) * 1969-09-29 1974-03-12
JPS5039934B2 (en) * 1971-08-25 1975-12-20
US3860430A (en) * 1973-11-05 1975-01-14 Calgon Corp Filming amine emulsions
JP3928182B2 (en) * 1995-09-29 2007-06-13 栗田工業株式会社 Corrosion prevention and scale prevention method for open circulation cooling water system
CN105734582A (en) * 2016-05-05 2016-07-06 成都华气能源工程有限公司 Organic film-forming amine corrosion inhibitor and application thereof

Also Published As

Publication number Publication date
JP2019073764A (en) 2019-05-16
TW201923150A (en) 2019-06-16
WO2019078104A1 (en) 2019-04-25

Similar Documents

Publication Publication Date Title
US11661365B2 (en) Composition and method for inhibiting corrosion
TWI708867B (en) Corrosion inhibition method in closed cooling water system, corrosion inhibitor for closed cooling water system, and corrosion inhibition system
WO2008041569A1 (en) Corrosion inhibitor and method of inhibiting corrosion
JPH06306652A (en) Corrosion inhibitor for metal and corrosion inhibiting method for metal
JP6589959B2 (en) Corrosion prevention method
JP5034525B2 (en) Corrosion inhibitor and method for producing the same
JP4277072B2 (en) Boiler corrosion / pitting corrosion inhibitor and corrosion / pitting corrosion prevention method using the same
JP6589962B2 (en) Corrosion inhibitor and corrosion prevention method
EP2961809A1 (en) Corrosion inhibitors for cooling water applications
JP5478537B2 (en) Metal corrosion prevention or inhibitor and method using the same
JP6401578B2 (en) Copper anticorrosion composition and copper anticorrosion method
JP5978711B2 (en) Iron corrosion control method
JP6762010B2 (en) Boiler water treatment agent and boiler water treatment method using it
JP4244983B2 (en) Metal corrosion control method
JP2015183285A (en) Method of suppressing metal corrosion
JP2006233287A (en) Corrosion-preventing composition and corrosion-preventing method
JPH0125825B2 (en)
JP3925296B2 (en) Anticorrosion method
WO2024116764A1 (en) Anticorrosion method for water system
JP6806186B2 (en) Initial treatment agent for circulating cooling water and initial treatment method for circulating cooling water system
WO2013058115A1 (en) Method for inhibiting iron scale deposition on water side in steam generator
WO1996039549A1 (en) Method for inhibiting metal corrosion in large scale water systems
JP2001049471A (en) Water base corrosion inhibiting method
JP2008248303A (en) Pitting corrosion inhibitor for circulating cooling water system including copper base material, and method for inhibiting pitting corrosion
JP2005281760A (en) High-temperature aqueous water treatment agent composition and treatment method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190902

R150 Certificate of patent or registration of utility model

Ref document number: 6589959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150