JPWO2019044977A1 - Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board - Google Patents

Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board Download PDF

Info

Publication number
JPWO2019044977A1
JPWO2019044977A1 JP2018564443A JP2018564443A JPWO2019044977A1 JP WO2019044977 A1 JPWO2019044977 A1 JP WO2019044977A1 JP 2018564443 A JP2018564443 A JP 2018564443A JP 2018564443 A JP2018564443 A JP 2018564443A JP WO2019044977 A1 JPWO2019044977 A1 JP WO2019044977A1
Authority
JP
Japan
Prior art keywords
resin
group
resin composition
bis
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018564443A
Other languages
Japanese (ja)
Other versions
JP6504533B1 (en
Inventor
源希 杉山
将太 古賀
健太郎 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Application granted granted Critical
Publication of JP6504533B1 publication Critical patent/JP6504533B1/en
Publication of JPWO2019044977A1 publication Critical patent/JPWO2019044977A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/07Parts immersed or impregnated in a matrix
    • B32B2305/076Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

下記式(1)で表される繰り返し単位を有し、かつ、Z平均分子量が1400以上3000以下であるエポキシ樹脂(A)と、シアン酸エステル化合物(B)と、を含有する、樹脂組成物。【化1】(式(1)中、X1は炭素数1〜3のアルキレン基又はアルケニレン基を表し、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表す。)A resin composition comprising an epoxy resin (A) having a repeating unit represented by the following formula (1) and having a Z average molecular weight of 1400 to 3000 and a cyanate ester compound (B) . (In formula (1), X1 represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, and each R1 independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 3 carbon atoms.)

Description

本発明は、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板に関する。   The present invention relates to a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board.

近年、電子機器や通信機、パーソナルコンピューター等に広く用いられている半導体の高集積化、微細化はますます加速している。これに伴い、プリント配線板に用いられる半導体パッケージ用積層板に求められる諸特性はますます厳しいものとなっている。求められる特性として、例えば、低吸水性、吸湿耐熱性、難燃性、低誘電率、低誘電正接、低熱膨張率、耐熱性、耐薬品性、高めっきピール強度等の特性が挙げられる。しかし、これまでのところ、これらの要求特性は必ずしも満足されてきたわけではない。   In recent years, high integration and miniaturization of semiconductors widely used in electronic devices, communication devices, personal computers, and the like have been accelerated. As a result, various characteristics required for semiconductor package laminates used for printed wiring boards have become increasingly severe. The required properties include, for example, properties such as low water absorption, moisture absorption heat resistance, flame retardancy, low dielectric constant, low dielectric loss tangent, low thermal expansion coefficient, heat resistance, chemical resistance, and high plating peel strength. However, so far, these required characteristics have not always been satisfied.

従来から、耐熱性や電気特性に優れるプリント配線板用材料として、シアン酸エステル化合物が知られており、近年、シアン酸エステル化合物にエポキシ樹脂、ビスマレイミド化合物などを併用した樹脂組成物が、半導体プラスチックパッケージ用などの高機能のプリント配線板用材料などに幅広く使用されている。
例えば、特許文献1及び2においては、密着性、低吸水性、吸湿耐熱性、絶縁信頼性などの特性に優れる、シアン酸エステル化合物とエポキシ樹脂からなる樹脂組成物が提案されている。
また、特許文献3においては、耐熱性及び難燃性に優れる、シアン酸エステル化合物とエポキシ樹脂とを含む熱硬化性樹脂組成物が提案されている。
Conventionally, cyanate ester compounds have been known as printed wiring board materials having excellent heat resistance and electrical characteristics. Recently, resin compositions in which an epoxy resin, a bismaleimide compound, and the like are used in combination with a cyanate ester compound are used as semiconductors. Widely used for high-performance printed wiring board materials such as plastic packages.
For example, Patent Documents 1 and 2 propose a resin composition comprising a cyanate ester compound and an epoxy resin, which is excellent in properties such as adhesion, low water absorption, moisture absorption heat resistance, and insulation reliability.
Patent Document 3 proposes a thermosetting resin composition including a cyanate ester compound and an epoxy resin, which is excellent in heat resistance and flame retardancy.

国際公開第2013/065694号International Publication No. 2013/065694 国際公開第2014/203866号International Publication No. 2014/203866 国際公開第2015/064064号International Publication No. 2015/064064

特許文献1〜2に記載の樹脂組成物は、密着性、低吸水性、吸湿耐熱性、絶縁信頼性について、良好な物性を有しているといえるものの、耐熱性の観点から、未だ改善の余地がある。さらに、耐熱性に優れるとされている特許文献3に記載の樹脂組成物についても、未だ改善の余地がある。   Although it can be said that the resin compositions described in Patent Documents 1 and 2 have good physical properties with respect to adhesion, low water absorption, moisture absorption heat resistance, and insulation reliability, from the viewpoint of heat resistance, they are still improved. There is room. Furthermore, there is still room for improvement in the resin composition described in Patent Document 3, which is said to be excellent in heat resistance.

本発明は、上記問題点に鑑みてなされたものであり、優れた耐熱性を発現する、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、並びにプリント配線板を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board that exhibit excellent heat resistance. To do.

本発明者らは、上記課題を解決するために鋭意検討した。その結果、シアン酸エステル化合物と、特定構造及び特定分子量を有するエポキシ樹脂を併用することにより、上記課題が解決できることを見出し、本発明を完成するに至った。   The present inventors diligently studied to solve the above problems. As a result, it has been found that the above-mentioned problems can be solved by using a cyanate ester compound together with an epoxy resin having a specific structure and a specific molecular weight, and the present invention has been completed.

すなわち、本発明は以下の態様を包含する。
[1]
下記式(1)で表される繰り返し単位を有し、かつ、Z平均分子量が1400以上3000以下であるエポキシ樹脂(A)と、
シアン酸エステル化合物(B)と、
を含有する、樹脂組成物。
(式(1)中、Xは炭素数1〜3のアルキレン基又はアルケニレン基を表し、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表す。)
[2]
前記エポキシ樹脂(A)の含有量が、樹脂固形分100質量部に対し、1〜90質量部である、[1]に記載の樹脂組成物。
[3]
前記式(1)で表されるエポキシ樹脂(A)以外のエポキシ樹脂、マレイミド化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される一種以上をさらに含有する、[1]又は[2]に記載の樹脂組成物。
[4]
充填材(C)をさらに含有する、[1]〜[3]のいずれかに記載の樹脂組成物。
[5]
前記充填材(C)の含有量が、樹脂固形分100質量部に対し、50〜1600質量部である、[4]に記載の樹脂組成物。
[6]
基材と、
前記基材に含浸又は塗布された、[1]〜[5]のいずれかに記載の樹脂組成物と、
を有する、プリプレグ。
[7]
少なくとも1枚以上積層された[6]に記載のプリプレグと、
前記プリプレグの片面又は両面に配された金属箔と、
を有する、金属箔張積層板。
[8]
[1]〜[5]のいずれかに記載の樹脂組成物を有する、樹脂シート。
[9]
絶縁層と、
前記絶縁層の表面に形成された導体層と、
を有し、
前記絶縁層が、[1]〜[5]のいずれかに記載の樹脂組成物を含む、プリント配線板。
That is, the present invention includes the following aspects.
[1]
An epoxy resin (A) having a repeating unit represented by the following formula (1) and having a Z average molecular weight of 1400 or more and 3000 or less;
A cyanate ester compound (B);
Containing a resin composition.
(In formula (1), X 1 represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, and each R 1 independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 3 carbon atoms.)
[2]
Resin composition as described in [1] whose content of the said epoxy resin (A) is 1-90 mass parts with respect to 100 mass parts of resin solid content.
[3]
A kind selected from the group consisting of an epoxy resin other than the epoxy resin (A) represented by the formula (1), a maleimide compound, a phenol resin, an oxetane resin, a benzoxazine compound, and a compound having a polymerizable unsaturated group. The resin composition according to [1] or [2], further containing the above.
[4]
The resin composition according to any one of [1] to [3], further containing a filler (C).
[5]
Resin composition as described in [4] whose content of the said filler (C) is 50-1600 mass parts with respect to 100 mass parts of resin solid content.
[6]
A substrate;
The resin composition according to any one of [1] to [5], impregnated or coated on the substrate;
Having a prepreg.
[7]
The prepreg according to [6], wherein at least one sheet is laminated;
A metal foil disposed on one or both sides of the prepreg;
A metal foil-clad laminate.
[8]
The resin sheet which has the resin composition in any one of [1]-[5].
[9]
An insulating layer;
A conductor layer formed on the surface of the insulating layer;
Have
The printed wiring board in which the said insulating layer contains the resin composition in any one of [1]-[5].

本発明によれば、優れた耐熱性を発現する、樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、並びにプリント配線板を提供することができる。   According to the present invention, it is possible to provide a resin composition, a prepreg, a metal foil-clad laminate, a resin sheet, and a printed wiring board that exhibit excellent heat resistance.

以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail. However, the present invention is not limited to this, and various modifications can be made without departing from the gist thereof. Is possible.

本実施形態の樹脂組成物は、下記式(1)で表される繰り返し単位を有し、かつ、Z平均分子量が1400以上3000以下であるエポキシ樹脂(A)と、シアン酸エステル化合物(B)とを含有する。このように構成されているため、本実施形態の樹脂組成物は、優れた耐熱性を発現することができる。   The resin composition of this embodiment includes an epoxy resin (A) having a repeating unit represented by the following formula (1) and having a Z average molecular weight of 1400 or more and 3000 or less, and a cyanate ester compound (B). Containing. Since it is comprised in this way, the resin composition of this embodiment can express the outstanding heat resistance.

(式(1)中、Xは炭素数1〜3のアルキレン基又はアルケニレン基を表し、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表す。) (In formula (1), X 1 represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, and each R 1 independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 3 carbon atoms.)

以下、本実施形態の樹脂組成物を構成する各成分について説明する。   Hereinafter, each component which comprises the resin composition of this embodiment is demonstrated.

〔エポキシ樹脂(A)〕
本実施形態におけるエポキシ樹脂(A)は上記式(1)で表される繰り返し単位を有する。
式(1)におけるXは、炭素数1〜3のアルキレン基又はアルケニレン基を表し、好ましくはメチレン基である。
式(1)におけるRは各々独立に、水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表し、好ましくは水素原子である。
式(1)で表される繰り返し単位の数は、1以上の整数であり、耐熱性及び成形性の観点から、好ましくは1以上5以下であり、より好ましくは2以上4以下である。なお、本実施形態における所定の繰り返し単位を有し、かつ、所定のZ平均分子量を有する限り、エポキシ樹脂(A)は、1つの繰り返し単位数を持つ1種のエポキシ樹脂のみであってもよいし、繰り返し単位数が異なる2種以上のエポキシ樹脂の混合物であってもよい。エポキシ樹脂(A)が、繰り返し単位数が異なる2種以上のエポキシ樹脂の混合物である場合、繰り返し単位数が1となるエポキシ樹脂を含むものであってもよいが、繰り返し単位数が2以上となるエポキシ樹脂も含まれていることにより、エポキシ樹脂(A)のZ平均分子量としては1400以上3000以下となる。
[Epoxy resin (A)]
The epoxy resin (A) in this embodiment has a repeating unit represented by the above formula (1).
X 1 in formula (1) represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, and preferably a methylene group.
R 1 in formula (1) each independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 3 carbon atoms, preferably a hydrogen atom.
The number of repeating units represented by the formula (1) is an integer of 1 or more, and preferably 1 or more and 5 or less, more preferably 2 or more and 4 or less, from the viewpoint of heat resistance and moldability. In addition, as long as it has the predetermined repeating unit in this embodiment and has a predetermined Z average molecular weight, the epoxy resin (A) may be only one kind of epoxy resin having one repeating unit number. And the mixture of 2 or more types of epoxy resins from which the number of repeating units differs may be sufficient. When the epoxy resin (A) is a mixture of two or more types of epoxy resins having different numbers of repeating units, it may contain an epoxy resin having a number of repeating units of 1, but the number of repeating units is 2 or more. When the epoxy resin to be included is included, the Z average molecular weight of the epoxy resin (A) is 1400 or more and 3000 or less.

本実施形態において、耐熱性の観点から、上記式(1)で表される繰り返し単位は下記式(1−1)で表される繰り返し単位であることが好ましい。
In this embodiment, from the viewpoint of heat resistance, the repeating unit represented by the above formula (1) is preferably a repeating unit represented by the following formula (1-1).

また、本実施形態において、耐熱性の観点から、上記式(1)で表される繰り返し構造の末端は、その一方が水素原子であり、他方が下記式(1−2)で表される基であることが好ましい。
(式(1−2)中、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表す。)
In the present embodiment, from the viewpoint of heat resistance, one end of the repeating structure represented by the above formula (1) is a hydrogen atom and the other is a group represented by the following formula (1-2). It is preferable that
(In formula (1-2), each R 1 independently represents a hydrogen atom or an alkyl or alkenyl group having 1 to 3 carbon atoms.)

本実施形態におけるエポキシ樹脂(A)は、以下に限定されないが、例えば、下記式(1−3)で表されるエポキシ樹脂を含むことができ、より具体的には、例えば、下記式(1−4)で表されるエポキシ樹脂を含むことができる。
(式(1−3)中、Xは炭素数1〜3のアルキレン基又はアルケニレン基を表し、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表し、Aは、その一方が水素原子であり、他方が上記式(1−2)で表される基である。)
Although the epoxy resin (A) in this embodiment is not limited to the following, For example, the epoxy resin represented by following formula (1-3) can be included, More specifically, for example, following formula (1) -4) can be included.
(In formula (1-3), X 1 represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, R 1 each independently represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or an alkenyl group; Is one of which is a hydrogen atom and the other is a group represented by the above formula (1-2).)

本実施形態におけるエポキシ樹脂(A)のZ平均分子量は、1400以上3000以下であり、耐熱性及び成形性の観点から、好ましくは1500以上2500以下であり、より好ましくは1600以上2000以下である。   The Z average molecular weight of the epoxy resin (A) in the present embodiment is 1400 or more and 3000 or less, preferably 1500 or more and 2500 or less, more preferably 1600 or more and 2000 or less, from the viewpoint of heat resistance and moldability.

