WO2013024800A1 - Low-moisture-content soft device and method for producing same - Google Patents
Low-moisture-content soft device and method for producing same Download PDFInfo
- Publication number
- WO2013024800A1 WO2013024800A1 PCT/JP2012/070436 JP2012070436W WO2013024800A1 WO 2013024800 A1 WO2013024800 A1 WO 2013024800A1 JP 2012070436 W JP2012070436 W JP 2012070436W WO 2013024800 A1 WO2013024800 A1 WO 2013024800A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- low hydrous
- hydrous soft
- component
- mass
- Prior art date
Links
- 0 **c(c(C(c1c2cccc1)=O)c(c(*c1cccc([N+](C=C)[O-])c1)c1)C2=O)c1N=O Chemical compound **c(c(C(c1c2cccc1)=O)c(c(*c1cccc([N+](C=C)[O-])c1)c1)C2=O)c1N=O 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L29/00—Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
- A61L29/04—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
Definitions
- the present invention relates to a low hydrous soft device and a method for producing the same.
- resinous soft materials such as silicone rubber, PVC, nylon elastomer, LDPE, and hydrogel (hydrogel) have been used for various applications.
- a biotechnology device such as a medical device introduced into a living body or covering a living body surface, a cell culture sheet, a scaffold material for tissue regeneration, a facial pack, etc.
- Examples include beauty devices and daily necessities such as insoles.
- a hydrogel material may be used as a skin covering material that is one of medical devices.
- This hydrogel material contains a large amount of water (water content is about 25% to 80%). For this reason, when a skin covering material is applied to the skin, a phenomenon occurs in which moisture evaporates from the covering material, and the user may feel dry and feel uncomfortable. Moreover, since the hydrogel material contains a large amount of water, there is a concern about the risk of bacterial propagation.
- Patent Document 1 discloses a contact lens material made of a low water-containing silicone-containing elastomer.
- Patent Documents 2 and 3 a surface treatment for improving hydrophilicity is performed on a medical device made of silicone or a silicone hydrogel having a water content of about 10% by mass to about 80% by mass.
- a silicone medical device is disclosed.
- a soft device that is introduced into a living body or attached to the surface of a living body can be used by a user (patient, etc.) if it can give better properties such as hydrophilicity, slipperiness, and flexibility. ) Is more preferable because the feeling of use (wearing feeling) is improved and pain can be reduced.
- soft devices formed of soft materials soft devices that are used by being directly attached to the surface of a living body or inserted into a living body, in addition to hydrophilicity, can be easily slipped and used for a long time. It is difficult to dry, it is possible to maintain flexibility, and the shape change is small (that is, it is difficult to shrink).
- a soft device that is introduced into a living body or attached to the surface of a living body can be used by a user (patient, etc.) if it can give better properties such as hydrophilicity, slipperiness, and flexibility. ) Is more preferable because the feeling of use (wearing feeling) is improved and pain can be reduced.
- the present invention has been made in view of the above, and has good slipperiness in addition to hydrophilicity, and is difficult to dry even when used for a long time, and can maintain flexibility, and
- An object of the present invention is to provide a low hydrous soft device with little change in shape.
- Another object of the present invention is to provide a method for producing a low hydrous soft device, which can produce a low hydrous soft device comprising the low hydrous soft substrate having the above-mentioned properties at a low cost by a simple process.
- the present invention has the following configuration.
- the low hydrous soft device of the present invention comprises a soft member in which a layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface of the low hydrous soft substrate.
- the low hydrous soft device of the present invention is preferable for an embodiment used in a wet state (or a wet state) because the surface is provided with good wettability and slipperiness while being low hydrous soft. Applicable.
- the soft member may have a tube shape.
- the low hydrous soft device having such a shape can be suitably used as a medical device, for example.
- the medical device is an infusion tube, a gas transport tube, a drainage tube, a blood circuit, a coated tube, a catheter, a stent, a sheath, a tube connector, an access port, an endoscope coating material, or the like.
- the soft member may be in the form of a sheet or a film.
- the low hydrous soft device having such a shape can be suitably used as, for example, any one of a medical device, a biotechnology device, an agricultural / gardening device, a filtration device, an antifouling device, and a beauty device. .
- the medical device preferably includes a skin covering material, a wound covering material, a skin protecting material, or a skin drug carrier.
- the biotechnology device is a cell culture sheet or a tissue regeneration scaffold.
- the agriculture / gardening device is a moisturizing sheet.
- the filtration device is a gas-liquid separation membrane or the like.
- the soft member may have a storage container shape.
- the low hydrous soft device having such a shape can be suitably used as a medical device, for example.
- the medical device is a drug carrier, a cuff, or a drainage bag.
- the soft member may have a granular shape.
- the low hydrous soft device having such a shape can be suitably used as, for example, an agricultural / gardening device.
- the agriculture / gardening device is a granular moisturizing material for agriculture / gardening.
- the low hydrous soft base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B;
- Component A a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more
- Component B a polymerizable monomer having a fluoroalkyl group
- a polysiloxane compound is Si— It is a compound having an O—Si—O—Si bond.
- the present invention is also a method for producing a low hydrous soft device comprising the following steps 1 to 3 in this order; ⁇ Step 1> Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group Obtaining a molded body having a shape of ⁇ Step 2> A step of washing and removing excess basic polymer solution after contacting the molded body with the basic polymer solution; ⁇ Step 3> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
- component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more
- component B which is a polymerizable monomer having a fluoroal
- a low hydrous soft device having the above characteristics can be manufactured at a low cost by a simple process.
- FIG. 1 is a perspective view showing an infusion tube as an example of the low hydrous soft device of the present invention.
- FIG. 2 is a perspective view showing a distal end portion of a catheter which is an example of the low hydrous soft device of the present invention.
- FIG. 3 is a perspective view showing a part of a stent which is an example of the low hydrous soft device of the present invention.
- FIG. 4 is a perspective view showing a distal end portion of an endoscope which is an example of the low hydrous soft device of the present invention.
- FIG. 5 is a perspective view showing a part of a gas-liquid separation membrane which is an example of the low hydrous soft device of the present invention.
- FIG. 6 is a schematic view showing a moisturizing sheet as an example of the low hydrous soft device of the present invention.
- FIG. 7 is a perspective view showing a drug carrier which is an example of the low hydrous soft device of the present invention.
- FIG. 8 is a schematic view showing a granular moisturizing material which is an example of the low water content device of the present invention.
- FIG. 9 is a schematic diagram of an apparatus for measuring the dynamic friction force between a sample film and artificial leather.
- the low hydrous soft device of the present invention is, for example, a tube or circuit that is introduced into a living body to perform infusion, gas transportation, drainage, etc., and a tube that is introduced into the living body by enclosing a therapeutic instrument or observation instrument.
- the low hydrous soft device of the present invention has various forms such as a tube shape, a sheet shape, a film shape, a spherical crown shape, a storage container shape, and a granular shape, depending on applications.
- low water content means that the water content is 10% by mass or less.
- soft means that the tensile elastic modulus is 10 MPa or less.
- the moisture content is, for example, from the dry mass of the film-shaped test piece and the wet mass by the borate buffer, ⁇ (mass in the wet state) ⁇ (mass in the dry state) / Wet mass ⁇ .
- the wet state means a state in which the sample is immersed in pure water or borate buffer at room temperature (25 ° C.) for 24 hours or more.
- the measurement of physical properties in a wet state is carried out as soon as possible after removing the sample from pure water or borate buffer and wiping the surface moisture.
- the dry state means a state in which a wet sample is vacuum-dried at 40 ° C. for 16 hours.
- the degree of vacuum in the vacuum drying is 2 hPa or less.
- the measurement of physical property values in a dry state is performed as soon as possible after the vacuum drying.
- the borate buffer is a “salt solution” described in Example 1 of JP-T-2004-517163. Specifically, 8.48 g of sodium chloride, 9.26 g of boric acid, 1.0 g of sodium borate (sodium tetraborate decahydrate), and 0.10 g of ethylenediaminetetraacetic acid were dissolved in pure water to make 1000 mL. It is.
- the low hydrous soft device of the present invention is low hydrous
- the low hydrous soft device of the present invention when the low hydrous soft device of the present invention is, for example, a medical device used by being applied to the surface of a living body, it is applied to the surface of the living body. The user feels that the feeling of dryness is small and that the feeling of wearing is excellent.
- the low hydrous soft device of the present invention is low hydrous
- the moisture content is more preferably 5% or less, further preferably 2% or less, and most preferably 1% or less. If the water content is too high, there is a concern that the feeling of dryness may increase and the risk of bacterial growth increases, which is not preferable.
- the tensile elastic modulus of the low hydrous soft device of the present invention is preferably 0.01 to 5 MPa, more preferably 0.1 to 3 MPa, still more preferably 0.1 to 2 MPa, even more preferably 0.1 to 1 MPa, Most preferred is 0.1 to 0.6 MPa. If the tensile modulus is too small, it tends to be too soft and difficult to handle. If the tensile elastic modulus is too large, it tends to be too hard and the wearing feeling tends to be poor. When the tensile modulus is 2 MPa or less, good wearing feeling is obtained, and when it is 1 MPa or less, further wearing feeling is obtained, which is preferable. The tensile modulus is measured on a sample in a wet state with a borate buffer.
- the tensile elongation of the low hydrous soft device of the present invention is preferably 100% to 1000%, more preferably 200% to 700%. If the tensile elongation is small, the low hydrous soft device is easily broken, which is not preferable. When the tensile elongation is too large, the low hydrous soft device tends to be deformed, which is not preferable. Tensile elongation is measured on samples wet with borate buffer.
- the low hydrous soft device of the present invention has sufficient water retention and has the same softness and dryness as before storage even after storage for a predetermined time. Water retention is evaluated by touching with a finger and observing the state before and after storage in a predetermined temperature and humidity environment for a predetermined time.
- the dynamic contact angle with respect to the borate buffer (during advance, immersion speed: 0.1 mm / sec) is preferably 100 ° or less, more preferably 90 ° or less, and 80 ° or less. Further preferred.
- the dynamic contact angle is preferably lower, preferably 65 ° or less, more preferably 60 ° or less, further preferably 55 ° or less, still more preferably 50 ° or less, and most preferably 45 ° or less.
- the dynamic contact angle is measured on a sample wet with borate buffer.
- the low hydrous soft device of the present invention is a medical device that is used by being applied to the surface of a living body, for example, in order to prevent sticking to the skin of the wearer, the surface of the low hydrous soft device is used.
- the liquid film retention time is long.
- the liquid film holding time is the liquid film on the surface of the low hydrous soft device when the low hydrous soft device immersed in the borate buffer is pulled up from the liquid and held so that the surface is vertical in the air. It is the time that is kept without being cut.
- the liquid film holding time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
- the low hydrous soft device of the present invention is a medical device used by being inserted into a living body, for example, it is preferable that the surface of the low hydrous soft device has excellent slipperiness.
- the friction measured by the method shown in the examples of the present specification is small.
- the friction is preferably 60 gf (0.59 N) or less, more preferably 50 gf (0.49 N) or less, further preferably 40 gf (0.39 N) or less, and most preferably 30 gf (0.29 N) or less.
- the friction is preferably 5 gf (0.049 N) or more, more preferably 10 gf (0.098 N) or more. Friction is measured on samples wet with borate buffer.
- the antifouling property of the low hydrous soft device can be evaluated by mucin adhesion, lipid (methyl palmitate) adhesion, and artificial tear immersion test.
- the mucin adhesion amount is preferably 5 ⁇ g / cm 2 or less, more preferably 4 ⁇ g / cm 2 or less, and most preferably 3 ⁇ g / cm 2 or less.
- the low hydrous soft device of the present invention When the low hydrous soft device of the present invention is, for example, a medical device used by being attached to the surface of a living body, the low hydrous soft device preferably has high oxygen permeability.
- the oxygen permeability coefficient [ ⁇ 10 ⁇ 11 (cm 2 / sec) mLO 2 / (mL ⁇ hPa)] is preferably 50 to 2000, more preferably 100 to 1500, still more preferably 200 to 1000, and most preferably 300 to 700. . If the oxygen permeability is excessively increased, other physical properties such as mechanical properties may be adversely affected, which is not preferable.
- the oxygen permeability coefficient is measured on a dry sample.
- the low hydrous soft device of the present invention includes a molded body (hereinafter referred to as a base material) having a desired shape (for example, a tube shape, a sheet shape, a film shape, a storage container shape, a granular shape, etc.).
- a desired shape for example, a tube shape, a sheet shape, a film shape, a storage container shape, a granular shape, etc.
- a layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface.
- the base material is preferably composed mainly of a polymer of the following component A or a copolymer of the following component A and component B;
- Component A Polymer of Component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more
- Component B Polymerizable monomer having a fluoroalkyl group Means a component contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
- the number average molecular weight of component A is preferably 6000 or more.
- the inventors have found that when the number average molecular weight of component A is in this range, a low hydrous soft device excellent in mechanical properties such as flexibility, excellent wearing feeling and bending resistance can be obtained.
- the number average molecular weight of the component A polysiloxane compound is preferably 8000 or more because a low hydrous soft device having excellent mechanical properties such as bending resistance can be obtained.
- the number average molecular weight of component A is preferably in the range of 8000 to 100,000, more preferably in the range of 9000 to 70000, and still more preferably in the range of 10,000 to 50000.
- the number average molecular weight of component A is a polystyrene-equivalent number average molecular weight measured by a gel permeation chromatography method (GPC method) using chloroform as a solvent.
- GPC method gel permeation chromatography method
- the mass average molecular weight and the dispersity are also measured by the same method.
- a mass average molecular weight may be represented by Mw and a number average molecular weight may be represented by Mn.
- molecular weight 1000 may be described as 1 kD.
- the notation “Mw33 kD” represents “mass average molecular weight 33000”.
- Component A is a polysiloxane compound having a plurality of polymerizable functional groups per molecule.
- the number of polymerizable functional groups of component A may be two or more per molecule, but from the viewpoint that a softer (low elastic modulus) low hydrous soft device can be easily obtained, two per functional molecule. Is preferred.
- a structure having a polymerizable functional group at both ends of the molecular chain is preferable.
- polymerizable functional group of Component A a functional group capable of radical polymerization is preferable, and one having a carbon-carbon double bond is more preferable.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- (meth) acryloyl represents both methacryloyl and acryloyl, and the same applies to terms such as (meth) acryl and (meth) acrylate.
- Component A preferably has the structure of the following formula (A1).
- X 1 and X 2 each independently represent a polymerizable functional group.
- R 1 to R 8 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
- L 1 and L 2 each independently represents a divalent group.
- a and b each independently represents an integer of 0 to 1500. However, a and b are not 0 at the same time.
- X 1 and X 2 are preferably radical polymerizable functional groups, preferably those having a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- R 1 to R 8 include hydrogen; a C 1-20 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group, etc.
- Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluorop Propyl group, a pentafluoropropyl group, tetradecanoyl per
- L 1 and L 2 are preferably divalent groups having 1 to 20 carbon atoms.
- the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (A1) has an advantage that it can be easily obtained with high purity.
- the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
- the following formula (LE1) ⁇ (LE12) the terminal of the left is attached to the polymerizable functional group X 1 or X 2, is depicted as an end of the right side is attached to a silicon atom.
- a and b each independently represent the number of each repeating unit. a and b each independently preferably ranges from 0 to 1500.
- the total value of a and b (a + b) is preferably 80 or more, more preferably 100 or more, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
- R 1 to R 8 are all methyl groups
- b 0, and a is preferably 80 to 1500, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
- the value of a is determined by the molecular weight of the polysiloxane compound of component A.
- the component A of the present invention may be used alone or in combination of two or more.
- Component B which is a polymerizable monomer having a fluoroalkyl group is preferable.
- Component B has water- and oil-repellent properties due to a decrease in critical surface tension due to the fluoroalkyl group, and thereby the surface of a low hydrous soft device is contaminated by components such as proteins and lipids in body fluids of living organisms. There is an effect to suppress that.
- Component B has an effect of giving a low hydrous soft device that is flexible and excellent in wearing feeling and excellent in mechanical properties such as bending resistance.
- fluoroalkyl group of Component B are trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluoro group.
- it is a C2-C8 fluoroalkyl group such as a trifluoroethyl group, a tetrafluoropropyl group, a hexafluoroisopropyl group, an octafluoropentyl group, and a dodecafluorooctyl group, most preferably trifluoroethyl group It is a group.
- the polymerizable functional group of Component B is preferably a radical polymerizable functional group, more preferably a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
- acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
- (Meth) acrylic acid fluoroalkyl ester is most preferred as component B because it is highly effective in obtaining a low hydrous soft device excellent in mechanical properties such as bending resistance and flexibility.
- Specific examples of such (meth) acrylic acid fluoroalkyl esters include trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, trifluoropropyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, and pentafluoropropyl.
- Trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, octafluoropentyl (meth) acrylate, and dodecafluorooctyl (meth) acrylate are preferably used. Most preferred is trifluoroethyl (meth) acrylate.
- the B component of the present invention may be used alone or in combination of two or more.
- the content of Component B in the copolymer is preferably 10 to 500 parts by weight, more preferably 20 to 400 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of Component A.
- the amount of component B used is too small, the resulting low hydrous soft device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
- component C a copolymer obtained by further copolymerizing a component different from component A and component B (hereinafter referred to as component C) may be used as the copolymer used for the substrate.
- Component C is preferably one that lowers the glass transition point of the copolymer to room temperature or below 0 ° C. Since these reduce the cohesive energy, they have the effect of imparting rubber elasticity and softness to the copolymer.
- the polymerizable functional group of Component C is preferably a radical polymerizable functional group, and more preferably has a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid
- acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
- component C suitable for improving mechanical properties such as flexibility and bending resistance are (meth) acrylic acid alkyl esters, preferably (meth) acrylic acid having an alkyl group having 1 to 20 carbon atoms. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-heptyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate , Isodecyl (meth) acrylate, n-lauryl (meth)
- (Meth) acrylate, n-octyl (meth) acrylate, n-lauryl (meth) acrylate, and n-stearyl (meth) acrylate are more preferred. If the carbon number of the alkyl group is too large, the transparency of the resulting low hydrous soft device may be lowered, which is not preferable.
- the monomers described below can be copolymerized as desired.
- Examples of the monomer for improving mechanical properties include aromatic vinyl compounds such as styrene, tert-butylstyrene, and ⁇ -methylstyrene.
- Examples of the monomer for improving the surface wettability include methacrylic acid, acrylic acid, itaconic acid, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, glycerol methacrylate, polyethylene Glycol methacrylate, N, N-dimethylacrylamide, N-methylacrylamide, dimethylaminoethyl methacrylate, methylenebisacrylamide, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinyl-N- And methyl acetamide.
- Examples of monomers for improving the dimensional stability of low hydrous soft devices include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, Bisphenol A dimethacrylate, vinyl methacrylate, acrylic methacrylate and acrylates corresponding to these methacrylates, divinylbenzene, triallyl isocyanurate and the like can be mentioned.
- Component C may be used alone or in combination of two or more.
- Component C is preferably used in an amount of 0.001 to 400 parts by weight, more preferably 0.01 to 300 parts by weight, still more preferably 0.01 to 200 parts by weight, and most preferably 0 to 100 parts by weight of Component A. 0.01 to 30 parts by mass.
- amount of component C used is too small, it is difficult to obtain the effect expected of component C.
- amount of component C used is too large, the resulting low hydrous soft device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
- component M is “a monofunctional monomer having one polymerizable functional group and a siloxanyl group per molecule”.
- the siloxanyl group means a group having a Si—O—Si bond.
- the siloxanyl group of component M is preferably linear. If the siloxanyl group is linear, the shape recoverability of the resulting low hydrous soft device is improved.
- the term “linear” refers to a structure represented by a single linearly connected Si— (O—Si) n ⁇ 1 —O—Si bond starting from a silicon atom bonded to a group having a polymerizable group. (Where n represents an integer of 2 or more). In order for the obtained low hydrous soft device to obtain sufficient shape recoverability, n is preferably an integer of 3 or more, more preferably 4 or more, further preferably 5 or more, and most preferably 6 or more.
- “the siloxanyl group is linear” means that the siloxanyl group has the above linear structure and does not have a Si—O—Si bond that does not satisfy the conditions of the linear structure. means.
- the base material is preferably composed mainly of a copolymer containing the component M having a number average molecular weight of 300 to 120,000.
- the main component means a component that is contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
- the number average molecular weight of component M is preferably 300 to 120,000. When the number average molecular weight of the component M is in this range, a base material that is flexible (low elastic modulus), excellent in wearing feeling, and excellent in mechanical properties such as bending resistance can be obtained.
- the number average molecular weight of component M is more preferably 500 or more because a base material excellent in mechanical properties such as bending resistance and excellent in shape recoverability can be obtained.
- the number average molecular weight of the component M is more preferably in the range of 1000 to 25000, and still more preferably in the range of 5000 to 15000.
- the number average molecular weight of the component M When the number average molecular weight of the component M is too small, mechanical properties such as bending resistance and shape recovery tend to be low, and particularly when the number is less than 500, bending resistance and shape recovery may be low. When the number average molecular weight of the component M is too large, flexibility and transparency tend to decrease, which is not preferable.
- a radical polymerizable functional group is preferable, and one having a carbon-carbon double bond is more preferable.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- Component M preferably has a structure represented by the following formula (ML1).
- X 3 represents a polymerizable functional group.
- R 11 to R 19 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms.
- L 3 represents a divalent group.
- c and d each independently represents an integer of 0 to 700. However, c and d are not 0 at the same time.
- X 3 is preferably a radical polymerizable functional group, and preferably has a carbon-carbon double bond.
- preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, ⁇ -alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
- the polymerizable functional group of Component M is more preferably copolymerizable with the polymerizable functional group of Component A, since a low hydrous soft device with good mechanical properties can be easily obtained. Since it is easy to obtain a low hydrous soft device having good surface characteristics when A is uniformly copolymerized, it is more preferably the same as the polymerizable functional group of Component A.
- R 11 to R 19 are hydrogen; those having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group and the like.
- Alkyl group phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluo Propyl group, a pentafluoropropyl group, tetradecanoyl perflu
- L 3 is preferably a divalent group having 1 to 20 carbon atoms.
- the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (ML1) has an advantage of being easily obtained with high purity, and among them, the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred.
- the following formula (LE1) ⁇ (LE12) the terminal of the left is attached to the polymerizable functional group X 3, is depicted as an end of the right side is attached to a silicon atom.
- the total value of c and d (c + d) is preferably 3 or more, more preferably 10 or more, more preferably 10 to 500, more preferably 30 to 300, and still more preferably 50 to 200.
- c is preferably 3 to 700, more preferably 10 to 500, more preferably 30 to 300, and further preferably 50 to 200. In this case, the value of c is determined by the molecular weight of component M.
- the substrate of the low hydrous soft device of the present invention only one type of component M may be used, or two or more types may be used in combination.
- the base material of the low hydrous soft device of the present invention contains an appropriate amount of the component M
- the crosslink density is reduced, the degree of freedom of the polymer is increased, and a moderately soft base material having a low elastic modulus is realized. be able to.
- a crosslinking density will become high and a base material will become hard.
- the mass ratio of the component M and the component A is such that the component M is 5 to 200 parts by mass, more preferably 7 to 150 parts by mass with respect to 100 parts by mass of the component A.
- the most preferred is 10 to 100 parts by mass.
- content of the component M is less than 5 mass parts with respect to 100 mass parts of component A, a crosslinking density will become high and a base material will become hard.
- content of Component M exceeds 200 parts by mass with respect to 100 parts by mass of Component A, it is not preferable because it becomes too soft and easily broken.
- the substrate contains 5% by mass or more of silicon atoms in order to obtain strong adhesion without using a covalent bond with the polymer coated on the surface and to have good oxygen permeability.
- the silicon atom content (% by mass) is calculated based on the dry substrate mass (100% by mass).
- the silicon atom content of the substrate is preferably 5% by mass to 36% by mass, more preferably 7% by mass to 30% by mass, further preferably 10% by mass to 30% by mass, and most preferably 12% by mass to 26% by mass. . If the content of silicon atoms is too large, the tensile elastic modulus may increase, which is not preferable.
- the content of silicon atoms in the substrate can be measured by the following method.
- the sufficiently dried substrate is weighed in a platinum crucible, sulfuric acid is added, and heat ashing is performed with a hot plate and a burner.
- the ashed product is melted with sodium carbonate, and water is added to dissolve it by heating.
- nitric acid is added and the volume is adjusted with water.
- a silicon atom is measured by ICP emission spectrometry, and content in a base material is calculated
- the low hydrous soft device of the present invention is a medical device used, for example, on the surface of an optical product inserted into a living body (for example, a camera provided at the distal end of an endoscope), it is preferable that the transparency is high. As a criterion for transparency, it is preferable that the material is transparent and free from turbidity when visually observed. Furthermore, when the low hydrous soft device is observed with a projector, it is preferable that little or no turbidity is observed, and most preferable that no turbidity is observed.
- the dispersity (the value obtained by dividing the mass average molecular weight by the number average molecular weight) is preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and most preferably 1.5 or less.
- the dispersion degree of component A is small, the compatibility with other components is improved, the transparency of the resulting low hydrous soft device is improved, and the extractable components contained in the resulting low hydrous soft device are reduced. Advantages such as reduction in shrinkage due to molding of the base material of the low hydrous soft device occur.
- the shrinkage rate associated with the molding of the base material is evaluated by, for example, the average value of the molding ratios of the corresponding four sides calculated by the following equation when the base material is in the form of a film and the base material is molded by inter-plate polymerization. .
- the “mold cavity” is a cavity having a shape corresponding to the shape of the film, which is used for molding a film, and is usually a cavity composed of two plates and a gasket. is there.
- the diameter is the diameter of a circle formed by the edge of the spherical crown.
- the molding ratio is closer to 1, it becomes easier to stably produce a high-quality, low hydrous soft device.
- the molding ratio is preferably in the range of 0.85 to 2.0, more preferably in the range of 0.9 to 1.5, and most preferably in the range of 0.91 to 1.3.
- the shrinkage ratio due to drying of the low hydrous soft device of the present invention is, for example, when the substrate is in a film shape, on the four sides of the test piece in a wet state (before storage) with a borate buffer solution.
- the length and the length of the four sides of the test piece after storing the test piece in a predetermined environment for a predetermined time are measured and evaluated by the average value of the shrinkage rate of each corresponding side calculated by the following equation.
- Shrinkage rate of one side (%) ⁇ (length of one side before storage) ⁇ (length of one side after storage) ⁇ / (Length of one side before storage) x 100
- the diameter is the diameter of a circle formed by the edge of the spherical crown.
- the shrinkage ratio is preferably 20 or less, more preferably 10 or less, even more preferably 5 or less, and most preferably less than 1 because the shape change of the molded body is small.
- the low hydrous soft device of the present invention may further contain components such as an ultraviolet absorber, a dye, a colorant, a wetting agent, a slip agent, a pharmaceutical and nutritional supplement component, a compatibilizing component, an antibacterial component, and a release agent. Good. Any of the above-described components can be contained in a non-reactive form or a copolymerized form.
- the skin of the wearer can be protected from harmful ultraviolet rays by using a low hydrous soft device as a skin covering material.
- a low hydrous soft device is colored, identification becomes easy, and the convenience at the time of handling improves.
- any of the above-described components can be contained in a non-reactive form or a copolymerized form.
- the above components are copolymerized, that is, when a UV absorber having a polymerizable group or a colorant having a polymerizable group is used, the component is copolymerized and immobilized on the base material, so that elution is possible This is preferable because the property is reduced.
- the base material is preferably composed of a component selected from an ultraviolet absorber and a colorant, and two or more other components C (hereinafter referred to as component Ck).
- component Ck is selected from at least one kind of (meth) acrylic acid alkyl ester having 1 to 10 carbon atoms and at least one kind from the monomer for improving the surface wettability.
- the preferred amount to be used is 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and even more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of Component A. It is.
- the preferred amount of use is 0.00001 to 5 parts by weight, more preferably 0.0001 to 1 part by weight, and still more preferably 0.0001 to 0.5 parts by weight with respect to 100 parts by weight of Component A Part.
- the amount of component Ck used is preferably 0.1 to 100 parts by weight, more preferably 1 to 80 parts by weight, and still more preferably 2 to 50 parts by weight with respect to 100 parts by weight of component A.
- the amount of the component Ck used is too small, there is a tendency that it becomes difficult to obtain a transparent substrate due to insufficient affinity with the ultraviolet absorber or the colorant. Even when the amount of component Ck used is too large, the resulting low hydrous soft device tends to be cloudy or has insufficient mechanical properties such as bending resistance, which is not preferable.
- the substrate of the low hydrous soft device of the present invention preferably has a degree of crosslinking in the range of 2.0 to 18.3.
- the degree of crosslinking is represented by the following formula (Q1).
- Qn represents the total millimolar amount of monomers having n polymerizable groups per molecule
- Wn represents the total mass (kg) of monomers having n polymerizable groups per molecule.
- the degree of cross-linking of the base material of the present invention is less than 2.0, it is too soft and difficult to handle, and if it exceeds 18.3, it is too hard and the feeling of wearing or use tends to be unfavorable.
- a more preferable range of the degree of crosslinking is 3.5 to 16.0, a further preferable range is 8.0 to 15.0, and a most preferable range is 9.0 to 14.0.
- a known method can be used as a method for producing a molded body such as a tube shape, a sheet shape, a film shape, a spherical crown shape (lens shape), a storage container shape, or a granular shape Can be used.
- a method of once obtaining a round bar or a plate-like polymer and processing it into a desired shape by cutting or the like, a mold polymerization method, a spin cast polymerization method, or the like can be used.
- a low hydrous soft device is obtained by cutting, freezing cutting at a low temperature is suitable.
- a method for producing a sheet-like or film-like low hydrous soft device by polymerizing a raw material composition containing Component A by a mold polymerization method will be described below.
- a raw material composition is filled in a gap between two mold members having a certain shape.
- the material for the mold member include resin, glass, ceramics, and metal.
- an optically transparent material is preferable, and therefore resin or glass is preferably used.
- a gasket may be used to give a certain thickness to the low hydrous soft device and prevent liquid leakage of the raw material composition filled in the gap.
- the mold filled with the raw material composition in the gap is subsequently irradiated with active light such as ultraviolet rays, visible light, or a combination thereof, or heated in an oven or a liquid tank, etc. Is polymerized.
- active light such as ultraviolet rays, visible light, or a combination thereof
- Is polymerized There may be a method in which two polymerization methods are used in combination. That is, heat polymerization can be performed after photopolymerization, or photopolymerization can be performed after heat polymerization.
- light containing ultraviolet light such as light from a mercury lamp or ultraviolet lamp (for example, FL15BL, Toshiba) is irradiated for a short time (usually 1 hour or less).
- the temperature of the composition is gradually raised from around room temperature, and the temperature is raised to a temperature of 60 ° C. to 200 ° C. over several hours to several tens of hours. In order to maintain uniform uniformity and quality and improve reproducibility.
- a thermal polymerization initiator or a photopolymerization initiator typified by a peroxide or an azo compound in order to facilitate the polymerization.
- thermal polymerization those having optimum decomposition characteristics at a desired reaction temperature are selected.
- azo initiators and peroxide initiators having a 10-hour half-life temperature of 40 to 120 ° C. are suitable.
- Photoinitiators for photopolymerization include carbonyl compounds, peroxides, azo compounds, sulfur compounds, halogen compounds, and metal salts. These polymerization initiators are used alone or in combination.
- the amount of the polymerization initiator is preferably up to 5% by mass with respect to the polymerization mixture.
- a polymerization solvent can be used.
- Various organic and inorganic solvents can be used as the solvent.
- solvents include water; methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, t-butyl alcohol, t-amyl alcohol, tetrahydrolinalol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as tetraethylene glycol and polyethylene glycol; methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol di Glycol ether solvents such as chill ether, triethylene glycol dimethyl ether and polyethylene glycol dimethyl ether; ester solvents
- the low hydrous soft device of the present invention requires that a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface.
- a coating layer By having the coating layer, good wettability and easy slipperiness are imparted to the surface of the low hydrous soft device, and an excellent wearing feeling can be imparted or an unpleasant feeling of use can be suppressed.
- the inventors of the present invention provide a coating layer comprising an acidic polymer and a basic polymer on the surface even when the low hydrous soft device of the present invention is low hydrous and soft and the substrate is neutral. It has been found that it is possible to impart sufficient wettability, slipperiness and antifouling property to the surface of a low hydrous soft device by forming the film.
- the coating layer of the low hydrous soft device of the present invention does not need to have a covalent bond with the substrate. It is preferable that the coating layer does not have a covalent bond with the base material because it can be manufactured in a simple process. Even if the coating layer does not have a covalent bond with the substrate, it has practical durability.
- the coating layer can be formed by treating the substrate surface with an acidic polymer solution and a basic polymer solution described in detail below.
- the solution is preferably an aqueous solution.
- An aqueous solution is a solution containing water as a main component.
- the coating layer is preferably composed of one or more kinds of acidic polymers and one or more kinds of basic polymers. It is more preferable to use two or more kinds of acidic polymers or two or more kinds of basic polymers because properties such as slipperiness and antifouling properties are easily expressed on the surface of a low hydrous soft device. In particular, when two or more kinds of acidic polymers and one or more kinds of basic polymers are used, the tendency becomes stronger, which is more preferable.
- the coating layer is preferably formed by performing treatment with one or more acidic polymer solutions one or more times and treatment with one or more basic polymer solutions one or more times.
- one type of polymer means a group of polymers produced by one synthesis reaction.
- the number of polymers synthesized by changing the compounding ratio is not one.
- the coating layer is preferably treated 1 to 5 times, more preferably 1 to 3 times, and still more preferably 1 each of the treatment with one or more acidic polymer solutions and the treatment with one or more basic polymer solutions. Formed on the surface of the substrate by performing twice. The number of treatments with the acidic polymer solution and the number of treatments with the basic polymer solution may be different.
- the treatment with the acidic polymer solution and the treatment with the basic polymer solution can impart excellent wettability and slipperiness with a very small number of times of 2 or 3 times in total. This is very important industrially from the viewpoint of shortening the manufacturing process.
- the treatment with the acidic polymer solution is performed once or twice, and the treatment with the basic polymer solution is performed once or twice, for a total of two or three times. It is preferable that it is formed by performing.
- the coating layer is formed by performing the treatment with two kinds of acidic polymer solutions once and the treatment with the basic polymer solution once, for a total of three times.
- the inventors have also confirmed that the wettability and the slipperiness are hardly observed when the coating layer contains only one of the acidic polymer and the basic polymer.
- the basic polymer a homopolymer or copolymer having a plurality of basic groups along the polymer chain can be suitably used.
- the basic group an amino group and a salt thereof are preferable.
- suitable examples of such basic polymers include poly (allylamine), poly (vinylamine), poly (ethyleneimine), poly (vinylbenzyltrimethylamine), polyaniline, poly (aminostyrene), poly (N, N Amino group-containing (meth) acrylate polymers such as -dialkylaminoethyl methacrylate), amino group-containing (meth) acrylamide polymers such as poly (N, N-dimethylaminopropylacrylamide), and salts thereof.
- copolymers that is, a copolymer of basic monomers constituting the above basic polymer, or a copolymer of a basic monomer and another monomer
- these copolymers are also preferably used. be able to.
- the basic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability. Most preferred are monomers having a (meth) acryloyl group.
- suitable basic monomers constituting the copolymer include allylamine, vinylamine (N-vinylcarboxylic acid amide as a precursor), vinylbenzyltrimethylamine, amino group-containing styrene, amino group-containing (meth) acrylate. Amino group-containing (meth) acrylamide, and salts thereof.
- amino group-containing (meth) acrylates amino group-containing (meth) acrylamides, and salts thereof are more preferable because of their high polymerizability.
- N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide And their salts are most preferred.
- the basic polymer may be a polymer having a quaternary ammonium structure.
- the polymer compound having a quaternary ammonium structure when used for coating of a low hydrous soft device, it can impart antimicrobial properties to the low hydrous soft device.
- the acidic polymer a homopolymer or copolymer having a plurality of acidic groups along the polymer chain can be suitably used.
- the group having acidity a carboxyl group, a sulfonic acid group, and a salt thereof are preferable, and a carboxyl group and a salt thereof are most preferable.
- suitable examples of such acidic polymers include polymethacrylic acid, polyacrylic acid, poly (vinyl benzoic acid), poly (thiophene-3-acetic acid), poly (4-styrene sulfonic acid), polyvinyl sulfonic acid, Poly (2-acrylamido-2-methylpropanesulfonic acid) and salts thereof.
- these copolymers that is, copolymers of acidic monomers constituting the acidic polymer, or copolymers of acidic monomers and other monomers
- these copolymers that is, copolymers of acidic monomers constituting the acidic polymer, or copolymers of
- the acidic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability.
- Monomers having an acryloyl group are most preferred.
- suitable acidic monomers constituting the copolymer include (meth) acrylic acid, vinyl benzoic acid, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and these It is salt. Of these, (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof are more preferable, and (meth) acrylic acid and salts thereof are most preferable.
- At least one of the basic polymer and the acidic polymer is a polymer having a group selected from an amide group and a hydroxyl group.
- the basic polymer and / or the acidic polymer has an amide group, it is preferable because a surface having not only wettability but also slipperiness can be formed.
- the basic polymer and / or the acidic polymer has a hydroxyl group, it is preferable because a surface excellent in not only wettability but also antifouling property against body fluids can be formed.
- the acidic polymer and the basic polymer are polymers having a group selected from a hydroxyl group and an amide group. That is, it is preferable that the low hydrous soft device contains two or more selected from an acidic polymer having a hydroxyl group, a basic polymer having a hydroxyl group, an acidic polymer having an amide group, and a basic polymer having an amide group. In this case, it is preferable because the effect of forming a slippery surface or the effect of forming a surface excellent in antifouling property against body fluids can be more remarkably exhibited.
- the coating layer contains at least one selected from an acidic polymer having a hydroxyl group and a basic polymer having a hydroxyl group, and at least one selected from an acidic polymer having an amide group and a basic polymer having an amide group. More preferably. In this case, it is preferable because both the effect of forming a slippery surface and the effect of forming a surface excellent in antifouling property against body fluids can be exhibited.
- Examples of the basic polymer having an amide group include polyamides having an amino group, partially hydrolyzed chitosan, and a copolymer of a basic monomer and a monomer having an amide group.
- Examples of the acidic polymer having an amide group include a polyamide having a carboxyl group and a copolymer of an acidic monomer and a monomer having an amide group.
- Examples of the basic polymer having a hydroxyl group include an aminopolysaccharide such as chitin, a copolymer of a basic monomer and a monomer having a hydroxyl group, and the like.
- Examples of the acidic polymer having a hydroxyl group include polysaccharides having acidic groups such as hyaluronic acid, chondroitin sulfate, carboxymethylcellulose, and carboxypropylcellulose, and copolymers of acidic monomers and monomers having amide groups.
- a monomer having an amide group a monomer having a (meth) acrylamide group and N-vinylcarboxylic acid amide (including cyclic ones) are preferable from the viewpoint of ease of polymerization.
- Preferable examples of such monomers include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N, N-dimethylacrylamide, N, N-diethyl Mention may be made of acrylamide, N-isopropylacrylamide, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, and acrylamide. Among these, N-vinylpyrrolidone and N, N-dimethylacrylamide are preferable from the viewpoint of slipperiness, and N, N-dimethylacrylamide is most preferable.
- the monomer having a hydroxyl group examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, glycerol (meth) acrylate, caprolactone-modified 2-hydroxy
- examples thereof include ethyl (meth) acrylate, N- (4-hydroxyphenyl) maleimide, hydroxystyrene, and vinyl alcohol (a carboxylic acid vinyl ester as a precursor).
- a monomer having a (meth) acryloyl group is preferable from the viewpoint of ease of polymerization, and a (meth) acrylic acid ester monomer is more preferable.
- hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and glycerol (meth) acrylate are preferred in terms of antifouling properties against tears, and hydroxyethyl (meth) acrylate is the most preferred. preferable.
- Preferred examples of the copolymer of the basic monomer and the monomer having an amide group include N, N-dimethylaminoethyl methacrylate / N-vinylpyrrolidone copolymer, N, N-dimethylaminoethyl methacrylate / N, N-dimethyl.
- Most preferred is N, N-dimethylaminopropylacrylamide / N, N-dimethylacrylamide copolymer.
- the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / N-vinylpyrrolidone copolymer, (meth) acrylic acid / N, N-dimethylacrylamide copolymer, 2- Acrylamide-2-methylpropanesulfonic acid / N-vinylpyrrolidone copolymer and 2-acrylamido-2-methylpropanesulfonic acid / N, N-dimethylacrylamide copolymer. Most preferred is a (meth) acrylic acid / N, N-dimethylacrylamide copolymer.
- the copolymer of the basic monomer and the monomer having a hydroxyl group include N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer, N, N-dimethylaminoethyl methacrylate / glycerol (meth).
- Acrylate copolymers N, N-dimethylaminopropylacrylamide / hydroxyethyl (meth) acrylate, and N, N-dimethylaminopropylacrylamide / glycerol (meth) acrylate copolymers.
- Most preferred is N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer.
- the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer, (meth) acrylic acid / glycerol (meth) acrylate copolymer, 2 -Acrylamido-2-methylpropanesulfonic acid / hydroxyethyl (meth) acrylate copolymer and 2-acrylamido-2-methylpropanesulfonic acid / glycerol (meth) acrylate copolymer. Most preferred is a (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer.
- the copolymerization ratio is [mass of basic monomer or acidic monomer] / [mass of other monomer] of 1/99 to 99 / 1 is preferable, 2/98 to 90/10 is more preferable, and 10/90 to 80/20 is still more preferable.
- the copolymerization ratio is within this range, functions such as easy slipperiness and antifouling property against tears are easily developed.
- the molecular weight of the acidic polymer and the basic polymer can be changed to change various properties of the coating layer, such as thickness. Specifically, increasing the molecular weight generally increases the thickness of the coating layer. However, if the molecular weight is too large, handling may increase due to increased viscosity. Therefore, the acidic polymer and basic polymer used in the present invention preferably have a molecular weight of 2000 to 150,000. More preferably, the molecular weight is 5000 to 100,000, and even more preferably 75,000 to 100,000.
- the molecular weight of the acidic polymer and the basic polymer is a mass average molecular weight in terms of polyethylene glycol measured by a gel permeation chromatography method (aqueous solvent).
- coating layer can be accomplished in a number of ways, as described, for example, in WO 99/35520, WO 01/57118 or US Patent Publication No. 2001-0045676.
- a layer composed of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface. May be cross-linked. Moreover, in the low hydrous soft device of this invention, at least one part may be bridge
- crosslinking means that the polymers are bonded by creating a bridge structure using their own functional groups or crosslinking agents.
- the cross-linking can be caused by irradiating radiation with at least an acidic polymer and a basic polymer attached to the substrate.
- the radiation is preferably various ion beams, electron beams, positron beams, X-rays, ⁇ rays and neutron beams, and more preferably electron beams and ⁇ rays. Most preferred is gamma rays.
- the surface of the low hydrous soft device is imparted with good wettability and easy slipperiness, giving an excellent wearing feeling. be able to.
- cross-linking occurs inside the base material due to irradiation and the low hydrous soft device becomes too hard. In that case, excessive crosslinking inside the substrate can be suppressed by appropriately replacing component A in the substrate with component M and copolymerizing.
- the low hydrous soft device of the present invention is formed on the surface of a molded body (base material) having a desired shape (for example, tube shape, sheet shape, film shape, spherical crown shape (lens shape), storage container shape, granular shape, etc.).
- a desired shape for example, tube shape, sheet shape, film shape, spherical crown shape (lens shape), storage container shape, granular shape, etc.
- One or more acidic polymer solutions and one or more basic polymer solutions are applied 1 to 5 times, more preferably 1 to 3 times, and more preferably 1 to 2 times, respectively, to form a coating layer. Is obtained.
- the number of application steps of the acidic polymer solution and the application step of the basic polymer solution may be different.
- the inventors of the present invention have a very small number of coating steps of one or more acidic polymer solutions and one or more basic polymer solutions in total or twice or three times in the method for producing a low hydrous soft device of the present invention. It has been found that excellent wettability and slipperiness can be imparted by the number of times. This is very important industrially from the viewpoint of shortening the manufacturing process.
- the inventors developed wettability and slipperiness only by performing only one of the application step of the acidic polymer solution or the application step of the basic solution once. It is confirmed at the same time that almost no is seen.
- the coating layer is preferably applied in a configuration selected from the following configurations 1 to 4.
- the following notation indicates that each coating process is performed on the surface of the molded body in order from the left.
- Configuration 1 Application of basic polymer solution / Application of acidic polymer solution
- Configuration 2 Application of acidic polymer solution / Application of basic polymer solution
- Configuration 3 Application of basic polymer solution / Application of acidic polymer solution /
- Application 4 Application of acidic polymer solution / Application of basic polymer solution / Application of acidic polymer solution
- the low hydrous soft devices obtained by the structures 1 and 4 have particularly excellent wettability. More preferred to show.
- the surface of the substrate may be untreated or treated.
- that the surface of the substrate has been treated means that the surface of the substrate is subjected to surface treatment or surface modification by a known method.
- Suitable examples of the surface treatment or surface modification include plasma treatment, chemical modification, chemical functionalization, and plasma coating.
- One preferred embodiment of the method for producing a low hydrous soft device of the present invention comprises the following steps 1 to 3 in this order.
- Step 1> Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group
- ⁇ Step 2> A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
- ⁇ Step 3> A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
- a layer composed of the acidic polymer and the basic polymer can be formed on the molded body. Thereafter, it is preferable to sufficiently wash away excess polymer.
- various coating methods such as a dipping method (dip method), a brush coating method, a spray coating method, a spin coating method, a die coating method, and a squeegee method can be used. Applicable.
- the immersion time can be changed according to many factors.
- the immersion of the shaped body in the acidic polymer solution or the basic polymer solution is preferably performed for 1 to 30 minutes, more preferably 2 to 20 minutes, and most preferably 1 to 5 minutes.
- the concentration of the acidic polymer solution and the basic polymer solution can be varied depending on the nature of the acidic polymer or basic polymer, the desired coating layer thickness, and many other factors.
- the concentration of the preferred acidic polymer or basic polymer is 0.001 to 10% by mass, more preferably 0.005 to 5% by mass, and most preferably 0.01 to 3% by mass.
- the pH of the acidic polymer solution and the basic polymer solution is preferably maintained at 2 to 5, more preferably 2.5 to 4.5.
- the washing and removal of excess acidic polymer and basic polymer is generally performed by rinsing the molded body after coating with clean water or an organic solvent.
- the rinsing is preferably performed by immersing the molded body in water or an organic solvent, or by exposing it to a water flow or an organic solvent flow. Although rinsing may be completed in one step, it has been found that it is more efficient to perform the rinsing step multiple times.
