JPWO2019021359A1 - Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material - Google Patents

Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material Download PDF

Info

Publication number
JPWO2019021359A1
JPWO2019021359A1 JP2019532241A JP2019532241A JPWO2019021359A1 JP WO2019021359 A1 JPWO2019021359 A1 JP WO2019021359A1 JP 2019532241 A JP2019532241 A JP 2019532241A JP 2019532241 A JP2019532241 A JP 2019532241A JP WO2019021359 A1 JPWO2019021359 A1 JP WO2019021359A1
Authority
JP
Japan
Prior art keywords
heat insulating
vacuum heat
insulating material
vacuum
outer packaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019532241A
Other languages
Japanese (ja)
Other versions
JP7129979B2 (en
Inventor
一正 藤村
一正 藤村
貴祥 向山
貴祥 向山
夕貴 大森
夕貴 大森
尚平 安孫子
尚平 安孫子
浩明 高井
浩明 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2019021359A1 publication Critical patent/JPWO2019021359A1/en
Application granted granted Critical
Publication of JP7129979B2 publication Critical patent/JP7129979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • F16L59/065Arrangements using an air layer or vacuum using vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/10Insulation, e.g. vacuum or aerogel insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

真空断熱材は、真空空間を保持する芯材と、水酸化物と、芯材と水酸化物とを被覆する外包材とを備え、外包材の内部が減圧されて密封されており、水酸化物の重量が、芯材の重量の0.01倍以上である。また、真空断熱材の製造方法は、真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、密封体を加熱処理する工程と、密封体の外包材の内部を減圧して密封する工程とを備える。The vacuum heat insulating material includes a core material that holds a vacuum space, a hydroxide, and an outer packaging material that covers the core material and the hydroxide. The weight of the object is at least 0.01 times the weight of the core material. Further, the method for manufacturing a vacuum heat insulating material, a core material for holding a vacuum space, an oxide, a step of forming a sealed body by covering and sealing with an outer packaging material, a step of heat treatment of the sealed body, Decompressing and sealing the inside of the outer packaging material of the sealed body.

Description

本発明は、冷蔵庫等の断熱材として用いられている真空断熱材、断熱箱および真空断熱材の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a vacuum heat insulating material, a heat insulating box, and a method for manufacturing a vacuum heat insulating material used as a heat insulating material of a refrigerator or the like.

この種の従来の真空断熱材は、芯材と、水分またはガスを吸着する吸着剤とを外包材で被覆し、外包材の内部を真空近くまで減圧して密閉された構成を有する(例えば、特許文献1参照)。このような真空断熱材では、外包材の内部の真空度の低下が断熱性能の低下に繋がる。このため、特許文献1の真空断熱材では、芯材を、外包材に挿入する前に予め乾燥炉で乾燥させることにより、外包材の内部を減圧して密封した後に芯材から放出される水分を低減して、外包材の内部の真空度を高め、断熱性能の低下を抑制している。   This kind of conventional vacuum heat insulating material has a configuration in which a core material and an adsorbent that adsorbs moisture or gas are covered with an outer packaging material, and the inside of the outer packaging material is hermetically sealed by reducing the pressure to near vacuum (for example, Patent Document 1). In such a vacuum heat insulating material, a decrease in the degree of vacuum inside the outer packaging material leads to a decrease in heat insulation performance. For this reason, in the vacuum heat insulating material of Patent Document 1, the core material is previously dried in a drying furnace before being inserted into the outer packaging material, so that the inside of the outer packaging material is decompressed and sealed, and then moisture released from the core material is reduced. , The degree of vacuum inside the outer packaging material is increased, and a decrease in heat insulation performance is suppressed.

特開2004−286050号公報JP 2004-286050 A

特許文献1では、芯材を外包材に挿入する前に乾燥を行っているが、乾燥炉における乾燥によって芯材から除去される水分の量は、乾燥炉内の相対湿度に依存する。乾燥炉内の相対湿度は季節および天候等によって変わるため、芯材から除去される水分の量も変動する。したがって、芯材を挿入した外包材の内部を減圧密封した後、芯材から外包材内に放出される水分の量も変動する。その結果、外包材内部の真空度が季節および天候等によってばらつき、真空断熱材の断熱性能のばらつきが大きくなるという課題があった。   In Patent Literature 1, drying is performed before the core material is inserted into the outer package material. However, the amount of water removed from the core material by drying in the drying furnace depends on the relative humidity in the drying furnace. Since the relative humidity in the drying furnace changes depending on the season, weather, and the like, the amount of water removed from the core also changes. Therefore, the amount of moisture released from the core material into the outer packaging material after the interior of the outer packaging material into which the core material has been inserted is reduced in pressure and fluctuated. As a result, there is a problem that the degree of vacuum inside the outer packaging material varies depending on the season, weather, and the like, and the thermal insulation performance of the vacuum thermal insulation material varies greatly.

本発明は、上述のような問題点を解決するためになされたものであり、断熱性能のばらつきが少ない真空断熱材、断熱箱および真空断熱材の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide a vacuum heat insulating material, a heat insulating box, and a method of manufacturing a vacuum heat insulating material with less variation in heat insulating performance.

本発明に係る真空断熱材は、真空空間を保持する芯材と、水酸化物と、芯材と水酸化物とを被覆する外包材とを備え、外包材の内部が減圧されて密封されており、水酸化物の重量が、芯材の重量の0.01倍以上であるものである。   The vacuum heat insulating material according to the present invention includes a core material that holds a vacuum space, a hydroxide, and an outer packaging material that covers the core material and the hydroxide, and the interior of the outer packaging material is hermetically sealed by being decompressed. The weight of the hydroxide is at least 0.01 times the weight of the core material.