本実施形態におけるエポキシ樹脂(A)の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、耐熱性をより良好とする観点から、樹脂固形分100質量部に対し、1〜90質量部であることが好ましく、より好ましくは30〜70質量部であり、さらに好ましくは40〜60質量部である。   The content of the epoxy resin (A) in the present embodiment can be appropriately set according to the desired properties, and is not particularly limited, but from the viewpoint of improving the heat resistance, the resin solid content is 100 parts by mass. 1 to 90 parts by mass, more preferably 30 to 70 parts by mass, and still more preferably 40 to 60 parts by mass.

なお、本実施形態において、「樹脂固形分」とは、特に断りのない限り、本実施形態の樹脂組成物における、溶剤及び充填材を除いた成分をいい、「樹脂固形分100質量部」とは、本実施形態の樹脂組成物における溶剤及び充填材を除いた成分の合計が100質量部であることをいうものとする。   In the present embodiment, the “resin solid content” refers to a component excluding the solvent and filler in the resin composition of the present embodiment, unless otherwise specified, and “resin solid content of 100 parts by mass”. Means that the total of the components excluding the solvent and filler in the resin composition of the present embodiment is 100 parts by mass.

本実施形態におけるエポキシ樹脂(A)の製造方法としては、特に限定されず、公知の方法を用いることができる。また、エポキシ樹脂(A)は、市販品として入手することもでき、その例としては、以下に限定されないが、DIC(株)製の「EPICLON EXA−4710H−70M」等が挙げられる。   It does not specifically limit as a manufacturing method of the epoxy resin (A) in this embodiment, A well-known method can be used. The epoxy resin (A) can also be obtained as a commercial product, and examples thereof include, but are not limited to, “EPICLON EXA-4710H-70M” manufactured by DIC Corporation.

〔シアン酸エステル化合物(B)〕
シアン酸エステル化合物(B)としては、シアナト基(シアン酸エステル基)で少なくとも1個置換された芳香族部分を分子内に有する化合物であれば、特に限定されない。シアン酸エステル化合物(B)を用いた樹脂組成物は、硬化物とした際に、ガラス転移温度、低熱膨張性、めっき密着性等に優れた特性を有する。
[Cyanate ester compound (B)]
The cyanate ester compound (B) is not particularly limited as long as it is a compound having in its molecule an aromatic moiety substituted with at least one cyanate group (cyanate ester group). The resin composition using the cyanate ester compound (B) has excellent properties such as glass transition temperature, low thermal expansion, plating adhesion, and the like when cured.

シアン酸エステル化合物(B)の例としては、以下に限定されないが、下記式(2)で表されるものが挙げられる。   Examples of the cyanate ester compound (B) include, but are not limited to, those represented by the following formula (2).

上記式(2)中、Arは、ベンゼン環、ナフタレン環又は2つのベンゼン環が単結合したものを表す。複数ある場合は互いに同一であっても異なっていてもよい。Raは各々独立に水素原子、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数1〜4のアルコキシル基、炭素数1〜6のアルキル基と炭素数6〜12のアリール基とが結合された基を示す。Raにおける芳香環は置換基を有していてもよく、Ar及びRaにおける置換基は任意の位置を選択できる。pはArに結合するシアナト基の数を示し、各々独立に1〜3の整数である。qはArに結合するRaの数を示し、Arがベンゼン環のときは4−p、ナフタレン環のときは6−p、2つのベンゼン環が単結合したもののときは8−pである。tは平均繰り返し数を示し、0〜50の整数であり、他のシアン酸エステル化合物は、tが異なる化合物の混合物であってもよい。Xは、複数ある場合は各々独立に、単結合、炭素数1〜50の2価の有機基(水素原子がヘテロ原子に置換されていてもよい。)、窒素数1〜10の2価の有機基(例えば−N−R−N−(ここでRは有機基を示す。))、カルボニル基(−CO−)、カルボキシ基(−C(=O)O−)、カルボニルジオキサイド基(−OC(=O)O−)、スルホニル基(−SO−)、2価の硫黄原子又は2価の酸素原子のいずれかを示す。In the above formula (2), Ar 1 represents a single bond of a benzene ring, a naphthalene ring or two benzene rings. When there are a plurality, they may be the same or different. Each Ra is independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 6 carbon atoms and an alkyl group having 6 to 12 carbon atoms. A group to which an aryl group is bonded is shown. The aromatic ring in Ra may have a substituent, and the substituent in Ar 1 and Ra can be selected at any position. p is a number of cyanate groups bonded to Ar 1, is an integer of 1 to 3 independently. q represents the number of Ra bonded to Ar 1, and is 4-p when Ar 1 is a benzene ring, 6-p when Ar 1 is a naphthalene ring, and 8-p when two benzene rings are a single bond. . t represents an average number of repetitions and is an integer of 0 to 50, and the other cyanate ester compound may be a mixture of compounds having different t. When there are a plurality of Xs, each independently represents a single bond, a divalent organic group having 1 to 50 carbon atoms (a hydrogen atom may be substituted with a hetero atom), or a divalent group having 1 to 10 nitrogen atoms. An organic group (for example, —N—R—N— (wherein R represents an organic group)), a carbonyl group (—CO—), a carboxy group (—C (═O) O—), a carbonyl dioxide group ( —OC (═O) O—), a sulfonyl group (—SO 2 —), a divalent sulfur atom, or a divalent oxygen atom.

上記式(2)のRaにおけるアルキル基は、直鎖もしくは分枝の鎖状構造、及び、環状構造(例えばシクロアルキル基等)のいずれを有していてもよい。
また、式(2)におけるアルキル基及びRaにおけるアリール基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、又はシアノ基等で置換されていてもよい。
アルキル基の具体例としては、以下に限定されないが、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基、n−ペンチル基、1−エチルプロピル基、2,2−ジメチルプロピル基、シクロペンチル基、ヘキシル基、シクロヘキシル基、及びトリフルオロメチル基が挙げられる。
アリール基の具体例としては、以下に限定されないが、フェニル基、キシリル基、メシチル基、ナフチル基、フェノキシフェニル基、エチルフェニル基、o−,m−又はp−フルオロフェニル基、ジクロロフェニル基、ジシアノフェニル基、トリフルオロフェニル基、メトキシフェニル基、及びo−,m−又はp−トリル基等が挙げられる。
アルコキシル基としては、以下に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、及びtert−ブトキシ基が挙げられる。
上記式(2)のXにおける炭素数1〜50の2価の有機基の具体例としては、以下に限定されないが、メチレン基、エチレン基、トリメチレン基、シクロペンチレン基、シクロヘキシレン基、トリメチルシクロヘキシレン基、ビフェニルイルメチレン基、ジメチルメチレン−フェニレン−ジメチルメチレン基、フルオレンジイル基、及びフタリドジイル基等が挙げられる。該2価の有機基中の水素原子は、フッ素原子、塩素原子等のハロゲン原子、メトキシ基、フェノキシ基等のアルコキシル基、シアノ基等で置換されていてもよい。
上記式(2)のXにおける窒素数1〜10の2価の有機基の例としては、以下に限定されないが、イミノ基、ポリイミド基等が挙げられる。
The alkyl group in Ra of the above formula (2) may have any of a linear or branched chain structure and a cyclic structure (for example, a cycloalkyl group).
In addition, the hydrogen atom in the alkyl group in Formula (2) and the aryl group in Ra may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, or a cyano group. Good.
Specific examples of the alkyl group include, but are not limited to, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, 1-ethylpropyl group, Examples include 2,2-dimethylpropyl group, cyclopentyl group, hexyl group, cyclohexyl group, and trifluoromethyl group.
Specific examples of the aryl group include, but are not limited to, phenyl group, xylyl group, mesityl group, naphthyl group, phenoxyphenyl group, ethylphenyl group, o-, m- or p-fluorophenyl group, dichlorophenyl group, dicyano. Examples thereof include a phenyl group, a trifluorophenyl group, a methoxyphenyl group, and an o-, m- or p-tolyl group.
Examples of the alkoxyl group include, but are not limited to, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, and a tert-butoxy group.
Specific examples of the divalent organic group having 1 to 50 carbon atoms in X of the formula (2) are not limited to the following, but include a methylene group, an ethylene group, a trimethylene group, a cyclopentylene group, a cyclohexylene group, and trimethyl. Examples include a cyclohexylene group, a biphenylylmethylene group, a dimethylmethylene-phenylene-dimethylmethylene group, a fluorenediyl group, and a phthalidodiyl group. The hydrogen atom in the divalent organic group may be substituted with a halogen atom such as a fluorine atom or a chlorine atom, an alkoxyl group such as a methoxy group or a phenoxy group, a cyano group, or the like.
Examples of the divalent organic group having 1 to 10 nitrogen atoms in X of the formula (2) include, but are not limited to, an imino group and a polyimide group.

また、上記式(2)中のXの有機基として、例えば、下記式(3)又は下記式(4)で表される構造であるものが挙げられる。   Moreover, as an organic group of X in the said Formula (2), what is a structure represented by following formula (3) or following formula (4) is mentioned, for example.

(上記式(3)中、Arはベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を示し、uが2以上の場合、互いに同一であっても異なっていてもよい。Rb、Rc、Rf、及びRgは各々独立に、水素原子、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、トリフルオロメチル基、又はフェノール性ヒドロキシ基を少なくとも1個有するアリール基を示す。Rd及び、Reは各々独立に、水素原子、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、炭素数1〜4のアルコキシル基、又はヒドロキシ基のいずれか一種から選択される。uは0〜5の整数を示す。) (In the above formula (3), Ar 2 represents a benzenetetrayl group, a naphthalenetetrayl group or a biphenyltetrayl group, and when u is 2 or more, they may be the same or different from each other. Rb, Rc , Rf, and Rg each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a trifluoromethyl group, or an aryl group having at least one phenolic hydroxy group. Rd and Re are each independently selected from any one of a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, and a hydroxy group. U represents an integer of 0 to 5.)

(式(4)中、Arはベンゼンテトライル基、ナフタレンテトライル基又はビフェニルテトライル基を示し、vが2以上の場合、互いに同一であっても異なっていてもよい。Ri、及びRjは各々独立に、水素原子、炭素数1〜6のアルキル基、炭素数6〜12のアリール基、ベンジル基、炭素数1〜4のアルコキシル基、ヒドロキシ基、トリフルオロメチル基、又はシアナト基が少なくとも1個置換されたアリール基を示す。vは0〜5の整数を示すが、シアン酸エステル化合物は、vが異なる化合物の混合物であってもよい。) (In the formula (4), Ar 3 represents a benzenetetrayl group, a naphthalenetetrayl group or a biphenyltetrayl group, and when v is 2 or more, they may be the same or different from each other. Ri and Rj Are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, a benzyl group, an alkoxyl group having 1 to 4 carbon atoms, a hydroxy group, a trifluoromethyl group, or a cyanato group. (Indicates at least one substituted aryl group. V represents an integer of 0 to 5, but the cyanate ester compound may be a mixture of compounds having different v.)

さらに、式(2)中のXとしては、下記式で表される2価の基が挙げられる。   Furthermore, as X in Formula (2), the bivalent group represented by a following formula is mentioned.

(上記式中、zは4〜7の整数を示す。Rkは各々独立に、水素原子又は炭素数1〜6のアルキル基を示す。) (In the above formula, z represents an integer of 4 to 7. Each Rk independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)

式(3)のAr及び式(4)のArの具体例としては、式(3)に示す2個の炭素原子、又は式(4)に示す2個の酸素原子が、1,4位又は1,3位に結合するベンゼンテトライル基、上記2個の炭素原子又は2個の酸素原子が4,4’位、2,4’位、2,2’位、2,3’位、3,3’位、又は3,4’位に結合するビフェニルテトライル基、及び、上記2個の炭素原子又は2個の酸素原子が、2,6位、1,5位、1,6位、1,8位、1,3位、1,4位、又は2,7位に結合するナフタレンテトライル基が挙げられる。
式(3)のRb、Rc、Rd、Re、Rf及びRg、並びに式(4)のRi、Rjにおけるアルキル基及びアリール基は、上記式(2)中のRaにおけるアルキル基及びアリール基と同義である。
Specific examples of Ar 3 in the formula (3) Ar 2 and (4) of the two carbon atoms shown in formula (3), or two oxygen atoms shown in formula (4), 1,4 Benzenetetrayl group bonded to position or 1,3 position, the above two carbon atoms or two oxygen atoms are 4,4 ′ position, 2,4 ′ position, 2,2 ′ position, 2,3 ′ position , 3, 3′-position, or 3,4′-position, and the above two carbon atoms or two oxygen atoms are 2, 6-position, 1, 5-position, 1, 6 Naphthalenetetrayl group bonded to the 1-position, 1,8-position, 1,3-position, 1,4-position, or 2,7-position.
Rb, Rc, Rd, Re, Rf and Rg in formula (3), and the alkyl group and aryl group in Ri and Rj in formula (4) have the same meaning as the alkyl group and aryl group in Ra in formula (2). It is.

