JP2014116154A - Solid-state battery - Google Patents

Solid-state battery Download PDF

Info

Publication number
JP2014116154A
JP2014116154A JP2012268537A JP2012268537A JP2014116154A JP 2014116154 A JP2014116154 A JP 2014116154A JP 2012268537 A JP2012268537 A JP 2012268537A JP 2012268537 A JP2012268537 A JP 2012268537A JP 2014116154 A JP2014116154 A JP 2014116154A
Authority
JP
Japan
Prior art keywords
binder
negative electrode
positive electrode
solid
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012268537A
Other languages
Japanese (ja)
Inventor
Hiroharu Hoshiba
弘治 干場
Yoshinobu Yamada
好伸 山田
Satoshi Fujiki
聡 藤木
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung R&D Institute Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung R&D Institute Japan Co Ltd filed Critical Samsung R&D Institute Japan Co Ltd
Priority to JP2012268537A priority Critical patent/JP2014116154A/en
Priority to KR1020130101289A priority patent/KR20140074176A/en
Priority to US14/098,571 priority patent/US10741842B2/en
Publication of JP2014116154A publication Critical patent/JP2014116154A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a long life solid-state battery by reliably improving adhesion at the boundary surfaces of a negative electrode even when a silicon-based active material is used for the negative electrode.SOLUTION: The present invention relates to a solid-state battery including a positive electrode, a negative electrode, and a solid electrolyte provided between the positive electrode and the negative electrode. In the solid-state battery, the negative electrode includes a negative electrode active material, a first binder binding to the solid electrolyte and inactive to the solid electrolyte, and a second binder having more excellent binding properties to a negative electrode collector than the first binder, while the second binder contains a high elastic resin such as polyimide.

Description

本発明は、固体電解質を備える固体電池に関する。本発明の固体電池には、リチウムイオン二次電池等が含まれる。   The present invention relates to a solid state battery including a solid electrolyte. The solid state battery of the present invention includes a lithium ion secondary battery and the like.

例えば、後記特許文献1〜4に開示されるように、リチウムイオン二次電池として、固体電解質を用いた固体電池が知られている。このような固体電池は、固体電解質を含む電解質層と、電解質層の両面に形成される電極(正極及び負極)と、各電極に接合される集電体とを備える。固体電池では、電解質として固体電解質が使用され、各電極にも固体電解質が混合されているのが一般的である。   For example, as disclosed in Patent Documents 1 to 4 below, a solid battery using a solid electrolyte is known as a lithium ion secondary battery. Such a solid battery includes an electrolyte layer including a solid electrolyte, electrodes (positive electrode and negative electrode) formed on both surfaces of the electrolyte layer, and a current collector bonded to each electrode. In a solid battery, a solid electrolyte is generally used as an electrolyte, and a solid electrolyte is also mixed in each electrode.

固体電池を製造する方法としては、円筒形の容器に各層を構成する材料粉を順次挿入し、圧粉成型し、容器の両端を集電体で塞ぐという方法、即ち圧粉成型による製造方法が知られている。しかし、圧粉成型による製造方法では、電極面積(電極が電解質層に接触する面積)の大きさに応じた容器及び加圧装置を用意する必要があるので、電極面積を大きくするのが困難であった。このため、圧粉成型による製造方法では、近年要求されている固体電池の高容量化に対応することが出来なかった。   As a method for manufacturing a solid battery, there is a method in which material powders constituting each layer are sequentially inserted into a cylindrical container, compacted, and both ends of the container are closed with current collectors, that is, a compacted manufacturing method. Are known. However, in the manufacturing method by compacting, it is necessary to prepare a container and a pressurizing device according to the size of the electrode area (area where the electrode contacts the electrolyte layer), so it is difficult to increase the electrode area. there were. For this reason, the manufacturing method by compacting cannot cope with the increase in capacity of solid batteries which has been required in recent years.

そこで、他の製造方法として、各層の材料粉、結着剤、及び溶媒を混合することで各層の塗工液を形成し、この塗工液を集電体上に順次塗工、乾燥することで積層体を形成し、この積層体を圧延する方法、即ち塗工による製造方法が提案されている。塗工による製造方法であれば、電極及び電解質層の塗工面積を大きくする等の処理を行うだけで、電極面積を大きくすることができるので、電極面積を容易に大きくすることができる。   Therefore, as another manufacturing method, the material powder, the binder, and the solvent of each layer are mixed to form a coating liquid for each layer, and this coating liquid is sequentially coated on the current collector and dried. A method of forming a laminate and rolling the laminate, that is, a manufacturing method by coating has been proposed. If it is the manufacturing method by coating, since an electrode area can be enlarged only by performing the process of enlarging the coating area of an electrode and an electrolyte layer, an electrode area can be enlarged easily.

特開2011−204592号公報には、ケイ素及び/またはケイ素合金を含む負極活物質粒子を用いたリチウム二次電池において、充放電時のバインダー自体の破壊や負極活物質及び負極集電体とバインダーとの界面での剥離の発生を抑制し、高エネルギー密度を有し、かつサイクル特性に優れたリチウム二次電池を得ることを目的として、ケイ素及び/またはケイ素合金を含む負極活物質粒子とバインダーとを含む負極活物質層が負極集電体である導電性金属箔の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、前記バインダーが、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂を含んでいることを特徴とするリチウムイオン二次電池が記載されている。   Japanese Patent Application Laid-Open No. 2011-204592 discloses that in a lithium secondary battery using negative electrode active material particles containing silicon and / or a silicon alloy, the binder itself is destroyed during charging and discharging, the negative electrode active material, the negative electrode current collector, and the binder Negative electrode active material particles and binder containing silicon and / or silicon alloy for the purpose of obtaining a lithium secondary battery that suppresses the occurrence of delamination at the interface and has a high energy density and excellent cycle characteristics A lithium secondary battery comprising a negative electrode formed on the surface of a conductive metal foil that is a negative electrode current collector, a positive electrode, and a non-aqueous electrolyte, wherein the binder is 6 Lithium ion characterized by containing a polyimide resin containing a crosslinked structure formed by imidization of a polycarboxylic acid having higher valence or its anhydride and diamine It is described next battery.

特開2011−076792号公報JP 2011-076792 A 特開2010−282815号公報JP 2010-282815 A 特開2010−257878号公報JP 2010-257878 A 特開2009−054484号公報JP 2009-054484 A 特開2011−204592号公報JP 2011-205942 A

リチウムイオン電池の高容量化のために、負極にシリコン系活物質を用いる手法が検討されている。現在のところ、負極用活物質としてグラファイトが主流であるが、その蓄電容量は、シリコン系活物質の数分の一に過ぎない。一方で、シリコン系活物質の蓄電容量は優れているが、充放電時の膨張収縮が大きいという課題がある。   In order to increase the capacity of a lithium ion battery, a technique using a silicon-based active material for the negative electrode has been studied. At present, graphite is mainly used as the negative electrode active material, but its storage capacity is only a fraction of that of the silicon-based active material. On the other hand, although the storage capacity of the silicon-based active material is excellent, there is a problem that expansion and contraction during charging and discharging are large.

シリコン系活物質の膨張収縮により、負極と固体電界質との界面の密着性や、負極と負極集電体との界面の密着性が影響を受け、特に、硫化物系固体電解質を用いたリチウムイオン二次電池は、リチウム金属析出を起こす還元反応の過電圧が低いため、固体電池内の界面抵抗による抵抗分布により、容易にデンドライトが発生して内部短絡不良を起こす。したがって、電池寿命が大幅に低下するため、現状では、グラファイトにシリコン系活物質を僅かに配合した負極活物質の利用に留まっている。   Due to the expansion and contraction of the silicon-based active material, the adhesion at the interface between the negative electrode and the solid electrolyte and the adhesion at the interface between the negative electrode and the negative electrode current collector are affected, and in particular, lithium using a sulfide-based solid electrolyte. In the ion secondary battery, since the overvoltage of the reduction reaction causing lithium metal deposition is low, dendrite is easily generated due to the resistance distribution due to the interfacial resistance in the solid battery, causing an internal short circuit failure. Therefore, since the battery life is significantly reduced, at present, the use of a negative electrode active material in which a silicon-based active material is slightly mixed with graphite is limited.

前記特許文献5は、LiI、LiNなどの無機固体電解質を有するリチウムイオン二次電池を開示するものの、負極活物質にシリコン系物質を用いると、充放電時での負極活物質の膨張収縮によって固体電解質と負極との界面にも剥離が生じるおそれがあることへの配慮を示していない。 Although Patent Document 5 discloses a lithium ion secondary battery having an inorganic solid electrolyte such as LiI or Li 3 N, if a silicon-based material is used as the negative electrode active material, the expansion and contraction of the negative electrode active material during charge / discharge is disclosed. However, no consideration is given to the possibility that peeling may occur at the interface between the solid electrolyte and the negative electrode.

そこで、本発明は、負極にシリコン系活物質を利用したとしても、負極の界面における密着性を確実に向上させることにより、高寿命な固体電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a long-life solid battery by reliably improving the adhesion at the negative electrode interface even when a silicon-based active material is used for the negative electrode.

前記目的を達成するために、本発明は、正極と、負極と、前記正極と負極間に設けられた固体電解質と、を備え、前記負極は、負極活物質と、前記固体電解質に結着し、当該固体電解質に対して不活性な第1の結着剤と、負極集電体に対する結着性が前記第1の結着剤よりも優れた第2の結着剤と、を有し、前記第2の結着剤は高弾性樹脂を含有する、固体電池であることを特徴とする。   To achieve the above object, the present invention comprises a positive electrode, a negative electrode, and a solid electrolyte provided between the positive electrode and the negative electrode, the negative electrode being bound to the negative electrode active material and the solid electrolyte. A first binder that is inert with respect to the solid electrolyte, and a second binder that has a better binding property to the negative electrode current collector than the first binder, The second binder is a solid battery containing a highly elastic resin.

本発明によれば、負極用結着剤として、ポリイミド等の高弾性樹脂が用いられており、この樹脂は、負極活物質の充放電時の膨張収縮を拘束することによって、負極における界面(負極と固体電解質と界面、負極と負極集電体との界面)における密着性を安定的に維持することができる。さらに、負極の結着剤には、固体電解質に結着し、固体電解質に対して不活性な第1の結着剤も含まれているため、負極と固体電解質との界面における密着性もより向上される。したがって、本発明によれば、電池の充放電時での負極活物質の膨張収縮に拘わらず、負極と負極集電体の界面ばかりでなく、負極と固体電解質の界面の密着性も安定的に維持されるようにすることができる。   According to the present invention, a highly elastic resin such as polyimide is used as the binder for the negative electrode, and this resin constrains expansion and contraction during charging and discharging of the negative electrode active material, thereby causing an interface (negative electrode) in the negative electrode. And the solid electrolyte and the interface, and the interface between the negative electrode and the negative electrode current collector) can be stably maintained. Furthermore, since the binder for the negative electrode includes the first binder that binds to the solid electrolyte and is inactive to the solid electrolyte, the adhesion at the interface between the negative electrode and the solid electrolyte is also improved. Be improved. Therefore, according to the present invention, not only the interface between the negative electrode and the negative electrode current collector, but also the adhesion between the negative electrode and the solid electrolyte interface is stable regardless of the expansion and contraction of the negative electrode active material during charging and discharging of the battery. Can be maintained.

