JPWO2019031349A1 - Electrode for lithium secondary battery and method for manufacturing the same - Google Patents

Electrode for lithium secondary battery and method for manufacturing the same Download PDF

Info

Publication number
JPWO2019031349A1
JPWO2019031349A1 JP2019535139A JP2019535139A JPWO2019031349A1 JP WO2019031349 A1 JPWO2019031349 A1 JP WO2019031349A1 JP 2019535139 A JP2019535139 A JP 2019535139A JP 2019535139 A JP2019535139 A JP 2019535139A JP WO2019031349 A1 JPWO2019031349 A1 JP WO2019031349A1
Authority
JP
Japan
Prior art keywords
electrode
layer
pai
solvent
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019535139A
Other languages
Japanese (ja)
Other versions
JP7113527B2 (en
Inventor
健太 柴田
健太 柴田
耕 竹内
耕 竹内
山田 宗紀
宗紀 山田
朗 繁田
朗 繁田
良彰 越後
良彰 越後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Publication of JPWO2019031349A1 publication Critical patent/JPWO2019031349A1/en
Application granted granted Critical
Publication of JP7113527B2 publication Critical patent/JP7113527B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

安全性に優れ、内部抵抗が十分に低下したリチウム二次電池用電極とその製造方法を提供することを目的とする。<1> 電極活物質層の表面に、多孔質ポリアミドイミド(PAI)層が積層一体化したリチウム二次電池用電極であって、多孔質PAI層が以下の特徴を有するリチウム二次電池用電極。1)多孔質PAI層のイオン伝導度が0.6mS/cm以上である。2)多孔質PAI層の厚みが1μm超、30μm未満である。<2> リチウム二次電池用電極の集電体である金属箔の表面に、バインダと活物質微粒子と溶媒とを含む分散体を塗布し乾燥して金属箔上に電極活物質層を形成させ、その後、この電極活物質層の表面にPAIと溶媒とを含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を除去することにより、塗膜内で相分離を起こさせてイオン透過性多孔質層を形成せしめるとともに、前記電極活物質層と前記イオン透過性多孔質層とを積層一体化とするリチウム二次電池用電極の製造方法において、PAIがジアミン成分として4,4′−ジアミノジフェニルエーテルを含み、溶媒が5質量部以上、20質量部以下のアミド系溶媒と、95質量部以下、80質量部以上のテトラグライム(TG)とからなる混合溶媒(ただし、前記アミド系溶媒とTGの合計量が100質量部)であることを特徴とする前記リチウム二次電池用電極の製造方法。It is an object of the present invention to provide an electrode for a lithium secondary battery, which is excellent in safety and has a sufficiently reduced internal resistance, and a method for manufacturing the same. <1> A lithium secondary battery electrode in which a porous polyamideimide (PAI) layer is laminated and integrated on the surface of an electrode active material layer, and the porous PAI layer has the following features: .. 1) The ionic conductivity of the porous PAI layer is 0.6 mS/cm or more. 2) The thickness of the porous PAI layer is more than 1 μm and less than 30 μm. <2> A dispersion containing a binder, active material particles and a solvent is applied to the surface of a metal foil that is a current collector of an electrode for a lithium secondary battery and dried to form an electrode active material layer on the metal foil. After that, a coating liquid containing PAI and a solvent is applied to the surface of the electrode active material layer to form a coating film, and then the solvent in the coating film is removed, whereby phase separation occurs in the coating film. In the method for producing an electrode for a lithium secondary battery in which the electrode active material layer and the ion-permeable porous layer are integrally laminated, the PAI is a diamine component. As a mixed solvent comprising 4,4′-diaminodiphenyl ether as a solvent, the solvent being 5 parts by mass or more and 20 parts by mass or less of an amide solvent, and 95 parts by mass or less and 80 parts by mass or more of tetraglyme (TG) (however, The total amount of the amide-based solvent and TG is 100 parts by mass), The method for producing an electrode for a lithium secondary battery.

Description

本発明は、安全性に優れ、かつ高容量で充放電サイクル特性の良好な、リチウム二次電池用電極およびその製造方法に関する。 The present invention relates to a lithium secondary battery electrode having excellent safety, high capacity and good charge/discharge cycle characteristics, and a method for producing the same.

リチウム二次電池において、電極表面の傷や凹凸が原因となって、電極に接しているセパレータの電気絶縁性を破壊することがある。その結果、電気的な内部短絡が発生することがある。 In a lithium secondary battery, the electric insulation of the separator in contact with the electrode may be destroyed due to scratches or irregularities on the surface of the electrode. As a result, an internal electrical short circuit may occur.

この内部短絡を防止するため、特許文献1には、ポリアミドイミド(PAI)等の耐熱性高分子が溶解した溶液を正極面上に塗布し、PAIに対する貧溶媒を含む凝固液にこの正極を浸漬して、PAI等を析出させ、乾燥することにより、多孔質PAI層と正極とが一体化したリチウム二次電池用正極を製造する方法が提案されている。しかしながら、このような方法を用いて製造されたPAI等からなる多孔質層のイオン透過性は十分ではないため、電極の内部抵抗高くなり、結果として良好な充放電特性が得られないという問題があった。さらに、前記した凝固液を用いて、多孔質層を得る方法は、凝固浴から貧溶媒を含む廃液が発生するので、環境適合性の観点から、製造法としても問題があった。 In order to prevent this internal short circuit, in Patent Document 1, a solution in which a heat-resistant polymer such as polyamideimide (PAI) is dissolved is applied on the positive electrode surface, and the positive electrode is dipped in a coagulating liquid containing a poor solvent for PAI. Then, a method for producing a positive electrode for a lithium secondary battery in which a porous PAI layer and a positive electrode are integrated by depositing PAI and the like and drying it is proposed. However, since the ion permeability of the porous layer made of PAI or the like produced by such a method is not sufficient, the internal resistance of the electrode becomes high, and as a result, good charge/discharge characteristics cannot be obtained. there were. Furthermore, the method for obtaining a porous layer using the coagulation liquid described above has a problem as a manufacturing method from the viewpoint of environmental compatibility since waste liquid containing a poor solvent is generated from the coagulation bath.

このような凝固液を用いる方法の問題を解決する方法として、特許文献2には、PAI等の耐熱性高分子に対する良溶媒と貧溶媒を含む均一溶液を電極表面に塗布、乾燥することにより多孔質層を形成させるための方法が提案されている。 As a method for solving the problem of the method using such a coagulating liquid, Patent Document 2 discloses that a uniform solution containing a good solvent and a poor solvent for a heat resistant polymer such as PAI is applied to the surface of an electrode and dried to form a porous film. Methods have been proposed for forming a textured layer.

特開平11−185731号公報Japanese Patent Laid-Open No. 11-185731 国際公開2014/106954号公報International Publication 2014/106954

しかしながら、この方法で得られた電極においても、短時間で充放電可能なリチウム二次電池用の電極とするには、イオン透過性が十分なものではなく、イオン透過性をさらに向上させて、内部抵抗がさらに低下した多孔質PAI層とする必要があった。 However, even in the electrode obtained by this method, in order to be an electrode for a lithium secondary battery that can be charged and discharged in a short time, the ion permeability is not sufficient, and the ion permeability is further improved, It was necessary to obtain a porous PAI layer having a further reduced internal resistance.