上記式(2)で表されるシアナト置換芳香族化合物の具体例としては、以下に限定されないが、シアナトベンゼン、1−シアナト−2−,1−シアナト−3−,又は1−シアナト−4−メチルベンゼン、1−シアナト−2−,1−シアナト−3−,又は1−シアナト−4−メトキシベンゼン、1−シアナト−2,3−,1−シアナト−2,4−,1−シアナト−2,5−,1−シアナト−2,6−,1−シアナト−3,4−又は1−シアナト−3,5−ジメチルベンゼン、シアナトエチルベンゼン、シアナトブチルベンゼン、シアナトオクチルベンゼン、シアナトノニルベンゼン、2−(4−シアナフェニル)−2−フェニルプロパン(4−α−クミルフェノールのシアネート)、1−シアナト−4−シクロヘキシルベンゼン、1−シアナト−4−ビニルベンゼン、1−シアナト−2−又は1−シアナト−3−クロロベンゼン、1−シアナト−2,6−ジクロロベンゼン、1−シアナト−2−メチル−3−クロロベンゼン、シアナトニトロベンゼン、1−シアナト−4−ニトロ−2−エチルベンゼン、1−シアナト−2−メトキシ−4−アリルベンゼン(オイゲノールのシアネート)、メチル(4−シアナトフェニル)スルフィド、1−シアナト−3−トリフルオロメチルベンゼン、4−シアナトビフェニル、1−シアナト−2−又は1−シアナト−4−アセチルベンゼン、4−シアナトベンズアルデヒド、4−シアナト安息香酸メチルエステル、4−シアナト安息香酸フェニルエステル、1−シアナト−4−アセトアミノベンゼン、4−シアナトベンゾフェノン、1−シアナト−2,6−ジ−tert−ブチルベンゼン、1,2−ジシアナトベンゼン、1,3−ジシアナトベンゼン、1,4−ジシアナトベンゼン、1,4−ジシアナト−2−tert−ブチルベンゼン、1,4−ジシアナト−2,4−ジメチルベンゼン、1,4−ジシアナト−2,3,4−ジメチルベンゼン、1,3−ジシアナト−2,4,6−トリメチルベンゼン、1,3−ジシアナト−5−メチルベンゼン、1−シアナト又は2−シアナトナフタレン、1−シアナト4−メトキシナフタレン、2−シアナト−6−メチルナフタレン、2−シアナト−7−メトキシナフタレン、2,2’−ジシアナト−1,1’−ビナフチル、1,3−,1,4−,1,5−,1,6−,1,7−,2,3−,2,6−又は2,7−ジシアナトシナフタレン、2,2’−又は4,4’−ジシアナトビフェニル、4,4’−ジシアナトオクタフルオロビフェニル、2,4’−又は4,4’−ジシアナトジフェニルメタン、ビス(4−シアナト−3,5−ジメチルフェニル)メタン、1,1−ビス(4−シアナトフェニル)エタン、1,1−ビス(4−シアナトフェニル)プロパン、2,2−ビス(4−シアナトフェニル)プロパン、2,2−ビス(4−シアナト−3−メチルフェニル)プロパン、2,2−ビス(2−シアナト−5−ビフェニルイル)プロパン、2,2−ビス(4−シアナトフェニル)ヘキサフルオロプロパン、2,2−ビス(4−シアナト−3,5−ジメチルフェニル)プロパン、1,1−ビス(4−シアナトフェニル)ブタン、1,1−ビス(4−シアナトフェニル)イソブタン、1,1−ビス(4−シアナトフェニル)ペンタン、1,1−ビス(4−シアナトフェニル)−3−メチルブタン、1,1−ビス(4−シアナトフェニル)−2−メチルブタン、1,1−ビス(4−シアナトフェニル)−2,2−ジメチルプロパン、2,2−ビス(4−シアナトフェニル)ブタン、2,2−ビス(4−シアナトフェニル)ペンタン、2,2−ビス(4−シアナトフェニル)ヘキサン、2,2−ビス(4−シアナトフェニル)−3−メチルブタン、2,2−ビス(4−シアナトフェニル)−4−メチルペンタン、2,2−ビス(4−シアナトフェニル)−3,3−ジメチルブタン、3,3−ビス(4−シアナトフェニル)ヘキサン、3,3−ビス(4−シアナトフェニル)ヘプタン、3,3−ビス(4−シアナトフェニル)オクタン、3,3−ビス(4−シアナトフェニル)−2−メチルペンタン、3,3−ビス(4−シアナトフェニル)−2−メチルヘキサン、3,3−ビス(4−シアナトフェニル)−2,2−ジメチルペンタン、4,4−ビス(4−シアナトフェニル)−3−メチルヘプタン、3,3−ビス(4−シアナトフェニル)−2−メチルヘプタン、3,3−ビス(4−シアナトフェニル)−2,2−ジメチルヘキサン、3,3−ビス(4−シアナトフェニル)−2,4−ジメチルヘキサン、3,3−ビス(4−シアナトフェニル)−2,2,4−トリメチルペンタン、2,2−ビス(4−シアナトフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、ビス(4−シアナトフェニル)フェニルメタン、1,1−ビス(4−シアナトフェニル)−1−フェニルエタン、ビス(4−シアナトフェニル)ビフェニルメタン、1,1−ビス(4−シアナトフェニル)シクロペンタン、1,1−ビス(4−シアナトフェニル)シクロヘキサン、2,2−ビス(4−シアナト−3−イソプロピルフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−シアナトフェニル)シクロヘキサン、ビス(4−シアナトフェニル)ジフェニルメタン、ビス(4−シアナトフェニル)−2,2−ジクロロエチレン、1,3−ビス[2−(4−シアナトフェニル)−2−プロピル]ベンゼン、1,4−ビス[2−(4−シアナトフェニル)−2−プロピル]ベンゼン、1,1−ビス(4−シアナトフェニル)−3,3,5−トリメチルシクロヘキサン、4−[ビス(4−シアナトフェニル)メチル]ビフェニル、4,4−ジシアナトベンゾフェノン、1,3−ビス(4−シアナトフェニル)−2−プロペン−1−オン、ビス(4−シアナトフェニル)エーテル、ビス(4−シアナトフェニル)スルフィド、ビス(4−シアナトフェニル)スルホン、4−シアナト安息香酸−4−シアナトフェニルエステル(4−シアナトフェニル−4−シアナトベンゾエート)、ビス−(4−シアナトフェニル)カーボネート、1,3−ビス(4−シアナトフェニル)アダマンタン、1,3−ビス(4−シアナトフェニル)−5,7−ジメチルアダマンタン、3,3−ビス(4−シアナトフェニル)イソベンゾフラン−1(3H)−オン(フェノールフタレインのシアネート)、3,3−ビス(4−シアナト−3−メチルフェニル)イソベンゾフラン−1(3H)−オン(o−クレゾールフタレインのシアネート)、9,9’−ビス(4−シアナトフェニル)フルオレン、9,9−ビス(4−シアナト−3−メチルフェニル)フルオレン、9,9−ビス(2−シアナト−5−ビフェニルイル)フルオレン、トリス(4−シアナトフェニル)メタン、1,1,1−トリス(4−シアナトフェニル)エタン、1,1,3−トリス(4−シアナトフェニル)プロパン、α,α,α’−トリス(4−シアナトフェニル)−1−エチル−4−イソプロピルベンゼン、1,1,2,2−テトラキス(4−シアナトフェニル)エタン、テトラキス(4−シアナトフェニル)メタン、2,4,6−トリス(N−メチル−4−シアナトアニリノ)−1,3,5−トリアジン、2,4−ビス(N−メチル−4−シアナトアニリノ)−6−(N−メチルアニリノ)−1,3,5−トリアジン、ビス(N−4−シアナト−2−メチルフェニル)−4,4’−オキシジフタルイミド、ビス(N−3−シアナト−4−メチルフェニル)−4,4’−オキシジフタルイミド、ビス(N−4−シアナトフェニル)−4,4’−オキシジフタルイミド、ビス(N−4−シアナト−2−メチルフェニル)−4,4’−(ヘキサフルオロイソプロピリデン)ジフタルイミド、トリス(3,5−ジメチル−4−シアナトベンジル)イソシアヌレート、2−フェニル−3,3−ビス(4−シアナトフェニル)フタルイミジン、2−(4−メチルフェニル)−3,3−ビス(4−シアナトフェニル)フタルイミジン、2−フェニル−3,3−ビス(4−シアナト−3−メチルフェニル)フタルイミジン、1−メチル−3,3−ビス(4−シアナトフェニル)インドリン−2−オン、及び、2−フェニル−3,3−ビス(4−シアナトフェニル)インドリン−2−オンが挙げられる。   Specific examples of the cyanato-substituted aromatic compound represented by the above formula (2) are not limited to the following, but include cyanatobenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4. -Methylbenzene, 1-cyanato-2-, 1-cyanato-3-, or 1-cyanato-4-methoxybenzene, 1-cyanato-2,3-, 1-cyanato-2,4-, 1-cyanato- 2,5-, 1-cyanato-2,6-, 1-cyanato-3,4- or 1-cyanato-3,5-dimethylbenzene, cyanatoethylbenzene, cyanatobutylbenzene, cyanatooctylbenzene, cyanato Nonylbenzene, 2- (4-cyanphenyl) -2-phenylpropane (cyanate of 4-α-cumylphenol), 1-cyanato-4-cyclohexylbenzene, 1-cyanato 4-vinylbenzene, 1-cyanato-2- or 1-cyanato-3-chlorobenzene, 1-cyanato-2,6-dichlorobenzene, 1-cyanato-2-methyl-3-chlorobenzene, cyanatonitrobenzene, 1-cyanato 4-nitro-2-ethylbenzene, 1-cyanato-2-methoxy-4-allylbenzene (eugenol cyanate), methyl (4-cyanatophenyl) sulfide, 1-cyanato-3-trifluoromethylbenzene, 4- Cyanatobiphenyl, 1-cyanato-2- or 1-cyanato-4-acetylbenzene, 4-cyanatobenzaldehyde, 4-cyanatobenzoic acid methyl ester, 4-cyanatobenzoic acid phenyl ester, 1-cyanato-4-acetamino Benzene, 4-cyanatobenzophenone, 1-cyanato-2 , 6-di-tert-butylbenzene, 1,2-dicyanatobenzene, 1,3-dicyanatobenzene, 1,4-dicyanatobenzene, 1,4-dicyanato-2-tert-butylbenzene, 1,4 -Dicyanato-2,4-dimethylbenzene, 1,4-dicyanato-2,3,4-dimethylbenzene, 1,3-dicyanato-2,4,6-trimethylbenzene, 1,3-dicyanato-5-methylbenzene 1-cyanato or 2-cyanatonaphthalene, 1-cyanato-4-methoxynaphthalene, 2-cyanato-6-methylnaphthalene, 2-cyanato-7-methoxynaphthalene, 2,2′-dicyanato-1,1′-binaphthyl 1,3-, 1,4-, 1,5-, 1,6-, 1,7-, 2,3-, 2,6- or 2,7-dicyanatosinaphthalene, 2,2'- Is 4,4′-dicyanatobiphenyl, 4,4′-dicyanatooctafluorobiphenyl, 2,4′- or 4,4′-dicyanatodiphenylmethane, bis (4-cyanato-3,5-dimethylphenyl) methane 1,1-bis (4-cyanatophenyl) ethane, 1,1-bis (4-cyanatophenyl) propane, 2,2-bis (4-cyanatophenyl) propane, 2,2-bis (4 -Cyanato-3-methylphenyl) propane, 2,2-bis (2-cyanato-5-biphenylyl) propane, 2,2-bis (4-cyanatophenyl) hexafluoropropane, 2,2-bis (4 -Cyanato-3,5-dimethylphenyl) propane, 1,1-bis (4-cyanatophenyl) butane, 1,1-bis (4-cyanatophenyl) isobutane, 1,1-bi (4-cyanatophenyl) pentane, 1,1-bis (4-cyanatophenyl) -3-methylbutane, 1,1-bis (4-cyanatophenyl) -2-methylbutane, 1,1-bis (4 -Cyanatophenyl) -2,2-dimethylpropane, 2,2-bis (4-cyanatophenyl) butane, 2,2-bis (4-cyanatophenyl) pentane, 2,2-bis (4-si Anatophenyl) hexane, 2,2-bis (4-cyanatophenyl) -3-methylbutane, 2,2-bis (4-cyanatophenyl) -4-methylpentane, 2,2-bis (4-cyanato) Phenyl) -3,3-dimethylbutane, 3,3-bis (4-cyanatophenyl) hexane, 3,3-bis (4-cyanatophenyl) heptane, 3,3-bis (4-cyanatophenyl) Octane 3, 3 -Bis (4-cyanatophenyl) -2-methylpentane, 3,3-bis (4-cyanatophenyl) -2-methylhexane, 3,3-bis (4-cyanatophenyl) -2,2- Dimethylpentane, 4,4-bis (4-cyanatophenyl) -3-methylheptane, 3,3-bis (4-cyanatophenyl) -2-methylheptane, 3,3-bis (4-cyanatophenyl) ) -2,2-dimethylhexane, 3,3-bis (4-cyanatophenyl) -2,4-dimethylhexane, 3,3-bis (4-cyanatophenyl) -2,2,4-trimethylpentane 2,2-bis (4-cyanatophenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-cyanatophenyl) phenylmethane, 1,1-bis (4-si Anatophenyl) -1-pheni Ethane, bis (4-cyanatophenyl) biphenylmethane, 1,1-bis (4-cyanatophenyl) cyclopentane, 1,1-bis (4-cyanatophenyl) cyclohexane, 2,2-bis (4- Cyanato-3-isopropylphenyl) propane, 1,1-bis (3-cyclohexyl-4-cyanatophenyl) cyclohexane, bis (4-cyanatophenyl) diphenylmethane, bis (4-cyanatophenyl) -2,2- Dichloroethylene, 1,3-bis [2- (4-cyanatophenyl) -2-propyl] benzene, 1,4-bis [2- (4-cyanatophenyl) -2-propyl] benzene, 1,1- Bis (4-cyanatophenyl) -3,3,5-trimethylcyclohexane, 4- [bis (4-cyanatophenyl) methyl] biphenyl, 4 4-dicyanatobenzophenone, 1,3-bis (4-cyanatophenyl) -2-propen-1-one, bis (4-cyanatophenyl) ether, bis (4-cyanatophenyl) sulfide, bis (4 -Cyanatophenyl) sulfone, 4-cyanatobenzoic acid-4-cyanatophenyl ester (4-cyanatophenyl-4-cyanatobenzoate), bis- (4-cyanatophenyl) carbonate, 1,3-bis ( 4-cyanatophenyl) adamantane, 1,3-bis (4-cyanatophenyl) -5,7-dimethyladamantane, 3,3-bis (4-cyanatophenyl) isobenzofuran-1 (3H) -one ( Phenolphthalein cyanate), 3,3-bis (4-cyanato-3-methylphenyl) isobenzofuran-1 (3H) -one (o -Cresolphthalein cyanate), 9,9'-bis (4-cyanatophenyl) fluorene, 9,9-bis (4-cyanato-3-methylphenyl) fluorene, 9,9-bis (2-cyanato-) 5-biphenylyl) fluorene, tris (4-cyanatophenyl) methane, 1,1,1-tris (4-cyanatophenyl) ethane, 1,1,3-tris (4-cyanatophenyl) propane, α , Α, α'-tris (4-cyanatophenyl) -1-ethyl-4-isopropylbenzene, 1,1,2,2-tetrakis (4-cyanatophenyl) ethane, tetrakis (4-cyanatophenyl) Methane, 2,4,6-tris (N-methyl-4-cyanatoanilino) -1,3,5-triazine, 2,4-bis (N-methyl-4-cyanatoanilino) -6- ( -Methylanilino) -1,3,5-triazine, bis (N-4-cyanato-2-methylphenyl) -4,4'-oxydiphthalimide, bis (N-3-cyanato-4-methylphenyl) -4 , 4′-oxydiphthalimide, bis (N-4-cyanatophenyl) -4,4′-oxydiphthalimide, bis (N-4-cyanato-2-methylphenyl) -4,4 ′-(hexafluoro Isopropylidene) diphthalimide, tris (3,5-dimethyl-4-cyanatobenzyl) isocyanurate, 2-phenyl-3,3-bis (4-cyanatophenyl) phthalimidine, 2- (4-methylphenyl)- 3,3-bis (4-cyanatophenyl) phthalimidine, 2-phenyl-3,3-bis (4-cyanato-3-methylphenyl) phthalimidine, 1 3,3-bis (4-cyanatophenyl) indolin-2-one, and 2-phenyl-3,3-bis (4-cyanatophenyl) include indolin-2-one.