また、本発明に係る断熱箱は、上記の真空断熱材を備えるものである。   Further, a heat insulating box according to the present invention includes the above vacuum heat insulating material.

また、本発明に係る真空断熱材の製造方法は、真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、密封体を加熱処理する工程と、密封体の外包材の内部を減圧して密封する工程とを備えたものである。   In addition, the method for manufacturing a vacuum heat insulating material according to the present invention includes a step of forming a sealed body by covering a core material for holding a vacuum space and an oxide with an outer packaging material to form a sealed body; And a step of sealing the inside of the outer packaging material by reducing the pressure.

本発明によれば、外包材内の水酸化物の重量が、芯材の重量の0.01倍以上であるため、断熱性能のばらつきが少ない真空断熱材および断熱箱を得ることができる。また、芯材を外包材で被覆した後に加熱処理しているため、加熱処理炉の相対湿度に依存することがなく芯材の均一的な乾燥を実現でき、断熱性能のばらつきが少ない真空断熱材の製造方法を提供することができる。   According to the present invention, since the weight of the hydroxide in the outer packaging material is 0.01 times or more the weight of the core material, it is possible to obtain a vacuum heat insulating material and a heat insulating box with less variation in heat insulating performance. In addition, since the core material is covered with the outer packaging material and then heat-treated, the core material can be dried uniformly without depending on the relative humidity of the heat treatment furnace, and the vacuum insulation material has less variation in heat insulation performance. Can be provided.

本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating a schematic configuration of a vacuum heat insulating material according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る真空断熱材の製造工程図である。It is a manufacturing process figure of the vacuum heat insulating material concerning Embodiment 1 of this invention. 図2の製造工程のステップS21で吸着剤3が追加された、真空断熱材の概略構成を示す断面図である。FIG. 3 is a cross-sectional view illustrating a schematic configuration of a vacuum heat insulating material to which an adsorbent 3 has been added in step S21 of the manufacturing process in FIG. 2. 本発明の実施の形態1に係る真空断熱材において、実施例3の条件における熱伝導率と芯材重量に対する水酸化カルシウムの重量比との関係を示す図である。FIG. 4 is a diagram showing a relationship between the thermal conductivity and the weight ratio of calcium hydroxide to the core material weight under the conditions of Example 3 in the vacuum heat insulating material according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the heat insulation box which concerns on Embodiment 2 of this invention.

実施の形態1.
本発明の実施の形態1に係る真空断熱材およびその製造方法について説明する。
Embodiment 1 FIG.
A vacuum heat insulating material according to Embodiment 1 of the present invention and a method of manufacturing the same will be described.

図1は、本発明の実施の形態1に係る真空断熱材の概略構成を示す断面図である。なお、図1を含む以下の図面では、各構成部材の寸法の関係および形状等が実際のものとは異なる場合がある。各構成部材の具体的な寸法等は、以下の説明を参酌した上で判断すべきものである。
図1に示すように、真空断熱材1は、芯材2と、吸着剤3と、水酸化物4と、これらを被覆する外包材5とを備えている。外包材5の内部空間は、1Paから3Pa程度の真空度に減圧された状態で密封されている。真空断熱材1は、全体として略長方形で平板状の形状を有している。
FIG. 1 is a sectional view showing a schematic configuration of the vacuum heat insulating material according to Embodiment 1 of the present invention. In the following drawings including FIG. 1, the dimensional relationships, shapes, and the like of the respective components may be different from actual ones. Specific dimensions and the like of each component should be determined in consideration of the following description.
As shown in FIG. 1, the vacuum heat insulating material 1 includes a core material 2, an adsorbent 3, a hydroxide 4, and an outer packaging material 5 covering these. The internal space of the outer packaging material 5 is sealed in a state where the degree of vacuum is reduced to about 1 Pa to 3 Pa. The vacuum heat insulating material 1 has a substantially rectangular flat plate shape as a whole.

芯材2は、真空空間を保持する目的で使用される。芯材2には、グラスウール等の繊維集合体が用いられる。また、芯材2を構成する繊維集合体は、加熱加圧成形をしたものでもよいし、内包材を用いて密封封止したものでもよいし、また、結合剤により結着したものでもよい。   The core material 2 is used for the purpose of maintaining a vacuum space. As the core material 2, a fiber aggregate such as glass wool is used. Further, the fiber aggregate constituting the core material 2 may be formed by heating and pressing, may be hermetically sealed by using an encapsulating material, or may be bonded by a binder.

吸着剤3は、真空断熱材1の内部のガスまたは水分を吸着するものである。吸着剤3は、真空断熱材1の内部のガスまたは水分を吸着して真空断熱材1の内部の真空度を保つ目的で使用される。真空断熱材1の内部の真空度を保つことで、熱伝導率の上昇つまり断熱性能の低下を抑制することができる。吸着剤3としては、例えば酸化カルシウム(CaO)が用いられる。吸着剤3は、シリカゲル、またはゼオライトであってもよく、これらの組合せでもよい。   The adsorbent 3 adsorbs gas or moisture inside the vacuum heat insulating material 1. The adsorbent 3 is used for adsorbing gas or moisture inside the vacuum heat insulating material 1 to maintain the degree of vacuum inside the vacuum heat insulating material 1. By maintaining the degree of vacuum inside the vacuum heat insulating material 1, it is possible to suppress an increase in thermal conductivity, that is, a decrease in heat insulation performance. As the adsorbent 3, for example, calcium oxide (CaO) is used. The adsorbent 3 may be silica gel or zeolite, or a combination thereof.