そこで本発明は、前記課題を解決するものであって、安全性に優れ、内部抵抗が十分に低下したリチウム二次電池用電極とその製造方法を提供することを目的とする。 Then, this invention solves the said subject, Comprising: It is excellent in safety and it aims at providing the electrode for lithium secondary batteries which internal resistance fell sufficiently, and its manufacturing method.

本発明者らは、PAIの化学構造を特定し、かつ塗布用のPAI溶液の溶媒組成を特定のものとしたPAI溶液から得られる多孔質PAI層を積層一体化した電極により前記課題が解決されることを見出し、本発明の完成に至った。 The present inventors have solved the above problems by an electrode in which a PAI chemical structure is specified and a porous PAI layer obtained from the PAI solution in which the solvent composition of the PAI solution for coating is specified is laminated and integrated. It was found that the present invention has been completed.

本発明は以下を趣旨とするものである。 The present invention has the following gist.

<1> 電極活物質層の表面に、多孔質PAI層が積層一体化したリチウム二次電池用電極であって、多孔質PAI層が以下の特徴を有するリチウム二次電池用電極。
1)多孔質PAI層のイオン伝導度が0.6mS/cm以上である。
2)多孔質PAI層の厚みが1μm超、30μm未満である。
<2> リチウム二次電池用電極の集電体である金属箔の表面に、バインダと活物質微粒子と溶媒とを含む分散体を塗布し乾燥して金属箔上に電極活物質層を形成させ、その後、この電極活物質層の表面にPAIと溶媒とを含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を除去することにより、塗膜内で相分離を起こさせてイオン透過性多孔質層を形成せしめるとともに、前記電極活物質層と前記イオン透過性多孔質層とを積層一体化するリチウム二次電池用電極の製造方法において、PAIがジアミン成分として4,4′−ジアミノジフェニルエーテル(DADE)を含み、溶媒が5質量部以上、20質量部以下のアミド系溶媒と、95質量部以下、80質量部以上のテトラグライム(TG)とからなる混合溶媒(ただし、前記アミド系溶媒とTGの合計量が100質量部)であることを特徴とする前記リチウム二次電池用電極の製造方法。
<3> DADEの含有量が、全ジアミン成分に対し、30〜100モル%である前記リチウム二次電池用電極の製造方法。
<1> A lithium secondary battery electrode in which a porous PAI layer is laminated and integrated on the surface of an electrode active material layer, wherein the porous PAI layer has the following features.
1) The ionic conductivity of the porous PAI layer is 0.6 mS/cm or more.
2) The thickness of the porous PAI layer is more than 1 μm and less than 30 μm.
<2> A dispersion containing a binder, active material particles and a solvent is applied to the surface of a metal foil that is a current collector of an electrode for a lithium secondary battery and dried to form an electrode active material layer on the metal foil. After that, a coating liquid containing PAI and a solvent is applied to the surface of the electrode active material layer to form a coating film, and thereafter, the solvent in the coating film is removed, whereby phase separation occurs in the coating film. In the method for producing an electrode for a lithium secondary battery in which the ion-permeable porous layer is formed by laminating the electrode active material layer and the ion-permeable porous layer, PAI is used as a diamine component. A mixed solvent containing 4,4′-diaminodiphenyl ether (DADE) and containing 5 parts by mass or more and 20 parts by mass or less of an amide solvent and 95 parts by mass or less and 80 parts by mass or more of tetraglyme (TG). (However, the total amount of the amide-based solvent and TG is 100 parts by mass), The method for producing an electrode for a lithium secondary battery, wherein
<3> The method for producing an electrode for a lithium secondary battery, wherein the DADE content is 30 to 100 mol% based on all diamine components.

本発明のリチウム二次電池用電極は、イオン透過性に優れるので、電極の内部抵抗が低く、安全性に優れる。
従い、短時間で充放電可能なリチウム二次電池用の電極として好適に用いることができる。また、本発明の製造方法においては、本発明の電極を、簡単なプロセスで容易に製造することができる。
INDUSTRIAL APPLICABILITY The electrode for lithium secondary battery of the present invention has excellent ion permeability, and therefore has low internal resistance and excellent safety.
Therefore, it can be suitably used as an electrode for a lithium secondary battery that can be charged and discharged in a short time. Moreover, in the manufacturing method of the present invention, the electrode of the present invention can be easily manufactured by a simple process.

本発明のリチウム二次電池用電極は、電極活物質層の表面に、多孔質PAI層が積層一体化されたものである。リチウム二次電池用電極とは、リチウム二次電池を構成する電極であって、正極活物質層が正極集電体に接合された正極、もしくは、負極活物質層が負極集電体に接合された負極をいう。電極活物質層は、正極活物質層と負極活物質層の総称である。 The electrode for a lithium secondary battery of the present invention is one in which a porous PAI layer is laminated and integrated on the surface of an electrode active material layer. The electrode for a lithium secondary battery is an electrode that constitutes a lithium secondary battery, and is a positive electrode in which a positive electrode active material layer is bonded to a positive electrode current collector, or a negative electrode active material layer is bonded to a negative electrode current collector. Negative electrode. The electrode active material layer is a generic term for the positive electrode active material layer and the negative electrode active material layer.

集電体としては、銅箔、ステンレス箔、ニッケル箔、アルミ箔等の金属箔を使用することができる。正極にはアルミ箔が、負極には銅箔が好ましく用いられる。これらの金属箔の厚みは5〜50μmが好ましく、9〜18μmがより好ましい。これらの金属箔の表面は、活物質層との接着性を向上させるための粗面化処理や防錆処理がされていてもよい。 As the current collector, a metal foil such as a copper foil, a stainless foil, a nickel foil, or an aluminum foil can be used. Aluminum foil is preferably used for the positive electrode and copper foil is preferably used for the negative electrode. The thickness of these metal foils is preferably 5 to 50 μm, more preferably 9 to 18 μm. The surface of these metal foils may be subjected to a surface roughening treatment or a rustproofing treatment for improving the adhesiveness to the active material layer.

正極活物質層は、正極活物質粒子をバインダで結着して得られる層である。正極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、リチウム二次電池の正極活物質として一般に用いられるものを挙げることができる。例えば、酸化物系(LiCoO、LiNiO、LiMn等)、複合酸化物系(LiCo1/3Ni1/3Mn1/3等)、リン酸鉄系(LiFePO、LiFePOF等)、高分子化合物系(ポリアニリン、ポリチオフェン等)等の活物質粒子を挙げることができる。この中でも、LiCoO、LiNiO、LiFePOが好ましい。正極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子や金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1〜30質量%程度配合されていてもよい。The positive electrode active material layer is a layer obtained by binding the positive electrode active material particles with a binder. The material used as the positive electrode active material particles is preferably one that can store and store lithium ions, and examples thereof include those generally used as the positive electrode active material of a lithium secondary battery. For example, oxide type (LiCoO 2 , LiNiO 2 , LiMn 2 O 4 etc.), complex oxide type (LiCo 1/3 Ni 1/3 Mn 1/3 O 2 etc.), iron phosphate type (LiFePO 4 , Li). 2 FePO 4 F, etc.), polymer compound-based (polyaniline, polythiophene, etc.) active material particles, and the like. Among these, LiCoO 2 , LiNiO 2 , and LiFePO 4 are preferable. In order to reduce the internal resistance of the positive electrode active material layer, conductive particles such as carbon (graphite, carbon black, etc.) particles and metal (silver, copper, nickel, etc.) particles are blended in an amount of about 1 to 30% by mass. May be.