本発明の好適な形態では、前記固体電解質は、前記第1の結着剤と親和性がある電解質結着剤を有する。そして、前記高弾性樹脂としては、下記式[化1]のポリイミドが好適である。
In a preferred embodiment of the present invention, the solid electrolyte includes an electrolyte binder having an affinity for the first binder. And as said highly elastic resin, the polyimide of following formula [Chemical Formula 1] is suitable.

本発明のさらに好適な形態では、前記負極活物質はシリコン系活物質である。さらに、前記電解質結着剤は第1の結着剤を含む。前記第1の結着剤は極性官能基を有しない非極性樹脂である。さらに、固体電解質は硫化物系固体電解質からなる。前記負極は前記固体電解質を含まない。   In a further preferred aspect of the present invention, the negative electrode active material is a silicon-based active material. Furthermore, the electrolyte binder includes a first binder. The first binder is a nonpolar resin having no polar functional group. Furthermore, the solid electrolyte is a sulfide-based solid electrolyte. The negative electrode does not contain the solid electrolyte.

本発明によれば、負極にシリコン系活物質を利用したとしても、負極の界面における密着性を確実に向上させることにより、高寿命な固体電池を提供することができる。   According to the present invention, even when a silicon-based active material is used for the negative electrode, a solid battery having a long life can be provided by reliably improving the adhesion at the interface of the negative electrode.

本発明の実施形態に係る固体電池の構造の実施形態を示す断面図である。It is sectional drawing which shows embodiment of the structure of the solid battery which concerns on embodiment of this invention. 実施例、比較例に係る固体電池の充電容量と電圧との関係を示す特性図である。It is a characteristic view which shows the relationship between the charging capacity and voltage of the solid battery which concerns on an Example and a comparative example.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In the present specification and drawings, components having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.

<1.固体電池の構成>
まず、図1に基づいて、本実施形態に係る固体電池1の構成について説明する。固体電池1は、正極集電体2、接着層3、正極層4、電解質層5、負極層6、負極集電体7を備える。接着層3及び正極層4により固体電池1の正極10が構成される。また、負極層6が固体電池1の負極20を構成する。なお、固体電池1は接着層3を含んでいなくてもよい。
<1. Solid battery configuration>
First, based on FIG. 1, the structure of the solid battery 1 which concerns on this embodiment is demonstrated. The solid battery 1 includes a positive electrode current collector 2, an adhesive layer 3, a positive electrode layer 4, an electrolyte layer 5, a negative electrode layer 6, and a negative electrode current collector 7. The adhesive layer 3 and the positive electrode layer 4 constitute the positive electrode 10 of the solid battery 1. Further, the negative electrode layer 6 constitutes the negative electrode 20 of the solid battery 1. Note that the solid battery 1 may not include the adhesive layer 3.

正極集電体2は、導電体であればどのようなものでも良く、例えば、アルミニウム、ステンレス鋼、及び、ニッケルメッキ鋼等で構成される。   The positive electrode current collector 2 may be any conductor as long as it is a conductor, and is made of, for example, aluminum, stainless steel, nickel-plated steel, or the like.

接着層3は、正極集電体2と正極層4とを結着する。接着層3は、接着層導電性物質、第1の結着剤、及び、第2の結着剤を含む。接着層導電性物質は、例えばケッチェンブラック、アセチレンブラック等のカーボンブラック、グラファイト、天然黒鉛、人造黒鉛等であるが、接着層3の導電性を高めるためのものであれば特に制限されず、単独で使用され、複数を混合されてもよい。   The adhesive layer 3 binds the positive electrode current collector 2 and the positive electrode layer 4. The adhesive layer 3 includes an adhesive layer conductive material, a first binder, and a second binder. The adhesive layer conductive material is, for example, carbon black such as ketjen black, acetylene black, graphite, natural graphite, artificial graphite, etc., but is not particularly limited as long as it is for increasing the conductivity of the adhesive layer 3, They may be used alone or in combination.

第1の結着剤は、例えば、極性官能基を有しない非極性樹脂である。したがって、第1の結着剤は、反応性の高い固体電解質、特に、硫化物系固体電解質に対して不活性である。硫化物系固体電解質は、酸類、アルコール類、アミン類、エーテル類等の極性構造に対して活性であることが知られている。第1の結着剤は正極層4と結着するためのものである。ここで、正極層4に第1の結着剤或いはこれと同様な成分が含まれていると、接着層3内の第1の結着剤は、接着層3と正極層4との界面を通じて正極層4内の第1の結着剤と相互拡散することで、正極層4と強固に結着する。したがって、正極層4には、第1の結着剤が含まれることが好ましい。   The first binder is, for example, a nonpolar resin having no polar functional group. Therefore, the first binder is inactive to highly reactive solid electrolytes, particularly sulfide-based solid electrolytes. It is known that sulfide-based solid electrolytes are active against polar structures such as acids, alcohols, amines, ethers and the like. The first binder is for binding to the positive electrode layer 4. Here, if the positive electrode layer 4 contains the first binder or a component similar thereto, the first binder in the adhesive layer 3 passes through the interface between the adhesive layer 3 and the positive electrode layer 4. By interdiffusion with the first binder in the positive electrode layer 4, the positive electrode layer 4 is firmly bound. Therefore, the positive electrode layer 4 preferably contains the first binder.

第1の結着剤としては、例えば、SBS (スチレンブタジエンブロック重合体)、SEBS (スチレンエチレンブタジエンスチレンブロック重合体)、スチレン−スチレンブタジエン−スチレンブロック重合体等のスチレン系熱可塑性エラストマー類、SBR (スチレンブタジエンゴム)、BR (ブタジエンゴム)、NR(天然ゴム)、IR (イソプレンゴム)、EPDM (エチレン−プロピレン−ジエン三元共重合体)、および、これらの部分水素化物、あるいは完全水素化物が例示される。その他、ポリスチレン、ポリオレフィン、オレフィン系熱可塑性エラストマー、ポリシクロオレフイン、シリコーン樹脂等が例示される。   Examples of the first binder include styrene thermoplastic elastomers such as SBS (styrene butadiene block polymer), SEBS (styrene ethylene butadiene styrene block polymer), styrene-styrene butadiene-styrene block polymer, SBR, and the like. (Styrene butadiene rubber), BR (Butadiene rubber), NR (Natural rubber), IR (Isoprene rubber), EPDM (Ethylene-propylene-diene terpolymer), and partial hydrides or complete hydrides thereof Is exemplified. Other examples include polystyrene, polyolefin, olefinic thermoplastic elastomer, polycycloolefin, and silicone resin.

第2の結着剤は、第1の結着剤よりも正極集電体2への結着性が優れた結着剤である。正極集電体2への結着性が優れた結着剤であることは、例えば、正極集電体2に結着剤溶液を塗布、乾燥することにより得られた結着剤フィルムを正極集電体2から剥離するのに必要な力を、市販の剥離試験機で計測することにより判定することができる。第2の結着剤は、例えば、極性官能基を有する極性官能基含有樹脂であり、正極集電部体2と水素結合等を介して強固に結着する。ただし、第2の結着剤は、硫化物系固体電解質に対する反応性が高い場合が多いので、正極層4には含まれない。   The second binder is a binder that has better binding properties to the positive electrode current collector 2 than the first binder. A binder having excellent binding properties to the positive electrode current collector 2 is obtained by, for example, applying a binder film obtained by applying a binder solution to the positive electrode current collector 2 and drying the positive electrode current collector 2. The force required for peeling from the electric body 2 can be determined by measuring with a commercially available peel tester. The second binder is, for example, a polar functional group-containing resin having a polar functional group, and is firmly bound to the positive electrode current collector 2 through a hydrogen bond or the like. However, since the second binder is often highly reactive with the sulfide-based solid electrolyte, it is not included in the positive electrode layer 4.

第2の結着剤としては、例えば、NBR(ニトリルゴム)、CR(クロロプレンゴム)、および、これらの部分水素化物、あるいは完全水素化物、ポリアクリル酸エステルの共重合体、PVDF (ポリビニリデンフロライド)、VDF−HFP (ピニリデンフロライド−ヘキサフルオロプロピレン共重合体)、および、それらのカルボン酸変性物、CM(塩素化ポリエチレン)、ポリメタクリル酸エステル、ポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリイミド、ポリアミド、ポリアミドイミド等が例示される。また、上記の第1の結着剤にカルボン酸、スルホン酸、リン酸等を有するモノマーを共重合させた高分子等が例示される。   Examples of the second binder include NBR (nitrile rubber), CR (chloroprene rubber), partial hydrides thereof, or complete hydrides, copolymers of polyacrylic acid esters, PVDF (polyvinylidene fluoride), and the like. Ride), VDF-HFP (Pinylidene fluoride-hexafluoropropylene copolymer), and their carboxylic acid modified products, CM (chlorinated polyethylene), polymethacrylic acid ester, polyvinyl alcohol, ethylene-vinyl alcohol copolymer Examples include coalescence, polyimide, polyamide, polyamideimide and the like. Moreover, the polymer etc. which copolymerized the monomer which has carboxylic acid, a sulfonic acid, phosphoric acid etc. in said 1st binder are illustrated.

なお、接着層導電性物質、第1の結着剤、及び、第2の結着剤の含有量の比については、特に制限されないが、例えば、接着層導電性物は接着層3の総質量に対して50〜95質量%、第1の結着剤は接着層3の総質量に対して3〜30質量%、第2の結着剤は接着層3の総質量に対して2〜20質量%である。   The content ratio of the adhesive layer conductive material, the first binder, and the second binder is not particularly limited. For example, the adhesive layer conductive material is the total mass of the adhesive layer 3. The first binder is 3 to 30% by mass with respect to the total mass of the adhesive layer 3, and the second binder is 2 to 20 with respect to the total mass of the adhesive layer 3. % By mass.

正極層4は、硫化物系固体電解質、正極活物質、正極層導電性物質、及び、正極層結着剤を含む。正極層導電性物質は、接着層導電性物質と同様なものでよい。硫化物系固体電解質としては、例えば、Li2S-P25、を例示できる。この硫化物系固体電解質は、リチウムイオン伝導性が他の無機化合物より高いことが知られており、Li2S-P25の他に、SiS2、GeS2、B23等の硫化物を含んでいてもよい。また、固体電解質には、適宜、Li3P04やハロゲン、ハロゲン化合物等を添加した無機固体電解質を用いてもよい。 The positive electrode layer 4 includes a sulfide-based solid electrolyte, a positive electrode active material, a positive electrode layer conductive material, and a positive electrode layer binder. The positive electrode layer conductive material may be the same as the adhesive layer conductive material. Examples of the sulfide-based solid electrolyte include Li 2 S—P 2 S 5 . This sulfide-based solid electrolyte is known to have higher lithium ion conductivity than other inorganic compounds. In addition to Li 2 S—P 2 S 5 , SiS 2 , GeS 2 , B 2 S 3, etc. It may contain sulfide. Further, as the solid electrolyte, an inorganic solid electrolyte to which Li 3 P0 4 , halogen, a halogen compound or the like is appropriately added may be used.

