JPWO2019031477A1 - Medical device and manufacturing method thereof - Google Patents

Medical device and manufacturing method thereof Download PDF

Info

Publication number
JPWO2019031477A1
JPWO2019031477A1 JP2018542288A JP2018542288A JPWO2019031477A1 JP WO2019031477 A1 JPWO2019031477 A1 JP WO2019031477A1 JP 2018542288 A JP2018542288 A JP 2018542288A JP 2018542288 A JP2018542288 A JP 2018542288A JP WO2019031477 A1 JPWO2019031477 A1 JP WO2019031477A1
Authority
JP
Japan
Prior art keywords
hydrophilic polymer
medical device
phosphate buffer
acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018542288A
Other languages
Japanese (ja)
Other versions
JP6927230B2 (en
Inventor
瑠美子 北川
瑠美子 北川
中村 正孝
正孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2019031477A1 publication Critical patent/JPWO2019031477A1/en
Application granted granted Critical
Publication of JP6927230B2 publication Critical patent/JP6927230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • G02C7/049Contact lenses having special fitting or structural features achieved by special materials or material structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/50Lubricants; Anti-adhesive agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/26Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/08Materials for coatings
    • A61L29/085Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/145Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/10Materials for lubricating medical devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices

Abstract

基材と、前記基材の少なくとも一部に親水性ポリマー層を有してなり、かつ、次の(a)〜(d)の条件を満たす医療デバイス:(a)前記親水性ポリマー層を構成するポリマーが酸性基を含む親水性ポリマーであり;(b)前記親水性ポリマー層の厚さが1nm以上100nm未満であり;(c)前記親水性ポリマー層の塩基性基/酸性基の数比が0.2以下であり;(d)リン酸緩衝液に浸漬して超音波洗浄にかけた40分後の液膜保持時間が15秒以上である。基材の表面が親水化された医療デバイスおよびそれを簡便な方法により製造する方法を提供する。A medical device comprising a base material and a hydrophilic polymer layer on at least a part of the base material and satisfying the following conditions (a) to (d): (a) constituting the hydrophilic polymer layer Is a hydrophilic polymer containing an acidic group; (b) the thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm; (c) the basic group/acidic group number ratio of the hydrophilic polymer layer. Is 0.2 or less; (d) The liquid film retention time after 40 minutes of immersion in a phosphate buffer solution and ultrasonic cleaning is 15 seconds or more. Provided is a medical device in which the surface of a base material is made hydrophilic, and a method for producing the medical device by a simple method.

Description

本発明は、親水性の表面を有する医療デバイスおよびその製造方法に関する。 The present invention relates to a medical device having a hydrophilic surface and a manufacturing method thereof.

従来、種々の分野においてシリコーンゴム、ヒドロゲル(ハイドロゲル)等の樹脂製軟質材料を用いたデバイス、金属、ガラス等の硬質材料を用いたデバイスが多様な用途に用いられている。軟質材料を用いたデバイスの用途としては、生体内に導入したり、生体表面を被覆したりする医療デバイスや、細胞培養シート、組織再生用足場材料等のバイオテクノロジー用デバイスや、顔用パック等の美容デバイスが挙げられる。硬質材料を用いたデバイスの用途としては、パソコン、携帯電話、ディスプレイ等の電化製品、注射薬に使用されるアンプル、毛細管、バイオセンシングチップなどの診断・分析ツールとしての使用が挙げられる。 2. Description of the Related Art Conventionally, in various fields, a device using a resin soft material such as silicone rubber or hydrogel, and a device using a hard material such as metal or glass have been used for various purposes. Applications of devices using soft materials include medical devices that are introduced into the living body or that cover the surface of the living body, biotechnology devices such as cell culture sheets, scaffold materials for tissue regeneration, facial packs, etc. Beauty devices. Examples of applications of the device using a hard material include electrical appliances such as personal computers, mobile phones and displays, ampoules used for injectable drugs, capillaries, biosensing chips, and other diagnostic/analytical tools.

種々のデバイスを、例えば医療デバイスとして生体内に導入したり、生体表面に貼付したりして用いる場合、生体適合性を向上させることを目的とした医療デバイスの基材の表面改質が重要となる。表面改質によって、医療デバイスに表面改質前よりも良好な特性、例えば親水性、易滑性、生体適合性といった特性を与えることができれば、使用者(患者等)にとっては、使用感の向上、不快感の低減などを期待することができる。 When various devices are used, for example, as a medical device introduced into a living body or attached to a living body surface, it is important to modify the surface of the base material of the medical device for the purpose of improving biocompatibility. Become. If the surface modification can give the medical device better characteristics than those before the surface modification, such as hydrophilicity, slipperiness, and biocompatibility, the user (patient, etc.) can improve the feeling of use. It can be expected to reduce discomfort.

医療デバイスの基材の表面を改質させる方法に関しては、種々の方法が知られている。 Various methods are known for modifying the surface of a substrate of a medical device.

従来技術においては1種類のポリマー材料では十分な親水性を付与することが難しかったことから、2種類以上のポリマー材料の層を1層ずつコーティングして積層する方法が知られている(たとえば特許文献1を参照)。中でも、2種類以上のポリマー材料を、1層ずつ下の層の荷電と反対の荷電を有する層を上に積層して、交互に異なる荷電を有する層をコーティングする方法は、LbL法(Layer by Layer法)などと呼ばれる。かかるLbL法により得られるコーティングにおいては、基材およびポリマー材料の各々の層が、他の層と静電相互作用によって結合されていると考えられている。 In the prior art, it has been difficult to impart sufficient hydrophilicity with one kind of polymer material, and therefore a method of coating and laminating layers of two or more kinds of polymer materials one by one is known (for example, patents). Reference 1). Above all, a method of laminating two or more kinds of polymer materials one by one on a layer having a charge opposite to that of a lower layer and coating layers having different charges alternately is a LbL method (Layer by method). Layer method) and the like. In coatings obtained by such LbL methods, it is believed that each layer of substrate and polymeric material is bonded to other layers by electrostatic interaction.

また、2種類以上のポリマー材料を基材に架橋して0.1μm以上のポリマー層を基材にコーティングする方法が知られている(たとえば特許文献2を参照)。 Further, a method is known in which two or more kinds of polymer materials are cross-linked to a base material to coat a base material with a polymer layer having a thickness of 0.1 μm or more (see, for example, Patent Document 2).

最近では、コスト効率をよくするため、LbL法を改良した方法として、ポリイオン性物質とオートクレーブ時加水分解物質を使用し、1度の熱処理によりシリコーンヒドロゲル表面にポリイオン性物質を吸着させ、同時にシリコーンヒドロゲル表面を親水化する方法が開示されている(特許文献3参照)。 Recently, in order to improve cost efficiency, as an improved method of the LbL method, a polyionic substance and a hydrolyzed substance during autoclave are used, and the polyionic substance is adsorbed on the surface of the silicone hydrogel by one heat treatment, and at the same time, the silicone hydrogel is adsorbed. A method of making the surface hydrophilic has been disclosed (see Patent Document 3).

また、1度の熱処理によりシリコーンヒドロゲル表面に2種類の親水性ポリマーを架橋させる方法が開示されている(特許文献4参照)。 Further, a method of crosslinking two kinds of hydrophilic polymers on the surface of the silicone hydrogel by one heat treatment is disclosed (see Patent Document 4).

また、イオン性重合体によるコンタクトレンズの表面コーティングが開示されている(特許文献5〜7参照)。 Further, surface coating of contact lenses with an ionic polymer is disclosed (see Patent Documents 5 to 7).

さらに、湿潤剤を用いてカップリング剤を添加することなしに湿潤性を改良させる医療用デバイスの表面コーティングが開示されている(特許文献8参照)。 Further, a surface coating of a medical device has been disclosed in which a wetting agent is used to improve wettability without adding a coupling agent (see Patent Document 8).

国際公開第2013/024799号International Publication No. 2013/024799 特表2013−533517号公報Japanese Patent Publication No. 2013-533517 特表2010−508563号公報Japanese Patent Publication No. 2010-508563 特表2014−533381号公報Japanese Patent Publication No. 2014-533381 特開昭54−116947号公報Japanese Patent Laid-Open No. 54-116947 特開昭63−246718号公報JP-A-63-246718 特開2002−047365号公報JP, 2002-047365, A 特表2003−535626号公報Japanese Patent Publication No. 2003-535626

しかしながら、特許文献1に記載されているような、従来のLbLコーティングにおいては、3層〜20層程度といった多層を積層させることが通常行われている。多層を積層させるためには、製造工程が多く必要であるため、製造コストの増大を招くおそれがあった。また、かかるLbLコーティングについて検討したところ耐久性に課題がみられた。 However, in the conventional LbL coating as described in Patent Document 1, it is usual to stack multiple layers such as about 3 to 20 layers. Since many manufacturing steps are required to stack the multiple layers, there is a risk of increasing manufacturing costs. Further, when the LbL coating was examined, a problem was found in durability.

特許文献2に記載されているような架橋を用いたコーティングにおいては、架橋したポリマー層の厚みが0.1μm以上であるため、例えば、眼用レンズといった医療デバイスに用いる場合に、ポリマー層の厚みを厳密に制御しないと網膜に焦点をあわせるための光の屈折が乱れて視界不良が起こりやすくなる問題があった。また、ポリマー層の厚みの厳密な制御を必要としたり、ポリマーを基材に架橋するための複雑な工程を必要とするため、製造コストの増大を招くおそれがあった。 In the coating using cross-linking as described in Patent Document 2, since the thickness of the cross-linked polymer layer is 0.1 μm or more, the thickness of the polymer layer when used in a medical device such as an ophthalmic lens, for example. If is not strictly controlled, there is a problem that the refraction of light for focusing on the retina is disturbed and a poor visibility is likely to occur. Further, strict control of the thickness of the polymer layer is required, and a complicated process for crosslinking the polymer with the base material is required, which may increase the manufacturing cost.

特許文献3に記載されているような改良されたLbLコーティングにおいては、適用できる基材は含水性のヒドロゲルに限定されている。さらに、かかる改良されたLbLコーティングについて検討したところ、表面の親水性などの性能が不十分であった。 In the improved LbL coating, as described in US Pat. No. 6,037,697, applicable substrates are limited to hydrous hydrogels. Furthermore, when the improved LbL coating was examined, the performance such as hydrophilicity of the surface was insufficient.

特許文献4に記載されているような、1度の熱処理によりシリコーンヒドロゲル表面に2種類の親水性ポリマーを架橋させる方法に関しても、適用できる基材は含水性のヒドロゲルに限定されている。さらに、特許文献4に記載されているような方法では、熱処理前にカルボキシル基含有ポリマーをシリコーンヒドロゲル表面に架橋させる工程が必要である。また、架橋しうる親水性ポリマー材料のエポキシ基と、シリコーンヒドロゲル表面に架橋されたカルボキシル基との間の共有結合を介して、親水性ポリマーをレンズ表面に架橋させている。この架橋は水溶液中で行われる。このような複雑な工程を必要とするため、製造コストの増大を招くおそれもあった。 Regarding the method of crosslinking two kinds of hydrophilic polymers on the surface of the silicone hydrogel by one heat treatment as described in Patent Document 4, applicable substrates are limited to hydrous hydrogel. Further, the method as described in Patent Document 4 requires a step of crosslinking the carboxyl group-containing polymer with the surface of the silicone hydrogel before the heat treatment. Further, the hydrophilic polymer is cross-linked to the lens surface via a covalent bond between the epoxy group of the cross-linkable hydrophilic polymer material and the carboxyl group cross-linked to the surface of the silicone hydrogel. This cross-linking is done in aqueous solution. Since such a complicated process is required, the manufacturing cost may be increased.

特許文献5〜7に記載されているような、イオン性重合体によるコンタクトレンズの表面コーティングにおいては、表面の親水性などの性能が依然不十分であった。 In surface coating of a contact lens with an ionic polymer as described in Patent Documents 5 to 7, performance such as hydrophilicity of the surface was still insufficient.

特許文献8に記載されている医療用デバイスの表面コーティングにおいては、
表面の親水性などの性能が依然不十分であった。
In the surface coating of the medical device described in Patent Document 8,
Performance such as surface hydrophilicity was still insufficient.

本発明は、上記の従来技術が有する課題に鑑みてなされたものである。すなわち、本発明では、表面が親水化された耐久性に優れる医療デバイスおよびそれを簡便に製造する方法を提供することを目的とする。 The present invention has been made in view of the above problems of the conventional technology. That is, an object of the present invention is to provide a medical device having a hydrophilic surface and excellent durability, and a method for easily producing the medical device.

上記の目的を達成するために、本発明は下記の構成を有する。 In order to achieve the above object, the present invention has the following configurations.

本発明は、基材と、前記基材の少なくとも一部に親水性ポリマー層を有してなり、次の(a)〜(d)を満たす、医療デバイスに係る。
(a)前記親水性ポリマー層を構成するポリマーが酸性基を含む親水性ポリマーであり;
(b)前記親水性ポリマー層の厚さが1nm以上100nm未満であり;
(c)前記親水性ポリマー層の塩基性基/酸性基の数比が0.2以下であり;
(d)リン酸緩衝液に浸漬して超音波洗浄にかけた40分後の液膜保持時間が15秒以上である
また、本発明は、基材を、2.0以上6.0以下の初期pHを有する溶液中に配置して、前記溶液を加熱する工程を含み、前記溶液が、前記親水性ポリマーと、酸を含むものである、医療デバイスの製造方法である。
The present invention relates to a medical device comprising a base material and a hydrophilic polymer layer on at least a part of the base material, and satisfying the following (a) to (d).
(A) the polymer constituting the hydrophilic polymer layer is a hydrophilic polymer containing an acidic group;
(B) the thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm;
(C) The number ratio of basic groups/acidic groups of the hydrophilic polymer layer is 0.2 or less;
(D) The liquid film holding time after 40 minutes of immersion in a phosphate buffer solution and ultrasonic cleaning is 15 seconds or more. Further, according to the present invention, the substrate is maintained at an initial stage of 2.0 or more and 6.0 or less. It is a manufacturing method of a medical device including a process of placing in a solution having pH and heating the solution, wherein the solution contains the hydrophilic polymer and an acid.

本発明によれば、従来技術とは異なり、表面に親水性が付与された耐久性に優れる医療デバイスを得ることができる。また、適用できる基材は含水性のヒドロゲルおよびシリコーンヒドロゲルに限られない。また、これらの医療デバイスを簡便な方法で得ることができる。 According to the present invention, unlike the prior art, it is possible to obtain a medical device having hydrophilicity on the surface and excellent in durability. Also, applicable substrates are not limited to hydrous hydrogels and silicone hydrogels. In addition, these medical devices can be obtained by a simple method.

本発明は、基材と、前記基材の少なくとも一部に親水性ポリマー層を有してなり、次の(a)〜(d)を満たす、医療デバイスに関する。
(a)前記親水性ポリマー層を構成するポリマーが酸性基を含む親水性ポリマーであり;
(b)前記親水性ポリマー層の厚さが1nm以上100nm未満であり;
(c)前記親水性ポリマー層の塩基性基/酸性基の数比が0.2以下であり;
(d)リン酸緩衝液に浸漬して超音波洗浄にかけた40分後の液膜保持時間が15秒以上である
本発明の医療デバイスは、レンズ形状を有しても良く、眼用レンズであることが好ましい。具体的には、コンタクトレンズ、眼内レンズ、人工角膜、角膜インレイ、角膜オンレイ、メガネレンズなどの眼用レンズが挙げられる。眼用レンズ、中でもコンタクトレンズは本発明の最も好ましい態様の一つである。
The present invention relates to a medical device comprising a substrate and a hydrophilic polymer layer on at least a part of the substrate, and satisfying the following (a) to (d).
(A) the polymer constituting the hydrophilic polymer layer is a hydrophilic polymer containing an acidic group;
(B) the thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm;
(C) The number ratio of basic groups/acidic groups of the hydrophilic polymer layer is 0.2 or less;
(D) The liquid film retention time after 40 minutes of immersion in a phosphate buffer solution and ultrasonic cleaning is 15 seconds or more. The medical device of the present invention may have a lens shape, and is a ophthalmic lens. It is preferable to have. Specific examples include ophthalmic lenses such as contact lenses, intraocular lenses, artificial corneas, corneal inlays, corneal onlays, and spectacle lenses. Ophthalmic lenses, especially contact lenses, are among the most preferred embodiments of the present invention.

本発明の医療デバイスは、チューブ状をなしても良い。チューブ状デバイスの例として、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シース、チューブコネクター、アクセスポートなどが挙げられる。 The medical device of the present invention may have a tubular shape. Examples of tubular devices include infusion tubes, gas transport tubes, drainage tubes, blood circuits, coating tubes, catheters, stents, sheaths, tube connectors, access ports and the like.

本発明の医療デバイスは、シート状またはフィルム状をなしても良い。具体的には、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、バイオセンサーチップ、内視鏡用被覆材などが挙げられる。 The medical device of the present invention may have a sheet shape or a film shape. Specific examples thereof include a skin covering material, a wound covering material, a skin protecting material, a skin drug carrier, a biosensor chip, and an endoscope covering material.

本発明の医療デバイスは、収納容器形状を有しても良い。具体的には、薬剤担体、カフ、排液バッグなどが挙げられる。 The medical device of the present invention may have a storage container shape. Specific examples include drug carriers, cuffs, drainage bags and the like.

眼用レンズ、中でもコンタクトレンズは本発明の最も好ましい態様の一つである。 Ophthalmic lenses, especially contact lenses, are among the most preferred embodiments of the present invention.

本発明において、医療デバイスの基材としては、含水性の基材および非含水性の基材のいずれも使用することができる。含水性の基材の材料としては、ヒドロゲルおよびシリコーンヒドロゲル等を挙げることができる。シリコーンヒドロゲルは、優れた装用感を与える柔軟性と高い酸素透過性を有するために特に好ましい。非含水性の基材の材料としては、低含水性軟質材料および低含水性硬質材料等を挙げることができる。 In the present invention, both a hydrous substrate and a non-hydrous substrate can be used as the substrate of the medical device. Examples of the material of the water-containing substrate include hydrogel and silicone hydrogel. Silicone hydrogels are particularly preferred because of their flexibility and the high oxygen permeability which gives them excellent wearing comfort. Examples of the non-hydrous base material include a low hydrous soft material and a low hydrous hard material.

本発明は、含水性の基材の材料に関しては、シリコーンを含まない一般のヒドロゲルにも、シリコーンを含むヒドロゲル(以下、シリコーンヒドロゲルと呼ぶ)にも適用可能である。表面物性を大きく向上させることができることからシリコーンヒドロゲルに特に好適に用いることができる。 The present invention can be applied to a general hydrogel containing no silicone and a hydrogel containing silicone (hereinafter referred to as silicone hydrogel) as to the material of the water-containing substrate. Since it can greatly improve the surface properties, it can be particularly preferably used for silicone hydrogel.

以下、素材を表すのにUnited States Adopted Names(USAN)を用いる場合がある。USANにおいては末尾にA、B、C等の記号を添えて素材の変種を表す場合があるが、本明細書では末尾の記号を付与しない場合にはすべての変種を表すものとする。例えば単に「ocufilcon」と表記した場合は、「ocufilconA」、「ocufilconB」、「ocufilconC」、「ocufilconD」、「ocufilconE」、「ocufilconF」等のocufilconのすべての変種を表す。 Hereinafter, United States Adapted Names (USAN) may be used to represent a material. In USAN, a variety of materials may be represented by adding symbols such as A, B, and C to the end, but in the present specification, all variants are represented when the last symbol is not given. For example, when simply expressed as “ocufilcon”, all the variants of ocufilcon such as “ocufilconA”, “ocufilconB”, “ocufilconC”, “ocufilconD”, “ocufilconE”, “ocufilconF”, etc. are represented.

ヒドロゲルの具体例としては、例えばヒドロゲルがコンタクトレンズの場合、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group1〜Group4に属する群から選ばれるヒドロゲルが好ましい。良好な水濡れ性および防汚性を示すことから、Group2およびGroup4がより好ましく、Group4が特に好ましい。 As a specific example of the hydrogel, for example, when the hydrogel is a contact lens, a hydrogel selected from the group belonging to the contact lens classifications Group 1 to Group 4 defined by the US Food and Drug Administration (FDA) is preferable. Group2 and Group4 are more preferable, and Group4 is particularly preferable, because they show good water wettability and antifouling property.

Group1は、含水率50質量%未満かつ非イオン性のヒドロゲルレンズを示す。具体的には、tefilcon、tetrafilcon、helfilcon、mafilcon、polymaconおよびhioxifilconなどが挙げられる。 Group1 represents a non-ionic hydrogel lens with a water content of less than 50% by weight. Specific examples include tefilcon, tetrafilcon, helfilcon, mafilcon, polymacon, and thioxifilcon.

Group2は、含水率が50質量%以上かつ非イオン性のヒドロゲルレンズを示す。具体的には、alfafilcon、omafilcon、hioxifilcon、nelfilcon、nesofilcon、hilafilconおよびacofilconなどが挙げられる。良好な水濡れ性および防汚性を示すことから、omafilcon、hioxifilcon、nelfilcon、nesofilconがより好ましく、omafilcon、hioxifilconがさらに好ましく、omafilconが特に好ましい。 Group 2 is a nonionic hydrogel lens having a water content of 50% by mass or more. Specific examples include alfafilcon, omafilcon, hioxifilcon, nelfilcon, nesofilcon, hilafilcon and acofilcon. Omafilcon, hioxifilcon, nelfilcon, and nesofilcon are more preferable because they show good water-wettability and antifouling property, and omafilcon and hioxifilcon are more preferable, and omafilcon is particularly preferable.

Group3は、含水率50質量%未満かつイオン性のヒドロゲルレンズを示す。具体的には、deltafilconなどが挙げられる。 Group 3 represents an ionic hydrogel lens with a water content of less than 50% by weight. Specifically, deltafilcon etc. are mentioned.

Group4は、含水率が50質量%以上かつイオン性のヒドロゲルレンズを示す。具体的には、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilcon、およびvilfilconなどが挙げられる。良好な水濡れ性および防汚性を示すことから、etafilcon、focofilcon、ocufilcon、phemfilconがより好ましく、etafilcon、ocufilconがさらに好ましく、etafilconが特に好ましい。 Group 4 is an ionic hydrogel lens having a water content of 50% by mass or more. Specific examples thereof include etafilcon, focofilcon, ocufilcon, chemfilcon, methafilcon, and vilfilcon. Etafilcon, focofilcon, ocufilcon, and chemfilcon are more preferable, and etafilcon and ocufilcon are more preferable, and etafilcon are particularly preferable, because they exhibit good water wettability and antifouling property.

また、シリコーンヒドロゲルの具体例としては、例えばシリコーンヒドロゲルがコンタクトレンズの場合、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類Group5に属する群から選ばれるシリコーンヒドロゲルが好ましい。 Further, as a specific example of the silicone hydrogel, for example, when the silicone hydrogel is a contact lens, a silicone hydrogel selected from the group belonging to the contact lens group Group 5 defined by the US Food and Drug Administration (FDA) is preferable.