負極活物質層は、負極活物質粒子をバインダで結着して得られる層である。負極活物質粒子として用いられる材料としては、リチウムイオンを吸蔵保存できるものが好ましく、リチウム二次電池の負極活物質として一般に用いられるものを挙げることができる。例えばグラファイト、アモルファスカーボン、シリコン系、錫系等の活物質粒子を挙げることができる。この中でもグラファイト粒子、シリコン系粒子が好ましい。シリコン系粒子としては、例えば、シリコン単体、シリコン合金、シリコン・二酸化珪素複合体等の粒子を挙げることができる。これらシリコン系粒子の中でも、シリコン単体の粒子(以下、「シリコン粒子」と略記することがある)が好ましい。シリコン単体とは、純度が95質量%以上の結晶質もしくは非晶質のシリコンをいう。負極活物質層には、その内部抵抗を低下させるため、カーボン(黒鉛、カーボンブラック等)粒子や金属(銀、銅、ニッケル等)粒子等の導電性粒子が、1〜30質量%程度配合されていてもよい。 The negative electrode active material layer is a layer obtained by binding the negative electrode active material particles with a binder. The material used as the negative electrode active material particles is preferably a material that can store and store lithium ions, and examples thereof include those generally used as the negative electrode active material of a lithium secondary battery. For example, graphite, amorphous carbon, silicon-based, tin-based active material particles and the like can be mentioned. Of these, graphite particles and silicon-based particles are preferable. Examples of the silicon-based particles include particles of silicon simple substance, silicon alloy, silicon/silicon dioxide composite, and the like. Among these silicon-based particles, particles of silicon alone (hereinafter, may be abbreviated as “silicon particles”) are preferable. Single silicon means crystalline or amorphous silicon having a purity of 95% by mass or more. In order to reduce the internal resistance of the negative electrode active material layer, conductive particles such as carbon (graphite, carbon black, etc.) particles and metal (silver, copper, nickel, etc.) particles, etc. are mixed in an amount of about 1 to 30% by mass. May be.

活物質粒子や導電性粒子の粒子径は、正極、負極いずれも50μm以下が好ましく、10μm以下がさらに好ましい。粒子径は、反対に小さすぎてもバインダによる結着が難しくなるので、通常0.1μm以上、好ましくは0.5μm以上である。 The particle size of the active material particles and the conductive particles is preferably 50 μm or less, and more preferably 10 μm or less for both the positive electrode and the negative electrode. On the contrary, the particle diameter is usually 0.1 μm or more, preferably 0.5 μm or more because binding with the binder becomes difficult even if it is too small.

電極活物質層の気孔率は、正極、負極いずれも5〜50体積%が好ましく、10〜40体積%がより好ましい。 The porosity of the electrode active material layer is preferably 5 to 50% by volume, and more preferably 10 to 40% by volume for both the positive electrode and the negative electrode.

電極活物質層の厚みは、通常20〜200μm程度である。 The thickness of the electrode active material layer is usually about 20 to 200 μm.

前記活物質粒子を結着させるためのバインダとしては、例えば、ポリフッ化ビニリデン、ビニリデンフロライド−ヘキサフルオロプロピレン共重合体、ビニリデンフロライド−テトラフルオロエチレン共重合体、スチレン・ブタジエン共重合ゴム、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、イミド系高分子等を挙げることができる。この中でもポリフッ化ビニリデン、スチレン・ブタジエン共重合ゴム、イミド系高分子が好ましい。 As the binder for binding the active material particles, for example, polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, styrene-butadiene copolymer rubber, poly Examples thereof include tetrafluoroethylene, polypropylene, polyethylene, imide-based polymers and the like. Among these, polyvinylidene fluoride, styrene/butadiene copolymer rubber, and imide polymer are preferable.

正極または負極の活物質層は、バインダと活物質微粒子と溶媒とを含む分散体を塗布し乾燥して金属箔上に電極活物質層を形成させることができる。 For the active material layer of the positive electrode or the negative electrode, a dispersion containing a binder, active material fine particles and a solvent can be applied and dried to form an electrode active material layer on the metal foil.

本発明の電極においては、電極活物質層の表面に高いイオン透過性を有する多孔質PAIが積層一体化されている。 In the electrode of the present invention, porous PAI having high ion permeability is laminated and integrated on the surface of the electrode active material layer.

多孔質PAI層を構成するPAIは、原料であるトリカルボン酸成分とジアミン成分との重縮合反応を行うことにより得られる高分子である。 PAI that constitutes the porous PAI layer is a polymer obtained by performing a polycondensation reaction of a tricarboxylic acid component as a raw material and a diamine component.

PAIのトリカルボン酸成分は、1分子あたり3個のカルボキシル基(その誘導体を含む)および1個以上の芳香環を有する有機化合物であって、当該3個のカルボキシル基のうち、少なくとも2個のカルボキシル基が酸無水物形態を形成し得る位置に配置されたものである。 The tricarboxylic acid component of PAI is an organic compound having three carboxyl groups (including its derivatives) and one or more aromatic rings per molecule, and at least two carboxyl groups among the three carboxyl groups are included. The group is arranged at a position capable of forming an acid anhydride form.

芳香族トリカルボン酸成分として、例えば、ベンゼントリカルボン酸成分、ナフタレントリカルボン酸成分を挙げることができる。 Examples of the aromatic tricarboxylic acid component include a benzene tricarboxylic acid component and a naphthalene tricarboxylic acid component.

ベンゼントリカルボン酸成分の具体例として、例えば、トリメリット酸、ヘミメリット酸、ならびにこれらの無水物およびそのモノクロライドを挙げることができる。 Specific examples of the benzenetricarboxylic acid component include trimellitic acid, hemimellitic acid, and their anhydrides and their monochlorides.

ナフタレントリカルボン酸成分の具体例として、例えば、1,2,3−ナフタレントリカルボン酸、1,6,7−ナフタレントリカルボン酸、1,4,5−ナフタレントリカルボン酸、ならびにこれらの無水物およびそのモノクロライドを挙げることができる。 Specific examples of the naphthalene tricarboxylic acid component include, for example, 1,2,3-naphthalene tricarboxylic acid, 1,6,7-naphthalene tricarboxylic acid, 1,4,5-naphthalene tricarboxylic acid, and their anhydrides and their monochlorides. Can be mentioned.

芳香族トリカルボン酸成分の中では、無水トリメリット酸および無水トリメリット酸クロライド(TAC)が好ましい。 Among the aromatic tricarboxylic acid components, trimellitic anhydride and trimellitic anhydride chloride (TAC) are preferable.

トリカルボン酸成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The tricarboxylic acid component may be used alone or in combination of two or more kinds.

また、トリカルボン酸成分は、その一部がテレフタル酸、イソフタル酸、ピロメリット酸、3,3′,4,4′−ビフェニルテトラカルボン酸、3,3′,4,4′−ベンゾフェノンテトラカルボン酸等の成分で置換されたものを用いてもよい。 Further, a part of the tricarboxylic acid component is terephthalic acid, isophthalic acid, pyromellitic acid, 3,3',4,4'-biphenyltetracarboxylic acid, 3,3',4,4'-benzophenonetetracarboxylic acid. You may use what was substituted by the components such as.

PAIのジアミン成分は、1分子あたり2個の1級アミノ基(その誘導体を含む)を有する有機化合物である。 The diamine component of PAI is an organic compound having two primary amino groups (including its derivative) per molecule.