また、上記式(2)で表される化合物の別の具体例としては、以下に限定されないが、フェノールノボラック樹脂及びクレゾールノボラック樹脂(公知の方法により、フェノール、アルキル置換フェノール又はハロゲン置換フェノールと、ホルマリンやパラホルムアルデヒドなどのホルムアルデヒド化合物とを、酸性溶液中で反応させたもの)、トリスフェノールノボラック樹脂(ヒドロキシベンズアルデヒドとフェノールとを酸性触媒の存在下に反応させたもの)、フルオレンノボラック樹脂(フルオレノン化合物と9,9−ビス(ヒドロキシアリール)フルオレン類を酸性触媒の存在下に反応させたもの)、フェノールアラルキル樹脂、クレゾールアラルキル樹脂、ナフトールアラルキル樹脂及びビフェニルアラルキル樹脂(公知の方法により、Ar−(CHY)(Arはフェニル基を示し、Yはハロゲン原子を示す。以下、この段落において同様。)で表されるようなビスハロゲノメチル化合物とフェノール化合物とを酸性触媒若しくは無触媒で反応させたもの、Ar−(CHOR)で表されるようなビス(アルコキシメチル)化合物とフェノール化合物とを酸性触媒の存在下に反応させたもの、又は、Ar−(CHOH)で表されるようなビス(ヒドロキシメチル)化合物とフェノール化合物を酸性触媒の存在下に反応させたもの、あるいは、芳香族アルデヒド化合物とアラルキル化合物とフェノール化合物とを重縮合させたもの)、フェノール変性キシレンホルムアルデヒド樹脂(公知の方法により、キシレンホルムアルデヒド樹脂とフェノール化合物とを酸性触媒の存在下に反応させたもの)、変性ナフタレンホルムアルデヒド樹脂(公知の方法により、ナフタレンホルムアルデヒド樹脂とヒドロキシ置換芳香族化合物を酸性触媒の存在下に反応させたもの)、フェノール変性ジシクロペンタジエン樹脂、ポリナフチレンエーテル構造を有するフェノール樹脂(公知の方法により、フェノール性ヒドロキシ基を1分子中に2つ以上有する多価ヒドロキシナフタレン化合物を、塩基性触媒の存在下に脱水縮合させたもの)等のフェノール樹脂を、公知の方法によりシアネート化したもの等、並びにこれらのプレポリマー等が挙げられる。Moreover, as another specific example of the compound represented by the above formula (2), although not limited to the following, a phenol novolak resin and a cresol novolak resin (by a known method, phenol, alkyl-substituted phenol or halogen-substituted phenol, Formaldehyde and paraformaldehyde and other formaldehyde compounds reacted in an acidic solution), trisphenol novolac resin (hydroxybenzaldehyde and phenol reacted in the presence of an acidic catalyst), fluorene novolak resin (fluorenone compound) And 9,9-bis (hydroxyaryl) fluorenes in the presence of an acidic catalyst), phenol aralkyl resins, cresol aralkyl resins, naphthol aralkyl resins and biphenyl aralkyl resins (known methods) More, Ar 4 - (CH 2 Y ) 2 (. Ar 4 represents a phenyl group, Y represents a halogen atom and the same in this paragraph.) And bishalogenomethyl compounds represented by the phenol compound obtained by reacting an acidic catalyst or no catalyst, Ar 4 - (CH 2 oR) expressed by such bis 2 (alkoxymethyl) that a compound with a phenol compound is reacted in the presence of an acidic catalyst, or, A reaction product of a bis (hydroxymethyl) compound represented by Ar 4 — (CH 2 OH) 2 and a phenol compound in the presence of an acidic catalyst, or an aromatic aldehyde compound, an aralkyl compound and a phenol compound. Polycondensed), phenol-modified xylene formaldehyde resin (by known methods, xylene formaldehyde resin and Enol compound reacted in the presence of acidic catalyst), modified naphthalene formaldehyde resin (reacted naphthalene formaldehyde resin and hydroxy-substituted aromatic compound in the presence of acidic catalyst by a known method), phenol modified Dicyclopentadiene resin, phenol resin having a polynaphthylene ether structure (by a known method, a polyhydric hydroxynaphthalene compound having two or more phenolic hydroxy groups in one molecule is subjected to dehydration condensation in the presence of a basic catalyst. And the like, and those prepolymers thereof.

上記したシアン酸エステル化合物(B)は、1種を単独で又は2種以上を混合して用いることができる。   The above-mentioned cyanate ester compound (B) can be used individually by 1 type or in mixture of 2 or more types.

この中でも、フェノールノボラック型シアン酸エステル化合物、ナフトールアラルキル型シアン酸エステル化合物、ビフェニルアラルキル型シアン酸エステル化合物、ナフチレンエーテル型シアン酸エステル化合物、キシレン樹脂型シアン酸エステル化合物、アダマンタン骨格型シアン酸エステル化合物が好ましく、ナフトールアラルキル型シアン酸エステル化合物が特に好ましい。   Among them, phenol novolac type cyanate ester compound, naphthol aralkyl type cyanate ester compound, biphenyl aralkyl type cyanate ester compound, naphthylene ether type cyanate ester compound, xylene resin type cyanate ester compound, adamantane skeleton type cyanate ester Compounds are preferred, and naphthol aralkyl cyanate compounds are particularly preferred.

ナフトールアラルキル型シアン酸エステルの具体例としては、式(5)で示されるナフトールアラルキル型シアン酸エステルが挙げられる。このようなナフトールアラルキル型シアン酸エステルを用いることにより、熱膨張係数がより低い硬化物が得られる傾向にある。   Specific examples of the naphthol aralkyl cyanate include naphthol aralkyl cyanate represented by the formula (5). By using such a naphthol aralkyl type cyanate ester, a cured product having a lower thermal expansion coefficient tends to be obtained.

(式(5)中、Rは、各々独立に、水素原子又はメチル基を示し、このなかでも水素原子が好ましい。また、式中、nは1以上の整数を表す。nの上限値は、通常は10であり、好ましくは6である。) (In formula (5), each R 6 independently represents a hydrogen atom or a methyl group, and among these, a hydrogen atom is preferable. In the formula, n 2 represents an integer of 1 or more. Upper limit of n 2 The value is usually 10 and preferably 6)

シアン酸エステル化合物(B)の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、熱膨張係数がより低い硬化物を得る観点から、樹脂固形分100質量部に対し、1〜90質量部が好ましく、より好ましくは30〜70質量部であり、さらに好ましくは40〜60質量部である。   The content of the cyanate ester compound (B) can be appropriately set according to the desired characteristics, and is not particularly limited. However, from the viewpoint of obtaining a cured product having a lower thermal expansion coefficient, the content of the resin solid content is 100 parts by mass. On the other hand, 1-90 mass parts is preferable, More preferably, it is 30-70 mass parts, More preferably, it is 40-60 mass parts.

〔充填材(C)〕
本実施形態の樹脂組成物は、熱膨張特性、寸法安定性、難燃性、熱伝導率、誘電特性などの観点から、充填材(C)をさらに含有することが好ましい。充填材(C)としては、公知のものを適宜使用することができ、その種類は特に限定されない。特に、積層板用途において一般に使用されている充填材を、充填材(C)として好適に用いることができる。充填材(C)の具体例としては、天然シリカ、溶融シリカ、合成シリカ、アモルファスシリカ、アエロジル、中空シリカ等のシリカ類、ホワイトカーボン、チタンホワイト、酸化亜鉛、酸化マグネシウム、酸化ジルコニウム等の酸化物、窒化ホウ素、凝集窒化ホウ素、窒化ケイ素、窒化アルミニウム、硫酸バリウム、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデンやモリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、E−ガラス、A−ガラス、NE−ガラス、C−ガラス、L−ガラス、D−ガラス、S−ガラス、M−ガラスG20、ガラス短繊維(Eガラス、Tガラス、Dガラス、Sガラス、Qガラス等のガラス微粉末類を含む。)、中空ガラス、球状ガラスなど無機系の充填材の他、スチレン型、ブタジエン型、アクリル型などのゴムパウダー、コアシェル型のゴムパウダー、並びにシリコーンレジンパウダー、シリコーンゴムパウダー、シリコーン複合パウダーなど有機系の充填材などが挙げられる。これらの充填材は、1種を単独で又は2種以上を組み合わせて用いることができる。
これらの中でも、シリカ、水酸化アルミニウム、ベーマイト、酸化マグネシウム及び水酸化マグネシウムからなる群から選択される1種又は2種以上が好適である。これらの充填材を使用することで、樹脂組成物の熱膨張特性、寸法安定性、難燃性などの特性がより向上する傾向にある。
[Filler (C)]
The resin composition of the present embodiment preferably further contains a filler (C) from the viewpoints of thermal expansion characteristics, dimensional stability, flame retardancy, thermal conductivity, dielectric characteristics, and the like. As a filler (C), a well-known thing can be used suitably, The kind is not specifically limited. In particular, a filler generally used in laminated plate applications can be suitably used as the filler (C). Specific examples of the filler (C) include natural silica, fused silica, synthetic silica, amorphous silica, aerosil, hollow silica and other silicas, white carbon, titanium white, zinc oxide, magnesium oxide, zirconium oxide and other oxides. , Boron nitride, Aggregated boron nitride, Silicon nitride, Aluminum nitride, Barium sulfate, Aluminum hydroxide, Aluminum hydroxide heat-treated product (Aluminum hydroxide is heat-treated and part of crystal water is reduced), boehmite, water Metal hydrates such as magnesium oxide, molybdenum compounds such as molybdenum oxide and zinc molybdate, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, E-glass , A-glass, NE-glass, C-glass, L-glass, D-gas S, S-glass, M-glass G20, short glass fibers (including fine glass powders such as E glass, T glass, D glass, S glass, and Q glass), hollow glass, spherical glass, and other inorganic fillers In addition to the material, rubber powders such as styrene type, butadiene type, and acrylic type, core shell type rubber powder, and organic fillers such as silicone resin powder, silicone rubber powder, and silicone composite powder can be used. These fillers can be used alone or in combination of two or more.
Among these, one or more selected from the group consisting of silica, aluminum hydroxide, boehmite, magnesium oxide, and magnesium hydroxide is preferable. By using these fillers, characteristics such as thermal expansion characteristics, dimensional stability, and flame retardancy of the resin composition tend to be further improved.

本実施形態の樹脂組成物における充填材(C)の含有量は、所望する特性に応じて適宜設定することができ、特に限定されないが、樹脂組成物の成形性の観点から、樹脂固形分を100質量部とした場合、50〜1600質量部とすることが好ましく、より好ましくは50〜750質量部であり、さらに好ましくは50〜300質量部であり、特に好ましくは50〜200質量部である。   The content of the filler (C) in the resin composition of the present embodiment can be appropriately set according to desired characteristics, and is not particularly limited, but from the viewpoint of moldability of the resin composition, the resin solid content is When it is 100 mass parts, it is preferable to set it as 50-1600 mass parts, More preferably, it is 50-750 mass parts, More preferably, it is 50-300 mass parts, Most preferably, it is 50-200 mass parts. .

ここで充填材(C)を樹脂組成物に含有させるにあたり、シランカップリング剤や湿潤分散剤を併用することが好ましい。シランカップリング剤としては、一般に無機物の表面処理に用いられるものを好適に用いることができ、その種類は特に限定されない。シランカップリング剤として、具体的には、以下に限定されないが、γ−アミノプロピルトリエトキシシラン、N−β−(アミノエチル)−γ−アミノプロピルトリメトキシシランなどのアミノシラン系、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシシラン系、γ−メタアクリロキシプロピルトリメトキシシラン、ビニルートリ(β−メトキシエトキシ)シランなどのビニルシラン系、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、並びにフェニルシラン系が挙げられる。シランカップリング剤は、1種を単独で又は2種以上を組み合わせて用いることができる。また、湿潤分散剤としては、一般に塗料用に用いられているものを好適に用いることができ、その種類は特に限定されない。湿潤分散剤としては、好ましくは、共重合体ベースの湿潤分散剤が用いられ、市販品であってもよい。市販品の具体例としては、以下に限定されないが、ビックケミー・ジャパン(株)製のDisperbyk−110、111、161、180、BYK−W996、BYK−W9010、BYK−W903、BYK−W940などが挙げられる。湿潤分散剤は、1種を単独で又は2種以上を組み合わせて用いることができる。   Here, when the filler (C) is contained in the resin composition, it is preferable to use a silane coupling agent or a wetting and dispersing agent in combination. As a silane coupling agent, what is generally used for the surface treatment of an inorganic substance can be used suitably, and the kind is not specifically limited. Specific examples of the silane coupling agent include, but are not limited to, aminosilanes such as γ-aminopropyltriethoxysilane and N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, and γ-glycid. Epoxysilanes such as xylpropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, vinylsilanes such as γ-methacryloxypropyltrimethoxysilane, vinyl-tri (β-methoxyethoxy) silane, N Examples include cationic silanes such as -β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride and phenylsilanes. A silane coupling agent can be used individually by 1 type or in combination of 2 or more types. Moreover, as a wet dispersing agent, what is generally used for coating materials can be used suitably, The kind is not specifically limited. As the wetting and dispersing agent, a copolymer-based wetting and dispersing agent is preferably used, and may be a commercially available product. Specific examples of commercially available products include, but are not limited to, Disperbyk-110, 111, 161, 180, BYK-W996, BYK-W9010, BYK-W903, BYK-W940 and the like manufactured by Big Chemie Japan Co., Ltd. It is done. Wet dispersants can be used alone or in combination of two or more.