シリコーンヒドロゲルとしては、主鎖および/または側鎖にケイ素原子を含有し、かつ、親水性を有するポリマーが好ましく、例えばシロキサン結合を含有するモノマーと親水性モノマーとのコポリマーなどが挙げられる。 The silicone hydrogel is preferably a polymer having a silicon atom in the main chain and/or side chain and having hydrophilicity, and examples thereof include a copolymer of a monomer having a siloxane bond and a hydrophilic monomer.

具体的には、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、balafilcon、efrofilcon、fanfilcon、somofilcon、samfilcon、olifilcon、asmofilcon、formofilcon、stenfilcon、abafilcon、mangofilcon、riofilcon、sifilcon、larafilconおよびdelefilconなどが挙げられる。良好な水濡れ性および易滑性を示すことから、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、stenfilcon、somofilcon、delefilcon、balafilcon、samfilconがより好ましく、lotrafilcon、narafilcon、senofilcon、comfilcon、enfilconがさらに好ましく、narafilcon、senofilcon、comfilconが特に好ましい。 Specific examples thereof include lotrafilcon, galyfilcon, narafilcon, senofilcon, comfilcon, enfilcon, balafilcon, efrofilcon, fanfilcon, somofilcon, samfilcon, olifilcon, asmofilcon, formofilcon, stenfilcon, abafilcon, mangofilcon, riofilcon, sifilcon, such larafilcon and delefilcon is .. From the fact that they exhibit good wettability and slipperiness, lotrafilcon, gallyfilcon, narafilcon, senofilcon, comfilcon, enfilcon, stenfilcon, somofilcon, delefilcon, balafilcon, seleconon, balafilcon, sol, more preferred. Preferred are narafilcon, senofilcon and comfilcon.

低含水性軟質材料および低含水性硬質材としては、例えば、眼用レンズ等の医療デバイスに用いた場合、角膜への十分な酸素供給が可能な高い酸素透過性を示すことから、ケイ素原子を含む材料であることが好ましい。 As the low hydrous soft material and the low hydrous hard material, for example, when used in a medical device such as an ophthalmic lens, since it exhibits high oxygen permeability capable of supplying sufficient oxygen to the cornea, a silicon atom is used. It is preferable that the material includes.

低含水性硬質材料の具体例としては、例えば低含水性硬質材料がコンタクトレンズの場合、米国食品医薬品局(FDA)が定めるコンタクトレンズの分類に属する群から選ばれる低含水性硬質材料が好ましい。 As a specific example of the low hydrous hard material, for example, when the low hydrous hard material is a contact lens, a low hydrous hard material selected from the group belonging to the category of contact lenses defined by the US Food and Drug Administration (FDA) is preferable.

かかる低含水性硬質材料としては、主鎖および/または側鎖にケイ素原子を含有するポリマーが好ましい。例えばシロキサン結合を含有するポリマーを主成分としてなる成形品である。これら、ケイ素原子を含有するポリマーにおいて、酸素透過性の点からケイ素原子がシロキサン結合によりポリマー中に含有されるものが好ましい。かかるポリマーの具体例としては、トリス(トリメチルシロキシ)シリルプロピルメタクリレート、両末端に二重結合を持ったポリジメチルシロキサン、シリコーン含有(メタ)アクリレートなどを用いたホモポリマー、あるいはこれらのモノマーと他のモノマーとのコポリマーなどが挙げられる。 As such a low hydrous hard material, a polymer containing a silicon atom in its main chain and/or side chain is preferable. For example, it is a molded product containing a polymer containing a siloxane bond as a main component. Among these polymers containing a silicon atom, those containing a silicon atom in the polymer through a siloxane bond are preferable from the viewpoint of oxygen permeability. Specific examples of such a polymer include tris(trimethylsiloxy)silylpropyl methacrylate, polydimethylsiloxane having a double bond at both ends, a homopolymer using a silicone-containing (meth)acrylate, or a monomer thereof and another monomer. Examples thereof include copolymers with monomers.

具体的には、neofocon、pasifocon、telefocon、silafocon、paflufocon、petrafoconおよびfluorofoconなどが挙げられる。良好な水濡れ性と防汚性を示すことから、neofocon、pasifocon、telefocon、silafoconがより好ましく、neofocon、pasifocon、telefoconがさらに好ましく、neofoconが特に好ましい。 Specific examples thereof include neofocon, pasifocon, telefocon, silafocon, paflufocon, petrafocon and fluorofocon. Neofocon, pasifocon, telefocon, and silafocon are more preferable, neofocon, pasifocon, and telefocon are more preferable, and neofocon is particularly preferable, because they show good water wettability and antifouling property.

本発明の医療デバイスがコンタクトレンズ以外の態様である場合、低含水性硬質材料として好適なものは、ポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルイミド、ポリスチレン、ポリメチルメタクリレート、ポリアミド、ポリエステル、エポキシ樹脂、ポリウレタン、ポリ塩化ビニル等などが挙げられる。良好な水濡れ性と防汚性を示すことからポリスルホン、ポリスチレン、ポリメチルメタクリレートがさらに好ましく、ポリメチルメタクリレートが特に好ましい。 When the medical device of the present invention is an embodiment other than a contact lens, suitable as a low hydrous hard material is polyethylene, polypropylene, polysulfone, polyetherimide, polystyrene, polymethylmethacrylate, polyamide, polyester, epoxy resin, polyurethane. , Polyvinyl chloride and the like. Polysulfone, polystyrene, and polymethylmethacrylate are more preferable, and polymethylmethacrylate is particularly preferable, because they show good water wettability and antifouling property.

低含水性軟質材料の具体例としては、例えば国際公開第2013/024799号に記載されているような含水率が10質量%以下、弾性率が100kPa以上2,000kPa以下、引張伸度が50%以上3,000%以下の医療デバイスに使用される低含水性軟質材料が挙げられる。elastofilconもまた好適である。 Specific examples of the low hydrous soft material include, for example, a water content of 10% by mass or less, an elastic modulus of 100 kPa or more and 2,000 kPa or less, and a tensile elongation of 50% as described in WO 2013/024799. The low hydrous soft material used for the medical devices above 3,000% is mentioned. Elastofilcon is also suitable.

本発明の医療デバイスが眼用レンズ以外の態様である場合、低含水性軟質材料の好適な例は、シリコーンエラストマー、軟質ポリウレタン、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、軟質ポリエステル樹脂、軟質アクリル樹脂、軟質ポリ塩化ビニル、天然ゴム、各種合成ゴム等である。 When the medical device of the present invention is an embodiment other than the ophthalmic lens, suitable examples of the low hydrous soft material include silicone elastomer, soft polyurethane, polyvinyl acetate, ethylene-vinyl acetate copolymer, soft polyester resin, and soft Examples include acrylic resin, soft polyvinyl chloride, natural rubber, and various synthetic rubbers.

本発明によれば、基材が含水性であっても、低含水性であっても、医療デバイスの表面に適度な親水性と易滑性を付与することができる。したがって、基材の含水率としては0〜99質量%のいずれでもよい。医療デバイス表面に適度な親水性と易滑性を付与する効果が一段と高いことから、基材の含水率としては0.0001質量%以上が好ましく、特に好ましくは0.001質量%以上である。また、基材の含水率は、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。 According to the present invention, it is possible to impart appropriate hydrophilicity and slipperiness to the surface of a medical device regardless of whether the base material is hydrous or low in water content. Therefore, the water content of the substrate may be 0 to 99% by mass. Since the effect of imparting appropriate hydrophilicity and slipperiness to the surface of the medical device is much higher, the water content of the base material is preferably 0.0001% by mass or more, and particularly preferably 0.001% by mass or more. The water content of the base material is preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.

医療デバイスがコンタクトレンズである場合、眼の中でのレンズの動きが確保されやすいことから、基材の含水率としては15質量%以上が好ましく、さらに好ましくは20質量%以上である。 When the medical device is a contact lens, the water content of the base material is preferably 15% by mass or more, and more preferably 20% by mass or more, because the movement of the lens in the eye is easily secured.

本発明によれば、基材の少なくとも一部に親水性ポリマー層を有することによって、医療デバイスの表面の少なくとも一部に親水性が与えられる。基材が親水性ポリマー層を有するとは、親水性ポリマーが基材表面に層として形成されていることを意味する。親水性ポリマー層の一部が基材の内部に入り込んでいてもよい。 According to the present invention, at least a part of the surface of the medical device is rendered hydrophilic by having the hydrophilic polymer layer on at least a part of the substrate. The substrate having a hydrophilic polymer layer means that the hydrophilic polymer is formed as a layer on the surface of the substrate. A part of the hydrophilic polymer layer may enter the inside of the substrate.

親水性ポリマー層を構成する材料は、通常は基材とは異なる材料である。ただし、所定の効果が得られるのであれば、基材を構成する材料と同一の材料であってもよい。 The material constituting the hydrophilic polymer layer is usually a material different from the base material. However, the same material as that of the base material may be used as long as a predetermined effect can be obtained.

上記親水性ポリマー層を形成するポリマーは、親水性を有する材料から構成される。ただし、親水性の発現を損ねない限りは、それ以外の添加剤等が含まれていてもよい。ここで、親水性を有する材料とは、室温(20〜23℃)の水100質量部に0.0001質量部以上可溶な材料であり、水100質量部に0.01質量部以上可溶であるとより好ましく、0.1質量部以上可溶であればさらに好ましく、1質量部以上可溶な材料が特に好ましい。 The polymer forming the hydrophilic polymer layer is composed of a material having hydrophilicity. However, other additives may be included as long as the hydrophilicity is not impaired. Here, the hydrophilic material is a material that is soluble in 0.0001 parts by mass or more in 100 parts by mass of water at room temperature (20 to 23° C.), and is soluble in 0.01 parts by mass or more in 100 parts by mass of water. Is more preferable, even more preferably 0.1 parts by mass or more, and particularly preferably 1 part by mass or more.

親水性ポリマー層を形成するポリマーとしては、酸性基を含む親水性ポリマーを用いる。酸性基を含む親水性ポリマーは、水濡れ性のみならず体液等に対する防汚性に優れた表面を形成できるために好ましい。ここでいう酸性基としては、具体的には、カルボキシ基およびスルホン酸基から選ばれた基が好ましく、カルボキシ基が特に好ましい。カルボキシ基またはスルホン酸基は、塩になっていてもかまわない。 As the polymer forming the hydrophilic polymer layer, a hydrophilic polymer containing an acidic group is used. A hydrophilic polymer containing an acidic group is preferable because it can form a surface excellent in antifouling property against body fluids as well as water wettability. As the acidic group, specifically, a group selected from a carboxy group and a sulfonic acid group is preferable, and a carboxy group is particularly preferable. The carboxy group or sulfonic acid group may be a salt.

上記酸性基を含む親水性ポリマーの例は、ポリメタクリル酸、ポリアクリル酸、ポリ(ビニル安息香酸)、ポリ(チオフェン−3−酢酸)、ポリ(4−スチレンスルホン酸)、ポリビニルスルホン酸、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)およびこれらの塩などである。以上はホモポリマーの例であるが、前記親水性ポリマーを構成する親水性モノマー同士の共重合体、あるいは該親水性モノマーと他のモノマーの共重合体も好適に用いることができる。 Examples of the hydrophilic polymer containing an acidic group are polymethacrylic acid, polyacrylic acid, poly(vinylbenzoic acid), poly(thiophen-3-acetic acid), poly(4-styrenesulfonic acid), polyvinylsulfonic acid, poly (2-acrylamido-2-methylpropanesulfonic acid) and salts thereof. Although the above is an example of a homopolymer, a copolymer of hydrophilic monomers composing the hydrophilic polymer or a copolymer of the hydrophilic monomer and another monomer can be preferably used.

酸性基を含む親水性ポリマーが共重合体である場合、該共重合体を構成する酸性基を有する親水性モノマーとしては、重合性の高さという点でアリル基、ビニル基、および(メタ)アクリロイル基から選ばれた基を有するモノマーが好ましく、(メタ)アクリロイル基を有するモノマーが特に好ましい。このようなモノマーとして好適なものを例示すれば、(メタ)アクリル酸、ビニル安息香酸、スチレンスルホン酸、ビニルスルホン酸、2−アクリルアミド−2−メチルプロパンスルホン酸、およびこれらの塩などが挙げられる。これらの中で、(メタ)アクリル酸、2−アクリルアミド−2−メチルプロパンスルホン酸、およびこれらの塩から選ばれたモノマーがより好ましく、特に好ましいのは(メタ)アクリル酸、およびその塩から選ばれたモノマーである。 When the hydrophilic polymer having an acidic group is a copolymer, the hydrophilic monomer having an acidic group constituting the copolymer may be an allyl group, a vinyl group, and (meth) in terms of high polymerizability. A monomer having a group selected from an acryloyl group is preferable, and a monomer having a (meth)acryloyl group is particularly preferable. Suitable examples of such a monomer include (meth)acrylic acid, vinylbenzoic acid, styrenesulfonic acid, vinylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof. .. Among these, a monomer selected from (meth)acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof is more preferable, and (meth)acrylic acid and salts thereof are particularly preferable. It is a monomer.

上記酸性基を含む親水性ポリマーは、酸性基に加えてアミド基を有することが好ましい。酸性基に加えてアミド基を有する場合、親水性ポリマーが水に溶解すると適度な粘性を発現するため水濡れ性のみならず易滑性のある表面を形成できる。 The hydrophilic polymer containing an acidic group preferably has an amide group in addition to the acidic group. In the case where the hydrophilic polymer has an amide group in addition to the acidic group, when the hydrophilic polymer dissolves in water, it exhibits an appropriate viscosity, so that not only the wettability with water but also a slippery surface can be formed.

酸性基およびアミド基を有する親水性ポリマーの例としては、カルボキシル基を有するポリアミド類、前記酸性基を有する親水性モノマーとアミド基を有するモノマーとの共重合体などを挙げることができる。 Examples of hydrophilic polymers having an acidic group and an amide group include polyamides having a carboxyl group and copolymers of the hydrophilic monomer having an acidic group and a monomer having an amide group.

カルボキシル基を有するポリアミド類の好適な例としては、ポリアスパラギン酸、ポリグルタミン酸などのポリアミノ酸やポリペプチド類などを挙げることができる。 Preferable examples of polyamides having a carboxyl group include polyamino acids such as polyaspartic acid and polyglutamic acid, and polypeptides.

アミド基を有するモノマーとしては、重合の容易さの点で(メタ)アクリルアミド基を有するモノマーおよびN−ビニルカルボン酸アミド(環状のものを含む)から選ばれたモノマーが好ましい。かかるモノマーの好適な例としては、N−ビニルピロリドン、N−ビニルカプロラクタム、N−ビニルアセトアミド、N−メチル−N−ビニルアセトアミド、N−ビニルホルムアミド、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N−イソプロピルアクリルアミド、N−(2−ヒドロキシエチル)アクリルアミド、アクリロイルモルホリン、およびアクリルアミドを挙げることができる。これら中でも易滑性の点で好ましいのは、N−ビニルピロリドン、N,N−ジメチルアクリルアミドおよびN,N−ジエチルアクリルアミドであり、N,N−ジメチルアクリルアミドが特に好ましい。 The monomer having an amide group is preferably a monomer selected from a monomer having a (meth)acrylamide group and an N-vinylcarboxylic acid amide (including a cyclic one) from the viewpoint of ease of polymerization. Preferable examples of such a monomer include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N,N-dimethylacrylamide, N,N-diethyl. Mention may be made of acrylamide, N-isopropylacrylamide, N-(2-hydroxyethyl)acrylamide, acryloylmorpholine and acrylamide. Among these, N-vinylpyrrolidone, N,N-dimethylacrylamide and N,N-diethylacrylamide are preferable in terms of slipperiness, and N,N-dimethylacrylamide is particularly preferable.

酸性基を有する親水性モノマーとアミド基を有するモノマーとの共重合体の好ましい具体例は、(メタ)アクリル酸/N−ビニルピロリドン共重合体、(メタ)アクリル酸/N,N−ジメチルアクリルアミド共重合体、(メタ)アクリル酸/N,N−ジエチルアクリルアミド共重合体、2−アクリルアミド−2−メチルプロパンスルホン酸/N−ビニルピロリドン共重合体、2−アクリルアミド−2−メチルプロパンスルホン酸/N,N−ジメチルアクリルアミド共重合体および2−アクリルアミド−2−メチルプロパンスルホン酸/N,N−ジエチルアクリルアミド共重合体である。特に好ましくは(メタ)アクリル酸/N,N−ジメチルアクリルアミド共重合体である。 Specific preferred examples of the copolymer of a hydrophilic monomer having an acidic group and a monomer having an amide group include (meth)acrylic acid/N-vinylpyrrolidone copolymer, (meth)acrylic acid/N,N-dimethylacrylamide. Copolymer, (meth)acrylic acid/N,N-diethylacrylamide copolymer, 2-acrylamido-2-methylpropanesulfonic acid/N-vinylpyrrolidone copolymer, 2-acrylamido-2-methylpropanesulfonic acid/ N,N-dimethylacrylamide copolymer and 2-acrylamido-2-methylpropanesulfonic acid/N,N-diethylacrylamide copolymer. Particularly preferred is a (meth)acrylic acid/N,N-dimethylacrylamide copolymer.

酸性基を有する親水性モノマーとアミド基を有するモノマーの共重合体を用いる場合、その共重合比率は、[酸性基を有する親水性モノマーの質量]/[アミド基を有するモノマーの質量]が1/99〜99/1のものが好ましい。酸性基を有する親水性モノマーの共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、7質量%以上がより好ましく、10質量%以上がさらにより好ましい。また、酸性基を有する親水性モノマーの共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がさらにより好ましい。アミド基を有するモノマーの共重合比率は、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上がさらにより好ましい。また、アミド基を有するモノマーの共重合比率は、98質量%以下がより好ましく、95質量%以下がさらに好ましく、93質量%以下がさらに好ましく、90質量%以下がさらにより好ましい。酸性基を有する親水性モノマーとアミド基を有するモノマーの共重合比率が上記の範囲であれば、易滑性や体液に対する防汚性などの機能を発現しやすくなる。 When a copolymer of a hydrophilic monomer having an acidic group and a monomer having an amide group is used, the copolymerization ratio is such that [mass of hydrophilic monomer having acidic group]/[mass of monomer having amide group] is 1 It is preferably /99 to 99/1. The copolymerization ratio of the hydrophilic monomer having an acidic group is more preferably 2% by mass or more, further preferably 5% by mass or more, more preferably 7% by mass or more, still more preferably 10% by mass or more. The copolymerization ratio of the hydrophilic monomer having an acidic group is more preferably 90% by mass or less, further preferably 80% by mass or less, and further preferably 70% by mass or less. The copolymerization ratio of the amide group-containing monomer is more preferably 10% by mass or more, further preferably 20% by mass or more, still more preferably 30% by mass or more. Further, the copolymerization ratio of the monomer having an amide group is more preferably 98% by mass or less, further preferably 95% by mass or less, further preferably 93% by mass or less, and further preferably 90% by mass or less. When the copolymerization ratio of the hydrophilic monomer having an acidic group and the monomer having an amide group is in the above range, functions such as slipperiness and antifouling property against body fluid are easily exhibited.

また、上記酸性基を有する親水性モノマーとアミド基を有するモノマーに、さらに酸性基やアミド基が異なるモノマーや、酸性基やアミド基を有しないモノマーを1種類もしくは複数共重合させることも可能である。 In addition, it is possible to copolymerize the hydrophilic monomer having an acidic group and the monomer having an amide group with one or more monomers having different acidic groups or amide groups or a monomer having no acidic group or amide group. is there.

上記以外のモノマーの好適な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、(メタ)アクリルアミド、グリセロール(メタ)アクリレート、カプロラクトン変性2?ヒドロキシエチル(メタ)アクリレート、N?(4?ヒドロキシフェニル)マレイミド、ヒドロキシスチレン、ビニルアルコール(前駆体としてカルボン酸ビニルエステル)を挙げることができる。この内、重合の容易さの点で(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリル酸エステルモノマーがより好ましい。体液に対する防汚性を向上させる観点から、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、およびグリセロール(メタ)アクリレートが好ましく、ヒドロキシエチル(メタ)アクリレートが特に好ましい。また、親水性、抗菌性、防汚性、薬効性等といった機能を示すモノマーを使用することも可能である。 Suitable examples of monomers other than the above include hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, hydroxyethyl (meth)acrylamide, (meth)acrylamide, glycerol (meth)acrylate, Examples thereof include caprolactone-modified 2-hydroxyethyl (meth)acrylate, N-(4-hydroxyphenyl)maleimide, hydroxystyrene, vinyl alcohol (carboxylic acid vinyl ester as a precursor). Among these, a monomer having a (meth)acryloyl group is preferable, and a (meth)acrylic acid ester monomer is more preferable, from the viewpoint of ease of polymerization. From the viewpoint of improving antifouling property against body fluid, hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and glycerol (meth)acrylate are preferable, and hydroxyethyl (meth)acrylate is particularly preferable. It is also possible to use a monomer that exhibits functions such as hydrophilicity, antibacterial properties, antifouling properties, and drug efficacy.

酸性基を有する親水性モノマーとアミド基を有するモノマーの共重合体に上記酸性基やアミド基が異なるモノマーや、酸性基やアミド基を有しないモノマーである第3のモノマー成分を共重合させる場合、第3のモノマー成分の共重合比率は、2質量%以上がより好ましく、5質量%以上がさらに好ましく、10質量%以上がさらにより好ましい。また、第3のモノマー成分の共重合比率は、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下がさらにより好ましい。 When copolymerizing a hydrophilic monomer having an acidic group and a monomer having an amide group with a monomer having a different acidic group or amide group or a third monomer component which is a monomer having no acidic group or amide group The copolymerization ratio of the third monomer component is more preferably 2% by mass or more, further preferably 5% by mass or more, still more preferably 10% by mass or more. The copolymerization ratio of the third monomer component is more preferably 90% by mass or less, further preferably 80% by mass or less, and even more preferably 70% by mass or less.

酸性基を有するモノマーとアミド基を有するモノマーおよび第3のモノマー成分の共重合比率が上記の範囲であれば、易滑性や体液に対する防汚性などの機能を発現しやすくなる。 When the copolymerization ratio of the monomer having an acidic group, the monomer having an amide group, and the third monomer component is within the above range, functions such as slipperiness and antifouling property against body fluid are easily exhibited.

また、医療デバイスに求められる特性を損ねない限りは、上記材料以外の添加剤等が親水性ポリマー層に含まれていてもよい。さらに、親水性ポリマー層には、酸性基を含む親水性ポリマーに加え、他の親水性ポリマーが1種類もしくは複数含まれていてもよい。ただし、製造方法が複雑になる傾向があることから、親水性ポリマー層は、1種類の酸性基を含む親水性ポリマーのみからなることが好ましい。 Further, additives and the like other than the above materials may be contained in the hydrophilic polymer layer as long as the characteristics required for the medical device are not impaired. Furthermore, the hydrophilic polymer layer may contain one or more kinds of other hydrophilic polymers in addition to the hydrophilic polymer containing an acidic group. However, since the manufacturing method tends to be complicated, it is preferable that the hydrophilic polymer layer is composed of only a hydrophilic polymer containing one kind of acidic group.