- Rinsing is preferably performed in steps 2-5. It is preferred to spend 1-3 minutes for each immersion in the rinse solution.
- Pure water is also preferred as the rinsing solution, but is preferably buffered to a pH of 2-7, more preferably 2-5, and even more preferably 2.5-4.5 to increase the adhesion of the coating layer.
- An aqueous solution is also preferably used.
- a step of drying or removing the excess rinsing solution may be included.
- the molded body can be dried to some extent by simply leaving the molded body in an air atmosphere, but it is preferable to enhance drying by sending a gentle air flow to the surface.
- the flow rate of the air flow can be adjusted as a function of the strength of the material to be dried and the mechanical fixturing of the material. It is not necessary to dry the molded body completely. Here, rather than drying the molded body, it is important to remove the droplets of the solution adhered to the surface of the molded body. Therefore, it is only necessary to dry to the extent that the film of water or solution on the surface of the molded body is removed, which is preferable because the process time can be shortened.
- the acidic polymer and the basic polymer are preferably applied alternately. By alternately applying, it is possible to obtain a low hydrous soft device having excellent wettability and slipperiness that cannot be obtained by only one of them, and also excellent wear feeling or use feeling.
- the coating layer can be asymmetric.
- asymmetric means having a different coating layer on the first surface of the low hydrous soft device and the second surface on the opposite side.
- the “different coating layer” means that the coating layer formed on the first surface and the coating layer formed on the second surface have different surface characteristics or functionality.
- the thickness of the coating layer can be adjusted by adding one or more salts such as sodium chloride to the acidic polymer solution or the basic polymer solution.
- a preferable salt concentration is 0.1 to 2.0% by mass. As the salt concentration increases, the polyelectrolyte takes a more spherical conformation. However, if the concentration is too high, the polymer electrolyte does not deposit well even if it is deposited on the surface of the molded body. A more preferable salt concentration is 0.7 to 1.3% by mass.
- Another preferred embodiment of the method for producing a low hydrous soft device of the present invention further includes the following step 4.
- Step 4> A step of irradiating a molded body obtained by the method including the steps 1 to 3 in this order.
- the irradiation of radiation may be performed in a state where the molded body is immersed in the coating liquid, or may be performed after the molded body is drawn out of the coating liquid and washed. Moreover, it is also preferable to perform radiation irradiation in a state where the molded body is immersed in a liquid other than the coating liquid. In this case, it is preferable because the irradiation rays act more efficiently.
- the solvent for the liquid used for immersing the coated molded body is applicable to various organic and inorganic solvents and is not particularly limited.
- Examples include water, methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, tert-amyl alcohol, various alcohol solvents such as 3,7-dimethyl-3-octanol, benzene, toluene, xylene, etc.
- water is most preferred.
- physiological saline preferably pH 7.1 to 7.3
- boric acid buffer solutions preferably pH 7.1 to 7.3
- the molded body If the molded body is irradiated with radiation in a sealed state, the molded body can be sterilized at the same time.
- ⁇ rays are preferably used as radiation.
- the dose of ⁇ -rays to be irradiated is too small, sufficient bonding between the molded body and the coating layer cannot be obtained, and if it is too large, the physical properties of the molded body are lowered, so 0.1 to 100 kGy is preferable, and 15 to 50 kGy is more preferable, and 20 to 40 kGy is most preferable.
- the durability for example, scuffing durability
- the low hydrous soft device of the present invention includes, for example, a soft member molded into a tube shape.
- a low hydrous soft device of the present invention an infusion tube, a gas transport tube, a drainage tube, a blood circuit, a coated tube covering various members, a catheter, and a stent that are inserted into a living body and used.
- a medical device such as a sheath, a tube connector, an access port, or an endoscope covering material.
- FIG. 1 is a perspective view showing a part of an infusion tube which is an example of a low hydrous soft device (medical device) of the present invention.
- This infusion tube 10 main body is formed by the low hydrous soft base material mentioned above.
- FIG. 2 is a perspective view showing a distal end portion of a catheter which is an example of the low hydrous soft device (medical device) of the present invention.
- This catheter 20 main body is formed by the low hydrous soft base material mentioned above.
- FIG. 3 is a perspective view showing a part of a stent which is an example of the low hydrous soft device (medical device) of the present invention.
- the stent 30 has a structure in which a stent body 31 is covered with the low hydrous soft base material 32 described above.
- FIG. 4 is a perspective view showing a distal end portion of an endoscope to which an endoscope covering material that is an example of the low hydrous soft device (medical device) of the present invention is applied.
- the endoscope 40 includes an insertion tube 41 that is made of a soft material and is deformable, and a distal end portion 42 of the insertion tube.
- An optical system 43 including a camera and illumination is provided inside the distal end portion 42.
- the end surface 44 of the distal end portion 42 is formed of a material (glass or the like) that can transmit illumination light and reflected light thereof.
- the entire insertion tube 41 and the distal end portion 42 are covered with the low hydrous soft base material 45 described above.
- the low hydrous soft device of the present invention includes a soft member having a sheet shape or a film shape, for example.
- a medical device such as a skin covering material, a wound covering material, a skin protecting material, or a skin drug carrier used by being attached to the surface of a living body, or a cell culture sheet Or biotechnology devices such as scaffolds for tissue regeneration, filtration devices such as separation membranes (gas-liquid separation membranes), antifouling devices such as coating materials used to prevent biological adhesion on ship bottoms, etc., moisturizing sheets that prevent soil drying Agricultural / gardening devices such as, cosmetic devices such as facial packs (a low hydrous soft base material containing a cosmetic liquid), daily goods such as wigs, insoles, and hygiene products.
- the low hydrous soft device of the present invention is used as an ophthalmic lens
- FIG. 5 is a perspective view showing a part of a gas-liquid separation membrane which is an example of the low hydrous soft device (filtration device) of the present invention.
- the gas-liquid separation membrane 50 shown in FIG. 5 forms at least one surface of a container that can store a liquid.
- This gas-liquid separation membrane 50 is formed by the low hydrous soft base material described above.
- the gas-liquid separation membrane 50 allows only oxygen therein to permeate. Thereby, the liquid and oxygen can be separated.
- FIG. 6 is a schematic view showing a moisturizing sheet as an example of the low hydrous soft device (agriculture / gardening device) of the present invention.
- a moisturizing sheet 60 shown in FIG. 6 is formed by the low hydrous soft base material described above.
- the moisturizing sheet 60 is covered with the soil 62 such that an opening 61 is provided in the moisturizing sheet 60 and the plant 63 planted in the soil 62 is passed through the opening 61. Thereby, drying of the soil 62 can be prevented.
- the medical device of the present invention includes a member having a spherical crown shape, for example.
- examples of the low hydrous soft device of the present invention include ophthalmic medical devices such as soft ophthalmic lenses (soft contact lenses), intraocular lenses, artificial corneas, corneal inlays, corneal onlays, and eyeglass lenses. .
- the low hydrous soft device of the present invention includes a soft member molded into a storage container shape, for example.
- a drug carrier introduced into the living body a cuff used by being inserted into the living body, or connected to the drainage tube inserted into the living body Medical devices such as drainage bags.
- FIG. 7 is a perspective view showing a drug carrier which is an example of the low hydrous soft device (medical device) of the present invention.
- the main body of the drug carrier 70 is formed by the low hydrous soft base material described above.
- the low hydrous soft device of the present invention includes, for example, a granular member.
- the low hydrous soft device of the present invention includes an agricultural / gardening device such as a granular moisturizing material arranged in place of the soil surface or soil.
- FIG. 8 is a schematic view showing a granular moisturizing material which is an example of the low hydrous soft device (agricultural / gardening device) of the present invention.
- a granular moisturizing material 80 shown in FIG. 8 is formed by the low hydrous soft base material described above.
- potted plants 81 or the like are potted, by placing the moisture-containing granular moisturizing material 80 instead of soil, the roots 82 can be prevented from drying and the plants can be cultivated hygienically.
- the low hydrous soft device of the present invention is not limited to the above exemplified low hydrous soft device, and can be used by molding into various shapes.
- test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was bent in two with a finger, and then it was strongly pinched with the finger. Five test pieces were tested and judged according to the following criteria.
- test piece in the form of a film wet with borate buffer solution was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. Based on the following criteria: A: There is no difference in softness and dryness of the test piece before and after storage. B: After storage for 48 hours, the hardness of the test piece increases slightly compared with before storage, and a little dryness C: After storage for 48 hours Compared with before storage, the hardness of the test piece is remarkably increased and the dryness is high.
- Dynamic contact angle measurement As a dynamic contact angle sample, a film-shaped test piece having a size of about 5 mm ⁇ 10 mm ⁇ 0.1 mm cut out from a sample molded into a film shape, or a spherical crown shape (edge diameter) A strip-shaped test piece having a width of 5 mm cut out from a sample having a thickness of about 14 mm and a thickness of about 0.1 mm was used in a wet state with a borate buffer solution, and a dynamic contact angle at the time of advance with respect to the borate buffer solution was measured. .
- a dynamic wettability tester WET-6000 manufactured by RESCA Co., Ltd. was used, the immersion speed was 0.1 mm / sec, and the immersion depth was 7 mm.
- Mucin adhesion Mucin, Bovine Submaxillary Gland (Catalog No. 499643) from CALBIOCHEM was used as mucin.
- a sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was immersed in a 0.1% mucin aqueous solution at 37 ° C. for 20 hours, and then BCA (bicinchoninic acid) protein assay method was used to quantify the amount of mucin attached to the sample.
- Lipid adhesion A stirrer (36 mm) was placed in a 500 ml beaker, and 1.5 g of methyl palmitate and 500 g of pure water were added. The temperature of the water bath was set to 37 ° C., the aforementioned beaker was placed in the center of the water bath, and the mixture was stirred for 1 hour with a magnetic stirrer. The rotation speed was 600 rpm. Samples having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) were put in a basket one by one, put into the above-described beaker, and stirred as it was. After 1 hour, stirring was stopped and the sample in the basket was rubbed with 40 ° C.
- the sample was taken out, washed lightly with a phosphate buffer (PBS), and then immersed in a well in which 2 mL of artificial tear was replaced. Furthermore, after shaking at 100 rpm and 37 ° C. for 24 hours, the sample was lightly washed with PBS, and the amount of deposits was observed by visually evaluating the degree of white turbidity of the sample. Evaluation was based on the following criteria: A: No white turbidity is observed B: There are a few white turbid parts (less than 10% in area) C: There is a considerable degree of cloudiness (10% to 50% in area) D: Most part (50 to 100% in area) is cloudy but the back side is transparent. E: The whole is dark and cloudy and the back side is transparent and difficult to see.
- PBS phosphate buffer
- test piece After immersing the test piece in boric acid buffer solution and leaving it at room temperature for 24 hours or more, wipe the surface moisture with a wiping cloth ("Kimwipe (registered trademark)" manufactured by Nippon Paper Crecia) and length of the four sides of the rectangular test piece (L1 to L4) were measured. Thereafter, the test piece was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. The lengths of the four sides of the test piece after storage (L5 to L8, corresponding to L1 to L4 in ascending order of numbers) were measured.
- the molding ratio was obtained by dividing the diameter of the sample (spherical crown shape) by the diameter of the cavity (having a shape corresponding to the sample shape) of the mold used to mold it.
- the diameter is the diameter of a circle formed by the edge of the spherical crown.
- the above glass plate was placed thereon so that the artificial leather was on the film side, and a plastic container 4 containing a small iron ball (total weight of iron ball and container 50 g) was further placed thereon.
- the fishing line attached to the glass plate is pulled horizontally at a speed of 100 mm / min with a tensile tester (Orientec RTM-100) through a pulley, and the artificial leather ( The dynamic friction force between the back surface) and the film was measured.
- a uniform and transparent monomer mixture was obtained.
- This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times.
- the monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 pieces) is used. Polymerization was performed by light irradiation (8000 lux, 20 minutes).
- the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold.
- the obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours.
- the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of pure water.
- component A polydimethylsiloxane having methacryloyl groups at both ends (X-22-164C, Shin-Etsu Chemical Co., Ltd., mass average molecular weight 7.2,000, number average molecular weight 4.8,000) (50 parts by mass) was used.
- a molded product was obtained in the same manner as in Reference Example 1 except that the monomer (50 parts by mass) having a fluoroalkyl group described in Table 3 was used as Component B. The evaluation results of the obtained molded body are shown in Table 3.
- Biscoat 3FM Trifluoroethyl methacrylate (Osaka Organic Chemical Industry)
- Biscoat 8F Octafluoropentyl acrylate (Osaka Organic Chemical Industry)
- Biscote 3F Trifluoroethyl acrylate (Osaka Organic Chemical Industry)
- Biscote 17F Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry)
- HFIP-M Hexafluoroisopropyl methacrylate (Central Glass).
- component A polydimethylsiloxane having a methacryloyl group at both ends described in Table 4 (compound of formula (M2) described later) is used in the amount described in Table 4, Component B is not used, and Component C is used.
- a molded body was obtained in exactly the same manner as in Reference Example 1 except that the monomer (50 parts by mass) described in Table 4 was used in the amount described in Table 4.
- Table 4 shows the evaluation results of the obtained molded body.
- Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
- Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
- Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
- Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone was added, and the supernatant was removed by decantation.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight.
- N-vinylpyrrolidone / acrylic acid (molar ratio 90/10)>
- N-vinylpyrrolidone N-vinylpyrrolidone (NVP, 90.02 g, 0.81 mol)
- acrylic acid (6.49 g, 0.09 mol)
- dimethyl sulfoxide 386.8 g
- polymerization initiator VA-061 Wako Pure Chemical Industries, Ltd.
- Industrial Co., Ltd. 0.1408 g, 0.562 mmol
- 2-mercaptoethanol (2-ME, 43.8 ⁇ L, 0.63 mmol
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone and 100 mL of hexane were added, and the supernatant was removed by decantation.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1.5 hours, then heated to 75 ° C. and stirred for 3.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the monomer concentration was 30% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours.
- the polymerization reaction solution was cooled to room temperature, 100 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours.
- the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the monomer concentration was 20% by mass.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours.
- the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the polymerization reaction solution was cooled to room temperature, poured into 1000 mL of water / 10 mL of ethanol, and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 700 mL of water.
- the solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C.
- the inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours.
- the solid content was dried in a vacuum dryer at 60 ° C.
- NVP N-vinylpyrrolidone
- DMA N, N-dimethylacrylamide
- DEAA N, N-diethylacrylamide
- ACMO acryloylmorpholine
- HEAA N- (2-hydroxyethyl) acrylamide
- HEMA 2-hydroxyethyl methacrylate
- AA acrylic acid
- Hyaluronic acid Na sodium hyaluronate (CHA) (Chisso Corporation) Kimika Argin I-3: Sodium Alginate (Kimika Co., Ltd.) Kimiloid HV: propylene glycol alginate (Kimika Co., Ltd.) NS-300 (Carmellose): Carboxymethylcellulose (Gotoku Pharmaceutical Co., Ltd.) Sunrose (registered trademark) (APP-84): Carboxymethylcellulose (Nippon Paper Chemical Co., Ltd.) Chondroitin sulfate Na: Chondroitin sodium sulfate (Seikagaku Corporation) Griroid 6C: Tamarind gum (Dainippon Sumitomo Pharma Co., Ltd.) Labor gum CG-SFT: Xanthan gum (Dainippon Sumitomo Pharma Co., Ltd.) (Examples 1 to 3)
- the molded bodies obtained in the respective reference examples shown in Table 8 were immersed in the PEI solution A for 30 minutes and then
- the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes.
- the wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed. (Examples 4 to 6)
- the molded body obtained in each reference example shown in Table 8 was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes.
- each was immersed in three pure water baths for 5 minutes.
- the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes.
- Example 8 The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. (Examples 7 to 14) The molded body obtained in each reference example shown in Table 8 was immersed in the first solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after being immersed in the second solution shown in Table 8 for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in the third solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8.
- component A polydimethylsiloxane having methacryloyl groups at both ends (DMS-R31, Gelest, Inc., compound of formula (M2) described later, number average molecular weight 13,000) (50 parts by mass),
- DMS-R31 Gelest, Inc., compound of formula (M2) described later, number average molecular weight 13,000
- M2 number average molecular weight 13,000
- Biscoat 3FM trifluoroethyl methacrylate (Osaka Organic Chemical Co., Ltd.)
- Biscote 8F Octafluoropentyl acrylate (Osaka Organic Chemical Co., Ltd.)
- Biscote 17F Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry Co., Ltd.)
- HFIP-M Hexafluoroisopropyl methacrylate (Central Glass Co., Ltd.)
- Reference Example 43 Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R31, Gelest, Inc., mass average molecular weight 30,000, compound of formula (M2) described later, number average molecular weight 13,000) (50 Part by mass), trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (46 parts by mass) as component B, methyl methacrylate (3 parts by mass) as component C, and UV
- a uniform and transparent monomer mixture was obtained.
- This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times.
- a monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and light is emitted using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4). Polymerization by irradiation (8000 lux, 20 minutes).
- the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold.
- the obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours.
- the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of It was immersed in pure water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%. Moreover, the same operation was performed using two glass plates and a gasket as a mold to obtain a film-like sample of 60 mm ⁇ 60 mm ⁇ 0.25 mm.
- DMS-R31 compound of formula (M2) Mw 30 kD, Mn 13 kD, Gelest, Inc.
- FM-7726 Compound of formula (M2) Mw 29 kD, Mn 26 kD, Chisso Corporation FM-7726L: Compound of formula (M2) Mw 31 kD, Mn 20 kD, Chisso Corporation X-22-164C: Compound of formula (M2) Mw 7.2 kD, Mn 4.8 kD, Shin-Etsu Chemical Co., Ltd.
- DMS-R22 Compound of formula (M2) Mw 8.3 kD, Mn 7.4 kD, Gelest, Inc.
- n represents the number of repeating units and is determined by the molecular weight of the compound.
- Biscoat 3F trifluoroethyl acrylate MMA: methyl methacrylate
- EHMA 2-ethylhexyl acrylate
- DMAA N, N-dimethylacrylamide
- DMAEA N, N-dimethylaminoethyl acrylate
- DMAPAA N, N-diethylaminopropylacrylamide
- DEAEMA N, N- Diethylaminoethyl methacrylate
- TAA t-amyl alcohol AA: Acrylic acid MAA: Methacrylic acid (Reference Example 48) Polydimethylsiloxane having methacryloyl groups at both ends as component A (FM7726, Chisso Corporation, compound of formula (M2), mass average molecular weight 29 kD, number average molecular weight 26 kD) (49 parts by mass), component B trifluoro Ethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (45 parts
- the monomer mixture is injected into a mold made of (poly-4-methylpentene-1) and irradiated with light (8000 lux, 20 minutes) using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 tubes).
- a fluorescent lamp Toshiba Corporation, FL-6D, daylight color, 6W, 4 tubes.
- the mold is immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge The resulting molded body was immersed in a large excess of 80% by weight isopropyl alcohol aqueous solution at 60 ° C. for 2 hours.
- the molded body or the commercially available contact lens was immersed in the second solution shown in Tables 11 to 30 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The above operation was similarly repeated for the third to fifth solutions. Evaluation of the obtained low hydrous soft base material was implemented. The results are shown in Tables 11-16. In the table, “-” means that the coating operation with the solution is not performed or the evaluation is not performed.
- SHG-A Commercially available silicone hydrogel soft contact lens
- SHG-B Commercially available silicone hydrogel soft contact lens
- Example 184 ⁇ Oxygen permeability measurement> A film (thickness 0.19 mm) prepared in the same manner as in Example 62 was cut into a size of 20 mm ⁇ 20 mm to prepare a sample. Oxygen permeability was measured using an oxygen permeability measuring device OX-TRAN 2/21 (Hitachi High-Technologies Corporation). A mixed gas of 98% nitrogen / 2% hydrogen was used as the carrier gas, and a mixed gas of 79.3% nitrogen / 20.7% oxygen was used as the measurement gas. The gas was not humidified. The oxygen permeability of the sample was 390 ⁇ 10 ⁇ 11 (cm 2 / sec) (mLO 2 ) / (mL ⁇ hPa).
- the oxygen permeability of the gas permeable hard contact lens “Menicon Z (registered trademark)” manufactured by Menicon Co., Ltd. measured under the same conditions with the same apparatus is 150 ⁇ 10 ⁇ 11 (cm 2 / sec) (mLO 2 ) / ( mL ⁇ hPa), a gas permeable hard contact lens “breath ohard (registered trademark)” manufactured by Toray Industries, Inc. has an oxygen permeability of 120 ⁇ 10 ⁇ 11 (cm 2 / sec) (mLO 2 ) / (mL ⁇ hPa) Met.
- Reference Example 81 Preparation of coloring agent 20 g pure water was put into a 50 mL screw bottle.
- UniBlue A product number 298409, Sigma-Aldrich
- 4 g of 1N hydrochloric acid was added, and it was confirmed that the pH was about 1-2 with a pH test paper.
- 24 g of ethyl acetate was added and lightly stirred. The mixture was transferred to a 100 mL Nasralasco and allowed to stand. Since UniBlue A moved to the ethyl acetate side, the lower aqueous layer was discarded. The ethyl acetate layer was transferred to a 100 mL eggplant flask and evaporated with a 20 ° C. evaporator. Then, it was made to dry at 40 degreeC for 16 hours with a vacuum dryer, and acid type UniBlue A was obtained [estimated structural formula (M4)].
- ⁇ PAMPS solution> A 2-acrylamido-2-methylpropanesulfonic acid polymer (Sigma Aldrich, molecular weight 2 million, 15% by weight aqueous solution) was dissolved in pure water to give a 1.5% by weight aqueous solution.
- the monomer mixture was obtained by filtering with a membrane filter (0.45 ⁇ m) to remove insoluble matters.
- the monomer mixture was degassed under an argon atmosphere.
- the glove box under a nitrogen atmosphere, between the two 10 cm square and 3 mm thick glass plates (one of which is affixed with an aluminum seal to make it easy to peel off)
- a film-like molded body is obtained by filling a gap between two cutouts as spacers with a monomer mixture and curing by light irradiation (Toshiba FL6D, 1.01 mW / cm 2 , 20 minutes). It was.
- the obtained molded body (film) was immersed in a 60% by mass isopropanol (IPA) aqueous solution at 60 ° C. for 30 minutes, peeled off from the glass plate, and further immersed in an 80% by mass IPA aqueous solution at 60 ° C. for 2 hours to leave residual monomers, etc.
- the impurities were extracted, immersed in a 50% by mass IPA aqueous solution and a 25% by mass IPA aqueous solution in a stepwise decrease in IPA concentration for about 30 minutes, and finally immersed in water for 2 hours or longer to be hydrated.
- Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (28.0 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 12.0 parts by mass), photoinitiator Irgacure 1850 (1.0 part by mass), ultraviolet absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1.0 part by mass) methacrylic acid -2-hydroxyethyl (7.0 parts by mass), triethylene glycol dimethacrylate (1.0 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalool (32.0 parts) Parts by mass) were mixed and stirred.
- Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (22.2 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 20.0 parts by mass), photoinitiator Irgacure 1850 (0.76 parts by mass), UV absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (0.76 parts by mass) methacrylic acid -2-hydroxyethyl (5.5 parts by mass), triethylene glycol dimethacrylate (0.76 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalol (50.0 parts) Parts by mass) were mixed and stirred.
- Reference Example 87 A film was prepared in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 12.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 85.
- Reference Example 88 A film was produced in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 20.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 86.
- Example 191 The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. The film had water retention and softness even after storage for 48 hours. The evaluation results are shown in Table 17.
- Example 192 The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the PAMPS solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C.
- the present invention relates to a low hydrous soft device, and is useful in medical devices, biotechnology devices, agricultural / gardening devices, filtration devices, antifouling devices, beauty devices, and other daily necessities.
Landscapes
- Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Hematology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Materials For Medical Uses (AREA)
Abstract
This low-moisture-content soft device is provided with a soft member where a layer comprising an acidic polymer and a basic polymer has been formed on at least a part of the surface of a low-moisture-content soft base material. This method for producing the low-moisture-content soft device comprises, in the stated order: a step (1) for polymerizing a mixture including a compound (A), which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number-average molecular weight of 6,000 or higher, and a compound (B), which is a polymerizable monomer having a fluoroalkyl group, to obtain a molded body of a desired shape; a step (2) for bringing the molded body into contact with a basic polymer solution and thereafter rinsing out and removing the surplus basic polymer solution; and a step (3) for bringing the molded body into contact with an acidic polymer solution and thereafter rinsing out and removing the surplus acidic polymer solution. The present invention provides a low-moisture-content soft device that is hydrophilic in addition to being favorably lubricious, is less prone to drying out even when used for a long period of time, can retain softness, and will have little change in shape, as well as a method for producing the same.
Description
本発明は、低含水性軟質デバイスおよびその製造方法に関する。
The present invention relates to a low hydrous soft device and a method for producing the same.
従来、種々の分野において、シリコーンゴム、PVC、ナイロンエラストマー、LDPE、ハイドロゲル(ヒドロゲル)等の樹脂製軟質材料が多様な用途に用いられている。例えば、軟質基材の用途としては、生体内に導入したり、生体表面を被覆したりする医療デバイスや、細胞培養シート、組織再生用足場材料等のバイオテクノロジー用デバイスや、顔用パック等の美容デバイスや、靴の中敷等の日用品が挙げられる。
Conventionally, in various fields, resinous soft materials such as silicone rubber, PVC, nylon elastomer, LDPE, and hydrogel (hydrogel) have been used for various applications. For example, as a use of a soft base material, a biotechnology device such as a medical device introduced into a living body or covering a living body surface, a cell culture sheet, a scaffold material for tissue regeneration, a facial pack, etc. Examples include beauty devices and daily necessities such as insoles.
ところで、例えば医療デバイスの一つである皮膚用被覆材として、ハイドロゲル素材が用いられることがある。このハイドロゲル素材は、多量の水を含んでいる(含水率が25%程度~80%程度)。そのため、皮膚用被覆材を皮膚に貼付した場合、該被覆材から水分が蒸発する現象が生じ、使用者は乾燥感を覚え、不快と感じることがあった。また、ハイドロゲル素材は、多量の水を含んでいることから、細菌繁殖のリスクが懸念されていた。
By the way, for example, a hydrogel material may be used as a skin covering material that is one of medical devices. This hydrogel material contains a large amount of water (water content is about 25% to 80%). For this reason, when a skin covering material is applied to the skin, a phenomenon occurs in which moisture evaporates from the covering material, and the user may feel dry and feel uncomfortable. Moreover, since the hydrogel material contains a large amount of water, there is a concern about the risk of bacterial propagation.
近年では、より含水率が低い軟質材料(低含水性)を適用した医療デバイスも知られている。たとえば、特許文献1には、低含水シリコーン含有エラストマーからなるコンタクトレンズ材料が開示されている。また、特許文献2および3には、シリコーンまたは約10質量%~約80質量%の間の水含有量を有するシリコーンハイドロゲルからなる医療デバイスに対し、親水性を高めるための表面処理を施したシリコーン医療デバイスが開示されている。
In recent years, a medical device using a soft material (low water content) having a lower water content is also known. For example, Patent Document 1 discloses a contact lens material made of a low water-containing silicone-containing elastomer. In Patent Documents 2 and 3, a surface treatment for improving hydrophilicity is performed on a medical device made of silicone or a silicone hydrogel having a water content of about 10% by mass to about 80% by mass. A silicone medical device is disclosed.
生体内に導入したり、生体表面に貼付したりして使用される軟質デバイスについても、従来よりも良好な親水性、易滑性、柔軟性といった特性を与えることができれば、使用者(患者等)にとっては、使用感(装用感)が良くなり、苦痛を低減することができるので、より好ましい。
A soft device that is introduced into a living body or attached to the surface of a living body can be used by a user (patient, etc.) if it can give better properties such as hydrophilicity, slipperiness, and flexibility. ) Is more preferable because the feeling of use (wearing feeling) is improved and pain can be reduced.
軟質基材の表面を改質する方法に関しては、種々知られているが、その中で2種類以上のポリマー材料の層を1層ずつコーティングして積層する方法が知られている(たとえば特許文献4~6を参照)。中でも反対の荷電を有する2つのポリマー材料を1層ずつ交互にコーティングする方法は、LbL法などと呼ばれ、材料の各々の層が、異なる材料の他の層と非共有結合的に結合されると考えられている。しかしながら、この方法の有用性が明示されている軟質基材はシリコーンハイドロゲル素材のものだけであり、それ以外の低含水性軟質基材に対する有用性は知られていなかった。また、従来のLbLコーティングは4層~20層程度といった多層で行われており、製造工程が長くなり製造コストの増大を招くおそれがあった。
Various methods for modifying the surface of a soft substrate are known, and among them, a method of coating and laminating two or more layers of polymer materials one by one is known (for example, Patent Documents). (See 4-6). Among them, the method of alternately coating two polymer materials having opposite charges one by one is called an LbL method or the like, and each layer of the material is non-covalently bonded to another layer of a different material. It is believed that. However, the soft substrate for which the usefulness of this method is clearly specified is only of a silicone hydrogel material, and the utility for other low hydrous soft substrates has not been known. In addition, the conventional LbL coating is performed in multiple layers of about 4 to 20 layers, which may increase the manufacturing process and increase the manufacturing cost.
軟質材料によって形成された軟質デバイスの内、生体表面に直接貼付したり、生体内に挿入するなどして用いられる軟質デバイスにおいては、親水性に加えて、易滑性および長時間使用しても乾燥し難く、柔軟性を保つことができ、かつ、形状の変化が少ない(即ち、収縮し難い)ことが求められる。生体内に導入したり、生体表面に貼付したりして使用される軟質デバイスについても、従来よりも良好な親水性、易滑性、柔軟性といった特性を与えることができれば、使用者(患者等)にとっては、使用感(装用感)が良くなり、苦痛を低減することができるので、より好ましい。
Among soft devices formed of soft materials, soft devices that are used by being directly attached to the surface of a living body or inserted into a living body, in addition to hydrophilicity, can be easily slipped and used for a long time. It is difficult to dry, it is possible to maintain flexibility, and the shape change is small (that is, it is difficult to shrink). A soft device that is introduced into a living body or attached to the surface of a living body can be used by a user (patient, etc.) if it can give better properties such as hydrophilicity, slipperiness, and flexibility. ) Is more preferable because the feeling of use (wearing feeling) is improved and pain can be reduced.
本発明は、上記に鑑みてなされたものであって、親水性に加え、良好な易滑性を有し、さらに、長時間使用しても乾燥し難く、柔軟性を保つことができ、かつ、形状の変化が少ない低含水性軟質デバイスを提供することを目的とする。また、本発明は、上記特性を有する低含水性軟質基材からなる低含水性軟質デバイスを、簡便なプロセスで安価に製造することができる低含水性軟質デバイスの製造方法を提供することを目的とする。
The present invention has been made in view of the above, and has good slipperiness in addition to hydrophilicity, and is difficult to dry even when used for a long time, and can maintain flexibility, and An object of the present invention is to provide a low hydrous soft device with little change in shape. Another object of the present invention is to provide a method for producing a low hydrous soft device, which can produce a low hydrous soft device comprising the low hydrous soft substrate having the above-mentioned properties at a low cost by a simple process. And
上記の目的を達成するために、本発明は下記の構成を有する。
In order to achieve the above object, the present invention has the following configuration.
本発明の低含水性軟質デバイスは、低含水性軟質基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成された軟質部材を備えることを特徴とする。
The low hydrous soft device of the present invention comprises a soft member in which a layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface of the low hydrous soft substrate.
本発明の低含水性軟質デバイスは、低含水性軟質でありながら、表面に良好な濡れ性と易滑性が付与されるため、濡れた状態(あるいは湿った状態)で使用される態様に好ましく適用できる。
The low hydrous soft device of the present invention is preferable for an embodiment used in a wet state (or a wet state) because the surface is provided with good wettability and slipperiness while being low hydrous soft. Applicable.
本発明の好ましい態様において、上記軟質部材は、チューブ形状を有しても良い。このような形状を有する低含水性軟質デバイスは、例えば、医療デバイスとして好適に用いることができる。
In a preferred embodiment of the present invention, the soft member may have a tube shape. The low hydrous soft device having such a shape can be suitably used as a medical device, for example.
具体的には、上記医療デバイスは、輸液チューブ、気体輸送チューブ、排液チューブ、血液回路、被覆チューブ、カテーテル、ステント、シース、チューブコネクター、アクセスポート、または、内視鏡被覆材などである。
Specifically, the medical device is an infusion tube, a gas transport tube, a drainage tube, a blood circuit, a coated tube, a catheter, a stent, a sheath, a tube connector, an access port, an endoscope coating material, or the like.
また、本発明の別の好ましい態様において、上記軟質部材は、シート状またはフィルム状をなしても良い。このような形状を有する低含水性軟質デバイスは、例えば、医療デバイス、バイオテクノロジー用デバイス、農業/ガーデニングデバイス、濾過デバイス、防汚デバイス、および美容デバイスのうちのいずれかとして好適に用いることができる。
In another preferred embodiment of the present invention, the soft member may be in the form of a sheet or a film. The low hydrous soft device having such a shape can be suitably used as, for example, any one of a medical device, a biotechnology device, an agricultural / gardening device, a filtration device, an antifouling device, and a beauty device. .
具体的には、上記医療デバイスは、皮膚用被覆材、創傷被覆材、皮膚用保護材、または、皮膚用薬剤担体を含むことが好ましい。
Specifically, the medical device preferably includes a skin covering material, a wound covering material, a skin protecting material, or a skin drug carrier.
また、上記バイオテクノロジー用デバイスは、細胞培養シートまたは組織再生用足場材料などである。
The biotechnology device is a cell culture sheet or a tissue regeneration scaffold.
また、上記農業/ガーデニングデバイスは、保湿シートなどである。
Also, the agriculture / gardening device is a moisturizing sheet.
また、上記濾過デバイスは、気液分離膜などである。
The filtration device is a gas-liquid separation membrane or the like.
本発明のさらに別の好ましい態様において、上記軟質部材は、収納容器形状を有しても良い。このような形状を有する低含水性軟質デバイスは、例えば、医療デバイスとして好適に用いることができる。
In still another preferred embodiment of the present invention, the soft member may have a storage container shape. The low hydrous soft device having such a shape can be suitably used as a medical device, for example.
具体的には、上記医療デバイスは、薬剤担体、カフ、または、排液バッグなどである。
Specifically, the medical device is a drug carrier, a cuff, or a drainage bag.
本発明のさらに別の好ましい態様において、上記軟質部材は、粒状を有しても良い。このような形状を有する低含水性軟質デバイスは、例えば、農業/ガーデニングデバイスとして好適に用いることができる。具体的には、上記農業/ガーデニングデバイスは、農業/ガーデニング用の粒状保湿材などである。
In still another preferred embodiment of the present invention, the soft member may have a granular shape. The low hydrous soft device having such a shape can be suitably used as, for example, an agricultural / gardening device. Specifically, the agriculture / gardening device is a granular moisturizing material for agriculture / gardening.
上記において、低含水性軟質基材が、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とすることが好ましい;
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物
成分B:フルオロアルキル基を有する重合性モノマー
本明細書において、ポリシロキサン化合物とは、Si-O-Si-O-Si結合を有する化合物である。 In the above, it is preferable that the low hydrous soft base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B;
Component A: a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more Component B: a polymerizable monomer having a fluoroalkyl group In the present specification, a polysiloxane compound is Si— It is a compound having an O—Si—O—Si bond.
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物
成分B:フルオロアルキル基を有する重合性モノマー
本明細書において、ポリシロキサン化合物とは、Si-O-Si-O-Si結合を有する化合物である。 In the above, it is preferable that the low hydrous soft base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B;
Component A: a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more Component B: a polymerizable monomer having a fluoroalkyl group In the present specification, a polysiloxane compound is Si— It is a compound having an O—Si—O—Si bond.
また本発明は、下記工程1~工程3をこの順に含む低含水性軟質デバイスの製造方法である;
<工程1>
1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、所望の形状の成型体を得る工程;
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程;
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。 The present invention is also a method for producing a low hydrous soft device comprising the following steps 1 to 3 in this order;
<Step 1>
Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group Obtaining a molded body having a shape of
<Step 2>
A step of washing and removing excess basic polymer solution after contacting the molded body with the basic polymer solution;
<Step 3>
A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
<工程1>
1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、所望の形状の成型体を得る工程;
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程;
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。 The present invention is also a method for producing a low hydrous soft device comprising the following steps 1 to 3 in this order;
<Step 1>
Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group Obtaining a molded body having a shape of
<
A step of washing and removing excess basic polymer solution after contacting the molded body with the basic polymer solution;
<
A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
本発明によれば、乾燥感が少なく、細菌繁殖のリスクが少ない低含水性軟質デバイスに対し、親水性に加え、長時間使用しても乾燥し難く、柔軟性を保つことができ、かつ、形状の変化が少ないという特性を付与することができる。また、本発明によれば、上記特性を有する低含水性軟質デバイスを、簡便なプロセスで安価に製造することが可能となる。
According to the present invention, a low hydrous soft device with a low dry feeling and a low risk of bacterial propagation, in addition to hydrophilicity, it is difficult to dry even when used for a long time, can maintain flexibility, and The characteristic that there is little change of a shape can be provided. In addition, according to the present invention, a low hydrous soft device having the above characteristics can be manufactured at a low cost by a simple process.
本発明の低含水性軟質デバイスは、たとえば、生体内に導入されて輸液、気体輸送、排液等を行うチューブや回路、内部に治療器具や観察器具を包摂して生体内に導入されるチューブ、生体表面を被覆して生体表面を保護または治療する被覆材、薬剤等を包摂して生体内に導入される担体、一部が生体内に導入されて、生体内からの排液を収容するバッグといった医療デバイスや;細胞培養シート、組織再生用足場材料といったバイオテクノロジー用デバイスや;保湿シート、保湿材といった農業/ガーデニングデバイスや;濾過デバイスや;生物付着防止材料、タンパク質付着防止材料、脂質付着防止剤量といった防汚デバイスや;顔用バック等の美容デバイス等である。本発明の低含水性軟質デバイスは、用途に応じて、チューブ形状、シート状、フィルム状、球冠形状、収納容器形状、粒状等、様々な形態を有する。
The low hydrous soft device of the present invention is, for example, a tube or circuit that is introduced into a living body to perform infusion, gas transportation, drainage, etc., and a tube that is introduced into the living body by enclosing a therapeutic instrument or observation instrument. A coating material that covers the surface of the living body to protect or treat the surface of the living body, a carrier that is encapsulated with a drug, etc., and is introduced into the living body, and a part of the carrier is introduced into the living body to accommodate drainage from the living body Medical devices such as bags; biotechnological devices such as cell culture sheets and scaffolds for tissue regeneration; agricultural / gardening devices such as moisturizing sheets and moisturizing materials; filtration devices; biofouling prevention materials, protein adhesion prevention materials, lipid attachments Antifouling devices such as the amount of inhibitor; beauty devices such as facial bags. The low hydrous soft device of the present invention has various forms such as a tube shape, a sheet shape, a film shape, a spherical crown shape, a storage container shape, and a granular shape, depending on applications.
本発明において、低含水性とは含水率が10質量%以下であることを意味する。また、軟質とは引張弾性率が10MPa以下であることを意味する。
In the present invention, low water content means that the water content is 10% by mass or less. Moreover, the soft means that the tensile elastic modulus is 10 MPa or less.
ここで、含水率は、例えば、フィルム形状の試験片の乾燥状態の質量と、ホウ酸緩衝液による湿潤状態の質量とから、{(湿潤状態での質量)-(乾燥状態での質量)/湿潤状態での質量}により与えられる。
Here, the moisture content is, for example, from the dry mass of the film-shaped test piece and the wet mass by the borate buffer, {(mass in the wet state) − (mass in the dry state) / Wet mass}.
本明細書において、湿潤状態とは、試料を室温(25℃)の純水あるいはホウ酸緩衝液中に24時間以上浸漬した状態を意味する。湿潤状態での物性値の測定は、試料を純水中あるいはホウ酸緩衝液中から取り出し、表面水分を拭き取った後、可及的速やかに実施される。
In the present specification, the wet state means a state in which the sample is immersed in pure water or borate buffer at room temperature (25 ° C.) for 24 hours or more. The measurement of physical properties in a wet state is carried out as soon as possible after removing the sample from pure water or borate buffer and wiping the surface moisture.
また、本明細書において、乾燥状態とは、湿潤状態の試料を40℃で16時間真空乾燥した状態を意味する。該真空乾燥における真空度は2hPa以下とする。乾燥状態での物性値の測定は、上記真空乾燥の後、可及的速やかに実施される。
In this specification, the dry state means a state in which a wet sample is vacuum-dried at 40 ° C. for 16 hours. The degree of vacuum in the vacuum drying is 2 hPa or less. The measurement of physical property values in a dry state is performed as soon as possible after the vacuum drying.
本明細書においてホウ酸緩衝液とは、特表2004-517163号公報の実施例1中に記載の「塩溶液」である。具体的には塩化ナトリウム8.48g、ホウ酸9.26g、ホウ酸ナトリウム(四ホウ酸ナトリウム十水和物)1.0g、およびエチレンジアミン四酢酸0.10gを純水に溶かして1000mLとした水溶液である。
In this specification, the borate buffer is a “salt solution” described in Example 1 of JP-T-2004-517163. Specifically, 8.48 g of sodium chloride, 9.26 g of boric acid, 1.0 g of sodium borate (sodium tetraborate decahydrate), and 0.10 g of ethylenediaminetetraacetic acid were dissolved in pure water to make 1000 mL. It is.
本発明の低含水性軟質デバイスは低含水性であることから、本発明の低含水性軟質デバイスが、例えば生体表面に貼付して用いられる医療デバイスである場合、生体表面に貼付している間に使用者が感じる乾燥感が小さく、装用感に優れるという特徴を有する。また本発明の低含水性軟質デバイスは低含水性であることから、本発明の低含水性軟質デバイスが例えば生体に直接接触し得る医療デバイスや細胞培養シート等のバイオテクノロジー用デバイスである場合、細菌の繁殖リスクが小さいという利点を有する。含水率は5%以下がより好ましく2%以下がさらに好ましく、1%以下が最も好ましい。含水率が高すぎると、乾燥感が大きくなったり、細菌の繁殖リスクが高まるおそれが懸念されるため、好ましくない。
Since the low hydrous soft device of the present invention is low hydrous, when the low hydrous soft device of the present invention is, for example, a medical device used by being applied to the surface of a living body, it is applied to the surface of the living body. The user feels that the feeling of dryness is small and that the feeling of wearing is excellent. In addition, since the low hydrous soft device of the present invention is low hydrous, when the low hydrous soft device of the present invention is a biotechnology device such as a medical device or a cell culture sheet that can directly contact a living body, for example, It has the advantage that the risk of bacterial growth is low. The moisture content is more preferably 5% or less, further preferably 2% or less, and most preferably 1% or less. If the water content is too high, there is a concern that the feeling of dryness may increase and the risk of bacterial growth increases, which is not preferable.
本発明の低含水性軟質デバイスの引張弾性率は、0.01~5MPaが好ましく、0.1~3MPaがより好ましく、0.1~2MPaがさらに好ましく、0.1~1MPaがよりいっそう好ましく、0.1~0.6MPaが最も好ましい。引っ張り弾性率が小さすぎると、軟らかすぎてハンドリングが難しくなる傾向がある。引っ張り弾性率が大きすぎると、硬すぎて装用感が悪くなる傾向がある。引っ張り弾性率が2MPa以下になると良好な装用感が得られ、1MPa以下になるとさらに良好な装用感が得られるので好ましい。引張弾性率は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
The tensile elastic modulus of the low hydrous soft device of the present invention is preferably 0.01 to 5 MPa, more preferably 0.1 to 3 MPa, still more preferably 0.1 to 2 MPa, even more preferably 0.1 to 1 MPa, Most preferred is 0.1 to 0.6 MPa. If the tensile modulus is too small, it tends to be too soft and difficult to handle. If the tensile elastic modulus is too large, it tends to be too hard and the wearing feeling tends to be poor. When the tensile modulus is 2 MPa or less, good wearing feeling is obtained, and when it is 1 MPa or less, further wearing feeling is obtained, which is preferable. The tensile modulus is measured on a sample in a wet state with a borate buffer.
本発明の低含水性軟質デバイスの引張伸びは100%~1000%が好ましく、200%~700%がより好ましい。引張伸びが小さいと、低含水性軟質デバイスが破れやすくなるので好ましくない。引張伸びが大きすぎる場合には、低含水性軟質デバイスが変形しやすくなる傾向があり好ましくない。引張伸びは、ホウ酸緩衝液による湿潤状態の試料にて測定される。
The tensile elongation of the low hydrous soft device of the present invention is preferably 100% to 1000%, more preferably 200% to 700%. If the tensile elongation is small, the low hydrous soft device is easily broken, which is not preferable. When the tensile elongation is too large, the low hydrous soft device tends to be deformed, which is not preferable. Tensile elongation is measured on samples wet with borate buffer.
本発明の低含水性軟質デバイスは、十分な保水性を有し、所定時間保管した後でも、保管前と同程度の軟らかさおよび乾き具合を有していることが好ましい。保水性は、所定温度、所定湿度の環境下で所定時間保持した場合の保管前と保管後の状態を、人指で触って状態観察することにより評価される。
It is preferable that the low hydrous soft device of the present invention has sufficient water retention and has the same softness and dryness as before storage even after storage for a predetermined time. Water retention is evaluated by touching with a finger and observing the state before and after storage in a predetermined temperature and humidity environment for a predetermined time.
本発明の低含水性軟質デバイスは、ホウ酸緩衝液に対する動的接触角(前進時、浸漬速度:0.1mm/sec)が100゜以下が好ましく、90゜以下がより好ましく、80゜以下がさらに好ましい。動的接触角はより低いことが好ましく、65゜以下が好ましく、60゜以下がより好ましく、55゜以下がさらに好ましく、50゜以下が一層好ましく、45゜以下が最も好ましい。動的接触角は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
In the low hydrous soft device of the present invention, the dynamic contact angle with respect to the borate buffer (during advance, immersion speed: 0.1 mm / sec) is preferably 100 ° or less, more preferably 90 ° or less, and 80 ° or less. Further preferred. The dynamic contact angle is preferably lower, preferably 65 ° or less, more preferably 60 ° or less, further preferably 55 ° or less, still more preferably 50 ° or less, and most preferably 45 ° or less. The dynamic contact angle is measured on a sample wet with borate buffer.