外包材5は、既存の真空断熱材に使用されている外包材5であり、多層構造をなすラミネートフィルムである。この多層構造は、例えば芯材2側から順に、ポリエチレン層、アルミ蒸着エチレン−ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、および最外層にナイロン層が積層された構造を有する。なお、外包材5は、上記構成に限定されず、アルミ蒸着に代えて、アルミナ蒸着またはシリカ蒸着が用いられていてもよい。外包材5は、ガスバリア性を有するものであればよい。   The outer wrapping material 5 is an outer wrapping material 5 used for an existing vacuum heat insulating material, and is a laminated film having a multilayer structure. This multilayer structure has, for example, a structure in which a polyethylene layer, an aluminum-deposited ethylene-vinyl alcohol layer, an aluminum-deposited polyethylene terephthalate layer, and a nylon layer are laminated on the outermost layer in order from the core material 2 side. In addition, the outer packaging material 5 is not limited to the above configuration, and instead of aluminum deposition, alumina deposition or silica deposition may be used. The outer packaging material 5 only needs to have gas barrier properties.

水酸化物4は、後述の加熱処理によって芯材2から放出された水分を保持するものである。水酸化物4の重量は、吸着剤3および芯材2の重量の0.01倍以上の重量である。水酸化物4としては、例えば水酸化カルシウム(Ca(OH))が用いられる。また、水酸化物4は、水酸化マグネシウム、または水酸化アルミニウムであってもよく、これらの組合せでもよい。The hydroxide 4 holds moisture released from the core material 2 by a heat treatment described later. The weight of the hydroxide 4 is at least 0.01 times the weight of the adsorbent 3 and the core 2. As the hydroxide 4, for example, calcium hydroxide (Ca (OH) 2 ) is used. The hydroxide 4 may be magnesium hydroxide or aluminum hydroxide, or a combination thereof.

次に、本実施の形態1に係る真空断熱材1の製造工程について説明する。   Next, a manufacturing process of the vacuum heat insulating material 1 according to the first embodiment will be described.

図2は、本発明の実施の形態1に係る真空断熱材の製造工程図である。
本実施の形態1に係る真空断熱材1の製造工程では、まず、芯材2と吸着剤3と酸化物とを外包材5で被覆して密封し(ステップS11)、密封体を形成する。酸化物は、例えば酸化カルシウムである。そして、密封体を加熱処理する(ステップS12)。加熱処理の条件は、例えば100℃で2時間である。加熱処理の条件は、芯材2から水分が放出される条件であればよい。
FIG. 2 is a manufacturing process diagram of the vacuum heat insulating material according to Embodiment 1 of the present invention.
In the manufacturing process of the vacuum heat insulating material 1 according to the first embodiment, first, the core material 2, the adsorbent 3, and the oxide are covered with the outer packaging material 5 and sealed (step S11) to form a sealed body. The oxide is, for example, calcium oxide. Then, the sealed body is subjected to a heat treatment (step S12). The condition of the heat treatment is, for example, 100 ° C. for 2 hours. The condition of the heat treatment may be a condition under which moisture is released from the core material 2.

この加熱処理によって、芯材2から放出された水分と酸化物との化学反応により水酸化物4が生成される。つまり、芯材2から放出された水分が水酸化物4によって保持される。生成される水酸化物4は、例えば水酸化カルシウムである。   By this heat treatment, the hydroxide 4 is generated by a chemical reaction between the water released from the core material 2 and the oxide. That is, the water released from the core 2 is retained by the hydroxide 4. The generated hydroxide 4 is, for example, calcium hydroxide.

次に、外包材5の一部を開封する(ステップS13)。そして、一部が開封された状態の外包材5の内部を減圧して密封する(ステップS14)。すなわち、外包材5の内部を1Paから3Pa程度の真空度に減圧し、その減圧状態で開封部をヒートシール等で融着することで密封する。   Next, a part of the outer packaging material 5 is opened (step S13). Then, the inside of the outer packaging material 5 in a partially opened state is reduced in pressure and sealed (step S14). That is, the inside of the outer packaging material 5 is reduced in pressure to a degree of vacuum of about 1 Pa to 3 Pa, and the opened portion is sealed by heat sealing or the like under the reduced pressure.

なお、ステップS11で吸着剤3を外包材5で被覆しているが、ステップS13とステップS14との間に、更に吸着剤3を外包材5内に追加する工程(ステップS21)を備えてもよい。吸着剤3を更に追加した状態を示した構成が次の図3である。   Although the adsorbent 3 is covered with the outer packaging material 5 in step S11, a step of adding the adsorbent 3 into the outer packaging material 5 (step S21) may be provided between step S13 and step S14. Good. FIG. 3 shows a configuration in which the adsorbent 3 is further added.

図3は、図2の製造工程のステップS21で吸着剤が追加された、真空断熱材の概略構成を示す断面図である。
図3に示すように、吸着剤3とは別に吸着剤3aを追加する際、吸着剤3aを、水酸化物4の配置領域とは別の領域に配置することもできる。このように追加する吸着剤3aを、水酸化物4とは別の領域に配置すれば、かさばらず、外包材5が内側から損傷することを防止できる。なお、吸着剤3が本発明の第1吸着剤に相当し、吸着剤3aが本発明の第2吸着剤に相当する。
FIG. 3 is a cross-sectional view illustrating a schematic configuration of a vacuum heat insulating material to which an adsorbent has been added in step S21 of the manufacturing process in FIG.
As shown in FIG. 3, when the adsorbent 3 a is added separately from the adsorbent 3, the adsorbent 3 a can be arranged in a region different from the region where the hydroxide 4 is arranged. By arranging the additional adsorbent 3a in a different region from the hydroxide 4, the outer packaging material 5 can be prevented from being bulky and being damaged from the inside. Note that the adsorbent 3 corresponds to the first adsorbent of the present invention, and the adsorbent 3a corresponds to the second adsorbent of the present invention.