また、硫化物系固体電解質は、Li2SとP25とを溶融温度以上に加熱して所定の比率で両者を溶融混合し、所定時間保持した後、急冷することにより得られる(溶融急冷法)。またLi2S-P25をメカニカルミリング法により処理して得られる。Li2S-P25の混合比は、モル比で、通常、50:50〜80:20 、好ましくは、60:40〜75:25である。 The sulfide-based solid electrolyte is obtained by heating Li 2 S and P 2 S 5 to a melting temperature or higher, melting and mixing them at a predetermined ratio, holding them for a predetermined time, and then rapidly cooling (melting). Quenching method). The obtained processed by mechanical milling method Li 2 S-P 2 S 5 . The mixing ratio of Li 2 S—P 2 S 5 is usually 50:50 to 80:20, preferably 60:40 to 75:25 in terms of molar ratio.

固体電池1は、電解質が固体電解質で構成される。固体電解質として、硫化物系固体電解質の他に、無機化合物からなるリチウムイオン伝導体を無機固体電解質として含有するものが例示される。このようなリチウムイオン伝導体としては、例えば、LiN、LISICON、LIPON(Li3+yPO4−x)、Thio−LISICON(Li3.25Ge0.250.75)、LiO−Al−TiO−P(LATP)がある。これらの無機化合物は、結晶、非晶質、ガラス状、ガラスセラミック等の構造をとりうる。 In the solid battery 1, the electrolyte is composed of a solid electrolyte. Examples of the solid electrolyte include those containing a lithium ion conductor made of an inorganic compound as the inorganic solid electrolyte in addition to the sulfide-based solid electrolyte. Examples of such lithium ion conductors include Li 3 N, LIICON, LIPON (Li 3 + y PO 4−x N x ), Thio-LISICON (Li 3.25 Ge 0.25 P 0.75 S 4 ), Li has 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 (LATP). These inorganic compounds can take a crystal, amorphous, glassy, glass ceramic or the like structure.

正極活物質は、リチウムイオンを可逆的に吸蔵及び放出することが可能な物質であれば特に限定されず、例えば、コバルト酸リチウム(LCO)、ニッケル酸リチウム、ニッケルコバルト酸リチウム、ニッケルコバルトアルミニウム酸リチウム(以下、「NCA」と称する場合もある。)、ニッケルコバルトマンガン酸リチウム(以下、「NCM」と称する場合もある。)、マンガン酸リチウム、リン酸鉄リチウム、硫化ニッケル、硫化銅、硫黄、酸化鉄、酸化バナジウム等が挙げられる。これらの正極活物質は、単独で用いられてもよく、2種以上が併用されてもよい。   The positive electrode active material is not particularly limited as long as it is a material capable of reversibly occluding and releasing lithium ions. For example, lithium cobalt oxide (LCO), lithium nickelate, lithium nickel cobaltate, nickel cobalt aluminum acid Lithium (hereinafter also referred to as “NCA”), nickel cobalt lithium manganate (hereinafter also referred to as “NCM”), lithium manganate, lithium iron phosphate, nickel sulfide, copper sulfide, sulfur , Iron oxide, vanadium oxide and the like. These positive electrode active materials may be used independently and 2 or more types may be used together.

正極活物質は、上記に挙げた正極活物質の例のうち、特に、層状岩塩型構造を有する遷移金属酸化物のリチウム塩であることが好ましい。ここでいう「層状」とは、薄いシート状の形状のことを意味し、「岩塩型構造」とは、結晶構造の1種である塩化ナトリウム型構造のことであり、陽イオン及び陰イオンのそれぞれが形成する面心立方格子が、互いに単位格子の稜の1/2だけずれた構造を指す。このような層状岩塩型構造を有する遷移金属酸化物のリチウム塩としては、例えば、Li1−x−y−zNiCoAl(NCA)またはLi1−x−y−zNiCoMn(NCM)(0<x<1、0<y<1、0<z<1、かつx+y+z<1)で表される3元系の遷移金属酸化物のリチウム塩が挙げられる。 The positive electrode active material is preferably a lithium salt of a transition metal oxide having a layered rock salt type structure, among the examples of the positive electrode active materials listed above. “Layered” as used herein means a thin sheet-like shape, and “rock salt structure” refers to a sodium chloride structure, which is a kind of crystal structure, and includes cations and anions. Each of the face-centered cubic lattices formed by each indicates a structure that is shifted from each other by a half of the edge of the unit lattice. As a lithium salt of a transition metal oxide having such a layered rock salt structure, for example, Li 1-x-yz Ni x Co y Al z O 2 (NCA) or Li 1-x-yz Ni x Co y Mn z O 2 (NCM) (0 <x <1, 0 <y <1, 0 <z <1, and x + y + z <1) is represented by a lithium salt of a ternary transition metal oxide. Can be mentioned.

正極層結着剤は、例えば、極性官能基を有しない非極性樹脂である。したがって、正極層結着剤は、反応性の高い固体電解質、特に、硫化物系固体電解質に対して不活性である。正極層結着剤としては、好ましくは、既述の第1の結着剤を含む。固体電池1の電解質は、反応性の高い硫化物系固体電解質であるので、正極層結着剤は非極性樹脂である。   The positive electrode layer binder is, for example, a nonpolar resin having no polar functional group. Therefore, the positive electrode layer binder is inactive to highly reactive solid electrolytes, particularly sulfide-based solid electrolytes. The positive electrode layer binder preferably includes the first binder described above. Since the electrolyte of the solid battery 1 is a highly reactive sulfide-based solid electrolyte, the positive electrode layer binder is a nonpolar resin.

正極層4を直接正極集電体2に結着させようとしても、正極層4が正極集電体2に十分結着しない可能性がある。そこで、第1の結着剤及び第2の結着剤を含む接着層3を正極層4と正極集電体2との間に介在させるようにしている。これにより、接着層3内の第1の結着剤が正極層4と強固に結着し、接着層3内の第2の結着剤が正極集電体2と強固に結着するので、正極集電体2と正極層4とが強固に結着される。ここで、正極層結着剤に第1の結着剤が含まれる場合、接着層3内の第1の結着剤は、接着層3と正極層4との界面を通じて正極層4内の第1の結着剤と相互拡散することで、正極層4と正極集団体2とが強固に結着される。   Even if the positive electrode layer 4 is directly bound to the positive electrode current collector 2, the positive electrode layer 4 may not be sufficiently bound to the positive electrode current collector 2. Therefore, the adhesive layer 3 containing the first binder and the second binder is interposed between the positive electrode layer 4 and the positive electrode current collector 2. As a result, the first binder in the adhesive layer 3 is firmly bound to the positive electrode layer 4, and the second binder in the adhesive layer 3 is firmly bound to the positive electrode current collector 2. The positive electrode current collector 2 and the positive electrode layer 4 are firmly bound. Here, when the first binder is contained in the positive electrode layer binder, the first binder in the adhesive layer 3 passes through the interface between the adhesive layer 3 and the positive electrode layer 4 and the first binder in the positive electrode layer 4. The positive electrode layer 4 and the positive electrode aggregate 2 are firmly bound by interdiffusion with the binder 1.

なお、硫化物系固体電解質、正極活物質、正極層導電性物質、及び正極層結着剤の含有量の比については、特に制限されない。例えば、硫化物系固体電解質は正極層4の総質量に対して20〜50質量%、正極活物質は正極層4の総質量に対して45〜75質量%、正極層導電性物質は正極層4の総質量に対して1〜10質量%、正極層結着剤は正極層4の総質量に対して0.5〜4質量%である。   The ratio of the content of the sulfide-based solid electrolyte, the positive electrode active material, the positive electrode layer conductive material, and the positive electrode layer binder is not particularly limited. For example, the sulfide-based solid electrolyte is 20 to 50% by mass with respect to the total mass of the positive electrode layer 4, the positive electrode active material is 45 to 75% by mass with respect to the total mass of the positive electrode layer 4, and the positive electrode layer conductive material is the positive electrode layer. 1 to 10% by mass with respect to the total mass of 4, and the positive electrode layer binder is 0.5 to 4% by mass with respect to the total mass of the positive electrode layer 4.

電解質層5は、硫化物系固体電解質、及び、電解質結着剤を含む。電解質結着剤は、極性官能基を有しない非極性樹脂である。したがって、電解質結着剤は、反応性の高い固体電解質、特に硫化物系固体電解質に対して不活性である。電解質結着剤は、好ましくは、第1の結着剤を含む。   The electrolyte layer 5 includes a sulfide-based solid electrolyte and an electrolyte binder. The electrolyte binder is a nonpolar resin having no polar functional group. Accordingly, the electrolyte binder is inactive to highly reactive solid electrolytes, particularly sulfide-based solid electrolytes. The electrolyte binder preferably includes a first binder.

電解質層5内の第1の結着剤は、正極層4と電解質層5との界面を通じて正極層4内の第1の結着剤と相互拡散することで、正極層4と電解質層5とが強固に結着する。なお、硫化物系固体電解質、及び、電解質結着剤の含有量の比については、特に制限されない。例えば、硫化物系固体電解質は電解質層5の総質量に対して95〜99質量%、電解質結着剤は電解質層5の総質量に対して0.5〜5質量%である。   The first binder in the electrolyte layer 5 interdiffuses with the first binder in the positive electrode layer 4 through the interface between the positive electrode layer 4 and the electrolyte layer 5, so that the positive electrode layer 4 and the electrolyte layer 5 Is firmly bound. The ratio of the content of the sulfide-based solid electrolyte and the electrolyte binder is not particularly limited. For example, the sulfide-based solid electrolyte is 95 to 99 mass% with respect to the total mass of the electrolyte layer 5, and the electrolyte binder is 0.5 to 5 mass% with respect to the total mass of the electrolyte layer 5.

負極層6は、負極活物質と負極結着剤とを含む。負極結着剤としては、既述の第1の結着剤を含む。負極層6の第1の結着剤は電界質層5の第1の結着剤と相互拡散して、負極層6と電解質層5とを強固に密着させる。結着剤は、第1の結着剤の他、極性官能基を有する第2の結着剤を含む。負極の第2の結着剤として、既述したもののうち、下記式[化2]のポリイミドを代表例とする高弾性樹脂を主として含有している。高弾性樹脂とは、たとえばJIS K7162で示される引張弾性率において、2〜15GPaの範囲にある樹脂のことである。このような高弾性樹脂としてはポリイミドのほかに、全芳香族ポリアミド(アラミド)、ポリアミドイミドなどがあげられる。この第2の結着剤は、負極層6と負極集電体7とを強固に密着させる。高弾性樹脂は充放電時の負極活物質の膨張収縮を拘束して、負極層6の界面、特に、負極層6と負極集電体7との界面における両者の密着性を維持するように働く。   The negative electrode layer 6 includes a negative electrode active material and a negative electrode binder. The negative electrode binder includes the first binder described above. The first binder of the negative electrode layer 6 interdiffuses with the first binder of the electrolyte layer 5 to firmly adhere the negative electrode layer 6 and the electrolyte layer 5. The binder contains a second binder having a polar functional group in addition to the first binder. As the second binder for the negative electrode, among the materials described above, a high-elasticity resin having a polyimide represented by the following formula [Chemical Formula 2] as a representative example is mainly contained. High elastic resin is resin in the range of 2-15 GPa in the tensile elasticity modulus shown, for example by JISK7162. Examples of such highly elastic resins include wholly aromatic polyamides (aramids) and polyamide imides in addition to polyimide. The second binder firmly adheres the negative electrode layer 6 and the negative electrode current collector 7 to each other. The highly elastic resin constrains the expansion and contraction of the negative electrode active material during charge and discharge, and works to maintain the adhesion between the negative electrode layer 6 and, in particular, the negative electrode layer 6 and the negative electrode current collector 7. .