また、本発明の低含水性軟質デバイスが例えば生体表面に貼付して用いられる医療デバイスである場合、装用者の皮膚等への貼り付きを防止するためには、低含水性軟質デバイスの表面の液膜保持時間が長いことが好ましい。ここで、液膜保持時間とは、ホウ酸緩衝液に浸漬した低含水性軟質デバイスを液から引き上げ、空中に表面が垂直になるように保持した際に、低含水性軟質デバイス表面の液膜が切れずに保持される時間である。液膜保持時間は、5秒以上が好ましく、10秒以上がさらに好ましく、20秒以上が最も好ましい。
In addition, when the low hydrous soft device of the present invention is a medical device that is used by being applied to the surface of a living body, for example, in order to prevent sticking to the skin of the wearer, the surface of the low hydrous soft device is used. It is preferable that the liquid film retention time is long. Here, the liquid film holding time is the liquid film on the surface of the low hydrous soft device when the low hydrous soft device immersed in the borate buffer is pulled up from the liquid and held so that the surface is vertical in the air. It is the time that is kept without being cut. The liquid film holding time is preferably 5 seconds or longer, more preferably 10 seconds or longer, and most preferably 20 seconds or longer.
また、本発明の低含水性軟質デバイスが例えば生体内に挿入して用いられる医療デバイスである場合、低含水性軟質デバイスの表面が優れた易滑性を有することが好ましい。易滑性を表す指標としては、本明細書の実施例に示した方法で測定される摩擦が小さい方が好ましい。摩擦は、60gf(0.59N)以下が好ましく、50gf(0.49N)以下がより好ましく、40gf(0.39N)以下がさらに好ましく、30gf(0.29N)以下が最も好ましい。また、摩擦が極端に小さいと脱着用時の取扱が難しくなる傾向があるので、摩擦は5gf(0.049N)以上が好ましく、10gf(0.098N)以上であることがより好ましい。摩擦は、ホウ酸緩衝液による湿潤状態の試料にて測定される。
In addition, when the low hydrous soft device of the present invention is a medical device used by being inserted into a living body, for example, it is preferable that the surface of the low hydrous soft device has excellent slipperiness. As an index representing slipperiness, it is preferable that the friction measured by the method shown in the examples of the present specification is small. The friction is preferably 60 gf (0.59 N) or less, more preferably 50 gf (0.49 N) or less, further preferably 40 gf (0.39 N) or less, and most preferably 30 gf (0.29 N) or less. Further, if the friction is extremely small, handling at the time of detachment tends to be difficult, so the friction is preferably 5 gf (0.049 N) or more, more preferably 10 gf (0.098 N) or more. Friction is measured on samples wet with borate buffer.
低含水性軟質デバイスの防汚性は、ムチン付着、脂質(パルミチン酸メチル)付着、および人工涙液浸漬試験により、評価することができる。これらの評価による付着量が少ないものほど、装用感に優れるとともに、細菌繁殖リスクが低減されるために好ましい。ムチン付着量は5μg/cm2以下が好ましく、4μg/cm2以下がより好ましく、3μg/cm2以下が最も好ましい。
The antifouling property of the low hydrous soft device can be evaluated by mucin adhesion, lipid (methyl palmitate) adhesion, and artificial tear immersion test. The smaller the amount of adhesion by these evaluations, the better the feeling of wearing and the lower the risk of bacterial propagation. The mucin adhesion amount is preferably 5 μg / cm 2 or less, more preferably 4 μg / cm 2 or less, and most preferably 3 μg / cm 2 or less.
本発明の低含水性軟質デバイスが例えば生体表面に貼付して用いられる医療デバイスである場合、低含水性軟質デバイスは、高い酸素透過性を有することが好ましい。酸素透過係数[×10-11(cm2/sec)mLO2/(mL・hPa)]は50~2000が好ましく、100~1500がより好ましく、200~1000がさらに好ましく、300~700が最も好ましい。酸素透過性を大きくしすぎると機械物性などの他の物性に悪影響が出る場合があり好ましくない。酸素透過係数は、乾燥状態の試料にて測定される。
When the low hydrous soft device of the present invention is, for example, a medical device used by being attached to the surface of a living body, the low hydrous soft device preferably has high oxygen permeability. The oxygen permeability coefficient [× 10 −11 (cm 2 / sec) mLO 2 / (mL · hPa)] is preferably 50 to 2000, more preferably 100 to 1500, still more preferably 200 to 1000, and most preferably 300 to 700. . If the oxygen permeability is excessively increased, other physical properties such as mechanical properties may be adversely affected, which is not preferable. The oxygen permeability coefficient is measured on a dry sample.
本発明の低含水性軟質デバイスは、所望の形状(例えば、チューブ形状、シート状、フィルム状、収納容器形状、粒状等)の成型体(以下、基材と呼ぶ)を含み、該基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成されている。
The low hydrous soft device of the present invention includes a molded body (hereinafter referred to as a base material) having a desired shape (for example, a tube shape, a sheet shape, a film shape, a storage container shape, a granular shape, etc.). A layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface.
基材は、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とすることが好ましい;
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分Aの重合体
成分B:フルオロアルキル基を有する重合性モノマー
ここで、主成分とは、乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。 The base material is preferably composed mainly of a polymer of the following component A or a copolymer of the following component A and component B;
Component A: Polymer of Component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more Component B: Polymerizable monomer having a fluoroalkyl group Means a component contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分Aの重合体
成分B:フルオロアルキル基を有する重合性モノマー
ここで、主成分とは、乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。 The base material is preferably composed mainly of a polymer of the following component A or a copolymer of the following component A and component B;
Component A: Polymer of Component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more Component B: Polymerizable monomer having a fluoroalkyl group Means a component contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
成分Aの数平均分子量は6000以上であることが好ましい。発明者らは、成分Aの数平均分子量がこの範囲にあることで、柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質デバイスが得られることを見出した。成分Aのポリシロキサン化合物の数平均分子量は、耐折り曲げ性などの機械物性により優れた低含水性軟質デバイスが得られることから、8000以上が好ましい。成分Aの数平均分子量は8000~100000の範囲にあることが好ましく、9000~70000の範囲にあることがより好ましく、10000~50000の範囲にあることが一層好ましい。成分Aの数平均分子量が小さすぎる場合には耐折り曲げ性などの機械物性が低くなる傾向があり、特に6000未満では耐折り曲げ性が低くなる。成分Aの数平均分子量が大きすぎる場合には、柔軟性や透明性が低下する傾向があり好ましくない。
The number average molecular weight of component A is preferably 6000 or more. The inventors have found that when the number average molecular weight of component A is in this range, a low hydrous soft device excellent in mechanical properties such as flexibility, excellent wearing feeling and bending resistance can be obtained. The number average molecular weight of the component A polysiloxane compound is preferably 8000 or more because a low hydrous soft device having excellent mechanical properties such as bending resistance can be obtained. The number average molecular weight of component A is preferably in the range of 8000 to 100,000, more preferably in the range of 9000 to 70000, and still more preferably in the range of 10,000 to 50000. When the number average molecular weight of component A is too small, mechanical properties such as bending resistance tend to be low, and particularly when it is less than 6000, bending resistance is low. When the number average molecular weight of component A is too large, flexibility and transparency tend to decrease, which is not preferable.
本発明において、成分Aの数平均分子量は、クロロホルムを溶媒として用いたゲル浸透クロマトグラフィー法(GPC法)で測定されるポリスチレン換算の数平均分子量である。質量平均分子量および分散度(質量平均分子量を数平均分子量で除した値)も同様の方法で測定される。
In the present invention, the number average molecular weight of component A is a polystyrene-equivalent number average molecular weight measured by a gel permeation chromatography method (GPC method) using chloroform as a solvent. The mass average molecular weight and the dispersity (value obtained by dividing the mass average molecular weight by the number average molecular weight) are also measured by the same method.
なお、本明細書においては、質量平均分子量をMw、数平均分子量をMnで表す場合がある。また分子量1000を1kDと表記することがある。例えば「Mw33kD」という表記は「質量平均分子量33000」を表す。
In addition, in this specification, a mass average molecular weight may be represented by Mw and a number average molecular weight may be represented by Mn. Moreover, molecular weight 1000 may be described as 1 kD. For example, the notation “Mw33 kD” represents “mass average molecular weight 33000”.
成分Aは、1分子あたり複数の重合性官能基を有するポリシロキサン化合物である。成分Aの重合性官能基の数は、1分子あたり2個以上であればよいが、より柔軟(低弾性率)な低含水性軟質デバイスが得られやすいという観点からは、1分子あたり2個が好ましい。特に分子鎖の両末端に重合性官能基を有する構造が好ましい。
Component A is a polysiloxane compound having a plurality of polymerizable functional groups per molecule. The number of polymerizable functional groups of component A may be two or more per molecule, but from the viewpoint that a softer (low elastic modulus) low hydrous soft device can be easily obtained, two per functional molecule. Is preferred. In particular, a structure having a polymerizable functional group at both ends of the molecular chain is preferable.
成分Aの重合性官能基としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
As the polymerizable functional group of Component A, a functional group capable of radical polymerization is preferable, and one having a carbon-carbon double bond is more preferable. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
なお、本明細書において(メタ)アクリロイルという語はメタクリロイルおよびアクリロイルの両方を表すものであり、(メタ)アクリル、(メタ)アクリレートなどの語も同様である。
In the present specification, the term (meth) acryloyl represents both methacryloyl and acryloyl, and the same applies to terms such as (meth) acryl and (meth) acrylate.
成分Aとしては、下記式(A1)の構造を有するものが好ましい。
Component A preferably has the structure of the following formula (A1).
式(A1)中、X1およびX2はそれぞれ独立に重合性官能基を表す。R1~R8はそれぞれ独立に、水素、炭素数1~20のアルキル基、フェニル基、および炭素数1~20のフルオロアルキル基から選ばれた置換基を表す。L1およびL2は、それぞれ独立に2価の基を表す。aおよびbは、それぞれ独立に0~1500の整数を表す。ただしaとbは同時に0ではない。
In formula (A1), X 1 and X 2 each independently represent a polymerizable functional group. R 1 to R 8 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms. L 1 and L 2 each independently represents a divalent group. a and b each independently represents an integer of 0 to 1500. However, a and b are not 0 at the same time.
X1およびX2としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものが好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
X 1 and X 2 are preferably radical polymerizable functional groups, preferably those having a carbon-carbon double bond. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
R1~R8の好適な具体例は、水素;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、ドデシル基、オクタデシル基などの炭素数1~20のアルキル基;フェニル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。これらの中で、低含水性軟質デバイスに良好な機械物性と高酸素透過性を与えるという観点からさらに好ましいのは、水素およびメチル基であり、最も好ましいのはメチル基である。
Preferred examples of R 1 to R 8 include hydrogen; a C 1-20 carbon atom such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group, etc. Alkyl group: phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluorop Propyl group, a pentafluoropropyl group, tetradecanoyl perfluorooctyl group, pentadecafluorooctyl group, octadecanol fluoro decyl, and fluoroalkyl group having 1 to 20 carbon atoms such as nonafluorobutyl heptadecafluorodecyl group. Among these, hydrogen and a methyl group are more preferable from the viewpoint of giving good mechanical properties and high oxygen permeability to a low hydrous soft device, and a methyl group is most preferable.
L1およびL2としては、炭素数1~20の2価の基が好ましい。中でも式(A1)の化合物が高純度で得られやすい利点を有することから、下記式(LE1)~(LE12)で表される基が好ましく、中でも下記式(LE1)、(LE3)、(LE9)および(LE11)で表される基がより好ましく、下記式(LE1)および(LE3)で表される基がさらに好ましく、下記式(LE1)で表される基が最も好ましい。なお、下記式(LE1)~(LE12)は、左側が重合性官能基X1またはX2に結合する末端、右側がケイ素原子に結合する末端として描かれている。
L 1 and L 2 are preferably divalent groups having 1 to 20 carbon atoms. Among them, the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (A1) has an advantage that it can be easily obtained with high purity. Among them, the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred. Incidentally, the following formula (LE1) ~ (LE12), the terminal of the left is attached to the polymerizable functional group X 1 or X 2, is depicted as an end of the right side is attached to a silicon atom.
式(A1)中、aおよびbは、それぞれ独立に各繰返し単位の数を表す。aおよびbはそれぞれ独立に0~1500の範囲が好ましい。aとbの合計値(a+b)は、80以上が好ましく、100以上がより好ましく、100~1400がより好ましく、120~950がより好ましく、130~700がさらに好ましい。
In formula (A1), a and b each independently represent the number of each repeating unit. a and b each independently preferably ranges from 0 to 1500. The total value of a and b (a + b) is preferably 80 or more, more preferably 100 or more, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700.
R1~R8が全てメチル基の場合、b=0であり、aは、80~1500が好ましく、100~1400がより好ましく、120~950がより好ましく、130~700がさらに好ましい。この場合、aの値は、成分Aのポリシロキサン化合物の分子量によって決まる。
When R 1 to R 8 are all methyl groups, b = 0, and a is preferably 80 to 1500, more preferably 100 to 1400, more preferably 120 to 950, and still more preferably 130 to 700. In this case, the value of a is determined by the molecular weight of the polysiloxane compound of component A.
本発明の成分Aは1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
The component A of the present invention may be used alone or in combination of two or more.
成分Aと共重合させる他の化合物としては、フルオロアルキル基を有する重合性モノマーである成分Bが好ましい。成分Bはフルオロアルキル基に起因する臨界表面張力の低下により、撥水撥油性の性質を持ち、これにより、低含水性軟質デバイス表面が生体の体液中のタンパク質や脂質などの成分によって汚染されることを抑える効果がある。また、成分Bは、柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質デバイスを与える効果がある。成分Bのフルオロアルキル基の好適な具体例は、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。より好ましくは、炭素数2~8のフルオロアルキル基、例えば、トリフルオロエチル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、オクタフルオロペンチル基、およびドデカフルオロオクチル基であり、最も好ましくはトリフルオロエチル基である。
As another compound to be copolymerized with Component A, Component B which is a polymerizable monomer having a fluoroalkyl group is preferable. Component B has water- and oil-repellent properties due to a decrease in critical surface tension due to the fluoroalkyl group, and thereby the surface of a low hydrous soft device is contaminated by components such as proteins and lipids in body fluids of living organisms. There is an effect to suppress that. In addition, Component B has an effect of giving a low hydrous soft device that is flexible and excellent in wearing feeling and excellent in mechanical properties such as bending resistance. Preferred specific examples of the fluoroalkyl group of Component B are trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluoro group. Hexyl group, hexafluorobutyl group, heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group , Heptadecafluorodecyl group, tetrafluoropropyl group, pentafluoropropyl group, tetradecafluorooctyl group, pentadecafluorooctyl group, octadecafluorodecyl group, and nonadecafluoro Is a fluoroalkyl group having 1 to 20 carbon atoms such as sill groups. More preferably, it is a C2-C8 fluoroalkyl group such as a trifluoroethyl group, a tetrafluoropropyl group, a hexafluoroisopropyl group, an octafluoropentyl group, and a dodecafluorooctyl group, most preferably trifluoroethyl group It is a group.
成分Bの重合性官能基としてはラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などであるが、これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
The polymerizable functional group of Component B is preferably a radical polymerizable functional group, more preferably a carbon-carbon double bond. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples of the acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
柔軟で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた低含水性軟質デバイスが得られる効果が大きいことから、成分Bとして最も好ましいのは(メタ)アクリル酸フルオロアルキルエステルである。かかる(メタ)アクリル酸フルオロアルキルエステルの具体例としては、トリフルオロエチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレート、トリフルオロプロピル(メタ)アクリレート、テトラフルオロプロピル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、ヘキサフルオロブチル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、ヘプタフルオロブチル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ノナフルオロペンチル(メタ)アクリレート、ドデカフルオロペンチル(メタ)アクリレート、ドデカフルオロヘプチル(メタ)アクリレート、ドデカフルオロオクチル(メタ)アクリレート、およびトリデカフルオロヘプチル(メタ)アクリレートが挙げられる。トリフルオロエチル(メタ)アクリレート、テトラフルオロエチル(メタ)アクリレート、ヘキサフルオロイソプロピル(メタ)アクリレート、オクタフルオロペンチル(メタ)アクリレート、ドデカフルオロオクチル(メタ)アクリレートが好ましく用いられる。最も好ましくはトリフルオロエチル(メタ)アクリレートである。
(Meth) acrylic acid fluoroalkyl ester is most preferred as component B because it is highly effective in obtaining a low hydrous soft device excellent in mechanical properties such as bending resistance and flexibility. Specific examples of such (meth) acrylic acid fluoroalkyl esters include trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, trifluoropropyl (meth) acrylate, tetrafluoropropyl (meth) acrylate, and pentafluoropropyl. (Meth) acrylate, hexafluorobutyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, heptafluorobutyl (meth) acrylate, octafluoropentyl (meth) acrylate, nonafluoropentyl (meth) acrylate, dodecafluoropentyl (meta ) Acrylate, dodecafluoroheptyl (meth) acrylate, dodecafluorooctyl (meth) acrylate, and tridecafluoroheptyl (meth) Acrylate, and the like. Trifluoroethyl (meth) acrylate, tetrafluoroethyl (meth) acrylate, hexafluoroisopropyl (meth) acrylate, octafluoropentyl (meth) acrylate, and dodecafluorooctyl (meth) acrylate are preferably used. Most preferred is trifluoroethyl (meth) acrylate.
本発明のB成分は1種類のみ用いてもよいし、2種類以上組み合わせて用いてもよい。
The B component of the present invention may be used alone or in combination of two or more.
共重合体中における成分Bの好ましい含有量は、成分A100質量部に対して、10~500質量部、より好ましくは20~400質量部、さらに好ましくは20~200質量部である。成分Bの使用量が少なすぎる場合は、得られる低含水性軟質デバイスに白濁が生じたり、耐折り曲げ性などの機械物性が不十分になったりする傾向がある。
The content of Component B in the copolymer is preferably 10 to 500 parts by weight, more preferably 20 to 400 parts by weight, and still more preferably 20 to 200 parts by weight with respect to 100 parts by weight of Component A. When the amount of component B used is too small, the resulting low hydrous soft device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
また、基材に用いる共重合体としては、成分Aおよび成分Bに加えて、成分Aおよび成分Bとは異なる成分(以下成分C)をさらに共重合させたものを用いてもよい。
In addition to the component A and component B, a copolymer obtained by further copolymerizing a component different from component A and component B (hereinafter referred to as component C) may be used as the copolymer used for the substrate.
成分Cとしては、共重合体のガラス移転点を室温あるいは0℃以下に下げるものがよい。これらは凝集エネルギ-を低下させるので、共重合体にゴム弾性と柔らかさを与える効果がある。
Component C is preferably one that lowers the glass transition point of the copolymer to room temperature or below 0 ° C. Since these reduce the cohesive energy, they have the effect of imparting rubber elasticity and softness to the copolymer.
成分Cの重合性官能基としてはラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などであるが、これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
The polymerizable functional group of Component C is preferably a radical polymerizable functional group, and more preferably has a carbon-carbon double bond. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples of the acid residue and citraconic acid residue include a (meth) acryloyl group because of high polymerizability among them.
成分Cとして、柔軟性や耐折り曲げ性などの機械的特性の改善のために好適な例は、(メタ)アクリル酸アルキルエステル、好ましくはアルキル基の炭素数が1~20の(メタ)アクリル酸アルキルエステルであり、その具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、n-ドデシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、およびn-ステアリル(メタ)アクリレート等を挙げることができ、より好ましくは、n-ブチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ラウリル(メタ)アクリレート、n-ステアリル(メタ)アクリレートである。これらの中でアルキル基の炭素数が1~10の(メタ)アクリル酸アルキルエステルはさらに好ましい。アルキル基の炭素数が大きすぎると得られる低含水性軟質デバイスの透明性が低下する場合があり好ましくない。
Examples of component C suitable for improving mechanical properties such as flexibility and bending resistance are (meth) acrylic acid alkyl esters, preferably (meth) acrylic acid having an alkyl group having 1 to 20 carbon atoms. Specific examples thereof include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, tert-butyl (meth) acrylate, isobutyl (meth) ) Acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-heptyl (meth) acrylate, n-nonyl (meth) acrylate, n-decyl (meth) acrylate , Isodecyl (meth) acrylate, n-lauryl (meth) Examples include acrylate, tridecyl (meth) acrylate, n-dodecyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, and n-stearyl (meth) acrylate, and more preferably n-butyl. (Meth) acrylate, n-octyl (meth) acrylate, n-lauryl (meth) acrylate, and n-stearyl (meth) acrylate. Of these, (meth) acrylic acid alkyl esters having an alkyl group with 1 to 10 carbon atoms are more preferred. If the carbon number of the alkyl group is too large, the transparency of the resulting low hydrous soft device may be lowered, which is not preferable.
さらに、機械的性質、表面濡れ性、低含水性軟質デバイスの寸法安定性などを向上させるためには、所望に応じ、以下に述べるモノマーを共重合させることができる。
Furthermore, in order to improve mechanical properties, surface wettability, dimensional stability of a low hydrous soft device, and the like, the monomers described below can be copolymerized as desired.
機械的性質を向上させるためのモノマーとしては、例えばスチレン、tert-ブチルスチレン、α-メチルスチレンなどの芳香族ビニル化合物等が挙げられる。
Examples of the monomer for improving mechanical properties include aromatic vinyl compounds such as styrene, tert-butylstyrene, and α-methylstyrene.
表面濡れ性を向上させるためのモノマーとしては、例えばメタクリル酸、アクリル酸、イタコン酸、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、グリセロールメタクリレート、ポリエチレングリコールメタクリレート、N,N-ジメチルアクリルアミド、N-メチルアクリルアミド、ジメチルアミノエチルメタクリレート、メチレンビスアクリルアミド、ダイアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、およびN-ビニル-N-メチルアセトアミド等が挙げられる。中でもN,N-ジメチルアクリルアミド、N-メチルアクリルアミド、ジメチルアミノエチルメタクリレート、メチレンビスアクリルアミド、ダイアセトンアクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、およびN-ビニル-N-メチルアセトアミドなどのアミド基を含有するモノマーが好ましい。
Examples of the monomer for improving the surface wettability include methacrylic acid, acrylic acid, itaconic acid, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, 2-hydroxypropyl acrylate, glycerol methacrylate, polyethylene Glycol methacrylate, N, N-dimethylacrylamide, N-methylacrylamide, dimethylaminoethyl methacrylate, methylenebisacrylamide, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinyl-N- And methyl acetamide. Among them, N, N-dimethylacrylamide, N-methylacrylamide, dimethylaminoethyl methacrylate, methylenebisacrylamide, diacetone acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, and N-vinyl-N-methylacetamide Monomers containing amide groups such as are preferred.
低含水性軟質デバイスの寸法安定性を向上させるためのモノマーとしては、例えばエチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラメタクリレート、ビスフェノールAジメタクリレート、ビニルメタクリレート、アクリルメタクリレートおよびこれらのメタクリレート類に対応するアクリレート類、ジビニルベンゼン、トリアリルイソシアヌレート等が挙げられる。
Examples of monomers for improving the dimensional stability of low hydrous soft devices include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, pentaerythritol tetramethacrylate, Bisphenol A dimethacrylate, vinyl methacrylate, acrylic methacrylate and acrylates corresponding to these methacrylates, divinylbenzene, triallyl isocyanurate and the like can be mentioned.
成分Cは、1種類のみ用いてもよいし、2種類以上を組み合わせて用いてもよい。
Component C may be used alone or in combination of two or more.
成分Cの好ましい使用量は、成分A100質量部に対して、0.001~400質量部、より好ましくは0.01~300質量部、さらに好ましくは0.01~200質量部、最も好ましくは0.01~30質量部である。成分Cの使用量が少なすぎる場合は成分Cに期待する効果が得られにくくなる。成分Cの使用量が多すぎる場合は得られる低含水性軟質デバイスに白濁が生じたり耐折り曲げ性などの機械物性が不十分になったりする傾向がある。
Component C is preferably used in an amount of 0.001 to 400 parts by weight, more preferably 0.01 to 300 parts by weight, still more preferably 0.01 to 200 parts by weight, and most preferably 0 to 100 parts by weight of Component A. 0.01 to 30 parts by mass. When the amount of component C used is too small, it is difficult to obtain the effect expected of component C. When the amount of component C used is too large, the resulting low hydrous soft device tends to become cloudy or mechanical properties such as bending resistance tend to be insufficient.
さらにまた、基材に用いる共重合体として、成分Aに加えて、成分Mをさらに共重合させたものを用いてもよい。成分Mは、「1分子あたり1個の重合性官能基、およびシロキサニル基を有する単官能モノマー」である。
Furthermore, a copolymer obtained by further copolymerizing component M in addition to component A may be used as the copolymer used for the substrate. Component M is “a monofunctional monomer having one polymerizable functional group and a siloxanyl group per molecule”.
本明細書において、シロキサニル基とはSi-O-Si結合を有する基を意味する。
In this specification, the siloxanyl group means a group having a Si—O—Si bond.
成分Mのシロキサニル基は直鎖状であることが好ましい。シロキサニル基が直鎖状であれば、得られる低含水性軟質デバイスの形状回復性が向上する。ここで直鎖状とは、重合性基を有する基と結合したケイ素原子を起点とする、一本の線状に連なるSi-(O-Si)n-1-O-Si結合で示される構造を指す(ただし、nは2以上の整数を表す)。得られる低含水性軟質デバイスが十分な形状回復性を得るためにはnは3以上の整数が好ましく、4以上がより好ましく、5以上がさらに好ましく、6以上が最も好ましい。ここで、「シロキサニル基が直鎖状である」とはシロキサニル基が上記の直鎖状構造を有し、かつ直鎖状構造の条件を満たさないSi-O-Si結合を有さないことを意味する。
The siloxanyl group of component M is preferably linear. If the siloxanyl group is linear, the shape recoverability of the resulting low hydrous soft device is improved. Here, the term “linear” refers to a structure represented by a single linearly connected Si— (O—Si) n−1 —O—Si bond starting from a silicon atom bonded to a group having a polymerizable group. (Where n represents an integer of 2 or more). In order for the obtained low hydrous soft device to obtain sufficient shape recoverability, n is preferably an integer of 3 or more, more preferably 4 or more, further preferably 5 or more, and most preferably 6 or more. Here, “the siloxanyl group is linear” means that the siloxanyl group has the above linear structure and does not have a Si—O—Si bond that does not satisfy the conditions of the linear structure. means.
基材は、数平均分子量が300~120000である成分Mを含む共重合体を主成分とすることが好ましい。ここで、主成分とは乾燥状態の基材質量を基準(100質量%)として50質量%以上含まれる成分であることを意味する。
The base material is preferably composed mainly of a copolymer containing the component M having a number average molecular weight of 300 to 120,000. Here, the main component means a component that is contained in an amount of 50% by mass or more based on the mass of the base material in a dry state (100% by mass).
成分Mの数平均分子量は、300~120000であることが好ましい。成分Mの数平均分子量がこの範囲にあることで、柔軟(低弾性率)で装用感に優れ、しかも耐折り曲げ性などの機械物性に優れた基材が得られる。成分Mの数平均分子量は、耐折り曲げ性などの機械物性により優れ、かつ形状回復性に優れた基材が得られることから、500以上がより好ましい。成分Mの数平均分子量は、1000~25000の範囲にあることがより好ましく、5000~15000の範囲にあることが一層好ましい。成分Mの数平均分子量が小さすぎる場合には耐折り曲げ性や形状回復性などの機械物性が低くなる傾向があり、特に500未満では耐折り曲げ性、および形状回復性が低くなることがある。成分Mの数平均分子量が大きすぎる場合には、柔軟性や透明性が低下する傾向があり好ましくない。
The number average molecular weight of component M is preferably 300 to 120,000. When the number average molecular weight of the component M is in this range, a base material that is flexible (low elastic modulus), excellent in wearing feeling, and excellent in mechanical properties such as bending resistance can be obtained. The number average molecular weight of component M is more preferably 500 or more because a base material excellent in mechanical properties such as bending resistance and excellent in shape recoverability can be obtained. The number average molecular weight of the component M is more preferably in the range of 1000 to 25000, and still more preferably in the range of 5000 to 15000. When the number average molecular weight of the component M is too small, mechanical properties such as bending resistance and shape recovery tend to be low, and particularly when the number is less than 500, bending resistance and shape recovery may be low. When the number average molecular weight of the component M is too large, flexibility and transparency tend to decrease, which is not preferable.
成分Mの重合性官能基としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものがより好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
As the polymerizable functional group of Component M, a radical polymerizable functional group is preferable, and one having a carbon-carbon double bond is more preferable. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
成分Mとしては、下記式(ML1)の構造を有するものが好ましい。
Component M preferably has a structure represented by the following formula (ML1).
式中、X3は重合性官能基を表す。R11~R19はそれぞれ独立に、水素、炭素数1~20のアルキル基、フェニル基、および炭素数1~20のフルオロアルキル基から選ばれた置換基を表す。L3は2価の基を表す。cおよびdは、それぞれ独立に0~700の整数を表す。ただしcとdは同時に0ではない。
In the formula, X 3 represents a polymerizable functional group. R 11 to R 19 each independently represents a substituent selected from hydrogen, an alkyl group having 1 to 20 carbon atoms, a phenyl group, and a fluoroalkyl group having 1 to 20 carbon atoms. L 3 represents a divalent group. c and d each independently represents an integer of 0 to 700. However, c and d are not 0 at the same time.
X3としては、ラジカル重合可能な官能基が好ましく、炭素炭素二重結合を有するものが好ましい。好ましい重合性官能基の例としては、ビニル基、アリル基、(メタ)アクリロイル基、α-アルコキシメチルアクリロイル基、マレイン酸残基、フマル酸残基、イタコン酸残基、クロトン酸残基、イソクロトン酸残基、およびシトラコン酸残基などである。これらの中でも高い重合性を有することから(メタ)アクリロイル基が最も好ましい。
X 3 is preferably a radical polymerizable functional group, and preferably has a carbon-carbon double bond. Examples of preferred polymerizable functional groups include vinyl group, allyl group, (meth) acryloyl group, α-alkoxymethylacryloyl group, maleic acid residue, fumaric acid residue, itaconic acid residue, crotonic acid residue, isocrotonic acid Examples include acid residues and citraconic acid residues. Of these, a (meth) acryloyl group is most preferred because of its high polymerizability.
また、成分Mの重合性官能基は、良好な機械物性の低含水性軟質デバイスが得られやすいことから、成分Aの重合性官能基と共重合可能であることがより好ましく、成分Mと成分Aが均一に共重合されることで良好な表面特性を有する低含水性軟質デバイスが得られやすいことから、成分Aの重合性官能基と同一であることがさらに好ましい。
The polymerizable functional group of Component M is more preferably copolymerizable with the polymerizable functional group of Component A, since a low hydrous soft device with good mechanical properties can be easily obtained. Since it is easy to obtain a low hydrous soft device having good surface characteristics when A is uniformly copolymerized, it is more preferably the same as the polymerizable functional group of Component A.
R11~R19の好適な具体例は、水素;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、デシル基、ドデシル基、オクタデシル基などの炭素数1~20のアルキル基;フェニル基、トリフルオロメチル基、トリフルオロエチル基、トリフルオロプロピル基、テトラフルオロプロピル基、ヘキサフルオロイソプロピル基、ペンタフルオロブチル基、ヘプタフルオロペンチル基、ノナフルオロヘキシル基、ヘキサフルオロブチル基、ヘプタフルオロブチル基、オクタフルオロペンチル基、ノナフルオロペンチル基、ドデカフルオロヘプチル基、トリデカフルオロヘプチル基、ドデカフルオロオクチル基、トリデカフルオロオクチル基、ヘキサデカフルオロデシル基、ヘプタデカフルオロデシル基、テトラフルオロプロピル基、ペンタフルオロプロピル基、テトラデカフルオロオクチル基、ペンタデカフルオロオクチル基、オクタデカフルオロデシル基、およびノナデカフルオロデシル基などの炭素数1~20のフルオロアルキル基である。これらの中で、低含水性軟質デバイスに良好な機械物性と高酸素透過性を与えるという観点からさらに好ましいのは、水素およびメチル基であり、最も好ましいのはメチル基である。
Preferred examples of R 11 to R 19 are hydrogen; those having 1 to 20 carbon atoms such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, decyl group, dodecyl group, octadecyl group and the like. Alkyl group: phenyl group, trifluoromethyl group, trifluoroethyl group, trifluoropropyl group, tetrafluoropropyl group, hexafluoroisopropyl group, pentafluorobutyl group, heptafluoropentyl group, nonafluorohexyl group, hexafluorobutyl group , Heptafluorobutyl group, octafluoropentyl group, nonafluoropentyl group, dodecafluoroheptyl group, tridecafluoroheptyl group, dodecafluorooctyl group, tridecafluorooctyl group, hexadecafluorodecyl group, heptadecafluorodecyl group, Tetrafluo Propyl group, a pentafluoropropyl group, tetradecanoyl perfluorooctyl group, pentadecafluorooctyl group, octadecanol fluoro decyl, and fluoroalkyl group having 1 to 20 carbon atoms such as nonafluorobutyl heptadecafluorodecyl group. Among these, hydrogen and a methyl group are more preferable from the viewpoint of giving good mechanical properties and high oxygen permeability to a low hydrous soft device, and a methyl group is most preferable.
L3としては、炭素数1~20の2価の基が好ましい。中でも式(ML1)の化合物が高純度で得られやすい利点を有することから、下記式(LE1)~(LE12)で表される基が好ましく、中でも下記式(LE1)、(LE3)、(LE9)および(LE11)で表される基がより好ましく、下記式(LE1)および(LE3)で表される基がさらに好ましく、下記式(LE1)で表される基が最も好ましい。なお、下記式(LE1)~(LE12)は、左側が重合性官能基X3に結合する末端、右側がケイ素原子に結合する末端として描かれている。
L 3 is preferably a divalent group having 1 to 20 carbon atoms. Among them, the group represented by the following formulas (LE1) to (LE12) is preferable because the compound of the formula (ML1) has an advantage of being easily obtained with high purity, and among them, the following formulas (LE1), (LE3), (LE9) ) And (LE11) are more preferred, groups represented by the following formulas (LE1) and (LE3) are more preferred, and groups represented by the following formula (LE1) are most preferred. Incidentally, the following formula (LE1) ~ (LE12), the terminal of the left is attached to the polymerizable functional group X 3, is depicted as an end of the right side is attached to a silicon atom.
式(ML1)中、cとdの合計値(c+d)は、3以上が好ましく、10以上がより好ましく、10~500がより好ましく、30~300がより好ましく、50~200がさらに好ましい。
In the formula (ML1), the total value of c and d (c + d) is preferably 3 or more, more preferably 10 or more, more preferably 10 to 500, more preferably 30 to 300, and still more preferably 50 to 200.
R11~R18が全てメチル基の場合、d=0であり、cは、3~700が好ましく、10~500がより好ましく、30~300がより好ましく、50~200がさらに好ましい。この場合、cの値は、成分Mの分子量によって決まる。
When R 11 to R 18 are all methyl groups, d = 0, c is preferably 3 to 700, more preferably 10 to 500, more preferably 30 to 300, and further preferably 50 to 200. In this case, the value of c is determined by the molecular weight of component M.
本発明の低含水性軟質デバイスの基材において、成分Mは1種類のみ用いてもよいし、2種類以上組み合わせて用いてもよい。
In the substrate of the low hydrous soft device of the present invention, only one type of component M may be used, or two or more types may be used in combination.
本発明の低含水性軟質デバイスの基材が適当な量の成分Mを含有することにより、架橋密度が減少してポリマーの自由度が大きくなり、適度に柔らかい低弾性率の基材を実現することができる。これに対し、成分Mの含有量が少なすぎると架橋密度が高くなり、基材が硬くなる。また、成分Mの含有量が多すぎると軟らかくなりすぎ、破れやすくなるため好ましくない。
When the base material of the low hydrous soft device of the present invention contains an appropriate amount of the component M, the crosslink density is reduced, the degree of freedom of the polymer is increased, and a moderately soft base material having a low elastic modulus is realized. be able to. On the other hand, when there is too little content of the component M, a crosslinking density will become high and a base material will become hard. Moreover, when there is too much content of the component M, since it will become too soft and it will become easy to tear, it is not preferable.
また、本発明の低含水性軟質デバイスの基材において、成分Mと成分Aとの質量比は、成分A100質量部に対して成分Mが5~200質量部、より好ましくは7~150質量部、最も好ましくは10~100質量部、であることが好ましい。成分Mの含有量が、成分A100質量部に対し5質量部を下まわると、架橋密度が高くなり、基材が硬くなる。また、成分Mの含有量が、成分A100質量部に対し200質量部を超えると、軟らかくなりすぎ、破れやすくなるため好ましくない。
In the substrate of the low hydrous soft device of the present invention, the mass ratio of the component M and the component A is such that the component M is 5 to 200 parts by mass, more preferably 7 to 150 parts by mass with respect to 100 parts by mass of the component A. The most preferred is 10 to 100 parts by mass. When content of the component M is less than 5 mass parts with respect to 100 mass parts of component A, a crosslinking density will become high and a base material will become hard. On the other hand, when the content of Component M exceeds 200 parts by mass with respect to 100 parts by mass of Component A, it is not preferable because it becomes too soft and easily broken.
基材は、表面にコーティングされるポリマーとの間に共有結合を介さずに強固な密着性を得るため、また、良好な酸素透過性を有するために、ケイ素原子を5質量%以上含むことが好ましい。ケイ素原子の含有量(質量%)は、乾燥状態の基材質量を基準(100質量%)として算出される。基材のケイ素原子含有率は5質量%~36質量%が好ましく、7質量%~30質量%がより好ましく、10質量%~30質量%がさらに好ましく、12質量%~26質量%が最も好ましい。ケイ素原子の含有率が大きすぎる場合は引張弾性率が大きくなる場合があり好ましくない。
The substrate contains 5% by mass or more of silicon atoms in order to obtain strong adhesion without using a covalent bond with the polymer coated on the surface and to have good oxygen permeability. preferable. The silicon atom content (% by mass) is calculated based on the dry substrate mass (100% by mass). The silicon atom content of the substrate is preferably 5% by mass to 36% by mass, more preferably 7% by mass to 30% by mass, further preferably 10% by mass to 30% by mass, and most preferably 12% by mass to 26% by mass. . If the content of silicon atoms is too large, the tensile elastic modulus may increase, which is not preferable.
基材におけるケイ素原子の含有量は以下の方法で測定することができる。十分乾燥した基材を白金るつぼに秤取し、硫酸を加えてホットプレートおよびバーナーで加熱灰化する。灰化物を炭酸ナトリウムで融解し、水を加えて加熱溶解した後、硝酸を加え水で定容する。この溶液について、ICP発光分光分析法によりケイ素原子を測定し、基材中の含有量を求める。
The content of silicon atoms in the substrate can be measured by the following method. The sufficiently dried substrate is weighed in a platinum crucible, sulfuric acid is added, and heat ashing is performed with a hot plate and a burner. The ashed product is melted with sodium carbonate, and water is added to dissolve it by heating. Then, nitric acid is added and the volume is adjusted with water. About this solution, a silicon atom is measured by ICP emission spectrometry, and content in a base material is calculated | required.
本発明の低含水性軟質デバイスが、例えば生体内に挿入される光学製品の表面(例えば内視鏡先端に設けられたカメラ)に用いられる医療デバイスである場合、透明性が高いことが好ましい。透明性の基準としては、目視した際に透明で濁りがないことが好ましい。さらに低含水性軟質デバイスは、投影機で観察した場合、濁りがほとんど、または、全く観察されないことが好ましく、濁りが全く観察されないことが最も好ましい。
When the low hydrous soft device of the present invention is a medical device used, for example, on the surface of an optical product inserted into a living body (for example, a camera provided at the distal end of an endoscope), it is preferable that the transparency is high. As a criterion for transparency, it is preferable that the material is transparent and free from turbidity when visually observed. Furthermore, when the low hydrous soft device is observed with a projector, it is preferable that little or no turbidity is observed, and most preferable that no turbidity is observed.
成分Aの分散度(質量平均分子量を数平均分子量で除した値)は、6以下が好ましく、3以下がより好ましく、2以下がさらに好ましく、1.5以下が最も好ましい。成分Aの分散度が小さい場合、他の成分との相溶性が向上し、得られる低含水性軟質デバイスの透明性が向上する、得られる低含水性軟質デバイスに含まれる抽出可能な成分が減る、低含水性軟質デバイスの基材の成型に伴う収縮率が小さくなる、などの利点が生じる。
The dispersity (the value obtained by dividing the mass average molecular weight by the number average molecular weight) is preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and most preferably 1.5 or less. When the dispersion degree of component A is small, the compatibility with other components is improved, the transparency of the resulting low hydrous soft device is improved, and the extractable components contained in the resulting low hydrous soft device are reduced. Advantages such as reduction in shrinkage due to molding of the base material of the low hydrous soft device occur.
基材の成型に伴う収縮率は、例えば基材がフィルム形状であり、該基材を板間重合で成型する場合、次式により算出した対応する4辺の成型比の平均値によって評価される。
The shrinkage rate associated with the molding of the base material is evaluated by, for example, the average value of the molding ratios of the corresponding four sides calculated by the following equation when the base material is in the form of a film and the base material is molded by inter-plate polymerization. .
1辺の成型比=(成型後の1辺の長さ)/(型の空隙部の1辺の長さ)
ここで、「型の空隙部」とは、フィルムを成型するのに用いられる、該フィルムの形状に対応する形状の空隙部であり、通常は2枚の板とガスケットで構成される空隙部である。 Molding ratio of one side = (length of one side after molding) / (length of one side of the cavity of the mold)
Here, the “mold cavity” is a cavity having a shape corresponding to the shape of the film, which is used for molding a film, and is usually a cavity composed of two plates and a gasket. is there.
ここで、「型の空隙部」とは、フィルムを成型するのに用いられる、該フィルムの形状に対応する形状の空隙部であり、通常は2枚の板とガスケットで構成される空隙部である。 Molding ratio of one side = (length of one side after molding) / (length of one side of the cavity of the mold)
Here, the “mold cavity” is a cavity having a shape corresponding to the shape of the film, which is used for molding a film, and is usually a cavity composed of two plates and a gasket. is there.
また、例えば基材が球冠形状(球面の一部を平面で切り取った形状)であり、該基材をモールド重合で成型する場合、成型に伴う収縮率は、成型比=[直径]/[モールドの空隙部の直径]で評価することができる。ここで直径とは球冠の縁部が構成する円の直径である。
Further, for example, when the base material has a spherical crown shape (a shape obtained by cutting off a part of the spherical surface with a flat surface), and the base material is molded by mold polymerization, the shrinkage rate accompanying the molding is: molding ratio = [diameter] / [ The diameter of the void portion of the mold] can be evaluated. Here, the diameter is the diameter of a circle formed by the edge of the spherical crown.
成型比は、1に近いほど高品位の低含水性軟質デバイスを安定に製造することが容易となる。成型比は0.85~2.0の範囲が好ましく、0.9~1.5の範囲がより好ましく、0.91~1.3の範囲が最も好ましい。
As the molding ratio is closer to 1, it becomes easier to stably produce a high-quality, low hydrous soft device. The molding ratio is preferably in the range of 0.85 to 2.0, more preferably in the range of 0.9 to 1.5, and most preferably in the range of 0.91 to 1.3.
また、本発明の低含水性軟質デバイスの乾燥による収縮率(以下、収縮率)は、例えば基材がフィルム形状の場合、ホウ酸緩衝液による湿潤状態(保管前)の試験片の4辺の長さと、この試験片を所定環境下に所定時間保管した後の試験片の4辺の長さとを測定し、次式により算出した対応する各辺の収縮率の平均値によって評価される。
1辺の収縮率(%)={(保管前の1辺の長さ)-(保管後の1辺の長さ)}
/(保管前の1辺の長さ)×100
さらに、例えば基材が球冠形状(球面の一部を平面で切り取った形状)である場合、収縮率は、収縮率(%)=[保管後の直径]/[保管前の直径]で評価することができる。ここで直径とは球冠の縁部が構成する円の直径である。 Moreover, the shrinkage ratio (hereinafter referred to as shrinkage ratio) due to drying of the low hydrous soft device of the present invention is, for example, when the substrate is in a film shape, on the four sides of the test piece in a wet state (before storage) with a borate buffer solution. The length and the length of the four sides of the test piece after storing the test piece in a predetermined environment for a predetermined time are measured and evaluated by the average value of the shrinkage rate of each corresponding side calculated by the following equation.
Shrinkage rate of one side (%) = {(length of one side before storage) − (length of one side after storage)}
/ (Length of one side before storage) x 100
Furthermore, for example, when the base material has a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a flat surface), the shrinkage rate is evaluated by shrinkage rate (%) = [diameter after storage] / [diameter before storage]. can do. Here, the diameter is the diameter of a circle formed by the edge of the spherical crown.
1辺の収縮率(%)={(保管前の1辺の長さ)-(保管後の1辺の長さ)}
/(保管前の1辺の長さ)×100
さらに、例えば基材が球冠形状(球面の一部を平面で切り取った形状)である場合、収縮率は、収縮率(%)=[保管後の直径]/[保管前の直径]で評価することができる。ここで直径とは球冠の縁部が構成する円の直径である。 Moreover, the shrinkage ratio (hereinafter referred to as shrinkage ratio) due to drying of the low hydrous soft device of the present invention is, for example, when the substrate is in a film shape, on the four sides of the test piece in a wet state (before storage) with a borate buffer solution. The length and the length of the four sides of the test piece after storing the test piece in a predetermined environment for a predetermined time are measured and evaluated by the average value of the shrinkage rate of each corresponding side calculated by the following equation.
Shrinkage rate of one side (%) = {(length of one side before storage) − (length of one side after storage)}
/ (Length of one side before storage) x 100
Furthermore, for example, when the base material has a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a flat surface), the shrinkage rate is evaluated by shrinkage rate (%) = [diameter after storage] / [diameter before storage]. can do. Here, the diameter is the diameter of a circle formed by the edge of the spherical crown.
収縮率は、成型体の形状変化が少ないことから20以下であることが好ましく、10以下であることがより好ましく、5以下であることがよりいっそう好ましく、1未満であることが最も好ましい。
The shrinkage ratio is preferably 20 or less, more preferably 10 or less, even more preferably 5 or less, and most preferably less than 1 because the shape change of the molded body is small.
本発明の低含水性軟質デバイスは、紫外線吸収剤、色素、着色剤、湿潤剤、スリップ剤、医薬および栄養補助成分、相溶化成分、抗菌成分、離型剤等の成分をさらに含んでいてもよい。上記した成分はいずれも、非反応性形態または共重合形態で含有され得る。
The low hydrous soft device of the present invention may further contain components such as an ultraviolet absorber, a dye, a colorant, a wetting agent, a slip agent, a pharmaceutical and nutritional supplement component, a compatibilizing component, an antibacterial component, and a release agent. Good. Any of the above-described components can be contained in a non-reactive form or a copolymerized form.