〔その他の成分〕
さらに、本実施形態の樹脂組成物においては、所期の特性が損なわれない範囲において、上記式(1)で表されるエポキシ樹脂(A)以外のエポキシ樹脂(以下、「他のエポキシ樹脂」という。)、マレイミド化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、重合可能な不飽和基を有する化合物等をさらに含有していてもよい。これらを併用することで、樹脂組成物を硬化して得られる硬化物の難燃性、低誘電性などの所望する特性が向上する傾向にある。
[Other ingredients]
Furthermore, in the resin composition of the present embodiment, an epoxy resin other than the epoxy resin (A) represented by the above formula (1) (hereinafter referred to as “other epoxy resin”) as long as the desired characteristics are not impaired. And a maleimide compound, a phenol resin, an oxetane resin, a benzoxazine compound, a compound having a polymerizable unsaturated group, and the like. By using these in combination, desired properties such as flame retardancy and low dielectric property of a cured product obtained by curing the resin composition tend to be improved.

(他のエポキシ樹脂)
他のエポキシ樹脂としては、式(1)で表されるものでなく、1分子中に2個以上のエポキシ基を有するエポキシ樹脂であれば、公知のものを適宜使用することができ、その種類は特に限定されない。具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、アラルキルノボラック型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ナフタレン骨格変性ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの二重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物などが挙げられる。これらのエポキシ樹脂のなかでは、ビフェニルアラルキル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、多官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂が難燃性、耐熱性の面で好ましい。これらのエポキシ樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Other epoxy resins)
The other epoxy resin is not represented by the formula (1), and any known epoxy resin can be used as long as it has two or more epoxy groups in one molecule. Is not particularly limited. Specifically, bisphenol A type epoxy resin, bisphenol E type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, bisphenol A novolac type epoxy resin, glycidyl ester type epoxy resin, aralkyl novolak Type epoxy resin, biphenyl aralkyl type epoxy resin, naphthylene ether type epoxy resin, cresol novolac type epoxy resin, polyfunctional phenol type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, naphthalene skeleton modified novolak type epoxy resin, phenol aralkyl Type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, alicyclic ester Carboxy resin, a polyol type epoxy resins, phosphorus-containing epoxy resin, glycidyl amine, glycidyl ester, compounds of the double bonds epoxidized in butadiene, such as a compound obtained by reaction of a hydroxyl-group-containing silicon resin with epichlorohydrin. Among these epoxy resins, biphenyl aralkyl type epoxy resins, naphthylene ether type epoxy resins, polyfunctional phenol type epoxy resins, and naphthalene type epoxy resins are preferable in terms of flame retardancy and heat resistance. These epoxy resins can be used alone or in combination of two or more.

(マレイミド化合物)
マレイミド化合物としては、1分子中に1個以上のマレイミド基を有する化合物であれば、一般に公知のものを使用できる。例えば、4,4−ジフェニルメタンビスマレイミド、フェニルメタンマレイミド、m−フェニレンビスマレイミド、2,2−ビス(4−(4−マレイミドフェノキシ)−フェニル)プロパン、3,3−ジメチル−5,5−ジエチル−4,4−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、1,6−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、4,4−ジフェニルエーテルビスマレイミド、4,4−ジフェニルスルフォンビスマレイミド、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、ポリフェニルメタンマレイミド、ノボラック型マレイミド、ビフェニルアラルキル型マレイミド、及びこれらマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマー等が挙げられるが、特に限定されるものではない。これらのマレイミド化合物は、1種又は2種以上混合して用いることができる。この中でも、ノボラック型マレイミド化合物、ビフェニルアラルキル型マレイミド化合物が特に好ましい。
(Maleimide compound)
As the maleimide compound, generally known compounds can be used as long as they have one or more maleimide groups in one molecule. For example, 4,4-diphenylmethane bismaleimide, phenylmethane maleimide, m-phenylene bismaleimide, 2,2-bis (4- (4-maleimidophenoxy) -phenyl) propane, 3,3-dimethyl-5,5-diethyl -4,4-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, 4,4-diphenyl ether bismaleimide, 4,4 -Diphenylsulfone bismaleimide, 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene, polyphenylmethane maleimide, novolac maleimide, biphenylaralkyl maleimide, and these maleimide compounds Prepolymer Or although prepolymer of the maleimide compound and amine compound, but is not particularly limited. These maleimide compounds can be used alone or in combination. Of these, novolac maleimide compounds and biphenylaralkyl maleimide compounds are particularly preferred.

(フェノール樹脂)
フェノール樹脂としては、1分子中に2個以上のヒドロキシ基を有するフェノール樹脂であれば、一般に公知のものを使用できる。その具体例としては、ビスフェノールA型フェノール樹脂、ビスフェノールE型フェノール樹脂、ビスフェノールF型フェノール樹脂、ビスフェノールS型フェノール樹脂、フェノールノボラック樹脂、ビスフェノールAノボラック型フェノール樹脂、グリシジルエステル型フェノール樹脂、アラルキルノボラック型フェノール樹脂、ビフェニルアラルキル型フェノール樹脂、クレゾールノボラック型フェノール樹脂、多官能フェノール樹脂、ナフトール樹脂、ナフトールノボラック樹脂、多官能ナフトール樹脂、アントラセン型フェノール樹脂、ナフタレン骨格変性ノボラック型フェノール樹脂、フェノールアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、ジシクロペンタジエン型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、ポリオール型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂類等が挙げられるが、特に限定されるものではない。これらのフェノール樹脂の中では、ビフェニルアラルキル型フェノール樹脂、ナフトールアラルキル型フェノール樹脂、リン含有フェノール樹脂、水酸基含有シリコーン樹脂が難燃性の点で好ましい。これらのフェノール樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。
(Phenolic resin)
As the phenol resin, generally known resins can be used as long as they are phenol resins having two or more hydroxy groups in one molecule. Specific examples thereof include bisphenol A type phenol resin, bisphenol E type phenol resin, bisphenol F type phenol resin, bisphenol S type phenol resin, phenol novolac resin, bisphenol A novolac type phenol resin, glycidyl ester type phenol resin, aralkyl novolac type. Phenol resin, biphenyl aralkyl type phenol resin, cresol novolac type phenol resin, polyfunctional phenol resin, naphthol resin, naphthol novolac resin, polyfunctional naphthol resin, anthracene type phenol resin, naphthalene skeleton modified novolak type phenol resin, phenol aralkyl type phenol resin Naphthol aralkyl type phenolic resin, dicyclopentadiene type phenolic resin, biphenyl type phenolic resin Nord resins, alicyclic phenolic resins, polyol-type phenolic resin, a phosphorus-containing phenol resin, a hydroxyl group-containing silicone resins and the like, but is not particularly limited. Among these phenol resins, biphenyl aralkyl type phenol resins, naphthol aralkyl type phenol resins, phosphorus-containing phenol resins, and hydroxyl group-containing silicone resins are preferable in terms of flame retardancy. These phenol resins can be used individually by 1 type or in combination of 2 or more types.

(オキセタン樹脂)
オキセタン樹脂としては、一般に公知のものを使用できる。例えば、オキセタン、2−メチルオキセタン、2,2−ジメチルオキセタン、3−メチルオキセタン、3,3−ジメチルオキセタン等のアルキルオキセタン、3−メチル−3−メトキシメチルオキセタン、3,3−ジ(トリフルオロメチル)パーフルオキセタン、2−クロロメチルオキセタン、3,3−ビス(クロロメチル)オキセタン、ビフェニル型オキセタン、OXT−101(東亞合成製商品名)、OXT−121(東亞合成製商品名)等が挙げられるが、特に限定されるものではない。これらのオキセタン樹脂は、1種又は2種以上混合して用いることができる。
(Oxetane resin)
As the oxetane resin, generally known oxetane resins can be used. For example, oxetane, 2-methyloxetane, 2,2-dimethyloxetane, 3-methyloxetane, alkyloxetane such as 3,3-dimethyloxetane, 3-methyl-3-methoxymethyloxetane, 3,3-di (trifluoro) Methyl) perfluoxetane, 2-chloromethyloxetane, 3,3-bis (chloromethyl) oxetane, biphenyl type oxetane, OXT-101 (trade name, manufactured by Toagosei Co., Ltd.), OXT-121 (trade name, manufactured by Toagosei Co., Ltd.) Although it is mentioned, it is not particularly limited. These oxetane resins can be used alone or in combination.

(ベンゾオキサジン化合物)
ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA型ベンゾオキサジンBA−BXZ(小西化学製商品名)ビスフェノールF型ベンゾオキサジンBF−BXZ(小西化学製商品名)、ビスフェノールS型ベンゾオキサジンBS−BXZ(小西化学製商品名)、P−d型ベンゾオキサジン(四国化成工業製商品名)、F−a型ベンゾオキサジン(四国化成工業製商品名)等が挙げられるが、特に限定されるものではない。これらのベンゾオキサジン化合物は、1種又は2種以上混合して用いることができる。
(Benzoxazine compound)
As the benzoxazine compound, generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule. For example, bisphenol A type benzoxazine BA-BXZ (trade name, manufactured by Konishi Chemical) bisphenol F type benzoxazine BF-BXZ (trade name, manufactured by Konishi Chemical), bisphenol S type benzoxazine BS-BXZ (trade name, manufactured by Konishi Chemical), P -D type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), Fa type benzoxazine (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.) and the like can be mentioned, but are not particularly limited. These benzoxazine compounds can be used alone or in combination.

(重合可能な不飽和基を有する化合物)
重合可能な不飽和基を有する化合物としては、一般に公知のものを使用できる。例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物、メチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価又は多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、及びベンゾシクロブテン樹脂、が挙げられるが、特に限定されるものではない。これらの不飽和基を有する化合物は、1種又は2種以上混合して用いることができる。なお、上記「(メタ)アクリレート」は、アクリレート及びそれに対応するメタクリレートを包含する概念である。
(Compound having a polymerizable unsaturated group)
As the compound having a polymerizable unsaturated group, generally known compounds can be used. For example, vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, polypropylene glycol di (meth) acrylate, Mono- or polyhydric alcohol (meth) acrylates such as trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, bisphenol And epoxy (meth) acrylates such as A-type epoxy (meth) acrylate and bisphenol F-type epoxy (meth) acrylate, and benzocyclobutene resin. But it is not particularly limited. These compounds having an unsaturated group can be used alone or in combination. The “(meth) acrylate” is a concept including acrylate and methacrylate corresponding to the acrylate.

(硬化促進剤)
また、本実施形態の樹脂組成物は、必要に応じて、硬化速度を適宜調節するための硬化促進剤を含有していてもよい。この硬化促進剤としては、シアン酸エステル化合物やエポキシ樹脂等の硬化促進剤として一般に使用されているものを好適に用いることができ、その種類は特に限定されない。硬化促進剤の具体例としては、オクチル酸亜鉛、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、アセチルアセトン鉄、オクチル酸ニッケル、オクチル酸マンガン等の有機金属塩類、フェノール、キシレノール、クレゾール、レゾルシン、カテコール、オクチルフェノール、ノニルフェノール等のフェノール化合物、1−ブタノール、2−エチルヘキサノール等のアルコール類、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール等のイミダゾール類及びこれらのイミダゾール類のカルボン酸若しくはその酸無水類の付加体等の誘導体、ジシアンジアミド、ベンジルジメチルアミン、4−メチル−N,N−ジメチルベンジルアミン等のアミン類、ホスフィン系化合物、ホスフィンオキサイド系化合物、ホスホニウム塩系化合物、ダイホスフィン系化合物等のリン化合物、エポキシ−イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ−2−エチルヘキシルパーオキシカーボネート等の過酸化物、又はアゾビスイソブチロニトリル等のアゾ化合物が挙げられる。硬化促進剤は、1種を単独で又は2種以上を組み合わせて用いることができる。
硬化促進剤の使用量は、樹脂の硬化度や樹脂組成物の粘度等を考慮して適宜調整でき、特に限定されない。硬化促進剤の使用量は、樹脂組成物中の樹脂固形分を100質量部に対し、0.005〜10質量部であってもよい。
(Curing accelerator)
Moreover, the resin composition of this embodiment may contain the hardening accelerator for adjusting a hardening rate suitably as needed. As this hardening accelerator, what is generally used as hardening accelerators, such as a cyanate ester compound and an epoxy resin, can be used suitably, The kind is not specifically limited. Specific examples of the curing accelerator include zinc octylate, zinc naphthenate, cobalt naphthenate, copper naphthenate, iron acetylacetone, nickel octylate, manganese octylate, etc., phenol, xylenol, cresol, resorcin, catechol Phenol compounds such as octylphenol and nonylphenol, alcohols such as 1-butanol and 2-ethylhexanol, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, Imidazoles such as 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and Derivatives of imidazoles such as carboxylic acids or anhydrides thereof, dicyandiamide, benzyldimethylamine, amines such as 4-methyl-N, N-dimethylbenzylamine, phosphine compounds, phosphine oxide compounds, Phosphorium salt compounds, phosphorus compounds such as diphosphine compounds, epoxy-imidazole adduct compounds, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl Examples thereof include peroxides such as peroxycarbonate and azo compounds such as azobisisobutyronitrile. A hardening accelerator can be used individually by 1 type or in combination of 2 or more types.
The usage-amount of a hardening accelerator can be suitably adjusted in consideration of the hardening degree of resin, the viscosity of a resin composition, etc., and is not specifically limited. 0.005-10 mass parts may be sufficient as the usage-amount of a hardening accelerator with respect to 100 mass parts of resin solid content in a resin composition.