式[化2]は、熱可塑性ポリイミド、又は、熱硬化性ポリイミドを示す。ポリイミドは、ポリアミド酸を熱処理することによって得られる。RおよびR’は芳香族化合物である。ポリイミドとして、例えば、式[化3]に示すものがある。
Formula [Chemical Formula 2] represents a thermoplastic polyimide or a thermosetting polyimide. Polyimide is obtained by heat-treating polyamic acid. R and R ′ are aromatic compounds. An example of the polyimide is shown in the formula [Chemical Formula 3].

負極電極を形成した後に、加熱処理等により、負極の第2の結着剤を式[化1]の構造になるようにしてもよい。具体的にはポリアミック酸で負極電極を負極集電体上に形成した後、不活性雰囲気下での加熱処理により脱水反応を経由して式[化1]に示す構造に化学変化させる。加熱処理により第2の結着剤に式[化1]の構造を持たせる場合、100〜400℃の温度で数時間の加熱が必要となるが、好ましくは200〜350℃の範囲で6時間以内である。このような範囲にあるとポリアミック酸の脱水反応を十分に進行させることができて、第2の結着剤が式[化1]の構造をもつように化学変化させることができるとともに、第1の結着剤の加熱による劣化を抑えることができる。第2の結着剤の平均重合度nは50〜5000であることが好ましい。この範囲にあると第2の結着剤が負極集電体に対して十分な強度もつと同時に、負極電極を容易に形成することができる。   After forming the negative electrode, the second binder of the negative electrode may be made to have the structure of the formula [Chemical Formula 1] by heat treatment or the like. Specifically, after a negative electrode is formed on the negative electrode current collector with polyamic acid, it is chemically changed to a structure represented by the formula [Chemical Formula 1] via a dehydration reaction by heat treatment in an inert atmosphere. When the second binder has the structure of the formula [Chemical Formula 1] by heat treatment, heating for several hours is required at a temperature of 100 to 400 ° C., preferably 6 hours in the range of 200 to 350 ° C. Is within. Within such a range, the dehydration reaction of the polyamic acid can sufficiently proceed, and the second binder can be chemically changed so as to have the structure of the formula [Chemical Formula 1]. Deterioration due to heating of the binder can be suppressed. The average degree of polymerization n of the second binder is preferably 50 to 5000. Within this range, the second binder has sufficient strength against the negative electrode current collector, and at the same time, the negative electrode can be easily formed.

第1の結着剤、及び、第2の結着剤の含有量の比については、特に制限されない。負極の第2の結着剤は、少なくとも、高弾性樹脂を含有するものであるが、既述の接着層3における第2の結着剤として例示された、他の成分等を含有することを妨げるものではない。負極の第2の結着剤におけるポリイミド等の高弾性樹脂量は、当該第2の結着剤の全量に対して、例えば、50質量%以上であることが好ましい。   There are no particular restrictions on the ratio of the content of the first binder and the second binder. The second binder of the negative electrode contains at least a highly elastic resin, but contains other components exemplified as the second binder in the adhesive layer 3 described above. It does not prevent it. The amount of highly elastic resin such as polyimide in the second binder of the negative electrode is preferably 50% by mass or more with respect to the total amount of the second binder.

負極活物質は、グラファイト系物質、又は、シリコン系物質である。両者の任意の割合の混合物であってもよい。グラファイト系活物質に比較して、シリコン系活物質の充放電時の膨張収縮が大きいため、負極の第2の結着剤をポリイミドとする効果は、シリコン系活物質に対して顕著である。   The negative electrode active material is a graphite-based material or a silicon-based material. The mixture of both arbitrary ratios may be sufficient. Since the expansion and contraction of the silicon-based active material during charging / discharging is larger than that of the graphite-based active material, the effect of using the second binder of the negative electrode as polyimide is remarkable for the silicon-based active material.

グラファイト系活物質は、例えば、人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等の黒鉛系材料である。シリコン系活物質は、Si、Si合金、又は、シリコン酸化物である。Si合金は、Si相、およびSiと他の1種以上の金属元素との金属間化合物の相からなるもので、Si相は、可逆的にLiと化合および脱離することによりLiを吸蔵・放出する、活物質となる相である。Siと他元素との金属間化合物の相(Si含有金属間化合物相)は、活物質であるSi相と密着して接することにより、充電・放電中のSi相の体積変化(膨張・収縮)に対してSi相を拘束し、それにより負極材料の微粉化を防止し、サイクル寿命を延長する作用を果たす。   The graphite-based active material is, for example, a graphite-based material such as artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, or natural graphite coated with artificial graphite. The silicon-based active material is Si, Si alloy, or silicon oxide. The Si alloy is composed of a Si phase and a phase of an intermetallic compound of Si and one or more other metal elements, and the Si phase reversibly combines with and desorbs Li to occlude and desorb Li. It is a phase that is released and becomes an active material. The phase of the intermetallic compound of Si and other elements (Si-containing intermetallic compound phase) is in close contact with the Si phase, which is the active material, thereby changing the volume (expansion / contraction) of the Si phase during charging / discharging In contrast, the Si phase is restrained, thereby preventing the anode material from being pulverized and extending the cycle life.

Si相の体積変化を拘束する相は、Liを全くまたはほとんど吸蔵しないSiを含有する金属間化合物(Siと他元素との金属間化合物)を拘束相として利用する。Siと金属間化合物を形成する他元素は、Siと安定な金属間化合物を容易に形成することができる元素である、長周期型周期表の2A族元素および遷移元素から選んだ1種もしくは2種以上とする。このうち好ましい元素は、Mg,Ti,V,Cr,Mn,Co,Cu,FeおよびNiから選んだ1種もしくは2種以上である。   The phase that constrains the volume change of the Si phase uses an intermetallic compound containing Si (intermetallic compound of Si and another element) that does not occlude Li or hardly occludes as the constraining phase. The other element that forms an intermetallic compound with Si is an element that can easily form a stable intermetallic compound with Si. One or two selected from the group 2A elements and transition elements of the long-period periodic table More than seeds. Among these, preferable elements are one or more selected from Mg, Ti, V, Cr, Mn, Co, Cu, Fe and Ni.

また、金属組織はより微細であるほど、活物質相と拘束相との接触割合が多くなり微粉化を防止し、サイクル寿命を延長する作用を果たす。微細な金属組織を得る方法として急冷凝固が有効である。急冷凝固が可能な凝固方法としては、アトマイズ法 (液体アトマイズ法とガスアトマイズを含む) 、ロール急冷法 (単ロール急冷法、双ロール急冷法を含む) 、回転電極法等がある。得られた鋳片は、通常は粉砕して粉末状にしてから負極材料として使用する。粉砕はジェットミルやボールミル等の常法により実施すればよく、粉砕も非酸化性雰囲気中で行うことが好ましい。粉末の粒径は特に制限されるものではないが、好ましくは1〜35μmである。   In addition, the finer the metal structure, the greater the contact ratio between the active material phase and the constrained phase, preventing pulverization and extending the cycle life. Rapid solidification is effective as a method for obtaining a fine metal structure. Solidification methods capable of rapid solidification include an atomizing method (including liquid atomizing method and gas atomizing), a roll rapid cooling method (including a single roll rapid cooling method and a twin roll rapid cooling method), and a rotating electrode method. The obtained slab is usually pulverized into a powder and then used as a negative electrode material. The pulverization may be performed by a conventional method such as a jet mill or a ball mill, and the pulverization is preferably performed in a non-oxidizing atmosphere. The particle size of the powder is not particularly limited, but is preferably 1 to 35 μm.

負極層6には、固体電池1の製造時等に電解質層5から硫化物系固体電解質が膨潤する可能性がある。即ち、負極層6には、硫化物系固体電解質が含まれる可能性がある。したがって、負極層6に既述の第2の結着剤を含めると、第2の結着剤が負極層6内の硫化物系固体電解質と反応するので、負極層6内の硫化物系固体電解質が劣化する。しかし、本発明者は、負極活物質が、グラファイト系活物質、又は、シリコン系活物質、或いは、両者の混合物であれば、固体電池1の特性が良好になることを見出した(実施例参照)。即ち、固体電池1の劣化が防止される。このことは、負極層6に硫化物系固体電解質が不要であることを意味する。なお、硫化物系固体電解質は、負極層6と負極集電体7との界面部分までは膨潤しないと推察される。   The negative electrode layer 6 may swell the sulfide-based solid electrolyte from the electrolyte layer 5 when the solid battery 1 is manufactured. That is, the negative electrode layer 6 may contain a sulfide-based solid electrolyte. Therefore, when the second binder described above is included in the negative electrode layer 6, the second binder reacts with the sulfide-based solid electrolyte in the negative electrode layer 6, and thus the sulfide-based solid in the negative electrode layer 6. The electrolyte deteriorates. However, the present inventor has found that if the negative electrode active material is a graphite-based active material, a silicon-based active material, or a mixture of both, the characteristics of the solid battery 1 are improved (see Examples). ). That is, the deterioration of the solid battery 1 is prevented. This means that the negative electrode layer 6 does not require a sulfide-based solid electrolyte. The sulfide-based solid electrolyte is presumed not to swell up to the interface portion between the negative electrode layer 6 and the negative electrode current collector 7.

負極に硫化物系固体電解質を必要としないことから、負極層6に、既述のとおり、負極の第2の結着剤を含めることができる。この第2の結着剤は、水素結合等を介して負極集電体7と強固に結着する。ただし、第2の結着剤だけでは、負極層6と電解質層5との結着性が十分でない可能性がある。そこで、本実施形態では、負極層6に第2の結着剤の他、電解質結着剤に親和性を有する第1の結着剤を含めている。これにより、第1の結着剤は、電解質層5と負極層6とを強固に密着させる。電解質層5に第1の結着剤が含まれると、負極層6内の第1の結着剤は、負極層6と電解質層5との界面を通じて電解質層5内の第1の結着剤と相互拡散することで、電解質層5と負極層6とを強固に密着することができる。   Since the sulfide-based solid electrolyte is not required for the negative electrode, the negative electrode layer 6 can contain the second binder of the negative electrode as described above. This second binder is firmly bound to the negative electrode current collector 7 through a hydrogen bond or the like. However, the binding property between the negative electrode layer 6 and the electrolyte layer 5 may not be sufficient with the second binder alone. Therefore, in the present embodiment, the negative electrode layer 6 includes the first binder having affinity for the electrolyte binder in addition to the second binder. Thereby, the 1st binder makes the electrolyte layer 5 and the negative electrode layer 6 adhere | attach firmly. When the first binder is contained in the electrolyte layer 5, the first binder in the negative electrode layer 6 becomes the first binder in the electrolyte layer 5 through the interface between the negative electrode layer 6 and the electrolyte layer 5. Thus, the electrolyte layer 5 and the negative electrode layer 6 can be firmly adhered to each other.