紫外線吸収剤を含む場合、低含水性軟質デバイスを皮膚用被覆材として用いると、装用者の皮膚を有害紫外線から保護することができる。また、着色剤を含む場合、低含水性軟質デバイスが着色されて、識別が容易になり、取扱時の利便性が向上する。
In the case of containing an ultraviolet absorber, the skin of the wearer can be protected from harmful ultraviolet rays by using a low hydrous soft device as a skin covering material. Moreover, when a coloring agent is included, a low hydrous soft device is colored, identification becomes easy, and the convenience at the time of handling improves.
上記した成分はいずれも、非反応性形態または共重合形態で含有され得る。上記成分を共重合した場合、すなわち重合性基を有する紫外線吸収剤、重合性基を有する着色剤などを使用した場合は、該成分が基材に共重合されて固定化されるので溶出の可能性が小さくなるので好ましい。
Any of the above-described components can be contained in a non-reactive form or a copolymerized form. When the above components are copolymerized, that is, when a UV absorber having a polymerizable group or a colorant having a polymerizable group is used, the component is copolymerized and immobilized on the base material, so that elution is possible This is preferable because the property is reduced.
基材は、紫外線吸収剤および着色剤から選ばれる成分、ならびに、これら以外の2種類以上の成分C(以下、成分Ck)からなることが好ましい。その場合、成分Ckとしては、炭素数1~10の(メタ)アクリル酸アルキルエステルから少なくとも1種類、上記表面濡れ性を向上させるためのモノマーから少なくとも1種類が選ばれることが好ましい。成分Ckを2種類以上使用することにより、紫外線吸収剤や着色剤との親和性が増し、透明な基材を得ることが容易になる。
The base material is preferably composed of a component selected from an ultraviolet absorber and a colorant, and two or more other components C (hereinafter referred to as component Ck). In this case, it is preferable that the component Ck is selected from at least one kind of (meth) acrylic acid alkyl ester having 1 to 10 carbon atoms and at least one kind from the monomer for improving the surface wettability. By using two or more types of component Ck, the affinity with the ultraviolet absorber and the colorant increases, and it becomes easy to obtain a transparent substrate.
紫外線吸収剤を用いる場合、その好ましい使用量は、成分A100質量部に対して、0.01~20質量部、より好ましくは0.05~10質量部、さらに好ましくは0.1~2質量部である。着色剤を用いる場合、その好ましい使用量は、成分A100質量部に対して、0.00001~5質量部、より好ましくは0.0001~1質量部、さらに好ましくは0.0001~0.5質量部である。紫外線吸収剤や着色剤の含有量が少なすぎる場合は、紫外線吸収効果や着色効果が得られにくくなる。逆に、多すぎる場合はこれらの成分を基材中に溶解せしめることが難しくなる。成分Ckの好ましい使用量は、それぞれ、成分A100質量部に対して、0.1~100質量部、より好ましくは1~80質量部、さらに好ましくは2~50質量部である。成分Ckの使用量が少なすぎる場合は、紫外線吸収剤や着色剤との親和性が不足して透明な基材を得るのが難しくなる傾向がある。成分Ckの使用量が多すぎる場合も得られる低含水性軟質デバイスに白濁が生じたり耐折り曲げ性などの機械物性が不十分になったりする傾向があり好ましくない。
When an ultraviolet absorber is used, the preferred amount to be used is 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, and even more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of Component A. It is. When a colorant is used, the preferred amount of use is 0.00001 to 5 parts by weight, more preferably 0.0001 to 1 part by weight, and still more preferably 0.0001 to 0.5 parts by weight with respect to 100 parts by weight of Component A Part. When there is too little content of a ultraviolet absorber or a coloring agent, it will become difficult to obtain an ultraviolet absorption effect and a coloring effect. On the contrary, when it is too much, it becomes difficult to dissolve these components in the base material. The amount of component Ck used is preferably 0.1 to 100 parts by weight, more preferably 1 to 80 parts by weight, and still more preferably 2 to 50 parts by weight with respect to 100 parts by weight of component A. When the amount of the component Ck used is too small, there is a tendency that it becomes difficult to obtain a transparent substrate due to insufficient affinity with the ultraviolet absorber or the colorant. Even when the amount of component Ck used is too large, the resulting low hydrous soft device tends to be cloudy or has insufficient mechanical properties such as bending resistance, which is not preferable.
また、本発明の低含水性軟質デバイスの基材は、架橋度が2.0~18.3の範囲であることが好ましい。架橋度は、下記式(Q1)で表される。
Further, the substrate of the low hydrous soft device of the present invention preferably has a degree of crosslinking in the range of 2.0 to 18.3. The degree of crosslinking is represented by the following formula (Q1).
式(Q1)において、Qnは1分子あたりn個の重合性基を有するモノマーの合計ミリモル量、Wnは1分子あたりn個の重合性基を有するモノマーの合計質量(kg)を表す。また、モノマーの分子量が分布を有する場合は、数平均分子量を用いてミリモル量を計算することとする。
In the formula (Q1), Qn represents the total millimolar amount of monomers having n polymerizable groups per molecule, and Wn represents the total mass (kg) of monomers having n polymerizable groups per molecule. When the molecular weight of the monomer has a distribution, the millimolar amount is calculated using the number average molecular weight.
本発明の基材の架橋度が、2.0より小さくなると、柔らかすぎてハンドリングが難しくなり、18.3より大きくなると硬すぎて装用感または使用感が悪くなる傾向があるので好ましくない。架橋度のより好ましい範囲は3.5~16.0であり、さらに好ましい範囲は8.0~15.0であり、最も好ましい範囲は9.0~14.0である。
If the degree of cross-linking of the base material of the present invention is less than 2.0, it is too soft and difficult to handle, and if it exceeds 18.3, it is too hard and the feeling of wearing or use tends to be unfavorable. A more preferable range of the degree of crosslinking is 3.5 to 16.0, a further preferable range is 8.0 to 15.0, and a most preferable range is 9.0 to 14.0.
低含水性軟質デバイスの基材として、例えば、チューブ形状、シート状、フィルム状、球冠形状(レンズ形状)、収納容器形状、または粒状等の成型体を製造する方法としては、公知の方法を使用することができる。例えば、いったん、丸棒や板状の重合体を得て、これを切削加工等によって所望の形状に加工する方法、モールド重合法、およびスピンキャスト重合法などを使用することができる。低含水性軟質デバイスを切削加工で得る場合には、低温での冷凍切削が好適である。
As a base material of a low hydrous soft device, for example, a known method can be used as a method for producing a molded body such as a tube shape, a sheet shape, a film shape, a spherical crown shape (lens shape), a storage container shape, or a granular shape Can be used. For example, a method of once obtaining a round bar or a plate-like polymer and processing it into a desired shape by cutting or the like, a mold polymerization method, a spin cast polymerization method, or the like can be used. When a low hydrous soft device is obtained by cutting, freezing cutting at a low temperature is suitable.
一例として、成分Aを含む原料組成物をモールド重合法により重合してシート状またはフィルム状の低含水性軟質デバイスを製造する方法について、次に説明する。まず、一定の形状を有する2枚のモールド部材間の空隙に原料組成物を充填する。モールド部材の材料としては、樹脂、ガラス、セラミックス、金属等が挙げられる。光重合を行う場合は光学的に透明な素材が好ましいので、樹脂またはガラスが好ましく使用される。モールド部材の形状や原料組成物の性状によっては、低含水性軟質デバイスに一定の厚みを与え、かつ、空隙に充填した原料組成物の液モレを防止するために、ガスケットを用いてもよい。空隙に原料組成物を充填したモールドは、続いて紫外線、可視光線またはこれらの組み合わせなどの活性光線を照射されるか、もしくはオーブンや液槽中などで加熱されることにより、充填した原料組成物を重合する。2通りの重合方法を併用する方法もありうる。すなわち、光重合の後に加熱重合したり、または加熱重合後に光重合することもできる。光重合の具体的態様は、例えば水銀ランプや紫外線ランプ(例えばFL15BL、東芝)の光のような紫外線を含む光を短時間(通常は1時間以下)照射する。熱重合を行う場合には、組成物を室温付近から徐々に昇温し、数時間ないし数十時間かけて60℃~200℃の温度まで高めて行く条件が、低含水性軟質デバイスの光学的な均一性および品位を保持し、かつ再現性を高めるために好まれる。
As an example, a method for producing a sheet-like or film-like low hydrous soft device by polymerizing a raw material composition containing Component A by a mold polymerization method will be described below. First, a raw material composition is filled in a gap between two mold members having a certain shape. Examples of the material for the mold member include resin, glass, ceramics, and metal. In the case of performing photopolymerization, an optically transparent material is preferable, and therefore resin or glass is preferably used. Depending on the shape of the mold member and the properties of the raw material composition, a gasket may be used to give a certain thickness to the low hydrous soft device and prevent liquid leakage of the raw material composition filled in the gap. The mold filled with the raw material composition in the gap is subsequently irradiated with active light such as ultraviolet rays, visible light, or a combination thereof, or heated in an oven or a liquid tank, etc. Is polymerized. There may be a method in which two polymerization methods are used in combination. That is, heat polymerization can be performed after photopolymerization, or photopolymerization can be performed after heat polymerization. In a specific mode of photopolymerization, light containing ultraviolet light such as light from a mercury lamp or ultraviolet lamp (for example, FL15BL, Toshiba) is irradiated for a short time (usually 1 hour or less). In the case of performing thermal polymerization, the temperature of the composition is gradually raised from around room temperature, and the temperature is raised to a temperature of 60 ° C. to 200 ° C. over several hours to several tens of hours. In order to maintain uniform uniformity and quality and improve reproducibility.
重合においては、重合をしやすくするために過酸化物やアゾ化合物に代表される熱重合開始剤または光重合開始剤を添加することが好ましい。熱重合を行う場合は、所望の反応温度において最適な分解特性を有するものが選択される。一般的には、10時間半減期温度が40~120℃のアゾ系開始剤および過酸化物系開始剤が好適である。光重合を行う場合の光開始剤としてはカルボニル化合物、過酸化物、アゾ化合物、硫黄化合物、ハロゲン化合物、および金属塩などを挙げることができる。これらの重合開始剤は単独または混合して用いられる。重合開始剤の量は、重合混合物に対し最大で5質量%までが好ましい。
In the polymerization, it is preferable to add a thermal polymerization initiator or a photopolymerization initiator typified by a peroxide or an azo compound in order to facilitate the polymerization. In the case of performing thermal polymerization, those having optimum decomposition characteristics at a desired reaction temperature are selected. In general, azo initiators and peroxide initiators having a 10-hour half-life temperature of 40 to 120 ° C. are suitable. Photoinitiators for photopolymerization include carbonyl compounds, peroxides, azo compounds, sulfur compounds, halogen compounds, and metal salts. These polymerization initiators are used alone or in combination. The amount of the polymerization initiator is preferably up to 5% by mass with respect to the polymerization mixture.
重合する際は、重合溶媒を使用することができる。溶媒としては有機系、無機系の各種溶媒が適用可能である。溶媒の例としては、水;メチルアルコール、エチルアルコール、ノルマルプロピルアルコール、イソプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、t-ブチルアルコール、t-アミルアルコール、テトラヒドロリナロール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコールおよびポリエチレングリコール等のアルコール系溶剤;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテルおよびポリエチレングリコールジメチルエーテル等のグリコールエーテル系溶剤;酢酸エチル、酢酸ブチル、酢酸アミル、乳酸エチルおよび安息香酸メチル等のエステル系溶剤;ノルマルヘキサン、ノルマルヘプタンおよびノルマルオクタン等の脂肪族炭化水素系溶剤;シクロへキサンおよびエチルシクロへキサン等の脂環族炭化水素系溶剤;アセトン、メチルエチルケトンおよびメチルイソブチルケトン等のケトン系溶剤;ベンゼン、トルエンおよびキシレン等の芳香族炭化水素系溶剤;並びに石油系溶剤が挙げられる。これらの溶媒は単独で用いてもよく、また2種以上を混合して用いてもよい。
When polymerizing, a polymerization solvent can be used. Various organic and inorganic solvents can be used as the solvent. Examples of solvents include water; methyl alcohol, ethyl alcohol, normal propyl alcohol, isopropyl alcohol, normal butyl alcohol, isobutyl alcohol, t-butyl alcohol, t-amyl alcohol, tetrahydrolinalol, ethylene glycol, diethylene glycol, triethylene glycol, Alcohol solvents such as tetraethylene glycol and polyethylene glycol; methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, ethylene glycol dimethyl ether, diethylene glycol di Glycol ether solvents such as chill ether, triethylene glycol dimethyl ether and polyethylene glycol dimethyl ether; ester solvents such as ethyl acetate, butyl acetate, amyl acetate, ethyl lactate and methyl benzoate; aliphatics such as normal hexane, normal heptane and normal octane Hydrocarbon solvents; cycloaliphatic hydrocarbon solvents such as cyclohexane and ethylcyclohexane; ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbon solvents such as benzene, toluene and xylene; and Examples include petroleum solvents. These solvents may be used alone or in combination of two or more.
本発明の低含水性軟質デバイスは、基材表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層(以下、コーティング層と呼ぶ)が形成されていることが必要である。コーティング層を有することで、低含水性軟質デバイス表面に良好な濡れ性と易滑性が付与され、優れた装用感を与え、または不快な使用感を抑制することができる。
The low hydrous soft device of the present invention requires that a layer made of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface. By having the coating layer, good wettability and easy slipperiness are imparted to the surface of the low hydrous soft device, and an excellent wearing feeling can be imparted or an unpleasant feeling of use can be suppressed.
発明者らは、本発明の低含水性軟質デバイスが、低含水性かつ軟質であるにも関わらず、また基材が中性であっても、表面に酸性ポリマーおよび塩基性ポリマーからなるコーティング層を形成することによって、低含水性軟質デバイス表面に十分な濡れ性、易滑性および防汚性を付与することが可能であることを見出した。
The inventors of the present invention provide a coating layer comprising an acidic polymer and a basic polymer on the surface even when the low hydrous soft device of the present invention is low hydrous and soft and the substrate is neutral. It has been found that it is possible to impart sufficient wettability, slipperiness and antifouling property to the surface of a low hydrous soft device by forming the film.
本発明の低含水性軟質デバイスのコーティング層は、基材との間に共有結合を有する必要はない。簡便な工程での製造が可能となることから、コーティング層は基材との間に共有結合を有さないことが好ましい。コーティング層は、基材との間に共有結合を有さなくても、実用的な耐久性を有する。
The coating layer of the low hydrous soft device of the present invention does not need to have a covalent bond with the substrate. It is preferable that the coating layer does not have a covalent bond with the base material because it can be manufactured in a simple process. Even if the coating layer does not have a covalent bond with the substrate, it has practical durability.
コーティング層は、下記に詳細に説明する酸性ポリマー溶液および塩基性ポリマー溶液で基材表面を処理することにより形成することができる。ここで、溶液としては、水溶液が好ましい。また、水溶液とは水を主たる成分とする溶液である。
The coating layer can be formed by treating the substrate surface with an acidic polymer solution and a basic polymer solution described in detail below. Here, the solution is preferably an aqueous solution. An aqueous solution is a solution containing water as a main component.
コーティング層は、1種以上の酸性ポリマー、および1種以上の塩基性ポリマーからなることが好ましい。2種以上の酸性ポリマーまたは2種以上の塩基性ポリマーを用いると、低含水性軟質デバイス表面に易滑性や防汚性などの性質を発現させやすいためにより好ましい。特に2種以上の酸性ポリマーと1種以上の塩基性ポリマーを使用した場合にその傾向が強まるのでさらに好ましい。
The coating layer is preferably composed of one or more kinds of acidic polymers and one or more kinds of basic polymers. It is more preferable to use two or more kinds of acidic polymers or two or more kinds of basic polymers because properties such as slipperiness and antifouling properties are easily expressed on the surface of a low hydrous soft device. In particular, when two or more kinds of acidic polymers and one or more kinds of basic polymers are used, the tendency becomes stronger, which is more preferable.
コーティング層は、1種以上の酸性ポリマー溶液による処理を1回以上、および1種以上の塩基性ポリマー溶液による処理を1回以上行うことにより形成されることが好ましい。
The coating layer is preferably formed by performing treatment with one or more acidic polymer solutions one or more times and treatment with one or more basic polymer solutions one or more times.
ここで1種のポリマーとは、1の合成反応により製造されたポリマー群を意味する。また、構成するモノマー種が同一であっても、配合比を変えて合成したポリマーは1種ではない。
Here, one type of polymer means a group of polymers produced by one synthesis reaction. In addition, even if the constituent monomer species are the same, the number of polymers synthesized by changing the compounding ratio is not one.
また、コーティング層は、1種以上の酸性ポリマー溶液による処理および1種以上の塩基性ポリマー溶液による処理を、好ましくはそれぞれ1~5回、より好ましくはそれぞれ1~3回、さらに好ましくはそれぞれ1~2回行うことにより基材の表面に形成される。酸性ポリマー溶液による処理の回数と塩基性ポリマー溶液による処理の回数は異なっていてもよい。
In addition, the coating layer is preferably treated 1 to 5 times, more preferably 1 to 3 times, and still more preferably 1 each of the treatment with one or more acidic polymer solutions and the treatment with one or more basic polymer solutions. Formed on the surface of the substrate by performing twice. The number of treatments with the acidic polymer solution and the number of treatments with the basic polymer solution may be different.
本発明において、酸性ポリマー溶液による処理および塩基性ポリマー溶液による処理が合計2回または3回という極めて少ない回数で優れた濡れ性や易滑性を付与しうる。これは製造工程の短縮化という観点から、工業的に非常に重要な意味を持つ。その意味で、本発明の低含水性軟質デバイスにおいて、酸性ポリマー溶液による処理を1回または2回、および前記塩基性ポリマー溶液による処理を1回または2回、合計で2回または3回処理を行うことにより形成されていることが好ましい。
In the present invention, the treatment with the acidic polymer solution and the treatment with the basic polymer solution can impart excellent wettability and slipperiness with a very small number of times of 2 or 3 times in total. This is very important industrially from the viewpoint of shortening the manufacturing process. In that sense, in the low hydrous soft device of the present invention, the treatment with the acidic polymer solution is performed once or twice, and the treatment with the basic polymer solution is performed once or twice, for a total of two or three times. It is preferable that it is formed by performing.
コーティング層は、2種の酸性ポリマー溶液による処理を各1回および塩基性ポリマー溶液による処理を1回、合計で3回処理を行うことにより形成されていることが特に好適である。
It is particularly preferable that the coating layer is formed by performing the treatment with two kinds of acidic polymer solutions once and the treatment with the basic polymer solution once, for a total of three times.
なお、発明者らは、コーティング層が、酸性ポリマーおよび塩基性ポリマーのいずれか一方のみを含むだけでは、濡れ性や易滑性の発現がほとんど見られないことも確認している。
In addition, the inventors have also confirmed that the wettability and the slipperiness are hardly observed when the coating layer contains only one of the acidic polymer and the basic polymer.
塩基性ポリマーとしては、塩基性を有する複数の基をポリマー鎖に沿って有するホモポリマーまたは共重合ポリマーを好適に用いることができる。塩基性を有する基としてはアミノ基およびその塩が好適である。たとえば、このような塩基性ポリマーの好適な例は、ポリ(アリルアミン)、ポリ(ビニルアミン)、ポリ(エチレンイミン)、ポリ(ビニルベンジルトリメチルアミン)、ポリアニリン、ポリ(アミノスチレン)、ポリ(N,N-ジアルキルアミノエチルメタクリレート)などのアミノ基含有(メタ)アクリレート重合体、ポリ(N,N-ジメチルアミノプロピルアクリルアミド)などのアミノ基含有(メタ)アクリルアミド重合体およびこれらの塩などである。以上はホモポリマーの例であるが、これらの共重合体(すなわち上記塩基性ポリマーを構成する塩基性モノマーどうしの共重合体、あるいは塩基性モノマーと他のモノマーの共重合体)も好適に用いることができる。
As the basic polymer, a homopolymer or copolymer having a plurality of basic groups along the polymer chain can be suitably used. As the basic group, an amino group and a salt thereof are preferable. For example, suitable examples of such basic polymers include poly (allylamine), poly (vinylamine), poly (ethyleneimine), poly (vinylbenzyltrimethylamine), polyaniline, poly (aminostyrene), poly (N, N Amino group-containing (meth) acrylate polymers such as -dialkylaminoethyl methacrylate), amino group-containing (meth) acrylamide polymers such as poly (N, N-dimethylaminopropylacrylamide), and salts thereof. The above is an example of a homopolymer, but these copolymers (that is, a copolymer of basic monomers constituting the above basic polymer, or a copolymer of a basic monomer and another monomer) are also preferably used. be able to.
塩基性ポリマーが共重合体である場合、該共重合体を構成する塩基性モノマーとしては、重合性の高さという点でアリル基、ビニル基、および(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリロイル基を有するモノマーが最も好ましい。該共重合体を構成する塩基性モノマーとして好適なものを例示すれば、アリルアミン、ビニルアミン(前駆体としてN-ビニルカルボン酸アミド)、ビニルベンジルトリメチルアミン、アミノ基含有スチレン、アミノ基含有(メタ)アクリレート、アミノ基含有(メタ)アクリルアミド、およびこれらの塩である。これらの中でも重合性の高さからアミノ基含有(メタ)アクリレート、アミノ基含有(メタ)アクリルアミド、およびこれらの塩がより好ましく、N,N-ジメチルアミノエチルメタクリレート、N,N-ジメチルアミノプロピルアクリルアミド、およびこれらの塩が最も好ましい。
When the basic polymer is a copolymer, the basic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability. Most preferred are monomers having a (meth) acryloyl group. Examples of suitable basic monomers constituting the copolymer include allylamine, vinylamine (N-vinylcarboxylic acid amide as a precursor), vinylbenzyltrimethylamine, amino group-containing styrene, amino group-containing (meth) acrylate. Amino group-containing (meth) acrylamide, and salts thereof. Of these, amino group-containing (meth) acrylates, amino group-containing (meth) acrylamides, and salts thereof are more preferable because of their high polymerizability. N, N-dimethylaminoethyl methacrylate, N, N-dimethylaminopropylacrylamide And their salts are most preferred.
塩基性ポリマーは、第四級アンモニウム構造を有するポリマーであってもよい。第四級アンモニウム構造を有するポリマー化合物は、低含水性軟質デバイスのコーティングに使用されると、低含水性軟質デバイスに抗微生物性を付与することができる。
The basic polymer may be a polymer having a quaternary ammonium structure. When the polymer compound having a quaternary ammonium structure is used for coating of a low hydrous soft device, it can impart antimicrobial properties to the low hydrous soft device.
酸性ポリマーとしては、酸性を有する複数の基をポリマー鎖に沿って有するホモポリマーまたは共重合ポリマーを好適に用いることができる。酸性を有する基としては、カルボキシル基、スルホン酸基およびこれらの塩が好適であり、カルボキシル基およびその塩が最も好適である。たとえば、このような酸性ポリマーの好適な例は、ポリメタクリル酸、ポリアクリル酸、ポリ(ビニル安息香酸)、ポリ(チオフェン-3-酢酸)、ポリ(4-スチレンスルホン酸)、ポリビニルスルホン酸、ポリ(2-アクリルアミド-2-メチルプロパンスルホン酸)およびこれらの塩などである。以上はホモポリマーの例であるが、これらの共重合体(すなわち上記酸性ポリマーを構成する酸性モノマーどうしの共重合体、あるいは酸性モノマーと他のモノマーの共重合体)も好適に用いることができる。
As the acidic polymer, a homopolymer or copolymer having a plurality of acidic groups along the polymer chain can be suitably used. As the group having acidity, a carboxyl group, a sulfonic acid group, and a salt thereof are preferable, and a carboxyl group and a salt thereof are most preferable. For example, suitable examples of such acidic polymers include polymethacrylic acid, polyacrylic acid, poly (vinyl benzoic acid), poly (thiophene-3-acetic acid), poly (4-styrene sulfonic acid), polyvinyl sulfonic acid, Poly (2-acrylamido-2-methylpropanesulfonic acid) and salts thereof. The above are examples of homopolymers, but these copolymers (that is, copolymers of acidic monomers constituting the acidic polymer, or copolymers of acidic monomers and other monomers) can also be suitably used. .
酸性ポリマーが共重合体である場合、該共重合体を構成する酸性モノマーとしては、重合性の高さという点でアリル基、ビニル基、および(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリロイル基を有するモノマーが最も好ましい。該共重合体を構成する酸性モノマーとして好適なものを例示すれば、(メタ)アクリル酸、ビニル安息香酸、スチレンスルホン酸、ビニルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、およびこれらの塩である。これらの中で、(メタ)アクリル酸、2-アクリルアミド-2-メチルプロパンスルホン酸、およびこれらの塩がより好ましく、最も好ましいのは(メタ)アクリル酸、およびその塩である。
When the acidic polymer is a copolymer, the acidic monomer constituting the copolymer is preferably a monomer having an allyl group, a vinyl group, and a (meth) acryloyl group in terms of high polymerizability. ) Monomers having an acryloyl group are most preferred. Examples of suitable acidic monomers constituting the copolymer include (meth) acrylic acid, vinyl benzoic acid, styrene sulfonic acid, vinyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid, and these It is salt. Of these, (meth) acrylic acid, 2-acrylamido-2-methylpropanesulfonic acid, and salts thereof are more preferable, and (meth) acrylic acid and salts thereof are most preferable.
塩基性ポリマーおよび酸性ポリマーのうちの少なくとも1種が、アミド基および水酸基から選ばれた基を有するポリマーであることが好ましい。塩基性ポリマーおよび/または酸性ポリマーがアミド基を有する場合、濡れ性のみならず易滑性のある表面を形成できるために好ましい。塩基性ポリマーおよび/または酸性ポリマーが水酸基を有する場合、濡れ性のみならず体液等に対する防汚性に優れた表面を形成できるために好ましい。
It is preferable that at least one of the basic polymer and the acidic polymer is a polymer having a group selected from an amide group and a hydroxyl group. When the basic polymer and / or the acidic polymer has an amide group, it is preferable because a surface having not only wettability but also slipperiness can be formed. When the basic polymer and / or the acidic polymer has a hydroxyl group, it is preferable because a surface excellent in not only wettability but also antifouling property against body fluids can be formed.
上記酸性ポリマーおよび塩基性ポリマーのうちの2種以上が、水酸基およびアミド基から選ばれた基を有するポリマーであることがより好ましい。すなわち、低含水性軟質デバイスが、水酸基を有する酸性ポリマー、水酸基を有する塩基性ポリマー、アミド基を有する酸性ポリマーおよびアミド基を有する塩基性ポリマーから選ばれた2種以上を含むことが好ましい。この場合、易滑性のある表面が形成される効果、または体液等に対する防汚性に優れた表面を形成できる効果がより顕著に発現できるために好ましい。
More preferably, at least two of the acidic polymer and the basic polymer are polymers having a group selected from a hydroxyl group and an amide group. That is, it is preferable that the low hydrous soft device contains two or more selected from an acidic polymer having a hydroxyl group, a basic polymer having a hydroxyl group, an acidic polymer having an amide group, and a basic polymer having an amide group. In this case, it is preferable because the effect of forming a slippery surface or the effect of forming a surface excellent in antifouling property against body fluids can be more remarkably exhibited.
また、コーティング層が、水酸基を有する酸性ポリマーおよび水酸基を有する塩基性ポリマーから選ばれた少なくとも1種、ならびにアミド基を有する酸性ポリマーおよびアミド基を有する塩基性ポリマーから選ばれた少なくとも1種を含むことがさらに好ましい。この場合、易滑性のある表面が形成される効果、および体液等に対する防汚性に優れた表面を形成できる効果の両方が発現できるために好ましい。
The coating layer contains at least one selected from an acidic polymer having a hydroxyl group and a basic polymer having a hydroxyl group, and at least one selected from an acidic polymer having an amide group and a basic polymer having an amide group. More preferably. In this case, it is preferable because both the effect of forming a slippery surface and the effect of forming a surface excellent in antifouling property against body fluids can be exhibited.
アミド基を有する塩基性ポリマーの例としては、アミノ基を有するポリアミド類、部分加水分解キトサン、塩基性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
Examples of the basic polymer having an amide group include polyamides having an amino group, partially hydrolyzed chitosan, and a copolymer of a basic monomer and a monomer having an amide group.
アミド基を有する酸性ポリマーの例としては、カルボキシル基を有するポリアミド類、酸性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
Examples of the acidic polymer having an amide group include a polyamide having a carboxyl group and a copolymer of an acidic monomer and a monomer having an amide group.
水酸基を有する塩基性ポリマーの例としては、キチンなどのアミノ多糖類、塩基性モノマーと水酸基を有するモノマーの共重合体などを挙げることができる。
Examples of the basic polymer having a hydroxyl group include an aminopolysaccharide such as chitin, a copolymer of a basic monomer and a monomer having a hydroxyl group, and the like.
水酸基を有する酸性ポリマーの例としては、ヒアルロン酸、コンドロイチン硫酸、カルボキシメチルセルロース、カルボキシプロピルセルロースなどの酸性基を有する多糖類、酸性モノマーとアミド基を有するモノマーの共重合体などを挙げることができる。
Examples of the acidic polymer having a hydroxyl group include polysaccharides having acidic groups such as hyaluronic acid, chondroitin sulfate, carboxymethylcellulose, and carboxypropylcellulose, and copolymers of acidic monomers and monomers having amide groups.
アミド基を有するモノマーとしては、重合の容易さの点で(メタ)アクリルアミド基を有するモノマーおよびN-ビニルカルボン酸アミド(環状のものを含む)が好ましい。かかるモノマーの好適な例としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルアセトアミド、N-メチル-N-ビニルアセトアミド、N-ビニルホルムアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、N-イソプロピルアクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、アクリロイルモルホリン、およびアクリルアミドを挙げることができる。これら中でも易滑性の点で好ましいのは、N-ビニルピロリドンおよびN,N-ジメチルアクリルアミドであり、N,N-ジメチルアクリルアミドが最も好ましい。
As the monomer having an amide group, a monomer having a (meth) acrylamide group and N-vinylcarboxylic acid amide (including cyclic ones) are preferable from the viewpoint of ease of polymerization. Preferable examples of such monomers include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylacetamide, N-methyl-N-vinylacetamide, N-vinylformamide, N, N-dimethylacrylamide, N, N-diethyl Mention may be made of acrylamide, N-isopropylacrylamide, N- (2-hydroxyethyl) acrylamide, acryloylmorpholine, and acrylamide. Among these, N-vinylpyrrolidone and N, N-dimethylacrylamide are preferable from the viewpoint of slipperiness, and N, N-dimethylacrylamide is most preferable.
水酸基を有するモノマーの好適な例としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリルアミド、グリセロール(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、N-(4-ヒドロキシフェニル)マレイミド、ヒドロキシスチレン、ビニルアルコール(前駆体としてカルボン酸ビニルエステル)を挙げることができる。水酸基を有するモノマーとしては、重合の容易さの点で(メタ)アクリロイル基を有するモノマーが好ましく、(メタ)アクリル酸エステルモノマーはより好ましい。これらの中で、涙液に対する防汚性の点で好ましいのは、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、およびグリセロール(メタ)アクリレートであり、中でもヒドロキシエチル(メタ)アクリレートが最も好ましい。
Preferable examples of the monomer having a hydroxyl group include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, hydroxyethyl (meth) acrylamide, glycerol (meth) acrylate, caprolactone-modified 2-hydroxy Examples thereof include ethyl (meth) acrylate, N- (4-hydroxyphenyl) maleimide, hydroxystyrene, and vinyl alcohol (a carboxylic acid vinyl ester as a precursor). As the monomer having a hydroxyl group, a monomer having a (meth) acryloyl group is preferable from the viewpoint of ease of polymerization, and a (meth) acrylic acid ester monomer is more preferable. Of these, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and glycerol (meth) acrylate are preferred in terms of antifouling properties against tears, and hydroxyethyl (meth) acrylate is the most preferred. preferable.
塩基性モノマーとアミド基を有するモノマーの共重合体として好ましい具体例は、N,N-ジメチルアミノエチルメタクリレート/N-ビニルピロリドン共重合体、N,N-ジメチルアミノエチルメタクリレート/N,N-ジメチルアクリルアミド共重合体、N,N-ジメチルアミノプロピルアクリルアミド/N-ビニルピロリドン共重合体、およびN,N-ジメチルアミノプロピルアクリルアミド/N,N-ジメチルアクリルアミド共重合体である。最も好ましくはN,N-ジメチルアミノプロピルアクリルアミド/N,N-ジメチルアクリルアミド共重合体である。
Preferred examples of the copolymer of the basic monomer and the monomer having an amide group include N, N-dimethylaminoethyl methacrylate / N-vinylpyrrolidone copolymer, N, N-dimethylaminoethyl methacrylate / N, N-dimethyl. Acrylamide copolymer, N, N-dimethylaminopropylacrylamide / N-vinylpyrrolidone copolymer, and N, N-dimethylaminopropylacrylamide / N, N-dimethylacrylamide copolymer. Most preferred is N, N-dimethylaminopropylacrylamide / N, N-dimethylacrylamide copolymer.
酸性モノマーとアミド基を有するモノマーの共重合体として好ましい具体例は、(メタ)アクリル酸/N-ビニルピロリドン共重合体、(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸/N-ビニルピロリドン共重合体、および2-アクリルアミド-2-メチルプロパンスルホン酸/N,N-ジメチルアクリルアミド共重合体である。最も好ましくは(メタ)アクリル酸/N,N-ジメチルアクリルアミド共重合体である。
Specific preferred examples of the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / N-vinylpyrrolidone copolymer, (meth) acrylic acid / N, N-dimethylacrylamide copolymer, 2- Acrylamide-2-methylpropanesulfonic acid / N-vinylpyrrolidone copolymer and 2-acrylamido-2-methylpropanesulfonic acid / N, N-dimethylacrylamide copolymer. Most preferred is a (meth) acrylic acid / N, N-dimethylacrylamide copolymer.
塩基性モノマーと水酸基を有するモノマーの共重合体として好ましい具体例は、N,N-ジメチルアミノエチルメタクリレート/ヒドロキシエチル(メタ)アクリレート共重合体、N,N-ジメチルアミノエチルメタクリレート/グリセロール(メタ)アクリレート共重合体、N,N-ジメチルアミノプロピルアクリルアミド/ヒドロキシエチル(メタ)アクリレート、およびN,N-ジメチルアミノプロピルアクリルアミド/グリセロール(メタ)アクリレート共重合体である。最も好ましくはN,N-ジメチルアミノエチルメタクリレート/ヒドロキシエチル(メタ)アクリレート共重合体である。
Specific preferred examples of the copolymer of the basic monomer and the monomer having a hydroxyl group include N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer, N, N-dimethylaminoethyl methacrylate / glycerol (meth). Acrylate copolymers, N, N-dimethylaminopropylacrylamide / hydroxyethyl (meth) acrylate, and N, N-dimethylaminopropylacrylamide / glycerol (meth) acrylate copolymers. Most preferred is N, N-dimethylaminoethyl methacrylate / hydroxyethyl (meth) acrylate copolymer.
酸性モノマーとアミド基を有するモノマーの共重合体として好ましい具体例は、(メタ)アクリル酸/ヒドロキシエチル(メタ)アクリレート共重合体、(メタ)アクリル酸/グリセロール(メタ)アクリレート共重合体、2-アクリルアミド-2-メチルプロパンスルホン酸/ヒドロキシエチル(メタ)アクリレート共重合体、および2-アクリルアミド-2-メチルプロパンスルホン酸/グリセロール(メタ)アクリレート共重合体である。最も好ましくは(メタ)アクリル酸/ヒドロキシエチル(メタ)アクリレート共重合体である。
Specific preferred examples of the copolymer of the acidic monomer and the monomer having an amide group include (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer, (meth) acrylic acid / glycerol (meth) acrylate copolymer, 2 -Acrylamido-2-methylpropanesulfonic acid / hydroxyethyl (meth) acrylate copolymer and 2-acrylamido-2-methylpropanesulfonic acid / glycerol (meth) acrylate copolymer. Most preferred is a (meth) acrylic acid / hydroxyethyl (meth) acrylate copolymer.
上記塩基性モノマーあるいは酸性モノマーと他のモノマーの共重合体を用いる場合、その共重合比率は[塩基性モノマーあるいは酸性モノマーの質量]/[他のモノマーの質量]が、1/99~99/1が好ましく、2/98~90/10がより好ましく、10/90~80/20がさらに好ましい。共重合比率がこの範囲にある場合に、易滑性や涙液に対する防汚性などの機能を発現しやすくなる。
When a copolymer of the above basic monomer or acidic monomer and another monomer is used, the copolymerization ratio is [mass of basic monomer or acidic monomer] / [mass of other monomer] of 1/99 to 99 / 1 is preferable, 2/98 to 90/10 is more preferable, and 10/90 to 80/20 is still more preferable. When the copolymerization ratio is within this range, functions such as easy slipperiness and antifouling property against tears are easily developed.
コーティング層の種々の特性、たとえば厚さを変えるために、酸性ポリマーおよび塩基性ポリマーの分子量を変えることができる。具体的には、分子量を増すと、一般にコーティング層の厚さは増す。しかし、分子量が大きすぎる場合、粘度増大により取り扱い難さが増す可能性がある。そのため、本発明で使用される酸性ポリマーおよび塩基性ポリマーは、2000~150000の分子量を有することが好ましい。より好ましくは、分子量5000~100000であり、さらに好ましくは、75000~100000である。酸性ポリマーおよび塩基性ポリマーの分子量は、ゲル浸透クロマトグラフィー法(水系溶媒)で測定されるポリエチレングリコール換算の質量平均分子量である。
The molecular weight of the acidic polymer and the basic polymer can be changed to change various properties of the coating layer, such as thickness. Specifically, increasing the molecular weight generally increases the thickness of the coating layer. However, if the molecular weight is too large, handling may increase due to increased viscosity. Therefore, the acidic polymer and basic polymer used in the present invention preferably have a molecular weight of 2000 to 150,000. More preferably, the molecular weight is 5000 to 100,000, and even more preferably 75,000 to 100,000. The molecular weight of the acidic polymer and the basic polymer is a mass average molecular weight in terms of polyethylene glycol measured by a gel permeation chromatography method (aqueous solvent).
コーティング層の塗布は、たとえばWO99/35520、WO01/57118または米国特許公報第2001-0045676号に記載されているような多数の方法で達成することができる。
Application of the coating layer can be accomplished in a number of ways, as described, for example, in WO 99/35520, WO 01/57118 or US Patent Publication No. 2001-0045676.
本発明の低含水性軟質デバイスは、基材表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層(以下、コーティング層と呼ぶ)が形成されているが、該層内の少なくとも一部が架橋されていても良い。また、本発明の低含水性軟質デバイスにおいては、上記基材と上記層との間で少なくとも一部が架橋されていても良い。ここで、架橋とは、ポリマー同士が自らの官能基または架橋剤を用いて橋架け構造を作って結合することである。
In the low hydrous soft device of the present invention, a layer composed of an acidic polymer and a basic polymer (hereinafter referred to as a coating layer) is formed on at least a part of the substrate surface. May be cross-linked. Moreover, in the low hydrous soft device of this invention, at least one part may be bridge | crosslinked between the said base material and the said layer. Here, the term “crosslinking” means that the polymers are bonded by creating a bridge structure using their own functional groups or crosslinking agents.
上記架橋は、基材に少なくとも酸性ポリマーおよび塩基性ポリマーを付着させた状態で放射線を照射することにより生じさせることができる。放射線は、各種のイオン線、電子線、陽電子線、エックス線、γ線、中性子線が好ましく、より好ましくは電子線およびγ線である。最も好ましいのはγ線である。
The cross-linking can be caused by irradiating radiation with at least an acidic polymer and a basic polymer attached to the substrate. The radiation is preferably various ion beams, electron beams, positron beams, X-rays, γ rays and neutron beams, and more preferably electron beams and γ rays. Most preferred is gamma rays.
上述のようにコーティング層内やコーティング層と基材との間で架橋を生じさせることにより、低含水性軟質デバイスの表面に良好な濡れ性と易滑性が付与され、優れた装用感を与えることができる。一方で、放射線照射により基材内部にも架橋を生じ、低含水性軟質デバイスが硬くなりすぎる場合がある。その場合は基材中の成分Aを適宜、成分Mに置き換えて共重合することにより、基材内部の過度の架橋を抑制することができる。
By causing cross-linking in the coating layer or between the coating layer and the substrate as described above, the surface of the low hydrous soft device is imparted with good wettability and easy slipperiness, giving an excellent wearing feeling. be able to. On the other hand, there is a case where cross-linking occurs inside the base material due to irradiation and the low hydrous soft device becomes too hard. In that case, excessive crosslinking inside the substrate can be suppressed by appropriately replacing component A in the substrate with component M and copolymerizing.
次に、本発明の低含水性軟質デバイスの製造方法について説明する。本発明の低含水性軟質デバイスは、所望の形状(たとえば、チューブ形状、シート状、フィルム状、球冠形状(レンズ状)、収納容器形状、粒状等)の成型体(基材)の表面に、1種以上の酸性ポリマー溶液と1種以上の塩基性ポリマー溶液をそれぞれ1~5回、より好ましくはそれぞれ1~3回、さらに好ましくはそれぞれ1~2回塗布してコーティング層を形成することにより得られる。酸性ポリマー溶液の塗布工程と塩基性ポリマー溶液の塗布工程の回数は異なっていてもよい。
Next, a method for producing a low hydrous soft device of the present invention will be described. The low hydrous soft device of the present invention is formed on the surface of a molded body (base material) having a desired shape (for example, tube shape, sheet shape, film shape, spherical crown shape (lens shape), storage container shape, granular shape, etc.). One or more acidic polymer solutions and one or more basic polymer solutions are applied 1 to 5 times, more preferably 1 to 3 times, and more preferably 1 to 2 times, respectively, to form a coating layer. Is obtained. The number of application steps of the acidic polymer solution and the application step of the basic polymer solution may be different.
発明者らは、本発明の低含水性軟質デバイスの製造方法において、1種以上の酸性ポリマー溶液の塗布工程および1種以上の塩基性ポリマー溶液の塗布工程が合計2回または3回という極めて少ない回数で優れた濡れ性や易滑性を付与しうることを見出した。これは製造工程の短縮化という観点から、工業的に非常に重要な意味を持つ。
The inventors of the present invention have a very small number of coating steps of one or more acidic polymer solutions and one or more basic polymer solutions in total or twice or three times in the method for producing a low hydrous soft device of the present invention. It has been found that excellent wettability and slipperiness can be imparted by the number of times. This is very important industrially from the viewpoint of shortening the manufacturing process.
なお、発明者らは、本発明の低含水性軟質デバイスにおいて、酸性ポリマー溶液の塗布工程または塩基性溶液の塗布工程のいずれか一方のみを1回施すだけでは、濡れ性や易滑性の発現がほとんど見られないことも同時に確認している。
In addition, in the low hydrous soft device of the present invention, the inventors developed wettability and slipperiness only by performing only one of the application step of the acidic polymer solution or the application step of the basic solution once. It is confirmed at the same time that almost no is seen.
濡れ性、易滑性、および製造工程短縮の観点から、コーティング層の塗布は、下記の構成1~4から選ばれた構成で施されることが好ましい。下記の表記は、成型体表面に左から順に各塗布工程が施されることを表している。
From the viewpoint of wettability, slipperiness, and shortening of the manufacturing process, the coating layer is preferably applied in a configuration selected from the following configurations 1 to 4. The following notation indicates that each coating process is performed on the surface of the molded body in order from the left.
構成1:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
構成2:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成3:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成4:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
これらの構成の中でも、構成1と構成4が、得られる低含水性軟質デバイスが特に優れた濡れ性を示すためにより好ましい。 Configuration 1: Application of basic polymer solution / Application of acidic polymer solution Configuration 2: Application of acidic polymer solution / Application of basic polymer solution Configuration 3: Application of basic polymer solution / Application of acidic polymer solution / Basic polymer solution Application 4: Application of acidic polymer solution / Application of basic polymer solution / Application of acidic polymer solution Among these structures, the low hydrous soft devices obtained by the structures 1 and 4 have particularly excellent wettability. More preferred to show.
構成2:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成3:塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布
構成4:酸性ポリマー溶液の塗布/塩基性ポリマー溶液の塗布/酸性ポリマー溶液の塗布
これらの構成の中でも、構成1と構成4が、得られる低含水性軟質デバイスが特に優れた濡れ性を示すためにより好ましい。 Configuration 1: Application of basic polymer solution / Application of acidic polymer solution Configuration 2: Application of acidic polymer solution / Application of basic polymer solution Configuration 3: Application of basic polymer solution / Application of acidic polymer solution / Basic polymer solution Application 4: Application of acidic polymer solution / Application of basic polymer solution / Application of acidic polymer solution Among these structures, the low hydrous soft devices obtained by the structures 1 and 4 have particularly excellent wettability. More preferred to show.
酸性ポリマー溶液および塩基性ポリマー溶液を塗布するにあたって、基材の表面は、未処理であっても、処理済みであってもよい。ここで基材の表面が処理済みであるとは、基材の表面を公知の手法によって表面処理または表面改質することをいう。表面処理または表面改質の好適な例としては、プラズマ処理、化学的改質、化学的官能化、およびプラズマコーティングなどである。
In applying the acidic polymer solution and the basic polymer solution, the surface of the substrate may be untreated or treated. Here, that the surface of the substrate has been treated means that the surface of the substrate is subjected to surface treatment or surface modification by a known method. Suitable examples of the surface treatment or surface modification include plasma treatment, chemical modification, chemical functionalization, and plasma coating.
本発明の低含水性軟質デバイスの製造方法の好ましい態様の1つは、下記工程1~工程3をこの順に含むものである。
<工程1>
1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、所望の形状(たとえば、チューブ形状、シート状、フィルム状、球冠形状、収納容器形状、粒状)の成型体を得る工程。
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。 One preferred embodiment of the method for producing a low hydrous soft device of the present invention comprises the following steps 1 to 3 in this order.
<Step 1>
Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group A step of obtaining a molded body having a shape (eg, tube shape, sheet shape, film shape, spherical crown shape, storage container shape, granular shape).
<Step 2>
A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
<Step 3>
A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
<工程1>
1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、所望の形状(たとえば、チューブ形状、シート状、フィルム状、球冠形状、収納容器形状、粒状)の成型体を得る工程。
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の該塩基性ポリマー溶液を洗浄除去する工程。
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の該酸性ポリマー溶液を洗浄除去する工程。 One preferred embodiment of the method for producing a low hydrous soft device of the present invention comprises the following steps 1 to 3 in this order.
<Step 1>
Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group A step of obtaining a molded body having a shape (eg, tube shape, sheet shape, film shape, spherical crown shape, storage container shape, granular shape).
<
A step of washing and removing excess basic polymer solution after bringing the molded body into contact with the basic polymer solution.