以上の工程では、芯材2を外包材5で被覆した後に加熱処理している。このため、加熱処理炉の相対湿度に依存することがなく、芯材2の均一的な乾燥を実現できる。よって、ステップS14の、外包材5の内部の減圧密封工程の後に、芯材2から放出される水分の量が、季節および天候によって変動しない。その結果、個々の真空断熱材1における、外包材5の内部の真空度のばらつきが少なくなり、真空断熱材1の熱伝導率つまり断熱性能のばらつきが少なくなる。   In the above steps, heat treatment is performed after the core material 2 is covered with the outer packaging material 5. Therefore, uniform drying of the core material 2 can be realized without depending on the relative humidity of the heat treatment furnace. Therefore, after the step of reducing the pressure inside the outer packaging material 5 in step S14, the amount of water released from the core material 2 does not vary depending on the season and weather. As a result, variations in the degree of vacuum inside the outer packaging material 5 in the individual vacuum heat insulating materials 1 are reduced, and variations in the thermal conductivity of the vacuum heat insulating material 1, that is, the heat insulating performance are reduced.

次に、本実施の形態1の真空断熱材1を作製し、実施例1〜3について比較例1〜3との比較を行った。以下のその比較結果について説明する。   Next, the vacuum heat insulating material 1 of the first embodiment was manufactured, and Examples 1 to 3 were compared with Comparative Examples 1 to 3. Hereinafter, the comparison result will be described.

<実施例1>
実施例1では、真空断熱材1の熱伝導率のばらつきについて調べた。実施例1における試料および各種条件は以下の(1)〜(5)の通りである。
(1)芯材2:重量5kgのグラスウール
(2)外包材5:ポリエチレン層、アルミ蒸着エチレン−ビニルアルコール層、アルミ蒸着ポリエチレンテレフタレート層、および最外層にナイロン層が積層された多層構造をなすラミネートフィルム
(3)吸着剤3:100gの酸化カルシウム
(4)加熱処理:100℃で2時間
(5)減圧処理:1Paから3Pa程度の真空度に減圧
<Example 1>
In Example 1, variations in the thermal conductivity of the vacuum heat insulating material 1 were examined. The samples and various conditions in Example 1 are as follows (1) to (5).
(1) Core material 2: Glass wool weighing 5 kg (2) Outer packaging material 5: Multilayer laminate in which a polyethylene layer, an aluminum-deposited ethylene-vinyl alcohol layer, an aluminum-deposited polyethylene terephthalate layer, and a nylon layer are laminated on the outermost layer Film (3) adsorbent 3: 100 g of calcium oxide (4) Heat treatment: 100 ° C. for 2 hours (5) Decompression treatment: Reduced pressure from 1 Pa to about 3 Pa

以上の条件で、図2に示した製造工程で真空断熱材1を10枚作製した。なお、図2のステップS11は、芯材2と吸着剤3と酸化物とを外包材5で被覆して密封するステップであるが、吸着剤3には上記(3)の酸化カルシウムを使用するため、つまり酸化物である。このため、結局のところ、ステップS11では、芯材2と上記(3)の酸化物とを外包材5で被覆して密封する工程となる。また、ステップS21の「吸着剤追加」の工程は行っていない。そして、真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。   Under the above conditions, ten vacuum heat insulating materials 1 were manufactured in the manufacturing process shown in FIG. Step S11 in FIG. 2 is a step in which the core material 2, the adsorbent 3, and the oxide are covered with the outer packaging material 5 and sealed, and the adsorbent 3 uses the calcium oxide (3). Therefore, it is an oxide. Therefore, after all, in step S11, the core material 2 and the oxide of (3) above are covered with the outer packaging material 5 and sealed. Further, the step of “adding an adsorbent” in step S21 is not performed. Then, after measuring the thermal conductivity of the vacuum heat insulating material 1, the vacuum heat insulating material 1 was opened, and the weight of calcium hydroxide as the hydroxide 4 was measured.

比較例1は、実施例1の上記(1)〜(5)と同様の試料および各種条件を有する。そして、比較例1は、芯材2を外包材5で被覆した後、密封されない状態で上記(4)の加熱処理を行う。次に、外包材5の内部に吸着剤3を配置し、外包材5の内部を密封する。   Comparative Example 1 has the same samples and various conditions as those in (1) to (5) of Example 1. Then, in Comparative Example 1, after the core material 2 is covered with the outer packaging material 5, the heat treatment (4) is performed in an unsealed state. Next, the adsorbent 3 is arranged inside the outer packaging material 5 and the inside of the outer packaging material 5 is sealed.

以上の比較例1の条件で真空断熱材1を10枚作製した。真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。   Ten vacuum heat insulating materials 1 were manufactured under the conditions of Comparative Example 1 described above. After the thermal conductivity of the vacuum heat insulating material 1 was measured, the vacuum heat insulating material 1 was opened, and the weight of calcium hydroxide as the hydroxide 4 was measured.

表1は、実施例1と比較例1とのそれぞれの条件で作製された10枚の真空断熱材1の熱伝導率の平均値と、標準偏差と、水酸化カルシウムの重量とを比較した結果である。   Table 1 shows the results of comparing the average value, the standard deviation, and the weight of calcium hydroxide of the thermal conductivity of the ten vacuum heat insulating materials 1 manufactured under the respective conditions of Example 1 and Comparative Example 1. It is.