ここで、1種類のポリマーとは、1の合成反応により製造されたポリマーもしくはポリマー群(異性体、錯体等)を意味する。複数のモノマーを用いて共重合ポリマーとする場合は、構成するモノマー種が同一であっても、配合比を変えて合成したポリマーは同じ1種とは言わない。 Here, one type of polymer means a polymer or a group of polymers (isomers, complexes, etc.) produced by one synthetic reaction. When a plurality of monomers are used to form a copolymer, even if the constituent monomer species are the same, the polymers synthesized with different blending ratios are not said to be the same.

また、親水性ポリマー層が1種類の酸性基を含む親水性ポリマーのみからなるとは、親水性ポリマー層が、該酸性基を有する親水性ポリマー以外のポリマーを全く含まないか、もしくは、仮にそれ以外のポリマーを含んだとしても、該酸性基を有する親水性ポリマー100質量部に対し、それ以外のポリマーの含有量が3質量部以下であることが好ましいことを意味する。それ以外のポリマーの含有量は、0.1質量部以下がより好ましく、0.0001質量部以下がさらに好ましい。 Further, the hydrophilic polymer layer is composed of only one kind of hydrophilic polymer containing an acidic group means that the hydrophilic polymer layer does not contain any polymer other than the hydrophilic polymer having the acidic group, or if other than that. Even if the above polymer is included, it means that the content of the other polymer is preferably 3 parts by mass or less with respect to 100 parts by mass of the hydrophilic polymer having the acidic group. The content of the other polymer is more preferably 0.1 part by mass or less, further preferably 0.0001 part by mass or less.

それ以外のポリマーが塩基性ポリマーの場合であっても、含有量が上記の範囲内であれば、透明性に問題が生じることを抑制できる。従来技術においては、静電吸着作用を利用して基材の表面に親水性ポリマーを積層するため、酸性ポリマーと塩基性ポリマーを併用していたが、本発明によれば、1種類のポリマーのみからなる親水性ポリマー層を基材表面上に形成することもできる。 Even if the other polymer is a basic polymer, if the content is within the above range, it is possible to suppress a problem in transparency. In the prior art, an acidic polymer and a basic polymer were used in combination because a hydrophilic polymer is laminated on the surface of a base material by utilizing the electrostatic adsorption effect, but according to the present invention, only one type of polymer is used. It is also possible to form a hydrophilic polymer layer consisting of on the surface of the substrate.

親水性ポリマー層が塩基性基を含む場合、塩基性基/酸性基の数比は0.2以下が好ましい。酸性基と塩基性基の反応由来の塩が形成されず、透明性に優れることから、該比率は0.1以下がより好ましく、0.05以下がさらに好ましい。ここで、塩基性基とは、塩基性の官能基を示し、アミノ基およびその塩などが挙げられる。 When the hydrophilic polymer layer contains a basic group, the number ratio of basic group/acidic group is preferably 0.2 or less. Since the salt derived from the reaction of the acidic group and the basic group is not formed and the transparency is excellent, the ratio is more preferably 0.1 or less, further preferably 0.05 or less. Here, the basic group means a basic functional group, and examples thereof include an amino group and a salt thereof.

本発明において親水性ポリマー層を構成する酸性基を有する親水性ポリマーは、基材の表面の少なくとも一部と、水素結合、イオン結合、ファンデルワールス結合、疎水結合、錯形成から選ばれる1種類以上の化学結合を形成する。ここで、親水性ポリマー層は、基材との間に共有結合により結合されていてもよいが、簡便な工程での製造が可能となることから、むしろ、基材との間に共有結合を有していないことが好ましい。 In the present invention, the hydrophilic polymer having an acidic group constituting the hydrophilic polymer layer is one kind selected from at least a part of the surface of the base material, selected from hydrogen bond, ionic bond, van der Waals bond, hydrophobic bond and complex formation. The above chemical bond is formed. Here, the hydrophilic polymer layer may be bound to the base material by a covalent bond, but since it can be produced by a simple process, the hydrophilic polymer layer is rather bound to the base material by a covalent bond. It is preferable not to have it.

本発明医療デバイスは、用途にもよるが、基材表面における一つの面の全面に親水性ポリマー層が存在することが好ましい。基材が厚みを有しない、または、厚みがあっても無視できる程度の2次元形状の場合は、基材表面の片面全面の上に親水性ポリマー層が存在することが好ましい。また、基材の全表面の上に親水性ポリマー層が存在することが好ましい。 The medical device of the present invention preferably has a hydrophilic polymer layer on the entire surface of one surface of the substrate, depending on the application. When the substrate has no thickness, or has a two-dimensional shape that is negligible even if there is a thickness, it is preferable that the hydrophilic polymer layer be present on the entire one surface of the substrate surface. It is also preferable that the hydrophilic polymer layer is present on the entire surface of the substrate.

また、上記親水性ポリマーは、基材が含水性であるか、非含水性であるかを問わずに、簡便な工程での製造が可能となることから、基材との間に共有結合を有していないことが好ましい。共有結合を有していないことは、化学反応性基を含まないことで判定する。化学反応性基の具体例としては、アゼチジニウム基、エポキシ基、イソシアネート基、アジリジン基、アズラクトン基およびそれらの組合せなどが挙げられるが、これらに限定されない。 In addition, since the hydrophilic polymer can be produced in a simple process regardless of whether the substrate is hydrous or non-hydrous, a covalent bond is formed between the hydrophilic polymer and the substrate. It is preferable not to have it. Having no covalent bond is judged by not containing a chemically reactive group. Specific examples of the chemically reactive group include, but are not limited to, an azetidinium group, an epoxy group, an isocyanate group, an aziridine group, an azlactone group, and combinations thereof.

親水性ポリマー層の厚みは、乾燥状態のデバイス断面を透過型電子顕微鏡を用いて観察したときに、1nm以上100nm未満である。厚みがこの範囲にある場合に、水濡れ性や易滑性などの機能を発現しやすくなる。厚みは、5nm以上がより好ましく、10nm以上がさらに好ましい。また、厚みは、95nm以下がより好ましく、90nm以下がさらに好ましく、特に好ましくは、85nm以下である。親水性ポリマー層の厚みが100nm未満であれば、水濡れ性や易滑性に優れ、例えば、眼用レンズといった医療デバイスに用いる場合、網膜に焦点をあわせるための光の屈折が乱れず視界不良が起こりにくくなる。 The thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm when the cross section of the device in a dry state is observed using a transmission electron microscope. When the thickness is in this range, functions such as wettability and slipperiness are likely to be exhibited. The thickness is more preferably 5 nm or more, further preferably 10 nm or more. The thickness is more preferably 95 nm or less, further preferably 90 nm or less, and particularly preferably 85 nm or less. When the thickness of the hydrophilic polymer layer is less than 100 nm, it is excellent in water wettability and slipperiness, and when used in a medical device such as an ophthalmic lens, the refraction of light for focusing on the retina is not disturbed and the visibility is poor. Is less likely to occur.

また、親水性ポリマー層の厚みは、含水状態で凍結させた状態(以下、凍結状態)のデバイス断面を走査透過型電子顕微鏡を用いて観察したときに、1nm以上100nm未満であることが、水濡れ性や易滑性などの機能を発現しやすくなることから好ましい。厚みは、5nm以上がより好ましく、10nm以上がさらに好ましく、15nm以上が特に好ましい。また、厚みは、95nm以下がより好ましく、90nm以下がさらに好ましく85nm以下が特に好ましい。凍結状態の親水性ポリマー層の厚み測定は、クライオトランスファーホルダーを用いた走査透過型電子顕微鏡観察によって行うことができる。 The thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm when observing a device cross section in a frozen state in a water-containing state (hereinafter, frozen state) with a scanning transmission electron microscope. It is preferable because functions such as wettability and slipperiness are easily exhibited. The thickness is more preferably 5 nm or more, further preferably 10 nm or more, particularly preferably 15 nm or more. The thickness is more preferably 95 nm or less, further preferably 90 nm or less, and particularly preferably 85 nm or less. The thickness of the frozen hydrophilic polymer layer can be measured by scanning transmission electron microscope observation using a cryotransfer holder.

凍結状態の親水性ポリマー層の厚みが100nm以上の場合、例えば、眼用レンズといった医療デバイスに用いる場合に、網膜に焦点をあわせるための光の屈折が乱れて視界不良が起こりやすくなることから好ましくない。 When the thickness of the frozen hydrophilic polymer layer is 100 nm or more, for example, when it is used for a medical device such as an ophthalmic lens, refraction of light for focusing on the retina is disturbed, and poor visibility is likely to occur, which is preferable. Absent.

また、本発明の医療デバイスをコンタクトレンズとして使用する場合、フロントカーブ面と称する瞼側に接する表面の親水性ポリマー層の平均厚さと、ベースカーブ面と称する角膜側に接する表面の親水性ポリマー層の平均厚さとが同じでもよいが、装用中のコンタクトレンズの過剰な動きが抑制され装用感が向上することから、むしろ、フロントカーブ面とベースカーブ面で20%を超える厚さの相違を有することが好ましい。平均厚さの相違は、親水性ポリマー層の平均厚さが薄い方の平均厚さに対する厚い方の平均厚さの比率である。 Further, when the medical device of the present invention is used as a contact lens, the average thickness of the hydrophilic polymer layer on the surface in contact with the eyelid side called the front curve surface, and the hydrophilic polymer layer on the surface in contact with the cornea side called the base curve surface. May be the same as the average thickness, but since the excessive movement of the contact lens during wearing is suppressed and the wearing feeling is improved, the difference in thickness between the front curve surface and the base curve surface exceeds 20%. It is preferable. The difference in average thickness is the ratio of the average thickness of the hydrophilic polymer layer to the average thickness of the thinner one to the average thickness of the thinner hydrophilic polymer layer.

フロントカーブ面の親水性ポリマー層がより厚い場合、空気と接しているフロントカーブ面の保水性がより高く、涙液が蒸発しにくくなることから装用中の乾燥感が抑制されやすい利点を有する。 When the hydrophilic polymer layer on the front curve surface is thicker, the water retention on the front curve surface in contact with air is higher and the tear fluid is less likely to evaporate, so that the dry feeling during wearing is easily suppressed.

ベースカーブ面の親水性ポリマー層がより厚い場合、ベースカーブ面がより滑りやすく、瞬目時の角膜とベースカーブ面の間の摩擦が小さくなり角膜が傷つきにくい利点を有する。 When the hydrophilic polymer layer on the base curve surface is thicker, the base curve surface is more slippery, friction between the cornea and the base curve surface at the time of blinking is small, and the cornea is less likely to be damaged.

平均厚さは、上記乾燥状態の親水性ポリマー層の厚み測定と同様の方法で測定することができる。4ヶ所場所を変えて、各視野につき、5ヶ所膜厚を測定し、計20ヶ所の膜厚の平均を平均厚さとする。 The average thickness can be measured by the same method as the thickness measurement of the hydrophilic polymer layer in the dry state. The film thickness is measured at 5 places for each visual field by changing 4 places, and the average of the film thicknesses at 20 places is taken as the average thickness.

親水性ポリマー層は、好ましくは2層以上または2相以上に分離した状態であることが好ましい。 The hydrophilic polymer layer is preferably in a state of being separated into two or more layers or two or more phases.

ここで、親水性ポリマー層が2層以上に分離した状態とは、医療デバイスの断面を透過型電子顕微鏡を用いて観察したときに、親水性ポリマー層に2層以上の多層構造が観察される状態を示す。透過型電子顕微鏡による観察だけでは、層の分離の判定が困難な場合は、医療デバイスの断面を走査透過電子顕微鏡法および電子エネルギー損失分光法、エネルギー分散型X線分光法、飛行時間型2次イオン質量分析法等の元素分析や組成分析ができる手段を用いて、断面の元素や組成を解析することにより判定する。 Here, the state in which the hydrophilic polymer layer is separated into two or more layers means that a multilayer structure of two or more layers is observed in the hydrophilic polymer layer when the cross section of the medical device is observed using a transmission electron microscope. Indicates the state. When it is difficult to judge the separation of layers only by observation with a transmission electron microscope, the cross section of a medical device is scanned with a transmission transmission electron microscope, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, time-of-flight secondary The determination is made by analyzing the element or composition of the cross section using a means capable of elemental analysis or composition analysis such as ion mass spectrometry.

また、親水性ポリマー層が2相以上に相分離した状態とは、医療デバイスの断面を透過型電子顕微鏡を用いて観察したときに、親水性ポリマー層中で2相以上に相分離した状態が観察される状態を示す。透過型電子顕微鏡による観察だけでは、相の分離の判定が困難な場合については、上記と同様である。 Further, the state where the hydrophilic polymer layer is phase-separated into two or more phases means a state where the hydrophilic polymer layer is phase-separated into two or more phases when the cross section of the medical device is observed using a transmission electron microscope. The observed condition is shown. The same applies to the case where it is difficult to determine the phase separation only by observation with a transmission electron microscope.

従来、基材表面上に2層以上または2相以上のポリマー層を形成させるためには、2種類以上のポリマーが必要であったが、本発明においては、ポリマーが1種類しか存在しない場合でも、基材表面上に、2層以上または2相以上に分離した親水性ポリマー層を形成し得ることが見出された。 Conventionally, two or more kinds of polymers were required to form a polymer layer having two or more layers or two or more phases on the surface of a substrate, but in the present invention, even when only one kind of polymer is present, It has been found that a hydrophilic polymer layer separated into two or more layers or two or more phases can be formed on the surface of a substrate.

親水性ポリマー層が2層以上の多層構造を有する場合、親水性ポリマー層が十分厚くなり、水濡れ性や易滑性がより良好となる。また、親水性ポリマー層が2相以上に相分離した状態を有する場合、医療デバイスの断面を透過型電子顕微鏡を用いて観察したときにゴミやほこりといった微小異物と区別することが容易となるため、基材表面におけるポリマー層形成を確認しやすく、品質検査の上で効率的である。 When the hydrophilic polymer layer has a multilayer structure of two or more layers, the hydrophilic polymer layer becomes sufficiently thick and the wettability and slipperiness become better. Further, when the hydrophilic polymer layer has a phase-separated state of two or more phases, it becomes easy to distinguish it from minute foreign matters such as dust and dust when the cross section of the medical device is observed using a transmission electron microscope. , It is easy to confirm the polymer layer formation on the surface of the substrate, and it is efficient in quality inspection.

また、親水性ポリマー層において、親水性ポリマー層の少なくとも一部が基材と混和した状態で存在することが好ましい。親水性ポリマー層が基材と混和した状態は、医療デバイスの断面を走査透過電子顕微鏡法、電子エネルギー損失分光法、エネルギー分散型X線分光法、飛行時間型2次イオン質量分析法等の元素分析または組成分析を行える観察手段で観察したときに、親水性ポリマー層形成前後における基材の断面構造および親水性ポリマー層の少なくとも一部に基材由来の元素が検出されることで確認できる。親水性ポリマー層が基材と混和することにより、親水性ポリマーが基材により強固に固定されうる。 Further, in the hydrophilic polymer layer, it is preferable that at least a part of the hydrophilic polymer layer exists in a state of being mixed with the substrate. When the hydrophilic polymer layer is mixed with the base material, the cross section of the medical device is an element such as scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, time-of-flight secondary ion mass spectrometry, etc. It can be confirmed by observing an element derived from the substrate in at least a part of the cross-sectional structure of the substrate and the hydrophilic polymer layer before and after the formation of the hydrophilic polymer layer, when observed by an observing means capable of analysis or composition analysis. By mixing the hydrophilic polymer layer with the base material, the hydrophilic polymer can be more firmly fixed to the base material.

親水性ポリマー層の少なくとも一部が基材と混和した状態で存在する場合、「親水性ポリマー層の少なくとも一部が基材と混和した層」(以下混和層)と「親水性ポリマーからなる層」(以下単独層)からなる二層構造が観察されることが好ましい。混和層の厚みは、混和層と単独層の合計厚みに対して、3%以上が好ましく、5%以上がより好ましく、10%以上がさらに好ましい。混和層の厚みは、混和層と単独層の合計厚みに対して、98%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましく、80%以下が特に好ましい。混和層の厚み割合が小さすぎると、親水性ポリマーと基材の混和が十分ではなく好ましくない。混和層の厚み割合が大きすぎると、親水性ポリマーの性質が十分に発現しない可能性があり好ましくない。 When at least a part of the hydrophilic polymer layer exists in a state of being mixed with the base material, "a layer in which at least a part of the hydrophilic polymer layer is mixed with the base material" (hereinafter referred to as a miscible layer) and "a layer made of a hydrophilic polymer" It is preferable to observe a two-layer structure consisting of the following (hereinafter referred to as a single layer). The thickness of the admixture layer is preferably 3% or more, more preferably 5% or more, still more preferably 10% or more, based on the total thickness of the admixture layer and the single layer. The thickness of the admixture layer is preferably 98% or less, more preferably 95% or less, even more preferably 90% or less, and particularly preferably 80% or less, based on the total thickness of the admixture layer and the single layer. If the thickness ratio of the admixture layer is too small, the admixture of the hydrophilic polymer and the substrate is not sufficient, which is not preferable. If the thickness ratio of the admixture layer is too large, the properties of the hydrophilic polymer may not be sufficiently exhibited, which is not preferable.

層数または相数は、医療デバイスの透明性に優れる点から2〜3層または2〜3相が好ましく、2層または2相がより好ましい。医療デバイスの透明性が高ければ、例えば皮膚用材料として使用した際、皮膚の状態を医療デバイスを皮膚から剥がすことなしに容易に目視観察できる。また、医療デバイスの透明性が高ければ、眼用レンズ等としての利用が可能となる。 The number of layers or the number of phases is preferably 2 to 3 layers or 2 to 3 phases, more preferably 2 layers or 2 phases, from the viewpoint of excellent transparency of the medical device. If the medical device has high transparency, the skin condition can be easily visually observed without peeling the medical device from the skin when used as a skin material, for example. Further, if the medical device has high transparency, it can be used as an ophthalmic lens or the like.

本発明の医療デバイスが、例えば生体表面に貼付して用いられる医療デバイスや眼用レンズといった眼用デバイスである場合、使用者の皮膚等への貼り付きを防止する観点および装用者の角膜への貼り付きを防止する観点から、医療デバイスの表面の液膜保持時間が長いことが好ましい。 When the medical device of the present invention is an ophthalmic device such as a medical device or an ophthalmic lens that is used by being stuck on the surface of a living body, the viewpoint of preventing sticking to the skin of the user and the cornea of the wearer From the viewpoint of preventing sticking, it is preferable that the liquid film holding time on the surface of the medical device is long.

ここで、本発明における液膜保持時間とは、リン酸緩衝液に浸漬した医療デバイスを液から引き上げ、空中に表面が垂直になるように保持した際に、医療デバイス表面の液膜が切れずに保持される時間である。なお「液膜が切れる」とは医療デバイスの表面で水をはじく現象が起きる状態を指す。液膜保持時間は15秒以上が好ましく、20秒以上がより好ましく、25秒以上が特に好ましい。 Here, the liquid film holding time in the present invention means that the liquid film on the surface of the medical device is not broken when the medical device immersed in the phosphate buffer is pulled out of the liquid and held so that the surface becomes vertical in the air. It is time to be held in. In addition, "the liquid film is cut off" refers to a state in which a phenomenon of repelling water occurs on the surface of the medical device. The liquid film holding time is preferably 15 seconds or longer, more preferably 20 seconds or longer, and particularly preferably 25 seconds or longer.

従来技術において表面の親水性ポリマー層の厚みが100nm未満の場合には、水濡れ性のよい医療デバイスであっても、超音波洗浄にかけると水濡れ性が極端に低下し、一度低下した水濡れ性は水中に室温で短時間(例えば1時間程度)放置した程度では回復しない傾向があった。このような現象の発現機序の詳細は不明であるが、超音波により表面の親水性ポリマー層がはがれ落ちるか、もしくは溶出すること、または親水性ポリマー層表面の組成変化が生じて疎水性が強まることが原因として考えられる。したがって、超音波洗浄にかけると水濡れ性が低下する医療デバイスは、外部刺激によって表面状態が変化して水濡れ性が低下するリスクがあるために好ましくない。逆に超音波洗浄にかけた後においても表面の水濡れ性が低下しないか、低下しても短時間で回復するものは、外部刺激によって表面状態が変化しにくい優れた医療デバイスと言える。 In the prior art, when the thickness of the hydrophilic polymer layer on the surface is less than 100 nm, even a medical device having good water wettability will have extremely low water wettability when subjected to ultrasonic cleaning. The wettability tended not to recover even after being left in water at room temperature for a short time (for example, about 1 hour). Although the details of the mechanism of manifestation of such a phenomenon are unknown, the hydrophilic polymer layer on the surface is peeled off or eluted by ultrasonic waves, or the composition of the hydrophilic polymer layer surface is changed to cause hydrophobicity. It is thought that the cause is strengthening. Therefore, a medical device whose water wettability is deteriorated when it is subjected to ultrasonic cleaning is not preferable because there is a risk that the surface state is changed by an external stimulus and the water wettability is deteriorated. On the contrary, a device that does not deteriorate in water wettability even after being subjected to ultrasonic cleaning or that recovers in a short time even if it deteriorates can be said to be an excellent medical device in which the surface condition is unlikely to change due to external stimulus.

本発明の医療デバイスが、例えば眼用レンズといった眼用デバイスである場合、乾燥感を感じにくく良好な装用感を長時間維持できる観点から、超音波洗浄にかけた後の医療デバイスの表面の液膜保持時間が長いことが好ましい。 When the medical device of the present invention is an ophthalmic device such as an ophthalmic lens, a liquid film on the surface of the medical device after being subjected to ultrasonic cleaning, from the viewpoint of not feeling a dry feeling and maintaining a good wearing feeling for a long time. A long holding time is preferable.

医療デバイスをリン酸緩衝液中で超音波洗浄(消費電力40W)に5秒間かけた後、リン酸緩衝液に室温で40分間浸漬した後の医療デバイスの表面の液膜保持時間を評価した。40分後の医療デバイスの表面の液膜保持時間が15秒以上の場合、医療デバイスの表面は十分な水濡れ性と耐久性を有することを意味する。液膜保持時間は15秒以上が好ましく、20秒以上がより好ましく、25秒以上が特に好ましい。特に、超音波洗浄前と同等の液膜保持時間を示す場合、より優れた耐久性を示すため好ましい。測定方法の詳細は後述する。 The medical device was subjected to ultrasonic cleaning (power consumption: 40 W) in a phosphate buffer for 5 seconds, and then the liquid film retention time on the surface of the medical device after immersion in the phosphate buffer for 40 minutes at room temperature was evaluated. When the liquid film retention time on the surface of the medical device after 40 minutes is 15 seconds or more, it means that the surface of the medical device has sufficient water wettability and durability. The liquid film holding time is preferably 15 seconds or longer, more preferably 20 seconds or longer, and particularly preferably 25 seconds or longer. In particular, when the liquid film holding time is the same as that before ultrasonic cleaning, it is preferable because the durability is further improved. Details of the measuring method will be described later.