本発明の多孔質PAI層形成するPAIのジアミン成分には、DADEを含むことが好ましい。
DADEはPAIの全ジアミン成分に対し、30〜100モル%とすることがより好ましく、40〜100モル%がさらに好ましく、50〜100モル%とすることが特に好ましい。このようにジアミン成分としてDADEを用いることにより、多孔質PAI層形成した際、良好なイオン透過性を確保することができる。このようなDADEを含有させることによる効果のメカニズムについては、定かではないが、DADEのエーテル結合と、後述するPAIの貧溶媒であるTGのエーテル結合とが、何らかの相互作用をするため、均質な多孔質構造を形成し、良好なイオン透過性が発現するものと考えられる。
The PAI diamine component forming the porous PAI layer of the present invention preferably contains DADE.
The DADE is more preferably 30 to 100 mol%, further preferably 40 to 100 mol%, and particularly preferably 50 to 100 mol% based on the total diamine component of PAI. Thus, by using DADE as the diamine component, good ion permeability can be ensured when the porous PAI layer is formed. The mechanism of the effect of including DADE is not clear, but the ether bond of DADE and the ether bond of TG, which is a poor solvent for PAI, which will be described later, interact with each other to form a homogeneous structure. It is considered that a porous structure is formed and good ion permeability is exhibited.

DADEと共重合して用いられるジアミン成分の具体例として、m−フェニレンジアミン(MDA)、p−フェニレンジアミン、4,4′−ジフェニルメタンジアミン(DMA)、4,4′−ジフェニルエーテルジアミン、ジフェニルスルホン−4,4′−ジアミン、ジフェニルー4,4′−ジアミン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン、ナフタレンジアミン、ならびにこれらのジイソシアネート誘導体を挙げることができる。 Specific examples of the diamine component used by copolymerizing with DADE include m-phenylenediamine (MDA), p-phenylenediamine, 4,4′-diphenylmethanediamine (DMA), 4,4′-diphenyletherdiamine, diphenylsulfone- 4,4'-diamine, diphenyl-4,4'-diamine, o-tolidine, 2,4-tolylenediamine, 2,6-tolylenediamine, xylylenediamine, naphthalenediamine, and diisocyanate derivatives thereof You can

これらジアミン成分の中では、MDAが好ましい。 Among these diamine components, MDA is preferable.

前記DADEと共重合して用いられるジアミン成分は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The diamine component used by copolymerizing with DADE may be used alone or in combination of two or more kinds.

PAIは、通常、200℃以上のガラス転移温度を有する。ガラス転移温度は、DSC(示差熱分析)により測定された値を用いている。 PAI usually has a glass transition temperature of 200° C. or higher. As the glass transition temperature, a value measured by DSC (differential thermal analysis) is used.

本発明で用いられるPAIは、公知の方法を用いて得ることができる。すなわち、例えば、原料である前記トリカルボン酸成分および前記ジアミン成分を略等モルで 配合し、それを前記混合溶媒中で重合反応させて得られる溶液からPAIを粉体として単離したものを用いることができる。 The PAI used in the present invention can be obtained using a known method. That is, for example, use one in which the tricarboxylic acid component and the diamine component, which are raw materials, are mixed in approximately equimolar amounts, and PAI is isolated as powder from a solution obtained by polymerizing the tricarboxylic acid component and the diamine component in the mixed solvent. You can

本発明の多孔質PAI層は、そのイオン伝導度が0.6mS/cm以上であることが必要である。イオン伝導度は、0.7mS/cm以上とするが好ましく、0.8mS/cm以上とすることがより好ましく、0.9mS/cm以上とすることがさらに好ましい。ポリアミドイミド(PAI)等の耐熱性高分子からなる多孔質層が積層一体化された電極において、このような高い伝導度を示す多孔質層は従来知られておらず、本発明の多孔質PAI層をもって、嚆矢とするものである。 The ionic conductivity of the porous PAI layer of the present invention needs to be 0.6 mS/cm or more. The ionic conductivity is preferably 0.7 mS/cm or more, more preferably 0.8 mS/cm or more, and further preferably 0.9 mS/cm or more. In an electrode in which a porous layer made of a heat-resistant polymer such as polyamideimide (PAI) is laminated and integrated, a porous layer exhibiting such high conductivity has not been heretofore known, and the porous PAI of the present invention is known. The layers are used as an arrowhead.

多孔質PAI層のイオン伝導度は、公知の評価法である交流インピーダンス法によって求めることができる。具体的には電解液が含浸された積層電極からなるセルおよび未積層電極からなるセルのインピーダンス測定を行い、両セルのナイキストプロットにおけるリアルパートの抵抗値(Ω)を求め、積層電極の抵抗値から未積層電極の抵抗値を減じた値「A」(Ω)から以下の計算式を用いて算出することができる。
イオン伝導度(mS/cm) = 0.1*B/(A*C)
ここで、Cは電極面積(cm)、Bは多孔質PAI層の厚み(μm)を表す。なお、このイオン伝導度は、電解液中の積層電極として評価した値であり、通常の高分子材料のバルク状態のイオン伝導度とは必ずしも同一の値ではない。
The ionic conductivity of the porous PAI layer can be obtained by an AC impedance method which is a known evaluation method. Specifically, the impedance of a cell composed of a laminated electrode impregnated with an electrolyte solution and a cell composed of a non-laminated electrode is measured, and the resistance value (Ω) of the real part in the Nyquist plot of both cells is calculated. Can be calculated from the value “A” (Ω) obtained by subtracting the resistance value of the non-laminated electrode from the following formula.
Ionic conductivity (mS/cm) = 0.1*B/(A*C)
Here, C represents the electrode area (cm 2 ) and B represents the thickness (μm) of the porous PAI layer. The ionic conductivity is a value evaluated as a laminated electrode in an electrolytic solution, and is not necessarily the same value as the ionic conductivity in the bulk state of a usual polymer material.

本発明の多孔質PAIは、その厚みを1μm超、30μm未満とすることが必要であり、5μm超、25μm未満とすることが好ましい。5μm超、20m未満とすることがより好ましい。厚みが1μm以下では、多孔質PAI層の絶縁性が不足し、電極としての安全性が確保されないことがある。また、厚みが30μm以上では、イオン透過性が損なわれ、電極とした際、内部抵抗が増加してしまう。
多孔質PAIの厚みは、多孔質PAIが積層一体化された電極断面を、倍率500倍の電子顕微鏡を観察することにより得られるSEM像を取得することにより算出された値を示している。
The porous PAI of the present invention needs to have a thickness of more than 1 μm and less than 30 μm, and preferably more than 5 μm and less than 25 μm. More preferably, it is more than 5 μm and less than 20 m. When the thickness is 1 μm or less, the insulating property of the porous PAI layer is insufficient, and the safety as an electrode may not be ensured. Further, when the thickness is 30 μm or more, the ion permeability is impaired and the internal resistance increases when used as an electrode.
The thickness of the porous PAI indicates a value calculated by acquiring an SEM image obtained by observing an electrode cross section in which the porous PAI is laminated and integrated with an electron microscope at a magnification of 500 times.

前記した電極活物質層の表面に、例えば、PAIと溶媒とを含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を除去することにより、塗膜内で相分離を起こさせて多孔質PAI層を形成させることができる。 On the surface of the electrode active material layer described above, for example, a coating liquid containing PAI and a solvent is applied to form a coating film, and then the solvent in the coating film is removed to form a phase in the coating film. Separation can occur to form a porous PAI layer.