Figure 2019021359
Figure 2019021359

表1に示すように、比較例1では、真空断熱材の熱伝導率の平均値は、1.9mW/(m・K)であり、標準偏差は0.3mW/(m・K)であった。水酸化カルシウムの重量は、0.8gであり、芯材重量の0.00016倍であった。   As shown in Table 1, in Comparative Example 1, the average value of the thermal conductivity of the vacuum heat insulating material was 1.9 mW / (m · K), and the standard deviation was 0.3 mW / (m · K). Was. The weight of calcium hydroxide was 0.8 g, which was 0.00016 times the weight of the core material.

これに対して、実施例1では、真空断熱材1の熱伝導率の平均値は、1.8mW/(m・K)であり、比較例1よりも低い。つまり、実施例1は、比較例1は比べて断熱性能が高い。また、標準偏差は0.1mW/(m・K)であり、比較例1より小さい。つまり、実施例1は、熱伝導率のばらつきが比較例1よりも少ない。   On the other hand, in Example 1, the average value of the thermal conductivity of the vacuum heat insulating material 1 was 1.8 mW / (m · K), which was lower than Comparative Example 1. That is, Example 1 has higher heat insulation performance than Comparative Example 1. The standard deviation is 0.1 mW / (m · K), which is smaller than Comparative Example 1. That is, Example 1 has less variation in thermal conductivity than Comparative Example 1.

また、実施例1は、水酸化カルシウムの重量が、106.8gであり、芯材重量の0.021倍であった。   In Example 1, the weight of calcium hydroxide was 106.8 g, which was 0.021 times the weight of the core material.

<実施例2>
実施例2は、実施例1の上記(1)〜(5)と同様の試料および各種条件を有する。実施例2と実施例1との違いは、上記実施例1では、ステップS21の「吸着剤の追加」の工程を行っていないのに対し、実施例2では行っている点である。そして、この実施例2の条件の元、真空断熱材1を10枚作製した。真空断熱材1の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化カルシウムの重量を測定した。
<Example 2>
Example 2 has the same samples and various conditions as those in (1) to (5) of Example 1. The difference between the second embodiment and the first embodiment is that, in the first embodiment, the “addition of adsorbent” step of step S21 is not performed, whereas the second embodiment is performed. Then, under the conditions of Example 2, ten vacuum heat insulating materials 1 were produced. After measuring the thermal conductivity of the vacuum heat insulating material 1, the vacuum heat insulating material 1 was opened and the weight of calcium hydroxide was measured.

比較例2に用いた試料も、実施例1の上記(1)〜(5)と同様の試料および各種条件を有する。そして、比較例2では、芯材2と吸着剤3とを外包材5で被覆し、密封されない状態で上記(5)の加熱処理を行った。次に、吸着剤3aを追加で配置し、外包材5の内部を減圧密封した。   The sample used in Comparative Example 2 also has the same samples and various conditions as in (1) to (5) of Example 1. Then, in Comparative Example 2, the core material 2 and the adsorbent 3 were covered with the outer packaging material 5, and the heat treatment (5) was performed in an unsealed state. Next, the adsorbent 3a was additionally arranged, and the inside of the outer packaging material 5 was sealed under reduced pressure.

この比較例2の条件の元、真空断熱材を10枚作製した。真空断熱材の熱伝導率の測定を行った後、真空断熱材を開封し、水酸化カルシウムの重量を測定した。   Under the conditions of Comparative Example 2, ten vacuum heat insulating materials were produced. After measuring the thermal conductivity of the vacuum heat insulating material, the vacuum heat insulating material was opened and the weight of calcium hydroxide was measured.

表2は、実施例1と比較例1とのそれぞれの条件で作製された10枚の真空断熱材の熱伝導率の平均値と、標準偏差と、水酸化カルシウムの重量とを比較した結果である。   Table 2 shows the results of comparing the average value, the standard deviation, and the weight of calcium hydroxide of the thermal conductivity of the ten vacuum heat insulating materials produced under the respective conditions of Example 1 and Comparative Example 1. is there.

Figure 2019021359
Figure 2019021359

表2に示すように、比較例2では、真空断熱材の平均値は、1.8mW/(m・K)であり、標準偏差は0.2mW/(m・K)であった。水酸化カルシウムの重量は、15.2gであり、芯材重量の0.0030倍であった。   As shown in Table 2, in Comparative Example 2, the average value of the vacuum heat insulating material was 1.8 mW / (m · K), and the standard deviation was 0.2 mW / (m · K). The weight of calcium hydroxide was 15.2 g, which was 0.0030 times the weight of the core material.

これに対して実施例2では、真空断熱材1の熱伝導率の平均値は、1.7mW/(m・K)であり、比較例より低い。つまり、実施例2は、比較例2は比べて断熱性能が高い。また、標準偏差は0.1mW/(m・K)であり、比較例2より小さい。つまり、実施例2は、熱伝導率のばらつきが比較例2より少ない。   On the other hand, in Example 2, the average value of the thermal conductivity of the vacuum heat insulating material 1 was 1.7 mW / (m · K), which was lower than the comparative example. That is, Example 2 has higher heat insulation performance than Comparative Example 2. Further, the standard deviation is 0.1 mW / (m · K), which is smaller than Comparative Example 2. That is, Example 2 has less variation in thermal conductivity than Comparative Example 2.