本発明の医療デバイスが、例えば眼用レンズといった眼用デバイスである場合、装用者の角膜への貼り付きを防止する観点から、医療デバイス表面の動的接触角が低いことが好ましい。動的接触角は、60°以下が好ましく、55°以下がより好ましく、50°以下が特に好ましい。動的接触角(前進時、浸漬速度:0.1mm/sec)は、リン酸緩衝液による湿潤状態の試料にて測定される。測定方法の詳細は後述する。 When the medical device of the present invention is an ophthalmic device such as an ophthalmic lens, it is preferable that the surface of the medical device has a low dynamic contact angle from the viewpoint of preventing sticking to the cornea of the wearer. The dynamic contact angle is preferably 60° or less, more preferably 55° or less, and particularly preferably 50° or less. The dynamic contact angle (at the time of advancing, immersion speed: 0.1 mm/sec) is measured on a sample in a wet state with a phosphate buffer. Details of the measuring method will be described later.

また、本発明の医療デバイスが例えば生体内に挿入して用いられる医療デバイスである場合、医療デバイスの表面が優れた易滑性を有することが好ましい。易滑性を表す指標としては、本明細書の実施例に示した方法で測定される摩擦係数が小さい方が好ましい。摩擦係数は、0.7以下が好ましく、0.5以下がより好ましく、0.3以下が特に好ましい。また、摩擦が極端に小さいと脱着用時の取扱が難しくなる傾向があるので、摩擦係数は0.001以上が好ましく、0.002以上がより好ましい。 Further, when the medical device of the present invention is, for example, a medical device that is inserted into a living body and used, it is preferable that the surface of the medical device has excellent slipperiness. As the index showing the slipperiness, it is preferable that the friction coefficient measured by the method shown in the examples of the present specification is small. The coefficient of friction is preferably 0.7 or less, more preferably 0.5 or less, and particularly preferably 0.3 or less. Further, when the friction is extremely small, it tends to be difficult to handle when putting on and taking off, so the friction coefficient is preferably 0.001 or more, and more preferably 0.002 or more.

本発明の医療デバイスの引張弾性率は、医療デバイスの種類に応じて適宜選択されるべきものであるが、眼用レンズなどの軟質医療デバイスの場合は、引張弾性率は10MPa以下が好ましく、5MPa以下が好ましく、3MPa以下がより好ましく、2MPa以下がさらに好ましく、1MPa以下がよりいっそう好ましく、0.6MPa以下が最も好ましい。また、引張弾性率は、0.01MPa以上が好ましく、0.1MPa以上がより好ましく、0.2MPa以上がさらに好ましく、0.25MPa以上が最も好ましい。眼用レンズなどの軟質医療デバイスの場合は、引張弾性率が小さすぎると、軟らかすぎてハンドリングが難しくなる傾向がある。引張弾性率が大きすぎると、硬すぎて装用感および装着感が悪くなる傾向がある。 The tensile elastic modulus of the medical device of the present invention should be appropriately selected according to the type of the medical device, but in the case of a soft medical device such as an ophthalmic lens, the tensile elastic modulus is preferably 10 MPa or less, and 5 MPa. The following is preferred, 3 MPa or less is more preferred, 2 MPa or less is even more preferred, 1 MPa or less is even more preferred, and 0.6 MPa or less is most preferred. The tensile modulus is preferably 0.01 MPa or higher, more preferably 0.1 MPa or higher, even more preferably 0.2 MPa or higher, and most preferably 0.25 MPa or higher. In the case of a soft medical device such as an ophthalmic lens, if the tensile modulus is too small, it tends to be too soft and difficult to handle. If the tensile modulus is too large, it tends to be too hard, resulting in poor wearing and wearing feeling.

本発明の医療デバイスの親水性ポリマー層形成前後の引張弾性率変化率は、15%以下が好ましく、14%以下がより好ましく、13%以下が特に好ましい。引張弾性率変化率が大きすぎると、変形や使用感不良を引き起こす恐れがあり好ましくない。測定方法の詳細は後述する。 The rate of change in tensile modulus before and after the formation of the hydrophilic polymer layer of the medical device of the present invention is preferably 15% or less, more preferably 14% or less, and particularly preferably 13% or less. If the rate of change in tensile modulus is too large, it may cause deformation or poor feeling in use, which is not preferable. Details of the measuring method will be described later.

本発明の医療デバイスの防汚性は、ムチン付着、脂質(パルミチン酸メチル)付着により、評価することができる。これらの評価による付着量が少ないものほど、使用感に優れるとともに、細菌繁殖リスクが低減されるために好ましい。ムチン付着量は10μg/cm以下が好ましく、8μg/cm以下がより好ましく、6μg/cm以下が特に好ましい。測定方法の詳細は後述する。The antifouling property of the medical device of the present invention can be evaluated by the adhesion of mucin and the adhesion of lipid (methyl palmitate). The smaller the adhered amount according to these evaluations, the more excellent the feeling in use and the lower the risk of bacterial reproduction, which is preferable. Mucin adhesion amount is preferably 10 [mu] g / cm 2 or less, more preferably 8 [mu] g / cm 2 or less, particularly preferably 6 [mu] g / cm 2 or less. Details of the measuring method will be described later.

次に、本発明の医療デバイスの製造方法について説明する。 Next, a method for manufacturing the medical device of the present invention will be described.

本発明の医療デバイスの製造方法は、基材を、2.0以上6.0以下の初期pHを有する溶液中に配置して、前記溶液を加熱する工程を含み、前記溶液が、前記親水性ポリマーと、酸を含むものである。 The method for producing a medical device of the present invention includes a step of placing a substrate in a solution having an initial pH of 2.0 or more and 6.0 or less and heating the solution, wherein the solution has the hydrophilic property. It contains a polymer and an acid.

ここで、本発明の発明者らは、基材を、親水性ポリマーと、酸(好ましくは有機酸)を含有する、初期pH2.0以上6.0以下の溶液中に配置した状態で加熱するという極めて簡便な方法によって、医療デバイスに優れた水濡れ性や易滑性等を付与しうることを見出した。この方法によれば、従来知られている特別な方法、たとえば酸性ポリマーと塩基性ポリマーを併用した静電吸着作用を利用した方法、などによらずとも、酸性基を含む親水性ポリマー層を有した基材を得ることができ、製造工程の短縮化という観点から、工業的に非常に重要な意味を持つ。 Here, the inventors of the present invention heat the substrate in a state where the substrate is placed in a solution containing the hydrophilic polymer and an acid (preferably an organic acid) and having an initial pH of 2.0 or more and 6.0 or less. It has been found that such a very simple method can impart excellent water wettability and slipperiness to a medical device. According to this method, a hydrophilic polymer layer containing an acidic group is provided regardless of a conventionally known special method, for example, a method utilizing an electrostatic adsorption action in which an acidic polymer and a basic polymer are used in combination. From the viewpoint of shortening the manufacturing process, it is very important industrially.

親水性ポリマーは、2,000〜1,500,000の分子量を有することが好ましい。十分な水濡れ性や易滑性を示すことから、分子量は、好ましくは、50,000以上であり、より好ましくは、250,000以上であり、さらに好ましくは500,000以上である。また、分子量は、1,200,000以下が好ましく、1,000,000以下がより好ましく、900,000以下がさらに好ましい。ここで、上記分子量としては、ゲル浸透クロマトグラフィー法(水系溶媒)で測定されるポリエチレングリコール換算の質量平均分子量を用いる。 The hydrophilic polymer preferably has a molecular weight of 2,000 to 1,500,000. The molecular weight is preferably 50,000 or more, more preferably 250,000 or more, and further preferably 500,000 or more, since it exhibits sufficient water wettability and slipperiness. The molecular weight is preferably 1,200,000 or less, more preferably 1,000,000 or less, and further preferably 900,000 or less. Here, as the molecular weight, a polyethylene glycol-equivalent mass average molecular weight measured by a gel permeation chromatography method (aqueous solvent) is used.

また、製造時の親水性ポリマーの溶液中の濃度については、これを高くすると、一般に得られる親水性ポリマー層の厚さは増す。しかし、親水性ポリマーの濃度が高すぎる場合、粘度増大により製造時の取り扱い難さが増す可能性があるため、親水性ポリマーの溶液中の濃度については、0.0001〜30質量%が好ましい。親水性ポリマーの濃度は、より好ましくは、0.001質量%以上であり、さらに好ましくは、0.005質量%以上である。また、親水性ポリマーの濃度は、より好ましくは、20質量%以下であり、さらに好ましくは、15質量%以下である。 Further, regarding the concentration of the hydrophilic polymer in the solution at the time of production, if the concentration is increased, the thickness of the hydrophilic polymer layer generally obtained increases. However, if the concentration of the hydrophilic polymer is too high, it may be difficult to handle during production due to an increase in viscosity. Therefore, the concentration of the hydrophilic polymer in the solution is preferably 0.0001 to 30% by mass. The concentration of the hydrophilic polymer is more preferably 0.001% by mass or more, and further preferably 0.005% by mass or more. The concentration of the hydrophilic polymer is more preferably 20% by mass or less, further preferably 15% by mass or less.

上記工程において、親水性ポリマーを含有する溶液の初期pHの範囲としては、溶液に濁りが生じず、透明性が良好な医療デバイスが得られることから、2.0〜6.0の範囲内であることが好ましい。初期pHは、2.1以上がより好ましく、2.2以上がさらに好ましく、2.4以上がさらにより好ましく、2.5以上が特に好ましい。また、初期pHは、5.0以下がより好ましく、4.0以下がさらに好ましく、3.5未満がさらにより好ましい。 In the above step, the initial pH range of the solution containing the hydrophilic polymer is within the range of 2.0 to 6.0 because the solution does not become turbid and a medical device having good transparency can be obtained. It is preferable to have. The initial pH is more preferably 2.1 or higher, even more preferably 2.2 or higher, even more preferably 2.4 or higher, and particularly preferably 2.5 or higher. The initial pH is more preferably 5.0 or less, further preferably 4.0 or less, and further preferably less than 3.5.

初期pHが2.0以上であると、溶液の濁りが生じる場合がより少なくなる。溶液に濁りが生じないと、医療デバイスの表面の水濡れ性および易滑性が高い傾向があるため好ましい。初期pHが6.0以下である場合、得られる親水性ポリマー層は2層以上または2相以上に分離して存在する傾向が見られやすく、医療デバイスの表面の水濡れ性および易滑性が低下することもないため、好ましい。 When the initial pH is 2.0 or more, the solution becomes less turbid. When the solution does not become turbid, the surface of the medical device tends to have high wettability and slipperiness, which is preferable. When the initial pH is 6.0 or less, the obtained hydrophilic polymer layer tends to be present in two or more layers or in two or more phases separately, and the wettability and the slipperiness of the surface of the medical device may be reduced. It is preferable because it does not decrease.

優れた水濡れ性と易滑性を基材に付与可能であることから、基材がケイ素原子を含む材料である場合、親水性ポリマーを含有する溶液の初期pHの範囲としては、3.4以下が好ましく、3.3以下がより好ましく、3.0以下がさらに好ましい。基材がケイ素原子を含まない材料である場合、初期pHの範囲として4.0以下が好ましく、3.5以下がより好ましく、3.3以下がさらに好ましい。 Since excellent water-wettability and slipperiness can be imparted to the base material, when the base material is a material containing silicon atoms, the initial pH range of the solution containing the hydrophilic polymer is 3.4. The following is preferable, 3.3 or less is more preferable, and 3.0 or less is further preferable. When the base material is a material containing no silicon atom, the initial pH range is preferably 4.0 or less, more preferably 3.5 or less, and further preferably 3.3 or less.

上記溶液のpHは、pHメーター(例えばpHメーター Eutech pH2700(Eutech Instruments))を用いて測定することができる。ここで、親水性ポリマーを含有する溶液の初期pHとは、溶液に親水性ポリマーを全て添加した後、室温(23〜25℃)にて2時間回転子を用い撹拌し、溶液を均一とした後であって、かつ、基材を溶液中に配置して加熱する前に測定したpHの値を指す。なお、本発明において、pHの値の小数点以下第2位は四捨五入する。 The pH of the above solution can be measured using a pH meter (for example, pH meter Eutech pH2700 (Eutech Instruments)). Here, the initial pH of the solution containing the hydrophilic polymer means that after all the hydrophilic polymer was added to the solution, the solution was homogenized by stirring for 2 hours at room temperature (23 to 25° C.) using a rotor. Refers to the pH value measured afterwards and before placing the substrate in solution and heating. In the present invention, the second decimal place of the pH value is rounded off.

なお、溶液のpHは、加熱操作を行った際に変化し得る。加熱操作を行った後の溶液のpHも、2.0〜6.0であることが好ましい。加熱後のpHは、2.1以上がより好ましく、2.2以上がより好ましく、2.3以上が特に好ましい。また加熱後のpHは、5.9以下がより好ましく、5.5以下がより好ましく、5.0以下がさらに好ましく、4.8以下が特に好ましい。加熱操作を行った後の溶液のpHが、上記範囲である場合、加熱工程の間、溶液のpHが適切な条件に保たれ、得られる医療デバイスの物性が好適なものとなる。なお、本発明における加熱操作を行って医療デバイスに用いられる基材の表面を改質した後で、中和処理を行ったり、水を加えたりしてpHを調整することもできるが、ここでいう加熱操作を行った後の溶液のpHとは、かかるpH調整処理を行う前のpHである。 The pH of the solution may change when a heating operation is performed. The pH of the solution after the heating operation is also preferably 2.0 to 6.0. The pH after heating is more preferably 2.1 or more, more preferably 2.2 or more, and particularly preferably 2.3 or more. Further, the pH after heating is more preferably 5.9 or less, more preferably 5.5 or less, further preferably 5.0 or less, and particularly preferably 4.8 or less. When the pH of the solution after performing the heating operation is within the above range, the pH of the solution is maintained in an appropriate condition during the heating step, and the obtained medical device has suitable physical properties. The pH can be adjusted by performing a heating operation in the present invention to modify the surface of the base material used for the medical device, and then performing a neutralization treatment or adding water. The pH of the solution after the so-called heating operation is the pH before the pH adjustment treatment.

上記親水性ポリマーを含む溶液の溶媒としては、水が好ましく挙げられる。溶液のpHは、溶液に酸を添加することによって調整することができる。このような酸としては、有機酸および無機酸が使用できる。有機酸の好適な具体例としては、酢酸、クエン酸、ギ酸、アスコルビン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、プロピオン酸、酪酸、グリコール酸、乳酸、リンゴ酸などを挙げることができる。無機酸の好適な具体例としては、硝酸、硫酸、リン酸、塩酸などを挙げることができる。これらの中で、より優れた親水性表面が得られやすいこと、生体に対する安全性が高いこと、取り扱いが容易であること、などの観点では有機酸が好ましく、炭素数1〜20の有機酸がより好ましく、炭素数2〜10の有機酸がさらに好ましい。有機酸の中では酢酸、クエン酸、ギ酸、アスコルビン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、プロピオン酸、酪酸、グリコール酸、乳酸、リンゴ酸が好ましく、ギ酸、リンゴ酸、クエン酸、アスコルビン酸がより好ましく、クエン酸、アスコルビン酸がさらに好ましい。無機酸の中では、揮発性がなく無臭で取り扱いが容易であることなどの観点では、硫酸が好ましい。 As a solvent for the solution containing the hydrophilic polymer, water is preferably cited. The pH of the solution can be adjusted by adding acid to the solution. As such an acid, an organic acid and an inorganic acid can be used. Preferable specific examples of the organic acid include acetic acid, citric acid, formic acid, ascorbic acid, trifluoromethanesulfonic acid, methanesulfonic acid, propionic acid, butyric acid, glycolic acid, lactic acid, malic acid and the like. Specific preferred examples of the inorganic acid include nitric acid, sulfuric acid, phosphoric acid, hydrochloric acid and the like. Among these, organic acids are preferable from the viewpoints that a more excellent hydrophilic surface is easily obtained, safety to living organisms is high, and handling is easy. Organic acids having 1 to 20 carbon atoms are preferable. More preferably, an organic acid having 2 to 10 carbon atoms is further preferable. Among the organic acids, acetic acid, citric acid, formic acid, ascorbic acid, trifluoromethanesulfonic acid, methanesulfonic acid, propionic acid, butyric acid, glycolic acid, lactic acid and malic acid are preferable, and formic acid, malic acid, citric acid and ascorbic acid are preferable. More preferably, citric acid and ascorbic acid are more preferable. Among the inorganic acids, sulfuric acid is preferred from the viewpoints that it is volatile, odorless, and easy to handle.

また、pHの微調整を容易にすることや基材が疎水性成分を含む材料である場合に基材が白濁化しにくくなることから、溶液に緩衝剤を添加することも好ましい。 It is also preferable to add a buffering agent to the solution because it facilitates fine adjustment of pH and makes the base material less likely to become cloudy when the base material is a material containing a hydrophobic component.

緩衝剤としては、生理学的に適合性のある公知の緩衝剤を使用することができる。例としては以下のとおりである。ホウ酸、ホウ酸塩類(例:ホウ酸ナトリウム)、クエン酸、クエン酸塩類(例:クエン酸カリウム)、重炭酸塩(例:重炭酸ナトリウム)、リン酸緩衝液(例:NaHPO、NaHPO、およびKHPO)、TRIS(トリス(ヒドロキシメチル)アミノメタン)、2−ビス(2−ヒドロキシエチル)アミノ−2−(ヒドロキシメチル)−1,3−プロパンジオール、ビス−アミノポリオール、トリエタノールアミン、ACES(N−(2−アセトアミド)−2−アミノエタンスルホン酸)、BES(N,N−ビス(2−ヒドロキシエチル)−2−アミノエタンスルホン酸)、HEPES(4−(2−ヒドロキシエチル)−1−ピペラジンエタンスルホン酸)、MES(2−(N−モルホリノ)エタンスルホン酸)、MOPS(3−[N−モルホリノ]−プロパンスルホン酸)、PIPES(ピペラジン−N,N’−ビス(2−エタンスルホン酸)、TES(N−[トリス(ヒドロキシメチル)メチル]−2−アミノエタンスルホン酸)、およびそれらの塩。As the buffer, a known physiologically compatible buffer can be used. For example: Boric acid, borates (eg sodium borate), citric acid, citrates (eg potassium citrate), bicarbonate (eg sodium bicarbonate), phosphate buffer (eg Na 2 HPO 4 ). , NaH 2 PO 4 and KH 2 PO 4 ), TRIS (tris(hydroxymethyl)aminomethane), 2-bis(2-hydroxyethyl)amino-2-(hydroxymethyl)-1,3-propanediol, bis -Amino polyol, triethanolamine, ACES (N-(2-acetamido)-2-aminoethanesulfonic acid), BES (N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid), HEPES( 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), MES (2-(N-morpholino)ethanesulfonic acid), MOPS (3-[N-morpholino]-propanesulfonic acid), PIPES (piperazine- N,N'-bis(2-ethanesulfonic acid), TES (N-[tris(hydroxymethyl)methyl]-2-aminoethanesulfonic acid), and salts thereof.

緩衝剤の量としては、所望のpHを達成する上で有効であるために必要な分が用いられる。通常は、溶液中において0.001質量%〜2質量%、好ましくは、0.01質量%〜1質量%、より好ましくは、0.05質量%〜0.30質量%存在することが好ましい。上記上限および下限のいずれを組み合わせた範囲であってもよい。 The amount of buffer used is that required to be effective in achieving the desired pH. Usually, 0.001% by mass to 2% by mass, preferably 0.01% by mass to 1% by mass, more preferably 0.05% by mass to 0.30% by mass is preferably present in the solution. The range may be a combination of any of the above upper and lower limits.

上記加熱の方法としては、高圧蒸気滅菌法、電磁波(γ線、マイクロ波など)照射、乾熱法、火炎法などが挙げられる。水濡れ性、易滑性、および製造工程短縮の観点から、高圧蒸気滅菌法が最も好ましい。装置としては、オートクレーブを用いることが好ましい。 Examples of the heating method include high-pressure steam sterilization method, electromagnetic wave (γ-ray, microwave, etc.) irradiation, dry heat method, flame method and the like. The high-pressure steam sterilization method is most preferable from the viewpoint of water wettability, slipperiness, and shortening of the manufacturing process. As the device, it is preferable to use an autoclave.

加熱温度は、良好な水濡れ性および易滑性を示す医療デバイス表面が得られ、かつ、医療デバイス自体の強度に影響が少ない観点から、60℃〜200℃が好ましい。加熱温度は、80℃以上がより好ましく、90℃以上がさらに好ましく、101℃以上がさらに好ましく、110℃以上が特に好ましい。また加熱温度は、180℃以下がより好ましく、170℃以下がさらに好ましく、150℃以下が特に好ましい。 The heating temperature is preferably 60° C. to 200° C. from the viewpoint that a medical device surface exhibiting good water wettability and slipperiness can be obtained and the strength of the medical device itself is little affected. The heating temperature is more preferably 80°C or higher, further preferably 90°C or higher, further preferably 101°C or higher, particularly preferably 110°C or higher. The heating temperature is more preferably 180°C or lower, further preferably 170°C or lower, and particularly preferably 150°C or lower.

加熱時間は、短すぎると良好な水濡れ性および易滑性を示す医療デバイス表面が得られにくく、長過ぎると医療デバイス自体の強度に影響を及ぼすおそれがあることから5分〜600分が好ましい。加熱時間は、10分以上がより好ましく、15分以上がより好ましい。また、加熱時間は、400分以下がより好ましく、300分以下がより好ましい。 When the heating time is too short, it is difficult to obtain a medical device surface showing good wettability and slipperiness, and when it is too long, the strength of the medical device itself may be affected, so that the heating time is preferably 5 minutes to 600 minutes. .. The heating time is more preferably 10 minutes or longer and more preferably 15 minutes or longer. Further, the heating time is more preferably 400 minutes or less, and more preferably 300 minutes or less.

上記の加熱処理後、得られた医療デバイスにさらに他の処理を行ってもよい。他の処理としては、親水性ポリマーを含んだ溶液中において再び同様の加熱処理を行う方法、溶液を親水性ポリマーを含まない溶液に入れ替えて同様の加熱処理を行う方法、放射線照射を行う方法、反対の荷電を有するポリマー材料を1層ずつ交互にコーティングするLbL処理(Layer by Layer処理)を行う方法、金属イオンによる架橋処理を行う方法、化学架橋処理を行う方法など処理が挙げられる。 After the above heat treatment, the obtained medical device may be further subjected to other treatment. As other treatment, a method of performing the same heat treatment again in a solution containing a hydrophilic polymer, a method of performing a similar heat treatment by replacing the solution with a solution containing no hydrophilic polymer, a method of performing radiation irradiation, Examples thereof include a method of performing LbL treatment (Layer by Layer treatment) in which polymer materials having opposite charges are alternately coated one by one, a method of performing a crosslinking treatment with a metal ion, and a method of performing a chemical crosslinking treatment.

また、上記の加熱処理前に、基材に前処理を行ってもよい。前処理としては、例えばポリアクリル酸などの酸や水酸化ナトリウムなどのアルカリによる加水分解処理などが挙げられる。 Moreover, you may perform a pretreatment to a base material before the said heat processing. Examples of the pretreatment include hydrolysis treatment with an acid such as polyacrylic acid and an alkali such as sodium hydroxide.