(他の添加剤)
さらに、本実施形態の樹脂組成物は、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、難燃性化合物、並びに各種添加剤等を併用することができる。これらは一般に使用されているものであれば、特に限定されるものではない。難燃性化合物の具体例としては、以下に限定されないが、4,4’−ジブロモビフェニル等の臭素化合物、リン酸エステル、リン酸メラミン、リン含有エポキシ樹脂、メラミン及びベンゾグアナミンなどの窒素化合物、オキサジン環含有化合物、並びに、シリコーン系化合物等が挙げられる。また、各種添加剤としては、以下に限定されないが、例えば、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、流動調整剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等が挙げられる。これらは、所望に応じて1種を単独で又は2種以上を組み合わせて用いることができる。
(Other additives)
Furthermore, the resin composition of the present embodiment includes various thermosetting resins such as other thermosetting resins, thermoplastic resins and oligomers thereof, elastomers and the like within a range in which desired characteristics are not impaired. In addition, various additives can be used in combination. These are not particularly limited as long as they are generally used. Specific examples of the flame retardant compound include, but are not limited to, bromine compounds such as 4,4′-dibromobiphenyl, phosphoric acid esters, melamine phosphate, phosphorus-containing epoxy resins, nitrogen compounds such as melamine and benzoguanamine, and oxazine Examples thereof include a ring-containing compound and a silicone compound. Examples of various additives include, but are not limited to, ultraviolet absorbers, antioxidants, photopolymerization initiators, fluorescent brighteners, photosensitizers, dyes, pigments, thickeners, and flow modifiers. , Lubricants, antifoaming agents, dispersants, leveling agents, brighteners, polymerization inhibitors and the like. These may be used alone or in combination of two or more as desired.

(有機溶剤)
なお、本実施形態の樹脂組成物は、必要に応じて、有機溶剤を含有することができる。この場合、本実施形態の樹脂組成物は、上述した各種樹脂成分の少なくとも一部、好ましくは全部が有機溶剤に溶解又は相溶した態様(溶液又はワニス)として用いることができる。有機溶剤としては、上述した各種樹脂成分の少なくとも一部、好ましくは全部を溶解又は相溶可能なものであれば、公知のものを適宜用いることができ、その種類は特に限定されるものではない。有機溶剤の具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒、ジメチルアセトアミド、ジメチルホルムアミド等のアミド類などの極性溶剤類、トルエン、キシレン等の芳香族炭化水素等の無極性溶剤が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて用いることができる。
(Organic solvent)
In addition, the resin composition of this embodiment can contain an organic solvent as needed. In this case, the resin composition of the present embodiment can be used as an aspect (solution or varnish) in which at least a part, preferably all, of the various resin components described above are dissolved or compatible with an organic solvent. Any known organic solvent can be used as long as it dissolves or is compatible with at least a part, preferably all of the above-mentioned various resin components, and the kind thereof is not particularly limited. . Specific examples of the organic solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, cellosolv solvents such as propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, and isoamyl acetate. And ester solvents such as methyl methoxypropionate and methyl hydroxyisobutyrate, polar solvents such as amides such as dimethylacetamide and dimethylformamide, and nonpolar solvents such as aromatic hydrocarbons such as toluene and xylene. These can be used alone or in combination of two or more.

本実施形態の樹脂組成物は、常法にしたがって調製することができ、式(1)で表されるエポキシ樹脂(A)及びシアン酸エステル化合物(B)、上述したその他の任意成分を均一に含有する樹脂組成物が得られる方法であれば、その調製方法は特に限定されない。例えば、式(1)で表されるエポキシ樹脂(A)及びシアン酸エステル化合物(B)を順次溶剤に配合し、十分に撹拌することで本実施形態の樹脂組成物を容易に調製することができる。   The resin composition of the present embodiment can be prepared according to a conventional method, and the epoxy resin (A) represented by the formula (1), the cyanate ester compound (B), and other optional components described above are uniformly added. If it is a method by which the resin composition to contain is obtained, the preparation method will not be specifically limited. For example, the epoxy resin (A) represented by the formula (1) and the cyanate ester compound (B) are blended sequentially in a solvent, and the resin composition of this embodiment can be easily prepared by sufficiently stirring. it can.

なお、樹脂組成物の調製時に、各成分を均一に溶解或いは分散させるための公知の処理(撹拌、混合、混練処理など)を行うことができる。例えば、充填材(C)の均一分散にあたり、適切な撹拌能力を有する撹拌機を付設した撹拌槽を用いて撹拌分散処理を行うことで、樹脂組成物に対する分散性が高められる。上記の撹拌、混合、混練処理は、例えば、ボールミル、ビーズミルなどの混合を目的とした装置、または、公転・自転型の混合装置などの公知の装置を用いて適宜行うことができる。   In preparing the resin composition, a known process (such as stirring, mixing, kneading process) for uniformly dissolving or dispersing each component can be performed. For example, when uniformly dispersing the filler (C), the dispersibility with respect to the resin composition is enhanced by performing the stirring and dispersing treatment using a stirring tank provided with a stirrer having an appropriate stirring ability. The above stirring, mixing, and kneading treatment can be appropriately performed using, for example, a known device such as a ball mill or a bead mill for mixing, or a revolving / spinning mixing device.

本実施形態の樹脂組成物は、以下に限定されないが、例えば、プリプレグ、金属箔張積層板、プリント配線板、樹脂シート、及び半導体パッケージの構成材料として用いることができる。例えば、本実施形態の樹脂組成物を溶剤に溶解させた溶液を基材に含浸又は塗布し乾燥することでプリプレグを得ることができる。
また、基材として剥離可能なプラスチックフィルムを用い、本実施形態の樹脂組成物を溶剤に溶解させた溶液を、そのプラスチックフィルムに塗布し乾燥することでビルドアップ用フィルム又はドライフィルムソルダーレジストを得ることができる。ここで、溶剤は、20℃〜150℃の温度で1〜90分間乾燥することで乾燥できる。
また、本実施形態の樹脂組成物は溶剤を乾燥しただけの未硬化の状態で使用することもできるし、必要に応じて半硬化(Bステージ化)の状態にして使用することもできる。
Although the resin composition of this embodiment is not limited to the following, For example, it can be used as a constituent material of a prepreg, a metal foil tension laminated board, a printed wiring board, a resin sheet, and a semiconductor package. For example, a prepreg can be obtained by impregnating or applying a solution obtained by dissolving the resin composition of the present embodiment in a solvent to a base material and drying.
Also, a peelable plastic film is used as a substrate, and a solution obtained by dissolving the resin composition of the present embodiment in a solvent is applied to the plastic film and dried to obtain a build-up film or a dry film solder resist. be able to. Here, the solvent can be dried by drying at a temperature of 20 ° C. to 150 ° C. for 1 to 90 minutes.
Moreover, the resin composition of this embodiment can also be used in the uncured state which dried the solvent, and can also be used in the semi-cured (B-stage) state as needed.

以下、本実施形態のプリプレグについて詳述する。本実施形態のプリプレグは、基材と、該基材に含浸又は塗布された上記樹脂組成物とを有するものである。本実施形態のプリプレグの製造方法は、本実施形態の樹脂組成物と基材とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。具体的には、本実施形態の樹脂組成物を基材に含浸又は塗布させた後、120〜220℃の乾燥機中で、2〜15分程度乾燥させる方法等によって半硬化させることで、本実施形態のプリプレグを製造することができる。このとき、基材に対する樹脂組成物の付着量、すなわち半硬化後のプリプレグの総量に対する樹脂組成物の含有量(充填材(C)を含む。)は、20〜99質量%の範囲であることが好ましい。   Hereinafter, the prepreg of this embodiment will be described in detail. The prepreg of this embodiment has a base material and the resin composition impregnated or coated on the base material. The manufacturing method of the prepreg of this embodiment will not be specifically limited if it is a method of manufacturing a prepreg combining the resin composition of this embodiment, and a base material. Specifically, after impregnating or applying the resin composition of the present embodiment to a substrate, it is semi-cured by a method of drying for about 2 to 15 minutes in a dryer at 120 to 220 ° C. The prepreg of the embodiment can be manufactured. At this time, the amount of the resin composition attached to the substrate, that is, the content of the resin composition (including the filler (C)) with respect to the total amount of the prepreg after semi-curing is in the range of 20 to 99% by mass. Is preferred.

本実施形態のプリプレグを製造する際に用いられる基材としては、各種プリント配線板材料に用いられている公知のものであってもよい。そのような基材としては、例えば、Eガラス、Dガラス、Lガラス、Sガラス、Tガラス、Qガラス、UNガラス、NEガラス、球状ガラス等のガラス繊維、クォーツ等のガラス以外の無機繊維、ポリイミド、ポリアミド、ポリエステル等の有機繊維、液晶ポリエステル等の織布が挙げられるが、これらに特に限定されるものではない。基材の形状としては、織布、不織布、ロービング、チョップドストランドマット、及びサーフェシングマット等が知られており、これらのいずれであってもよい。基材は、1種を単独で又は2種以上を適宜組み合わせて用いることができる。織布の中では、特に超開繊処理や目詰め処理を施した織布が、寸法安定性の観点から好適である。さらに、エポキシシラン処理、又はアミノシラン処理などのシランカップリング剤などで表面処理したガラス織布は吸湿耐熱性の観点から好ましい。また、液晶ポリエステル織布は、電気特性の面から好ましい。さらに、基材の厚さは、特に限定されないが、積層板用途であれば、0.01〜0.2mmの範囲が好ましい。   As a base material used when manufacturing the prepreg of this embodiment, the well-known thing used for various printed wiring board materials may be used. Examples of such a substrate include glass fibers such as E glass, D glass, L glass, S glass, T glass, Q glass, UN glass, NE glass, and spherical glass, and inorganic fibers other than glass such as quartz, Examples thereof include organic fibers such as polyimide, polyamide, and polyester, and woven fabrics such as liquid crystal polyester, but are not particularly limited thereto. As the shape of the substrate, woven fabric, non-woven fabric, roving, chopped strand mat, surfacing mat, and the like are known, and any of these may be used. A base material can be used individually by 1 type or in combination of 2 or more types as appropriate. Among the woven fabrics, a woven fabric that has been subjected to ultra-opening treatment or plugging treatment is particularly preferable from the viewpoint of dimensional stability. Furthermore, a glass woven fabric surface-treated with a silane coupling agent such as an epoxy silane treatment or an amino silane treatment is preferable from the viewpoint of moisture absorption heat resistance. A liquid crystal polyester woven fabric is preferable from the viewpoint of electrical characteristics. Furthermore, the thickness of the substrate is not particularly limited, but is preferably in the range of 0.01 to 0.2 mm for use in a laminated board.

本実施形態の金属箔張積層板は、少なくとも1枚以上積層された上述のプリプレグと、そのプリプレグの片面又は両面に配された金属箔とを有するものである。具体的には、前述のプリプレグ1枚に対して、又はプリプレグを複数枚重ねたものに対して、その片面又は両面に銅やアルミニウムなどの金属箔を配置して、積層成形することにより作製することができる。ここで用いられる金属箔は、プリント配線板材料に用いられているものであれば、特に限定されないが、圧延銅箔及び電解銅箔等の銅箔が好ましい。また、金属箔の厚さは、特に限定されないが、2〜70μmであると好ましく、3〜35μmであるとより好ましい。成形条件としては、通常のプリント配線板用積層板及び多層板の作製時に用いられる手法を採用できる。例えば、多段プレス機、多段真空プレス機、連続成形機、又はオートクレーブ成形機などを用い、温度180〜350℃、加熱時間100〜300分、面圧20〜100kg/cmの条件で積層成形することにより本実施形態の金属箔張積層板を製造することができる。また、上記のプリプレグと、別途作製した内層用の配線板とを組み合わせて積層成形することにより、多層板を作製することもできる。多層板の製造方法としては、例えば、上述したプリプレグ1枚の両面に35μmの銅箔を配置し、上記条件にて積層形成した後、内層回路を形成し、この回路に黒化処理を実施して内層回路板を形成する。さらに、この内層回路板と上記のプリプレグとを交互に1枚ずつ配置し、さらに最外層に銅箔を配置して、上記条件にて好ましくは真空下で積層成形する。こうして、多層板を作製することができる。The metal foil-clad laminate of the present embodiment has at least one or more of the above-described prepregs laminated and a metal foil disposed on one or both sides of the prepreg. Specifically, it is produced by laminating and forming a metal foil such as copper or aluminum on one side or both sides of one prepreg or a plurality of prepregs stacked. be able to. Although the metal foil used here will not be specifically limited if it is used for printed wiring board material, Copper foil, such as a rolled copper foil and an electrolytic copper foil, is preferable. Moreover, although the thickness of metal foil is not specifically limited, It is preferable in it being 2-70 micrometers, and it is more preferable in it being 3-35 micrometers. As a molding condition, a technique used when producing a normal laminated board for a printed wiring board and a multilayer board can be employed. For example, using a multi-stage press machine, a multi-stage vacuum press machine, a continuous molding machine, or an autoclave molding machine, lamination molding is performed under conditions of a temperature of 180 to 350 ° C., a heating time of 100 to 300 minutes, and a surface pressure of 20 to 100 kg / cm 2. As a result, the metal foil-clad laminate of this embodiment can be manufactured. Moreover, a multilayer board can also be produced by laminating and molding the above prepreg and a separately produced wiring board for the inner layer. As a method for producing a multilayer board, for example, a 35 μm copper foil is disposed on both surfaces of one prepreg described above, laminated under the above conditions, an inner layer circuit is formed, and blackening treatment is performed on this circuit. To form an inner layer circuit board. Further, this inner layer circuit board and the above prepreg are alternately disposed one by one, and a copper foil is further disposed on the outermost layer, and lamination molding is performed under the above conditions, preferably under vacuum. In this way, a multilayer board can be produced.

本実施形態の金属箔張積層板は、更にパターン形成することにより、プリント配線板として好適に用いることができる。プリント配線板は、常法に従って製造することができ、その製造方法は特に限定されない。以下、プリント配線板の製造方法の一例を示す。まず、上述した金属箔張積層板を用意する。次に、金属箔張積層板の表面にエッチング処理を施して内層回路を形成することにより、内層基板を作製する。この内層基板の内層回路表面に、必要に応じて接着強度を高めるための表面処理を施し、次いで、その内層回路表面に上述したプリプレグを所要枚数重ねる。さらに、その外側に外層回路用の金属箔を積層し、加熱加圧して一体成形する。このようにして、内層回路と外層回路用の金属箔との間に、基材及び熱硬化性樹脂組成物の硬化物からなる絶縁層が形成された多層の積層板が製造される。次いで、この多層の積層板にスルーホールやバイアホール用の穴あけ加工を施した後、この穴の壁面に内層回路と外層回路用の金属箔とを導通させるめっき金属皮膜を形成する。さらに、外層回路用の金属箔にエッチング処理を施して外層回路を形成することで、プリント配線板が製造される。   The metal foil-clad laminate of this embodiment can be suitably used as a printed wiring board by further forming a pattern. The printed wiring board can be manufactured according to a conventional method, and the manufacturing method is not particularly limited. Hereinafter, an example of the manufacturing method of a printed wiring board is shown. First, the metal foil-clad laminate described above is prepared. Next, an inner layer substrate is manufactured by performing an etching process on the surface of the metal foil-clad laminate to form an inner layer circuit. The inner layer circuit surface of the inner layer substrate is subjected to a surface treatment for increasing the adhesive strength as necessary, and then the required number of the prepregs described above are stacked on the inner layer circuit surface. Further, a metal foil for an outer layer circuit is laminated on the outside, and is integrally formed by heating and pressing. In this way, a multilayer laminate is produced in which an insulating layer made of a cured material of the base material and the thermosetting resin composition is formed between the inner layer circuit and the metal foil for the outer layer circuit. Next, after drilling a through hole or a via hole in the multilayer laminate, a plated metal film is formed on the wall surface of the hole to electrically connect the inner layer circuit and the outer layer metal foil. Furthermore, the printed circuit board is manufactured by performing an etching process on the metal foil for the outer layer circuit to form the outer layer circuit.