この塗液は、前記したPAI粉体を溶媒に溶解させることにより得ることができる。ここで用いられる溶媒としては、PAIに対する良溶媒であるアミド系溶媒と、PAIに対する貧溶媒であるTG(沸点:275℃)とからなる混合溶媒を用いることが好ましい。アミド系溶媒の具体例としては、N−メチル−2−ピロリドン(NMP 沸点:202℃)、N,N−ジメチルホルムアミド(沸点:153℃)、N,N−ジメチルアセトアミド(DMAc 沸点:166℃)を挙げることができる。アミド系溶媒は、これらを単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中でも、NMPが好ましい。ここで、良溶媒とは、25℃において、PAIに対する溶解度が1質量%以上の溶媒をいう。貧溶媒とは、25℃において、PAIに対する溶解度が1質量%未満の溶媒をいう。 This coating liquid can be obtained by dissolving the PAI powder described above in a solvent. As the solvent used here, it is preferable to use a mixed solvent composed of an amide solvent that is a good solvent for PAI and TG (boiling point: 275° C.) that is a poor solvent for PAI. Specific examples of the amide-based solvent include N-methyl-2-pyrrolidone (NMP boiling point: 202°C), N,N-dimethylformamide (boiling point: 153°C), N,N-dimethylacetamide (DMAc boiling point: 166°C). Can be mentioned. These amide solvents may be used alone or in combination of two or more. Among these, NMP is preferable. Here, the good solvent refers to a solvent having a solubility of 1% by mass or more in PAI at 25°C. The poor solvent refers to a solvent having a PAI solubility of less than 1% by mass at 25°C.

混合溶媒は、5質量部以上、20質量部以下のアミド系溶媒と、95質量部以下、80質量部以上のTGとからなる混合溶媒とすることが好ましく、10質量部以上、20質量部以下のアミド系溶媒と、90質量部以下、80質量部以上のTGとからなる混合溶媒とすることがより好ましい。ただし、混合溶媒は、アミド系溶媒とTGの両溶媒を、その合計量が100質量部となるように、混合してなるものとする。このような混合溶媒を用いることにより、前記塗膜中を乾燥して除去する際、塗膜内で、混合溶媒を構成する溶媒の沸点差による相分離が効率良く起こり、高いイオン透過性を有する多孔質層を形成せしめるとともに、電極活物質層と多孔質PAIとを積層一体化することができる。 The mixed solvent is preferably a mixed solvent composed of 5 parts by mass or more and 20 parts by mass or less of an amide solvent and 95 parts by mass or less and 80 parts by mass or more of TG, and preferably 10 parts by mass or more and 20 parts by mass or less. It is more preferable to use a mixed solvent composed of the amide solvent of (4) and 90 parts by mass or less and 80 parts by mass or more of TG. However, the mixed solvent is a mixture of both amide solvent and TG solvent so that the total amount thereof is 100 parts by mass. By using such a mixed solvent, when the coating film is dried and removed, phase separation due to the difference in boiling points of the solvents constituting the mixed solvent occurs efficiently in the coating film, and high ion permeability is obtained. The porous layer can be formed and the electrode active material layer and the porous PAI can be laminated and integrated.

PAI塗液には、各種界面活性剤や有機シランカップリング剤のような公知の添加物を、本発明の効果を損なわない範囲で添加してもよい。また、PAI塗液に、PAI以外のポリマーを、本発明の効果を損なわない範囲で添加してもよい。さらに、必要に応じて、アルミナ、シリカ、ベーマイト、カオリン等のフィラを添加してもよい。 Known additives such as various surfactants and organic silane coupling agents may be added to the PAI coating liquid within a range that does not impair the effects of the present invention. Further, a polymer other than PAI may be added to the PAI coating liquid within a range that does not impair the effects of the present invention. Further, if necessary, a filler such as alumina, silica, boehmite, kaolin, etc. may be added.

PAI塗液を、電極活物質層の表面に塗布し、100〜150℃で乾燥後、必要に応じ、250〜350℃で熱処理を行うことにより、イオン透過性が良好な多孔質PAIを形成することができる。形成された多孔質PAIの気孔率は30〜90体積%とすることができる。また、イミド多孔質層の平均気孔径は、0.1〜10μmとすることができる。気孔率や平均気孔径をこのような範囲とすることにより、良好なイオン透過性が確保される。気孔率や平均気孔径は、PAI塗液中のアミド系溶媒の種類、TGの配合量を選ぶことによって、調整することができる。また、乾燥条件を選ぶことによっても気孔率を調整することができる。
なお、気孔率(体積%)は、イミド多孔質層の見掛け密度がA(g/cm)、PAIの真密度がB(g/cm)の場合、以下の計算式を用いて算出することができる。
気孔率(体積%)=100−A*(100/B)
The PAI coating liquid is applied to the surface of the electrode active material layer, dried at 100 to 150° C., and then heat-treated at 250 to 350° C., if necessary, to form a porous PAI having good ion permeability. be able to. The porosity of the formed porous PAI can be 30 to 90% by volume. The average pore diameter of the imide porous layer can be 0.1 to 10 μm. By setting the porosity and the average pore diameter in such ranges, good ion permeability is secured. The porosity and the average pore diameter can be adjusted by selecting the type of amide solvent in the PAI coating liquid and the blending amount of TG. The porosity can also be adjusted by selecting the drying conditions.
The porosity (volume %) is calculated using the following formula when the apparent density of the imide porous layer is A (g/cm 3 ) and the true density of PAI is B (g/cm 3 ). be able to.
Porosity (volume %)=100-A* (100/B)

PAI塗液を、電極表面に塗布するに際しては、ロールツーロールにより連続的に塗布する方法、枚様で塗布する方法が採用でき、いずれの方法でもよい。塗布装置としては、ダイコータ、多層ダイコータ、グラビアコータ、コンマコータ、リバースロールコータ、ドクタブレードコータ等が使用できる。 When applying the PAI coating liquid to the electrode surface, a method of continuously applying by a roll-to-roll method or a method of applying in a sheet-like manner can be adopted, and any method may be used. As the coating device, a die coater, a multilayer die coater, a gravure coater, a comma coater, a reverse roll coater, a doctor blade coater, or the like can be used.

本発明の電極は、前記した塗液をポリエステルフィルム、アルミ箔等の離形性を有する基材上に塗布、乾燥することにより、多孔質PAI被膜を形成させたのち、これを電極活物質上に積層一体化し、しかる後、離形性を有する基材を剥離することにより得ることもできる。 In the electrode of the present invention, the coating liquid described above is applied onto a base material having releasability such as a polyester film and an aluminum foil, and dried to form a porous PAI film, which is then applied to the electrode active material. It is also possible to obtain it by laminating and integrating the above, and then peeling the base material having releasability.

本発明の電極(正極および負極)は、この電極の間に、多孔質ポリオレフィン等からなる通常のリチウム二次電池用セパレータを積層してセルを構成することができる。また、本発明の電極は、このようなセパレータを使用せずに、いわゆる「セパレータレス」のセルを構成するための電極として用いることもできる。 The electrode (positive electrode and negative electrode) of the present invention can form a cell by laminating a normal lithium secondary battery separator made of porous polyolefin or the like between the electrodes. The electrode of the present invention can also be used as an electrode for forming a so-called "separatorless" cell without using such a separator.

以下に、実施例を挙げて、本発明をさらに詳細に説明する。なお本発明は実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to the examples.