ただし、簡便な方法により基材表面の親水化を可能とする本発明の思想に照らし、製造工程が複雑になり過ぎることのない範囲での処理の実施が好ましい。 However, in light of the idea of the present invention that makes the surface of the substrate hydrophilic by a simple method, it is preferable to carry out the treatment within a range that does not make the manufacturing process too complicated.

上記の放射線照射に用いる放射線としては、各種のイオン線、電子線、陽電子線、エックス線、γ線、中性子線が好ましく、より好ましくは電子線およびγ線であり、最も好ましくはγ線である。 As the radiation used for the above-mentioned radiation irradiation, various ion rays, electron rays, positron rays, X-rays, γ rays and neutron rays are preferable, more preferable are electron rays and γ rays, and most preferable are γ rays.

上記のLbL処理としては、例えば国際公開第2013/024800号公報に記載されているような、酸性ポリマーと塩基性ポリマーを使用した処理を用いると良い。 As the above LbL treatment, it is preferable to use a treatment using an acidic polymer and a basic polymer as described in, for example, WO 2013/024800.

上記の金属イオンによる架橋処理に用いる金属イオンとしては、各種の金属イオンが好ましく、より好ましくは1価および2価の金属イオンであり、最も好ましくは2価の金属イオンである。また、キレート錯体を用いても良い。 As the metal ion used for the crosslinking treatment with the above metal ion, various metal ions are preferable, more preferably monovalent and divalent metal ions, and most preferably divalent metal ion. Alternatively, a chelate complex may be used.

上記の化学架橋処理としては、例えば特表2014−533381号公報に記載されているようなエポキシ基とカルボキシル基との間の反応や公知の水酸基を有する酸性の親水性ポリマーとの間で形成される架橋処理を用いると良い。 As the above-mentioned chemical crosslinking treatment, for example, a reaction between an epoxy group and a carboxyl group as described in JP-A-2014-533381 or a known acidic hydrophilic polymer having a hydroxyl group is formed. It is preferable to use a crosslinking treatment.

上記の溶液を親水性ポリマーを含まない溶液に入れ替えて、同様の加熱処理を行う方法において、親水性ポリマーを含まない溶液としては、特に限定されないが、緩衝剤溶液が好ましい。緩衝剤としては、前記のものを用いることができる。 In the method in which the above solution is replaced with a solution containing no hydrophilic polymer and the same heat treatment is carried out, the solution containing no hydrophilic polymer is not particularly limited, but a buffer solution is preferable. As the buffer, the above-mentioned one can be used.

緩衝剤溶液のpHは、生理学的に許容できる範囲である6.3〜7.8が好ましい。緩衝剤溶液のpHは、好ましくは6.5以上、さらに好ましくは6.8以上である。また、緩衝剤溶液のpHは、7.6以下が好ましく、さらに好ましくは7.4以下である。 The pH of the buffer solution is preferably in the physiologically acceptable range of 6.3 to 7.8. The pH of the buffer solution is preferably 6.5 or higher, more preferably 6.8 or higher. Further, the pH of the buffer solution is preferably 7.6 or less, more preferably 7.4 or less.

本発明の製造方法においては、前記加熱する工程の終了後に得られる医療デバイスと、前記加熱する工程の開始前における基材の含水率との変化量が、10パーセンテージポイント以下であることが好ましい。ここで、含水率の変化量(パーセンテージポイント)とは、得られた医療デバイスの含水率(質量%)と、その原料となる基材の含水率(質量%)との差のことである。 In the manufacturing method of the present invention, it is preferable that the amount of change between the medical device obtained after the end of the heating step and the water content of the base material before the start of the heating step is 10 percentage points or less. Here, the amount of change in water content (percentage points) is the difference between the water content (mass %) of the obtained medical device and the water content (mass %) of the base material as the raw material.

親水性ポリマー層形成前後の医療デバイスの含水率変化量は、例えば眼用レンズといった眼用デバイスに用いる場合、含水率が向上したことによる屈折率の歪みから引き起こされる視界不良や変形を防止する観点から、10パーセンテージポイント以下が好ましく、8パーセンテージポイント以下がより好ましく、6パーセンテージポイント以下が特に好ましい。測定方法の詳細は後述する。 The amount of change in the water content of the medical device before and after the formation of the hydrophilic polymer layer is, for example, when used in an ophthalmic device such as an ophthalmic lens, from the viewpoint of preventing poor visibility and deformation caused by the distortion of the refractive index due to the improved water content. Therefore, 10 percentage points or less are preferable, 8 percentage points or less are more preferable, and 6 percentage points or less are particularly preferable. Details of the measuring method will be described later.

また、親水性ポリマー層形成前後の医療デバイスのサイズ変化率は、例えば眼用レンズといった眼用デバイスに用いる場合、変形に伴う角膜損傷を防止する観点から、5%以下が好ましく、4以下がより好ましく、3%以下が特に好ましい。測定方法の詳細は後述する。 In addition, the rate of change in size of the medical device before and after the formation of the hydrophilic polymer layer is preferably 5% or less, and more preferably 4 or less when used in an ophthalmic device such as an ophthalmic lens from the viewpoint of preventing corneal damage due to deformation. It is preferably 3% or less, and particularly preferably 3% or less. Details of the measuring method will be described later.

以下、実施例により本発明を具体的に説明するが、本発明はこれによって限定されるものではない。まず、分析方法および評価方法を示す。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto. First, an analysis method and an evaluation method will be shown.

<水濡れ性(液膜保持時間)>
医療デバイスを保存容器中において、室温で24時間以上静置した。比較例記載の市販コンタクトレンズのみの評価については、室温でビーカー中のリン酸緩衝液50mL中で軽く洗浄後、新たなリン酸緩衝液50mL中に24時間以上静置した。
<Water wettability (liquid film retention time)>
The medical device was left to stand in a storage container at room temperature for 24 hours or more. For the evaluation of only the commercially available contact lens described in the comparative example, the sample was lightly washed in 50 mL of a phosphate buffer solution in a beaker at room temperature, and then left still in 50 mL of a fresh phosphate buffer solution for 24 hours or more.

医療デバイスを静置浸漬させていたリン酸緩衝液から引き上げ、空中に保持した際の表面の液膜が保持される時間を目視観察し、N=3の平均値を下記基準で判定した。
A:表面の液膜が20秒以上保持される。
B:表面の液膜が15秒以上20秒未満で切れる。
C:表面の液膜が5秒以上15秒未満で切れる。
D:表面の液膜が1秒以上5秒未満で切れる。
E:表面の液膜が瞬時に切れる(1秒未満)。
The medical device was pulled up from the phosphate buffer solution that had been immersed in the static state, and the time for which the liquid film on the surface was retained when it was retained in the air was visually observed, and the average value of N=3 was determined according to the following criteria.
A: The liquid film on the surface is retained for 20 seconds or more.
B: The liquid film on the surface breaks in 15 seconds or more and less than 20 seconds.
C: The liquid film on the surface breaks in 5 seconds or more and less than 15 seconds.
D: The liquid film on the surface breaks in 1 second or more and less than 5 seconds.
E: The liquid film on the surface is cut off instantly (less than 1 second).

<超音波洗浄にかけた40分後の水濡れ性(液膜保持時間)>
医療デバイスを保存容器中において、室温で24時間以上静置した。ポリメチルペンテン製ビーカー(容量100mL)の中に新たなリン酸緩衝液50mLを入れ、その中に医療デバイスを浸漬させた。超音波洗浄機(型式VS−25、(株)ヴェルヴォクリーア製、消費電力40W)の槽に水を約3cmの高さになるまで入れ、そこに先ほどのリン酸緩衝液と医療デバイスが入ったポリメチルペンテン製ビーカーを置いて超音波を5秒間かけた。その後、速やかに医療デバイスを前記保存容器中に戻して、室温で40分間静置した。その後、医療デバイスをリン酸緩衝液から引き上げ、空中に保持した際の表面の液膜が保持される時間を目視観察し、N=3(ここでNは試験サンプル数を意味する。)の平均値を下記基準で判定した。
A:表面の液膜が20秒以上保持される。
B:表面の液膜が15秒以上20秒未満で切れる。
C:表面の液膜が5秒以上15秒未満で切れる。
D:表面の液膜が1秒以上5秒未満で切れる。
E:表面の液膜が瞬時に切れる(1秒未満)。
<Water wettability 40 minutes after ultrasonic cleaning (liquid film retention time)>
The medical device was left to stand in a storage container at room temperature for 24 hours or more. A new phosphate buffer solution (50 mL) was placed in a polymethylpentene beaker (volume: 100 mL), and the medical device was immersed therein. Water is put into a tank of an ultrasonic cleaner (model VS-25, manufactured by Vervoclear Co., Ltd., power consumption 40W) until the height is about 3 cm, and the phosphate buffer solution and the medical device are put therein. A beaker made of polymethylpentene was placed and ultrasonic waves were applied for 5 seconds. Then, the medical device was immediately returned to the storage container and left standing at room temperature for 40 minutes. After that, when the medical device was pulled up from the phosphate buffer and was held in the air, the time for which the liquid film on the surface was held was visually observed, and the average of N=3 (where N means the number of test samples). The value was judged according to the following criteria.
A: The liquid film on the surface is retained for 20 seconds or more.
B: The liquid film on the surface breaks in 15 seconds or more and less than 20 seconds.
C: The liquid film on the surface breaks in 5 seconds or more and less than 15 seconds.
D: The liquid film on the surface breaks in 1 second or more and less than 5 seconds.
E: The liquid film on the surface is cut off instantly (less than 1 second).

<易滑性>
医療デバイスを保存容器中において、室温で24時間以上静置した。比較例記載の市販コンタクトレンズのみの評価については、室温でビーカー中のリン酸緩衝液50mL中で軽く洗浄後、新たなリン酸緩衝液50mL中に24時間以上静置した。
<Sliding property>
The medical device was left to stand in a storage container at room temperature for 24 hours or more. For the evaluation of only the commercially available contact lens described in the comparative example, the sample was lightly washed in 50 mL of phosphate buffer solution in a beaker at room temperature, and then left still in 50 mL of fresh phosphate buffer solution for 24 hours or more.

医療デバイスを静置浸漬させていたリン酸緩衝液から引き上げ、人指で5回擦った時の感応評価で行った(N=1)。
A:非常に優れた易滑性がある(医療デバイス表面を流れるように指が滑り、抵抗を全く感じない)。
B:AとCの中間程度の易滑性がある。
C:中程度の易滑性がある(医療デバイス表面を指が滑り、抵抗をほとんど感じない)。
D:易滑性がほとんど無い(CとEの中間程度)。
E:易滑性が無い(医療デバイス表面を指が容易に滑らず、大きな抵抗を感じる)。
The medical device was taken out from the phosphate buffer solution that had been immersed in the static state, and the sensitivity was evaluated when the medical device was rubbed 5 times with a human finger (N=1).
A: It has very good slipperiness (a finger slips like flowing on the surface of a medical device and does not feel any resistance).
B: It has a slipperiness that is intermediate between A and C.
C: Medium slipperiness (finger slides on the surface of the medical device and hardly feels resistance).
D: Almost no slipperiness (middle level between C and E).
E: No slipperiness (finger does not easily slide on the surface of the medical device and feels great resistance).

<基材および医療デバイスの含水率>
基材をリン酸緩衝液に浸漬して室温で24時間以上静置した。基材をリン酸緩衝液から引き上げ、表面水分をワイピングクロス(日本製紙クレシア製“キムワイプ”(登録商標))で拭き取った後、基材の質量(Ww)を測定した。その後、真空乾燥器で基材を40℃、2時間乾燥した後、質量(Wd)を測定した。これらの質量から、下式(1)により基材の含水率を算出した。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。N=3の平均値を含水率とした。親水性ポリマー層を有した基材、すなわち医療デバイスについても同様に含水率を算出した。
基材の含水率(%)=100×(Ww−Wd)/Ww 式(1)。
<Water content of base material and medical device>
The substrate was immersed in a phosphate buffer solution and allowed to stand at room temperature for 24 hours or longer. After pulling up the substrate from the phosphate buffer and wiping the surface moisture with a wiping cloth (“Kimwipe” (registered trademark) made by Nippon Paper Crecia), the mass (Ww) of the substrate was measured. Then, the substrate was dried with a vacuum dryer at 40° C. for 2 hours, and then the mass (Wd) was measured. From these masses, the water content of the substrate was calculated by the following formula (1). When the obtained value was less than 1%, it was judged to be below the measurement limit, and was described as "less than 1%". The average value of N=3 was taken as the water content. The water content of the substrate having the hydrophilic polymer layer, that is, the medical device was calculated in the same manner.
Water content (%) of base material=100×(Ww−Wd)/Ww Formula (1).

<親水性ポリマー層形成前後の基材の含水率変化量>
上記基材および医療デバイスの含水率の測定結果から、下式(2)により、含水率の変化量を算出した。親水性ポリマー層形成前後の基材の含水率変化量(パーセンテージポイント)=医療デバイスの含水率(質量%)−基材の含水率(質量%) 式(2)。
<Change in water content of base material before and after formation of hydrophilic polymer layer>
From the measurement results of the water content of the base material and the medical device, the change amount of the water content was calculated by the following formula (2). Amount of change in water content of the base material before and after formation of the hydrophilic polymer layer (percentage point)=water content of medical device (mass %)-water content of base material (mass %) Formula (2).

<接触角>
サンプルとして、コンタクトレンズ形状のサンプルから切り出した5mm×10mm×0.1mm程度のサイズの短冊状試験片を使用し、リン酸緩衝液に対する前進時の動的接触角を濡れ性試験機WET−6200(株式会社レスカ製)を用いて測定した。浸漬速度は0.1mm/sec、浸漬深さは7mmとした。
<Contact angle>
As a sample, a strip-shaped test piece having a size of about 5 mm×10 mm×0.1 mm cut out from a contact lens-shaped sample was used, and a dynamic contact angle when advancing to a phosphate buffer was measured by a wettability tester WET-6200. (Manufactured by Resca Co., Ltd.). The immersion speed was 0.1 mm/sec and the immersion depth was 7 mm.

<摩擦係数>
以下の条件でリン酸緩衝液(市販コンタクトレンズ測定の場合はパッケージ中の保存液)で濡れた状態の医療デバイス表面の摩擦係数をN=5で測定し、平均値を摩擦係数とした。
装置:摩擦感テスターKES−SE(カトーテック株式会社製)
摩擦SENS:H
測定SPEED:2×1mm/sec
摩擦荷重:44g。
<Friction coefficient>
Under the following conditions, the friction coefficient of the surface of the medical device wet with the phosphate buffer solution (preservation solution in the package in the case of measuring a commercial contact lens) was measured at N=5, and the average value was taken as the friction coefficient.
Device: Friction tester KES-SE (manufactured by Kato Tech Co., Ltd.)
Friction SENS: H
Measurement SPEED: 2×1 mm/sec
Friction load: 44 g.

<脂質付着量>
20ccのスクリュー管にパルミチン酸メチル0.03g、純水10g、およびコンタクトレンズ形状のサンプル1枚を入れた。37℃、165rpmの条件下3時間スクリュー管を振とうさせた。振とう後、スクリュー管内のサンプルを40℃の水道水と家庭用液体洗剤(ライオン製“ママレモン(登録商標)”)を用いて擦り洗いした。洗浄後のサンプルをリン酸緩衝液の入ったスクリュー管内に入れ、4℃の冷蔵庫内で1時間保管した。その後、サンプルを目視観察し、白濁した部分があればパルミチン酸メチルが付着していると判定して、サンプルの表面全体に対するパルミチン酸メチルが付着した部分の面積を観察した。
<Amount of lipid attached>
A 20 cc screw tube was charged with 0.03 g of methyl palmitate, 10 g of pure water, and one contact lens-shaped sample. The screw tube was shaken for 3 hours at 37° C. and 165 rpm. After shaking, the sample in the screw tube was scrubbed with tap water at 40° C. and a household liquid detergent (“Mama Lemon (registered trademark)” manufactured by Lion). The washed sample was placed in a screw tube containing a phosphate buffer and stored in a refrigerator at 4°C for 1 hour. Then, the sample was visually observed, and if there was a cloudy portion, it was determined that methyl palmitate was attached, and the area of the portion where methyl palmitate was attached to the entire surface of the sample was observed.

<ムチン付着量>
コンタクトレンズ形状のサンプルから、規定の打抜型を用いて幅(最小部分)5mm、長さ14mmの試験片を切り出した。ムチンとしてCALBIOCHEM社の Mucin, Bovine Submaxillary Gland(カタログ番号499643)を使用した。該試験片を0.1%濃度のムチン水溶液に20時間37℃の条件で浸漬させた後、BCA(ビシンコニン酸)プロテインアッセイ法によってサンプルに付着したムチンの量を定量した。N=3の平均値をムチン付着量とした。
<Amount of mucin attached>
A test piece having a width (minimum portion) of 5 mm and a length of 14 mm was cut out from a contact lens-shaped sample using a specified punching die. As the mucin, Mucin, Bovine Submaxillary Ground (Catalog No. 499643) from CALBIOCHEM was used. The test piece was immersed in a 0.1% concentration mucin aqueous solution for 20 hours at 37° C., and then the amount of mucin attached to the sample was quantified by the BCA (bicinchoninic acid) protein assay method. The average value of N=3 was taken as the mucin adhesion amount.

<引張弾性率>
コンタクトレンズ形状の基材から、規定の打抜型を用いて幅(最小部分)5mm、長さ14mmの試験片を切り出した。該試験片を用い、株式会社エー・アンド・デイ社製のテンシロンRTG−1210型を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。親水性ポリマー層の形成前の基材と親水性ポリマー層の形成後の医療デバイスの両方について測定を行った。N=8で測定を行い、最大値と最小値を除いたN=6の値の平均値を引張弾性率とした。親水性ポリマー層を有した基材、すなわち医療デバイスについても同様に引張弾性率を測定した。
<Tensile modulus>
A test piece having a width (minimum portion) of 5 mm and a length of 14 mm was cut out from a contact lens-shaped substrate using a specified punching die. Using the test piece, a tensile test was carried out using Tensilon RTG-1210 manufactured by A&D Co., Ltd. The pulling speed was 100 mm/min, and the distance between grips (initial) was 5 mm. The measurements were performed on both the substrate before formation of the hydrophilic polymer layer and the medical device after formation of the hydrophilic polymer layer. The measurement was performed at N=8, and the average value of the values of N=6 excluding the maximum value and the minimum value was taken as the tensile elastic modulus. The tensile modulus was also measured for the substrate having the hydrophilic polymer layer, that is, the medical device.

<親水性ポリマー層形成前後の基材の引張弾性率変化率>
上記基材および医療デバイスの引張弾性率の測定結果から、下式(3)により算出した。N=6の平均値を親水性ポリマー層形成前後の引張弾性率変化率とした。
親水性ポリマー層形成前後の基材の引張弾性率変化率(%)=(親水性ポリマー層形成後の医療デバイスの引張弾性率−親水性ポリマー層形成前の基材の引張弾性率)/親水性ポリマー層形成前の基材の引張弾性率×100 式(3)。
<Ratio of change in tensile elastic modulus of base material before and after formation of hydrophilic polymer layer>
From the measurement results of the tensile elastic modulus of the above-mentioned base material and medical device, it was calculated by the following formula (3). The average value of N=6 was taken as the rate of change in tensile modulus before and after the formation of the hydrophilic polymer layer.
Rate of change in tensile elastic modulus of base material before and after formation of hydrophilic polymer layer (%)=(tensile elastic modulus of medical device after formation of hydrophilic polymer layer−tensile elastic modulus of base material before formation of hydrophilic polymer layer)/hydrophilicity Elastic modulus of the base material before forming the water-soluble polymer layer×100 Formula (3).

<サイズ>
コンタクトレンズ形状の基材(N=3)について、直径を測定し、平均値をサイズとした。親水性ポリマー層を有した基材、すなわち医療デバイスについても同様にサイズを測定した。
<size>
The diameter of a contact lens-shaped substrate (N=3) was measured, and the average value was used as the size. The size of the substrate having the hydrophilic polymer layer, that is, the medical device was measured in the same manner.

<親水性ポリマー層の形成前後のサイズ変化率>
上記基材および医療デバイスのサイズの測定結果から、下式(4)により算出した。N=3の平均値を親水性ポリマー層形成前後のサイズ変化率とした。
<Size change rate before and after formation of hydrophilic polymer layer>
It was calculated by the following formula (4) from the measurement results of the sizes of the base material and the medical device. The average value of N=3 was taken as the size change rate before and after the formation of the hydrophilic polymer layer.

親水性ポリマー層の形成前後のサイズ変化率(%)=(親水性ポリマー層の形成後のデバイスのサイズ−親水性ポリマー層の形成前の基材のサイズ)/親水性ポリマー層の形成前の基材のサイズ×100 式(4)。 Size change rate (%) before and after formation of hydrophilic polymer layer=(size of device after formation of hydrophilic polymer layer−size of substrate before formation of hydrophilic polymer layer)/before formation of hydrophilic polymer layer Substrate size x 100 Formula (4).

<分子量測定>
親水性ポリマーの分子量は以下に示す条件で測定した。
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC−20AD
オートサンプラ:SIL−20AHT
カラムオーブン:CTO−20A
検出器:RID−10A
カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1〜0.3質量%
サンプル注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD〜1258kD)。
<Molecular weight measurement>
The molecular weight of the hydrophilic polymer was measured under the following conditions.
Device: Shimadzu Prominence GPC system Pump: LC-20AD
Autosampler: SIL-20AHT
Column oven: CTO-20A
Detector: RID-10A
Column: Tosoh GMPWXL (inner diameter 7.8 mm×30 cm, particle diameter 13 μm)
Solvent: Water/methanol=1/1 (0.1N lithium nitrate added)
Flow rate: 0.5 mL/min Measurement time: 30 minutes Sample concentration: 0.1-0.3 mass%
Sample injection volume: 100 μL
Standard sample: polyethylene oxide standard sample (0.1 kD to 1258 kD) manufactured by Agilent.

<pH測定法>
pHメーターEutech pH2700(Eutech Instruments社製)を用いて溶液のpHを測定した。表において、親水性ポリマーを含有する溶液の初期pHは、各実施例記載の溶液に親水性ポリマーを全て添加した後、室温(23〜25℃)にて2時間回転子を用い撹拌し溶液を均一とした後に測定した。また、表において、「加熱処理後pH」は、加熱処理を1回行った後、溶液を室温(23〜25℃)まで冷却した直後に測定したpHである。
<pH measuring method>
The pH of the solution was measured using a pH meter Eutech pH2700 (manufactured by Eutech Instruments). In the table, as for the initial pH of the solution containing the hydrophilic polymer, after adding all of the hydrophilic polymer to the solution described in each Example, the solution was stirred at room temperature (23 to 25° C.) for 2 hours with a rotor to prepare the solution. It was made uniform and then measured. Further, in the table, “pH after heat treatment” is the pH measured immediately after cooling the solution to room temperature (23 to 25° C.) after performing heat treatment once.