<
A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
上記のように、成型体を酸性ポリマー溶液および塩基性ポリマー溶液に順次接触させることにより、該成型体上に酸性ポリマーおよび塩基性ポリマーからなる層を形成することができる。その後、余剰のポリマーを十分に洗浄除去することが好ましい。
As described above, by sequentially bringing the molded body into contact with the acidic polymer solution and the basic polymer solution, a layer composed of the acidic polymer and the basic polymer can be formed on the molded body. Thereafter, it is preferable to sufficiently wash away excess polymer.
該成型体を酸性ポリマー溶液または塩基性ポリマー溶液に接触させる方法としては、浸漬法(ディップ法)、刷毛塗り法、スプレーコーティング法、スピンコート法、ダイコート法、スキージ法などの種々のコーティング手法を適用できる。
As a method of bringing the molded body into contact with an acidic polymer solution or a basic polymer solution, various coating methods such as a dipping method (dip method), a brush coating method, a spray coating method, a spin coating method, a die coating method, and a squeegee method can be used. Applicable.
溶液の接触を浸漬法で行う場合、浸漬時間は、多くの因子に応じて変化させることができる。酸性ポリマー溶液または塩基性ポリマー溶液への成型体の浸漬は、好ましくは、1~30分間、より好ましくは2~20分間、そして最も好ましくは1~5分間の間行う。
When the contact of the solution is performed by an immersion method, the immersion time can be changed according to many factors. The immersion of the shaped body in the acidic polymer solution or the basic polymer solution is preferably performed for 1 to 30 minutes, more preferably 2 to 20 minutes, and most preferably 1 to 5 minutes.
酸性ポリマー溶液および塩基性ポリマー溶液の濃度は、酸性ポリマーないし塩基性ポリマーの性質、所望のコーティング層の厚さ、およびその他の多数の因子に応じて変化させることができる。好ましい酸性ポリマーまたは塩基性ポリマーの濃度は、0.001~10質量%、より好ましくは0.005~5質量%、そして最も好ましくは0.01~3質量%である。
The concentration of the acidic polymer solution and the basic polymer solution can be varied depending on the nature of the acidic polymer or basic polymer, the desired coating layer thickness, and many other factors. The concentration of the preferred acidic polymer or basic polymer is 0.001 to 10% by mass, more preferably 0.005 to 5% by mass, and most preferably 0.01 to 3% by mass.
酸性ポリマー溶液および塩基性ポリマー溶液のpHは、好ましくは2~5、より好ましくは2.5~4.5に維持することが好ましい。
The pH of the acidic polymer solution and the basic polymer solution is preferably maintained at 2 to 5, more preferably 2.5 to 4.5.
余剰の酸性ポリマーおよび塩基性ポリマーの洗浄除去は、一般に清浄な水または有機溶媒を用いて、コーティング後の成型体をすすぐことによって行われる。すすぎは該成型体を水または有機溶媒に浸漬したり、水流や有機溶媒流にさらすことで行うことが好ましい。すすぎは、1つの工程で完了させてもよいが、すすぎの工程を複数回行うほうが、効率的であることが認められた。2~5の工程ですすぎを行うのが好ましい。すすぎ溶液へのそれぞれの浸漬には、1~3分間を費やすのが好ましい。
The washing and removal of excess acidic polymer and basic polymer is generally performed by rinsing the molded body after coating with clean water or an organic solvent. The rinsing is preferably performed by immersing the molded body in water or an organic solvent, or by exposing it to a water flow or an organic solvent flow. Although rinsing may be completed in one step, it has been found that it is more efficient to perform the rinsing step multiple times. Rinsing is preferably performed in steps 2-5. It is preferred to spend 1-3 minutes for each immersion in the rinse solution.
すすぎ溶液としては純水も好ましいが、コーティング層の密着を高めるために、好ましくは2~7、より好ましくは2~5、そしてさらにより好ましくは2.5~4.5のpHに緩衝された水溶液も好適に用いられる。
Pure water is also preferred as the rinsing solution, but is preferably buffered to a pH of 2-7, more preferably 2-5, and even more preferably 2.5-4.5 to increase the adhesion of the coating layer. An aqueous solution is also preferably used.
過剰のすすぎ溶液の乾燥または除去を行う工程を含んでも良い。成型体を大気雰囲気下に単に放置することによって、成型体はある程度乾燥させることができるが、緩やかな空気流を表面に送ることによって、乾燥を亢進することが好ましい。空気流の流速は、乾燥する材料の強度、および材料の機械的固定(fixturing)の関数として調節することができる。成型体を完全に乾燥してしまう必要はない。ここでは、成型体の乾燥よりはむしろ、成型体表面に密着した溶液の液滴を除去することが重要である。したがって、成型体表面上の水または溶液の膜が除去される程度にまで乾燥するだけでよく、その方が工程時間の短縮のつながるために好ましい。
A step of drying or removing the excess rinsing solution may be included. The molded body can be dried to some extent by simply leaving the molded body in an air atmosphere, but it is preferable to enhance drying by sending a gentle air flow to the surface. The flow rate of the air flow can be adjusted as a function of the strength of the material to be dried and the mechanical fixturing of the material. It is not necessary to dry the molded body completely. Here, rather than drying the molded body, it is important to remove the droplets of the solution adhered to the surface of the molded body. Therefore, it is only necessary to dry to the extent that the film of water or solution on the surface of the molded body is removed, which is preferable because the process time can be shortened.
酸性ポリマーと塩基性ポリマーとは交互に塗布することが好ましい。交互に塗布することで、一方だけでは得られない優れた濡れ性や易滑性、さらには優れた装用感または使用感を有する低含水性軟質デバイスを得ることができる。
It is preferable to apply the acidic polymer and the basic polymer alternately. By alternately applying, it is possible to obtain a low hydrous soft device having excellent wettability and slipperiness that cannot be obtained by only one of them, and also excellent wear feeling or use feeling.
コーティング層は、非対称であることができる。ここで「非対称」とは、低含水性軟質デバイスの第一の面と反対側の第二の面とで異なるコーティング層を有することをいう。ここで「異なるコーティング層」とは、第一の面に形成されたコーティング層と第二の面に形成されたコーティング層とが、異なる表面特性または機能性を有することをいう。
The coating layer can be asymmetric. Here, “asymmetric” means having a different coating layer on the first surface of the low hydrous soft device and the second surface on the opposite side. Here, the “different coating layer” means that the coating layer formed on the first surface and the coating layer formed on the second surface have different surface characteristics or functionality.
コーティング層の厚さは、塩化ナトリウムなどの一つまたはそれ以上の塩を酸性ポリマー溶液または塩基性ポリマー溶液に加えることによって、調節することができる。好ましい塩濃度は、0.1~2.0質量%である。塩の濃度が上昇するにつれて、高分子電解質は、より球状の立体構造をとる。しかし濃度が高くなりすぎると、高分子電解質は、成型体表面に、沈着するとしても良好には沈着しない。より好ましい塩濃度は、0.7~1.3質量%である。
The thickness of the coating layer can be adjusted by adding one or more salts such as sodium chloride to the acidic polymer solution or the basic polymer solution. A preferable salt concentration is 0.1 to 2.0% by mass. As the salt concentration increases, the polyelectrolyte takes a more spherical conformation. However, if the concentration is too high, the polymer electrolyte does not deposit well even if it is deposited on the surface of the molded body. A more preferable salt concentration is 0.7 to 1.3% by mass.
本発明の低含水性軟質デバイスの製造方法の別の好ましい態様の1つは、さらに下記工程4を含むものである。
<工程4>
上記工程1~3をこの順に含む方法で得た成型体に放射線を照射する工程。 Another preferred embodiment of the method for producing a low hydrous soft device of the present invention further includes the following step 4.
<Step 4>
A step of irradiating a molded body obtained by the method including the steps 1 to 3 in this order.
<工程4>
上記工程1~3をこの順に含む方法で得た成型体に放射線を照射する工程。 Another preferred embodiment of the method for producing a low hydrous soft device of the present invention further includes the following step 4.
<Step 4>
A step of irradiating a molded body obtained by the method including the steps 1 to 3 in this order.
放射線の照射は、成型体をコーティング液に浸漬した状態で行っても良いし、成型体をコーティング液から引き出して洗浄した後で行っても良い。また、成型体をコーティング液以外の液体に浸漬した状態で放射線の照射を行うことも好ましく行われる。この場合、照射線がより効率的に作用するために好ましい。この場合、コーティングした成型体を浸漬するために使用する液体のための溶媒は有機系、無機系の各種溶媒が適用可能であり特に制限はない。例を挙げれば、水、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、tert-ブタノール、tert-アミルアルコール、3,7-ジメチル-3-オクタノールなどの各種アルコール系溶媒、ベンゼン、トルエン、キシレンなどの各種芳香族炭化水素系溶媒、ヘキサン、ヘプタン、オクタン、デカン、石油エーテル、ケロシン、リグロイン、パラファインなどの各種脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトンなどの各種ケトン系溶媒、酢酸エチル、酢酸ブチル、安息香酸メチル、フタル酸ジオクチル、二酢酸エチレングリコールなどの各種エステル系溶媒、ジエチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコールジアルキルエーテル、ジエチレングリコールジアルキルエーテル、トリエチレングリコールジアルキルエーテル、テトラエチレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリエチレングリコール-ポリプロピレングリコールブロック共重合体、ポリエチレングリコール-ポリプロピレングリコールランダム共重合体などの各種グリコールエーテル系溶媒であり、これらは単独あるいは混合して使用することができる。これらのうち、最も好ましいのは水である。成型体を水系の液体に浸漬した状態で放射線の照射を行う場合、水系の液体としては、純水のほかに、生理食塩水、リン酸系の緩衝液(好ましくはpH7.1~7.3)、ホウ酸系の緩衝液(好ましくはpH7.1~7.3)が好適である。
The irradiation of radiation may be performed in a state where the molded body is immersed in the coating liquid, or may be performed after the molded body is drawn out of the coating liquid and washed. Moreover, it is also preferable to perform radiation irradiation in a state where the molded body is immersed in a liquid other than the coating liquid. In this case, it is preferable because the irradiation rays act more efficiently. In this case, the solvent for the liquid used for immersing the coated molded body is applicable to various organic and inorganic solvents and is not particularly limited. Examples include water, methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, tert-amyl alcohol, various alcohol solvents such as 3,7-dimethyl-3-octanol, benzene, toluene, xylene, etc. Various aromatic hydrocarbon solvents, hexane, heptane, octane, decane, petroleum ether, kerosene, ligroin, parafine and other aliphatic hydrocarbon solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone and other ketone solvents, Various ester solvents such as ethyl acetate, butyl acetate, methyl benzoate, dioctyl phthalate, ethylene glycol diacetate, diethyl ether, tetrahydrofuran, dioxane, ethylene glycol dialkyl ether, diethylene glycol dial Various glycol ether solvents such as ether, triethylene glycol dialkyl ether, tetraethylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polyethylene glycol-polypropylene glycol block copolymer, polyethylene glycol-polypropylene glycol random copolymer, They can be used alone or in combination. Of these, water is most preferred. When radiation is performed in a state where the molded body is immersed in an aqueous liquid, as the aqueous liquid, in addition to pure water, physiological saline, phosphate buffer (preferably pH 7.1 to 7.3). ) And boric acid buffer solutions (preferably pH 7.1 to 7.3) are suitable.
成型体を容器に密閉した状態で放射線を照射すれば、成型体の滅菌を同時に行うことができるという利点がある。
If the molded body is irradiated with radiation in a sealed state, the molded body can be sterilized at the same time.
放射線としては、好ましくはγ線を用いると良い。この場合、照射するγ線の線量は少なすぎると成型体とコーティング層の十分な結合が得られず、多すぎると成型体の物性低下を招くことから、0.1~100kGyが好ましく、15~50kGyがより好ましく、20~40kGyが最も好ましい。これにより、コーティング層内の少なくとも一部およびコーティング層と成型体との間の少なくとも一部が架橋され、コーティング層の耐久性(例えば擦り洗い耐久性)を向上させることができる。
Γ rays are preferably used as radiation. In this case, if the dose of γ-rays to be irradiated is too small, sufficient bonding between the molded body and the coating layer cannot be obtained, and if it is too large, the physical properties of the molded body are lowered, so 0.1 to 100 kGy is preferable, and 15 to 50 kGy is more preferable, and 20 to 40 kGy is most preferable. Thereby, at least a part in the coating layer and at least a part between the coating layer and the molded body are cross-linked, and the durability (for example, scuffing durability) of the coating layer can be improved.
本発明の低含水性軟質デバイスは、たとえばチューブ形状に成型された軟質部材を備える。具体的には、本発明の低含水性軟質デバイスとして、生体内に挿入されて使用される輸液チューブ、気体輸送チューブ、排液チューブ、血液回路、種々の部材を被覆する被覆チューブ、カテーテル、ステント、シース、チューブコネクター、アクセスポート、または、内視鏡被覆材等の医療デバイスを挙げることができる。
The low hydrous soft device of the present invention includes, for example, a soft member molded into a tube shape. Specifically, as a low hydrous soft device of the present invention, an infusion tube, a gas transport tube, a drainage tube, a blood circuit, a coated tube covering various members, a catheter, and a stent that are inserted into a living body and used. , A medical device such as a sheath, a tube connector, an access port, or an endoscope covering material.
図1は、本発明の低含水性軟質デバイス(医療デバイス)の一例である輸液チューブの一部を示す斜視図である。この輸液チューブ10本体が、上述した低含水性軟質基材によって形成されている。
FIG. 1 is a perspective view showing a part of an infusion tube which is an example of a low hydrous soft device (medical device) of the present invention. This infusion tube 10 main body is formed by the low hydrous soft base material mentioned above.
図2は、本発明の低含水性軟質デバイス(医療デバイス)の一例であるカテーテルの先端部を示す斜視図である。このカテーテル20本体が、上述した低含水性軟質基材によって形成されている。
FIG. 2 is a perspective view showing a distal end portion of a catheter which is an example of the low hydrous soft device (medical device) of the present invention. This catheter 20 main body is formed by the low hydrous soft base material mentioned above.
図3は、本発明の低含水性軟質デバイス(医療デバイス)の一例であるステントの一部を示す斜視図である。このステント30は、ステント本体31を上述した低含水性軟質基材32によって被覆した構造を有する。
FIG. 3 is a perspective view showing a part of a stent which is an example of the low hydrous soft device (medical device) of the present invention. The stent 30 has a structure in which a stent body 31 is covered with the low hydrous soft base material 32 described above.
図4は、本発明の低含水性軟質デバイス(医療デバイス)の一例である内視鏡被覆材が適用された内視鏡の先端部を示す斜視図である。この内視鏡40は、軟質素材で形成され変形自在な挿入管41と、挿入管の先端部42とを含む。先端部42の内部には、カメラおよび照明を含む光学系43が設けられている。また、先端部42の端面44は、照明光およびその反射光が透過可能な材料(ガラス等)によって形成されている。これらの挿入管41および先端部42の全体は、上述した低含水性軟質基材45によって被覆されている。
FIG. 4 is a perspective view showing a distal end portion of an endoscope to which an endoscope covering material that is an example of the low hydrous soft device (medical device) of the present invention is applied. The endoscope 40 includes an insertion tube 41 that is made of a soft material and is deformable, and a distal end portion 42 of the insertion tube. An optical system 43 including a camera and illumination is provided inside the distal end portion 42. Further, the end surface 44 of the distal end portion 42 is formed of a material (glass or the like) that can transmit illumination light and reflected light thereof. The entire insertion tube 41 and the distal end portion 42 are covered with the low hydrous soft base material 45 described above.
また、本発明の低含水性軟質デバイスは、たとえばシート状またはフィルム状をなす軟質部材を備える。具体的には、本発明の低含水性軟質デバイスとして、生体表面に貼付して用いられる皮膚用被覆材、創傷被覆材、皮膚用保護材、若しくは皮膚用薬剤担体といった医療デバイスや、細胞培養シート若しくは組織再生用足場材料といったバイオテクノロジー用デバイスや、分離膜(気液分離膜)等の濾過デバイスや、船底等の生物付着防止に用いられる被覆材といった防汚デバイス、土の乾燥を防ぐ保湿シートといった農業/ガーデニングデバイスや、顔用パック(低含水性軟質基材に美容液を含水させたもの)といった美容デバイスや、かつら、靴の中敷、衛生用品といった日用品等を挙げることができる。
The low hydrous soft device of the present invention includes a soft member having a sheet shape or a film shape, for example. Specifically, as a low hydrous soft device of the present invention, a medical device such as a skin covering material, a wound covering material, a skin protecting material, or a skin drug carrier used by being attached to the surface of a living body, or a cell culture sheet Or biotechnology devices such as scaffolds for tissue regeneration, filtration devices such as separation membranes (gas-liquid separation membranes), antifouling devices such as coating materials used to prevent biological adhesion on ship bottoms, etc., moisturizing sheets that prevent soil drying Agricultural / gardening devices such as, cosmetic devices such as facial packs (a low hydrous soft base material containing a cosmetic liquid), daily goods such as wigs, insoles, and hygiene products.
本発明の低含水性軟質デバイスは、眼用レンズとして用いると、角膜への貼り付き感を感じる装用者が発生する可能性がゼロではないことから、眼用レンズ以外の用途に用いることが好ましい。
When the low hydrous soft device of the present invention is used as an ophthalmic lens, it is preferable that the low hydrous soft device is used for applications other than ophthalmic lenses because there is no possibility that a wearer who feels sticking to the cornea will occur. .
図5は、本発明の低含水性軟質デバイス(濾過デバイス)の一例である気液分離膜の一部を示す斜視図である。図5に示す気液分離膜50は、液体を収容可能な容器の少なくとも1つの面を形成する。この気液分離膜50が、上述した低含水性軟質基材によって形成されている。このような気液分離膜50を有する容器に、例えば酸素が溶け込んだ液体を注入すると、気液分離膜50は、その内の酸素のみを透過させる。それにより、液体と酸素とを分離することができる。
FIG. 5 is a perspective view showing a part of a gas-liquid separation membrane which is an example of the low hydrous soft device (filtration device) of the present invention. The gas-liquid separation membrane 50 shown in FIG. 5 forms at least one surface of a container that can store a liquid. This gas-liquid separation membrane 50 is formed by the low hydrous soft base material described above. When, for example, a liquid in which oxygen is dissolved is injected into a container having such a gas-liquid separation membrane 50, the gas-liquid separation membrane 50 allows only oxygen therein to permeate. Thereby, the liquid and oxygen can be separated.
図6は、本発明の低含水性軟質デバイス(農業/ガーデニングデバイス)の一例である保湿シートを示す模式図である。図6に示す保湿シート60が、上述した低含水性軟質基材によって形成されている。この保湿シート60に開口61を設け、土62に植えられた植物63を開口61に通すようにして、保湿シート60を土62に被せる。それにより、土62の乾燥を防ぐことができる。
FIG. 6 is a schematic view showing a moisturizing sheet as an example of the low hydrous soft device (agriculture / gardening device) of the present invention. A moisturizing sheet 60 shown in FIG. 6 is formed by the low hydrous soft base material described above. The moisturizing sheet 60 is covered with the soil 62 such that an opening 61 is provided in the moisturizing sheet 60 and the plant 63 planted in the soil 62 is passed through the opening 61. Thereby, drying of the soil 62 can be prevented.
また、本発明の医療デバイスは、たとえば球冠形状をなす部材を備える。具体的には、本発明の低含水性軟質デバイスとして、軟質眼用レンズ(ソフトコンタクトレンズ)、眼内レンズ、人工角膜、角膜インレイ、角膜オンレイ、メガネレンズといった眼用医療デバイスを挙げることができる。
Further, the medical device of the present invention includes a member having a spherical crown shape, for example. Specifically, examples of the low hydrous soft device of the present invention include ophthalmic medical devices such as soft ophthalmic lenses (soft contact lenses), intraocular lenses, artificial corneas, corneal inlays, corneal onlays, and eyeglass lenses. .
また、本発明の低含水性軟質デバイスは、たとえば収納容器形状に成型された軟質部材を備える。具体的には、本発明の低含水性軟質デバイスとして、生体内に導入される薬剤担体、生体内に挿入されて使用されるカフ、または、生体内に挿入される上記排液用チューブと連結した排液バッグといった医療デバイスを挙げることができる。
Also, the low hydrous soft device of the present invention includes a soft member molded into a storage container shape, for example. Specifically, as a low hydrous soft device of the present invention, a drug carrier introduced into the living body, a cuff used by being inserted into the living body, or connected to the drainage tube inserted into the living body Medical devices such as drainage bags.
図7は、本発明の低含水性軟質デバイス(医療デバイス)の一例である薬剤担体を示す斜視図である。この薬剤担体70本体が、上述した低含水性軟質基材によって形成されている。
FIG. 7 is a perspective view showing a drug carrier which is an example of the low hydrous soft device (medical device) of the present invention. The main body of the drug carrier 70 is formed by the low hydrous soft base material described above.
また、本発明の低含水性軟質デバイスは、たとえば粒状をなす部材を備える。具体的には、本発明の低含水性軟質デバイスとして、土の表面や土の代わりに配置される粒状保湿材といった農業/ガーデニングデバイスを挙げることができる。
Moreover, the low hydrous soft device of the present invention includes, for example, a granular member. Specifically, the low hydrous soft device of the present invention includes an agricultural / gardening device such as a granular moisturizing material arranged in place of the soil surface or soil.
図8は、本発明の低含水性軟質デバイス(農業用/ガーデニングデバイス)の一例である粒状保湿材を示す模式図である。図8に示す粒状保湿材80が、上述した低含水性軟質基材によって形成されている。観葉植物81等を鉢植えする際に、含水させた粒状保湿材80を土の代わり配置することにより、根82の乾燥を防ぐと共に、衛生的に植物を栽培することができる。
FIG. 8 is a schematic view showing a granular moisturizing material which is an example of the low hydrous soft device (agricultural / gardening device) of the present invention. A granular moisturizing material 80 shown in FIG. 8 is formed by the low hydrous soft base material described above. When potted plants 81 or the like are potted, by placing the moisture-containing granular moisturizing material 80 instead of soil, the roots 82 can be prevented from drying and the plants can be cultivated hygienically.
この他にも、本発明の低含水性軟質デバイスは、上記例示した低含水性軟質デバイスに限定されず、様々な形状に成型して用いることができる。
In addition, the low hydrous soft device of the present invention is not limited to the above exemplified low hydrous soft device, and can be used by molding into various shapes.
以下、本発明の実施例を具体的に説明するが、本発明はこれによって限定されるものではない。
Hereinafter, examples of the present invention will be specifically described, but the present invention is not limited thereto.
分析方法および評価方法
(1)分子量
GPC法により、以下の条件でポリスチレン換算の質量平均分子量ならびに数平均分子量を測定した。 Analysis method and evaluation method (1) Molecular weight The polystyrene-equivalent mass average molecular weight and number average molecular weight were measured by the GPC method under the following conditions.
(1)分子量
GPC法により、以下の条件でポリスチレン換算の質量平均分子量ならびに数平均分子量を測定した。 Analysis method and evaluation method (1) Molecular weight The polystyrene-equivalent mass average molecular weight and number average molecular weight were measured by the GPC method under the following conditions.
ポンプ 東ソー DP-8020
検出器 東ソー RI-8010
カラムオーブン 島津 CTO-6A
オートサンプラー 東ソー AS-8010
カラム:東ソー TSKgel GMHHR-M
(内径7.8mm×30cm、粒子径5μm)×2本
カラム温度:35℃
移動相:クロロホルム
流速:1.0mL/分
サンプル濃度:0.4質量%
注入量:100μL
標準サンプル:ポリスチレン(分子量1010~109万)。 Pump Tosoh DP-8020
Detector Tosoh RI-8010
Column oven Shimadzu CTO-6A
Autosampler Tosoh AS-8010
Column: Tosoh TSKgel GMHHR-M
(Inner diameter 7.8 mm × 30 cm, particle diameter 5 μm) × 2 Column temperature: 35 ° C.
Mobile phase: Chloroform Flow rate: 1.0 mL / min Sample concentration: 0.4% by mass
Injection volume: 100 μL
Standard sample: polystyrene (molecular weight 1010 to 1.09 million).
検出器 東ソー RI-8010
カラムオーブン 島津 CTO-6A
オートサンプラー 東ソー AS-8010
カラム:東ソー TSKgel GMHHR-M
(内径7.8mm×30cm、粒子径5μm)×2本
カラム温度:35℃
移動相:クロロホルム
流速:1.0mL/分
サンプル濃度:0.4質量%
注入量:100μL
標準サンプル:ポリスチレン(分子量1010~109万)。 Pump Tosoh DP-8020
Detector Tosoh RI-8010
Column oven Shimadzu CTO-6A
Autosampler Tosoh AS-8010
Column: Tosoh TSKgel GMHHR-M
(Inner diameter 7.8 mm × 30 cm, particle diameter 5 μm) × 2 Column temperature: 35 ° C.
Mobile phase: Chloroform Flow rate: 1.0 mL / min Sample concentration: 0.4% by mass
Injection volume: 100 μL
Standard sample: polystyrene (molecular weight 1010 to 1.09 million).
(2)伸び
球冠形状(球面の一部を平面で切り取った形状、縁部が形成する円の直径約14mm、厚さ約0.1mm)のサンプルから規定の打抜型を用いて、幅(最小部分)5mm、長さ14mm、厚さ0.2mm程度の試験片を切り出し、該試験片を手で初期の1.5倍(伸び50%)まで引っ張った。5つの試験片を試験し、切断しなかった試験片の数を表記した。 (2) Elongation Using a specified punching die from a sample having a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a plane, a diameter of a circle formed by an edge of about 14 mm, a thickness of about 0.1 mm), the width ( (Minimum portion) A test piece having a length of about 5 mm, a length of 14 mm, and a thickness of about 0.2 mm was cut out, and the test piece was pulled by hand to 1.5 times the initial size (50% elongation). Five test pieces were tested, and the number of test pieces that were not cut was indicated.
球冠形状(球面の一部を平面で切り取った形状、縁部が形成する円の直径約14mm、厚さ約0.1mm)のサンプルから規定の打抜型を用いて、幅(最小部分)5mm、長さ14mm、厚さ0.2mm程度の試験片を切り出し、該試験片を手で初期の1.5倍(伸び50%)まで引っ張った。5つの試験片を試験し、切断しなかった試験片の数を表記した。 (2) Elongation Using a specified punching die from a sample having a spherical crown shape (a shape obtained by cutting a part of a spherical surface with a plane, a diameter of a circle formed by an edge of about 14 mm, a thickness of about 0.1 mm), the width ( (Minimum portion) A test piece having a length of about 5 mm, a length of 14 mm, and a thickness of about 0.2 mm was cut out, and the test piece was pulled by hand to 1.5 times the initial size (50% elongation). Five test pieces were tested, and the number of test pieces that were not cut was indicated.
(3)耐折り曲げ性
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を指で二つに折り曲げた後、指で強く揉むようにした。5つの試験片を試験し下記の基準で判定した。 (3) Bending resistance A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was bent in two with a finger, and then it was strongly pinched with the finger. Five test pieces were tested and judged according to the following criteria.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を指で二つに折り曲げた後、指で強く揉むようにした。5つの試験片を試験し下記の基準で判定した。 (3) Bending resistance A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was bent in two with a finger, and then it was strongly pinched with the finger. Five test pieces were tested and judged according to the following criteria.
A:全ての試験片が破損しない
B:破損しない試験片がある
C:全ての試験片が破損するが、破損の程度は軽度である
D:全ての試験片が破損し、破損の程度がCとEの中間である
E:全ての試験片が粉々に破損する。 A: All specimens are not damaged B: Some specimens are not damaged C: All specimens are damaged, but the degree of damage is minor D: All specimens are damaged, and the degree of damage is C Between E and E. E: All specimens break into pieces.
B:破損しない試験片がある
C:全ての試験片が破損するが、破損の程度は軽度である
D:全ての試験片が破損し、破損の程度がCとEの中間である
E:全ての試験片が粉々に破損する。 A: All specimens are not damaged B: Some specimens are not damaged C: All specimens are damaged, but the degree of damage is minor D: All specimens are damaged, and the degree of damage is C Between E and E. E: All specimens break into pieces.
(4)透明性
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を目視観察し、下記の基準で透明性を評価した:
A:濁りがなく透明
B:AとCの中間程度の白濁
C:白濁があり半透明
D:CとEの中間程度の白濁
E:白濁し透明性が全くない。 (4) Transparency A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was visually observed, and transparency was evaluated according to the following criteria:
A: Transparent with no turbidity B: Intermediate turbidity between A and C C: White turbidity and translucent D: Intermediate turbidity between C and E E: White turbidity and no transparency.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を目視観察し、下記の基準で透明性を評価した:
A:濁りがなく透明
B:AとCの中間程度の白濁
C:白濁があり半透明
D:CとEの中間程度の白濁
E:白濁し透明性が全くない。 (4) Transparency A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was visually observed, and transparency was evaluated according to the following criteria:
A: Transparent with no turbidity B: Intermediate turbidity between A and C C: White turbidity and translucent D: Intermediate turbidity between C and E E: White turbidity and no transparency.
(5-1)含水率
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を使用した。試験片を真空乾燥器で40℃、16時間乾燥し質量(Wd)を測定した。その後、純水に浸漬して40℃恒温槽に一晩以上おいて含水させた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って質量(Ww)を測定した。次式にて含水率を求めた。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。
含水率(%)=100×(Ww-Wd)/Ww …(1)。 (5-1) Moisture content A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. The test piece was dried in a vacuum dryer at 40 ° C. for 16 hours, and the mass (Wd) was measured. Then, after immersing in pure water and allowing it to remain in a 40 ° C constant temperature bath overnight, wipe the surface moisture with a wiping cloth (“Kimwipe (registered trademark)” manufactured by Nippon Paper Crecia) and measure the mass (Ww). did. The water content was determined by the following formula. When the obtained value was less than 1%, it was judged to be below the measurement limit, and was expressed as “less than 1%”.
Water content (%) = 100 × (Ww−Wd) / Ww (1).
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を使用した。試験片を真空乾燥器で40℃、16時間乾燥し質量(Wd)を測定した。その後、純水に浸漬して40℃恒温槽に一晩以上おいて含水させた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って質量(Ww)を測定した。次式にて含水率を求めた。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。
含水率(%)=100×(Ww-Wd)/Ww …(1)。 (5-1) Moisture content A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. The test piece was dried in a vacuum dryer at 40 ° C. for 16 hours, and the mass (Wd) was measured. Then, after immersing in pure water and allowing it to remain in a 40 ° C constant temperature bath overnight, wipe the surface moisture with a wiping cloth (“Kimwipe (registered trademark)” manufactured by Nippon Paper Crecia) and measure the mass (Ww). did. The water content was determined by the following formula. When the obtained value was less than 1%, it was judged to be below the measurement limit, and was expressed as “less than 1%”.
Water content (%) = 100 × (Ww−Wd) / Ww (1).
(5-2)含水率
フィルム形状の試験片を用意し、該試験片をホウ酸緩衝液に浸漬して室温で24時間以上おいた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って質量(Ww)を測定した。その後、真空乾燥器で40℃、16時間乾燥し、質量(Wd)を測定した。これらの質量Wd、Wwから、上式(1)により含水率を算出した。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。 (5-2) Moisture content A film-shaped test piece was prepared, and the test piece was immersed in a borate buffer solution and allowed to stand at room temperature for 24 hours or more. Then, the surface moisture was wiped off (“Kimwipe” manufactured by Nippon Paper Crecia) (Registered trademark) ") and wiped off to measure the mass (Ww). Then, it dried at 40 degreeC for 16 hours with the vacuum dryer, and mass (Wd) was measured. From these masses Wd and Ww, the water content was calculated by the above formula (1). When the obtained value was less than 1%, it was judged to be below the measurement limit, and was expressed as “less than 1%”.
フィルム形状の試験片を用意し、該試験片をホウ酸緩衝液に浸漬して室温で24時間以上おいた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って質量(Ww)を測定した。その後、真空乾燥器で40℃、16時間乾燥し、質量(Wd)を測定した。これらの質量Wd、Wwから、上式(1)により含水率を算出した。得られた値が1%未満の場合は測定限界以下と判断し、「1%未満」と表記した。 (5-2) Moisture content A film-shaped test piece was prepared, and the test piece was immersed in a borate buffer solution and allowed to stand at room temperature for 24 hours or more. Then, the surface moisture was wiped off (“Kimwipe” manufactured by Nippon Paper Crecia) (Registered trademark) ") and wiped off to measure the mass (Ww). Then, it dried at 40 degreeC for 16 hours with the vacuum dryer, and mass (Wd) was measured. From these masses Wd and Ww, the water content was calculated by the above formula (1). When the obtained value was less than 1%, it was judged to be below the measurement limit, and was expressed as “less than 1%”.
(6)保水性
ホウ酸緩衝液による湿潤状態のフィルム形状の試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管した後、人指で触って状態観察を行い、下記の基準で評価した:
A:保管前後で試験片の軟らかさおよび乾き具合に差がない
B:48時間保管後、保管前と比較して試験片の硬さが少し増し、乾燥が少しみられる
C:48時間保管後、保管前と比較して試験片の硬さが著しく増し、乾燥感が高い。 (6) Water retention The test piece in the form of a film wet with borate buffer solution was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. Based on the following criteria:
A: There is no difference in softness and dryness of the test piece before and after storage. B: After storage for 48 hours, the hardness of the test piece increases slightly compared with before storage, and a little dryness C: After storage for 48 hours Compared with before storage, the hardness of the test piece is remarkably increased and the dryness is high.
ホウ酸緩衝液による湿潤状態のフィルム形状の試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管した後、人指で触って状態観察を行い、下記の基準で評価した:
A:保管前後で試験片の軟らかさおよび乾き具合に差がない
B:48時間保管後、保管前と比較して試験片の硬さが少し増し、乾燥が少しみられる
C:48時間保管後、保管前と比較して試験片の硬さが著しく増し、乾燥感が高い。 (6) Water retention The test piece in the form of a film wet with borate buffer solution was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. Based on the following criteria:
A: There is no difference in softness and dryness of the test piece before and after storage. B: After storage for 48 hours, the hardness of the test piece increases slightly compared with before storage, and a little dryness C: After storage for 48 hours Compared with before storage, the hardness of the test piece is remarkably increased and the dryness is high.
(7)水濡れ性
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を、室温でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(1分間)。試験片をホウ酸緩衝液から引き上げ、試験片の縁部が形成する円の直径方向が垂直になるように空中に保持した際の表面の様子を目視観察し、下記の基準で判定した:
A:表面の液膜が20秒以上保持する
B:表面の液膜が10秒以上20秒未満で切れる
C:表面の液膜が5秒以上10秒未満で切れる
D:表面の液膜が1秒以上5秒未満で切れる
E:表面の液膜が瞬時に切れる(1秒未満)。 (7) Water wettability A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was immersed in a borate buffer in a beaker at room temperature for 24 hours or more. The beaker containing the test piece and borate buffer was put on an ultrasonic cleaner (1 minute). The test piece was pulled up from the borate buffer solution, and the state of the surface when held in the air so that the diameter direction of the circle formed by the edge of the test piece was vertical was visually observed and judged according to the following criteria:
A: The liquid film on the surface is held for 20 seconds or more. B: The liquid film on the surface is cut in 10 seconds or more and less than 20 seconds. C: The liquid film on the surface is cut in 5 seconds or more and less than 10 seconds. D: The liquid film on the surface is 1 Cut in 5 seconds or more and less than 5 seconds E: The liquid film on the surface cuts instantaneously (less than 1 second).
球冠形状(縁部の直径約14mm、厚さ約0.1mm)の試験片を、室温でビーカー中のホウ酸緩衝液中に24時間以上浸漬した。試験片とホウ酸緩衝液の入ったビーカーを超音波洗浄器にかけた(1分間)。試験片をホウ酸緩衝液から引き上げ、試験片の縁部が形成する円の直径方向が垂直になるように空中に保持した際の表面の様子を目視観察し、下記の基準で判定した:
A:表面の液膜が20秒以上保持する
B:表面の液膜が10秒以上20秒未満で切れる
C:表面の液膜が5秒以上10秒未満で切れる
D:表面の液膜が1秒以上5秒未満で切れる
E:表面の液膜が瞬時に切れる(1秒未満)。 (7) Water wettability A test piece having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was immersed in a borate buffer in a beaker at room temperature for 24 hours or more. The beaker containing the test piece and borate buffer was put on an ultrasonic cleaner (1 minute). The test piece was pulled up from the borate buffer solution, and the state of the surface when held in the air so that the diameter direction of the circle formed by the edge of the test piece was vertical was visually observed and judged according to the following criteria:
A: The liquid film on the surface is held for 20 seconds or more. B: The liquid film on the surface is cut in 10 seconds or more and less than 20 seconds. C: The liquid film on the surface is cut in 5 seconds or more and less than 10 seconds. D: The liquid film on the surface is 1 Cut in 5 seconds or more and less than 5 seconds E: The liquid film on the surface cuts instantaneously (less than 1 second).
(8)動的接触角測定
動的接触角サンプルとして、フィルム状に成型したサンプルから切り出した5mm×10mm×0.1mm程度のサイズのフィルム状の試験片、または球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルから切り出した幅5mmの短冊状試験片を、ホウ酸緩衝液による湿潤状態で使用し、ホウ酸緩衝液に対する前進時の動的接触角を測定した。測定装置として、株式会社レスカ(RHESCA)製 動的濡れ性試験器 WET-6000を使用し、浸漬速度は0.1mm/sec、浸漬深さは7mmとした。 (8) Dynamic contact angle measurement As a dynamic contact angle sample, a film-shaped test piece having a size of about 5 mm × 10 mm × 0.1 mm cut out from a sample molded into a film shape, or a spherical crown shape (edge diameter) A strip-shaped test piece having a width of 5 mm cut out from a sample having a thickness of about 14 mm and a thickness of about 0.1 mm was used in a wet state with a borate buffer solution, and a dynamic contact angle at the time of advance with respect to the borate buffer solution was measured. . As a measuring device, a dynamic wettability tester WET-6000 manufactured by RESCA Co., Ltd. was used, the immersion speed was 0.1 mm / sec, and the immersion depth was 7 mm.
動的接触角サンプルとして、フィルム状に成型したサンプルから切り出した5mm×10mm×0.1mm程度のサイズのフィルム状の試験片、または球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルから切り出した幅5mmの短冊状試験片を、ホウ酸緩衝液による湿潤状態で使用し、ホウ酸緩衝液に対する前進時の動的接触角を測定した。測定装置として、株式会社レスカ(RHESCA)製 動的濡れ性試験器 WET-6000を使用し、浸漬速度は0.1mm/sec、浸漬深さは7mmとした。 (8) Dynamic contact angle measurement As a dynamic contact angle sample, a film-shaped test piece having a size of about 5 mm × 10 mm × 0.1 mm cut out from a sample molded into a film shape, or a spherical crown shape (edge diameter) A strip-shaped test piece having a width of 5 mm cut out from a sample having a thickness of about 14 mm and a thickness of about 0.1 mm was used in a wet state with a borate buffer solution, and a dynamic contact angle at the time of advance with respect to the borate buffer solution was measured. . As a measuring device, a dynamic wettability tester WET-6000 manufactured by RESCA Co., Ltd. was used, the immersion speed was 0.1 mm / sec, and the immersion depth was 7 mm.
(9)引張弾性率、破断伸度
ホウ酸緩衝液による湿潤状態の球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルから規定の打抜型を用いて幅(最小部分)5mm、長さ14mm、厚さ0.2mmの試験片を切り出した。該試験片を用い、オリエンテック社製のテンシロン(登録商標) RTM-100型を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。 (9) Tensile modulus, breaking elongation Width (minimum portion) using a prescribed punching die from a sample of a crown shape wetted with borate buffer (diameter of the edge is about 14 mm, thickness is about 0.1 mm) ) A test piece having a length of 5 mm, a length of 14 mm and a thickness of 0.2 mm was cut out. Using the test piece, a tensile test was carried out using Tensilon (registered trademark) RTM-100 manufactured by Orientec. The tensile speed was 100 mm / min, and the distance between grips (initial) was 5 mm.
ホウ酸緩衝液による湿潤状態の球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルから規定の打抜型を用いて幅(最小部分)5mm、長さ14mm、厚さ0.2mmの試験片を切り出した。該試験片を用い、オリエンテック社製のテンシロン(登録商標) RTM-100型を用いて引張試験を実施した。引張速度は100mm/分で、グリップ間の距離(初期)は5mmであった。 (9) Tensile modulus, breaking elongation Width (minimum portion) using a prescribed punching die from a sample of a crown shape wetted with borate buffer (diameter of the edge is about 14 mm, thickness is about 0.1 mm) ) A test piece having a length of 5 mm, a length of 14 mm and a thickness of 0.2 mm was cut out. Using the test piece, a tensile test was carried out using Tensilon (registered trademark) RTM-100 manufactured by Orientec. The tensile speed was 100 mm / min, and the distance between grips (initial) was 5 mm.
(10)易滑性
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを用いた。易滑性はホウ酸緩衝液による湿潤状態のサンプルを人指で5回擦った時の感応評価で行った:
A:非常に優れた易滑性がある
B:AとCの中間程度の易滑性がある
C:中程度の易滑性がある
D:易滑性がほとんど無い(CとEの中間程度)
E:易滑性が無い。 (10) Easiness of sliding A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. The slipperiness was evaluated by a sensitivity evaluation when a sample wet with borate buffer was rubbed with a finger five times:
A: Very good slipperiness B: Easy slipperiness between A and C C: Moderate slipperiness D: No slipperiness (intermediate between C and E) )
E: There is no slipperiness.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを用いた。易滑性はホウ酸緩衝液による湿潤状態のサンプルを人指で5回擦った時の感応評価で行った:
A:非常に優れた易滑性がある
B:AとCの中間程度の易滑性がある
C:中程度の易滑性がある
D:易滑性がほとんど無い(CとEの中間程度)
E:易滑性が無い。 (10) Easiness of sliding A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. The slipperiness was evaluated by a sensitivity evaluation when a sample wet with borate buffer was rubbed with a finger five times:
A: Very good slipperiness B: Easy slipperiness between A and C C: Moderate slipperiness D: No slipperiness (intermediate between C and E) )
E: There is no slipperiness.
(11)ムチン付着
ムチンとしてCALBIOCHEM社のMucin, Bovine Submaxillary Gland(カタログ番号499643)を使用した。球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを0.1%濃度のムチン水溶液に20時間37℃の条件で浸漬させた後、BCA(ビシンコニン酸)プロテインアッセイ法によってサンプルに付着したムチンの量を定量した。 (11) Mucin adhesion Mucin, Bovine Submaxillary Gland (Catalog No. 499643) from CALBIOCHEM was used as mucin. A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was immersed in a 0.1% mucin aqueous solution at 37 ° C. for 20 hours, and then BCA (bicinchoninic acid) protein assay method Was used to quantify the amount of mucin attached to the sample.
ムチンとしてCALBIOCHEM社のMucin, Bovine Submaxillary Gland(カタログ番号499643)を使用した。球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを0.1%濃度のムチン水溶液に20時間37℃の条件で浸漬させた後、BCA(ビシンコニン酸)プロテインアッセイ法によってサンプルに付着したムチンの量を定量した。 (11) Mucin adhesion Mucin, Bovine Submaxillary Gland (Catalog No. 499643) from CALBIOCHEM was used as mucin. A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was immersed in a 0.1% mucin aqueous solution at 37 ° C. for 20 hours, and then BCA (bicinchoninic acid) protein assay method Was used to quantify the amount of mucin attached to the sample.
(12)脂質付着
500mlのビーカーに攪拌子(36mm)を入れ、パルミチン酸メチル1.5gと純水500gを入れた。ウォーターバスの温度を37℃に設定し、前述のビーカーをウォーターバスの中央に置き、マグネチックスターラーで1時間攪拌した。回転速度は600rpmとした。球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを1枚ずつバスケットに入れ、前述のビーカー内に投入し、そのまま攪拌した。1時間後、攪拌を止め、バスケット内のサンプルを40℃の水道水と家庭用液体洗剤(ライオン製“ママレモン(登録商標)”)でこすり洗いした。洗浄後のサンプルをホウ酸緩衝液(pH7.1~7.3)の入ったスクリュー管内に入れ、氷浴に1時間浸漬した。スクリュー管を氷浴が取り出した後、にサンプルの白濁を目視観察し、下記の基準でサンプルへのパルミチン酸メチルの付着量を判定した:
A:白濁が無く透明である
B:白濁した部分がわずかにある
C:白濁した部分が相当程度ある
D:大部分が白濁している
E:全体が白濁している。 (12) Lipid adhesion A stirrer (36 mm) was placed in a 500 ml beaker, and 1.5 g of methyl palmitate and 500 g of pure water were added. The temperature of the water bath was set to 37 ° C., the aforementioned beaker was placed in the center of the water bath, and the mixture was stirred for 1 hour with a magnetic stirrer. The rotation speed was 600 rpm. Samples having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) were put in a basket one by one, put into the above-described beaker, and stirred as it was. After 1 hour, stirring was stopped and the sample in the basket was rubbed with 40 ° C. tap water and household liquid detergent (“Mama Lemon®” manufactured by Lion). The washed sample was placed in a screw tube containing borate buffer (pH 7.1 to 7.3) and immersed in an ice bath for 1 hour. After removing the screw tube from the ice bath, the sample was visually observed for cloudiness, and the amount of methyl palmitate adhering to the sample was determined according to the following criteria:
A: Transparent with no white turbidity B: Slightly cloudy portion C: Some white cloudy portion D: Mostly cloudy E: Whole cloudy.
500mlのビーカーに攪拌子(36mm)を入れ、パルミチン酸メチル1.5gと純水500gを入れた。ウォーターバスの温度を37℃に設定し、前述のビーカーをウォーターバスの中央に置き、マグネチックスターラーで1時間攪拌した。回転速度は600rpmとした。球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを1枚ずつバスケットに入れ、前述のビーカー内に投入し、そのまま攪拌した。1時間後、攪拌を止め、バスケット内のサンプルを40℃の水道水と家庭用液体洗剤(ライオン製“ママレモン(登録商標)”)でこすり洗いした。洗浄後のサンプルをホウ酸緩衝液(pH7.1~7.3)の入ったスクリュー管内に入れ、氷浴に1時間浸漬した。スクリュー管を氷浴が取り出した後、にサンプルの白濁を目視観察し、下記の基準でサンプルへのパルミチン酸メチルの付着量を判定した:
A:白濁が無く透明である
B:白濁した部分がわずかにある
C:白濁した部分が相当程度ある
D:大部分が白濁している
E:全体が白濁している。 (12) Lipid adhesion A stirrer (36 mm) was placed in a 500 ml beaker, and 1.5 g of methyl palmitate and 500 g of pure water were added. The temperature of the water bath was set to 37 ° C., the aforementioned beaker was placed in the center of the water bath, and the mixture was stirred for 1 hour with a magnetic stirrer. The rotation speed was 600 rpm. Samples having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) were put in a basket one by one, put into the above-described beaker, and stirred as it was. After 1 hour, stirring was stopped and the sample in the basket was rubbed with 40 ° C. tap water and household liquid detergent (“Mama Lemon®” manufactured by Lion). The washed sample was placed in a screw tube containing borate buffer (pH 7.1 to 7.3) and immersed in an ice bath for 1 hour. After removing the screw tube from the ice bath, the sample was visually observed for cloudiness, and the amount of methyl palmitate adhering to the sample was determined according to the following criteria:
A: Transparent with no white turbidity B: Slightly cloudy portion C: Some white cloudy portion D: Mostly cloudy E: Whole cloudy.