負極活物質、第1の結着剤、及び、第2の結着剤の含有量の比については、特に制限されない。例えば、負極活物質は負極層6の総質量に対して88〜98.9質量%、第1の結着剤は負極層6の総質量に対して0.1〜2質量%、第2の結着剤は負極層6の総質量に対して1〜10質量%である。   The ratio of the content of the negative electrode active material, the first binder, and the second binder is not particularly limited. For example, the negative electrode active material is 88 to 98.9% by mass with respect to the total mass of the negative electrode layer 6, and the first binder is 0.1 to 2% by mass with respect to the total mass of the negative electrode layer 6; The binder is 1 to 10% by mass with respect to the total mass of the negative electrode layer 6.

負極集電体7は、導電体であればどのようなものでもよく、例えば、ニッケル、銅、ステンレス鋼、及びニッケルメッキ鋼等で構成される。なお、上記の各層には、公知の添加剤等を適宜加えてもよい。   The negative electrode current collector 7 may be any conductor as long as it is a conductor, and is composed of, for example, nickel, copper, stainless steel, nickel-plated steel, or the like. In addition, you may add a well-known additive etc. to said each layer suitably.

<2.固体電池の製造方法>
次に、固体電池1の製造方法の一例について説明する。まず、第1の結着剤と、第2の結着剤と、接着層導電性物質と、第1の結着剤及び第2の結着剤を溶解するための第1の溶媒と、を含む接着層塗工液を生成する。ここで、第1の溶媒としては、例えば、NMP(N−メチルピロリドン)、DMF(N、N−ジメチルホルムアミド)、N,N−ジメチルアセトアミド、等のアミド溶媒、酢酸ブチル、酢酸エチル等のアルキルエステル溶媒、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類溶媒、テトラフドロフラン、ジエチルエーテル等のエーテル類溶媒、メタノール、エタノール、イソプロピルアルコール等のアルコール類溶媒等がある。後述するように、接着層3には硫化物系固体電解質が含まれないか、正極層4から膨潤した硫化物系固体電解質が少量含まれる程度であるので、第1の溶媒には極性溶媒を使用することができる。即ち、本発明者は、第1の結着剤及び第2の結着剤を溶解することができる第1の溶媒を見出し、この知見に基づき、本実施形態の製造方法に想到するに至った。
<2. Manufacturing method of solid battery>
Next, an example of a method for manufacturing the solid battery 1 will be described. First, a first binder, a second binder, an adhesive layer conductive material, and a first solvent for dissolving the first binder and the second binder. An adhesive layer coating solution containing is produced. Here, examples of the first solvent include amide solvents such as NMP (N-methylpyrrolidone), DMF (N, N-dimethylformamide), N, N-dimethylacetamide, and alkyls such as butyl acetate and ethyl acetate. Examples include ester solvents, ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, ether solvents such as tetrahydrofuran and diethyl ether, alcohol solvents such as methanol, ethanol, and isopropyl alcohol. As will be described later, since the adhesive layer 3 does not contain a sulfide solid electrolyte or contains a small amount of a sulfide solid electrolyte swollen from the positive electrode layer 4, a polar solvent is used as the first solvent. Can be used. That is, the present inventor has found a first solvent capable of dissolving the first binder and the second binder, and based on this finding, has arrived at the production method of the present embodiment. .

次いで、接着層塗工液を正極集電体2上に塗工し、乾燥することで、接着層3を生成する。なお、卓上スクリーン印刷機等の基板上に接着層塗工液を塗工し、乾燥することで、接着フィルムを形成し、この接着フィルムを正極集電体2に圧着してもよい。   Next, the adhesive layer coating liquid is applied onto the positive electrode current collector 2 and dried to produce the adhesive layer 3. In addition, an adhesive layer coating solution may be applied to a substrate such as a desktop screen printing machine and dried to form an adhesive film, and the adhesive film may be pressure-bonded to the positive electrode current collector 2.

次いで、硫化物系固体電解質と、正極活物質と、正極層導電性物質と、正極層結着剤と、正極層結着剤及び第1の結着剤を溶解するための第2の溶媒と、を含む正極層塗工液を生成する。第2の溶媒は、正極層結着剤(第1の結着剤)を溶解するが、第2の結着剤を溶解しない。第2の溶媒は、具体的には非極性溶媒であり、例えば、キシレン、トルエン、エチルベンゼン等の芳香族炭化水素、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類等である。次いで、正極層塗工液を接着層3上に塗工し、乾燥することで、正極層4を生成する。これにより、接着層3内の第1の結着剤が第2の溶媒に溶解することで正極層4内に膨潤するので、接着層3と正極層4との結着がより強固になる。このように、本実施形態では、正極10を塗工により生成するので、大面積の正極10を容易に製造することができる。即ち、本実施形態では、大容量の固体電池1を容易に製造することができる。   Next, a sulfide-based solid electrolyte, a positive electrode active material, a positive electrode layer conductive material, a positive electrode layer binder, a second solvent for dissolving the positive electrode layer binder and the first binder, A positive electrode layer coating solution containing is produced. The second solvent dissolves the positive electrode layer binder (first binder) but does not dissolve the second binder. The second solvent is specifically a nonpolar solvent, and examples thereof include aromatic hydrocarbons such as xylene, toluene, and ethylbenzene, and aliphatic hydrocarbons such as pentane, hexane, and heptane. Next, the positive electrode layer coating liquid is applied onto the adhesive layer 3 and dried to produce the positive electrode layer 4. Thereby, since the 1st binder in the contact bonding layer 3 melt | dissolves in the positive electrode layer 4 by melt | dissolving in a 2nd solvent, the binding | bonding of the contact bonding layer 3 and the positive electrode layer 4 becomes stronger. Thus, in this embodiment, since the positive electrode 10 is produced | generated by coating, the large area positive electrode 10 can be manufactured easily. That is, in this embodiment, the large-capacity solid battery 1 can be easily manufactured.

また、第2の溶媒は第2の結着剤を溶解しないので、接着層3上に正極層塗工液を塗工した際に、接着層3内の第2の結着剤が正極層4内に膨潤することが防止される。これにより、正極層4内の硫化物系固体電解質が第2の結着剤により劣化することが防止される。以上の工程により、正極集電体2、接着層3、及び正極層4を含む正極構造体が生成される。   In addition, since the second solvent does not dissolve the second binder, when the positive electrode layer coating solution is applied onto the adhesive layer 3, the second binder in the adhesive layer 3 becomes the positive electrode layer 4. Swelling inside is prevented. This prevents the sulfide solid electrolyte in the positive electrode layer 4 from being deteriorated by the second binder. Through the above steps, a positive electrode structure including the positive electrode current collector 2, the adhesive layer 3, and the positive electrode layer 4 is generated.

一方、第1の結着剤と、第2の結着剤と、負極活物質と、第1の溶媒と、を含む負極層塗工液を生成する。負極層6には硫化物系固体電解質が不要であるので、第1の溶媒には極性溶媒を使用することができる。次いで、負極層塗工液を負極集電体7上に塗工し、乾燥することで、負極層6を生成する。これにより、負極構造体が生成される。   On the other hand, a negative electrode layer coating liquid containing a first binder, a second binder, a negative electrode active material, and a first solvent is generated. Since the negative electrode layer 6 does not require a sulfide-based solid electrolyte, a polar solvent can be used as the first solvent. Next, the negative electrode layer coating liquid is applied onto the negative electrode current collector 7 and dried to produce the negative electrode layer 6. Thereby, a negative electrode structure is produced.

次いで、硫化物系固体電解質と、電解質結着剤と、第2の溶媒と、を含む電解質層塗工液を生成する。第2の溶媒は、電解質結着剤(第1の結着剤)を溶解するが、第2の結着剤は溶解しない。次いで、電解質層塗工液を負極層6上に塗工し、乾燥することで、電解質層5を生成する。これにより、負極層6内の第1の結着剤が第2の溶媒に溶解することで電解質層5内に膨潤するので、電解質層5と負極層6との結着がより強固になる。また、第2の溶媒は第2の結着剤を溶解しないので、負極層6上に電解質層塗工液を塗工した際に、負極層6内の第2の結着剤が電解質層5内に膨潤することが防止される。これにより、電解質層5内の硫化物系固体電解質が第2の結着剤により劣化することが防止される。   Next, an electrolyte layer coating solution containing a sulfide-based solid electrolyte, an electrolyte binder, and a second solvent is generated. The second solvent dissolves the electrolyte binder (first binder), but does not dissolve the second binder. Next, the electrolyte layer coating liquid is applied onto the negative electrode layer 6 and dried to produce the electrolyte layer 5. Thereby, since the 1st binder in the negative electrode layer 6 is dissolved in the electrolyte layer 5 by melt | dissolving in a 2nd solvent, the binding with the electrolyte layer 5 and the negative electrode layer 6 becomes firmer. Further, since the second solvent does not dissolve the second binder, when the electrolyte layer coating solution is applied onto the negative electrode layer 6, the second binder in the negative electrode layer 6 becomes the electrolyte layer 5. Swelling inside is prevented. This prevents the sulfide solid electrolyte in the electrolyte layer 5 from being deteriorated by the second binder.

次いで、正極構造体と、電解質層5及び負極構造体からなるシートとを圧着することで、固体電池1が生成される。このように、本実施形態では、固体電池1の各層を塗工により生成するので、各層の面積を容易に大きくすることができる。即ち、本実施形態では、大容量の固体電池1を容易に製造することができる。   Subsequently, the solid battery 1 is produced | generated by crimping | bonding the positive electrode structure and the sheet | seat which consists of the electrolyte layer 5 and a negative electrode structure. Thus, in this embodiment, since each layer of the solid battery 1 is produced | generated by coating, the area of each layer can be enlarged easily. That is, in this embodiment, the large-capacity solid battery 1 can be easily manufactured.

次に、本実施形態の実施例について説明する。なお、以下の各実施例及び比較例での作業は、全て露点温度−55℃以下のドライルーム内で行われた。
[実施例1]
[接着層の生成]
接着層導電性物質としてのグラファイト(ティムカル社KS−4、以下同じ)及びアセチレンブラック(電気化学工業、以下同じ)と、第1の結着剤としてのスチレン系熱可塑性エラストマー(以下、結着剤A)(旭化成S.O.E1611、以下同じ)と、第2の結着剤としての酸変性PVDF(以下、結着剤B)(クレハKF9200、以下同じ)とを60:10:15:15の質量%比で秤量した。そして、これらの材料と適量のNMPとを自転公転ミキサに投入し、3000rpmで5分撹拌することで、接着層塗工液を生成した。
Next, examples of the present embodiment will be described. In addition, all the operations in the following Examples and Comparative Examples were performed in a dry room having a dew point temperature of −55 ° C. or lower.
[Example 1]
[Generation of adhesive layer]
Adhesive layer conductive material graphite (Timcal KS-4, the same applies hereinafter) and acetylene black (electrochemical industry, the same applies hereinafter), and styrene thermoplastic elastomer as the first binder (hereinafter referred to as the binder) A) (Asahi Kasei S.E.E 1611, the same shall apply hereinafter) and acid-modified PVDF (hereinafter referred to as Binder B) (Kureha KF 9200, same shall apply hereinafter) as the second binder 60: 10: 15: 15 Weighed at a mass% ratio. Then, these materials and an appropriate amount of NMP were put into a rotation and revolution mixer, and stirred at 3000 rpm for 5 minutes to produce an adhesive layer coating solution.