上記の製造例で得られるプリント配線板は、絶縁層と、この絶縁層の表面に形成された導体層とを有し、絶縁層が上述した本実施形態の樹脂組成物を含む構成となる。すなわち、上述した本実施形態のプリプレグ(基材及びこれに含浸又は塗布された本実施形態の樹脂組成物)、上述した本実施形態の金属箔張積層板の樹脂組成物の層(本実施形態の樹脂組成物からなる層)が、本実施形態の樹脂組成物を含む絶縁層から構成されることになる。   The printed wiring board obtained in the above production example has an insulating layer and a conductor layer formed on the surface of the insulating layer, and the insulating layer includes the above-described resin composition of the present embodiment. That is, the prepreg of the present embodiment described above (the base material and the resin composition of the present embodiment impregnated or applied thereto), the layer of the resin composition of the metal foil-clad laminate of the present embodiment described above (the present embodiment). The layer made of the resin composition) is composed of an insulating layer containing the resin composition of the present embodiment.

本実施形態の樹脂シートは、支持体と、その支持体の表面に配された、上記樹脂組成物の層とを含む樹脂シート(積層シート)を指すだけでなく、積層シートから支持体を取り除いた樹脂組成物層のみ(単層シート)も本実施形態の樹脂シートに該当する。すなわち、本実施形態の樹脂シートは、本実施形態の樹脂組成物を有するものである。
上記の積層シートは、上記の樹脂組成物を溶剤に溶解させた溶液を支持体に塗布し乾燥することで得ることができる。ここで用いる支持体としては、特に限定されないが、例えば、ポリエチレンフィルム、ポリプロピレンフィルム、ポリカーボネートフィルム、ポリエチレンテレフタレートフィルム、エチレンテトラフルオロエチレン共重合体フィルム、並びにこれらのフィルムの表面に離型剤を塗布した離型フィルム、ポリイミドフィルム等の有機系のフィルム基材、銅箔、アルミ箔等の導体箔、ガラス板、SUS板、FRP等の板状の無機系のフィルムが挙げられる。塗布方法としては、例えば、上記の樹脂組成物を溶剤に溶解させた溶液を、バーコーター、ダイコーター、ドクターブレード、ベーカーアプリケーター等で支持体上に塗布することで、支持体と樹脂組成物層が一体となった積層シートを作製する方法が挙げられる。また、塗布後、さらに乾燥して得られる樹脂シートから支持体を剥離又はエッチングすることで、単層シートを得ることもできる。なお、上記の本実施形態の樹脂組成物を溶剤に溶解又は相溶させた溶液を、シート状のキャビティを有する金型内に供給し乾燥する等してシート状に成形することで、支持体を用いることなく単層シートを得ることもできる。
The resin sheet of this embodiment refers not only to a resin sheet (laminated sheet) including a support and a layer of the resin composition disposed on the surface of the support, but also removes the support from the laminated sheet. Only the resin composition layer (single-layer sheet) corresponds to the resin sheet of this embodiment. That is, the resin sheet of this embodiment has the resin composition of this embodiment.
The laminated sheet can be obtained by applying a solution obtained by dissolving the resin composition in a solvent to a support and drying it. Although it does not specifically limit as a support body used here, For example, the mold release agent was apply | coated to the surface of a polyethylene film, a polypropylene film, a polycarbonate film, a polyethylene terephthalate film, an ethylene tetrafluoroethylene copolymer film, and these films. Examples thereof include organic film base materials such as release films and polyimide films, conductive foils such as copper foil and aluminum foil, and plate-like inorganic films such as glass plates, SUS plates, and FRP. As a coating method, for example, a solution in which the above resin composition is dissolved in a solvent is coated on the support with a bar coater, a die coater, a doctor blade, a baker applicator, etc. Is a method of producing a laminated sheet in which are integrated. Moreover, a single layer sheet | seat can also be obtained by peeling or etching a support body from the resin sheet obtained by drying after application | coating. In addition, the solution obtained by dissolving or dissolving the resin composition of the present embodiment in a solvent is supplied into a mold having a sheet-like cavity and dried to form a sheet, thereby supporting the support. A single layer sheet can also be obtained without using.

なお、本実施形態の樹脂シート又は単層シートの作製において、溶剤を除去する際の乾燥条件は、特に限定されないが、20℃〜200℃の温度で1〜90分間乾燥させることが好ましい。20℃以上であると樹脂組成物中への溶剤の残存をより防止でき、200℃以下であると樹脂組成物の硬化の進行を抑制することができる。また、本実施形態の樹脂シート又は単層シートにおける樹脂層の厚さは、本実施形態の樹脂組成物の溶液の濃度と塗布厚さにより調整することができ、特に限定されない。ただし、その厚さは0.1〜500μmであると好ましい。樹脂層の厚さが500μm以下であると、乾燥時に溶剤が更に残り難くなる。   In addition, in preparation of the resin sheet or single layer sheet of this embodiment, the drying conditions at the time of removing a solvent are not specifically limited, However, It is preferable to make it dry for 1 to 90 minutes at the temperature of 20 to 200 degreeC. When the temperature is 20 ° C. or higher, the solvent can be prevented from remaining in the resin composition, and when the temperature is 200 ° C. or lower, the progress of curing of the resin composition can be suppressed. Moreover, the thickness of the resin layer in the resin sheet or single layer sheet of this embodiment can be adjusted with the density | concentration and application | coating thickness of the resin composition of this embodiment, and is not specifically limited. However, the thickness is preferably 0.1 to 500 μm. When the thickness of the resin layer is 500 μm or less, the solvent is less likely to remain during drying.

以下、本実施形態を実施例及び比較例を用いてより具体的に説明する。本実施形態は、以下の実施例によって何ら限定されるものではない。   Hereinafter, the present embodiment will be described more specifically using examples and comparative examples. This embodiment is not limited at all by the following examples.

(合成例1)シアン酸エステル化合物の合成
1−ナフトールアラルキル樹脂(新日鉄住金化学(株)製)300g(OH基換算1.28mol)及びトリエチルアミン194.6g(1.92mol)(ヒドロキシ基1molに対して1.5mol)をジクロロメタン1800gに溶解させ、これを溶液1とした。
塩化シアン125.9g(2.05mol)(ヒドロキシ基1molに対して1.6mol)、ジクロロメタン293.8g、36%塩酸194.5g(1.92mol)(ヒドロキシ基1モルに対して1.5モル)、水1205.9gを、撹拌下、液温−2〜−0.5℃に保ちながら、溶液1を30分かけて注下した。溶液1注下終了後、同温度にて30分撹拌した後、トリエチルアミン65g(0.64mol)(ヒドロキシ基1molに対して0.5mol)をジクロロメタン65gに溶解させた溶液(溶液2)を10分かけて注下した。溶液2注下終了後、同温度にて30分撹拌して反応を完結させた。
その後反応液を静置して有機相と水相を分離した。得られた有機相を水1300gで5回洗浄した。水洗5回目の廃水の電気伝導度が5μS/cmであったことから、水による洗浄により、イオン性化合物を十分に除去できたことを確認した。
水洗後の有機相を減圧下で濃縮し、最終的に90℃で1時間濃縮乾固させて目的とするナフトールアラルキル型のシアン酸エステル化合物(SNCN)(橙色粘性物)を331g得た。得られたSNCNの質量平均分子量Mwは600であった。また、SNCNのIRスペクトルは2250cm−1(シアン酸エステル基)の吸収を示し、且つ、ヒドロキシ基の吸収は示さなかった。
(Synthesis Example 1) Synthesis of cyanate ester compound 1-naphthol aralkyl resin (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) 300 g (OH group conversion 1.28 mol) and triethylamine 194.6 g (1.92 mol) (based on 1 mol of hydroxy group) 1.5 mol) was dissolved in 1800 g of dichloromethane.
125.9 g (2.05 mol) of cyanogen chloride (1.6 mol with respect to 1 mol of hydroxy group), 293.8 g of dichloromethane, 194.5 g (1.92 mol) of 36% hydrochloric acid (1.5 mol with respect to 1 mol of hydroxy group) ), 1205.9 g of water was poured over 30 minutes while stirring at a liquid temperature of −2 to −0.5 ° C. After the completion of the pouring of solution 1, after stirring at the same temperature for 30 minutes, a solution (solution 2) in which 65 g (0.64 mol) of triethylamine (0.5 mol with respect to 1 mol of hydroxy group) was dissolved in 65 g of dichloromethane was added for 10 minutes. Over time. After the end of pouring the solution 2, the reaction was completed by stirring at the same temperature for 30 minutes.
Thereafter, the reaction solution was allowed to stand to separate an organic phase and an aqueous phase. The organic phase obtained was washed 5 times with 1300 g of water. Since the electric conductivity of the waste water in the fifth washing with water was 5 μS / cm, it was confirmed that the ionic compound could be sufficiently removed by washing with water.
The organic phase after washing with water was concentrated under reduced pressure, and finally concentrated to dryness at 90 ° C. for 1 hour to obtain 331 g of the desired naphthol aralkyl-type cyanate ester compound (SNCN) (orange viscous product). The obtained SNCN had a mass average molecular weight Mw of 600. Further, the IR spectrum of SNCN showed an absorption of 2250 cm −1 (cyanate ester group) and no absorption of a hydroxy group.

(実施例1)
合成例1により得られたSNCN50質量部、下記式(1−1)で表される繰り返し単位を有するエポキシ樹脂(DIC(株)製の「EPICLON EXA−4710H−70M」)50質量部、溶融シリカ(SC2050MB、アドマテックス(株)製)100質量部、オクチル酸亜鉛(日本化学産業(株)製)0.05質量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ0.1mmのEガラス織布に含浸塗工し、165℃で5分間加熱乾燥して、樹脂含有量50質量%のプリプレグを得た。なお、予め、EPICLON EXA−4710H−70Mを後述する分子量測定に供し、そのZ平均分子量を1810と特定した。
Example 1
50 parts by mass of SNCN obtained in Synthesis Example 1, 50 parts by mass of an epoxy resin (“EPICLON EXA-4710H-70M” manufactured by DIC Corporation) having a repeating unit represented by the following formula (1-1), fused silica A varnish was obtained by mixing 100 parts by mass (SC2050MB, manufactured by Admatex Co., Ltd.) and 0.05 parts by mass of zinc octylate (manufactured by Nippon Chemical Industry Co., Ltd.). This varnish was diluted with methyl ethyl ketone, impregnated and coated on a 0.1 mm thick E glass woven fabric, and dried by heating at 165 ° C. for 5 minutes to obtain a prepreg having a resin content of 50 mass%. In addition, EPICLON EXA-4710H-70M was previously subjected to molecular weight measurement described later, and its Z-average molecular weight was specified as 1810.

得られたプリプレグを8枚、及び4枚重ねて、12μm厚の電解銅箔(3EC−M3−VLP、三井金属(株)製)を上下に配置し、圧力30kgf/cm、温度220℃で120分間の積層成型を行い、絶縁層厚さ0.8mm及び0.4mmの金属箔張積層板を得た。得られた金属箔張積層板を用いて、後述する要領にて半田フロート試験及びガラス転移温度測定を行った。結果を表1に示す。8 and 4 sheets of the obtained prepregs were stacked, and 12 μm thick electrolytic copper foil (3EC-M3-VLP, manufactured by Mitsui Kinzoku Co., Ltd.) was placed up and down at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. Lamination molding was performed for 120 minutes to obtain metal foil-clad laminates with insulating layer thicknesses of 0.8 mm and 0.4 mm. Using the obtained metal foil-clad laminate, a solder float test and a glass transition temperature measurement were performed as described below. The results are shown in Table 1.

(比較例1)
実施例1において、式(1)で表されるエポキシ樹脂を50質量部用いる代わりに、下記式(6)で表されるビフェニルアラルキル型エポキシ樹脂(NC−3000−FH、日本化薬(株)製)50質量部を用い、オクチル酸亜鉛を0.11質量部とした以外は、実施例1と同様にして樹脂含有量50質量%のプリプレグを得た。さらに、実施例1と同様にして厚さ0.8mm、及び0.4mmの金属箔張積層板を得た。得られた金属箔張積層板の評価結果を表1に示す。
(Comparative Example 1)
In Example 1, instead of using 50 parts by mass of the epoxy resin represented by the formula (1), a biphenylaralkyl type epoxy resin represented by the following formula (6) (NC-3000-FH, Nippon Kayaku Co., Ltd.) Product) A prepreg having a resin content of 50% by mass was obtained in the same manner as in Example 1 except that 50 parts by mass was used and zinc octylate was changed to 0.11 part by mass. Further, metal foil-clad laminates having a thickness of 0.8 mm and 0.4 mm were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained metal foil-clad laminate.

(式(6)中、nは0〜15の整数を示す。) (In formula (6), n represents an integer of 0 to 15)

(比較例2)
実施例1において、式(1)で表されるエポキシ樹脂を50質量部用いる代わりに、下記式(7)で表されるナフタレン型エポキシ樹脂(DIC(株)製の「EPICLON HP−4710」)50質量部を用い、オクチル酸亜鉛を0.10質量部とした以外は、実施例1と同様にして樹脂含有量50質量%のプリプレグを得た。なお、予め、EPICLON HP−4710を後述する分子量測定に供し、そのZ平均分子量を1330と特定した。さらに、実施例1と同様にして厚さ0.8mm、及び0.4mmの金属箔張積層板を得た。得られた金属箔張積層板の評価結果を表1に示す。
(Comparative Example 2)
In Example 1, instead of using 50 parts by mass of the epoxy resin represented by the formula (1), a naphthalene type epoxy resin represented by the following formula (7) (“EPICLON HP-4710” manufactured by DIC Corporation) A prepreg having a resin content of 50% by mass was obtained in the same manner as in Example 1 except that 50 parts by mass was used and that the zinc octylate was changed to 0.10 parts by mass. In addition, EPICLON HP-4710 was previously subjected to molecular weight measurement described later, and its Z-average molecular weight was specified as 1330. Further, metal foil-clad laminates having a thickness of 0.8 mm and 0.4 mm were obtained in the same manner as in Example 1. Table 1 shows the evaluation results of the obtained metal foil-clad laminate.