以下の実施例及び比較例で使用した電極(負極)活物質層を以下のようにして得た。 The electrode (negative electrode) active material layer used in the following Examples and Comparative Examples was obtained as follows.

負極活物質である黒鉛粒子(平均粒子径8μm)88質量部と、導電助剤のカーボンブラック(アセチレンブラック)5質量部と、バインダ樹脂であるPVDF7質量部とを、N−メチル−2−ピロリドン中に均一に分散して、固形分濃度25質量%の負極活物質分散体を得た。この分散体を負極集電体である厚さ18μmの銅箔に塗布し、得られた塗膜を150℃で20分乾燥後、熱プレスして、銅箔上に形成された厚みが100μmの負極活物質層を設けた電極(N−1)を得た。 88 parts by mass of graphite particles (average particle size 8 μm) that is a negative electrode active material, 5 parts by mass of carbon black (acetylene black) that is a conductive additive, and 7 parts by mass of PVDF that is a binder resin were added to N-methyl-2-pyrrolidone. It was uniformly dispersed in it to obtain a negative electrode active material dispersion having a solid content concentration of 25% by mass. This dispersion was applied to a copper foil having a thickness of 18 μm, which is a negative electrode current collector, and the obtained coating film was dried at 150° C. for 20 minutes and then hot-pressed to form a film having a thickness of 100 μm formed on the copper foil. An electrode (N-1) provided with a negative electrode active material layer was obtained.

以下の実施例及び比較例において得られた電極のイオン伝導度は、以下の方法で評価した。 The ionic conductivity of the electrodes obtained in the following examples and comparative examples was evaluated by the following method.

N−1の表面に多孔質PAI層を積層一体化した電極を直径1.6cmの円形に打ち抜き、電極/ポリエチレン多孔質膜からなるセパレータ(厚み20μm)/電極からなる対称セルを構成し、これに電解液(溶媒:エチレンカーボネートとジメチルカーボネートとを体積比で1:1の割合で混合した混合溶媒、電解質:1MLiPF)を注入して、ステンレス製のフラットセル(タクミ技研製)に収納して評価用のセル(C−1)を得た。一方、前記と同様にして、N−1(未積層電極)を用い、評価用のセル(C−2)を得た。
C−1およびC−2のインピーダンスを交流インピーダンス測定装置(Solartron Analysis社製Celltest System 1470E)を用いて測定した。測定条件は、以下の通りであった。
<測定条件>
測定温度:25℃
周波数範囲:100mHz〜1MHz
振幅:±10mV
この交流インピーダンス測定により得られたナイキストプロットにおけるリアルパートの抵抗値(Ω)を求め、C−1の抵抗値(R−1)からC−2の抵抗値(R−2)を減じ、これを2で割った値(A)を、多孔質PAI層の抵抗値(Ω)とし、以下の計算式を用いて、多孔質PAI層のイオン伝導度を算出した。
イオン伝導度(mS/cm) = 0.0391*B/A
ここでBは多孔質PAI層の厚み(μm)を表す。
An electrode in which a porous PAI layer was laminated and integrated on the surface of N-1 was punched out into a circular shape having a diameter of 1.6 cm to form a symmetrical cell consisting of electrode/separator made of polyethylene porous membrane (thickness 20 μm)/electrode. Electrolyte solution (solvent: mixed solvent of ethylene carbonate and dimethyl carbonate mixed in a volume ratio of 1:1 and electrolyte: 1MLiPF 6 ) is injected into a stainless steel flat cell (manufactured by Takumi Giken). To obtain a cell (C-1) for evaluation. On the other hand, in the same manner as described above, N-1 (non-laminated electrode) was used to obtain a cell (C-2) for evaluation.
The impedances of C-1 and C-2 were measured using an AC impedance measuring device (Celltest System 1470E manufactured by Solartron Analysis). The measurement conditions were as follows.
<Measurement conditions>
Measurement temperature: 25°C
Frequency range: 100mHz to 1MHz
Amplitude: ±10 mV
The resistance value (Ω) of the real part in the Nyquist plot obtained by this AC impedance measurement is obtained, and the resistance value of C-2 (R-2) is subtracted from the resistance value of C-1 (R-1). The value (A) divided by 2 was used as the resistance value (Ω) of the porous PAI layer, and the ionic conductivity of the porous PAI layer was calculated using the following formula.
Ionic conductivity (mS/cm) = 0.0391*B/A
Here, B represents the thickness (μm) of the porous PAI layer.

[実施例1]
乾燥窒素ガス雰囲気下、ガラス製反応容器に、DADE0.07モル、MDA0.03モルを入れ、これにNMPとトリエチルアミン0.1モルを加え、撹拌することにより固形分濃度が15質量%のNMP溶液を得た。その後、この溶液を10℃以下に保ちつつ、TAC0.1モルのNMP溶液(固形分濃度:20質量%)を、撹拌下、ゆっくりと滴下した。滴下終了後、溶液を室温に戻し、2時間攪拌を続けた。得られた溶液を、大量の水に投入して、PAIの沈殿を生じせしめ、これを濾過、洗浄することにより、黄色の固体を得た後、200℃で加熱して、乾燥とイミド化を行うことによりPAI粉体(AP)を得た。APのDSCによるTgは285℃であった。次に、APをNMPとTGとの混合溶媒に溶解し、固形分濃度が9質量%のPAI塗液(L−1)を得た。ここでNMPとTGの混合比率は、TG量を混合溶媒質量に対し85質量%とした。L−1を、電極(N−1)表面に塗布し、150℃で20分乾燥することにより、厚みが10μmの多孔質PAI層が形成された電極(P−1)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 1]
In a dry nitrogen gas atmosphere, 0.07 mol of DADE and 0.03 mol of MDA were placed in a glass reaction vessel, NMP and 0.1 mol of triethylamine were added thereto, and the mixture was stirred to produce an NMP solution having a solid content concentration of 15% by mass. Got Thereafter, while maintaining this solution at 10° C. or lower, a 0.1 mol TAC NMP solution (solid content concentration: 20 mass %) was slowly added dropwise under stirring. After the dropping was completed, the solution was returned to room temperature and stirred for 2 hours. The obtained solution was poured into a large amount of water to cause precipitation of PAI, which was filtered and washed to obtain a yellow solid, which was then heated at 200° C. for drying and imidization. By doing so, PAI powder (AP) was obtained. The DSC Tg of AP was 285°C. Next, AP was dissolved in a mixed solvent of NMP and TG to obtain a PAI coating liquid (L-1) having a solid content concentration of 9% by mass. Here, the mixing ratio of NMP and TG was such that the amount of TG was 85 mass% with respect to the mass of the mixed solvent. L-1 was applied to the surface of the electrode (N-1) and dried at 150° C. for 20 minutes to obtain an electrode (P-1) having a 10 μm-thick porous PAI layer. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例2]
ジアミンとしてDADE0.1モルのみを用い、多孔質PAI層の厚みを8μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−2)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 2]
An electrode (P-2) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that only 0.1 mol of DADE was used as the diamine and the thickness of the porous PAI layer was 8 μm. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例3]
ジアミンとして「DADE0.05モルとMDA0.05モルの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−3)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 3]
An electrode (P-3) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of 0.05 mol of DADE and 0.05 mol of MDA" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例4]
ジアミンとして「DADE0.03モルとMDA0.07モルとの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−4)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 4]
An electrode (P-4) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of DADE 0.03 mol and MDA 0.07 mol" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例5]
アミド系溶媒としてDMAcを用い、多孔質PAI層の厚みを6μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−4)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 5]
An electrode (P-4) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that DMAc was used as the amide solvent and the thickness of the porous PAI layer was 6 μm. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例6]
ジアミンとして「DADE0.05モルとDMA0.05モルの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−6)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 6]
An electrode (P-6) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of 0.05 mol of DADE and 0.05 mol of DMA" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例7]
多孔質PAIの厚みを15μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−7)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 7]
An electrode (P-7) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the thickness of the porous PAI was 15 μm. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例8]
混合溶媒のTG量を混合溶媒質量に対し82質量%としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−8)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 8]
An electrode (P-8) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the TG amount of the mixed solvent was 82% by mass with respect to the mixed solvent mass. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例9]
混合溶媒のTG量を混合溶媒質量に対し82質量%とし、多孔質PAI層の厚みを15μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−9)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 9]
An electrode (P-9) on which a porous PAI layer was formed in the same manner as in Example 1 except that the TG amount of the mixed solvent was 82% by mass relative to the mixed solvent mass, and the thickness of the porous PAI layer was 15 μm. ) Got. The evaluation results of this porous PAI layer are shown in Table 1.