次いで、卓上スクリーン印刷機(ニューロンリング精密工業社製、以下同じ)に正極集電体2として厚さ20μmのアルミニウム箔集電体を載置し、400メッシュのスクリーンを用いて接着層塗工液をアルミニウム箔集電体上に塗工した。その後、接着層塗工液が塗工された正極集電体2を80℃で12時間真空乾燥させた。これにより、正極集電体2上に接着層3を形成した。乾燥後の接着層3の厚さは7μmであった。   Next, an aluminum foil current collector having a thickness of 20 μm is placed as a positive electrode current collector 2 on a desktop screen printing machine (manufactured by Neuron Ring Seimitsu Kogyo Co., Ltd., the same shall apply hereinafter), and an adhesive layer coating solution is used using a 400 mesh screen. Was coated on an aluminum foil current collector. Thereafter, the positive electrode current collector 2 coated with the adhesive layer coating solution was vacuum-dried at 80 ° C. for 12 hours. Thereby, the adhesive layer 3 was formed on the positive electrode current collector 2. The thickness of the adhesive layer 3 after drying was 7 μm.

[正極層の生成]
正極活物質としてのLiNiCoAlO三元系粉末と、硫化物系固体電解質としてのLiS−P(80:20モル%)非晶質粉末と、正極層導電性物質(導電助剤)としての気相成長炭素繊維粉末とを60:35:5の質量%比で秤量し、自転公転ミキサを用いて混合した。
[Creation of positive electrode layer]
LiNiCoAlO 2 ternary powder as a positive electrode active material, Li 2 S—P 2 S 5 (80:20 mol%) amorphous powder as a sulfide-based solid electrolyte, and positive electrode layer conductive material (conductive aid) ) As a vapor-grown carbon fiber powder in a mass ratio of 60: 35: 5 and mixed using a rotating and rotating mixer.

次いで、この混合粉に、正極層結着剤としての結着剤Aが溶解したキシレン溶液を結着剤Aが混合粉の総質量に対して1.0質量%となるように添加することで、1次混合液を調整した。さらに、この混合液に、さらに、この1次混合液に、粘度調整のための脱水キシレンを適量添加することで、2次混合液を生成した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように2次混合液に投入した。これにより生成された3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、正極層塗工液を生成した。   Next, a xylene solution in which the binder A as the positive electrode layer binder is dissolved is added to the mixed powder so that the binder A is 1.0% by mass with respect to the total mass of the mixed powder. A primary mixed solution was prepared. Furthermore, a secondary mixed solution was generated by adding an appropriate amount of dehydrated xylene for viscosity adjustment to this mixed solution. Furthermore, in order to improve the dispersibility of the mixed powder, a zirconia ball having a diameter of 5 mm is changed into a secondary mixed solution so that the space, the mixed powder, and the zirconia ball each occupy 1/3 of the total volume of the kneading container. I put it in. The tertiary mixed liquid produced | generated by this was thrown into the rotation-revolution mixer, and the positive electrode layer coating liquid was produced | generated by stirring at 3000 rpm for 3 minutes.

次いで、卓上スクリーン印刷機に正極集電体2及び接着層3からなるシートを載置し、150μmのメタルマスクを用いて正極層塗工液をシート上に塗工した。その後、正極層塗工液が塗工されたシートを40℃のホットプレートで10分乾燥させた後、40℃で12時間真空乾燥させた。これにより、接着層3上に正極層4を形成した。乾燥後の正極集電体2、接着層3、及び正極層4の総厚さは165μm前後であった。   Subsequently, the sheet | seat which consists of the positive electrode electrical power collector 2 and the contact bonding layer 3 was mounted in the desk screen printer, and the positive electrode layer coating liquid was applied on the sheet | seat using a 150 micrometer metal mask. Then, after drying the sheet | seat with which the positive electrode layer coating liquid was coated with a 40 degreeC hotplate for 10 minutes, it was vacuum-dried at 40 degreeC for 12 hours. Thereby, the positive electrode layer 4 was formed on the adhesive layer 3. The total thickness of the positive electrode current collector 2, the adhesive layer 3, and the positive electrode layer 4 after drying was around 165 μm.

次いで、正極集電体2、接着層3、及び正極層4からなるシートをロールギャップ10μmのロールプレス機を用いて圧延することで、正極構造体を生成した。正極構造体の厚みは120μm前後であった。   Subsequently, the sheet | seat which consists of the positive electrode electrical power collector 2, the contact bonding layer 3, and the positive electrode layer 4 was rolled using the roll press machine with a roll gap of 10 micrometers, and the positive electrode structure was produced | generated. The thickness of the positive electrode structure was around 120 μm.

[負極層の生成]
負極活物質としての黒鉛粉末(80℃で24時間真空乾燥したもの)と、第1の結着剤としての結着剤Aと、第2の結着剤としての結着剤C(ポリアミック酸型ポリイミド樹脂日立化成HCI1000S、弾性率2.5GPa)とを94.5:0.5:5.0の質量%比で秤量した。そして、これらの材料と適量のNMPとを自転公転ミキサに投入し、3000rpmで3分撹拌した後、1分脱泡処理することで、負極層塗工液を生成した。
[Formation of negative electrode layer]
Graphite powder as a negative electrode active material (dried at 80 ° C. for 24 hours), binder A as a first binder, and binder C (polyamic acid type as a second binder) Polyimide resin Hitachi Chemical HCI1000S, elastic modulus 2.5 GPa) was weighed at a mass% ratio of 94.5: 0.5: 5.0. Then, these materials and an appropriate amount of NMP were put into a rotation and revolution mixer, stirred for 3 minutes at 3000 rpm, and then subjected to defoaming treatment for 1 minute to produce a negative electrode layer coating solution.

次いで、負極集電体7として厚さ16μmの銅箔集電体を用意し、ブレードを用いて銅箔集電体上に負極層塗工液を塗工した。銅箔集電体上の負極層塗工液の厚さ(ギャップ)は150μm前後であった。   Next, a 16 μm-thick copper foil current collector was prepared as the negative electrode current collector 7, and the negative electrode layer coating solution was applied onto the copper foil current collector using a blade. The thickness (gap) of the negative electrode layer coating solution on the copper foil current collector was around 150 μm.

負極層塗工液が塗工されたシートを、80℃に加熱された乾燥機内に収納し、20分乾燥した。その後、負極集電体7及び負極層6からなるシートをロールギャップ10μmのロールプレス機を用いて圧延することで、負極構造体を生成した。負極構造体の厚さは100μm前後であった。さらに、圧延後のシートを300℃で2時間真空加熱を行った。これにより、結着剤Cがイミド化された負極層6を生成した。   The sheet coated with the negative electrode layer coating solution was stored in a dryer heated to 80 ° C. and dried for 20 minutes. Then, the sheet | seat which consists of the negative electrode electrical power collector 7 and the negative electrode layer 6 was rolled using the roll press machine with a roll gap of 10 micrometers, and the negative electrode structure was produced | generated. The thickness of the negative electrode structure was about 100 μm. Further, the rolled sheet was vacuum heated at 300 ° C. for 2 hours. Thereby, the negative electrode layer 6 in which the binder C was imidized was generated.

[電解質層の生成]
硫化物系固体電解質としてのLiS−P(80:20モル%)非晶質粉末に、結着剤A(電解質結着剤)のキシレン溶液を結着剤Aが非晶質粉末の質量に対して1質量%となるように添加することで、1次混合液を調整した。さらに、この1次混合液に、粘度調整のための脱水キシレンを適量添加することで、2次混合液を生成した。さらに、混合粉の分散性を向上させるために、直径5mmのジルコニアボールを、空間、混合粉、ジルコニアボールがそれぞれ混練容器の全容積に対して1/3ずつを占めるように2次混合液に投入した。これにより生成された3次混合液を自転公転ミキサに投入し、3000rpmで3分撹拌することで、電解質層塗工液を生成した。
[Creation of electrolyte layer]
The Li 2 S-P 2 S 5 (80:20 mol%) amorphous powder as a sulfide-based solid electrolyte, binder A xylene solution of the binder A (electrolyte binder) amorphous The primary liquid mixture was adjusted by adding 1 mass% with respect to the mass of the powder. Furthermore, a secondary mixed solution was generated by adding an appropriate amount of dehydrated xylene for viscosity adjustment to the primary mixed solution. Furthermore, in order to improve the dispersibility of the mixed powder, a zirconia ball having a diameter of 5 mm is changed into a secondary mixed solution so that the space, the mixed powder, and the zirconia ball each occupy 1/3 of the total volume of the kneading container. I put it in. The tertiary mixture produced in this way was put into a rotation and revolution mixer and stirred at 3000 rpm for 3 minutes to produce an electrolyte layer coating solution.

次いで、卓上スクリーン印刷機に負極構造体を載置し、200μmのメタルマスクを用いて電解質層塗工液を負極構造体上に塗工した。その後、電解質層塗工液が塗工されたシートを40℃のホットプレートで10分乾燥させた後、40℃で12時間真空乾燥させた。これにより、負極構造体上に電解質層5を形成した。乾燥後の電解質層5の厚さは130μm前後であった。   Next, the negative electrode structure was placed on a desktop screen printer, and an electrolyte layer coating solution was applied onto the negative electrode structure using a 200 μm metal mask. Thereafter, the sheet coated with the electrolyte layer coating solution was dried on a hot plate at 40 ° C. for 10 minutes and then vacuum dried at 40 ° C. for 12 hours. Thereby, the electrolyte layer 5 was formed on the negative electrode structure. The thickness of the electrolyte layer 5 after drying was around 130 μm.

[固体電池の生成]
負極構造体及び電解質層5からなるシート及び正極構造体をそれぞれトムソン刃で打ちぬき、シートの電解質層5と正極構造体の正極層4とをロールギャップ50μmのロールプレス機を用いたドライラミネーション法により貼り合わせることで、固体電池1の単セル(単電池)を生成した。
[Production of solid battery]
A sheet consisting of the negative electrode structure and the electrolyte layer 5 and the positive electrode structure are each punched out with a Thomson blade, and the dry electrolyte method using a roll press machine with a roll gap of 50 μm is applied to the electrolyte layer 5 and the positive electrode layer 4 of the positive electrode structure The single cell (single cell) of the solid battery 1 was produced by bonding together.

[実施例2]
[正極構造体の生成]
実施例1と同様の工程により、正極構造体を生成した。
[Example 2]
[Generation of positive electrode structure]
A positive electrode structure was produced by the same process as in Example 1.