<親水性ポリマー層の分離の判定>
親水性ポリマー層が2層以上に分離しているかどうかの判定は、透過型電子顕微鏡を用いて医療デバイスの断面を観察することで行った。
装置: 透過型電子顕微鏡条件: 加速電圧 100kV
試料調製: RuO染色を用いた超薄切片法により試料調製を行った。基材と親水性ポリマー層の判別が困難な場合、OsO染色を加えても良い。本実施例では、基材がシリコーンヒドロゲル系またはシリコーン系の場合、RuO染色を行った。
超薄切片の作製には、ウルトラミクロトームを用いた。
<Judgment of separation of hydrophilic polymer layer>
Whether or not the hydrophilic polymer layer was separated into two or more layers was determined by observing the cross section of the medical device using a transmission electron microscope.
Equipment: Transmission electron microscope Conditions: Accelerating voltage 100kV
Sample preparation: Sample preparation was performed by the ultrathin section method using RuO 4 staining. When it is difficult to distinguish between the substrate and the hydrophilic polymer layer, OsO 4 dyeing may be added. In this example, RuO 4 dyeing was performed when the substrate was a silicone hydrogel type or a silicone type.
An ultramicrotome was used for the production of ultrathin sections.

<親水性ポリマー層の元素組成分析>
親水性ポリマー層の元素組成分析は、クライオトランスファーホルダーを用いて含水状態で凍結した医療デバイスの断面を走査透過型電子顕微鏡および電子エネルギー損失分光法にて分析することによって行った。
装置: 電界放出型電子顕微鏡加速電圧: 200kV
測定温度: 約−100℃
電子エネルギー損失分光法: GATAN GIF Tridiem
画像取得: Digital Micrograph
試料調製: RuO染色を用いた超薄切片法により試料調製を行った。基材とコート層の判別が困難な場合、OsO染色を加えても良い。本実施例では、基材がシリコーンヒドロゲル系またはシリコーン系の場合、RuO染色を行った。
超薄切片の作製には、ウルトラミクロトームを用いた。
<Analysis of elemental composition of hydrophilic polymer layer>
The elemental composition analysis of the hydrophilic polymer layer was performed by analyzing a cross section of the medical device frozen in a water-containing state using a cryotransfer holder by a scanning transmission electron microscope and electron energy loss spectroscopy.
Device: Field emission electron microscope Accelerating voltage: 200 kV
Measurement temperature: -100℃
Electron Energy Loss Spectroscopy: GATAN GIF Tridiem
Image acquisition: Digital Micrograph
Sample preparation: Sample preparation was performed by the ultrathin section method using RuO 4 staining. When it is difficult to distinguish between the base material and the coat layer, OsO 4 dyeing may be added. In this example, RuO 4 dyeing was performed when the substrate was a silicone hydrogel type or a silicone type.
An ultramicrotome was used for the production of ultrathin sections.

<親水性ポリマー層の膜厚>
乾燥状態の親水性ポリマー層の膜厚は、乾燥状態の医療デバイスの断面を透過型電子顕微鏡を用いて観察することで行った。上記<親水性ポリマー層の分離の判定>に記載の条件にて測定した。4ヶ所場所を変えて、各視野につき、5ヶ所膜厚を測定し、計20ヶ所の膜厚の平均値を記載した。
<Film thickness of hydrophilic polymer layer>
The film thickness of the dry hydrophilic polymer layer was determined by observing a cross section of the dry medical device using a transmission electron microscope. The measurement was performed under the conditions described in <Judgment of separation of hydrophilic polymer layer> above. The film thickness was measured at 5 locations for each visual field while changing the locations at 4 locations, and the average value of the thicknesses at 20 locations was recorded.

凍結状態の親水性ポリマー層の膜厚は、クライオトランスファーホルダーを用いて含水状態で凍結した医療デバイスの断面を走査透過型電子顕微鏡を用いて観察することで行った。上記<親水性ポリマー層の元素組成分析>に記載の条件にて測定した。4ヶ所場所を変えて、各視野につき、5ヶ所膜厚を測定し、計20ヶ所の膜厚を測定した。測定された膜厚の最小値と最大値を記載した。 The thickness of the hydrophilic polymer layer in the frozen state was determined by observing the cross section of the medical device frozen in the water containing state using a cryotransfer holder using a scanning transmission electron microscope. The measurement was performed under the conditions described in <Analysis of elemental composition of hydrophilic polymer layer>. The film thickness was measured at 5 places for each visual field by changing 4 places, and the film thickness was measured at 20 places in total. The minimum and maximum values of the measured film thickness are listed.

<親水性ポリマー層の平均厚さの相違>
親水性ポリマー層の平均厚さは、上記<親水性ポリマー層の膜厚>の乾燥状態の親水性ポリマー層の膜厚測定に記載の条件にて測定した。平均厚さの相違はフロントカーブ面およびベースカーブ面それぞれの平均厚さの薄い方に対する厚い方の比率として下記式(5)で算出した。
平均厚さの相違(%)=(平均厚さが厚い面の平均膜厚−平均厚さが薄い面の平均膜厚)/平均厚さが薄い面の平均膜厚×100 式(5)。
<Difference in average thickness of hydrophilic polymer layer>
The average thickness of the hydrophilic polymer layer was measured under the conditions described in the film thickness measurement of the hydrophilic polymer layer in the dry state in <Film thickness of hydrophilic polymer layer> above. The difference in the average thickness was calculated by the following formula (5) as a ratio of the average thickness of the front curve surface and the average thickness of the base curve surface to the thinner one.
Difference in average thickness (%)=(average film thickness of surface having large average thickness−average film thickness of surface having thin average thickness)/average film thickness of surface having thin average thickness×100 Formula (5).

[参考例1]
式(M1)で表される両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC株式会社、Mw:30,000)28質量部、式(M2)で表されるシリコーンモノマー(FM0721、JNC株式会社、Mw:5,000)7質量部、トリフルオロエチルアクリレート(ビスコート(登録商標)3F、大阪有機化学工業株式会社)57.9質量部、2−エチルへキシルアクリレート(東京化成工業株式会社)7質量部およびジメチルアミノエチルアクリレート(株式会社興人)0.1質量部と、これらのモノマーの総質量に対し、光開始剤イルガキュア(登録商標)819(長瀬産業株式会社)5,000ppm、紫外線吸収剤(RUVA−93、大塚化学)5,000ppm、着色剤(RB246、Arran chemical)100ppmを準備し、さらに前記モノマーの総質量100質量部に対して10質量部のt−アミルアルコールを準備して、これら全てを混合し、撹拌した。撹拌された混合物をメンブレンフィルター(孔径:0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。
[Reference Example 1]
28 parts by mass of polydimethylsiloxane having a methacryloyl group at both ends represented by formula (M1) (FM7726, JNC Corporation, Mw: 30,000), silicone monomer represented by formula (M2) (FM0721, JNC stock) Company, Mw: 5,000) 7 parts by mass, trifluoroethyl acrylate (Viscoat (registered trademark) 3F, Osaka Organic Chemical Industry Co., Ltd.) 57.9 parts by mass, 2-ethylhexyl acrylate (Tokyo Kasei Kogyo Co., Ltd.) 7 parts by mass and 0.1 part by mass of dimethylaminoethyl acrylate (Kojin Co., Ltd.), and 5,000 ppm of photoinitiator Irgacure (registered trademark) 819 (Nagase Sangyo Co., Ltd.) and ultraviolet light based on the total mass of these monomers An absorber (RUVA-93, Otsuka Chemical) 5,000 ppm, a colorant (RB246, Arran chemical) 100 ppm were prepared, and further 10 parts by mass of t-amyl alcohol was prepared with respect to 100 parts by mass of the total amount of the monomers. All of these were mixed and stirred. The agitated mixture was filtered with a membrane filter (pore size: 0.45 μm) to remove the insoluble matter to obtain a monomer mixture.

透明樹脂(ベースカーブ側の材質:ポリプロピレン、フロントカーブ側の材質:ポリプロピレン)製のコンタクトレンズ用モールドに上記モノマー混合物を注入し、光照射(波長405nm(±5nm)、照度:0〜0.7mW/cm、30分間)して重合し、ケイ素原子を含む低含水性軟質材料からなる成型体を得た。The above monomer mixture was injected into a contact lens mold made of transparent resin (material on the base curve side: polypropylene, material on the front curve side: polypropylene), and light irradiation (wavelength 405 nm (±5 nm), illuminance: 0 to 0.7 mW) /Cm 2 , 30 minutes) and polymerized to obtain a molded body made of a low hydrous soft material containing silicon atoms.

重合後に、得られた成型体を、フロントカーブとベースカーブを離型したモールドごと、60℃の100質量%イソプロピルアルコール水溶液中に1.5時間浸漬して、モールドからコンタクトレンズ形状の成型体を剥離した。得られた成型体を、60℃に保った大過剰量の100質量%イソプロピルアルコール水溶液に2時間浸漬して残存モノマーなどの不純物を抽出した。その後、室温(23℃)中で12時間乾燥させた。 After the polymerization, the obtained molded body, together with the mold with the front curve and the base curve released, was immersed in a 100% by mass isopropyl alcohol aqueous solution at 60° C. for 1.5 hours to form a contact lens-shaped molded body from the mold. Peeled off. The obtained molded body was immersed in a large excess amount of 100 mass% isopropyl alcohol aqueous solution kept at 60° C. for 2 hours to extract impurities such as residual monomers. Then, it was dried at room temperature (23° C.) for 12 hours.

Figure 2019031477
Figure 2019031477

[リン酸緩衝液]
下記実施例、比較例のプロセスおよび上記した測定において使用したリン酸緩衝液の組成は、以下の通りである。
KCl 0.2g/L
KHPO 0.2g/L
NaCl 8.0g/L
NaHPO(anhydrous) 1.15g/L
EDTA 0.25g/L。
[Phosphate buffer]
The compositions of the phosphate buffers used in the processes of the following Examples and Comparative Examples and the above-described measurement are as follows.
KCl 0.2g/L
KH 2 PO 4 0.2 g/L
NaCl 8.0 g/L
Na 2 HPO 4 (anhydrous) 1.15 g/L
EDTA 0.25 g/L.

[実施例1]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)を純水中に0.2質量%含有させた水溶液を硫酸によりpH2.6に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 1]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was purified water. The pH of the aqueous solution containing 0.2 mass% was adjusted to 2.6 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例2]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:700,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.7に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 2]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 700,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 2.7 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例3]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/2、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.03質量%含有させた溶液を硫酸によりpH3.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 3]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/2, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.03% by mass in the buffer was adjusted to pH 3.1 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例4]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.4に調整した。該溶液に前記基材を浸漬し、80℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価結果を表1〜4に示す。
[Example 4]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 2.4 with sulfuric acid. The substrate was immersed in the solution and heated at 80° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the evaluation results of the obtained molded product by the above method.

[実施例5]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.4に調整した。該溶液に前記基材を浸漬し、100℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 5]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 2.4 with sulfuric acid. The substrate was immersed in the solution and heated at 100° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例6]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)を純水中に0.2質量%含有させた水溶液を硫酸によりpH2.4に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 6]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was purified water. The pH of the aqueous solution containing 0.2 mass% was adjusted to 2.4 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例7]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH3.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 7]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1% by mass was adjusted to pH 3.1 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例8]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH4.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価結果を表1〜4に示す。
[Example 8]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1% by mass was adjusted to pH 4.1 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the evaluation results of the obtained molded product by the above method.

[実施例9]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH5.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 9]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1 mass% was adjusted to pH 5.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例10]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH5.7に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 10]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1% by mass was adjusted to pH 5.7 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例11]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH3.3に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 11]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 3.3 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例12]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH3.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 12]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 3.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例13]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/2、Mw:700,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH3.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 13]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/2, Mw: 700,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 3.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例14]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH4.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 14]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1 mass% was adjusted to pH 4.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例15]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/4、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH4.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 15]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/4, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1 mass% was adjusted to pH 4.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例16]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.1質量%含有させた溶液を硫酸によりpH4.0に調整した溶液に浸漬させ121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 16]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/vinylpyrrolidone copolymer (basic group/acidic group number ratio 0, molar ratio in copolymerization 1/9, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing 0.1% by mass was immersed in a solution adjusted to pH 4.0 with sulfuric acid and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例17]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH3.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 17]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 3.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例18]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH3.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 18]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:500,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 3.0 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例19]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液をクエン酸によりpH2.0に調整した。該溶液に前記基材を浸漬し、90℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 19]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass in the buffer was adjusted to pH 2.0 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 90°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例20]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液をクエン酸によりpH2.2に調整した。該溶液に前記基材を浸漬し、90℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 20]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.2% by mass of the buffer solution was adjusted to pH 2.2 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 90°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

[実施例21]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.4質量%含有させた溶液をクエン酸によりpH2.0に調整した。該溶液に前記基材を浸漬し、90℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表1〜4に示す。
[Example 21]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. The solution containing 0.4% by mass of the buffer solution was adjusted to pH 2.0 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 90°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 1 to 4 show the results of evaluation of the obtained molded body by the above method.

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

[実施例22]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。アクリル酸/ビニルピロリドン/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を硫酸によりpH2.6に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 22]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. Acrylic acid/vinylpyrrolidone/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical Industry Co., Ltd. (Manufactured by Mitsui Chemicals Co., Ltd.) in an amount of 0.2% by mass in a phosphate buffer was adjusted to pH 2.6 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例23]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/メタクリル酸2−ヒドロキシエチル/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を硫酸によりpH2.6に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 23]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/2-hydroxyethyl methacrylate/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical Industry Co., Ltd.) was added to a phosphate buffer solution in an amount of 0.2% by mass to adjust the pH to 2.6 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例24]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/メタクリル酸2−ヒドロキシエチル/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をクエン酸によりpH3.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 24]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/2-hydroxyethyl methacrylate/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical solution) (0.2 mass% in phosphate buffer) was adjusted to pH 3.1 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例25]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をクエン酸によりpH3.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 25]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.1 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例26]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Biofinity(登録商標)”(クーパービジョン社製、comfilcon A)を使用した。アクリル酸/メタクリル酸2−ヒドロキシエチル/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を硫酸によりpH2.9に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 26]
A commercially available silicone hydrogel lens "Biofinity (registered trademark)" (comfilcon A, manufactured by Cooper Vision Corp.) containing silicone as a main component was used as a base material. Acrylic acid/2-hydroxyethyl methacrylate/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical Industry Co., Ltd.) was added to a phosphoric acid buffer solution in an amount of 0.2% by mass to adjust the pH to 2.9 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例27]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Biofinity(登録商標)”(クーパービジョン社製、comfilcon A)を使用した。アクリル酸/メタクリル酸2−ヒドロキシエチル/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をクエン酸によりpH3.3に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 27]
A commercially available silicone hydrogel lens "Biofinity (registered trademark)" (comfilcon A, manufactured by Cooper Vision Corp.) containing silicone as a main component was used as a base material. Acrylic acid/2-hydroxyethyl methacrylate/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical solution) (0.2 mass% in phosphate buffer) was adjusted to pH 3.3 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例28]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Biofinity(登録商標)”(クーパービジョン社製、comfilcon A)を使用した。アクリル酸/ビニルピロリドン/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/1/8、Mw:500,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有した水溶液をクエン酸によりpH3.1に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 28]
A commercially available silicone hydrogel lens "Biofinity (registered trademark)" (comfilcon A, manufactured by Cooper Vision Corp.) containing silicone as a main component was used as a base material. Acrylic acid/vinylpyrrolidone/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/1/8, Mw:500,000, Osaka Organic Chemical Industry Co., Ltd. (Manufactured by Mitsui Chemicals, Inc.) in an amount of 0.2% by mass in a phosphate buffer was adjusted to pH 3.1 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例29]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Biofinity(登録商標)”(クーパービジョン社製、comfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をクエン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
Example 29
A commercially available silicone hydrogel lens "Biofinity (registered trademark)" (comfilcon A, manufactured by Cooper Vision Corp.) containing silicone as a main component was used as a base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例30]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をギ酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 30]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with formic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例31]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を酢酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 31]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with acetic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例32]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をプロピオン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 32]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with propionic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例33]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を酪酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 33]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with butyric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例34]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をグリコール酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
Example 34
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with glycolic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例35]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液を乳酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
Example 35
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with lactic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例36]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をリンゴ酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
Example 36
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with malic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

[実施例37]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた水溶液をアスコルビン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表5〜8に示す。
[Example 37]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used as phosphoric acid. An aqueous solution containing 0.2% by mass of the buffer solution was adjusted to pH 3.2 with ascorbic acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 5 to 8 show the results of evaluation of the obtained molded product by the above method.

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

[比較例1]
基材として、参考例1で得られた成型体を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 1]
The molded body obtained in Reference Example 1 was used as the base material. The base material was an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group: 0, molar ratio in copolymerization: 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. ) Was immersed in a solution (pH 6.8) containing 0.2% by mass of phosphate buffer solution and heated in an autoclave at 121° C. for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例2]
基材として、参考例1で得られた成型体を使用した。基材を、リン酸緩衝液を硫酸によりpH2.7に調整した溶液に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体について上記方法にて評価した結果を表9〜12に示す。
[Comparative example 2]
The molded body obtained in Reference Example 1 was used as the base material. The base material was immersed in a solution of a phosphate buffer solution adjusted to pH 2.7 with sulfuric acid, and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product by the above method.

[比較例3]
基材として、参考例1で得られた成型体を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液(pH6.8)に室温(23℃)にて浸漬し、一晩静置した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 3]
The molded body obtained in Reference Example 1 was used as the base material. The base material was an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group: 0, molar ratio in copolymerization: 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. ) Was immersed in a solution (pH 6.8) containing 0.2% by mass of phosphate buffer at room temperature (23° C.) and left overnight. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例4]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液(pH6.8)に室温(23℃)にて浸漬し、一晩静置した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 4]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The base material was an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group: 0, molar ratio in copolymerization: 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. ) Was immersed in a solution (pH 6.8) containing 0.2% by mass of phosphate buffer at room temperature (23° C.) and left overnight. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例5]
基材として、参考例1で得られた成型体を使用した。基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)をリン酸緩衝液中に0.1質量%含有させた溶液(pH5.3)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 5]
The molded body obtained in Reference Example 1 was used as the base material. The substrate contains 0.1% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (number ratio of basic group/acidic group 0, Mw: 250,000, manufactured by BASF) in a phosphate buffer. The solution was immersed in the solution (pH 5.3) and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例6]
基材として、参考例1で得られた成型体を使用した。ポリジメチルアクリルアミド(塩基性基/酸性基の数比0、Mw:360,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 6]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing 0.2% by mass of polydimethylacrylamide (basic group/acidic group number ratio 0, Mw: 360,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution was adjusted to pH 2. Adjusted to 5. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例7]
基材として、参考例1で得られた成型体を使用した。ポリビニルピロリドンK−90(塩基性基/酸性基の数比0、Mw:360,000、東京化成工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 7]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing polyvinylpyrrolidone K-90 (basic group/acidic group number ratio 0, Mw: 360,000, manufactured by Tokyo Kasei Kogyo Co., Ltd.) in a phosphate buffer at 0.2 mass% was adjusted to pH 2 with sulfuric acid. Adjusted to .5. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例8]
基材として、参考例1で得られた成型体を使用した。ポリエチレングリコール200(塩基性基/酸性基の数比0、Mw180〜200、和光純薬工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 8]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing 0.2% by mass of polyethylene glycol 200 (basic group/acidic group number ratio 0, Mw 180 to 200, manufactured by Wako Pure Chemical Industries, Ltd.) in a phosphate buffer solution was adjusted to pH 2.5 with sulfuric acid. It was adjusted. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例9]
基材として、参考例1で得られた成型体を使用した。ポリ−N−ビニルアセトアミド“GE−191−103”(塩基性基/酸性基の数比0、Mw:1,000,000、昭和電工株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 9]
The molded body obtained in Reference Example 1 was used as the base material. 0.2 mass of poly-N-vinylacetamide "GE-191-103" (basic group/acidic group number ratio 0, Mw: 1,000,000, Showa Denko KK) was added to a phosphate buffer. % Solution was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例10]
基材として、参考例1で得られた成型体を使用した。基材を、ポリビニルアルコール(塩基性基/酸性基の数比0、Mw:31,000〜50,000、SIGMA−ALDRICH社製)をリン酸緩衝液中に0.1質量%含有した溶液中に入れようとしたところ、ポリビニルアルコールの溶解性が悪く溶液に沈殿が生じコーティングを実施できなかった。
[Comparative Example 10]
The molded body obtained in Reference Example 1 was used as the base material. In a solution containing 0.1% by mass of polyvinyl alcohol (basic group/acidic group number ratio 0, Mw: 31,000 to 50,000, manufactured by SIGMA-ALDRICH) in a phosphate buffer. However, the solubility of polyvinyl alcohol was poor and precipitation occurred in the solution, so that coating could not be carried out.