また、実施例2は、水酸化カルシウムの重量が、120.4gであり、芯材重量の0.024倍であった。   In Example 2, the weight of calcium hydroxide was 120.4 g, which was 0.024 times the weight of the core material.

<実施例3>
実施例3では、実施例1の上記(1)、(2)、(4)および(5)については同様の条件である。そして、吸着剤3を酸化カルシウムとし、10gから100gまで、10gずつ酸化カルシウムの量を増やし、それぞれの酸化カルシウムの量で、図2に示した製造工程で真空断熱材1を10枚作製した。つまり、吸着剤3を酸化カルシウム10gとした構成で真空断熱材1を10枚作製し、吸着剤3を酸化カルシウム20gとした構成で真空断熱材1を10枚作製し、といった具合である。なお、図2のステップS21の「吸着剤追加」の工程は行っていない。そして、以上のようにして作製した各真空断熱材の熱伝導率の測定を行った後、真空断熱材1を開封し、水酸化物4である水酸化カルシウムの重量を測定した。そして、各真空断熱材1のそれぞれについて、「熱伝導率」と、「芯材重量に対する水酸化カルシウムの重量比」との関係をプロットしたものが、次の図4である。
<Example 3>
In the third embodiment, the conditions (1), (2), (4) and (5) of the first embodiment are the same. Then, the adsorbent 3 was made of calcium oxide, and the amount of calcium oxide was increased by 10 g from 10 g to 100 g, and 10 pieces of the vacuum heat insulating material 1 were produced in the manufacturing process shown in FIG. In other words, ten vacuum heat insulating materials 1 are produced using the adsorbent 3 of 10 g of calcium oxide, and ten vacuum heat insulating materials 1 are produced using the adsorbent 3 of 20 g of calcium oxide. In addition, the process of “addition of adsorbent” in step S21 of FIG. 2 is not performed. Then, after measuring the thermal conductivity of each of the vacuum heat insulating materials produced as described above, the vacuum heat insulating material 1 was opened, and the weight of calcium hydroxide as the hydroxide 4 was measured. FIG. 4 plots the relationship between “thermal conductivity” and “weight ratio of calcium hydroxide to core material weight” for each vacuum heat insulating material 1.

図4は、本発明の実施の形態1に係る真空断熱材において、実施例3の条件における熱伝導率と芯材重量に対する水酸化カルシウムの重量比との関係を示す図である。図4において、横軸が、芯材重量に対する水酸化カルシウムの重量比[倍]、縦軸が熱伝導率[mW/(m・K)]である。また、図4において縦方向に大まかに並ぶプロット点のかたまりが、酸化カルシウムが同量の場合のプロット点であり、左から順に、10g、20g、・・・、100gの場合のプロット点となっている。   FIG. 4 is a diagram showing the relationship between the thermal conductivity and the weight ratio of calcium hydroxide to the core material weight under the conditions of Example 3 in the vacuum heat insulating material according to Embodiment 1 of the present invention. In FIG. 4, the horizontal axis represents the weight ratio of calcium hydroxide to the weight of the core material [times], and the vertical axis represents the thermal conductivity [mW / (m · K)]. In FIG. 4, clusters of plot points roughly aligned in the vertical direction are plot points when calcium oxide is the same amount, and are plot points when 10 g, 20 g,... ing.

図4に示すように、水酸化カルシウムの重量が、芯材2の重量の0.01倍以上である真空断熱材は、熱伝導率のばらつきおよび断熱性能のばらつきが少ない。そして、水酸化カルシウムの重量が芯材2の重量の0.01倍以上となるのは、吸着剤3である酸化カルシウムが50g以上の場合となっている。   As shown in FIG. 4, a vacuum heat insulating material in which the weight of calcium hydroxide is 0.01 times or more the weight of the core material 2 has a small variation in thermal conductivity and a small variation in heat insulating performance. The weight of the calcium hydroxide becomes 0.01 times or more the weight of the core material 2 when the amount of the calcium oxide as the adsorbent 3 is 50 g or more.

一般的に芯材2が加熱処理前に保持している水分は、最大で芯材重量の0.005倍である。また、水酸化カルシウム1分子あたりの質量は、水1分子あたりの質量の約4倍である。したがって、水酸化カルシウムの重量が、「0.005」と「4」とを積算した芯材重量の0.01倍以上であれば、芯材2から放出された水分のほぼすべてが、水酸化カルシウムで保持されていることになる。つまり、水酸化カルシウムの重量が、芯材2の重量の0.01倍以上となっている真空断熱材1は、外包材5の内部を減圧密封した後に芯材2から放出される水分の量が変動しないと言える。そして、外包材5の内部を減圧密封した後に芯材2から放出される水分の量が変動しないことで、外包材5の内部の真空度のばらつきが少なく、断熱性能のばらつきが少ない真空断熱材1を得ることができる。   Generally, the water content held by the core material 2 before the heat treatment is at most 0.005 times the weight of the core material. The mass per molecule of calcium hydroxide is about four times the mass per molecule of water. Therefore, if the weight of the calcium hydroxide is 0.01 times or more of the weight of the core material obtained by integrating “0.005” and “4”, almost all of the water released from the core material 2 becomes hydroxylated. It will be held by calcium. That is, the vacuum heat insulating material 1 in which the weight of the calcium hydroxide is 0.01 times or more the weight of the core material 2 is the amount of water released from the core material 2 after the inside of the outer packaging material 5 is sealed under reduced pressure. Does not fluctuate. Then, since the amount of moisture released from the core material 2 after the inside of the outer packaging material 5 is sealed under reduced pressure does not fluctuate, there is little variation in the degree of vacuum inside the outer packaging material 5 and little variation in heat insulation performance. 1 can be obtained.