[測定方法及び評価方法]
(1)分子量測定
約10mgのエポキシ樹脂を5mLのテトラヒドロフランに溶解させ、0.45μmのフィルターでろ過した溶液を試料とし、下記の条件にてゲルパーミエーションクロマトグラフィー(GPC)に供し、分子量分布を測定した。分子量校正曲線を介して得られたGPC曲線の各溶出位置の分子量をMiとし、分子数をNiとして、Z平均分子量Mzを次式により求めた。
Mz=Σ(Ni・Mi)/Σ(Ni・Mi
(条件)
検出器:示差屈折率検出器(昭和電工製 RI−504)
カラム:東ソー株式会社製 TSKgel SuperHZ4000、SuperHZ2500、SuperHZ1000(各1本、長さ15cm×内径6.0mm)
溶媒:テトラヒドロフラン
流速:0.45mL/min
カラム温度:40℃
標準試料:東ソー株式会社製 単分散ポリスチレン
データ処理:TRC製 GPCデータ処理システム
[Measurement method and evaluation method]
(1) Molecular weight measurement About 10 mg of epoxy resin was dissolved in 5 mL of tetrahydrofuran and filtered through a 0.45 μm filter. The solution was subjected to gel permeation chromatography (GPC) under the following conditions to determine the molecular weight distribution. It was measured. The molecular weight at each elution position of the GPC curve obtained via the molecular weight calibration curve was set to Mi, the number of molecules was set to Ni, and the Z average molecular weight Mz was calculated by the following equation.
Mz = Σ (Ni · Mi 3 ) / Σ (Ni · Mi 2 )
(conditions)
Detector: Differential refractive index detector (RI-504, Showa Denko)
Column: TSKgel SuperHZ4000, SuperHZ2500, SuperHZ1000 (1 each, length 15 cm x inner diameter 6.0 mm) manufactured by Tosoh Corporation
Solvent: Tetrahydrofuran Flow rate: 0.45 mL / min
Column temperature: 40 ° C
Standard sample: Monodispersed polystyrene manufactured by Tosoh Corporation Data processing: GPC data processing system manufactured by TRC

(2)半田フロート試験
得られた絶縁層厚さ0.4mmの金属箔張積層板50mm×50mmのサンプルを3つ用意し、300℃半田に30分間フロートさせて、外観異常(デラミネーション発生)の有無を目視判定により行った。異常が認められたサンプルの数に基づき、下記の基準で評価した。
○:0個
△:1〜2個
×:3個
(2) Solder float test Prepare three samples of metal foil-clad laminate 50mm x 50mm with 0.4mm insulation layer thickness, and float on 300 ° C solder for 30 minutes, abnormal appearance (delamination occurs) The presence or absence of was confirmed by visual judgment. Based on the number of samples in which an abnormality was observed, the evaluation was performed according to the following criteria.
○: 0 pieces △: 1-2 pieces ×: 3 pieces

(3)ガラス転移温度(Tg)
得られた絶縁層厚さ0.8mmの銅箔張積層板をダイシングソーでサイズ12.7mm×30mmに切断後、表面の銅箔をエッチングにより除去し、測定用サンプルを得た。この測定用サンプルを用い、JIS C6481に準拠して動的粘弾性分析装置(TAインスツルメント製)でDMA法により、貯蔵弾性率E’、損失弾性率E’’を測定し、E’’及びtanδ(=E’’/E’)のピークの値をそれぞれTgとして耐熱性を評価した。
(3) Glass transition temperature (Tg)
The obtained copper foil-clad laminate with an insulating layer thickness of 0.8 mm was cut into a size of 12.7 mm × 30 mm with a dicing saw, and then the surface copper foil was removed by etching to obtain a measurement sample. Using this measurement sample, the storage elastic modulus E ′ and loss elastic modulus E ″ were measured by the DMA method with a dynamic viscoelasticity analyzer (TA Instruments) in accordance with JIS C6481, and E ″ And the peak value of tan δ (= E ″ / E ′) was evaluated as Tg, and the heat resistance was evaluated.

本出願は、2017年8月31日に日本国特許庁へ出願された日本特許出願(特願2017−167497)及び2017年11月1日に日本国特許庁へ出願された日本特許出願(特願2017−211967)に基づくものであり、それらの内容はここに参照として取り込まれる。   This application consists of a Japanese patent application filed with the Japan Patent Office on August 31, 2017 (Japanese Patent Application No. 2017-167497) and a Japanese patent application filed with the Japan Patent Office on November 1, 2017 (Japanese Patent Application No. 2017-2111967), the contents of which are incorporated herein by reference.

本発明の樹脂組成物は、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、プリント配線板等の材料として、産業上の利用可能性を有する。   The resin composition of the present invention has industrial applicability as a material for prepregs, metal foil-clad laminates, laminated resin sheets, resin sheets, printed wiring boards and the like.

Claims (9)

下記式(1)で表される繰り返し単位を有し、かつ、Z平均分子量が1400以上3000以下であるエポキシ樹脂(A)と、
シアン酸エステル化合物(B)と、
を含有する、樹脂組成物。
(式(1)中、Xは炭素数1〜3のアルキレン基又はアルケニレン基を表し、R1は各々独立に水素原子又は炭素数1〜3のアルキル基若しくはアルケニル基を表す。)
An epoxy resin (A) having a repeating unit represented by the following formula (1) and having a Z average molecular weight of 1400 or more and 3000 or less;
A cyanate ester compound (B);
Containing a resin composition.
(In formula (1), X 1 represents an alkylene group having 1 to 3 carbon atoms or an alkenylene group, and each R 1 independently represents a hydrogen atom or an alkyl group or alkenyl group having 1 to 3 carbon atoms.)
前記エポキシ樹脂(A)の含有量が、樹脂固形分100質量部に対し、1〜90質量部である、請求項1に記載の樹脂組成物。   The resin composition of Claim 1 whose content of the said epoxy resin (A) is 1-90 mass parts with respect to 100 mass parts of resin solid content. 前記式(1)で表されるエポキシ樹脂(A)以外のエポキシ樹脂、マレイミド化合物、フェノール樹脂、オキセタン樹脂、ベンゾオキサジン化合物、及び重合可能な不飽和基を有する化合物からなる群より選択される一種以上をさらに含有する、請求項1又は2に記載の樹脂組成物。   A kind selected from the group consisting of an epoxy resin other than the epoxy resin (A) represented by the formula (1), a maleimide compound, a phenol resin, an oxetane resin, a benzoxazine compound, and a compound having a polymerizable unsaturated group. The resin composition according to claim 1 or 2, further comprising the above. 充填材(C)をさらに含有する、請求項1〜3のいずれか一項に記載の樹脂組成物。   The resin composition according to any one of claims 1 to 3, further comprising a filler (C). 前記充填材(C)の含有量が、樹脂固形分100質量部に対し、50〜1600質量部である、請求項4に記載の樹脂組成物。   The resin composition according to claim 4, wherein the content of the filler (C) is 50 to 1600 parts by mass with respect to 100 parts by mass of the resin solid content. 基材と、
前記基材に含浸又は塗布された、請求項1〜5のいずれか一項に記載の樹脂組成物と、
を有する、プリプレグ。
A substrate;
The resin composition according to any one of claims 1 to 5, impregnated or coated on the base material,
Having a prepreg.
少なくとも1枚以上積層された請求項6に記載のプリプレグと、
前記プリプレグの片面又は両面に配された金属箔と、
を有する、金属箔張積層板。
The prepreg according to claim 6, wherein at least one sheet is laminated,
A metal foil disposed on one or both sides of the prepreg;
A metal foil-clad laminate.
請求項1〜5のいずれか一項に記載の樹脂組成物を有する、樹脂シート。   The resin sheet which has the resin composition as described in any one of Claims 1-5. 絶縁層と、
前記絶縁層の表面に形成された導体層と、
を有し、
前記絶縁層が、請求項1〜5のいずれか一項に記載の樹脂組成物を含む、プリント配線板。
An insulating layer;
A conductor layer formed on the surface of the insulating layer;
Have
The printed wiring board in which the said insulating layer contains the resin composition as described in any one of Claims 1-5.
JP2018564443A 2017-08-31 2018-08-30 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board Active JP6504533B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017167497 2017-08-31
JP2017167497 2017-08-31
JP2017211967 2017-11-01
JP2017211967 2017-11-01
PCT/JP2018/032130 WO2019044977A1 (en) 2017-08-31 2018-08-30 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Publications (2)

Publication Number Publication Date
JP6504533B1 JP6504533B1 (en) 2019-04-24
JPWO2019044977A1 true JPWO2019044977A1 (en) 2019-11-07

Family

ID=65525544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018564443A Active JP6504533B1 (en) 2017-08-31 2018-08-30 Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Country Status (5)

Country Link
JP (1) JP6504533B1 (en)
KR (1) KR102090439B1 (en)
CN (1) CN110869409B (en)
TW (1) TWI670321B (en)
WO (1) WO2019044977A1 (en)

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680865A (en) * 1990-08-06 1994-03-22 Toyobo Co Ltd Polyester resin composition
JPH06233486A (en) * 1993-01-29 1994-08-19 Hitachi Ltd Insulated electric coil, rotating electric machine and their manufacture
JP2000129028A (en) * 1998-10-29 2000-05-09 Jsp Corp Polypropylene resin foamed particle and molded product thereof
JP4259134B2 (en) * 2003-02-20 2009-04-30 Dic株式会社 Polyimide resin composition
JP4552104B2 (en) * 2003-04-25 2010-09-29 Dic株式会社 Thermosetting polyimide resin composition, method for producing polyimide resin, and polyimide resin
JP4863434B2 (en) * 2005-04-28 2012-01-25 日本化薬株式会社 Epoxy resin, epoxy resin composition and cured product thereof
JP2009024099A (en) * 2007-07-20 2009-02-05 Shin Etsu Chem Co Ltd Liquid epoxy resin composition and semiconductor device
JP2009209191A (en) * 2008-02-29 2009-09-17 Sumitomo Bakelite Co Ltd Liquid resin composition for underfill, semiconductor device using the same, and method for producing semiconductor device
US20110247756A1 (en) * 2008-12-16 2011-10-13 Dow Global Technologies Llc Homogeneous bismaleimide - triazine - epoxy compositions useful for the manufacture of electrical laminates
TWI540170B (en) * 2009-12-14 2016-07-01 Ajinomoto Kk Resin composition
JP5603610B2 (en) * 2010-02-12 2014-10-08 株式会社Adeka Solvent-free one-component cyanate ester-epoxy composite resin composition
KR101877088B1 (en) * 2011-05-31 2018-07-10 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg and laminate
CN102911501B (en) * 2011-08-03 2015-02-04 台光电子材料股份有限公司 Resin composition and substrate using same
KR101958046B1 (en) 2011-11-02 2019-03-13 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, and laminated sheet
EP2810971B1 (en) * 2012-01-31 2018-09-19 Mitsubishi Gas Chemical Company, Inc. Metal foil-clad laminate and printed wiring board using a resin composition
CN105308118B (en) 2013-06-18 2017-08-08 三菱瓦斯化学株式会社 Resin combination, prepreg, resin sheet and clad with metal foil plywood
JP6217165B2 (en) * 2013-06-20 2017-10-25 住友ベークライト株式会社 Prepreg with primer layer, metal foil with primer layer, metal-clad laminate, printed wiring board, semiconductor package and semiconductor device
JP6555532B2 (en) * 2013-10-25 2019-08-07 味の素株式会社 Heat resistant epoxy resin composition
CN110437601B (en) * 2013-10-31 2022-07-26 松下知识产权经营株式会社 Thermosetting resin composition, prepreg, metal-clad laminate, and printed wiring board
JP6327432B2 (en) * 2013-10-31 2018-05-23 パナソニックIpマネジメント株式会社 Resin composition, prepreg, metal-clad laminate, and printed wiring board
JP2015196823A (en) * 2014-04-03 2015-11-09 三菱電機株式会社 Thermosetting resin composition, thermally conductive resin sheet and method for producing the same, and power module
JP6592962B2 (en) * 2015-05-22 2019-10-23 住友ベークライト株式会社 Thermosetting resin composition, resin film with carrier, printed wiring board, and semiconductor device
WO2017066929A1 (en) * 2015-10-21 2017-04-27 Dow Global Technologies Llc Modified epoxy resin and curable resin composition comprising same
JP6852332B2 (en) * 2015-10-28 2021-03-31 味の素株式会社 Adhesive film
JP6714366B2 (en) * 2016-01-20 2020-06-24 住友電気工業株式会社 Self-fusing resin composition and self-fusing insulated wire

Also Published As

Publication number Publication date
JP6504533B1 (en) 2019-04-24
WO2019044977A1 (en) 2019-03-07
KR102090439B1 (en) 2020-03-17
CN110869409B (en) 2022-05-31
KR20190077580A (en) 2019-07-03
TW201920448A (en) 2019-06-01
CN110869409A (en) 2020-03-06
TWI670321B (en) 2019-09-01

Similar Documents

Publication Publication Date Title
JP6485672B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
WO2016147735A1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6010874B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
JP6761572B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2017052884A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP2017165827A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet and printed wiring board
JP6531910B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6593739B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6618036B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2017200966A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2018016675A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet, resin composite sheet and printed wiring board
JP6350891B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6718588B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
KR102513654B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP6504533B1 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
WO2016121957A1 (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP6829808B2 (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
EP3290454B1 (en) Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board
JP2019014858A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2019014860A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2017114919A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board
JP2019014859A (en) Resin composition, prepreg, metal foil-clad laminate, resin sheet and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181207

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181207

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190304

R151 Written notification of patent or utility model registration

Ref document number: 6504533

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190317