(13)人工涙液浸漬試験
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。人工涙液として、オレイン酸プロピルエステルの代わりにオレイン酸を使用する以外は国際公開第2008/127299号パンフレット、32頁、5~36行に記載の方法にしたがって調製した涙様液(TLF)緩衝液を使用した。培養用マルチプレート(24ウェル型、材質ポリスチレン、放射線滅菌済み)の1ウェル中に人工涙液2mLを入れ、サンプル1枚を浸漬した。100rpm、37℃で24時間振とうした。その後サンプルを取り出し、リン酸緩衝液(PBS)で軽く洗浄した後、人工涙液2mLを入れ替えたウェル中にサンプルを浸漬した。さらに、100rpm、37℃で24時間振とうした後、PBSで軽く洗浄し、目視でサンプルの白濁度合いを評価することで付着物量を観察した。評価は下記基準で行った:
A:白濁が観察されない
B:白濁した部分がわずかにある(面積で1割未満)
C:白濁した部分が相当程度ある(面積で1割~5割)
D:大部分(面積で5割~10割)が白濁しているが裏側が透けて見える
E:全体が濃く白濁しており、裏側が透けて見えにくい。 (13) Artificial tear immersion test A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. Tear buffer (TLF) buffer prepared according to the method described in WO2008 / 127299,page 32, lines 5 to 36 except that oleic acid is used in place of propyl oleate as an artificial tear. The liquid was used. 2 mL of artificial tears was placed in one well of a culture multiplate (24-well type, material polystyrene, radiation sterilized), and one sample was immersed therein. The mixture was shaken at 100 rpm and 37 ° C. for 24 hours. Thereafter, the sample was taken out, washed lightly with a phosphate buffer (PBS), and then immersed in a well in which 2 mL of artificial tear was replaced. Furthermore, after shaking at 100 rpm and 37 ° C. for 24 hours, the sample was lightly washed with PBS, and the amount of deposits was observed by visually evaluating the degree of white turbidity of the sample. Evaluation was based on the following criteria:
A: No white turbidity is observed B: There are a few white turbid parts (less than 10% in area)
C: There is a considerable degree of cloudiness (10% to 50% in area)
D: Most part (50 to 100% in area) is cloudy but the back side is transparent. E: The whole is dark and cloudy and the back side is transparent and difficult to see.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。人工涙液として、オレイン酸プロピルエステルの代わりにオレイン酸を使用する以外は国際公開第2008/127299号パンフレット、32頁、5~36行に記載の方法にしたがって調製した涙様液(TLF)緩衝液を使用した。培養用マルチプレート(24ウェル型、材質ポリスチレン、放射線滅菌済み)の1ウェル中に人工涙液2mLを入れ、サンプル1枚を浸漬した。100rpm、37℃で24時間振とうした。その後サンプルを取り出し、リン酸緩衝液(PBS)で軽く洗浄した後、人工涙液2mLを入れ替えたウェル中にサンプルを浸漬した。さらに、100rpm、37℃で24時間振とうした後、PBSで軽く洗浄し、目視でサンプルの白濁度合いを評価することで付着物量を観察した。評価は下記基準で行った:
A:白濁が観察されない
B:白濁した部分がわずかにある(面積で1割未満)
C:白濁した部分が相当程度ある(面積で1割~5割)
D:大部分(面積で5割~10割)が白濁しているが裏側が透けて見える
E:全体が濃く白濁しており、裏側が透けて見えにくい。 (13) Artificial tear immersion test A sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was used. Tear buffer (TLF) buffer prepared according to the method described in WO2008 / 127299,
A: No white turbidity is observed B: There are a few white turbid parts (less than 10% in area)
C: There is a considerable degree of cloudiness (10% to 50% in area)
D: Most part (50 to 100% in area) is cloudy but the back side is transparent. E: The whole is dark and cloudy and the back side is transparent and difficult to see.
(14)透明性(投影機)
ガラスシャーレにホウ酸緩衝液を入れ、球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを入れた。万能投影機(ニコン製 MODEL V-10A)を用いてシャーレの中のサンプルに上下から光を当てた際の透明性を目視観察し、下記の基準で評価した:
A:白濁が無く透明である
B:白濁した部分がわずかにある
C:白濁した部分が相当程度ある
D:大部分が白濁している
E:全体が白濁している。 (14) Transparency (projector)
A borate buffer solution was placed in a glass petri dish, and a sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was placed. Using a universal projector (Model V-10A manufactured by Nikon), the transparency when light was applied to the sample in the petri dish from above and below was visually observed and evaluated according to the following criteria:
A: Transparent with no white turbidity B: Slightly cloudy portion C: Some white cloudy portion D: Mostly cloudy E: Whole cloudy.
ガラスシャーレにホウ酸緩衝液を入れ、球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを入れた。万能投影機(ニコン製 MODEL V-10A)を用いてシャーレの中のサンプルに上下から光を当てた際の透明性を目視観察し、下記の基準で評価した:
A:白濁が無く透明である
B:白濁した部分がわずかにある
C:白濁した部分が相当程度ある
D:大部分が白濁している
E:全体が白濁している。 (14) Transparency (projector)
A borate buffer solution was placed in a glass petri dish, and a sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was placed. Using a universal projector (Model V-10A manufactured by Nikon), the transparency when light was applied to the sample in the petri dish from above and below was visually observed and evaluated according to the following criteria:
A: Transparent with no white turbidity B: Slightly cloudy portion C: Some white cloudy portion D: Mostly cloudy E: Whole cloudy.
(15)着色度
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルの着色度(青色の濃さ)を目視観察し、下記の基準で評価した:
A:一見して着色が認められる
B:AとCの中間程度の着色度
C:わずかに着色が認められる
D:CとDの中間程度の着色度
E:着色が認められない。
(16)収縮率
フィルム形状の試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管し、保管前後のサイズ収縮率を算出した。ホウ酸緩衝液に試験片を浸漬し室温で24時間以上おいた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って、長方形型の試験片の四辺の長さ(L1~L4)を測定した。その後、試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管した。保管後の試験片の四辺の長さ(L5~L8、数字の小さい順にL1~L4にそれぞれ対応)を測定した。次式にてまず一辺の収縮率を求めた:
一辺の収縮率(%)=(L1-L5)/L1×100
一辺の収縮率(%)=(L2-L6)/L2×100
一辺の収縮率(%)=(L3-L7)/L3×100
一辺の収縮率(%)=(L4-L8)/L4×100
さらに、これらの一辺の収縮率の平均を試験片の収縮率とした。 (15) Degree of coloration The degree of coloration (blueness) of a sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was visually observed and evaluated according to the following criteria:
A: Coloration is recognized at first glance B: Coloration degree intermediate between A and C C: Coloration is slightly recognized D: Coloration degree intermediate between C and D E: Coloration is not recognized.
(16) Shrinkage The film-shaped test piece was stored in a desiccator with a temperature of 33.1 ° C. and a humidity of 90% for 48 hours, and the size shrinkage before and after storage was calculated. After immersing the test piece in boric acid buffer solution and leaving it at room temperature for 24 hours or more, wipe the surface moisture with a wiping cloth ("Kimwipe (registered trademark)" manufactured by Nippon Paper Crecia) and length of the four sides of the rectangular test piece (L1 to L4) were measured. Thereafter, the test piece was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. The lengths of the four sides of the test piece after storage (L5 to L8, corresponding to L1 to L4 in ascending order of numbers) were measured. First, the shrinkage of one side was obtained by the following formula:
Shrinkage rate on one side (%) = (L1-L5) / L1 × 100
Shrinkage rate of one side (%) = (L2−L6) / L2 × 100
Shrinkage rate of one side (%) = (L3−L7) / L3 × 100
Shrinkage rate of one side (%) = (L4−L8) / L4 × 100
Furthermore, the average of the shrinkage ratios on one side was taken as the shrinkage ratio of the test piece.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルの着色度(青色の濃さ)を目視観察し、下記の基準で評価した:
A:一見して着色が認められる
B:AとCの中間程度の着色度
C:わずかに着色が認められる
D:CとDの中間程度の着色度
E:着色が認められない。
(16)収縮率
フィルム形状の試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管し、保管前後のサイズ収縮率を算出した。ホウ酸緩衝液に試験片を浸漬し室温で24時間以上おいた後、表面水分をワイピングクロス(日本製紙クレシア製”キムワイプ(登録商標)”)で拭き取って、長方形型の試験片の四辺の長さ(L1~L4)を測定した。その後、試験片を48時間、温度33.1℃、湿度90%のデシケータ中に保管した。保管後の試験片の四辺の長さ(L5~L8、数字の小さい順にL1~L4にそれぞれ対応)を測定した。次式にてまず一辺の収縮率を求めた:
一辺の収縮率(%)=(L1-L5)/L1×100
一辺の収縮率(%)=(L2-L6)/L2×100
一辺の収縮率(%)=(L3-L7)/L3×100
一辺の収縮率(%)=(L4-L8)/L4×100
さらに、これらの一辺の収縮率の平均を試験片の収縮率とした。 (15) Degree of coloration The degree of coloration (blueness) of a sample having a spherical crown shape (edge diameter: about 14 mm, thickness: about 0.1 mm) was visually observed and evaluated according to the following criteria:
A: Coloration is recognized at first glance B: Coloration degree intermediate between A and C C: Coloration is slightly recognized D: Coloration degree intermediate between C and D E: Coloration is not recognized.
(16) Shrinkage The film-shaped test piece was stored in a desiccator with a temperature of 33.1 ° C. and a humidity of 90% for 48 hours, and the size shrinkage before and after storage was calculated. After immersing the test piece in boric acid buffer solution and leaving it at room temperature for 24 hours or more, wipe the surface moisture with a wiping cloth ("Kimwipe (registered trademark)" manufactured by Nippon Paper Crecia) and length of the four sides of the rectangular test piece (L1 to L4) were measured. Thereafter, the test piece was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours. The lengths of the four sides of the test piece after storage (L5 to L8, corresponding to L1 to L4 in ascending order of numbers) were measured. First, the shrinkage of one side was obtained by the following formula:
Shrinkage rate on one side (%) = (L1-L5) / L1 × 100
Shrinkage rate of one side (%) = (L2−L6) / L2 × 100
Shrinkage rate of one side (%) = (L3−L7) / L3 × 100
Shrinkage rate of one side (%) = (L4−L8) / L4 × 100
Furthermore, the average of the shrinkage ratios on one side was taken as the shrinkage ratio of the test piece.
(17)成型比
サンプル(球冠形状)の直径を、それを成型するのに使用したモールドの空隙部(サンプル形状に対応した形状を有する)の直径で除して求めた。ここで直径とは球冠の縁部が構成する円の直径である。 (17) Molding ratio The molding ratio was obtained by dividing the diameter of the sample (spherical crown shape) by the diameter of the cavity (having a shape corresponding to the sample shape) of the mold used to mold it. Here, the diameter is the diameter of a circle formed by the edge of the spherical crown.
サンプル(球冠形状)の直径を、それを成型するのに使用したモールドの空隙部(サンプル形状に対応した形状を有する)の直径で除して求めた。ここで直径とは球冠の縁部が構成する円の直径である。 (17) Molding ratio The molding ratio was obtained by dividing the diameter of the sample (spherical crown shape) by the diameter of the cavity (having a shape corresponding to the sample shape) of the mold used to mold it. Here, the diameter is the diameter of a circle formed by the edge of the spherical crown.
(18)摩擦
図9に示す装置を用いて、サンプルのフィルムと人工皮革の間の動摩擦力を測定した。横方向に引っ張るための釣り糸を取り付けた26mm×26mm×1.4mmのガラス板の片面に人工皮革1(出光テクノファイン株式会社製“サプラーレ(登録商標)”、型番PBZ13001)を貼り付けた。人工皮革は裏面が外側になるように貼り付けた。60mm×60mm×0.25mmのホウ酸緩衝液による湿潤状態のフィルム2を水平なゴム板3に載せ、フィルムの表面をホウ酸緩衝液で十分に濡らした。その上に前述のガラス板を人工皮革がフィルム側になるように載せ、さらにその上に小さい鉄球の入ったプラスチック容器4(鉄球と容器の合計質量50g)を載せた。滑車を介して引張試験機(オリエンテック社製RTM-100)で、ガラス板に取り付けた釣り糸を水平方向に100mm/minの速度で引っ張り、このときに引張試験機にかかる力により、人工皮革(裏面)とフィルムの間の動摩擦力を測定した。 (18) Friction Using the apparatus shown in FIG. 9, the dynamic friction force between the sample film and the artificial leather was measured. Artificial leather 1 (“Supprare (registered trademark)” manufactured by Idemitsu Techno Fine Co., Ltd., model number PBZ13001) was attached to one side of a glass plate of 26 mm × 26 mm × 1.4 mm to which a fishing line for pulling in the lateral direction was attached. The artificial leather was pasted so that the back side was the outside. Thefilm 2 in a wet state with 60 mm × 60 mm × 0.25 mm borate buffer was placed on a horizontal rubber plate 3 and the surface of the film was sufficiently wetted with borate buffer. The above glass plate was placed thereon so that the artificial leather was on the film side, and a plastic container 4 containing a small iron ball (total weight of iron ball and container 50 g) was further placed thereon. The fishing line attached to the glass plate is pulled horizontally at a speed of 100 mm / min with a tensile tester (Orientec RTM-100) through a pulley, and the artificial leather ( The dynamic friction force between the back surface) and the film was measured.
図9に示す装置を用いて、サンプルのフィルムと人工皮革の間の動摩擦力を測定した。横方向に引っ張るための釣り糸を取り付けた26mm×26mm×1.4mmのガラス板の片面に人工皮革1(出光テクノファイン株式会社製“サプラーレ(登録商標)”、型番PBZ13001)を貼り付けた。人工皮革は裏面が外側になるように貼り付けた。60mm×60mm×0.25mmのホウ酸緩衝液による湿潤状態のフィルム2を水平なゴム板3に載せ、フィルムの表面をホウ酸緩衝液で十分に濡らした。その上に前述のガラス板を人工皮革がフィルム側になるように載せ、さらにその上に小さい鉄球の入ったプラスチック容器4(鉄球と容器の合計質量50g)を載せた。滑車を介して引張試験機(オリエンテック社製RTM-100)で、ガラス板に取り付けた釣り糸を水平方向に100mm/minの速度で引っ張り、このときに引張試験機にかかる力により、人工皮革(裏面)とフィルムの間の動摩擦力を測定した。 (18) Friction Using the apparatus shown in FIG. 9, the dynamic friction force between the sample film and the artificial leather was measured. Artificial leather 1 (“Supprare (registered trademark)” manufactured by Idemitsu Techno Fine Co., Ltd., model number PBZ13001) was attached to one side of a glass plate of 26 mm × 26 mm × 1.4 mm to which a fishing line for pulling in the lateral direction was attached. The artificial leather was pasted so that the back side was the outside. The
(19)煮沸耐久性
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。密閉バイアル瓶中にサンプルを清浄な純水に浸漬した状態で入れた。121℃、30分間、オートクレーブ滅菌を行った後、室温まで冷却した。これを1サイクルとして、5サイクルを繰り返した。その後、上記(6)の水濡れ性評価を行った。 (19) Boiling durability A sample having a crown shape (edge diameter of about 14 mm, thickness of about 0.1 mm) was used. The sample was placed in a sealed vial soaked in clean pure water. After autoclaving at 121 ° C. for 30 minutes, the mixture was cooled to room temperature. This was defined as one cycle, and 5 cycles were repeated. Then, the water wettability evaluation of the above (6) was performed.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。密閉バイアル瓶中にサンプルを清浄な純水に浸漬した状態で入れた。121℃、30分間、オートクレーブ滅菌を行った後、室温まで冷却した。これを1サイクルとして、5サイクルを繰り返した。その後、上記(6)の水濡れ性評価を行った。 (19) Boiling durability A sample having a crown shape (edge diameter of about 14 mm, thickness of about 0.1 mm) was used. The sample was placed in a sealed vial soaked in clean pure water. After autoclaving at 121 ° C. for 30 minutes, the mixture was cooled to room temperature. This was defined as one cycle, and 5 cycles were repeated. Then, the water wettability evaluation of the above (6) was performed.
(20)擦り洗い耐久性A
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。手のひらの中央に窪みを作ってそこにサンプルを置き、そこに洗浄液(日本アルコン株式会社製、“オプティフリー(登録商標)”)を加えて、もう一方の手の人差し指の腹で表裏10回ずつ擦った後、清浄な“オプティフリー(登録商標)”の入ったスクリュー管に入れ4時間以上静置した。以上の操作を1サイクルとして、15サイクル繰り返した。その後、サンプルを純水で洗浄し、ホウ酸緩衝液中に浸漬した。その後、上記(7)の水濡れ性評価を行った。 (20) Rubbing durability A
A sample with a spherical crown shape (edge diameter of about 14 mm, thickness of about 0.1 mm) was used. Make a dent in the center of the palm, place the sample there, add a cleaning solution (manufactured by Nippon Alcon Co., Ltd., “Optifree (registered trademark)”), 10 times on the front and back of the index finger of the other hand After rubbing, it was placed in a screw tube containing clean “Optifree (registered trademark)” and allowed to stand for 4 hours or more. The above operation was set as one cycle and repeated 15 cycles. Thereafter, the sample was washed with pure water and immersed in a borate buffer. Then, the water wettability evaluation of the above (7) was performed.
球冠形状(縁部の直径約14mm、厚さ約0.1mm)のサンプルを使用した。手のひらの中央に窪みを作ってそこにサンプルを置き、そこに洗浄液(日本アルコン株式会社製、“オプティフリー(登録商標)”)を加えて、もう一方の手の人差し指の腹で表裏10回ずつ擦った後、清浄な“オプティフリー(登録商標)”の入ったスクリュー管に入れ4時間以上静置した。以上の操作を1サイクルとして、15サイクル繰り返した。その後、サンプルを純水で洗浄し、ホウ酸緩衝液中に浸漬した。その後、上記(7)の水濡れ性評価を行った。 (20) Rubbing durability A
A sample with a spherical crown shape (edge diameter of about 14 mm, thickness of about 0.1 mm) was used. Make a dent in the center of the palm, place the sample there, add a cleaning solution (manufactured by Nippon Alcon Co., Ltd., “Optifree (registered trademark)”), 10 times on the front and back of the index finger of the other hand After rubbing, it was placed in a screw tube containing clean “Optifree (registered trademark)” and allowed to stand for 4 hours or more. The above operation was set as one cycle and repeated 15 cycles. Thereafter, the sample was washed with pure water and immersed in a borate buffer. Then, the water wettability evaluation of the above (7) was performed.
(21)擦り洗い耐久性B
“オプティフリー(登録商標)”のかわりに“レニュー(登録商標)”(ボシュロム)を使用して、上記(20)と同様に行った。
(参考例1)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、後述の式(M2)の化合物、質量平均分子量3.0万、数平均分子量1.3万)(20質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(80質量部)、イルガキュア(登録商標)1850(チバ・スペシャルティ・ケミカルズ、2質量部)およびテトラヒドロリナロール(20質量部)を混合し撹拌した。均一で透明なモノマー混合物が得られた。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製モールドに、上記モノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行った。得られた成型体の含水率は1%未満であった。得られた成型体の評価結果を表1に示した。
(参考例2~12)
成分Aと成分Bの使用量を表1中に記載した量に変更した以外は参考例1と全く同様にして成型体を得た。得られた成型体の含水率はいずれも1%未満であった。得られた成型体の評価結果を表1に示した。 (21) Rubbing durability B
The same procedure as in (20) above was performed using “Renew (registered trademark)” (Bochrom) instead of “Optifree (registered trademark)”.
(Reference Example 1)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R31, Gelest, Inc., compound of formula (M2) described later, mass average molecular weight 30,000, number average molecular weight 13,000) (20 Parts by mass), trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (80 parts by mass), Irgacure (registered trademark) 1850 (Ciba Specialty Chemicals, 2 parts by mass) and tetrahydrolinalol (20 parts by mass) Parts by mass) were mixed and stirred. A uniform and transparent monomer mixture was obtained. This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. The monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 pieces) is used. Polymerization was performed by light irradiation (8000 lux, 20 minutes). After the polymerization, the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold. The obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of pure water. It was immersed in water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 1.
(Reference Examples 2 to 12)
A molded body was obtained in exactly the same manner as in Reference Example 1, except that the amounts used of Component A and Component B were changed to the amounts described in Table 1. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 1.
“オプティフリー(登録商標)”のかわりに“レニュー(登録商標)”(ボシュロム)を使用して、上記(20)と同様に行った。
(参考例1)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、後述の式(M2)の化合物、質量平均分子量3.0万、数平均分子量1.3万)(20質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(80質量部)、イルガキュア(登録商標)1850(チバ・スペシャルティ・ケミカルズ、2質量部)およびテトラヒドロリナロール(20質量部)を混合し撹拌した。均一で透明なモノマー混合物が得られた。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製モールドに、上記モノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行った。得られた成型体の含水率は1%未満であった。得られた成型体の評価結果を表1に示した。
(参考例2~12)
成分Aと成分Bの使用量を表1中に記載した量に変更した以外は参考例1と全く同様にして成型体を得た。得られた成型体の含水率はいずれも1%未満であった。得られた成型体の評価結果を表1に示した。 (21) Rubbing durability B
The same procedure as in (20) above was performed using “Renew (registered trademark)” (Bochrom) instead of “Optifree (registered trademark)”.
(Reference Example 1)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R31, Gelest, Inc., compound of formula (M2) described later, mass average molecular weight 30,000, number average molecular weight 13,000) (20 Parts by mass), trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (80 parts by mass), Irgacure (registered trademark) 1850 (Ciba Specialty Chemicals, 2 parts by mass) and tetrahydrolinalol (20 parts by mass) Parts by mass) were mixed and stirred. A uniform and transparent monomer mixture was obtained. This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. The monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 pieces) is used. Polymerization was performed by light irradiation (8000 lux, 20 minutes). After the polymerization, the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold. The obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of pure water. It was immersed in water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 1.
(Reference Examples 2 to 12)
A molded body was obtained in exactly the same manner as in Reference Example 1, except that the amounts used of Component A and Component B were changed to the amounts described in Table 1. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 1.
(参考例13~19)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R22、Gelest, Inc.、後述の式(M2)の化合物、質量平均分子量8.3千、数平均分子量7.4千)を表2中に記載した量使用し、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)を表2中に記載した量使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の含水率は1%未満であった。得られた成型体の評価結果を表2に示した。 (Reference Examples 13 to 19)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R22, Gelest, Inc., compound of formula (M2) described later, mass average molecular weight 8.3,000, number average molecular weight 7.4,000) The molded product was used in the same manner as in Reference Example 1 except that the amount described in 2 was used and trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Industry Co., Ltd.) was used as Component B in the amount described in Table 2. Obtained. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 2.
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R22、Gelest, Inc.、後述の式(M2)の化合物、質量平均分子量8.3千、数平均分子量7.4千)を表2中に記載した量使用し、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)を表2中に記載した量使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の含水率は1%未満であった。得られた成型体の評価結果を表2に示した。 (Reference Examples 13 to 19)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R22, Gelest, Inc., compound of formula (M2) described later, mass average molecular weight 8.3,000, number average molecular weight 7.4,000) The molded product was used in the same manner as in Reference Example 1 except that the amount described in 2 was used and trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Industry Co., Ltd.) was used as Component B in the amount described in Table 2. Obtained. The water content of the obtained molded body was less than 1%. The evaluation results of the obtained molded body are shown in Table 2.
(参考例20~24)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(X-22-164C、信越化学工業株式会社、質量平均分子量7.2千、数平均分子量4.8千)(50質量部)を使用し、成分Bとして表3中に記載したフルオロアルキル基を有するモノマー(50質量部)を使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の評価結果を表3に示した。 (Reference Examples 20 to 24)
As component A, polydimethylsiloxane having methacryloyl groups at both ends (X-22-164C, Shin-Etsu Chemical Co., Ltd., mass average molecular weight 7.2,000, number average molecular weight 4.8,000) (50 parts by mass) was used. A molded product was obtained in the same manner as in Reference Example 1 except that the monomer (50 parts by mass) having a fluoroalkyl group described in Table 3 was used as Component B. The evaluation results of the obtained molded body are shown in Table 3.
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(X-22-164C、信越化学工業株式会社、質量平均分子量7.2千、数平均分子量4.8千)(50質量部)を使用し、成分Bとして表3中に記載したフルオロアルキル基を有するモノマー(50質量部)を使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の評価結果を表3に示した。 (Reference Examples 20 to 24)
As component A, polydimethylsiloxane having methacryloyl groups at both ends (X-22-164C, Shin-Etsu Chemical Co., Ltd., mass average molecular weight 7.2,000, number average molecular weight 4.8,000) (50 parts by mass) was used. A molded product was obtained in the same manner as in Reference Example 1 except that the monomer (50 parts by mass) having a fluoroalkyl group described in Table 3 was used as Component B. The evaluation results of the obtained molded body are shown in Table 3.
ビスコート3FM: トリフルオロエチルメタクリレート(大阪有機化学工業)
ビスコート8F: オクタフルオロペンチルアクリレート(大阪有機化学工業)
ビスコート3F: トリフルオロエチルアクリレート(大阪有機化学工業)
ビスコート17F: ヘプタデカフルオロデシルアクリレート(大阪有機化学工業)
HFIP-M: ヘキサフルオロイソプロピルメタクリレート(セントラル硝子)。
(参考例25~37)
成分Aとして表4中に記載した両末端にメタクリロイル基を有するポリジメチルシロキサン(後述の式(M2)の化合物)を表4中に記載した量使用し、成分Bは使用せず、成分Cとして表4中に記載したモノマー(50質量部)を表4中に記載した量使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の評価結果を表4に示した。 Biscoat 3FM: Trifluoroethyl methacrylate (Osaka Organic Chemical Industry)
Biscoat 8F: Octafluoropentyl acrylate (Osaka Organic Chemical Industry)
Biscote 3F: Trifluoroethyl acrylate (Osaka Organic Chemical Industry)
Biscote 17F: Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry)
HFIP-M: Hexafluoroisopropyl methacrylate (Central Glass).
(Reference Examples 25 to 37)
As component A, polydimethylsiloxane having a methacryloyl group at both ends described in Table 4 (compound of formula (M2) described later) is used in the amount described in Table 4, Component B is not used, and Component C is used. A molded body was obtained in exactly the same manner as in Reference Example 1 except that the monomer (50 parts by mass) described in Table 4 was used in the amount described in Table 4. Table 4 shows the evaluation results of the obtained molded body.
ビスコート8F: オクタフルオロペンチルアクリレート(大阪有機化学工業)
ビスコート3F: トリフルオロエチルアクリレート(大阪有機化学工業)
ビスコート17F: ヘプタデカフルオロデシルアクリレート(大阪有機化学工業)
HFIP-M: ヘキサフルオロイソプロピルメタクリレート(セントラル硝子)。
(参考例25~37)
成分Aとして表4中に記載した両末端にメタクリロイル基を有するポリジメチルシロキサン(後述の式(M2)の化合物)を表4中に記載した量使用し、成分Bは使用せず、成分Cとして表4中に記載したモノマー(50質量部)を表4中に記載した量使用した以外は参考例1と全く同様にして成型体を得た。得られた成型体の評価結果を表4に示した。 Biscoat 3FM: Trifluoroethyl methacrylate (Osaka Organic Chemical Industry)
Biscoat 8F: Octafluoropentyl acrylate (Osaka Organic Chemical Industry)
Biscote 3F: Trifluoroethyl acrylate (Osaka Organic Chemical Industry)
Biscote 17F: Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry)
HFIP-M: Hexafluoroisopropyl methacrylate (Central Glass).
(Reference Examples 25 to 37)
As component A, polydimethylsiloxane having a methacryloyl group at both ends described in Table 4 (compound of formula (M2) described later) is used in the amount described in Table 4, Component B is not used, and Component C is used. A molded body was obtained in exactly the same manner as in Reference Example 1 except that the monomer (50 parts by mass) described in Table 4 was used in the amount described in Table 4. Table 4 shows the evaluation results of the obtained molded body.
合成品1および2(後述の式(M2)の化合物)は、公知の方法により表4に示した分子量のものを合成した。
<合成例>
実施例においてコーティングに供した共重合体の合成例を示す。本合成例において共重合体の分子量は以下に示す条件で測定した。
(GPC測定条件)
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1質量%
注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)
(合成例1)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比2/1)>
500mL三口フラスコにN-ビニルピロリドン(66.68g、0.60mol)、アクリル酸(21.62g、0.30mol)、ジメチルスルホキシド(353.96g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン400mL中に注ぎ入れて一晩静置した。翌日、アセトンをさらに200mL加え静置し、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=400mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:46kD、Mw:180kD(Mw/Mn=3.9)であった。
(合成例2)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比1/2)>
500mL三口フラスコにN-ビニルピロリドン(33.34g、0.30mol)、アクリル酸(43.24g、0.60mol)、ジメチルスルホキシド(307.08g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン500mL中に注ぎ入れて一晩静置した。次の日、アセトンをさらに200mL加えた後、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=700mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:65kD、Mw:202kD(Mw/Mn=3.1)であった。
(合成例3)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比90/10)>
500mL三口フラスコにN-ビニルピロリドン(NVP、90.02g、0.81mol)、アクリル酸(6.49g、0.09mol)、ジメチルスルホキシド(386.8g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(2-ME、43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン500mL中に注ぎ入れて一晩静置した。次の日、アセトンをさらに200mL、ヘキサンを100mL加えた後、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=500mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:35kD、Mw:130kD(Mw/Mn=3.8)であった。
(合成例4)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比80/20)>
N-ビニルピロリドンを0.72mol、アクリル酸を0.18mol、それぞれ使用し、それ以外は合成例3と同様に行った。このようにして得られた共重合体の分子量はMn:45kD、Mw:193kD(Mw/Mn=4.4)であった。
(合成例5)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:55kD、Mw:192kD(Mw/Mn=3.5)であった。
(合成例6)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比1/2)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(29.70g、0.300mol)、アクリル酸(43.20g、0.600mol)、純水(292.40g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで350gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:87kD、Mw:235kD(Mw/Mn=2.7)であった。
(合成例7)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比90/10)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(DMA、80.30g、0.810mol)、アクリル酸(6.49g、0.090mol)、純水(347.90g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(2-ME、43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで470gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで5回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:54kD、Mw:162kD(Mw/Mn=3.0)であった。
(合成例8)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比95/5)>
三口フラスコにN,N-ジメチルアクリルアミド(DMA、0.19mol)、アクリル酸(AA、0.01mol)、純水、重合開始剤VA-061(和光純薬工業株式会社、0.093mmol)、2-メルカプトエタノール(2-ME、0.07mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで350gまで濃縮し、2-プロパノール/n-ヘキサン=200mL/200mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=100mL/100mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:77kD、Mw:229kDであった。
(合成例9~16)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸>
N,N-ジメチルアクリルアミド(DMA)、アクリル酸(AA)、重合開始剤VA-061、および2-メルカプトエタノール(2-ME)の使用量、ならびにモノマー濃度を表5中に記載した値とし、合成例8と同様の手順で行った。 Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
<Synthesis example>
The synthesis example of the copolymer used for coating in the examples is shown. In this synthesis example, the molecular weight of the copolymer was measured under the following conditions.
(GPC measurement conditions)
Equipment: Prominence GPC system manufactured by Shimadzu Corporation Pump: LC-20AD
Autosampler: SIL-20AHT
Column oven: CTO-20A
Detector: RID-10A
Column: GMPWXL manufactured by Tosoh Corporation (inner diameter 7.8 mm × 30 cm, particle diameter 13 μm)
Solvent: Water / methanol = 1/1 (0.1N lithium nitrate added)
Flow rate: 0.5 mL / min Measurement time: 30 minutes Sample concentration: 0.1% by mass
Injection volume: 100 μL
Standard sample: Standard polyethylene oxide sample (0.1 kD to 1258 kD) manufactured by Agilent
(Synthesis Example 1)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 2/1)>
In a 500 mL three-necked flask, N-vinylpyrrolidone (66.68 g, 0.60 mol), acrylic acid (21.62 g, 0.30 mol), dimethyl sulfoxide (353.96 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Company, 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 400 mL of acetone and allowed to stand overnight. The next day, 200 mL of acetone was further added and allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 400 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 46 kD, Mw: 180 kD (Mw / Mn = 3.9).
(Synthesis Example 2)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 1/2)>
In a 500 mL three-necked flask, N-vinylpyrrolidone (33.34 g, 0.30 mol), acrylic acid (43.24 g, 0.60 mol), dimethyl sulfoxide (307.08 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Company, 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone was added, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 700 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 65 kD, Mw: 202 kD (Mw / Mn = 3.1).
(Synthesis Example 3)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 90/10)>
In a 500 mL three-necked flask, N-vinylpyrrolidone (NVP, 90.02 g, 0.81 mol), acrylic acid (6.49 g, 0.09 mol), dimethyl sulfoxide (386.8 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Industrial Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (2-ME, 43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone and 100 mL of hexane were added, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 500 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 35 kD, Mw: 130 kD (Mw / Mn = 3.8).
(Synthesis Example 4)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 80/20)>
The same procedure as in Synthesis Example 3 was conducted except that 0.72 mol of N-vinylpyrrolidone and 0.18 mol of acrylic acid were used. The molecular weight of the copolymer thus obtained was Mn: 45 kD, Mw: 193 kD (Mw / Mn = 4.4).
(Synthesis Example 5)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 2/1)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (59.50 g, 0.600 mol), acrylic acid (21.62 g, 0.300 mol), pure water (325.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 400 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 55 kD, Mw: 192 kD (Mw / Mn = 3.5).
(Synthesis Example 6)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 1/2)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (29.70 g, 0.300 mol), acrylic acid (43.20 g, 0.600 mol), pure water (292.40 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 350 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 87 kD, Mw: 235 kD (Mw / Mn = 2.7).
(Synthesis Example 7)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 90/10)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (DMA, 80.30 g, 0.810 mol), acrylic acid (6.49 g, 0.090 mol), pure water (347.90 g), polymerization initiator VA-061 (Japanese) Mitsuru Pure Chemical Industries, Ltd., 0.1408 g, 0.562 mmol), 2-mercaptoethanol (2-ME, 43.8 μL, 0.63 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. . The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 470 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed 5 times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 54 kD, Mw: 162 kD (Mw / Mn = 3.0).
(Synthesis Example 8)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 95/5)>
In a three-necked flask, N, N-dimethylacrylamide (DMA, 0.19 mol), acrylic acid (AA, 0.01 mol), pure water, polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.093 mmol), 2 -Mercaptoethanol (2-ME, 0.07 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 350 g with an evaporator, poured into 2-propanol / n-hexane = 200 mL / 200 mL and allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 100 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 77 kD and Mw: 229 kD.
(Synthesis Examples 9 to 16)
<CPDA: N, N-dimethylacrylamide / acrylic acid>
The amounts of N, N-dimethylacrylamide (DMA), acrylic acid (AA), polymerization initiator VA-061 and 2-mercaptoethanol (2-ME) used, and the monomer concentrations are the values described in Table 5. The same procedure as in Synthesis Example 8 was performed.
<合成例>
実施例においてコーティングに供した共重合体の合成例を示す。本合成例において共重合体の分子量は以下に示す条件で測定した。
(GPC測定条件)
装置:島津製作所製 Prominence GPCシステム
ポンプ:LC-20AD
オートサンプラ:SIL-20AHT
カラムオーブン:CTO-20A
検出器:RID-10A
カラム:東ソー社製GMPWXL(内径7.8mm×30cm、粒子径13μm)
溶媒:水/メタノール=1/1(0.1N硝酸リチウム添加)
流速:0.5mL/分
測定時間:30分
サンプル濃度:0.1質量%
注入量:100μL
標準サンプル:Agilent社製ポリエチレンオキシド標準サンプル(0.1kD~1258kD)
(合成例1)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比2/1)>
500mL三口フラスコにN-ビニルピロリドン(66.68g、0.60mol)、アクリル酸(21.62g、0.30mol)、ジメチルスルホキシド(353.96g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン400mL中に注ぎ入れて一晩静置した。翌日、アセトンをさらに200mL加え静置し、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=400mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:46kD、Mw:180kD(Mw/Mn=3.9)であった。
(合成例2)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比1/2)>
500mL三口フラスコにN-ビニルピロリドン(33.34g、0.30mol)、アクリル酸(43.24g、0.60mol)、ジメチルスルホキシド(307.08g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン500mL中に注ぎ入れて一晩静置した。次の日、アセトンをさらに200mL加えた後、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=700mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:65kD、Mw:202kD(Mw/Mn=3.1)であった。
(合成例3)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比90/10)>
500mL三口フラスコにN-ビニルピロリドン(NVP、90.02g、0.81mol)、アクリル酸(6.49g、0.09mol)、ジメチルスルホキシド(386.8g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(2-ME、43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水100mLを加えた後、アセトン500mL中に注ぎ入れて一晩静置した。次の日、アセトンをさらに200mL、ヘキサンを100mL加えた後、上澄み液をデカンテーションで除いた。得られた固形分をアセトン/水=500mL/100mLで7回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:35kD、Mw:130kD(Mw/Mn=3.8)であった。
(合成例4)
<CPVPA:N-ビニルピロリドン/アクリル酸(モル比80/20)>
N-ビニルピロリドンを0.72mol、アクリル酸を0.18mol、それぞれ使用し、それ以外は合成例3と同様に行った。このようにして得られた共重合体の分子量はMn:45kD、Mw:193kD(Mw/Mn=4.4)であった。
(合成例5)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:55kD、Mw:192kD(Mw/Mn=3.5)であった。
(合成例6)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比1/2)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(29.70g、0.300mol)、アクリル酸(43.20g、0.600mol)、純水(292.40g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで350gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:87kD、Mw:235kD(Mw/Mn=2.7)であった。
(合成例7)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比90/10)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(DMA、80.30g、0.810mol)、アクリル酸(6.49g、0.090mol)、純水(347.90g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(2-ME、43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで470gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで5回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:54kD、Mw:162kD(Mw/Mn=3.0)であった。
(合成例8)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸(モル比95/5)>
三口フラスコにN,N-ジメチルアクリルアミド(DMA、0.19mol)、アクリル酸(AA、0.01mol)、純水、重合開始剤VA-061(和光純薬工業株式会社、0.093mmol)、2-メルカプトエタノール(2-ME、0.07mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで350gまで濃縮し、2-プロパノール/n-ヘキサン=200mL/200mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=100mL/100mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:77kD、Mw:229kDであった。
(合成例9~16)
<CPDA:N,N-ジメチルアクリルアミド/アクリル酸>
N,N-ジメチルアクリルアミド(DMA)、アクリル酸(AA)、重合開始剤VA-061、および2-メルカプトエタノール(2-ME)の使用量、ならびにモノマー濃度を表5中に記載した値とし、合成例8と同様の手順で行った。 Synthetic products 1 and 2 (compounds of formula (M2) described later) were synthesized with the molecular weights shown in Table 4 by a known method.
<Synthesis example>
The synthesis example of the copolymer used for coating in the examples is shown. In this synthesis example, the molecular weight of the copolymer was measured under the following conditions.
(GPC measurement conditions)
Equipment: Prominence GPC system manufactured by Shimadzu Corporation Pump: LC-20AD
Autosampler: SIL-20AHT
Column oven: CTO-20A
Detector: RID-10A
Column: GMPWXL manufactured by Tosoh Corporation (inner diameter 7.8 mm × 30 cm, particle diameter 13 μm)
Solvent: Water / methanol = 1/1 (0.1N lithium nitrate added)
Flow rate: 0.5 mL / min Measurement time: 30 minutes Sample concentration: 0.1% by mass
Injection volume: 100 μL
Standard sample: Standard polyethylene oxide sample (0.1 kD to 1258 kD) manufactured by Agilent
(Synthesis Example 1)
<CPVPA: N-vinylpyrrolidone / acrylic acid (
In a 500 mL three-necked flask, N-vinylpyrrolidone (66.68 g, 0.60 mol), acrylic acid (21.62 g, 0.30 mol), dimethyl sulfoxide (353.96 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Company, 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 400 mL of acetone and allowed to stand overnight. The next day, 200 mL of acetone was further added and allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 400 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 46 kD, Mw: 180 kD (Mw / Mn = 3.9).
(Synthesis Example 2)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 1/2)>
In a 500 mL three-necked flask, N-vinylpyrrolidone (33.34 g, 0.30 mol), acrylic acid (43.24 g, 0.60 mol), dimethyl sulfoxide (307.08 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Company, 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone was added, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 700 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 65 kD, Mw: 202 kD (Mw / Mn = 3.1).
(Synthesis Example 3)
<CPVPA: N-vinylpyrrolidone / acrylic acid (molar ratio 90/10)>
In a 500 mL three-necked flask, N-vinylpyrrolidone (NVP, 90.02 g, 0.81 mol), acrylic acid (6.49 g, 0.09 mol), dimethyl sulfoxide (386.8 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Industrial Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (2-ME, 43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of water was added, and then poured into 500 mL of acetone and left overnight. The next day, 200 mL of acetone and 100 mL of hexane were added, and the supernatant was removed by decantation. The obtained solid content was washed 7 times with acetone / water = 500 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 35 kD, Mw: 130 kD (Mw / Mn = 3.8).
(Synthesis Example 4)
<CPVPA: N-vinylpyrrolidone / acrylic acid (
The same procedure as in Synthesis Example 3 was conducted except that 0.72 mol of N-vinylpyrrolidone and 0.18 mol of acrylic acid were used. The molecular weight of the copolymer thus obtained was Mn: 45 kD, Mw: 193 kD (Mw / Mn = 4.4).
(Synthesis Example 5)
<CPDA: N, N-dimethylacrylamide / acrylic acid (
In a 500 mL three-necked flask, N, N-dimethylacrylamide (59.50 g, 0.600 mol), acrylic acid (21.62 g, 0.300 mol), pure water (325.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 400 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 55 kD, Mw: 192 kD (Mw / Mn = 3.5).
(Synthesis Example 6)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 1/2)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (29.70 g, 0.300 mol), acrylic acid (43.20 g, 0.600 mol), pure water (292.40 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 350 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 87 kD, Mw: 235 kD (Mw / Mn = 2.7).
(Synthesis Example 7)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 90/10)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (DMA, 80.30 g, 0.810 mol), acrylic acid (6.49 g, 0.090 mol), pure water (347.90 g), polymerization initiator VA-061 (Japanese) Mitsuru Pure Chemical Industries, Ltd., 0.1408 g, 0.562 mmol), 2-mercaptoethanol (2-ME, 43.8 μL, 0.63 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. . The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 470 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and the supernatant was removed by decantation. The obtained solid content was washed 5 times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 54 kD, Mw: 162 kD (Mw / Mn = 3.0).
(Synthesis Example 8)
<CPDA: N, N-dimethylacrylamide / acrylic acid (molar ratio 95/5)>
In a three-necked flask, N, N-dimethylacrylamide (DMA, 0.19 mol), acrylic acid (AA, 0.01 mol), pure water, polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.093 mmol), 2 -Mercaptoethanol (2-ME, 0.07 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 350 g with an evaporator, poured into 2-propanol / n-hexane = 200 mL / 200 mL and allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 100 mL / 100 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 77 kD and Mw: 229 kD.
(Synthesis Examples 9 to 16)
<CPDA: N, N-dimethylacrylamide / acrylic acid>
The amounts of N, N-dimethylacrylamide (DMA), acrylic acid (AA), polymerization initiator VA-061 and 2-mercaptoethanol (2-ME) used, and the monomer concentrations are the values described in Table 5. The same procedure as in Synthesis Example 8 was performed.