ここで、上述の実施例1を参照すると、水酸化カルシウムの重量が芯材2の重量の0.021倍であり、また、実施例2では0.024倍であり、0.01倍以上の範囲に含まれており、断熱性能のばらつきが少ない真空断熱材1が得られている。   Here, referring to Example 1 described above, the weight of the calcium hydroxide is 0.021 times the weight of the core material 2, and the weight of the calcium hydroxide in Example 2 is 0.024 times, which is 0.01 times or more. The vacuum heat insulating material 1 which is included in the range and has little variation in the heat insulating performance is obtained.

なお、芯材重量に対する水酸化カルシウムの重量比の下限値は、上述のように0.01倍以上であるが、上限値は、0.1倍である。上限値を0.1倍としたのは以下の理由による。すなわち、0.1倍より大きくなると、断熱性能が低下し、また、コストが高くなり工業的に実施しえないためである。   The lower limit of the weight ratio of calcium hydroxide to the weight of the core material is 0.01 times or more as described above, but the upper limit is 0.1 times. The upper limit is set to 0.1 times for the following reason. That is, if it is larger than 0.1 times, the heat insulation performance is reduced, and the cost is increased, so that it cannot be industrially implemented.

実施の形態2.
図5は、本発明の実施の形態2に係る断熱箱の概略構成を示す断面図である。
図5に示すように、断熱箱100は、高い断熱性能が求められる、例えば冷蔵庫等の筐体として用いられる。断熱箱100は、内箱110と外箱120とを有する。そして、内箱110と外箱120との間の空間には、実施の形態1において説明した真空断熱材1が配置されており、内箱110と外箱120との間で断熱を行う。真空断熱材1が配置される位置は、例えば内箱110の外壁面110aに密着した位置等であり、内箱110と外箱120との間で断熱できる位置に配置される。そして、内箱110と外箱120との間の空間のうち、真空断熱材1以外の部分には発泡ウレタン断熱材130が充填されている。
Embodiment 2 FIG.
FIG. 5 is a cross-sectional view illustrating a schematic configuration of the heat insulating box according to Embodiment 2 of the present invention.
As shown in FIG. 5, the heat insulating box 100 is used as a housing of a refrigerator or the like that requires high heat insulating performance. The heat insulation box 100 has an inner box 110 and an outer box 120. The vacuum heat insulating material 1 described in the first embodiment is arranged in the space between the inner box 110 and the outer box 120, and performs heat insulation between the inner box 110 and the outer box 120. The position where the vacuum heat insulating material 1 is disposed is, for example, a position that is in close contact with the outer wall surface 110a of the inner box 110, and is disposed at a position where heat insulation can be performed between the inner box 110 and the outer box 120. Then, in the space between the inner box 110 and the outer box 120, portions other than the vacuum heat insulating material 1 are filled with urethane foam heat insulating material.

このように断熱箱100には、熱伝導率のばらつきが少ない真空断熱材1が設けられている。これにより、断熱箱100の断熱性能のばらつきを少なくすることができる。断熱箱100を備えた冷蔵庫等においては、消費電力の削減につながる。   As described above, the heat insulating box 100 is provided with the vacuum heat insulating material 1 having a small variation in thermal conductivity. Thereby, variation in the heat insulating performance of the heat insulating box 100 can be reduced. In a refrigerator or the like provided with the heat insulating box 100, power consumption is reduced.

また、真空断熱材1は、発泡ウレタン断熱材130等と比較して高い断熱性能を有する。このため、断熱箱100は、発泡ウレタン断熱材130のみを用いた断熱箱100よりも高い断熱性能を得られる。なお、ここでは、内箱110と外箱120との間の空間に発泡ウレタン断熱材130が充填された構成を示したが、真空断熱材1は発泡ウレタン断熱材130等と比較して高い断熱性能を有するため、発泡ウレタン断熱材130を省略してもよい。   Further, the vacuum heat insulating material 1 has higher heat insulating performance than the urethane foam heat insulating material 130 and the like. For this reason, the heat insulating box 100 can obtain higher heat insulating performance than the heat insulating box 100 using only the urethane foam heat insulating material 130. Here, the configuration in which the space between the inner box 110 and the outer box 120 is filled with the urethane foam insulating material 130 is shown, but the vacuum heat insulating material 1 has higher heat insulation than the urethane foam heat insulating material 130 and the like. The urethane foam insulation 130 may be omitted because of its performance.

また、上記の説明では、真空断熱材1が内箱110の外壁面110aに密着しているが、真空断熱材1は外箱120の内壁面120aに密着していてもよい。また、スペーサ等を用いることにより、内箱110と外箱120との間の空間に、内箱110と外箱120との両方に密着しないように真空断熱材1が配置されていてもよい。   Further, in the above description, the vacuum heat insulating material 1 is in close contact with the outer wall surface 110a of the inner box 110, but the vacuum heat insulating material 1 may be in close contact with the inner wall surface 120a of the outer box 120. Further, by using a spacer or the like, the vacuum heat insulating material 1 may be arranged in the space between the inner box 110 and the outer box 120 so as not to be in close contact with both the inner box 110 and the outer box 120.

なお、上記の説明において、一般的な冷蔵庫等に用いられている断熱箱100と同等である部分については、図示および説明を省略している。   In the above description, illustration and description of parts equivalent to those of the heat insulating box 100 used for a general refrigerator or the like are omitted.