[負極層の生成]
負極活物質としてのSi合金粉末(80℃で24時間真空乾燥したもの)と、第1の結着剤としての結着剤Aと、第2の結着剤としての結着剤C(ポリアミック酸型ポリイミド樹脂日立化成HCI1000S)とを94.5:0.5:5.0の質量%比で秤量した。そして、これらの材料と適量のNMPとを自転公転ミキサに投入し、3000rpmで3分撹拌した後、1分脱泡処理することで、負極層塗工液を生成した。
[Formation of negative electrode layer]
Si alloy powder as negative electrode active material (dried in vacuum at 80 ° C. for 24 hours), binder A as first binder, and binder C (polyamic acid as second binder) Type polyimide resin Hitachi Chemical HCI1000S) was weighed at a mass% ratio of 94.5: 0.5: 5.0. Then, these materials and an appropriate amount of NMP were put into a rotation and revolution mixer, stirred for 3 minutes at 3000 rpm, and then subjected to defoaming treatment for 1 minute to produce a negative electrode layer coating solution.

次いで、負極集電体7として厚さ16μmの銅箔集電体を用意し、ブレードを用いて銅箔集電体上に負極層塗工液を塗工した。銅箔集電体上の負極層塗工液の厚さ(ギャップ)は100μm前後であった。   Next, a 16 μm-thick copper foil current collector was prepared as the negative electrode current collector 7, and the negative electrode layer coating solution was applied onto the copper foil current collector using a blade. The thickness (gap) of the negative electrode layer coating solution on the copper foil current collector was around 100 μm.

負極層塗工液が塗工されたシートを、80℃に加熱された乾燥機内に収納し、20分乾燥した。その後、負極集電体7及び負極層6からなるシートをロールギャップ10μmのロールプレス機を用いて圧延することで、負極構造体を生成した。負極構造体の厚さは70μm前後であった。さらに、圧延後のシートを350℃で2時間真空加熱を行った。これにより、結着剤Cがイミド化された負極層6を生成した。   The sheet coated with the negative electrode layer coating solution was stored in a dryer heated to 80 ° C. and dried for 20 minutes. Then, the sheet | seat which consists of the negative electrode electrical power collector 7 and the negative electrode layer 6 was rolled using the roll press machine with a roll gap of 10 micrometers, and the negative electrode structure was produced | generated. The thickness of the negative electrode structure was about 70 μm. Further, the rolled sheet was subjected to vacuum heating at 350 ° C. for 2 hours. Thereby, the negative electrode layer 6 in which the binder C was imidized was generated.

[電解質層の生成]
実施例1と同様の工程により、電解質層を生成した。
[Creation of electrolyte layer]
An electrolyte layer was produced by the same process as in Example 1.

[固体電池の生成]
実施例1と同様の工程により、固体電池の単セルを生成した。
[Production of solid battery]
A single cell of a solid battery was produced by the same process as in Example 1.

[比較例1]
[正極構造体の生成]
実施例1と同様の工程により、正極構造体を生成した。
[負極層の生成]
第2の結着剤を結着剤Bとし、負極構造体の圧延後の真空加熱を80℃24時間とした他は、実施例1と同様にして100μm前後の負極構造体を得た。
[電解質層の生成]
実施例1と同様の工程により、電解質層を生成した。
[固体電池の生成]
実施例1と同様の工程により、固体電池の単セルを生成した。
[Comparative Example 1]
[Generation of positive electrode structure]
A positive electrode structure was produced by the same process as in Example 1.
[Formation of negative electrode layer]
A negative electrode structure having a thickness of about 100 μm was obtained in the same manner as in Example 1 except that the second binder was binder B and the vacuum heating after rolling of the negative electrode structure was 80 ° C. for 24 hours.
[Creation of electrolyte layer]
An electrolyte layer was produced by the same process as in Example 1.
[Production of solid battery]
A single cell of a solid battery was produced by the same process as in Example 1.

[比較例2]
[正極構造体の生成]
実施例1と同様の工程により、正極構造体を生成した。
[Comparative Example 2]
[Generation of positive electrode structure]
A positive electrode structure was produced by the same process as in Example 1.

[負極層の生成]
第2の結着剤である結着剤Cのみ5.5質量%としたほかは実施例2と同様の工程により、負極構造体を生成した。
[電解質層の生成]
実施例1と同様の工程により、電解質層を生成した。
[固体電池の生成]
実施例1と同様の工程により、固体電池の単セルを生成した。
[Formation of negative electrode layer]
A negative electrode structure was produced in the same manner as in Example 2, except that only the binder C as the second binder was changed to 5.5% by mass.
[Creation of electrolyte layer]
An electrolyte layer was produced by the same process as in Example 1.
[Production of solid battery]
A single cell of a solid battery was produced by the same process as in Example 1.

[充電時内部短絡]
既述のようにして製造された単セルを東洋システム製充放電評価装置 TOSCAT−3100により0.05mA/cmの定電流密度で充電、引き続いて放電を行い、放電容量(mAh)を測定した(充電上限電圧4.0V、放電下限電圧2.5V)。測定した放電容量をもとに、0.025C、0.05C、0.075C、0.1C、0.15Cに相当する電流密度を算出した。なお1Cとは1時間率電流(mA)を意味する。このようにして算出した電流密度で各単セルを充電し、そのときの充電プロファイルから内部短絡の有無を判定した。図2にその例を示す。正常な充電が行われた電池では充電に伴い単セル電圧が単調に増大する。一方、微小内部短絡が発生した単セルは充電中の単セル電圧が安定に増大しない。このようにして各単セルの内部短絡を評価した結果を表1に示す。
[Internal short circuit during charging]
A single cell manufactured as described above was charged at a constant current density of 0.05 mA / cm 2 by a charge / discharge evaluation apparatus TOSCAT-3100 manufactured by Toyo System, and subsequently discharged, and the discharge capacity (mAh) was measured. (Charge upper limit voltage 4.0V, discharge lower limit voltage 2.5V). Based on the measured discharge capacity, current densities corresponding to 0.025C, 0.05C, 0.075C, 0.1C, and 0.15C were calculated. 1C means 1 hour rate current (mA). Each single cell was charged with the current density thus calculated, and the presence or absence of an internal short circuit was determined from the charging profile at that time. An example is shown in FIG. In a battery that has been normally charged, the single cell voltage monotonously increases as the battery is charged. On the other hand, a single cell in which a minute internal short circuit has occurred does not stably increase the single cell voltage during charging. The results of evaluating the internal short circuit of each single cell in this way are shown in Table 1.

[サイクル寿命試験]
室温で0.05Cの定電流充放電サイクル試験を実施し、初回放電容量に対する容量維持率を評価した。実施例1、2および比較例1、2の結果を表1に示す。比較例1は、負極層に第2の結着剤としてポリイミド(PI)を含まないので、実施例1に比較して、充電電流値が大きくなるとリチウムのデンドライト析出に伴う微笑内部短絡が発生し、電圧が不安定となり、電池として不良化する。
[Cycle life test]
A constant current charge / discharge cycle test of 0.05C was performed at room temperature, and the capacity retention rate with respect to the initial discharge capacity was evaluated. The results of Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1. Since Comparative Example 1 does not include polyimide (PI) as the second binder in the negative electrode layer, a smile internal short circuit occurs due to lithium dendrite precipitation as compared with Example 1 when the charging current value increases. The voltage becomes unstable and the battery becomes defective.

実施例1及び2は、共に第1の結着剤とポリイミド(PI:結着剤C)とを含むので、充電特性及びサイクル寿命特性も良好であった。これに対して、比較例2は、負極層にポリイミドを含むものの第1の結着剤を含まないので、実施例2に比較して、充電電流値が大きくなるとリチウムのデンドライト析出に伴う微小内部短絡が発生し、電圧が不安定となり、電池として不良化する傾向がみられた。また、第1の結着剤を含まない比較例2は、第1の結着剤を含む実施例2に比較してサイクル寿命特性が低下していた。比較例1は、ポリイミドを含まないため、充電電流値が大きくなるとリチウムのデンドライト析出に伴う内部短絡が発生し、かつ、サイクル寿命特性も大きく低下した。   Since Examples 1 and 2 both contain the first binder and polyimide (PI: Binder C), the charging characteristics and cycle life characteristics were also good. On the other hand, Comparative Example 2 contains polyimide in the negative electrode layer but does not contain the first binder. Therefore, as compared with Example 2, when the charging current value is increased, the minute internal accompanying lithium dendrite precipitation A short circuit occurred, the voltage became unstable, and a tendency to deteriorate as a battery was observed. Moreover, the comparative example 2 which does not contain the 1st binder had the cycle life characteristic degraded compared with Example 2 containing the 1st binder. Since Comparative Example 1 did not contain polyimide, when the charging current value was increased, an internal short circuit occurred due to lithium dendrite precipitation, and the cycle life characteristics were greatly deteriorated.

以上説明したように、本実施形態の負極層6、即ち負極20は、硫化物系固体電解質を含む電解質層5に結着し、国体電解質に対して不活性な第1の結着剤と、負極集電体への結着が第1の結着剤よりも優れた第2の結着剤と、負極活物質を含み、第2の結着剤は、ポリイミド等の高弾性樹脂からなるために、固体電池の充放電を繰り返しても、負極の固体電解質との界面、負極と負極集電体との界面における密着性を向上させることができる。   As described above, the negative electrode layer 6 of this embodiment, that is, the negative electrode 20 is bound to the electrolyte layer 5 containing a sulfide-based solid electrolyte, and is inert to the national body electrolyte, Since the second binder, which is superior in binding to the negative electrode current collector than the first binder, includes a negative electrode active material, and the second binder is made of a highly elastic resin such as polyimide. In addition, even when charging / discharging of the solid battery is repeated, the adhesion at the interface between the negative electrode and the solid electrolyte and at the interface between the negative electrode and the negative electrode current collector can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものである。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes and modifications within the scope of the technical idea described in the claims. Of course, these also belong to the technical scope of the present invention.