(合成例17)
<CPDEAC:N,N-ジエチルアクリルアミド/アクリロイルモルホリン>
300mL三口フラスコにN,N-ジエチルアクリルアミド(12.71g、0.100mol)、N-アクリロイルモルホリン(14.12g、0.100mol)、t-アミルアルコール(63.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は30質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=300mL/80mL、130mL/35mL、100mL/20mL、100mL/10mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:49kD、Mw:162kD(Mw/Mn=3.3)であった。
(合成例18)
<CPACDM:アクリロイルモルホリン/N,N-ジメチルアクリルアミド/>
300mL三口フラスコにN-アクリロイルモルホリン(14.20g、0.101mol)、N,N-ジメチルアクリルアミド(DMA、9.92g、0.100mol)、t-アミルアルコール(96.63g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)、2-メルカプトエタノール(86μL、1.23mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=400mL/30mL、500mL/40mL、130mL/3mL、200mL/7mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:4.3kD、Mw:17kD(Mw/Mn=4.1)であった。
(合成例19)
<CPDEDM:N,N-ジエチルアクリルアミド/N,N-ジメチルアクリルアミド>
300mL三口フラスコにN,N-ジエチルアクリルアミド(DEAA、19.22g、0.151mol)、N,N-ジメチルアクリルアミド(DMA、14.88g、0.150mol)、TAA(104.65g)、重合開始剤VA-061(和光純薬工業株式会社、0.0465g、0.186mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は25質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1.5時間撹拌し、その後75℃に昇温して、3.5時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=500mL/0mL、250mL/25mL、200mL/30mL、200mL/3mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:90kD、Mw:327kD(Mw/Mn=3.7)であった。
(合成例20)
<CPHEDM:N-(2-ヒドロキシエチル)アクリルアミド/N,N-ジメチルアクリルアミド>
300mL三口フラスコにN-(2-ヒドロキシエチル)アクリルアミド(15.04g、0.100mol)、N,N-ジメチルアクリルアミド(9.96g、0.100mol)、t-アミルアルコール(99.80g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却した後、n-ヘキサン/メタノール=200mL/100mL、200mL/100mL、100mL/40mL、100mL/60mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:109kD、Mw:660kD(Mw/Mn=6.1)であった。
(合成例21)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、17.1g、0.15mol)、アクリル酸(AA、3.6g、0.05mol)、ジメチルスルホキシド(48.4g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は30質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール100mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:61kD、Mw:267kD(Mw/Mn=4.4)であった。
(合成例22)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、10.3g、0.09mol)、アクリル酸(AA、2.2g、0.03mol)、ジメチルスルホキシド(49.7g)、重合開始剤VA-061(和光純薬工業株式会社、0.009g、0.038mmol)、2-メルカプトエタノール(2-ME、2.6μL、0.038mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール20mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:83kD、Mw:188kD(Mw/Mn=2.3)であった。
(合成例23)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、10.3g、0.09mol)、アクリル酸(AA、2.2g、0.03mol)、ジメチルスルホキシド(49.8g)、重合開始剤VA-061(和光純薬工業株式会社、0.009g、0.038mmol)、2-メルカプトエタノール(2-ME、7.8μL、0.111mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール20mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:50kD、Mw:96kD(Mw/Mn=1.9)であった。
(合成例24)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比1/1)>
200mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、11.4g、0.10mol)、アクリル酸(AA、7.21g、0.10mol)、ジメチルスルホキシド(74.5g)、重合開始剤VA-061(和光純薬工業株式会社、0.016g、0.062mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水1000mL/エタノール10mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水700mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:79kD、Mw:226kD(Mw/Mn=2.9)であった。
(合成例25)
以下、純水とは逆浸透膜で濾過して精製した水を表す。
<p(DMAA/AA):N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:55kD、Mw:192kD(Mw/Mn=3.5)であった。
(参考例38)
コーティング溶液の調製
<PEI溶液A>
ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1質量%水溶液とした。
<PEI溶液B>
ポリエチレンイミン(P-70、167-11951、和光純薬工業株式会社、分子量7万)を純水に溶解して1質量%水溶液とした。
<PAA溶液>
ポリアクリル酸(169-18591、和光純薬工業株式会社、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<PAAM溶液A>
ポリアリルアミン(PAA-15C、日東紡績株式会社、分子量1.5万)を純水に溶解して1質量%水溶液とした。
<PAAM溶液B>
ポリアリルアミン(PAA-25、日東紡績株式会社、分子量2.5万)を純水に溶解して1質量%水溶液とした。
<PAS溶液>
ジアリルジメチルアンモニウムクロライド重合体(PAS-H-10L、日東紡績株式会社、分子量20万)を純水に溶解して1質量%水溶液とした。
<共重合体の溶液>
それぞれ、表6に示した合成例で得られた共重合体を、表6に示した溶媒に溶解して表6に示した濃度の溶液とした。 (Synthesis Example 17)
<CPDEAC: N, N-diethylacrylamide / acryloylmorpholine>
In a 300 mL three-necked flask, N, N-diethylacrylamide (12.71 g, 0.100 mol), N-acryloylmorpholine (14.12 g, 0.100 mol), t-amyl alcohol (63.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, a reflux condenser, a thermometer, and a mechanical stirrer were attached. The monomer concentration was 30% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the reaction solution was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 300 mL / 80 mL, 130 mL / 35 mL, 100 mL / 20 mL, 100 mL / 10 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 49 kD, Mw: 162 kD (Mw / Mn = 3.3).
(Synthesis Example 18)
<CPACDM: acryloylmorpholine / N, N-dimethylacrylamide />
In a 300 mL three-necked flask, N-acryloylmorpholine (14.20 g, 0.101 mol), N, N-dimethylacrylamide (DMA, 9.92 g, 0.100 mol), t-amyl alcohol (96.63 g), polymerization initiator VA -061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) and 2-mercaptoethanol (86 μL, 1.23 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 400 mL / 30 mL, 500 mL / 40 mL, 130 mL / 3 mL, and 200 mL / 7 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 4.3 kD, Mw: 17 kD (Mw / Mn = 4.1).
(Synthesis Example 19)
<CPDEDM: N, N-diethylacrylamide / N, N-dimethylacrylamide>
In a 300 mL three-necked flask, N, N-diethylacrylamide (DEAA, 19.22 g, 0.151 mol), N, N-dimethylacrylamide (DMA, 14.88 g, 0.150 mol), TAA (104.65 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0465 g, 0.186 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 25% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1.5 hours, then heated to 75 ° C. and stirred for 3.5 hours. After completion of the polymerization, the reaction mixture was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 500 mL / 0 mL, 250 mL / 25 mL, 200 mL / 30 mL, and 200 mL / 3 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 90 kD, Mw: 327 kD (Mw / Mn = 3.7).
(Synthesis Example 20)
<CPHEDM: N- (2-hydroxyethyl) acrylamide / N, N-dimethylacrylamide>
In a 300 mL three-necked flask, N- (2-hydroxyethyl) acrylamide (15.04 g, 0.100 mol), N, N-dimethylacrylamide (9.96 g, 0.100 mol), t-amyl alcohol (99.80 g), polymerization Initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the reaction mixture was cooled to room temperature, and then washed once each with n-hexane / methanol = 200 mL / 100 mL, 200 mL / 100 mL, 100 mL / 40 mL, and 100 mL / 60 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 109 kD, Mw: 660 kD (Mw / Mn = 6.1).
(Synthesis Example 21)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (molar ratio 3/1)>
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 17.1 g, 0.15 mol), acrylic acid (AA, 3.6 g, 0.05 mol), dimethyl sulfoxide (48.4 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 30% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 61 kD, Mw: 267 kD (Mw / Mn = 4.4).
(Synthesis Example 22)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (molar ratio 3/1)>
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 10.3 g, 0.09 mol), acrylic acid (AA, 2.2 g, 0.03 mol), dimethyl sulfoxide (49.7 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.009 g, 0.038 mmol), 2-mercaptoethanol (2-ME, 2.6 μL, 0.038 mmol) are added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer are installed. did. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 83 kD, Mw: 188 kD (Mw / Mn = 2.3).
(Synthesis Example 23)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (molar ratio 3/1)>
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 10.3 g, 0.09 mol), acrylic acid (AA, 2.2 g, 0.03 mol), dimethyl sulfoxide (49.8 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.009 g, 0.038 mmol), 2-mercaptoethanol (2-ME, 7.8 μL, 0.111 mmol) are added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer are attached. did. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 50 kD, Mw: 96 kD (Mw / Mn = 1.9).
(Synthesis Example 24)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (molar ratio 1/1)>
In a 200 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 11.4 g, 0.10 mol), acrylic acid (AA, 7.21 g, 0.10 mol), dimethyl sulfoxide (74.5 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.016 g, 0.062 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, poured into 1000 mL of water / 10 mL of ethanol, and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 700 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 79 kD, Mw: 226 kD (Mw / Mn = 2.9).
(Synthesis Example 25)
Hereinafter, pure water refers to water purified by filtration through a reverse osmosis membrane.
<P (DMAA / AA): N, N-dimethylacrylamide / acrylic acid (molar ratio 2/1)>
In a 500 mL three-necked flask, N, N-dimethylacrylamide (59.50 g, 0.600 mol), acrylic acid (21.62 g, 0.300 mol), pure water (325.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 400 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 55 kD, Mw: 192 kD (Mw / Mn = 3.5).
(Reference Example 38)
Preparation of coating solution <PEI solution A>
Polyethyleneimine (P3143, Sigma-Aldrich, molecular weight 750,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PEI solution B>
Polyethyleneimine (P-70, 167-1951, Wako Pure Chemical Industries, Ltd., molecular weight 70,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAA solution>
Polyacrylic acid (169-18591, Wako Pure Chemical Industries, Ltd., molecular weight 250,000) was dissolved in pure water to give a 1.2% by mass aqueous solution.
<PAAM solution A>
Polyallylamine (PAA-15C, Nitto Boseki Co., Ltd., molecular weight 15,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAAM solution B>
Polyallylamine (PAA-25, Nitto Boseki Co., Ltd., molecular weight 25,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAS solution>
A diallyldimethylammonium chloride polymer (PAS-H-10L, Nitto Boseki Co., Ltd., molecular weight 200,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<Copolymer solution>
Each of the copolymers obtained in the synthesis examples shown in Table 6 was dissolved in the solvent shown in Table 6 to obtain solutions having the concentrations shown in Table 6.
<CPDEAC:N,N-ジエチルアクリルアミド/アクリロイルモルホリン>
300mL三口フラスコにN,N-ジエチルアクリルアミド(12.71g、0.100mol)、N-アクリロイルモルホリン(14.12g、0.100mol)、t-アミルアルコール(63.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は30質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=300mL/80mL、130mL/35mL、100mL/20mL、100mL/10mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:49kD、Mw:162kD(Mw/Mn=3.3)であった。
(合成例18)
<CPACDM:アクリロイルモルホリン/N,N-ジメチルアクリルアミド/>
300mL三口フラスコにN-アクリロイルモルホリン(14.20g、0.101mol)、N,N-ジメチルアクリルアミド(DMA、9.92g、0.100mol)、t-アミルアルコール(96.63g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)、2-メルカプトエタノール(86μL、1.23mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=400mL/30mL、500mL/40mL、130mL/3mL、200mL/7mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:4.3kD、Mw:17kD(Mw/Mn=4.1)であった。
(合成例19)
<CPDEDM:N,N-ジエチルアクリルアミド/N,N-ジメチルアクリルアミド>
300mL三口フラスコにN,N-ジエチルアクリルアミド(DEAA、19.22g、0.151mol)、N,N-ジメチルアクリルアミド(DMA、14.88g、0.150mol)、TAA(104.65g)、重合開始剤VA-061(和光純薬工業株式会社、0.0465g、0.186mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は25質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1.5時間撹拌し、その後75℃に昇温して、3.5時間撹拌した。重合終了後、室温まで冷却し、エバポレータで溶媒を留去した後、n-ヘキサン/メタノール=500mL/0mL、250mL/25mL、200mL/30mL、200mL/3mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:90kD、Mw:327kD(Mw/Mn=3.7)であった。
(合成例20)
<CPHEDM:N-(2-ヒドロキシエチル)アクリルアミド/N,N-ジメチルアクリルアミド>
300mL三口フラスコにN-(2-ヒドロキシエチル)アクリルアミド(15.04g、0.100mol)、N,N-ジメチルアクリルアミド(9.96g、0.100mol)、t-アミルアルコール(99.80g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、70℃で1時間撹拌し、その後75℃に昇温して、4時間撹拌した。重合終了後、室温まで冷却した後、n-ヘキサン/メタノール=200mL/100mL、200mL/100mL、100mL/40mL、100mL/60mLで各1回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:109kD、Mw:660kD(Mw/Mn=6.1)であった。
(合成例21)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、17.1g、0.15mol)、アクリル酸(AA、3.6g、0.05mol)、ジメチルスルホキシド(48.4g)、重合開始剤VA-061(和光純薬工業株式会社、0.0310g、0.124mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は30質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール100mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:61kD、Mw:267kD(Mw/Mn=4.4)であった。
(合成例22)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、10.3g、0.09mol)、アクリル酸(AA、2.2g、0.03mol)、ジメチルスルホキシド(49.7g)、重合開始剤VA-061(和光純薬工業株式会社、0.009g、0.038mmol)、2-メルカプトエタノール(2-ME、2.6μL、0.038mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール20mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:83kD、Mw:188kD(Mw/Mn=2.3)であった。
(合成例23)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比3/1)>
300mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、10.3g、0.09mol)、アクリル酸(AA、2.2g、0.03mol)、ジメチルスルホキシド(49.8g)、重合開始剤VA-061(和光純薬工業株式会社、0.009g、0.038mmol)、2-メルカプトエタノール(2-ME、7.8μL、0.111mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、4.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、エタノール20mLを加えた後、水500mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水500mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:50kD、Mw:96kD(Mw/Mn=1.9)であった。
(合成例24)
<CPHA:2-ヒドロキシエチルメタクリレート/アクリル酸(モル比1/1)>
200mL三口フラスコに2-ヒドロキシエチルメタクリレート(HEMA、11.4g、0.10mol)、アクリル酸(AA、7.21g、0.10mol)、ジメチルスルホキシド(74.5g)、重合開始剤VA-061(和光純薬工業株式会社、0.016g、0.062mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、60℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液を室温まで冷却し、水1000mL/エタノール10mL中に注ぎ入れて一晩静置した。翌日、上澄み液を捨て、得られた固形分を水700mLでさらに2回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:79kD、Mw:226kD(Mw/Mn=2.9)であった。
(合成例25)
以下、純水とは逆浸透膜で濾過して精製した水を表す。
<p(DMAA/AA):N,N-ジメチルアクリルアミド/アクリル酸(モル比2/1)>
500mL三口フラスコにN,N-ジメチルアクリルアミド(59.50g、0.600mol)、アクリル酸(21.62g、0.300mol)、純水(325.20g)、重合開始剤VA-061(和光純薬工業株式会社、0.1408g、0.562mmol)、2-メルカプトエタノール(43.8μL、0.63mmol)を加え、三方コック、還流冷却管、温度計、メカニカルスターラを装着した。モノマー濃度は20質量%であった。三口フラスコ内部を真空ポンプで脱気して、アルゴン置換を3回繰り返した後、50℃で0.5時間撹拌し、その後70℃に昇温して、6.5時間撹拌した。重合終了後、重合反応液をエバポレータで400gまで濃縮し、2-プロパノール/n-ヘキサン=500mL/500mL中に注ぎ入れて静置後、上澄み液をデカンテーションで除いた。得られた固形分を2-プロパノール/n-ヘキサン=250mL/250mLで3回洗浄した。固形分を真空乾燥機で60℃、一晩乾燥させた。液体窒素を入れ、スパチュラで破砕した後、真空乾燥機で60℃、3時間乾燥させた。このようにして得られた共重合体の分子量はMn:55kD、Mw:192kD(Mw/Mn=3.5)であった。
(参考例38)
コーティング溶液の調製
<PEI溶液A>
ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1質量%水溶液とした。
<PEI溶液B>
ポリエチレンイミン(P-70、167-11951、和光純薬工業株式会社、分子量7万)を純水に溶解して1質量%水溶液とした。
<PAA溶液>
ポリアクリル酸(169-18591、和光純薬工業株式会社、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<PAAM溶液A>
ポリアリルアミン(PAA-15C、日東紡績株式会社、分子量1.5万)を純水に溶解して1質量%水溶液とした。
<PAAM溶液B>
ポリアリルアミン(PAA-25、日東紡績株式会社、分子量2.5万)を純水に溶解して1質量%水溶液とした。
<PAS溶液>
ジアリルジメチルアンモニウムクロライド重合体(PAS-H-10L、日東紡績株式会社、分子量20万)を純水に溶解して1質量%水溶液とした。
<共重合体の溶液>
それぞれ、表6に示した合成例で得られた共重合体を、表6に示した溶媒に溶解して表6に示した濃度の溶液とした。 (Synthesis Example 17)
<CPDEAC: N, N-diethylacrylamide / acryloylmorpholine>
In a 300 mL three-necked flask, N, N-diethylacrylamide (12.71 g, 0.100 mol), N-acryloylmorpholine (14.12 g, 0.100 mol), t-amyl alcohol (63.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, a reflux condenser, a thermometer, and a mechanical stirrer were attached. The monomer concentration was 30% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the reaction solution was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 300 mL / 80 mL, 130 mL / 35 mL, 100 mL / 20 mL, 100 mL / 10 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 49 kD, Mw: 162 kD (Mw / Mn = 3.3).
(Synthesis Example 18)
<CPACDM: acryloylmorpholine / N, N-dimethylacrylamide />
In a 300 mL three-necked flask, N-acryloylmorpholine (14.20 g, 0.101 mol), N, N-dimethylacrylamide (DMA, 9.92 g, 0.100 mol), t-amyl alcohol (96.63 g), polymerization initiator VA -061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) and 2-mercaptoethanol (86 μL, 1.23 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the mixture was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 400 mL / 30 mL, 500 mL / 40 mL, 130 mL / 3 mL, and 200 mL / 7 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 4.3 kD, Mw: 17 kD (Mw / Mn = 4.1).
(Synthesis Example 19)
<CPDEDM: N, N-diethylacrylamide / N, N-dimethylacrylamide>
In a 300 mL three-necked flask, N, N-diethylacrylamide (DEAA, 19.22 g, 0.151 mol), N, N-dimethylacrylamide (DMA, 14.88 g, 0.150 mol), TAA (104.65 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0465 g, 0.186 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 25% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1.5 hours, then heated to 75 ° C. and stirred for 3.5 hours. After completion of the polymerization, the reaction mixture was cooled to room temperature, and the solvent was distilled off with an evaporator, followed by washing once each with n-hexane / methanol = 500 mL / 0 mL, 250 mL / 25 mL, 200 mL / 30 mL, and 200 mL / 3 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 90 kD, Mw: 327 kD (Mw / Mn = 3.7).
(Synthesis Example 20)
<CPHEDM: N- (2-hydroxyethyl) acrylamide / N, N-dimethylacrylamide>
In a 300 mL three-necked flask, N- (2-hydroxyethyl) acrylamide (15.04 g, 0.100 mol), N, N-dimethylacrylamide (9.96 g, 0.100 mol), t-amyl alcohol (99.80 g), polymerization Initiator VA-061 (Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 70 ° C. for 1 hour, then heated to 75 ° C. and stirred for 4 hours. After completion of the polymerization, the reaction mixture was cooled to room temperature, and then washed once each with n-hexane / methanol = 200 mL / 100 mL, 200 mL / 100 mL, 100 mL / 40 mL, and 100 mL / 60 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 109 kD, Mw: 660 kD (Mw / Mn = 6.1).
(Synthesis Example 21)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 17.1 g, 0.15 mol), acrylic acid (AA, 3.6 g, 0.05 mol), dimethyl sulfoxide (48.4 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.0310 g, 0.124 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 30% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 100 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 61 kD, Mw: 267 kD (Mw / Mn = 4.4).
(Synthesis Example 22)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 10.3 g, 0.09 mol), acrylic acid (AA, 2.2 g, 0.03 mol), dimethyl sulfoxide (49.7 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.009 g, 0.038 mmol), 2-mercaptoethanol (2-ME, 2.6 μL, 0.038 mmol) are added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer are installed. did. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 83 kD, Mw: 188 kD (Mw / Mn = 2.3).
(Synthesis Example 23)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (
In a 300 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 10.3 g, 0.09 mol), acrylic acid (AA, 2.2 g, 0.03 mol), dimethyl sulfoxide (49.8 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.009 g, 0.038 mmol), 2-mercaptoethanol (2-ME, 7.8 μL, 0.111 mmol) are added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer are attached. did. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 4.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, 20 mL of ethanol was added, and then poured into 500 mL of water and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 500 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 50 kD, Mw: 96 kD (Mw / Mn = 1.9).
(Synthesis Example 24)
<CPHA: 2-hydroxyethyl methacrylate / acrylic acid (molar ratio 1/1)>
In a 200 mL three-necked flask, 2-hydroxyethyl methacrylate (HEMA, 11.4 g, 0.10 mol), acrylic acid (AA, 7.21 g, 0.10 mol), dimethyl sulfoxide (74.5 g), polymerization initiator VA-061 ( Wako Pure Chemical Industries, Ltd., 0.016 g, 0.062 mmol) was added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 60 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was cooled to room temperature, poured into 1000 mL of water / 10 mL of ethanol, and allowed to stand overnight. On the next day, the supernatant was discarded, and the obtained solid content was further washed twice with 700 mL of water. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 79 kD, Mw: 226 kD (Mw / Mn = 2.9).
(Synthesis Example 25)
Hereinafter, pure water refers to water purified by filtration through a reverse osmosis membrane.
<P (DMAA / AA): N, N-dimethylacrylamide / acrylic acid (
In a 500 mL three-necked flask, N, N-dimethylacrylamide (59.50 g, 0.600 mol), acrylic acid (21.62 g, 0.300 mol), pure water (325.20 g), polymerization initiator VA-061 (Wako Pure Chemical Industries, Ltd.) Kogyo Co., Ltd., 0.1408 g, 0.562 mmol) and 2-mercaptoethanol (43.8 μL, 0.63 mmol) were added, and a three-way cock, reflux condenser, thermometer, and mechanical stirrer were attached. The monomer concentration was 20% by mass. The inside of the three-necked flask was evacuated with a vacuum pump, and after argon substitution was repeated three times, the mixture was stirred at 50 ° C. for 0.5 hour, then heated to 70 ° C. and stirred for 6.5 hours. After completion of the polymerization, the polymerization reaction solution was concentrated to 400 g with an evaporator, poured into 2-propanol / n-hexane = 500 mL / 500 mL, allowed to stand, and then the supernatant was removed by decantation. The obtained solid content was washed three times with 2-propanol / n-hexane = 250 mL / 250 mL. The solid content was dried in a vacuum dryer at 60 ° C. overnight. After putting liquid nitrogen and crushing with a spatula, it was dried with a vacuum dryer at 60 ° C. for 3 hours. The molecular weight of the copolymer thus obtained was Mn: 55 kD, Mw: 192 kD (Mw / Mn = 3.5).
(Reference Example 38)
Preparation of coating solution <PEI solution A>
Polyethyleneimine (P3143, Sigma-Aldrich, molecular weight 750,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PEI solution B>
Polyethyleneimine (P-70, 167-1951, Wako Pure Chemical Industries, Ltd., molecular weight 70,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAA solution>
Polyacrylic acid (169-18591, Wako Pure Chemical Industries, Ltd., molecular weight 250,000) was dissolved in pure water to give a 1.2% by mass aqueous solution.
<PAAM solution A>
Polyallylamine (PAA-15C, Nitto Boseki Co., Ltd., molecular weight 15,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAAM solution B>
Polyallylamine (PAA-25, Nitto Boseki Co., Ltd., molecular weight 25,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<PAS solution>
A diallyldimethylammonium chloride polymer (PAS-H-10L, Nitto Boseki Co., Ltd., molecular weight 200,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<Copolymer solution>
Each of the copolymers obtained in the synthesis examples shown in Table 6 was dissolved in the solvent shown in Table 6 to obtain solutions having the concentrations shown in Table 6.
NVP:N-ビニルピロリドン
DMA:N,N-ジメチルアクリルアミド
DEAA:N,N-ジエチルアクリルアミド
ACMO:アクリロイルモルホリン
HEAA:N-(2-ヒドロキシエチル)アクリルアミド
HEMA:2-ヒドロキシエチルメタクリレート
AA:アクリル酸
<その他の溶液>
それぞれ、表7に示した物質を純水に溶解し、表7に示した濃度の水溶液とした。 NVP: N-vinylpyrrolidone DMA: N, N-dimethylacrylamide DEAA: N, N-diethylacrylamide ACMO: acryloylmorpholine HEAA: N- (2-hydroxyethyl) acrylamide HEMA: 2-hydroxyethyl methacrylate AA: acrylic acid <others Solution>
Each of the substances shown in Table 7 was dissolved in pure water to obtain aqueous solutions having the concentrations shown in Table 7.
DMA:N,N-ジメチルアクリルアミド
DEAA:N,N-ジエチルアクリルアミド
ACMO:アクリロイルモルホリン
HEAA:N-(2-ヒドロキシエチル)アクリルアミド
HEMA:2-ヒドロキシエチルメタクリレート
AA:アクリル酸
<その他の溶液>
それぞれ、表7に示した物質を純水に溶解し、表7に示した濃度の水溶液とした。 NVP: N-vinylpyrrolidone DMA: N, N-dimethylacrylamide DEAA: N, N-diethylacrylamide ACMO: acryloylmorpholine HEAA: N- (2-hydroxyethyl) acrylamide HEMA: 2-hydroxyethyl methacrylate AA: acrylic acid <others Solution>
Each of the substances shown in Table 7 was dissolved in pure water to obtain aqueous solutions having the concentrations shown in Table 7.
ヒアルロン酸Na:ヒアルロン酸ナトリウム(CHA)(チッソ株式会社)
キミカアルギンI-3:アルギン酸ナトリウム(株式会社キミカ)
キミロイドHV:アルギン酸プロピレングリコールエステル(株式会社キミカ)
NS-300(カルメロース):カルボキシメチルセルロース(五徳薬品株式会社)
サンローズ(登録商標)(APP-84):カルボキシメチルセルロース
(日本製紙ケミカル株式会社)
コンドロイチン硫酸Na:コンドロイチン硫酸ナトリウム(生化学工業株式会社)
グリロイド6C:タマリンドガム(大日本住友製薬株式会社)
ラボールガムCG-SFT:キサンタンガム(大日本住友製薬株式会社)
(実施例1~3)
表8中に示した各参考例で得られた成型体をPEI溶液Aに30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(実施例4~6)
表8中に示した各参考例で得られた成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次にPEI溶液Aに30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。
(実施例7~14)
表8中に示した各参考例で得られた成型体を、表8中に示した第1溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に表8中に示した第2溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体を表8中に示した第3溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。
(比較例1~3)
表8中に示した各参考例で得られた成型体の濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(比較例4~6)
表8中に示した各参考例で得られた成型体をPEI溶液Aに30分間浸漬した後、該成型体を3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(比較例7~9)
表8中に示した各参考例で得られた成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。 Hyaluronic acid Na: sodium hyaluronate (CHA) (Chisso Corporation)
Kimika Argin I-3: Sodium Alginate (Kimika Co., Ltd.)
Kimiloid HV: propylene glycol alginate (Kimika Co., Ltd.)
NS-300 (Carmellose): Carboxymethylcellulose (Gotoku Pharmaceutical Co., Ltd.)
Sunrose (registered trademark) (APP-84): Carboxymethylcellulose (Nippon Paper Chemical Co., Ltd.)
Chondroitin sulfate Na: Chondroitin sodium sulfate (Seikagaku Corporation)
Griroid 6C: Tamarind gum (Dainippon Sumitomo Pharma Co., Ltd.)
Labor gum CG-SFT: Xanthan gum (Dainippon Sumitomo Pharma Co., Ltd.)
(Examples 1 to 3)
The molded bodies obtained in the respective reference examples shown in Table 8 were immersed in the PEI solution A for 30 minutes and then immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Examples 4 to 6)
The molded body obtained in each reference example shown in Table 8 was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after being immersed in the PEI solution A for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8.
(Examples 7 to 14)
The molded body obtained in each reference example shown in Table 8 was immersed in the first solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after being immersed in the second solution shown in Table 8 for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in the third solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8.
(Comparative Examples 1 to 3)
The wettability and dynamic contact angle of the molded body obtained in each reference example shown in Table 8 were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Comparative Examples 4 to 6)
The molded bodies obtained in the respective reference examples shown in Table 8 were immersed in the PEI solution A for 30 minutes, and then the molded bodies were immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Comparative Examples 7 to 9)
The molded body obtained in each reference example shown in Table 8 was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
キミカアルギンI-3:アルギン酸ナトリウム(株式会社キミカ)
キミロイドHV:アルギン酸プロピレングリコールエステル(株式会社キミカ)
NS-300(カルメロース):カルボキシメチルセルロース(五徳薬品株式会社)
サンローズ(登録商標)(APP-84):カルボキシメチルセルロース
(日本製紙ケミカル株式会社)
コンドロイチン硫酸Na:コンドロイチン硫酸ナトリウム(生化学工業株式会社)
グリロイド6C:タマリンドガム(大日本住友製薬株式会社)
ラボールガムCG-SFT:キサンタンガム(大日本住友製薬株式会社)
(実施例1~3)
表8中に示した各参考例で得られた成型体をPEI溶液Aに30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(実施例4~6)
表8中に示した各参考例で得られた成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次にPEI溶液Aに30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。
(実施例7~14)
表8中に示した各参考例で得られた成型体を、表8中に示した第1溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に表8中に示した第2溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に該成型体を表8中に示した第3溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。
(比較例1~3)
表8中に示した各参考例で得られた成型体の濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(比較例4~6)
表8中に示した各参考例で得られた成型体をPEI溶液Aに30分間浸漬した後、該成型体を3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。
(比較例7~9)
表8中に示した各参考例で得られた成型体をPAA溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。得られた低含水性軟質基材サンプルの濡れ性および動的接触角を評価した。結果を表8に示した。表中の-はその溶液によるコーティング操作が行われていないことを意味する。 Hyaluronic acid Na: sodium hyaluronate (CHA) (Chisso Corporation)
Kimika Argin I-3: Sodium Alginate (Kimika Co., Ltd.)
Kimiloid HV: propylene glycol alginate (Kimika Co., Ltd.)
NS-300 (Carmellose): Carboxymethylcellulose (Gotoku Pharmaceutical Co., Ltd.)
Sunrose (registered trademark) (APP-84): Carboxymethylcellulose (Nippon Paper Chemical Co., Ltd.)
Chondroitin sulfate Na: Chondroitin sodium sulfate (Seikagaku Corporation)
Griroid 6C: Tamarind gum (Dainippon Sumitomo Pharma Co., Ltd.)
Labor gum CG-SFT: Xanthan gum (Dainippon Sumitomo Pharma Co., Ltd.)
(Examples 1 to 3)
The molded bodies obtained in the respective reference examples shown in Table 8 were immersed in the PEI solution A for 30 minutes and then immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Examples 4 to 6)
The molded body obtained in each reference example shown in Table 8 was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after being immersed in the PEI solution A for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8.
(Examples 7 to 14)
The molded body obtained in each reference example shown in Table 8 was immersed in the first solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, after being immersed in the second solution shown in Table 8 for 30 minutes, each was immersed in three pure water baths for 5 minutes. Next, the molded body was immersed in the third solution shown in Table 8 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8.
(Comparative Examples 1 to 3)
The wettability and dynamic contact angle of the molded body obtained in each reference example shown in Table 8 were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Comparative Examples 4 to 6)
The molded bodies obtained in the respective reference examples shown in Table 8 were immersed in the PEI solution A for 30 minutes, and then the molded bodies were immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(Comparative Examples 7 to 9)
The molded body obtained in each reference example shown in Table 8 was immersed in a PAA solution for 30 minutes, and then immersed in three pure water baths for 5 minutes. The wettability and dynamic contact angle of the obtained low hydrous soft substrate sample were evaluated. The results are shown in Table 8. -In the table means that the coating operation with the solution is not performed.
(参考例39~42)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、後述の式(M2)の化合物、数平均分子量1.3万)(50質量部)、を使用し、成分Bとして表9中に記載したフルオロアルキル基を有するモノマー(50質量部)を使用した以外は参考例1と全く同様にして低含水性軟質基材サンプルを得た。得られた低含水性軟質基材サンプルの評価結果を表9に示した。 (Reference Examples 39 to 42)
As component A, polydimethylsiloxane having methacryloyl groups at both ends (DMS-R31, Gelest, Inc., compound of formula (M2) described later, number average molecular weight 13,000) (50 parts by mass), A low hydrous soft base material sample was obtained in the same manner as in Reference Example 1 except that the monomer (50 parts by mass) having a fluoroalkyl group described in Table 9 was used as Component B. The evaluation results of the obtained low hydrous soft base material sample are shown in Table 9.
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、後述の式(M2)の化合物、数平均分子量1.3万)(50質量部)、を使用し、成分Bとして表9中に記載したフルオロアルキル基を有するモノマー(50質量部)を使用した以外は参考例1と全く同様にして低含水性軟質基材サンプルを得た。得られた低含水性軟質基材サンプルの評価結果を表9に示した。 (Reference Examples 39 to 42)
As component A, polydimethylsiloxane having methacryloyl groups at both ends (DMS-R31, Gelest, Inc., compound of formula (M2) described later, number average molecular weight 13,000) (50 parts by mass), A low hydrous soft base material sample was obtained in the same manner as in Reference Example 1 except that the monomer (50 parts by mass) having a fluoroalkyl group described in Table 9 was used as Component B. The evaluation results of the obtained low hydrous soft base material sample are shown in Table 9.
ビスコート3FM:トリフルオロエチルメタクリレート(大阪有機化学工業株式会社)
ビスコート8F :オクタフルオロペンチルアクリレート(大阪有機化学工業株式会社)
ビスコート17F:ヘプタデカフルオロデシルアクリレート(大阪有機化学工業株式会社)
HFIP-M :ヘキサフルオロイソプロピルメタクリレート(セントラル硝子株式会社)
(参考例43)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、質量平均分子量3.0万、後述の式(M2)の化合物、数平均分子量1.3万)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(46質量部)、成分Cとしてメチルメタクリレート(3質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、式(M1)で表される化合物、大塚化学株式会社)(1質量部)、重合開始剤“イルガキュア(登録商標)”1850(チバ・スペシャルティ・ケミカルズ、2質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。均一で透明なモノマー混合物が得られた。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製のモールドにモノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を、大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行った。得られた成型体の含水率は1%未満であった。また、モールドとして2枚のガラス板とガスケットを使用して同様の操作を行い、60mm×60mm×0.25mmのフィルム状サンプルを得た。 Biscoat 3FM: trifluoroethyl methacrylate (Osaka Organic Chemical Co., Ltd.)
Biscote 8F: Octafluoropentyl acrylate (Osaka Organic Chemical Co., Ltd.)
Biscote 17F: Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry Co., Ltd.)
HFIP-M: Hexafluoroisopropyl methacrylate (Central Glass Co., Ltd.)
(Reference Example 43)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R31, Gelest, Inc., mass average molecular weight 30,000, compound of formula (M2) described later, number average molecular weight 13,000) (50 Part by mass), trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (46 parts by mass) as component B, methyl methacrylate (3 parts by mass) as component C, and UV absorber having a polymerizable group as component C (RUVA-93, compound represented by formula (M1), Otsuka Chemical Co., Ltd.) (1 part by mass), polymerization initiator “Irgacure (registered trademark)” 1850 (Ciba Specialty Chemicals, 2 parts by mass) and t -Amyl alcohol (10 parts by weight) was mixed and stirred. A uniform and transparent monomer mixture was obtained. This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. A monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and light is emitted using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4). Polymerization by irradiation (8000 lux, 20 minutes). After the polymerization, the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold. The obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of It was immersed in pure water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%. Moreover, the same operation was performed using two glass plates and a gasket as a mold to obtain a film-like sample of 60 mm × 60 mm × 0.25 mm.
ビスコート8F :オクタフルオロペンチルアクリレート(大阪有機化学工業株式会社)
ビスコート17F:ヘプタデカフルオロデシルアクリレート(大阪有機化学工業株式会社)
HFIP-M :ヘキサフルオロイソプロピルメタクリレート(セントラル硝子株式会社)
(参考例43)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(DMS-R31、Gelest, Inc.、質量平均分子量3.0万、後述の式(M2)の化合物、数平均分子量1.3万)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(46質量部)、成分Cとしてメチルメタクリレート(3質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、式(M1)で表される化合物、大塚化学株式会社)(1質量部)、重合開始剤“イルガキュア(登録商標)”1850(チバ・スペシャルティ・ケミカルズ、2質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。均一で透明なモノマー混合物が得られた。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製のモールドにモノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を、大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行った。得られた成型体の含水率は1%未満であった。また、モールドとして2枚のガラス板とガスケットを使用して同様の操作を行い、60mm×60mm×0.25mmのフィルム状サンプルを得た。 Biscoat 3FM: trifluoroethyl methacrylate (Osaka Organic Chemical Co., Ltd.)
Biscote 8F: Octafluoropentyl acrylate (Osaka Organic Chemical Co., Ltd.)
Biscote 17F: Heptadecafluorodecyl acrylate (Osaka Organic Chemical Industry Co., Ltd.)
HFIP-M: Hexafluoroisopropyl methacrylate (Central Glass Co., Ltd.)
(Reference Example 43)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (DMS-R31, Gelest, Inc., mass average molecular weight 30,000, compound of formula (M2) described later, number average molecular weight 13,000) (50 Part by mass), trifluoroethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (46 parts by mass) as component B, methyl methacrylate (3 parts by mass) as component C, and UV absorber having a polymerizable group as component C (RUVA-93, compound represented by formula (M1), Otsuka Chemical Co., Ltd.) (1 part by mass), polymerization initiator “Irgacure (registered trademark)” 1850 (Ciba Specialty Chemicals, 2 parts by mass) and t -Amyl alcohol (10 parts by weight) was mixed and stirred. A uniform and transparent monomer mixture was obtained. This monomer mixture was put into a test tube, deaerated while being stirred with a touch mixer at a reduced pressure of 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas. This operation was repeated three times. A monomer mixture is injected into a mold made of transparent resin (poly-4-methylpentene-1) in a glove box in a nitrogen atmosphere, and light is emitted using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4). Polymerization by irradiation (8000 lux, 20 minutes). After the polymerization, the mold was immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge diameter: about 14 mm, thickness: about 0.1 mm) was peeled from the mold. The obtained molding was immersed in a large excess of 80% by mass isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Further, the molded body was immersed in a large excess amount of 50 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, then immersed in a large excess amount of 25 mass% isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then a large excess amount of It was immersed in pure water at room temperature for 30 minutes. Finally, the molded body was placed in a sealed vial bottle soaked in clean pure water, and autoclaved at 121 ° C. for 30 minutes. The water content of the obtained molded body was less than 1%. Moreover, the same operation was performed using two glass plates and a gasket as a mold to obtain a film-like sample of 60 mm × 60 mm × 0.25 mm.
(参考例44~47、および70~75)
表10に示した成分を用い、参考例43と同様に行って、球冠形状の成型体、および60mm×60mm×0.25mmのフィルム状サンプルを得た。なお、表中の-はその成分を用いていないことを意味する。 (Reference Examples 44 to 47 and 70 to 75)
Using the components shown in Table 10, the same procedure as in Reference Example 43 was performed to obtain a spherical crown-shaped molded body and a film sample of 60 mm × 60 mm × 0.25 mm. In the table, “-” means that the component is not used.
表10に示した成分を用い、参考例43と同様に行って、球冠形状の成型体、および60mm×60mm×0.25mmのフィルム状サンプルを得た。なお、表中の-はその成分を用いていないことを意味する。 (Reference Examples 44 to 47 and 70 to 75)
Using the components shown in Table 10, the same procedure as in Reference Example 43 was performed to obtain a spherical crown-shaped molded body and a film sample of 60 mm × 60 mm × 0.25 mm. In the table, “-” means that the component is not used.
DMS-R31:式(M2)の化合物 Mw 30kD,Mn 13kD、
Gelest, Inc.
FM-7726:式(M2)の化合物 Mw 29kD,Mn 26kD、
チッソ株式会社
FM-7726L:式(M2)の化合物 Mw 31kD,Mn 20kD、
チッソ株式会社
X-22-164C:式(M2)の化合物 Mw 7.2kD,Mn 4.8kD、 信越化学工業株式会社
DMS-R22:式(M2)の化合物 Mw 8.3kD,Mn 7.4kD、
Gelest, Inc.
式(M2)において、nは繰返し単位の数を表し、化合物の分子量によって決まる。 DMS-R31: compound of formula (M2)Mw 30 kD, Mn 13 kD,
Gelest, Inc.
FM-7726: Compound of formula (M2) Mw 29 kD, Mn 26 kD,
Chisso Corporation FM-7726L: Compound of formula (M2)Mw 31 kD, Mn 20 kD,
Chisso Corporation X-22-164C: Compound of formula (M2) Mw 7.2 kD, Mn 4.8 kD, Shin-Etsu Chemical Co., Ltd. DMS-R22: Compound of formula (M2) Mw 8.3 kD, Mn 7.4 kD,
Gelest, Inc.
In the formula (M2), n represents the number of repeating units and is determined by the molecular weight of the compound.
Gelest, Inc.
FM-7726:式(M2)の化合物 Mw 29kD,Mn 26kD、
チッソ株式会社
FM-7726L:式(M2)の化合物 Mw 31kD,Mn 20kD、
チッソ株式会社
X-22-164C:式(M2)の化合物 Mw 7.2kD,Mn 4.8kD、 信越化学工業株式会社
DMS-R22:式(M2)の化合物 Mw 8.3kD,Mn 7.4kD、
Gelest, Inc.
式(M2)において、nは繰返し単位の数を表し、化合物の分子量によって決まる。 DMS-R31: compound of formula (M2)
Gelest, Inc.
FM-7726: Compound of formula (M2) Mw 29 kD, Mn 26 kD,
Chisso Corporation FM-7726L: Compound of formula (M2)
Chisso Corporation X-22-164C: Compound of formula (M2) Mw 7.2 kD, Mn 4.8 kD, Shin-Etsu Chemical Co., Ltd. DMS-R22: Compound of formula (M2) Mw 8.3 kD, Mn 7.4 kD,
Gelest, Inc.
In the formula (M2), n represents the number of repeating units and is determined by the molecular weight of the compound.
ビスコート3F:トリフルオロエチルアクリレート
MMA:メチルメタクリレート
EHMA:2-エチルヘキシルアクリレート
DMAA:N,N-ジメチルアクリルアミド
DMAEA:N,N-ジメチルアミノエチルアクリレート
DMAPAA:N,N-ジエチルアミノプロピルアクリルアミド
DEAEMA:N,N-ジエチルアミノエチルメタクリレート
TAA:t-アミルアルコール
AA:アクリル酸
MAA:メタクリル酸
(参考例48)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、チッソ株式会社、前述の式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(49質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(5質量部)、成分CとしてN,N-ジメチルアクリルアミド(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学株式会社)(1質量部)、成分Cとして重合性基を有する着色剤[(Uniblue A、シグマアルドリッチ、式(M3)](0.1質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製のモールドにモノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行た。得られた成型体の含水率は1%未満であった。また、モールドとして2枚のガラス板とガスケットを使用して同様の操作を行い、60mm×60mm×0.25mmのフィルム状サンプルを得た。 Biscoat 3F: trifluoroethyl acrylate MMA: methyl methacrylate EHMA: 2-ethylhexyl acrylate DMAA: N, N-dimethylacrylamide DMAEA: N, N-dimethylaminoethyl acrylate DMAPAA: N, N-diethylaminopropylacrylamide DEAEMA: N, N- Diethylaminoethyl methacrylate TAA: t-amyl alcohol AA: Acrylic acid MAA: Methacrylic acid (Reference Example 48)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (FM7726, Chisso Corporation, compound of formula (M2), mass average molecular weight 29 kD, number average molecular weight 26 kD) (49 parts by mass), component B trifluoro Ethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (45 parts by mass), Component C as 2-ethylhexyl acrylate (5 parts by mass), Component C as N, N-dimethylacrylamide (1 part by mass), Component C as Ultraviolet absorber having a polymerizable group (RUVA-93, Otsuka Chemical Co., Ltd.) (1 part by mass), Colorant having a polymerizable group as Component C [(Uniblue A, Sigma-Aldrich, Formula (M3)] (0. 1 part by mass), polymerization initiator “Irgacure (registered trademark)” 819 (Ciba Specialty Ke) Mikals, 0.75 parts by mass) and t-amyl alcohol (10 parts by mass) were mixed and stirred, filtered through a membrane filter (0.45 μm) to remove insolubles, and a monomer mixture was obtained. The sample was put into a test tube, deaerated while being stirred with a touch mixer and reduced in pressure to 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas.This operation was repeated three times. The monomer mixture is injected into a mold made of (poly-4-methylpentene-1) and irradiated with light (8000 lux, 20 minutes) using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 tubes). After the polymerization, the mold is immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge The resulting molded body was immersed in a large excess of 80% by weight isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Soaked in a 50% by weight isopropyl alcohol aqueous solution at room temperature for 30 minutes, then soaked in a large excess of 25% by weight isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then soaked in a large excess of pure water at room temperature for 30 minutes. Finally, the molded body was immersed in clean pure water in a sealed vial and autoclaved for 30 minutes at 121 ° C. The water content of the obtained molded body was less than 1%. Moreover, the same operation was performed using two glass plates and a gasket as a mold to obtain a film sample of 60 mm × 60 mm × 0.25 mm.
MMA:メチルメタクリレート
EHMA:2-エチルヘキシルアクリレート
DMAA:N,N-ジメチルアクリルアミド
DMAEA:N,N-ジメチルアミノエチルアクリレート
DMAPAA:N,N-ジエチルアミノプロピルアクリルアミド
DEAEMA:N,N-ジエチルアミノエチルメタクリレート
TAA:t-アミルアルコール
AA:アクリル酸
MAA:メタクリル酸
(参考例48)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、チッソ株式会社、前述の式(M2)の化合物、質量平均分子量29kD、数平均分子量26kD)(49質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(5質量部)、成分CとしてN,N-ジメチルアクリルアミド(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学株式会社)(1質量部)、成分Cとして重合性基を有する着色剤[(Uniblue A、シグマアルドリッチ、式(M3)](0.1質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物を試験管に入れ、タッチミキサーで攪拌しながら減圧20Torr(27hPa)にして脱気を行い、その後アルゴンガスで大気圧に戻した。この操作を3回繰り返した。窒素雰囲気のグローブボックス中で透明樹脂(ポリ4-メチルペンテン-1)製のモールドにモノマー混合物を注入し、蛍光ランプ(株式会社東芝、FL-6D、昼光色、6W、4本)を用いて光照射(8000ルクス、20分間)して重合した。重合後に、モールドごと60質量%イソプロピルアルコール水溶液中に浸漬して、モールドから球冠形状の成型体(縁部の直径約14mm、厚さ約0.1mm)を剥離した。得られた成型体を、大過剰量の80質量%イソプロピルアルコール水溶液に60℃、2時間浸漬した。さらに、成型体を大過剰量の50質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の25質量%イソプロピルアルコール水溶液に室温、30分間浸漬し、次に大過剰量の純水に室温、30分間浸漬した。最後に、成型体を密閉バイアル瓶中に清浄な純水に浸漬した状態で入れ、121℃、30分間、オートクレーブ滅菌を行た。得られた成型体の含水率は1%未満であった。また、モールドとして2枚のガラス板とガスケットを使用して同様の操作を行い、60mm×60mm×0.25mmのフィルム状サンプルを得た。 Biscoat 3F: trifluoroethyl acrylate MMA: methyl methacrylate EHMA: 2-ethylhexyl acrylate DMAA: N, N-dimethylacrylamide DMAEA: N, N-dimethylaminoethyl acrylate DMAPAA: N, N-diethylaminopropylacrylamide DEAEMA: N, N- Diethylaminoethyl methacrylate TAA: t-amyl alcohol AA: Acrylic acid MAA: Methacrylic acid (Reference Example 48)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (FM7726, Chisso Corporation, compound of formula (M2), mass average molecular weight 29 kD, number average molecular weight 26 kD) (49 parts by mass), component B trifluoro Ethyl acrylate (Biscoat 3F, Osaka Organic Chemical Co., Ltd.) (45 parts by mass), Component C as 2-ethylhexyl acrylate (5 parts by mass), Component C as N, N-dimethylacrylamide (1 part by mass), Component C as Ultraviolet absorber having a polymerizable group (RUVA-93, Otsuka Chemical Co., Ltd.) (1 part by mass), Colorant having a polymerizable group as Component C [(Uniblue A, Sigma-Aldrich, Formula (M3)] (0. 1 part by mass), polymerization initiator “Irgacure (registered trademark)” 819 (Ciba Specialty Ke) Mikals, 0.75 parts by mass) and t-amyl alcohol (10 parts by mass) were mixed and stirred, filtered through a membrane filter (0.45 μm) to remove insolubles, and a monomer mixture was obtained. The sample was put into a test tube, deaerated while being stirred with a touch mixer and reduced in pressure to 20 Torr (27 hPa), and then returned to atmospheric pressure with argon gas.This operation was repeated three times. The monomer mixture is injected into a mold made of (poly-4-methylpentene-1) and irradiated with light (8000 lux, 20 minutes) using a fluorescent lamp (Toshiba Corporation, FL-6D, daylight color, 6W, 4 tubes). After the polymerization, the mold is immersed in a 60% by mass isopropyl alcohol aqueous solution, and a spherical crown-shaped molded body (edge The resulting molded body was immersed in a large excess of 80% by weight isopropyl alcohol aqueous solution at 60 ° C. for 2 hours. Soaked in a 50% by weight isopropyl alcohol aqueous solution at room temperature for 30 minutes, then soaked in a large excess of 25% by weight isopropyl alcohol aqueous solution at room temperature for 30 minutes, and then soaked in a large excess of pure water at room temperature for 30 minutes. Finally, the molded body was immersed in clean pure water in a sealed vial and autoclaved for 30 minutes at 121 ° C. The water content of the obtained molded body was less than 1%. Moreover, the same operation was performed using two glass plates and a gasket as a mold to obtain a film sample of 60 mm × 60 mm × 0.25 mm.