[比較例11]
基材として、参考例1で得られた成型体を使用した。 “メチルセルロース400”(塩基性基/酸性基の数比0、Mw:84,000、和光純薬工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 11]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing 0.2% by mass of "methylcellulose 400" (basic group/acidic group number ratio 0, Mw: 84,000, manufactured by Wako Pure Chemical Industries, Ltd.) in a phosphate buffer solution was adjusted to pH 2 with sulfuric acid. Adjusted to .5. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例12]
基材として、参考例1で得られた成型体を使用した。ポロクサマー407(塩基性基/酸性基の数比0、Mw:1,1500、BASF社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 12]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing 0.2% by mass of poloxamer 407 (basic group/acidic group number ratio 0, Mw: 1,1500, manufactured by BASF) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例13]
基材として、参考例1で得られた成型体を使用した。アルギン酸Na(塩基性基/酸性基の数比0、昭和化学株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 13]
The molded body obtained in Reference Example 1 was used as the base material. A solution containing 0.2% by mass of sodium alginate (basic group/acidic group number ratio 0, manufactured by Showa Kagaku Co., Ltd.) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例14]
基材として、参考例1で得られた成型体を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸(塩基性基/酸性基の数比0、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 14]
The molded body obtained in Reference Example 1 was used as the base material. The base material was made to contain poly-2-acrylamido-2-methylpropanesulfonic acid (basic group/acidic group number ratio 0, Mw: 200,000, self-made) in a phosphate buffer solution in an amount of 0.05% by mass. It was immersed in the solution (pH 6.8) and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例15]
基材として、参考例1で得られた成型体を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 15]
The molded body obtained in Reference Example 1 was used as the base material. As a base material, poly-2-acrylamido-2-methylpropanesulfonic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:200 , 1,000, self-produced) was immersed in a solution (pH 6.8) containing 0.05% by mass in a phosphate buffer, and heated in an autoclave at 121° C. for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例16]
基材として、参考例1で得られた成型体を使用した。ポリ酢酸ビニル/ポリビニルピロリドン共重合体“PVA−6450”(塩基性基/酸性基の数比0、Mw:50,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 16]
The molded body obtained in Reference Example 1 was used as the base material. Polyvinyl acetate/polyvinylpyrrolidone copolymer "PVA-6450" (basic group/acidic group number ratio 0, Mw: 50,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added to 0.2 in a phosphate buffer solution. The solution containing mass% was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例17]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。ポリ酢酸ビニル/ポリビニルピロリドン共重合体“PVA−6450”(塩基性基/酸性基の数比0、Mw:50,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 17]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Polyvinyl acetate/polyvinylpyrrolidone copolymer "PVA-6450" (basic group/acidic group number ratio 0, Mw: 50,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was added to 0.2 in a phosphate buffer solution. The solution containing mass% was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例18]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue Trueye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。ポリ酢酸ビニル/ポリビニルピロリドン共重合体“PVA−6450”(塩基性基/酸性基の数比0、Mw:50,000、大阪有機化学工業株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 18]
As the base material, a commercially available silicone hydrogel lens “1day Acuvue Trueye (registered trademark)” (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used. 0.2% of polyvinyl acetate/polyvinylpyrrolidone copolymer “PVA-6450” (basic group/acidic group number ratio 0, Mw: 50,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in a phosphate buffer solution The solution containing mass% was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例19]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。ポリ−N−ビニルアセトアミド“GE−191−103”(塩基性基/酸性基の数比0、Mw:1,000,000、昭和電工株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 19]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. 0.2 mass of poly-N-vinylacetamide "GE-191-103" (basic group/acidic group number ratio 0, Mw: 1,000,000, Showa Denko KK) was added to a phosphate buffer. % Solution was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例20]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。ポリ−N−ビニルアセトアミド“GE−191−103”(塩基性基/酸性基の数比0、Mw:1,000,000、昭和電工株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 20]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. 0.2 mass of poly-N-vinylacetamide "GE-191-103" (basic group/acidic group number ratio 0, Mw: 1,000,000, Showa Denko KK) was added to a phosphate buffer. % Solution was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例21]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アルギン酸Na(塩基性基/酸性基の数比0、昭和化学株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表9〜12に示す。
[Comparative Example 21]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. A solution containing 0.2% by mass of sodium alginate (basic group/acidic group number ratio 0, manufactured by Showa Kagaku Co., Ltd.) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 9 to 12 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

[比較例22]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。アルギン酸Na(塩基性基/酸性基の数比0、昭和化学株式会社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 22]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. A solution containing 0.2% by mass of sodium alginate (basic group/acidic group number ratio 0, manufactured by Showa Kagaku Co., Ltd.) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例23]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。ポロクサマー407(塩基性基/酸性基の数比0、Mw:11,500、BASF社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 23]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. A solution containing 0.2% by mass of poloxamer 407 (basic group/acidic group number ratio 0, Mw: 11,500, manufactured by BASF) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例24]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。ポロクサマー407(塩基性基/酸性基の数比0、Mw:11,500、BASFジャパン社製)をリン酸緩衝液中に0.2質量%含有させた溶液を硫酸によりpH2.5に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 24]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. A solution containing 0.2% by mass of poloxamer 407 (basic group/acidic group number ratio 0, Mw: 11,500, manufactured by BASF Japan Ltd.) in a phosphate buffer was adjusted to pH 2.5 with sulfuric acid. .. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例25]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸(塩基性基/酸性基の数比0、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 25]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The base material was made to contain poly-2-acrylamido-2-methylpropanesulfonic acid (basic group/acidic group number ratio 0, Mw: 200,000, self-made) in a phosphate buffer solution in an amount of 0.05% by mass. It was immersed in the solution (pH 6.8) and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例26]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸(塩基性基/酸性基の数比0、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 26]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. The base material was made to contain poly-2-acrylamido-2-methylpropanesulfonic acid (basic group/acidic group number ratio 0, Mw: 200,000, self-made) in a phosphate buffer solution in an amount of 0.05% by mass. It was immersed in the solution (pH 6.8) and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例27]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 27]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. As a base material, poly-2-acrylamido-2-methylpropanesulfonic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:200 , 1,000, self-produced) was immersed in a solution (pH 6.8) containing 0.05% by mass in a phosphate buffer, and heated in an autoclave at 121° C. for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例28]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、ポリ−2−アクリルアミド−2−メチルプロパンスルホン酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、自製)をリン酸緩衝液中に0.05質量%含有させた溶液(pH6.8)に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 28]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. As a base material, poly-2-acrylamido-2-methylpropanesulfonic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:200 , 1,000, self-produced) was immersed in a solution (pH 6.8) containing 0.05% by mass in a phosphate buffer, and heated in an autoclave at 121° C. for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例29]
基材として、参考例1で得られた成型体を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:400,000、大阪有機化学工業株式会社製)0.1質量%およびウレア0.3質量%を純水中に含有させた水溶液を硫酸によりpH3.8に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×30秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 29]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/vinylpyrrolidone copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 400,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.1% by mass and urea An aqueous solution containing 0.3% by mass of pure water was adjusted to pH 3.8 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例30]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“メダリスト(登録商標)ワンデープラス”(ボシュロム社製、hilafilcon B)を使用した。アクリル酸/ビニルピロリドン共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:400,000、大阪有機化学工業株式会社製)0.1質量%および0.3質量%ウレアを純水中に含有させた水溶液を硫酸によりpH3.8に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×30秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 30]
As a base material, a commercially available hydrogel lens "Medalist (registered trademark) One Day Plus" (manufactured by Bausch & Lomb, hilafilcon B) containing 2-hydroxyethyl methacrylate as a main component was used. Acrylic acid/vinylpyrrolidone copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 400,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.1% by mass and 0 The pH of an aqueous solution of pure water containing 3% by mass urea was adjusted to 3.8 with sulfuric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例31]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800,000、大阪有機化学工業株式会社製)0.2質量%およびウレア0.3質量%を純水中に含有させた水溶液を硫酸によりpH3.0に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×30秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 31]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw:800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) 0.2 A pH of an aqueous solution containing pure water containing 0.3% by mass of urea and 0.3% by mass of urea was adjusted to 3.0. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例32]
メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)について、上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 32]
Tables 13 to 16 show the results of evaluation of the commercially available hydrogel lens "1day Acuvue (registered trademark)" (Etafilcon A manufactured by Johnson & Johnson, Inc.) containing 2-hydroxyethyl methacrylate as a main component by the above method.

[比較例33]
ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)について、上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 33]
Tables 13 to 16 show the results of the evaluation of the commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as the main components by the above method.

[比較例34]
ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製、senofilcon A)について、上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 34]
Tables 13 to 16 show the results of evaluation of the commercially available silicone hydrogel lens "Acuvue Oasys (registered trademark)" (manufactured by Johnson & Johnson, senofilcon A) containing polyvinylpyrrolidone and silicone as main components by the above method.

[比較例35]
レンズ表面がプラズマ処理されたシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“エア オプティクス EXアクア(登録商標)”(日本アルコン株式会社製、lotrafilcon B)について、上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 35]
The results of evaluation of the commercially available silicone hydrogel lens “Air Optics EX Aqua (registered trademark)” (lotrafilcon B, manufactured by Nihon Alcon Co., Ltd.) having a lens surface treated with plasma as a main component by the above method are shown in Table 13 to. 16 shows.

[比較例36]
MPCモノマー(2−メタクリロイルオキシエチルホスホリルコリン)が共重合されたメタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“プロクリアワンデー”(Cooper Vision社製、omafilcon A)について、上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 36]
Evaluation was made on a commercially available hydrogel lens "Proclear One Day" (Cooper Vision, omafilcon A) containing 2-hydroxyethyl methacrylate as a main component, which was copolymerized with an MPC monomer (2-methacryloyloxyethylphosphorylcholine), by the above method The results obtained are shown in Tables 13 to 16.

[比較例37]
基材として、参考例1で得られた成型体を使用した。基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)を純水中に1.2質量%含有させた溶液(pH2.6)に37℃で30分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 37]
The molded body obtained in Reference Example 1 was used as the base material. The base material was made to contain 1.2% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (basic group/acidic group number ratio 0, Mw: 250,000, manufactured by BASF) in pure water. It was immersed in the solution (pH 2.6) at 37° C. for 30 minutes. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例38]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASFジャパン社製)を純水中に1.2質量%含有させた溶液(pH2.6)に37℃で30分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 38]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The base material was made to contain 1.2% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (number ratio of basic group/acidic group: 0, Mw: 250,000, manufactured by BASF Japan Ltd.) in pure water. The solution (pH 2.6) was immersed at 37° C. for 30 minutes. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例39]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)を純水中に1.2質量%含有させた溶液(pH2.6)に37℃で30分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 39]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. The base material was made to contain 1.2% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (basic group/acidic group number ratio 0, Mw: 250,000, manufactured by BASF) in pure water. It was immersed in the solution (pH 2.6) at 37° C. for 30 minutes. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例40]
基材として、参考例1で得られた成型体を使用した。基材を、塩酸を含有した水溶液(pH3.0)に室温で5分間浸漬後、純水中で250rpm×10秒振とう洗浄した。その後、基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)を純水中に0.1質量%含有させた溶液(pH3.3)に室温にて5分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 40]
The molded body obtained in Reference Example 1 was used as the base material. The substrate was immersed in an aqueous solution containing hydrochloric acid (pH 3.0) at room temperature for 5 minutes, and then washed by shaking in pure water at 250 rpm for 10 seconds. Then, the base material contained 0.1% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (number ratio of basic group/acidic group 0, Mw: 250,000, manufactured by BASF) in pure water. The solution (pH 3.3) was immersed for 5 minutes at room temperature. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例41]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、塩酸を含有する水溶液(pH3.0)に室温で5分間浸漬後、純水中で250rpm×10秒振とう洗浄した。その後、基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)を純水中に0.1質量%含有した溶液(pH3.3)に室温にて5分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 41]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The substrate was immersed in an aqueous solution containing hydrochloric acid (pH 3.0) for 5 minutes at room temperature, and then washed by shaking in pure water at 250 rpm for 10 seconds. Then, the base material contained 0.1% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (number ratio of basic group/acidic group 0, Mw: 250,000, manufactured by BASF) in pure water. The solution (pH 3.3) was dipped at room temperature for 5 minutes. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例42]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、塩酸を含有する水溶液(pH3.0)に室温で5分間浸漬後、純水中で250rpm×10秒振とう洗浄した。その後、基材を、ポリアクリル酸“Sokalan(登録商標) PA110S”(塩基性基/酸性基の数比0、Mw:250,000、BASF社製)を純水中に0.1質量%含有した溶液(pH3.3)に室温にて5分間浸漬した。得られた成型体を純水中で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替えた。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表13〜16に示す。
[Comparative Example 42]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. The substrate was immersed in an aqueous solution containing hydrochloric acid (pH 3.0) for 5 minutes at room temperature, and then washed by shaking in pure water at 250 rpm for 10 seconds. Then, the base material contained 0.1% by mass of polyacrylic acid "Sokalan (registered trademark) PA110S" (number ratio of basic group/acidic group 0, Mw: 250,000, manufactured by BASF) in pure water. The solution (pH 3.3) was dipped at room temperature for 5 minutes. The obtained molded body was washed in pure water with shaking at 250 rpm for 10 seconds and then replaced with a new phosphate buffer solution. Tables 13 to 16 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例43]
基材として、参考例1で得られた成型体を使用した。基材を、Chitosan(0.5% in 0.5%Acetic Acid at 20℃)(TCI社製)を純水中に0.1質量%含有する溶液中に入れようとしたところ、Chitosanの溶解性が悪く溶液に沈殿が生じコーティングを実施できなかった。
[Comparative Example 43]
The molded body obtained in Reference Example 1 was used as the base material. When the base material was put into a solution containing 0.1% by mass of pure water of Chitosan (0.5% in 0.5% Acoustic Acid at 20° C.) (manufactured by TCI), dissolution of Chitosan was observed. The coating was not able to be performed due to poor property and precipitation in the solution.

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

[比較例44]
基材として、参考例1で得られた成型体を使用した。基材を、0.18質量%のポリアクリル酸(塩基性基/酸性基の数比0、“SokalanPA110S”、Mw250,000、BASF社製)と0.02質量%のアクリル酸/N,N−ジメチルアクリルアミド共重合体(共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)とを含有するリン酸緩衝液中に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 44]
The molded body obtained in Reference Example 1 was used as the base material. As the base material, 0.18 mass% of polyacrylic acid (basic group/acidic group number ratio 0, "Sokalan PA110S", Mw 250,000, manufactured by BASF) and 0.02 mass% of acrylic acid/N,N -Dimethylacrylamide copolymer (copolymerization ratio 1/9, Mw 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was immersed in a phosphate buffer, and heated at 121°C for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例45]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、0.18質量%のポリアクリル酸(塩基性基/酸性基の数比0、“SokalanPA110S”、Mw250,000、BASF社製)と0.02質量%のアクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)とを含有するリン酸緩衝液中に浸漬させ121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 45]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. As the base material, 0.18 mass% of polyacrylic acid (basic group/acidic group number ratio 0, "Sokalan PA110S", Mw 250,000, manufactured by BASF) and 0.02 mass% of acrylic acid/N,N -Dimethyl acrylamide copolymer (basic group/acidic group number ratio 0, copolymerization ratio 1/9, Mw 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) It was heated in an autoclave at 121°C for 30 minutes. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例46]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、0.18質量%のポリアクリル酸(塩基性基/酸性基の数比0、“SokalanPA110S”、Mw250,000、BASF社製)と0.02質量%のアクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)とを含有するリン酸緩衝液中に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 46]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The base material was 0.18% by mass of polyacrylic acid (basic group/acidic group number ratio 0, "Sokalan PA110S", Mw 250,000, manufactured by BASF) and 0.02% by mass of acrylic acid/N,N. -Dimethyl acrylamide copolymer (basic group/acidic group number ratio 0, copolymerization ratio 1/9, Mw 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) and immersed in a phosphate buffer solution. , 121° C., 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例47]
基材として、参考例1で得られた成型体を使用した。基材を、ポリアクリル酸(塩基性基/酸性基の数比0、“Sokalan PA110S”、Mw250,000、BASF社製)を純水に溶解して1.2質量%とした溶液中に室温で30分間浸漬した。その後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、ポリエチレンイミン(塩基性基/酸性基の数比0、Mw750,000、純正化学製)を純水に溶解して1質量%とした溶液、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)を純水に溶解して0.1質量%とした溶液をそれぞれ用いて、この順に同様の操作を繰り返した。コーティング操作を終えた後、成型体をリン酸緩衝液中に浸漬させ121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層の塩基性基/酸性基の数比0.5)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 47]
The molded body obtained in Reference Example 1 was used as the base material. The base material was dissolved in pure water of polyacrylic acid (number ratio of basic group/acidic group 0, "Sokalan PA110S", Mw 250,000, manufactured by BASF) to 1.2% by mass at room temperature. And soaked for 30 minutes. Then, it was lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing fresh pure water, and put in an ultrasonic cleaner (30 seconds). Further, it was lightly rinsed in a beaker containing fresh pure water. Then, a solution of polyethyleneimine (basic group/acidic group number ratio 0, Mw 750,000, manufactured by Junsei Chemical Co., Ltd.) in pure water to 1% by mass, acrylic acid/N,N-dimethylacrylamide copolymer (Basic group/acidic group number ratio 0, copolymerization ratio 1/9, Mw 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was dissolved in pure water to a concentration of 0.1% by mass. Then, the same operation was repeated in this order. After finishing the coating operation, the molded body was immersed in a phosphate buffer solution and heated in an autoclave at 121° C. for 30 minutes. Tables 17 to 20 show the results of evaluation of the obtained molded product (number ratio of basic group/acidic group of hydrophilic polymer layer 0.5) by the above method.

[比較例48]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、ポリアクリル酸(“SokalanPA110S”、Mw250,000、BASF社製)を純水に溶解して1.2質量%とした溶液中に室温で30分間浸漬した。その後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、ポリエチレンイミン(Mw750,000、純正化学製)を純水に溶解して1質量%とした溶液、アクリル酸/N,N−ジメチルアクリルアミド共重合体(共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)を純水に溶解して0.1質量%とした溶液をそれぞれ用いて、この順に同様の操作を繰り返した。コーティング操作を終えた後、成型体をリン酸緩衝液中に浸漬させ121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層の塩基性基/酸性基の数比0.5)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 48]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. The base material was immersed for 30 minutes at room temperature in a solution in which polyacrylic acid (“Sokalan PA110S”, Mw 250,000, manufactured by BASF) was dissolved in pure water to make 1.2 mass %. Then, it was lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing fresh pure water, and put in an ultrasonic cleaner (30 seconds). Further, it was lightly rinsed in a beaker containing fresh pure water. Then, a solution of polyethyleneimine (Mw 750,000, manufactured by Junsei Chemical Co., Ltd.) in pure water to make it 1% by mass, acrylic acid/N,N-dimethylacrylamide copolymer (copolymerization ratio 1/9, Mw 800, 000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was dissolved in pure water to make 0.1% by mass, and the same operation was repeated in this order. After finishing the coating operation, the molded body was immersed in a phosphate buffer solution and heated in an autoclave at 121° C. for 30 minutes. Tables 17 to 20 show the results of evaluation of the obtained molded product (number ratio of basic group/acidic group of hydrophilic polymer layer 0.5) by the above method.

[比較例49]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。基材を、ポリアクリル酸(“SokalanPA110S”、Mw250,000、BASF社製)を純水に溶解して1.2質量%とした溶液中に室温で30分間浸漬した。その後、ビーカー中の純水で軽く濯ぎ洗いした。成型体を新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、ポリエチレンイミン(Mw750,000、純正化学製)を純水に溶解して1質量%とした溶液、アクリル酸/N,N−ジメチルアクリルアミド共重合体(共重合比1/9、Mw 800,000、大阪有機化学工業株式会社製)を純水に溶解して0.1質量%とした溶液をそれぞれ用いて、この順に同様の操作を繰り返した。コーティング操作を終えた後、成型体は大きく変形しておりレンズ形状をなさず評価に使用することができなかった。
[Comparative Example 49]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. The base material was immersed for 30 minutes at room temperature in a solution in which polyacrylic acid (“Sokalan PA110S”, Mw 250,000, manufactured by BASF) was dissolved in pure water to make 1.2 mass %. Then, it was lightly rinsed with pure water in a beaker. The molded body was transferred to a beaker containing fresh pure water, and put in an ultrasonic cleaner (30 seconds). Further, it was lightly rinsed in a beaker containing fresh pure water. Then, a solution of polyethyleneimine (Mw 750,000, manufactured by Junsei Chemical Co., Ltd.) in pure water to make it 1% by mass, acrylic acid/N,N-dimethylacrylamide copolymer (copolymerization ratio 1/9, Mw 800, 000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was dissolved in pure water to make 0.1% by mass, and the same operation was repeated in this order. After the coating operation was completed, the molded body was greatly deformed and could not be used for evaluation without forming the lens shape.

[比較例50]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製、narafilcon A)を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、大阪有機化学工業株式会社製)を純水中に0.1質量%含有させた水溶液を硫酸によりpH3.5に調整した溶液に浸漬し、室温から約40℃の間で2時間超音波洗浄(型式US−IR、AS ONE社製)にかけた。得られた成型体を純水中で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 50]
A commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" (manufactured by Johnson & Johnson, narafilcon A) containing polyvinylpyrrolidone and silicone as main components was used as a base material. The base material is an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group is 0, molar ratio in copolymerization is 1/9, Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. Of 0.1% by weight in pure water is immersed in a solution of which the pH is adjusted to 3.5 with sulfuric acid, and ultrasonic cleaning is performed for 2 hours between room temperature and about 40° C. (model US-IR, AS ONE (Made by the company). The obtained molded body was immersed and washed in pure water for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例51]
基材として、参考例1で得られた成型体を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、大阪有機化学工業株式会社製)を純水中に0.1質量%含有させた水溶液を硫酸によりpH3.5に調整した溶液に浸漬し、室温から約40℃の間で2時間超音波洗浄(型式US−IR、AS ONE社製)にかけた。得られた成型体を純水中で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 51]
The molded body obtained in Reference Example 1 was used as the base material. The base material is an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group is 0, molar ratio in copolymerization is 1/9, Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. Of 0.1% by weight in pure water is immersed in a solution of which the pH is adjusted to 3.5 with sulfuric acid, and ultrasonic cleaning is performed for 2 hours between room temperature and about 40° C. (model US-IR, AS ONE (Made by the company). The obtained molded body was immersed and washed in pure water for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例52]
基材として、MPCモノマー(2−メタクリロイルオキシエチルホスホリルコリン)が共重合されたメタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“プロクリアワンデー”(Cooper Vision社製)を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、大阪有機化学工業株式会社製)を純水中に0.1質量%含有させた水溶液を硫酸によりpH3.5に調整した溶液に浸漬し、室温から約40℃の間で2時間超音波洗浄(型式US−IR、AS ONE社製)にかけた。得られた成型体を純水中で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 52]
As a base material, a commercially available hydrogel lens "Proclear One Day" (manufactured by Cooper Vision) having 2-hydroxyethyl methacrylate as a main component, which was copolymerized with an MPC monomer (2-methacryloyloxyethylphosphorylcholine) was used. The base material is an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group is 0, molar ratio in copolymerization is 1/9, Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. Of 0.1% by weight in pure water is immersed in a solution of which the pH is adjusted to 3.5 with sulfuric acid, and ultrasonic cleaning is performed for 2 hours between room temperature and about 40° C. (model US-IR, AS ONE (Made by the company). The obtained molded body was immersed and washed in pure water for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例53]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“1day Acuvue TruEye(登録商標)”(Johnson&Johnson社製)を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、大阪有機化学工業株式会社製)を純水中に0.1質量%含有させた水溶液を硫酸によりpH3.5に調整した溶液に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体を純水中で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 53]
As the base material, a commercially available silicone hydrogel lens "1day Acuvue TruEye (registered trademark)" containing polyvinylpyrrolidone and silicone as main components (manufactured by Johnson & Johnson) was used. The base material was an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group: 0, molar ratio in copolymerization: 1/9, Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. Was immersed in a solution of which the pH was adjusted to 3.5 by sulfuric acid, and heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was immersed in pure water for 30 seconds, washed, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例54]
基材として、参考例1で得られた成型体を使用した。基材を、アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、大阪有機化学工業株式会社製)を純水中に0.1質量%含有させた水溶液を硫酸によりpH3.5に調整した溶液に浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体を純水中で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 54]
The molded body obtained in Reference Example 1 was used as the base material. The base material is an acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group is 0, molar ratio in copolymerization is 1/9, Mw: 200,000, manufactured by Osaka Organic Chemical Industry Co., Ltd. Was immersed in a solution of which the pH was adjusted to 3.5 by sulfuric acid, and the mixture was heated at 121° C. for 30 minutes in an autoclave. The obtained molded body was immersed and washed in pure water for 30 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例55]
基材として、ポリビニルピロリドンおよびシリコーンを主成分とする市販シリコーンヒドロゲルレンズ“Acuvue Oasys(登録商標)”(Johnson&Johnson社製)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800000、大阪有機化学工業株式会社製)を純水中に0.2質量%含有させた水溶液を硫酸によりpH1.9に調整した。該溶液中に前記基材を入れ、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体はポリマー層が厚いため、光の屈折が乱れて、空中でレンズを通してレンズの反対側の文字を見たときに、反対側の文字がぼやけて認識できず、レンズに必要な光学性能が著しく不足していた。得られた成型体について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 55]
As a base material, a commercially available silicone hydrogel lens "Acuvue Oasis (registered trademark)" (manufactured by Johnson & Johnson) having polyvinylpyrrolidone and silicone as main components was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in pure water The pH of the aqueous solution containing 0.2 mass% was adjusted to 1.9 with sulfuric acid. The substrate was put in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Since the polymer layer of the obtained molded body is thick, the refraction of light is disturbed, and when the character on the opposite side of the lens is seen through the lens in the air, the character on the opposite side is blurred and unrecognizable, which is necessary for the lens. The optical performance was remarkably insufficient. Tables 17 to 20 show the results of evaluation of the obtained molded body by the above method.