[実施例10]
混合溶媒のTG量を混合溶媒質量に対し87質量%としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(P−10)を得た。この多孔質PAI層の評価結果を表1に示す。
[Example 10]
An electrode (P-10) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the TG amount of the mixed solvent was 87% by mass with respect to the mixed solvent mass. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例1]
ジアミンとして「DADE0.01モルとMDA0.09モルとの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−1)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 1]
An electrode (R-1) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of 0.01 mol of DADE and 0.09 mol of MDA" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例2]
ジアミンとして「DADE0.01モルとDMA0.09モルとの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−2)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative example 2]
An electrode (R-2) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of 0.01 mol of DADE and 0.09 mol of DMA" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例3]
ジアミンとして「DADE0.01モルとMDA0.09モルとの混合物」を用い、多孔質PAI層の厚みを6μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−3)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 3]
An electrode on which a porous PAI layer was formed in the same manner as in Example 1 except that "a mixture of 0.01 mol of DADE and 0.09 mol of MDA" was used as the diamine and the thickness of the porous PAI layer was 6 μm. R-3) was obtained. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例4]
混合溶媒のTG量を混合溶媒質量に対し75質量%としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−4)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 4]
An electrode (R-4) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the TG amount of the mixed solvent was 75% by mass with respect to the mixed solvent mass. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例5]
混合溶媒のTG量を混合溶媒質量に対し65質量%としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−5)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 5]
An electrode (R-5) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the TG amount of the mixed solvent was 65% by mass with respect to the mixed solvent mass. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例6]
多孔質PAI層の厚みを35μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−6)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 6]
An electrode (R-6) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that the thickness of the porous PAI layer was 35 μm. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例7]
ジアミンとしてDADE0.1モルのみを用い、多孔質PAI層の厚みを35μmとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−7)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 7]
An electrode (R-7) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that only 0.1 mol of DADE was used as the diamine and the thickness of the porous PAI layer was 35 μm. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例8]
ジアミンとしてDMA0.1モルのみを用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−8)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 8]
An electrode (R-8) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that only 0.1 mol of DMA was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例9]
ジアミンとしてMDA0.1モルのみを用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−9)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 9]
An electrode (R-9) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that only 0.1 mol of MDA was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例10]
混合溶媒のTGをトリエチレングリコールジメチルエーテル(TRG)としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−10)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 10]
An electrode (R-10) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that TG of the mixed solvent was triethylene glycol dimethyl ether (TRG). The evaluation results of this porous PAI layer are shown in Table 1.

[比較例11]
混合溶媒のTGをジエチレングリコールジメチルエーテル(DG)としたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−11)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 11]
An electrode (R-11) on which a porous PAI layer was formed was obtained in the same manner as in Example 1 except that TG of the mixed solvent was diethylene glycol dimethyl ether (DG). The evaluation results of this porous PAI layer are shown in Table 1.

[比較例12]
実施例1で得られたAPを溶解させるための溶媒をNMPのみとしたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−12)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 12]
An electrode (R-12) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that NMP was the only solvent for dissolving the AP obtained in Example 1. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例13]
ジアミンとして「DADE0.02モルとMDA0.08モルとの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−13)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 13]
An electrode (R-13) on which a porous PAI layer was formed was obtained in the same manner as in Example 1 except that "a mixture of DADE 0.02 mol and MDA 0.08 mol" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

[比較例14]
ジアミンとして「DADE0.02モルとDMA0.08モルとの混合物」を用いたこと以外は、実施例1と同様にして多孔質PAI層が形成された電極(R−14)を得た。この多孔質PAI層の評価結果を表1に示す。
[Comparative Example 14]
An electrode (R-14) having a porous PAI layer formed was obtained in the same manner as in Example 1 except that "a mixture of 0.02 mol of DADE and 0.08 mol of DMA" was used as the diamine. The evaluation results of this porous PAI layer are shown in Table 1.

Figure 2019031349
Figure 2019031349

以上、実施例、比較例で示したように、特定のイオン伝導度と厚みとを有する本発明の多孔質PAI層は、その抵抗が十分に低下しているので、これを積層一体化した電極は、安全性が高められたリチウム二次電池用電極として好適に用いることができる。また、この効果により良好なサイクル特性を得られることが判る。また、本発明の製造方法によれば、環境適合性の高い、簡単なプロセスで、安全性に優れた電極を製造することができる。 As described above in Examples and Comparative Examples, the resistance of the porous PAI layer of the present invention having a specific ionic conductivity and thickness is sufficiently reduced, and therefore, an electrode in which these layers are laminated and integrated is formed. Can be suitably used as an electrode for a lithium secondary battery with improved safety. Further, it is understood that this effect can provide good cycle characteristics. Further, according to the manufacturing method of the present invention, it is possible to manufacture an electrode having excellent safety by a simple process having high environmental compatibility.

本発明のリチウム二次電池用電極は、その内部抵抗が十分に低いので、短時間で充放電可能で、かつ安全性の高いリチウム二次電池用の電極として好適に用いることができる。 本発明の製造方法によれば、環境適合性の高い、簡単なプロセスで、安全性に優れた電極を製造することができる。 Since the lithium secondary battery electrode of the present invention has a sufficiently low internal resistance, it can be suitably used as an electrode for a lithium secondary battery which can be charged and discharged in a short time and has high safety. According to the manufacturing method of the present invention, an electrode having excellent safety can be manufactured by a simple process having high environmental compatibility.