(参考例49~69)
表10に示した成分を用い、参考例48と同様に行って、球冠形状の成型体、および60mm×60mm×0.25mmのフィルム状サンプルを得た。なお、表中の-はその成分を用いていないことを意味する。
(実施例15~183、比較例10~30、および対照例1と2)
表11~16に示した各参考例で得られた成型体または市販コンタクトレンズを、表11~16に示した第1溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に、該成型体または市販コンタクトレンズを表11~16中に示した第2溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。以上の操作を第3~第5溶液についても同様に繰り返した。得られた低含水性軟質基材の評価を実施した。結果を表11~16に示した。なお、表中の-はその溶液によるコーティング操作が行われていないこと、またはその評価が行われていないことを意味する。 (Reference Examples 49-69)
Using the components shown in Table 10, the same procedure as in Reference Example 48 was performed to obtain a crown-shaped molded body and a film sample of 60 mm × 60 mm × 0.25 mm. In the table, “-” means that the component is not used.
(Examples 15 to 183, Comparative Examples 10 to 30, and Control Examples 1 and 2)
The molded bodies or commercially available contact lenses obtained in the respective reference examples shown in Tables 11 to 16 were immersed in the first solutions shown in Tables 11 to 30 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, the molded body or the commercially available contact lens was immersed in the second solution shown in Tables 11 to 30 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The above operation was similarly repeated for the third to fifth solutions. Evaluation of the obtained low hydrous soft base material was implemented. The results are shown in Tables 11-16. In the table, “-” means that the coating operation with the solution is not performed or the evaluation is not performed.
表10に示した成分を用い、参考例48と同様に行って、球冠形状の成型体、および60mm×60mm×0.25mmのフィルム状サンプルを得た。なお、表中の-はその成分を用いていないことを意味する。
(実施例15~183、比較例10~30、および対照例1と2)
表11~16に示した各参考例で得られた成型体または市販コンタクトレンズを、表11~16に示した第1溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。次に、該成型体または市販コンタクトレンズを表11~16中に示した第2溶液に30分間浸漬した後、3つの純水浴にそれぞれ5分間浸漬した。以上の操作を第3~第5溶液についても同様に繰り返した。得られた低含水性軟質基材の評価を実施した。結果を表11~16に示した。なお、表中の-はその溶液によるコーティング操作が行われていないこと、またはその評価が行われていないことを意味する。 (Reference Examples 49-69)
Using the components shown in Table 10, the same procedure as in Reference Example 48 was performed to obtain a crown-shaped molded body and a film sample of 60 mm × 60 mm × 0.25 mm. In the table, “-” means that the component is not used.
(Examples 15 to 183, Comparative Examples 10 to 30, and Control Examples 1 and 2)
The molded bodies or commercially available contact lenses obtained in the respective reference examples shown in Tables 11 to 16 were immersed in the first solutions shown in Tables 11 to 30 for 30 minutes, and then immersed in three pure water baths for 5 minutes. Next, the molded body or the commercially available contact lens was immersed in the second solution shown in Tables 11 to 30 for 30 minutes, and then immersed in three pure water baths for 5 minutes. The above operation was similarly repeated for the third to fifth solutions. Evaluation of the obtained low hydrous soft base material was implemented. The results are shown in Tables 11-16. In the table, “-” means that the coating operation with the solution is not performed or the evaluation is not performed.
なお、対照例には、軟質基材であるシリコーンハイドロゲルによって形成された市販のソフトコンタクトレンズを用いた。
In the control example, a commercially available soft contact lens formed of silicone hydrogel as a soft substrate was used.
SHG-A:市販シリコーンハイドロゲルソフトコンタクトレンズA
SHG-B:市販シリコーンハイドロゲルソフトコンタクトレンズB SHG-A: Commercially available silicone hydrogel soft contact lens A
SHG-B: Commercially available silicone hydrogel soft contact lens B
SHG-B:市販シリコーンハイドロゲルソフトコンタクトレンズB SHG-A: Commercially available silicone hydrogel soft contact lens A
SHG-B: Commercially available silicone hydrogel soft contact lens B
*1:CPHA溶液EとCPDA溶液Aの1:1(質量)混合物
*2:CPHA溶液AとCPDA溶液Aの1:1(質量)混合物 * 1: 1: 1 (mass) mixture of CPHA solution E and CPDA solution A * 2: 1: 1 (mass) mixture of CPHA solution A and CPDA solution A
*2:CPHA溶液AとCPDA溶液Aの1:1(質量)混合物 * 1: 1: 1 (mass) mixture of CPHA solution E and CPDA solution A * 2: 1: 1 (mass) mixture of CPHA solution A and CPDA solution A
(実施例184)
<酸素透過率測定>
実施例62と同様にして作成したフィルム(厚み0.19mm)を20mm×20mmの大きさに切ってサンプルとした。酸素透過率測定装置OX-TRAN2/21形(株式会社日立ハイテクノロジーズ)を用いて酸素透過率測定を行った。キャリアガスとして窒素98%/水素2%の混合ガスを用い、測定ガスとして窒素79.3%/酸素20.7%の混合ガスを用いた。またガスの加湿は行わなかった。該サンプルの酸素透過率は390×10-11(cm2/sec)(mLO2)/(mL・hPa)であった。なお、同一装置で同一条件で測定した株式会社メニコン製ガス透過性ハードコンタクトレンズ“メニコンZ(登録商標)”の酸素透過率は150×10-11(cm2/sec)(mLO2)/(mL・hPa)、東レ株式会社製ガス透過性ハードコンタクトレンズ“ブレスオーハード(登録商標)”の酸素透過率は120×10-11(cm2/sec)(mLO2)/(mL・hPa)であった。
(参考例81)
着色剤の作製
50mLスクリュー瓶に20g純水を入れた。UniBlue A(品番298409、シグマアルドリッチ)を0.5g加え、37℃のインキュベータ中で溶解させた。溶解後、1N塩酸を4g添加し、pH試験紙でpH約1~2であることを確認した。酢酸エチルを24g添加し、軽く攪拌した。混合物を100mLナスララスコに移し、静置した。UniBlue Aが酢酸エチル側に移るので下層の水層を捨てた。酢酸エチル層を100mLナスフラスコに移し、20℃のエバポレータで蒸発させた。その後、真空乾燥器で40℃、16時間乾燥させ、酸型UniBlue Aを得た〔推定構造式(M4)〕。 (Example 184)
<Oxygen permeability measurement>
A film (thickness 0.19 mm) prepared in the same manner as in Example 62 was cut into a size of 20 mm × 20 mm to prepare a sample. Oxygen permeability was measured using an oxygen permeability measuring device OX-TRAN 2/21 (Hitachi High-Technologies Corporation). A mixed gas of 98% nitrogen / 2% hydrogen was used as the carrier gas, and a mixed gas of 79.3% nitrogen / 20.7% oxygen was used as the measurement gas. The gas was not humidified. The oxygen permeability of the sample was 390 × 10 −11 (cm 2 / sec) (mLO 2 ) / (mL · hPa). The oxygen permeability of the gas permeable hard contact lens “Menicon Z (registered trademark)” manufactured by Menicon Co., Ltd. measured under the same conditions with the same apparatus is 150 × 10 −11 (cm 2 / sec) (mLO 2 ) / ( mL · hPa), a gas permeable hard contact lens “breath ohard (registered trademark)” manufactured by Toray Industries, Inc. has an oxygen permeability of 120 × 10 −11 (cm 2 / sec) (mLO 2 ) / (mL · hPa) Met.
(Reference Example 81)
Preparation of coloring agent 20 g pure water was put into a 50 mL screw bottle. 0.5 g of UniBlue A (product number 298409, Sigma-Aldrich) was added and dissolved in an incubator at 37 ° C. After dissolution, 4 g of 1N hydrochloric acid was added, and it was confirmed that the pH was about 1-2 with a pH test paper. 24 g of ethyl acetate was added and lightly stirred. The mixture was transferred to a 100 mL Nasralasco and allowed to stand. Since UniBlue A moved to the ethyl acetate side, the lower aqueous layer was discarded. The ethyl acetate layer was transferred to a 100 mL eggplant flask and evaporated with a 20 ° C. evaporator. Then, it was made to dry at 40 degreeC for 16 hours with a vacuum dryer, and acid type UniBlue A was obtained [estimated structural formula (M4)].
<酸素透過率測定>
実施例62と同様にして作成したフィルム(厚み0.19mm)を20mm×20mmの大きさに切ってサンプルとした。酸素透過率測定装置OX-TRAN2/21形(株式会社日立ハイテクノロジーズ)を用いて酸素透過率測定を行った。キャリアガスとして窒素98%/水素2%の混合ガスを用い、測定ガスとして窒素79.3%/酸素20.7%の混合ガスを用いた。またガスの加湿は行わなかった。該サンプルの酸素透過率は390×10-11(cm2/sec)(mLO2)/(mL・hPa)であった。なお、同一装置で同一条件で測定した株式会社メニコン製ガス透過性ハードコンタクトレンズ“メニコンZ(登録商標)”の酸素透過率は150×10-11(cm2/sec)(mLO2)/(mL・hPa)、東レ株式会社製ガス透過性ハードコンタクトレンズ“ブレスオーハード(登録商標)”の酸素透過率は120×10-11(cm2/sec)(mLO2)/(mL・hPa)であった。
(参考例81)
着色剤の作製
50mLスクリュー瓶に20g純水を入れた。UniBlue A(品番298409、シグマアルドリッチ)を0.5g加え、37℃のインキュベータ中で溶解させた。溶解後、1N塩酸を4g添加し、pH試験紙でpH約1~2であることを確認した。酢酸エチルを24g添加し、軽く攪拌した。混合物を100mLナスララスコに移し、静置した。UniBlue Aが酢酸エチル側に移るので下層の水層を捨てた。酢酸エチル層を100mLナスフラスコに移し、20℃のエバポレータで蒸発させた。その後、真空乾燥器で40℃、16時間乾燥させ、酸型UniBlue Aを得た〔推定構造式(M4)〕。 (Example 184)
<Oxygen permeability measurement>
A film (thickness 0.19 mm) prepared in the same manner as in Example 62 was cut into a size of 20 mm × 20 mm to prepare a sample. Oxygen permeability was measured using an oxygen permeability measuring device OX-
(Reference Example 81)
Preparation of coloring agent 20 g pure water was put into a 50 mL screw bottle. 0.5 g of UniBlue A (product number 298409, Sigma-Aldrich) was added and dissolved in an incubator at 37 ° C. After dissolution, 4 g of 1N hydrochloric acid was added, and it was confirmed that the pH was about 1-2 with a pH test paper. 24 g of ethyl acetate was added and lightly stirred. The mixture was transferred to a 100 mL Nasralasco and allowed to stand. Since UniBlue A moved to the ethyl acetate side, the lower aqueous layer was discarded. The ethyl acetate layer was transferred to a 100 mL eggplant flask and evaporated with a 20 ° C. evaporator. Then, it was made to dry at 40 degreeC for 16 hours with a vacuum dryer, and acid type UniBlue A was obtained [estimated structural formula (M4)].
(参考例82)
コーティング溶液の調製
<PAA溶液>
ポリアクリル酸(169-18591、和光純薬工業株式会社、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<PEI溶液>
ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1質量%水溶液とした。
<p(DMAA/AA)溶液>
発明者らがラボで合成した合成例25のN,N-ジメチルアクリルアミド/アクリル酸共重合体を純水に溶解して1質量%水溶液とした。
<PAMPS溶液>
2-アクリルアミド-2-メチルプロパンスルホン酸ポリマー(シグマアルドリッチ、分子量200万、15質量%水溶液)を純水に溶解して1.5質量%水溶液とした。
(参考例83)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M5)の化合物、質量平均分子量29kD、数平均分子量26kD)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(3質量部)、成分Cとしてジメチルアミノエチルアクリレート(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学株式会社)(1質量部)、成分Cとして重合性基を有する参考例81の着色剤、酸型UniBlue A(0.04質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物をアルゴン雰囲気下で脱気した。窒素雰囲気下のグローブボックス中で、10cm角、厚さ3mmのガラス板2枚(うち1枚には剥離しやすいようにアルミシールを貼付)の間に、厚さ100μmのパラフィルムの中央部を切り抜いたものを2枚スペーサーとして挟み込んだものの空隙にモノマー混合物を充填し、光照射(株式会社東芝FL6D、1.01mW/cm2、20分間)して硬化させることによりフィルム状の成型体を得た。 (Reference Example 82)
Preparation of coating solution <PAA solution>
Polyacrylic acid (169-18591, Wako Pure Chemical Industries, Ltd., molecular weight 250,000) was dissolved in pure water to give a 1.2% by mass aqueous solution.
<PEI solution>
Polyethyleneimine (P3143, Sigma-Aldrich, molecular weight 750,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<P (DMAA / AA) solution>
The N, N-dimethylacrylamide / acrylic acid copolymer of Synthesis Example 25 synthesized by the inventors in the laboratory was dissolved in pure water to give a 1% by mass aqueous solution.
<PAMPS solution>
A 2-acrylamido-2-methylpropanesulfonic acid polymer (Sigma Aldrich,molecular weight 2 million, 15% by weight aqueous solution) was dissolved in pure water to give a 1.5% by weight aqueous solution.
(Reference Example 83)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (FM7726, JNC, compound of formula (M5), mass average molecular weight 29 kD, number average molecular weight 26 kD) (50 parts by mass), component B is trifluoroethyl acrylate (biscort 3F, Osaka Organic Chemical Co., Ltd.) (45 parts by mass), Component C as 2-ethylhexyl acrylate (3 parts by mass), Component C as dimethylaminoethyl acrylate (1 part by mass), Component C as an ultraviolet ray having a polymerizable group Absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1 part by mass), colorant of Reference Example 81 having a polymerizable group as component C, acid type UniBlue A (0.04 parts by mass), polymerization initiator “Irgacure (Registered trademark) "819 (Ciba Specialty Chemicals, 0.75 parts by mass) and And t-amyl alcohol (10 parts by mass) were mixed and stirred. The monomer mixture was obtained by filtering with a membrane filter (0.45 μm) to remove insoluble matters. The monomer mixture was degassed under an argon atmosphere. In the glove box under a nitrogen atmosphere, between the two 10 cm square and 3 mm thick glass plates (one of which is affixed with an aluminum seal to make it easy to peel off) A film-like molded body is obtained by filling a gap between two cutouts as spacers with a monomer mixture and curing by light irradiation (Toshiba FL6D, 1.01 mW / cm 2 , 20 minutes). It was.
コーティング溶液の調製
<PAA溶液>
ポリアクリル酸(169-18591、和光純薬工業株式会社、分子量25万)を純水に溶解して1.2質量%水溶液とした。
<PEI溶液>
ポリエチレンイミン(P3143、シグマアルドリッチ、分子量75万)を純水に溶解して1質量%水溶液とした。
<p(DMAA/AA)溶液>
発明者らがラボで合成した合成例25のN,N-ジメチルアクリルアミド/アクリル酸共重合体を純水に溶解して1質量%水溶液とした。
<PAMPS溶液>
2-アクリルアミド-2-メチルプロパンスルホン酸ポリマー(シグマアルドリッチ、分子量200万、15質量%水溶液)を純水に溶解して1.5質量%水溶液とした。
(参考例83)
成分Aとして両末端にメタクリロイル基を有するポリジメチルシロキサン(FM7726、JNC、式(M5)の化合物、質量平均分子量29kD、数平均分子量26kD)(50質量部)、成分Bとしてトリフルオロエチルアクリレート(ビスコート3F、大阪有機化学工業株式会社)(45質量部)、成分Cとして2-エチルヘキシルアクリレート(3質量部)、成分Cとしてジメチルアミノエチルアクリレート(1質量部)、成分Cとして重合性基を有する紫外線吸収剤(RUVA-93、大塚化学株式会社)(1質量部)、成分Cとして重合性基を有する参考例81の着色剤、酸型UniBlue A(0.04質量部)、重合開始剤“イルガキュア(登録商標)”819(チバ・スペシャルティ・ケミカルズ、0.75質量部)およびt-アミルアルコール(10質量部)を混合し撹拌した。メンブレンフィルター(0.45μm)でろ過して不溶分を除いてモノマー混合物を得た。このモノマー混合物をアルゴン雰囲気下で脱気した。窒素雰囲気下のグローブボックス中で、10cm角、厚さ3mmのガラス板2枚(うち1枚には剥離しやすいようにアルミシールを貼付)の間に、厚さ100μmのパラフィルムの中央部を切り抜いたものを2枚スペーサーとして挟み込んだものの空隙にモノマー混合物を充填し、光照射(株式会社東芝FL6D、1.01mW/cm2、20分間)して硬化させることによりフィルム状の成型体を得た。 (Reference Example 82)
Preparation of coating solution <PAA solution>
Polyacrylic acid (169-18591, Wako Pure Chemical Industries, Ltd., molecular weight 250,000) was dissolved in pure water to give a 1.2% by mass aqueous solution.
<PEI solution>
Polyethyleneimine (P3143, Sigma-Aldrich, molecular weight 750,000) was dissolved in pure water to give a 1% by mass aqueous solution.
<P (DMAA / AA) solution>
The N, N-dimethylacrylamide / acrylic acid copolymer of Synthesis Example 25 synthesized by the inventors in the laboratory was dissolved in pure water to give a 1% by mass aqueous solution.
<PAMPS solution>
A 2-acrylamido-2-methylpropanesulfonic acid polymer (Sigma Aldrich,
(Reference Example 83)
Polydimethylsiloxane having methacryloyl groups at both ends as component A (FM7726, JNC, compound of formula (M5), mass average molecular weight 29 kD, number average molecular weight 26 kD) (50 parts by mass), component B is trifluoroethyl acrylate (biscort 3F, Osaka Organic Chemical Co., Ltd.) (45 parts by mass), Component C as 2-ethylhexyl acrylate (3 parts by mass), Component C as dimethylaminoethyl acrylate (1 part by mass), Component C as an ultraviolet ray having a polymerizable group Absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1 part by mass), colorant of Reference Example 81 having a polymerizable group as component C, acid type UniBlue A (0.04 parts by mass), polymerization initiator “Irgacure (Registered trademark) "819 (Ciba Specialty Chemicals, 0.75 parts by mass) and And t-amyl alcohol (10 parts by mass) were mixed and stirred. The monomer mixture was obtained by filtering with a membrane filter (0.45 μm) to remove insoluble matters. The monomer mixture was degassed under an argon atmosphere. In the glove box under a nitrogen atmosphere, between the two 10 cm square and 3 mm thick glass plates (one of which is affixed with an aluminum seal to make it easy to peel off) A film-like molded body is obtained by filling a gap between two cutouts as spacers with a monomer mixture and curing by light irradiation (Toshiba FL6D, 1.01 mW / cm 2 , 20 minutes). It was.
得られた成型体(フィルム)を、60質量%イソプロパノール(IPA)水溶液に60℃で30分間浸漬しガラス板から剥離後、さらに80質量%IPA水溶液に60℃、2時間浸漬して残存モノマーなどの不純物を抽出し、50質量%IPA水溶液、25質量%IPA水溶液と段階的にIPA濃度を下げた液におよそ30分ずつ浸漬し、最後に2時間以上水に浸漬して水和した。
(参考例84)
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(37.0質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、光開始剤イルガキュア1850(1.26質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(1.26質量部)メタクリル酸-2-ヒドロキシエチル(9.2質量部)、トリエチレングリコールジメタクリレート(1.26質量部)、式(M8)で表されるUniBlue A(0.02質量部)、テトラヒドロリナロール(23.9質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。 The obtained molded body (film) was immersed in a 60% by mass isopropanol (IPA) aqueous solution at 60 ° C. for 30 minutes, peeled off from the glass plate, and further immersed in an 80% by mass IPA aqueous solution at 60 ° C. for 2 hours to leave residual monomers, etc. The impurities were extracted, immersed in a 50% by mass IPA aqueous solution and a 25% by mass IPA aqueous solution in a stepwise decrease in IPA concentration for about 30 minutes, and finally immersed in water for 2 hours or longer to be hydrated.
(Reference Example 84)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (37.0 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Photoinitiator Irgacure 1850 (1.26 parts by mass), UV absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1.26 parts by mass) 2-hydroxyethyl methacrylate (9.2 parts by mass), triethylene Glycol dimethacrylate (1.26 parts by mass), UniBlue A (0.02 parts by mass) represented by the formula (M8), and tetrahydrolinalool (23.9 parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(参考例84)
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(37.0質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、光開始剤イルガキュア1850(1.26質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(1.26質量部)メタクリル酸-2-ヒドロキシエチル(9.2質量部)、トリエチレングリコールジメタクリレート(1.26質量部)、式(M8)で表されるUniBlue A(0.02質量部)、テトラヒドロリナロール(23.9質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。 The obtained molded body (film) was immersed in a 60% by mass isopropanol (IPA) aqueous solution at 60 ° C. for 30 minutes, peeled off from the glass plate, and further immersed in an 80% by mass IPA aqueous solution at 60 ° C. for 2 hours to leave residual monomers, etc. The impurities were extracted, immersed in a 50% by mass IPA aqueous solution and a 25% by mass IPA aqueous solution in a stepwise decrease in IPA concentration for about 30 minutes, and finally immersed in water for 2 hours or longer to be hydrated.
(Reference Example 84)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (37.0 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Photoinitiator Irgacure 1850 (1.26 parts by mass), UV absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1.26 parts by mass) 2-hydroxyethyl methacrylate (9.2 parts by mass), triethylene Glycol dimethacrylate (1.26 parts by mass), UniBlue A (0.02 parts by mass) represented by the formula (M8), and tetrahydrolinalool (23.9 parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(参考例85)
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(28.0質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、ポリビニルピロリドン(Mw約50万、12.0質量部)、光開始剤イルガキュア1850(1.0質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(1.0質量部)メタクリル酸-2-ヒドロキシエチル(7.0質量部)、トリエチレングリコールジメタクリレート(1.0質量部)、式(M8)で表される染料モノマー(0.02質量部)、テトラヒドロリナロール(32.0質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。
(参考例86)
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(22.2質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、ポリビニルピロリドン(Mw約50万、20.0質量部)、光開始剤イルガキュア1850(0.76質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(0.76質量部)メタクリル酸-2-ヒドロキシエチル(5.5質量部)、トリエチレングリコールジメタクリレート(0.76質量部)、式(M8)で表される染料モノマー(0.02質量部)、テトラヒドロリナロール(50.0質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。
(参考例87)
参考例85のポリビニルピロリドンの代わりにポリジメチルアクリルアミド(Mw約50万、12.0質量部)を用いて、参考例83と同様の操作を行いフィルムを作製した。
(参考例88)
参考例86のポリビニルピロリドンの代わりにポリジメチルアクリルアミド(Mw約50万、20.0質量部)を用いて、参考例83と同様の操作を行いフィルムを作製した。
<保水性の評価>
(実施例191)
参考例83で得られたフィルムをPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。フィルムを新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。フィルムは、48時間保管後も、保水性と軟らかさがあった。評価結果を表17に示した。 (Reference Example 85)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (28.0 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 12.0 parts by mass), photoinitiator Irgacure 1850 (1.0 part by mass), ultraviolet absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1.0 part by mass) methacrylic acid -2-hydroxyethyl (7.0 parts by mass), triethylene glycol dimethacrylate (1.0 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalool (32.0 parts) Parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(Reference Example 86)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (22.2 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 20.0 parts by mass), photoinitiator Irgacure 1850 (0.76 parts by mass), UV absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (0.76 parts by mass) methacrylic acid -2-hydroxyethyl (5.5 parts by mass), triethylene glycol dimethacrylate (0.76 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalol (50.0 parts) Parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(Reference Example 87)
A film was prepared in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 12.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 85.
(Reference Example 88)
A film was produced in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 20.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 86.
<Evaluation of water retention>
(Example 191)
The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. The film had water retention and softness even after storage for 48 hours. The evaluation results are shown in Table 17.
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(28.0質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、ポリビニルピロリドン(Mw約50万、12.0質量部)、光開始剤イルガキュア1850(1.0質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(1.0質量部)メタクリル酸-2-ヒドロキシエチル(7.0質量部)、トリエチレングリコールジメタクリレート(1.0質量部)、式(M8)で表される染料モノマー(0.02質量部)、テトラヒドロリナロール(32.0質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。
(参考例86)
式(M6)で表されるシリコーンモノマー(13.4質量部)、N,N-ジメチルアクリルアミド(22.2質量部)、式(M7)で表されるシリコーンモノマー(36.6質量部)、ポリビニルピロリドン(Mw約50万、20.0質量部)、光開始剤イルガキュア1850(0.76質量部)、紫外線吸収剤(RUVA-93、大塚化学株式会社)(0.76質量部)メタクリル酸-2-ヒドロキシエチル(5.5質量部)、トリエチレングリコールジメタクリレート(0.76質量部)、式(M8)で表される染料モノマー(0.02質量部)、テトラヒドロリナロール(50.0質量部)を混合し撹拌した。その後、参考例83と同様の操作を行い、フィルムを作製した。
(参考例87)
参考例85のポリビニルピロリドンの代わりにポリジメチルアクリルアミド(Mw約50万、12.0質量部)を用いて、参考例83と同様の操作を行いフィルムを作製した。
(参考例88)
参考例86のポリビニルピロリドンの代わりにポリジメチルアクリルアミド(Mw約50万、20.0質量部)を用いて、参考例83と同様の操作を行いフィルムを作製した。
<保水性の評価>
(実施例191)
参考例83で得られたフィルムをPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。フィルムを新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、p(DMAA/AA)溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。フィルムは、48時間保管後も、保水性と軟らかさがあった。評価結果を表17に示した。 (Reference Example 85)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (28.0 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 12.0 parts by mass), photoinitiator Irgacure 1850 (1.0 part by mass), ultraviolet absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (1.0 part by mass) methacrylic acid -2-hydroxyethyl (7.0 parts by mass), triethylene glycol dimethacrylate (1.0 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalool (32.0 parts) Parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(Reference Example 86)
Silicone monomer represented by formula (M6) (13.4 parts by mass), N, N-dimethylacrylamide (22.2 parts by mass), silicone monomer represented by formula (M7) (36.6 parts by mass), Polyvinylpyrrolidone (Mw about 500,000, 20.0 parts by mass), photoinitiator Irgacure 1850 (0.76 parts by mass), UV absorber (RUVA-93, Otsuka Chemical Co., Ltd.) (0.76 parts by mass) methacrylic acid -2-hydroxyethyl (5.5 parts by mass), triethylene glycol dimethacrylate (0.76 parts by mass), a dye monomer represented by the formula (M8) (0.02 parts by mass), tetrahydrolinalol (50.0 parts) Parts by mass) were mixed and stirred. Thereafter, the same operation as in Reference Example 83 was performed to produce a film.
(Reference Example 87)
A film was prepared in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 12.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 85.
(Reference Example 88)
A film was produced in the same manner as in Reference Example 83 using polydimethylacrylamide (Mw: about 500,000, 20.0 parts by mass) instead of the polyvinyl pyrrolidone of Reference Example 86.
<Evaluation of water retention>
(Example 191)
The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the p (DMAA / AA) solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. The film had water retention and softness even after storage for 48 hours. The evaluation results are shown in Table 17.
(実施例192)
参考例83で得られたフィルムをPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。フィルムを新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、PAMPS溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。フィルムは、48時間保管後も保水性と軟らかさがあった。評価結果を表17に示した。
(比較例31~35)
表17中に示した各参考例で得られたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。48時間保管後のフィルムを皮膚にのせたところ、乾燥感があり硬かった。評価結果を表17に示した。 (Example 192)
The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the PAMPS solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. The film had water retention and softness even after storage for 48 hours. The evaluation results are shown in Table 17.
(Comparative Examples 31 to 35)
The film obtained in each reference example shown in Table 17 was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle, and autoclaved at 121 ° C. for 30 minutes. went. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. When the film after storage for 48 hours was placed on the skin, it was dry and hard. The evaluation results are shown in Table 17.
参考例83で得られたフィルムをPAA溶液に室温で30分間浸漬した後、ビーカー中の純水で軽く濯ぎ洗いした。フィルムを新しい純水が入ったビーカーに移し、超音波洗浄器にかけた(30秒間)。さらに、新しい純水が入ったビーカー中で軽く濯ぎ洗いした。次いで、PEI溶液、PAMPS溶液の順に同様の操作を繰り返した。コーティング操作を終えた後、コーティングしたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。フィルムは、48時間保管後も保水性と軟らかさがあった。評価結果を表17に示した。
(比較例31~35)
表17中に示した各参考例で得られたフィルムをUMサンプル瓶中のホウ酸緩衝液(pH7.1~7.3)中に浸漬した状態で入れ、121℃で30分間、オートクレーブ滅菌を行った。滅菌後のフィルムを48時間、温度33.1℃、湿度90%のデシケータ中に保管して保水性の評価を行った。48時間保管後のフィルムを皮膚にのせたところ、乾燥感があり硬かった。評価結果を表17に示した。 (Example 192)
The film obtained in Reference Example 83 was immersed in a PAA solution at room temperature for 30 minutes, and then lightly rinsed with pure water in a beaker. The film was transferred to a beaker containing fresh pure water and placed in an ultrasonic cleaner (30 seconds). Furthermore, it was rinsed lightly in a beaker containing fresh pure water. Subsequently, the same operation was repeated in the order of the PEI solution and the PAMPS solution. After finishing the coating operation, the coated film was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle and autoclaved at 121 ° C. for 30 minutes. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. The film had water retention and softness even after storage for 48 hours. The evaluation results are shown in Table 17.
(Comparative Examples 31 to 35)
The film obtained in each reference example shown in Table 17 was immersed in a borate buffer solution (pH 7.1 to 7.3) in a UM sample bottle, and autoclaved at 121 ° C. for 30 minutes. went. The sterilized film was stored in a desiccator at a temperature of 33.1 ° C. and a humidity of 90% for 48 hours to evaluate water retention. When the film after storage for 48 hours was placed on the skin, it was dry and hard. The evaluation results are shown in Table 17.
本発明は低含水性軟質デバイスに関するものであり、医療デバイス、バイオテクノロジー用デバイス、農業/ガーデニングデバイス、濾過デバイス、防汚デバイス、美容デバイス、その他日用品において有用である。
The present invention relates to a low hydrous soft device, and is useful in medical devices, biotechnology devices, agricultural / gardening devices, filtration devices, antifouling devices, beauty devices, and other daily necessities.
1 人工皮革
2 サンプルフィルム
3 ゴム板
4 鉄球の入ったプラスチック容器
10 輸液チューブ
20 カテーテル
30 ステント
31 ステント本体
32 低含水性軟質基材
40 内視鏡
41 挿入管
42 先端部
43 光学系
44 端面
45 低含水性軟質基材
50 気液分離膜
60 保湿シート
61 開口
62 土
63 植物
70 薬剤担体
80 粒状保湿材
81 観葉植物
82 根 DESCRIPTION OF SYMBOLS 1Artificial leather 2 Sample film 3 Rubber plate 4 Plastic container containing iron ball 10 Infusion tube 20 Catheter 30 Stent 31 Stent main body 32 Low hydrous soft base material 40 Endoscope 41 Insertion tube 42 Tip part 43 Optical system 44 End face 45 Low hydrous soft substrate 50 Gas-liquid separation membrane 60 Moisturizing sheet 61 Opening 62 Soil 63 Plant 70 Pharmaceutical carrier 80 Granular moisturizing material 81 Houseplant 82 Root
2 サンプルフィルム
3 ゴム板
4 鉄球の入ったプラスチック容器
10 輸液チューブ
20 カテーテル
30 ステント
31 ステント本体
32 低含水性軟質基材
40 内視鏡
41 挿入管
42 先端部
43 光学系
44 端面
45 低含水性軟質基材
50 気液分離膜
60 保湿シート
61 開口
62 土
63 植物
70 薬剤担体
80 粒状保湿材
81 観葉植物
82 根 DESCRIPTION OF SYMBOLS 1
Claims (14)
- 低含水性軟質基材の表面の少なくとも一部に、酸性ポリマーおよび塩基性ポリマーからなる層が形成された軟質部材を備える低含水性軟質デバイス。 A low hydrous soft device comprising a soft member in which a layer made of an acidic polymer and a basic polymer is formed on at least a part of the surface of a low hydrous soft substrate.
- 前記軟質部材は、チューブ形状を有する請求項1に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 1, wherein the soft member has a tube shape.
- 前記軟質部材は、シート状またはフィルム状をなす請求項1に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 1, wherein the soft member is in the form of a sheet or a film.
- 医療デバイス、バイオテクノロジー用デバイス、農業/ガーデニングデバイス、濾過デバイス、防汚デバイス、および美容デバイスのうちのいずれかである請求項3に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 3, which is any one of a medical device, a biotechnology device, an agricultural / gardening device, a filtration device, an antifouling device, and a beauty device.
- 前記医療デバイスは、皮膚用被覆材、創傷被覆材、皮膚用保護材、または、皮膚用薬剤担体を含む請求項4に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 4, wherein the medical device includes a skin covering material, a wound covering material, a skin protecting material, or a skin drug carrier.
- 前記軟質部材は、収納容器形状を有する請求項1に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 1, wherein the soft member has a storage container shape.
- 前記軟質部材は、粒状を有する請求項1に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 1, wherein the soft member has a granular shape.
- 前記低含水性軟質基材が、下記成分Aの重合体、または下記成分Aおよび成分Bとの共重合体を主成分とする請求項1~7のいずれか1項に記載の低含水性軟質デバイス;
成分A:1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物;
成分B:フルオロアルキル基を有する重合性モノマー。 The low hydrous soft substrate according to any one of claims 1 to 7, wherein the low hydrous soft base material is mainly composed of a polymer of the following component A or a copolymer of the following component A and component B. device;
Component A: a polysiloxane compound having a plurality of polymerizable functional groups per molecule and having a number average molecular weight of 6000 or more;
Component B: a polymerizable monomer having a fluoroalkyl group. - 前記成分Aが1分子あたり2個の重合性官能基を有するポリシロキサン化合物である請求項8に記載の低含水性軟質デバイス。 The low hydrous soft device according to claim 8, wherein the component A is a polysiloxane compound having two polymerizable functional groups per molecule.
- 前記酸性ポリマーおよび塩基性ポリマーからなる層が、1種以上の酸性ポリマー溶液による処理を1回以上、および1種以上の塩基性ポリマー溶液による処理を1回以上行うことにより形成されている請求項1~9のいずれか1項に記載の低含水性軟質デバイス。 The layer composed of the acidic polymer and the basic polymer is formed by performing the treatment with one or more acidic polymer solutions once or more and the treatment with one or more basic polymer solutions once or more. 10. The low hydrous soft device according to any one of 1 to 9.
- 前記酸性ポリマーおよび塩基性ポリマーからなる層が、前記酸性ポリマー溶液による処理を1回または2回、および前記塩基性ポリマー溶液による処理を1回または2回、合計で3回処理を行うことにより形成されている請求項10に記載の低含水性軟質デバイス。 The layer composed of the acidic polymer and the basic polymer is formed by performing the treatment with the acidic polymer solution once or twice and the treatment with the basic polymer solution once or twice for a total of three times. The low hydrous soft device according to claim 10.
- 前記酸性ポリマーおよび塩基性ポリマーからなる層が、2種の酸性ポリマー溶液による処理を2回および前記塩基性ポリマー溶液による処理を1回行うことにより形成されている請求項10に記載の低含水性軟質デバイス。 The low water content according to claim 10, wherein the layer composed of the acidic polymer and the basic polymer is formed by performing the treatment with two kinds of acidic polymer solutions twice and the treatment with the basic polymer solution once. Soft device.
- 前記酸性ポリマーおよび塩基性ポリマーからなる層を形成する前記酸性ポリマーおよび前記塩基性ポリマーのうちの少なくとも1種が、水酸基およびアミド基から選ばれた基を有するポリマーである請求項1~12のいずれか1項に記載の低含水性軟質デバイス。 13. The polymer according to claim 1, wherein at least one of the acidic polymer and the basic polymer forming the layer composed of the acidic polymer and the basic polymer is a polymer having a group selected from a hydroxyl group and an amide group. The low hydrous soft device according to claim 1.
- 下記工程1~工程3をこの順に含む低含水性軟質デバイスの製造方法;
<工程1>
1分子あたり複数の重合性官能基を有し、数平均分子量が6000以上のポリシロキサン化合物である成分A、および、フルオロアルキル基を有する重合性モノマーである成分Bを含む混合物を重合し、所望の形状の成型体を得る工程;
<工程2>
成型体を塩基性ポリマー溶液に接触させた後、余剰の前記塩基性ポリマー溶液を洗浄除去する工程;
<工程3>
成型体を酸性ポリマー溶液に接触させた後、余剰の前記酸性ポリマー溶液を洗浄除去する工程。 A method for producing a low hydrous soft device comprising the following steps 1 to 3 in this order;
<Step 1>
Polymerizing a mixture containing component A which is a polysiloxane compound having a plurality of polymerizable functional groups per molecule and a number average molecular weight of 6000 or more and component B which is a polymerizable monomer having a fluoroalkyl group Obtaining a molded body having a shape of
<Step 2>
A step of washing and removing excess of the basic polymer solution after contacting the molded body with the basic polymer solution;
<Step 3>
A step of washing and removing excess acidic polymer solution after bringing the molded body into contact with the acidic polymer solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012540195A JP6338263B2 (en) | 2011-08-17 | 2012-08-10 | Low hydrous soft device and manufacturing method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-178666 | 2011-08-17 | ||
JP2011178666 | 2011-08-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013024800A1 true WO2013024800A1 (en) | 2013-02-21 |
Family
ID=47715119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/070436 WO2013024800A1 (en) | 2011-08-17 | 2012-08-10 | Low-moisture-content soft device and method for producing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6338263B2 (en) |
TW (1) | TWI535743B (en) |
WO (1) | WO2013024800A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017146101A1 (en) | 2016-02-22 | 2017-08-31 | 東レ株式会社 | Device and production method for same |
KR20180114900A (en) | 2016-02-22 | 2018-10-19 | 도레이 카부시키가이샤 | Device and method of manufacturing the same |
WO2018207644A1 (en) | 2017-05-11 | 2018-11-15 | 東レ株式会社 | Method for producing medical device |
WO2019031477A1 (en) | 2017-08-09 | 2019-02-14 | 東レ株式会社 | Medical device and method for manufacturing same |
WO2020121940A1 (en) | 2018-12-12 | 2020-06-18 | 東レ株式会社 | Medical device and method of manufacturing same |
WO2020235275A1 (en) | 2019-05-20 | 2020-11-26 | 東レ株式会社 | Method for manufacturing medical device |
WO2021039519A1 (en) | 2019-08-27 | 2021-03-04 | 東レ株式会社 | Method for manufacturing medical device |
WO2021145249A1 (en) | 2020-01-16 | 2021-07-22 | 東レ株式会社 | Method for producing medical device |
WO2022185833A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Method for producing coated medical device |
WO2022185837A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Coated medical device and production method therefor |
WO2022185836A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Coated medical device and production method therefor |
WO2023230046A1 (en) * | 2022-05-23 | 2023-11-30 | Surf Bio, Inc. | Polymer excipients comprising n,n-diethylacrylamide (dea) for biopharmaceutical formulations |
US11945892B2 (en) | 2020-04-17 | 2024-04-02 | The Board Of Trustees Of The Leland Stanford Junior Univeristy | Polymer excipients for biopharmaceutical formulations |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503890A (en) * | 1988-02-19 | 1990-11-15 | ブリストル・マイヤーズ カンパニー | Polymer surface coating method and products coated using the method |
JPH0641336A (en) * | 1992-07-23 | 1994-02-15 | Toray Ind Inc | Production of formed plastic article |
JPH10201840A (en) * | 1997-01-23 | 1998-08-04 | Toyobo Co Ltd | Easily slipperable medical treatment appliance and its production |
JP2002501211A (en) * | 1998-01-09 | 2002-01-15 | ノバルティス ファーマ アクチエンゲゼルシャフト | Polymer coating |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0330617B1 (en) * | 1988-02-26 | 1991-07-03 | Ciba-Geigy Ag | Wettable, flexible, oxygen permeable contact lens containing block copolymer polysiloxane-polyoxyalkylene backbone units |
JPH03240021A (en) * | 1990-02-19 | 1991-10-25 | Asahi Chem Ind Co Ltd | Contact lens material |
JPH03257420A (en) * | 1990-03-08 | 1991-11-15 | Asahi Chem Ind Co Ltd | Oxygen permeable contact lens material |
JPH055861A (en) * | 1991-06-28 | 1993-01-14 | Asahi Chem Ind Co Ltd | Contact lens material |
JP3222026B2 (en) * | 1994-12-26 | 2001-10-22 | 株式会社メニコン | Contact lens material and intraocular lens material |
JP4834916B2 (en) * | 2000-05-10 | 2011-12-14 | 東レ株式会社 | Surface-treated plastic molded product |
JP4676768B2 (en) * | 2005-01-18 | 2011-04-27 | 株式会社シード | Non-hydrous soft ophthalmic lens material and non-hydrous soft ophthalmic lens using the same |
CN102006892B (en) * | 2008-05-16 | 2013-10-09 | 泰尔茂株式会社 | Method of radiation sterilization of medical device having hydrophilic polymer coating |
-
2012
- 2012-08-10 JP JP2012540195A patent/JP6338263B2/en active Active
- 2012-08-10 WO PCT/JP2012/070436 patent/WO2013024800A1/en active Application Filing
- 2012-08-16 TW TW101129694A patent/TWI535743B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02503890A (en) * | 1988-02-19 | 1990-11-15 | ブリストル・マイヤーズ カンパニー | Polymer surface coating method and products coated using the method |
JPH0641336A (en) * | 1992-07-23 | 1994-02-15 | Toray Ind Inc | Production of formed plastic article |
JPH10201840A (en) * | 1997-01-23 | 1998-08-04 | Toyobo Co Ltd | Easily slipperable medical treatment appliance and its production |
JP2002501211A (en) * | 1998-01-09 | 2002-01-15 | ノバルティス ファーマ アクチエンゲゼルシャフト | Polymer coating |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180114900A (en) | 2016-02-22 | 2018-10-19 | 도레이 카부시키가이샤 | Device and method of manufacturing the same |
WO2017146101A1 (en) | 2016-02-22 | 2017-08-31 | 東レ株式会社 | Device and production method for same |
US11986573B2 (en) | 2016-02-22 | 2024-05-21 | Toray Industries, Inc. | Device and production method for the same |
US11020511B2 (en) | 2016-02-22 | 2021-06-01 | Toray Industries, Inc. | Device and production method for the same |
KR20220054912A (en) | 2016-02-22 | 2022-05-03 | 도레이 카부시키가이샤 | Device and production method for same |
WO2018207644A1 (en) | 2017-05-11 | 2018-11-15 | 東レ株式会社 | Method for producing medical device |
KR20200003797A (en) | 2017-05-11 | 2020-01-10 | 도레이 카부시키가이샤 | Method of manufacturing a medical device |
US11358352B2 (en) | 2017-05-11 | 2022-06-14 | Toray Industries, Inc. | Method for producing medical device |
US11202849B2 (en) | 2017-08-09 | 2021-12-21 | Toray Industries, Inc. | Medical device and method for manufacturing the same |
WO2019031477A1 (en) | 2017-08-09 | 2019-02-14 | 東レ株式会社 | Medical device and method for manufacturing same |
WO2020121940A1 (en) | 2018-12-12 | 2020-06-18 | 東レ株式会社 | Medical device and method of manufacturing same |
WO2020235275A1 (en) | 2019-05-20 | 2020-11-26 | 東レ株式会社 | Method for manufacturing medical device |
WO2021039519A1 (en) | 2019-08-27 | 2021-03-04 | 東レ株式会社 | Method for manufacturing medical device |
WO2021145249A1 (en) | 2020-01-16 | 2021-07-22 | 東レ株式会社 | Method for producing medical device |
US11945892B2 (en) | 2020-04-17 | 2024-04-02 | The Board Of Trustees Of The Leland Stanford Junior Univeristy | Polymer excipients for biopharmaceutical formulations |
US12077621B2 (en) | 2020-04-17 | 2024-09-03 | The Board Of Trustees Of The Leland Stanford Junior Univeristy | Polymer excipients for biopharmaceutical formulations |
WO2022185833A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Method for producing coated medical device |
WO2022185837A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Coated medical device and production method therefor |
WO2022185836A1 (en) | 2021-03-02 | 2022-09-09 | 東レ株式会社 | Coated medical device and production method therefor |
WO2023230046A1 (en) * | 2022-05-23 | 2023-11-30 | Surf Bio, Inc. | Polymer excipients comprising n,n-diethylacrylamide (dea) for biopharmaceutical formulations |
Also Published As
Publication number | Publication date |
---|---|
TWI535743B (en) | 2016-06-01 |
JPWO2013024800A1 (en) | 2015-03-05 |
JP6338263B2 (en) | 2018-06-06 |
TW201319098A (en) | 2013-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6338263B2 (en) | Low hydrous soft device and manufacturing method thereof | |
JP5954170B2 (en) | Low hydrous soft ophthalmic lens and manufacturing method thereof | |
JP6159768B2 (en) | Low hydrous soft contact lens and method for producing low hydrous soft contact lens | |
JP6036299B2 (en) | Medical device and manufacturing method thereof | |
JP6070193B2 (en) | Medical device and manufacturing method thereof | |
JP6003653B2 (en) | Medical device and manufacturing method thereof | |
US9753187B2 (en) | Low hydrous soft ophthalmic lens and method for manufacturing the same | |
JP6003082B2 (en) | Low hydrous soft device, composition for low hydrous soft device, and production method thereof | |
JP2013057932A (en) | Soft resin device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2012540195 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12823739 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12823739 Country of ref document: EP Kind code of ref document: A1 |