[比較例56]
基材として、メタクリル酸2−ヒドロキシエチルを主成分とする市販ヒドロゲルレンズ“1day Acuvue(登録商標)”(Johnson&Johnson社製、etafilconA)を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800000、大阪有機化学工業株式会社製)を純水中に0.2質量%含有させた水溶液を硫酸によりpH1.9に調整した。該溶液中に前記基材を入れ、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体はポリマー層が厚いため、光の屈折が乱れて、空中でレンズを通してレンズの反対側の文字を見たときに、反対側の文字がぼやけて認識できず、レンズに必要な光学性能が著しく不足していた。得られた成型体について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 56]
As a base material, a commercially available hydrogel lens "1day Acuvue (registered trademark)" containing 2-hydroxyethyl methacrylate as a main component (manufactured by Johnson & Johnson, etafilcon A) was used. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in pure water The pH of the aqueous solution containing 0.2 mass% was adjusted to 1.9 with sulfuric acid. The substrate was put in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Since the polymer layer of the obtained molded body is thick, the refraction of light is disturbed, and when the character on the opposite side of the lens is seen through the lens in the air, the character on the opposite side is blurred and unrecognizable, which is necessary for the lens. The optical performance was remarkably insufficient. Tables 17 to 20 show the results of evaluation of the obtained molded body by the above method.

[比較例57]
基材として、参考例1で得られた成型体を使用した。アクリル酸/N,N−ジメチルアクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:800000、大阪有機化学工業株式会社製)を純水中に0.2質量%含有させた水溶液を硫酸によりpH1.9に調整した。該溶液中に前記基材を入れ、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で250rpm×10秒振とう洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体はポリマー層が厚いため、光の屈折が乱れて、空中でレンズを通してレンズの反対側の文字を見たときに、反対側の文字がぼやけて認識できず、レンズに必要な光学性能が著しく不足していた。得られた成型体について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 57]
The molded body obtained in Reference Example 1 was used as the base material. Acrylic acid/N,N-dimethylacrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 800,000, manufactured by Osaka Organic Chemical Industry Co., Ltd.) in pure water The pH of the aqueous solution containing 0.2 mass% was adjusted to 1.9 with sulfuric acid. The substrate was put in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was washed with a phosphate buffer solution by shaking at 250 rpm for 10 seconds, replaced with a new phosphate buffer solution, and further heated at 121° C. for 30 minutes in an autoclave. Since the polymer layer of the obtained molded body is thick, the refraction of light is disturbed, and when the character on the opposite side of the lens is seen through the lens in the air, the character on the opposite side is blurred and unrecognizable, which is necessary for the lens. The optical performance was remarkably insufficient. Tables 17 to 20 show the results of evaluation of the obtained molded body by the above method.

[比較例58]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。基材を、アクリル酸/アクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比6/4、Mw:200,000、自製)をリン酸緩衝液中に0.19質量%含有させた水溶液をクエン酸によりpH3.2に調整した溶液に浸漬しようとしたところ、pH3.2に調整した溶液に白色沈殿が生じ、コーティングを実施できなかった。
[Comparative Example 58]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. Acrylic acid/acrylamide copolymer (number ratio of basic group/acidic group: 0, molar ratio in copolymerization: 6/4, Mw: 200,000, self-made) was used as a base material in a phosphate buffer solution at a concentration of 0.19. When an attempt was made to immerse the mass% aqueous solution in a solution adjusted to pH 3.2 with citric acid, white precipitation occurred in the solution adjusted to pH 3.2, and coating could not be performed.

[比較例59]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/アクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比7/93、Mw:200,000、自製)をリン酸緩衝液中に0.19質量%含有させた水溶液をクエン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 59]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. 0.19% by mass of acrylic acid/acrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 7/93, Mw: 200,000, self-made) was contained in a phosphate buffer solution. The aqueous solution was adjusted to pH 3.2 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例60]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/アクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比1/9、Mw:200,000、自製)をリン酸緩衝液中に0.19質量%含有させた水溶液をクエン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 60]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. 0.19% by mass of acrylic acid/acrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 1/9, Mw: 200,000, self-made) was contained in a phosphate buffer. The aqueous solution was adjusted to pH 3.2 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例61]
基材として、シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)を使用した。アクリル酸/アクリルアミド共重合体(塩基性基/酸性基の数比0、共重合におけるモル比3/7、Mw:200,000、自製)をリン酸緩衝液中に0.19質量%含有させた水溶液をクエン酸によりpH3.2に調整した。該溶液に前記基材を浸漬し、121℃30分間オートクレーブにて加熱した。得られた成型体をリン酸緩衝液で30秒浸漬洗浄後、新たなリン酸緩衝液に入れ替え、さらに121℃30分間オートクレーブにて加熱した。得られた成型体(親水性ポリマー層は確認されず)について上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 61]
As a base material, a commercially available silicone hydrogel lens "MyDay (registered trademark)" (manufactured by Cooper Vision, stenfilcon A) containing silicone as a main component was used. 0.19 mass% of acrylic acid/acrylamide copolymer (number ratio of basic group/acidic group 0, molar ratio in copolymerization 3/7, Mw: 200,000, self-produced) was contained in a phosphate buffer. The aqueous solution was adjusted to pH 3.2 with citric acid. The substrate was immersed in the solution and heated in an autoclave at 121°C for 30 minutes. The obtained molded body was immersed and washed in a phosphate buffer for 30 seconds, replaced with a new phosphate buffer, and further heated at 121° C. for 30 minutes in an autoclave. Tables 17 to 20 show the results of evaluation of the obtained molded product (no hydrophilic polymer layer was confirmed) by the above method.

[比較例62]
シリコーンを主成分とする市販シリコーンヒドロゲルレンズ“MyDay(登録商標)”(クーパービジョン社製、stenfilcon A)について、上記方法にて評価した結果を表17〜20に示す。
[Comparative Example 62]
Tables 17 to 20 show the results of evaluation of the commercially available silicone hydrogel lens "MyDay (registered trademark)" (Stenfilcon A manufactured by Cooper Vision Co., Ltd.) containing silicone as a main component by the above method.

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Figure 2019031477
Figure 2019031477

Claims (16)

基材と、前記基材の少なくとも一部に親水性ポリマー層を有してなり、かつ、次の(a)〜(d)の条件を満たす医療デバイス:
(a)前記親水性ポリマー層を構成するポリマーが酸性基を含む親水性ポリマーであり;
(b)前記親水性ポリマー層の厚さが1nm以上100nm未満であり;
(c)前記親水性ポリマー層の塩基性基/酸性基の数比が0.2以下であり;
(d)リン酸緩衝液に浸漬して超音波洗浄にかけた40分後の液膜保持時間が15秒以上である。
A medical device comprising a base material and a hydrophilic polymer layer on at least a part of the base material, and satisfying the following conditions (a) to (d):
(A) the polymer constituting the hydrophilic polymer layer is a hydrophilic polymer containing an acidic group;
(B) the thickness of the hydrophilic polymer layer is 1 nm or more and less than 100 nm;
(C) The number ratio of basic groups/acidic groups of the hydrophilic polymer layer is 0.2 or less;
(D) The liquid film retention time after 40 minutes of immersion in a phosphate buffer solution and ultrasonic cleaning is 15 seconds or more.
前記親水性ポリマー層の少なくとも一部が前記基材と混和した状態で存在する、請求項1に記載の医療デバイス。 The medical device according to claim 1, wherein at least a part of the hydrophilic polymer layer exists in a state of being mixed with the base material. 前記親水性ポリマーがアミド基をさらに有する、請求項1または2に記載の医療デバイス。 The medical device according to claim 1, wherein the hydrophilic polymer further has an amide group. 前記基材が、ヒドロゲル、シリコーンヒドロゲル、低含水性軟質材料、および低含水性硬質材料、から選択される1種類以上の材料を含むものである、請求項1〜3のいずれかに記載の医療デバイス。 The medical device according to any one of claims 1 to 3, wherein the substrate contains one or more kinds of materials selected from hydrogels, silicone hydrogels, low hydrous soft materials, and low hydrous hard materials. 前記ヒドロゲルが、tefilcon、tetrafilcon、helfilcon、mafilcon、polymacon、hioxifilcon、alfafilcon、omafilcon、hioxifilcon、nelfilcon、nesofilcon、hilafilcon、acofilcon、deltafilcon、etafilcon、focofilcon、ocufilcon、phemfilcon、methafilcon、およびvilfilconからなる群から選ばれるヒドロゲルである、請求項4に記載の医療デバイス。 The hydrogel is selected tefilcon, tetrafilcon, helfilcon, mafilcon, polymacon, hioxifilcon, alfafilcon, omafilcon, hioxifilcon, nelfilcon, nesofilcon, hilafilcon, acofilcon, deltafilcon, etafilcon, focofilcon, ocufilcon, phemfilcon, methafilcon, and from the group consisting of vilfilcon The medical device according to claim 4, which is a hydrogel. 前記シリコーンヒドロゲルが、lotrafilcon、galyfilcon、narafilcon、senofilcon、comfilcon、enfilcon、balafilcon、efrofilcon、fanfilcon、somofilcon、samfilcon、olifilcon、asmofilcon、formofilcon、stenfilcon、abafilcon、mangofilcon、riofilcon、sifilcon、larafilcon、およびdelefilconからなる群から選ばれるシリコーンヒドロゲルである、請求項4に記載の医療デバイス。 The silicone hydrogels, lotrafilcon, galyfilcon, narafilcon, senofilcon, the group consisting of comfilcon, enfilcon, balafilcon, efrofilcon, fanfilcon, somofilcon, samfilcon, olifilcon, asmofilcon, formofilcon, stenfilcon, abafilcon, mangofilcon, riofilcon, sifilcon, larafilcon, and from delefilcon The medical device according to claim 4, which is a silicone hydrogel selected from the group consisting of: 前記低含水性軟質材料が、ケイ素原子を含む材料である、請求項4に記載の医療デバイス。 The medical device according to claim 4, wherein the low hydrous soft material is a material containing silicon atoms. 前記低含水性硬質材料が、ケイ素原子を含む材料である、請求項4に記載の医療デバイス。 The medical device according to claim 4, wherein the low hydrous hard material is a material containing silicon atoms. 前記低含水性硬質材料が、ポリメチルメタクリレートである、請求項4または8に記載の医療デバイス。 The medical device according to claim 4 or 8, wherein the low hydrous hard material is polymethylmethacrylate. 前記低含水性硬質材料が、neofocon、pasifocon、telefocon、silafocon、paflufocon、petrafoconおよびfluorofoconからなる群から選ばれる材料である、請求項4、8、または9に記載の医療デバイス。 The medical device according to claim 4, 8, or 9, wherein the low hydrous hard material is a material selected from the group consisting of neofocon, pasifocon, telefocon, silafocon, paflufocon, petrafocon, and fluorofocon. 眼用レンズ、皮膚用被覆材、創傷被覆材、皮膚用保護材、皮膚用薬剤担体、輸液用チューブ、気体輸送用チューブ、排液用チューブ、血液回路、被覆用チューブ、カテーテル、ステント、シースバイオセンサーチップ、または内視鏡用被覆材である、請求項1〜10のいずれかに記載の医療デバイス。 Ophthalmic lens, skin coating, wound coating, skin protective material, drug carrier for skin, infusion tube, gas transport tube, drainage tube, blood circuit, coating tube, catheter, stent, sheath bio The medical device according to any one of claims 1 to 10, which is a sensor chip or a covering material for an endoscope. 次の(e)を満たすコンタクトレンズである、請求項11に記載の医療デバイス。
(e)フロントカーブ面の親水性ポリマー層の平均厚さと、ベースカーブ面の親水性ポリマー層の平均厚さとが、20%を超える厚さの相違を有する
The medical device according to claim 11, which is a contact lens satisfying the following (e).
(E) The average thickness of the hydrophilic polymer layer on the front curve surface and the average thickness of the hydrophilic polymer layer on the base curve surface have a thickness difference of more than 20%.
前記医療デバイスがコンタクトレンズである、請求項11または12に記載の医療デバイス。 The medical device according to claim 11 or 12, wherein the medical device is a contact lens. 請求項1〜13のいずれかに記載の医療デバイスを製造する方法であって、
前記基材を、2.0以上6.0以下の初期pHを有する溶液中に配置して、前記溶液を加熱する工程を含み、
前記溶液が、前記親水性ポリマーと、酸を含むものである、医療デバイスの製造方法。
A method of manufacturing the medical device according to any one of claims 1 to 13,
Placing the substrate in a solution having an initial pH of 2.0 or more and 6.0 or less and heating the solution;
The method for producing a medical device, wherein the solution contains the hydrophilic polymer and an acid.
前記酸が、酢酸、クエン酸、ギ酸、アスコルビン酸、トリフルオロメタンスルホン酸、メタンスルホン酸、プロピオン酸、酪酸、グリコール酸、乳酸およびリンゴ酸から選ばれる1種類以上を含む有機酸である、請求項14に記載の医療デバイスの製造方法。 The acid is an organic acid containing at least one selected from acetic acid, citric acid, formic acid, ascorbic acid, trifluoromethanesulfonic acid, methanesulfonic acid, propionic acid, butyric acid, glycolic acid, lactic acid and malic acid. 15. The method for manufacturing the medical device according to 14. 前記溶液を加熱する工程が、オートクレーブを用いて行われる、請求項14または15に記載の医療デバイスの製造方法。 The method for manufacturing a medical device according to claim 14, wherein the step of heating the solution is performed using an autoclave.
JP2018542288A 2017-08-09 2018-08-07 Medical devices and their manufacturing methods Active JP6927230B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017154001 2017-08-09
JP2017154001 2017-08-09
PCT/JP2018/029531 WO2019031477A1 (en) 2017-08-09 2018-08-07 Medical device and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2019031477A1 true JPWO2019031477A1 (en) 2020-07-02
JP6927230B2 JP6927230B2 (en) 2021-08-25

Family

ID=65271081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542288A Active JP6927230B2 (en) 2017-08-09 2018-08-07 Medical devices and their manufacturing methods

Country Status (9)

Country Link
US (1) US11202849B2 (en)
EP (1) EP3666300B1 (en)
JP (1) JP6927230B2 (en)
KR (1) KR102570413B1 (en)
CN (1) CN110944686B (en)
MY (1) MY192895A (en)
SG (1) SG11201912840UA (en)
TW (1) TWI768095B (en)
WO (1) WO2019031477A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808376D0 (en) 2008-05-08 2008-06-18 Bristol Myers Squibb Co Wound dressing
GB0817796D0 (en) 2008-09-29 2008-11-05 Convatec Inc wound dressing
GB201020236D0 (en) 2010-11-30 2011-01-12 Convatec Technologies Inc A composition for detecting biofilms on viable tissues
CA2819475C (en) 2010-12-08 2019-02-12 Convatec Technologies Inc. Integrated system for assessing wound exudates
ES2748519T3 (en) 2010-12-08 2020-03-17 Convatec Technologies Inc Wound exudate system accessory
GB201115182D0 (en) 2011-09-02 2011-10-19 Trio Healthcare Ltd Skin contact material
GB2497406A (en) 2011-11-29 2013-06-12 Webtec Converting Llc Dressing with a perforated binder layer
CN105008611A (en) 2012-12-20 2015-10-28 康沃特克科技公司 Processing of chemically modified cellulosic fibres
TW201800069A (en) 2016-03-30 2018-01-01 康華特科技有限公司 Detecting microbial infection in wounds
AU2017243601A1 (en) 2016-03-30 2018-11-22 Acib Gmbh Detecting microbial infection in wounds
AU2017292876B2 (en) 2016-07-08 2022-01-20 Convatec Technologies Inc. Fluid collection apparatus
AU2017292028B2 (en) 2016-07-08 2023-03-02 Convatec Technologies Inc. Fluid flow sensing
BR112019000301A2 (en) 2016-07-08 2019-04-16 Convatec Technologies Inc. flexible negative pressure system
SG10201800855RA (en) * 2018-01-31 2019-08-27 Menicon Co Ltd Apparatus and Methods for Molding Rigid Ocular Lenses
KR20210102221A (en) * 2018-12-12 2021-08-19 도레이 카부시키가이샤 Medical device and manufacturing method thereof
EP3944003A4 (en) * 2019-05-20 2022-12-07 Toray Industries, Inc. Method for manufacturing medical device
JPWO2021039519A1 (en) 2019-08-27 2021-03-04
US11331221B2 (en) 2019-12-27 2022-05-17 Convatec Limited Negative pressure wound dressing
US11771819B2 (en) 2019-12-27 2023-10-03 Convatec Limited Low profile filter devices suitable for use in negative pressure wound therapy systems
US20230038845A1 (en) * 2020-01-10 2023-02-09 The Board Of Trustees Of The Leland Stanford Junior University Polymer Formulations for Anti-fouling Hydrogel Coatings
WO2021145249A1 (en) 2020-01-16 2021-07-22 東レ株式会社 Method for producing medical device
WO2022054706A1 (en) 2020-09-14 2022-03-17 東レ株式会社 Coated silicone member manufacturing method
JP2022164588A (en) * 2021-04-16 2022-10-27 ペガヴィジョン コーポレーション Contact lens and manufacturing method therefor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047365A (en) * 2000-05-10 2002-02-12 Toray Ind Inc Method of preparing surface-treated plastic molding
JP2004535227A (en) * 2001-05-30 2004-11-25 ノバルティス アクチエンゲゼルシャフト Diffusion control coatings in medical devices
JP2006513282A (en) * 2002-12-17 2006-04-20 ボシュ・アンド・ロム・インコーポレイテッド Surface treatment of medical devices
JP2008532060A (en) * 2005-02-14 2008-08-14 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Comfortable ophthalmic device and its manufacturing method
JP2011219764A (en) * 2000-05-10 2011-11-04 Toray Ind Inc Method for producing surface-treated plastic article
WO2013024856A1 (en) * 2011-08-17 2013-02-21 東レ株式会社 Medical device, and method for producing same
WO2013024857A1 (en) * 2011-08-17 2013-02-21 東レ株式会社 Medical device, and method for producing same
JP2017023374A (en) * 2015-07-22 2017-02-02 東レ株式会社 Medical device and manufacturing method therefor
WO2017146102A1 (en) * 2016-02-22 2017-08-31 東レ株式会社 Device and production method for same
WO2018207644A1 (en) * 2017-05-11 2018-11-15 東レ株式会社 Method for producing medical device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168112A (en) 1978-01-05 1979-09-18 Polymer Technology Corporation Contact lens with a hydrophilic, polyelectrolyte complex coating and method for forming same
US6428839B1 (en) * 2000-06-02 2002-08-06 Bausch & Lomb Incorporated Surface treatment of medical device
JP3936180B2 (en) 2001-12-07 2007-06-27 独立行政法人科学技術振興機構 Polymer gel lubrication method
US20040208983A1 (en) * 2003-04-16 2004-10-21 Hill Gregory A. Antimicrobial coatings for ophthalmic devices
US9052529B2 (en) * 2006-02-10 2015-06-09 Johnson & Johnson Vision Care, Inc. Comfortable ophthalmic device and methods of its production
ES2624960T3 (en) * 2006-09-29 2017-07-18 Johnson & Johnson Vision Care, Inc. Method of manufacturing ophthalmic devices used in the treatment of eye allergies
EP3015119A1 (en) 2006-10-30 2016-05-04 Novartis AG Method for applying a coating onto a silicone hydrogel lens
DE602007011317D1 (en) * 2006-12-15 2011-01-27 Bausch & Lomb SURFACE TREATMENT OF BIOMEDICAL DEVICES
US8480227B2 (en) 2010-07-30 2013-07-09 Novartis Ag Silicone hydrogel lenses with water-rich surfaces
WO2013024800A1 (en) 2011-08-17 2013-02-21 東レ株式会社 Low-moisture-content soft device and method for producing same
KR101900993B1 (en) 2011-08-17 2018-09-20 도레이 카부시키가이샤 Medical treatment device, composition for coating solution, and method for manufacturing medical treatment device
CA2855820C (en) 2011-11-15 2017-07-04 Novartis Ag A silicone hydrogel lens with a crosslinked hydrophilic coating
US9995946B2 (en) * 2014-06-13 2018-06-12 Pegavision Corporation Toric lens

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047365A (en) * 2000-05-10 2002-02-12 Toray Ind Inc Method of preparing surface-treated plastic molding
JP2011219764A (en) * 2000-05-10 2011-11-04 Toray Ind Inc Method for producing surface-treated plastic article
JP2004535227A (en) * 2001-05-30 2004-11-25 ノバルティス アクチエンゲゼルシャフト Diffusion control coatings in medical devices
JP2006513282A (en) * 2002-12-17 2006-04-20 ボシュ・アンド・ロム・インコーポレイテッド Surface treatment of medical devices
JP2008532060A (en) * 2005-02-14 2008-08-14 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド Comfortable ophthalmic device and its manufacturing method
WO2013024856A1 (en) * 2011-08-17 2013-02-21 東レ株式会社 Medical device, and method for producing same
WO2013024857A1 (en) * 2011-08-17 2013-02-21 東レ株式会社 Medical device, and method for producing same
JP2017023374A (en) * 2015-07-22 2017-02-02 東レ株式会社 Medical device and manufacturing method therefor
WO2017146102A1 (en) * 2016-02-22 2017-08-31 東レ株式会社 Device and production method for same
WO2018207644A1 (en) * 2017-05-11 2018-11-15 東レ株式会社 Method for producing medical device

Also Published As

Publication number Publication date
EP3666300B1 (en) 2023-02-15
CN110944686B (en) 2021-12-28
CN110944686A (en) 2020-03-31
US20200215226A1 (en) 2020-07-09
KR102570413B1 (en) 2023-08-28
EP3666300A1 (en) 2020-06-17
WO2019031477A1 (en) 2019-02-14
US11202849B2 (en) 2021-12-21
MY192895A (en) 2022-09-14
EP3666300A4 (en) 2021-05-05
JP6927230B2 (en) 2021-08-25
TWI768095B (en) 2022-06-21
SG11201912840UA (en) 2020-01-30
KR20200040233A (en) 2020-04-17
TW201919717A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
JP6927230B2 (en) Medical devices and their manufacturing methods
JP7163985B2 (en) Ophthalmic lens manufacturing method
EP2745854B1 (en) Medical device, and method for producing same
CN113785236B (en) Method for manufacturing medical device
JPWO2018207644A1 (en) Method of manufacturing medical device
TWI833012B (en) Medical device manufacturing methods
JP7338477B2 (en) Medical device and manufacturing method thereof
KR102500448B1 (en) Manufacturing method of medical device
WO2021039519A1 (en) Method for manufacturing medical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210719

R151 Written notification of patent or utility model registration

Ref document number: 6927230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151