Claims (3)

電極活物質層の表面に、多孔質ポリアミドイミド(PAI)層が積層一体化したリチウム二次電池用電極であって、多孔質PAI層が以下の特徴を有するリチウム二次電池用電極。
1)多孔質PAI層のイオン伝導度が0.6mS/cm以上である。
2)多孔質PAI層の厚みが1μm超、30μm未満である。
An electrode for a lithium secondary battery in which a porous polyamideimide (PAI) layer is laminated and integrated on the surface of an electrode active material layer, wherein the porous PAI layer has the following features.
1) The ionic conductivity of the porous PAI layer is 0.6 mS/cm or more.
2) The thickness of the porous PAI layer is more than 1 μm and less than 30 μm.
リチウム二次電池用電極の集電体である金属箔の表面に、バインダと活物質微粒子と溶媒とを含む分散体を塗布し乾燥して金属箔上に電極活物質層を形成させ、その後、この電極活物質層の表面にPAIと溶媒とを含む塗液を塗布して塗膜を形成し、しかる後、前記塗膜中の溶媒を除去することにより、塗膜内で相分離を起こさせてイオン透過性多孔質層を形成せしめるとともに、前記電極活物質層と前記イオン透過性多孔質層とを積層一体化するリチウム二次電池用電極の製造方法において、PAIがジアミン成分として4,4′−ジアミノジフェニルエーテル(DADE)を含み、溶媒が5質量部以上、20質量部以下のアミド系溶媒と、95質量部以下、80質量部以上のテトラグライム(TG)とからなる混合溶媒(ただし、前記アミド系溶媒とTGの合計量が100質量部)であることを特徴とする請求項1記載のリチウム二次電池用電極の製造方法。 On the surface of the metal foil that is the current collector of the lithium secondary battery electrode, a dispersion containing a binder, active material particles and a solvent is applied and dried to form an electrode active material layer on the metal foil, and then, A coating liquid containing PAI and a solvent is applied to the surface of the electrode active material layer to form a coating film, and then the solvent in the coating film is removed to cause phase separation in the coating film. In the method for producing an electrode for a lithium secondary battery in which an ion-permeable porous layer is formed by stacking and integrating the electrode active material layer and the ion-permeable porous layer, PAI is used as a diamine component in an amount of 4,4. A mixed solvent containing ′-diaminodiphenyl ether (DADE), the solvent being 5 parts by mass or more and 20 parts by mass or less of an amide solvent, and 95 parts by mass or less and 80 parts by mass or more of tetraglyme (TG) (however, The total amount of the amide solvent and TG is 100 parts by mass), The method for producing an electrode for a lithium secondary battery according to claim 1, wherein DADEの含有量が、全ジアミン成分に対し、30〜100モル%である請求項2記載のリチウム二次電池用電極の製造方法。 The method for producing an electrode for a lithium secondary battery according to claim 2, wherein the content of DADE is 30 to 100 mol% based on all diamine components.
JP2019535139A 2017-08-09 2018-08-01 METHOD FOR MANUFACTURING ELECTRODE FOR LITHIUM SECONDARY BATTERY Active JP7113527B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017154183 2017-08-09
JP2017154183 2017-08-09
PCT/JP2018/028838 WO2019031349A1 (en) 2017-08-09 2018-08-01 Electrode for lithium secondary batteries and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019031349A1 true JPWO2019031349A1 (en) 2020-07-02
JP7113527B2 JP7113527B2 (en) 2022-08-05

Family

ID=65272131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535139A Active JP7113527B2 (en) 2017-08-09 2018-08-01 METHOD FOR MANUFACTURING ELECTRODE FOR LITHIUM SECONDARY BATTERY

Country Status (4)

Country Link
JP (1) JP7113527B2 (en)
KR (1) KR102579616B1 (en)
CN (1) CN111033817A (en)
WO (1) WO2019031349A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106954A1 (en) * 2013-01-07 2014-07-10 ユニチカ株式会社 Lithium secondary battery electrode and method for manufacturing same
WO2016098660A1 (en) * 2014-12-15 2016-06-23 東レ株式会社 Polymer-ion-permeable membrane, composite-ion-permeable membrane, battery electrolyte membrane, and electrode composite
JP2017091677A (en) * 2015-11-05 2017-05-25 株式会社東芝 Nonaqueous electrolyte battery
JP2017514272A (en) * 2014-04-10 2017-06-01 ジェンサーム ゲーエムベーハー Electrical connection device and electrical contact device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3931413B2 (en) 1997-02-05 2007-06-13 住友化学株式会社 Method for producing positive electrode for lithium secondary battery
US20040229127A1 (en) * 2003-05-13 2004-11-18 Wensley C. Glen Polyimide matrix electrolyte
KR20100051708A (en) * 2007-11-12 2010-05-17 히다치 막셀 가부시키가이샤 Electrode for nonaqueous secondary battery, nonaqueoues secondary battery using the same, and method for producing electrode
KR101457343B1 (en) 2013-02-27 2014-11-03 주식회사 아세아텍 Weeding machine
CN104362278B (en) * 2014-11-19 2017-03-22 苏州大学 Compound lithium-ion battery diaphragm and preparation method thereof
CN106531939A (en) * 2016-11-29 2017-03-22 德阳九鼎智远知识产权运营有限公司 Lithium ion battery diaphragm
CN106785047B (en) * 2016-12-27 2019-06-28 中国科学院上海有机化学研究所 Electrolyte, electrolyte, polymer dielectric, preparation method and application

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014106954A1 (en) * 2013-01-07 2014-07-10 ユニチカ株式会社 Lithium secondary battery electrode and method for manufacturing same
JP2017514272A (en) * 2014-04-10 2017-06-01 ジェンサーム ゲーエムベーハー Electrical connection device and electrical contact device
WO2016098660A1 (en) * 2014-12-15 2016-06-23 東レ株式会社 Polymer-ion-permeable membrane, composite-ion-permeable membrane, battery electrolyte membrane, and electrode composite
JP2017091677A (en) * 2015-11-05 2017-05-25 株式会社東芝 Nonaqueous electrolyte battery

Also Published As

Publication number Publication date
WO2019031349A1 (en) 2019-02-14
CN111033817A (en) 2020-04-17
JP7113527B2 (en) 2022-08-05
KR102579616B1 (en) 2023-09-15
KR20200038932A (en) 2020-04-14

Similar Documents

Publication Publication Date Title
JP6741641B2 (en) Imide polymer solution
JP6649283B2 (en) Binder resin for electrode of lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5356878B2 (en) Non-aqueous secondary battery separator
JP2014116154A (en) Solid-state battery
WO2013058369A1 (en) Nonaqueous secondary battery separator and non-aqueous secondary battery
JP5714441B2 (en) Separator
JP6598905B2 (en) Nonaqueous electrolyte secondary battery separator
WO2017073766A1 (en) Polyimide solution for electricity storage element electrodes, method for producing electricity storage element electrode, and electricity storage element electrode
JP7493908B2 (en) Porous film, separator for secondary battery, and secondary battery
JP2011216318A (en) Separator for nonaqueous secondary battery
JP2018190703A (en) Binder solution and coating liquid, and method for manufacturing power storage element electrode
JP7246182B2 (en) Secondary battery and porous separator for secondary battery
JP7097601B2 (en) Coating liquid for electrodes for lithium secondary batteries, manufacturing methods for electrodes for lithium secondary batteries, and electrodes for lithium secondary batteries
JP2013206560A (en) Nonaqueous secondary battery separator
JP7113527B2 (en) METHOD FOR MANUFACTURING ELECTRODE FOR LITHIUM SECONDARY BATTERY
JP7349708B2 (en) Coating liquid for lithium secondary battery electrodes, method for producing electrodes for lithium secondary batteries, and electrodes for lithium secondary batteries
JP5368030B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
CN113707852A (en) Preparation method of polyimide modified ternary cathode material and product thereof
JP7032793B2 (en) Method for forming a porous polyamide-imide film
JP2015135747A (en) Porous separator, method for manufacturing porous separator, and lithium ion secondary battery including the porous separator
JP2018135466A (en) Polyamide-imide solution for forming porous polyamide-imide film

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210604

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210604

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220719

R150 Certificate of patent or registration of utility model

Ref document number: 7113527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150