1 固体電池
2 正極集電体
3 接着層
4 正極層
5 電解質層
6 負極層
7 負極集電体
DESCRIPTION OF SYMBOLS 1 Solid battery 2 Positive electrode collector 3 Adhesive layer 4 Positive electrode layer 5 Electrolyte layer 6 Negative electrode layer 7 Negative electrode collector

Claims (8)

正極と、
負極と、
前記正極と負極間に設けられた固体電解質からなる固体電解質層と、
を備え、
前記負極は、
負極活物質と、
前記固体電解質に結着し、当該固体電解質に対して不活性な第1の結着剤と、
負極集電体に対する結着性が前記第1の結着剤よりも優れた第2の結着剤と、
を有し、
前記第2の結着剤は高弾性樹脂を含有する、
固体電池。
A positive electrode;
A negative electrode,
A solid electrolyte layer comprising a solid electrolyte provided between the positive electrode and the negative electrode;
With
The negative electrode is
A negative electrode active material;
A first binder that binds to the solid electrolyte and is inert to the solid electrolyte;
A second binder whose binding property to the negative electrode current collector is superior to that of the first binder;
Have
The second binder contains a highly elastic resin;
Solid battery.
前記固体電解質層は前記第1の結着剤を含む電解質結着剤を有する、請求項1記載の固体電池。   The solid battery according to claim 1, wherein the solid electrolyte layer has an electrolyte binder containing the first binder. 前記高弾性樹脂は下記式[化1]のポリイミドを含む、請求項1又は2記載の固体電池。
The solid battery according to claim 1, wherein the highly elastic resin includes a polyimide represented by the following formula [Chemical Formula 1].
前記負極活物質はシリコン系活物質からなる、請求項1乃至3の何れか1項記載の固体電池。   4. The solid state battery according to claim 1, wherein the negative electrode active material is made of a silicon-based active material. 前記電解質結着剤は第1の結着剤を含む、請求項2記載の固体電池。   The solid battery according to claim 2, wherein the electrolyte binder includes a first binder. 前記第1の結着剤は極性官能基を有しない非極性樹脂からなる、請求項1乃至5の何れか1項記載の固体電池。   The solid battery according to any one of claims 1 to 5, wherein the first binder is made of a nonpolar resin having no polar functional group. 前記固体電解質は硫化物系物質からなる、請求項1乃至6の何れか5項記載の固体電池。   The solid battery according to claim 1, wherein the solid electrolyte is made of a sulfide-based material. 前記負極は前記固体電解質を含まない、請求項1乃至7の何れか1項記載の固体電池。   The solid battery according to claim 1, wherein the negative electrode does not include the solid electrolyte.
JP2012268537A 2012-12-07 2012-12-07 Solid-state battery Pending JP2014116154A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012268537A JP2014116154A (en) 2012-12-07 2012-12-07 Solid-state battery
KR1020130101289A KR20140074176A (en) 2012-12-07 2013-08-26 Solid battery
US14/098,571 US10741842B2 (en) 2012-12-07 2013-12-06 Solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012268537A JP2014116154A (en) 2012-12-07 2012-12-07 Solid-state battery

Publications (1)

Publication Number Publication Date
JP2014116154A true JP2014116154A (en) 2014-06-26

Family

ID=51127466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012268537A Pending JP2014116154A (en) 2012-12-07 2012-12-07 Solid-state battery

Country Status (2)

Country Link
JP (1) JP2014116154A (en)
KR (1) KR20140074176A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207577A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 All-solid-state battery
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
KR20190022504A (en) 2017-08-23 2019-03-06 우베 고산 가부시키가이샤 Binder resin for electrode, electrode compound paste, method of manufacturing electrode and electrode
JP2019145286A (en) * 2018-02-19 2019-08-29 トヨタ自動車株式会社 All-solid battery
JP2019145299A (en) * 2018-02-20 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery
WO2020059549A1 (en) * 2018-09-20 2020-03-26 富士フイルム株式会社 All-solid secondary battery and all-solid secondary battery negative electrode sheet
WO2020138187A1 (en) 2018-12-26 2020-07-02 宇部興産株式会社 Electrode for all-solid-state secondary batteries, all-solid-state secondary battery and method for producing all-solid-state secondary battery
US10998540B2 (en) 2017-11-28 2021-05-04 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery, and sulfide solid-state battery
WO2021261561A1 (en) 2020-06-25 2021-12-30 宇部興産株式会社 Electrode for all-solid-state secondary batteries, all-solid-state secondary battery and method for producing all-solid-state secondary battery
US20220263070A1 (en) * 2021-02-15 2022-08-18 Global Graphene Group, Inc. Solid-state medium for lithium ion transport, lithium batteries and manufacturing method
US11437643B2 (en) 2018-02-20 2022-09-06 Samsung Electronics Co., Ltd. All-solid-state secondary battery
US20230101561A1 (en) * 2021-09-28 2023-03-30 Global Graphene Group, Inc. Flame-Resistant High Energy Density Lithium-Ion Batteries and Manufacturing Method
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101774683B1 (en) 2016-01-26 2017-09-19 현대자동차주식회사 Electorde active material slurry, preparation method thereof, and all solid secondary battery comprising the same
JP6830757B2 (en) * 2016-02-19 2021-02-17 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Positive electrode for non-aqueous electrolyte secondary battery, winding element for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2017142328A1 (en) * 2016-02-19 2017-08-24 삼성에스디아이 주식회사 Positive electrode for lithium secondary battery, winding element for lithium secondary battery, and lithium secondary battery
KR20200129380A (en) * 2019-05-08 2020-11-18 주식회사 엘지화학 Method for Preparing Electrode of Solid State Battery and Electrode of Solid State Battery Manufactured Thereby
CN113851609B (en) * 2021-08-26 2023-07-14 蜂巢能源科技有限公司 Silicon-based negative electrode plate, preparation method thereof and all-solid-state lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106185A (en) * 1998-09-29 2000-04-11 Hitachi Chem Co Ltd Nonaqueous electrolyte secondary battery
US20080131783A1 (en) * 2006-11-27 2008-06-05 Nam-Soon Choi Negative active material composition for a rechargeable lithium battery, a negative electrode for a rechargeable lithium battery, and a rechargeable lithium battery including same
US20090081553A1 (en) * 2007-09-25 2009-03-26 Seiko Epson Corporation Electrochemical device
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
WO2011052094A1 (en) * 2009-11-02 2011-05-05 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106185A (en) * 1998-09-29 2000-04-11 Hitachi Chem Co Ltd Nonaqueous electrolyte secondary battery
US20080131783A1 (en) * 2006-11-27 2008-06-05 Nam-Soon Choi Negative active material composition for a rechargeable lithium battery, a negative electrode for a rechargeable lithium battery, and a rechargeable lithium battery including same
JP2008135384A (en) * 2006-11-27 2008-06-12 Samsung Sdi Co Ltd Negative electrode active material composition for lithium secondary battery, negative electrode for lithium secondary battery manufactured by using it, and lithium secondary battery
US20090081553A1 (en) * 2007-09-25 2009-03-26 Seiko Epson Corporation Electrochemical device
JP2009080999A (en) * 2007-09-25 2009-04-16 Seiko Epson Corp Electrochemical element
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
WO2011052094A1 (en) * 2009-11-02 2011-05-05 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
JP2012204203A (en) * 2011-03-25 2012-10-22 Mitsui Chemicals Inc Binder resin composition for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10128507B2 (en) 2012-12-07 2018-11-13 Samsung Electronics Co., Ltd. Lithium secondary battery
US10873084B2 (en) 2012-12-07 2020-12-22 Samsung Electronics Co., Ltd. Lithium secondary battery
JP2016207577A (en) * 2015-04-27 2016-12-08 トヨタ自動車株式会社 All-solid-state battery
KR20190022504A (en) 2017-08-23 2019-03-06 우베 고산 가부시키가이샤 Binder resin for electrode, electrode compound paste, method of manufacturing electrode and electrode
KR20200034943A (en) 2017-08-23 2020-04-01 우베 고산 가부시키가이샤 Binder resin for electrodes, electrode mixture paste, electrode, and method for producing electrode
US11929463B2 (en) 2017-11-21 2024-03-12 Samsung Electronics Co., Ltd. All-solid-state secondary battery and method of charging the same
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US10998540B2 (en) 2017-11-28 2021-05-04 Toyota Jidosha Kabushiki Kaisha Method for producing sulfide solid-state battery, and sulfide solid-state battery
JP7087436B2 (en) 2018-02-19 2022-06-21 トヨタ自動車株式会社 All solid state battery
JP2019145286A (en) * 2018-02-19 2019-08-29 トヨタ自動車株式会社 All-solid battery
JP2019145299A (en) * 2018-02-20 2019-08-29 三星電子株式会社Samsung Electronics Co.,Ltd. All-solid type secondary battery
US11437643B2 (en) 2018-02-20 2022-09-06 Samsung Electronics Co., Ltd. All-solid-state secondary battery
JP7063653B2 (en) 2018-02-20 2022-05-09 三星電子株式会社 All-solid-state secondary battery
WO2020059549A1 (en) * 2018-09-20 2020-03-26 富士フイルム株式会社 All-solid secondary battery and all-solid secondary battery negative electrode sheet
KR20210103554A (en) 2018-12-26 2021-08-23 우베 고산 가부시키가이샤 Electrode for all-solid-state secondary battery, all-solid-state secondary battery, and manufacturing method of all-solid-state secondary battery
WO2020138187A1 (en) 2018-12-26 2020-07-02 宇部興産株式会社 Electrode for all-solid-state secondary batteries, all-solid-state secondary battery and method for producing all-solid-state secondary battery
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same
WO2021261561A1 (en) 2020-06-25 2021-12-30 宇部興産株式会社 Electrode for all-solid-state secondary batteries, all-solid-state secondary battery and method for producing all-solid-state secondary battery
KR20230010705A (en) 2020-06-25 2023-01-19 유비이 가부시키가이샤 Electrodes for all-solid-state secondary batteries, all-solid-state secondary batteries, and manufacturing methods for all-solid-state secondary batteries
US20220263070A1 (en) * 2021-02-15 2022-08-18 Global Graphene Group, Inc. Solid-state medium for lithium ion transport, lithium batteries and manufacturing method
US20230101561A1 (en) * 2021-09-28 2023-03-30 Global Graphene Group, Inc. Flame-Resistant High Energy Density Lithium-Ion Batteries and Manufacturing Method

Also Published As

Publication number Publication date
KR20140074176A (en) 2014-06-17

Similar Documents

Publication Publication Date Title
JP2014116154A (en) Solid-state battery
JP6755736B2 (en) Electrode active material slurry, its manufacturing method, and an all-solid-state secondary battery containing the electrode active material slurry.
JP5919603B2 (en) Solid battery electrode, solid battery, adhesive film for solid battery, and method for producing solid battery electrode
JP6260807B2 (en) Solid battery
US10297819B2 (en) Slurry composition for lithium ion secondary battery negative electrode, negative electrode for lithium ion secondary battery and method for producing the same, and lithium ion secondary battery
US9419285B2 (en) All-solid battery
US9425459B2 (en) Electrode for solid-state batteries and method of preparing the electrode, solid-state battery containing the electrode, and bonding film used for preparing the electrode
TW201214846A (en) Negative electrode for secondary battery, and process for production thereof
KR20150089000A (en) Method for producing electrode/separator laminate, and lithium-ion rechargeable battery
JP2006339092A (en) Nonaqueous electrolyte secondary battery and its negative electrode
JP2016031789A (en) Solid electrolyte sheet and all-solid type secondary battery
US20150086875A1 (en) Electrode for all solid-state secondary battery and method for producing same
KR102124057B1 (en) All solid battery
JPWO2010024328A1 (en) Porous membrane, secondary battery electrode, and lithium ion secondary battery
JP2014120199A (en) Solid-state battery
JP2014149936A (en) Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
JP2014149935A (en) Secondary battery separator, method for manufacturing secondary battery separator, and secondary battery
JP2016009679A (en) All-solid-state lithium secondary battery
JP2014112485A (en) Solid state battery
KR102279820B1 (en) Aqueous polyamic acid composition
JP2013131381A (en) Nonaqueous electrolyte secondary battery
JP6989265B2 (en) Battery manufacturing method
JP2011060559A (en) Electrode for lithium ion secondary battery
JP2015118815A (en) All solid secondary battery
KR102093338B1 (en) Cathode and all solid battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151029

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170110