また、本発明に係る真空断熱材は、上述の実施の形態に限らず種々の変形が可能であり、上述の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。   Further, the vacuum heat insulating material according to the present invention is not limited to the above-described embodiment, but can be variously modified. The above-described embodiments and modified examples can be implemented in combination with each other.

また、上述の実施の形態2では、冷熱源(図示せず)を備える冷蔵庫の断熱箱に真空断熱材1が用いられた構成を例に挙げたが、本発明はこれに限られない。真空断熱材1は、温熱源を備える保温庫の断熱箱、冷熱源および温熱源を備えない断熱箱、例えば、クーラーボックス等に用いることもできる。また、真空断熱材1は、断熱箱だけでなく、空調機、車両用空調機、給湯機等の冷熱機器または温熱機器の断熱部材として用いてもよい。また、真空断熱材1の形状も、変形不可な所定の形状に限らず、変形自在な形状としてもよい。変形自在な形状の真空断熱材1を用いたものとしては、例えば外袋および内袋を備えた断熱袋または断熱容器等が該当する。   Further, in the above-described second embodiment, the configuration in which the vacuum heat insulating material 1 is used in the heat insulating box of the refrigerator provided with a cold heat source (not shown) has been described as an example, but the present invention is not limited to this. The vacuum heat insulating material 1 can also be used in a heat insulating box of a warm storage provided with a heat source, a heat insulating box without a cold heat source and a heat source, for example, a cooler box or the like. Further, the vacuum heat insulating material 1 may be used not only as a heat insulating box but also as a heat insulating member of a cooling device or a heating device such as an air conditioner, a vehicle air conditioner, and a water heater. Further, the shape of the vacuum heat insulating material 1 is not limited to a predetermined shape that cannot be deformed, and may be a shape that can be deformed. As a material using the vacuum heat insulating material 1 having a deformable shape, for example, a heat insulating bag or a heat insulating container having an outer bag and an inner bag is applicable.

1 真空断熱材、2 芯材、3 吸着剤、4 水酸化物、5 外包材、100 断熱箱、110 内箱、110a 外壁面、120 外箱、120a 内壁面、130 発泡ウレタン断熱材。   DESCRIPTION OF SYMBOLS 1 Vacuum insulation material, 2 core materials, 3 adsorbents, 4 hydroxides, 5 outer packaging materials, 100 heat insulation boxes, 110 inner boxes, 110a outer wall surfaces, 120 outer boxes, 120a inner wall surfaces, 130 urethane foam insulation materials.

Claims (10)

真空空間を保持する芯材と、
水酸化物と、
前記芯材と前記水酸化物とを被覆する外包材とを備え、
前記外包材の内部が減圧されて密封されており、
前記水酸化物の重量が、前記芯材の重量の0.01倍以上である真空断熱材。
A core material for holding a vacuum space,
Hydroxide,
An outer packaging material for covering the core material and the hydroxide,
The inside of the outer packaging material is decompressed and sealed,
A vacuum heat insulating material, wherein the weight of the hydroxide is at least 0.01 times the weight of the core material.
前記水酸化物は、水酸化カルシウムである請求項1記載の真空断熱材。   2. The vacuum heat insulating material according to claim 1, wherein the hydroxide is calcium hydroxide. 前記外包材には更に、水分を吸着する吸着剤が被覆されている請求項1または請求項2記載の真空断熱材。   The vacuum heat insulating material according to claim 1 or 2, wherein the outer packaging material is further coated with an adsorbent that adsorbs moisture. 前記吸着剤は、酸化カルシウムである請求項3記載の真空断熱材。   The vacuum heat insulating material according to claim 3, wherein the adsorbent is calcium oxide. 前記芯材は、繊維集合体である請求項1〜請求項4のいずれか一項に記載の真空断熱材。   The vacuum heat insulator according to any one of claims 1 to 4, wherein the core material is a fiber aggregate. 前記繊維集合体は、グラスウールである請求項5記載の真空断熱材。   The vacuum heat insulating material according to claim 5, wherein the fiber aggregate is glass wool. 請求項1〜請求項6のいずれか一項に記載の真空断熱材を備えた断熱箱。   An insulating box provided with the vacuum insulating material according to claim 1. 真空空間を保持する芯材と、酸化物とを、外包材で被覆して密封して密封体を形成する工程と、
前記密封体を加熱処理する工程と、
前記密封体の前記外包材の内部を減圧して密封する工程と
を備えた真空断熱材の製造方法。
A step of forming a sealed body by covering and sealing the core material holding the vacuum space and the oxide with an outer package material,
Heat-treating the sealed body,
And decompressing and sealing the inside of the outer packaging material of the sealed body.
前記密封体を形成する工程では、水分を吸着する第1吸着剤を更に前記外包材で被覆して密封する請求項8記載の真空断熱材の製造方法。   9. The method of manufacturing a vacuum heat insulating material according to claim 8, wherein in the step of forming the sealed body, a first adsorbent for adsorbing moisture is further covered with the outer packaging material and sealed. 前記加熱処理の工程と、前記減圧して密封する工程との間に、前記外包材の内部に、第2吸着剤を追加する工程を有する請求項8または請求項9記載の真空断熱材の製造方法。   The production of a vacuum heat insulating material according to claim 8 or 9, further comprising a step of adding a second adsorbent to the inside of the outer packaging material between the step of heating and the step of sealing under reduced pressure. Method.
JP2019532241A 2017-07-25 2017-07-25 Vacuum insulation material manufacturing method Active JP7129979B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/026778 WO2019021359A1 (en) 2017-07-25 2017-07-25 Vacuum heat insulation material, heat insulation box, and method for manufacturing vacuum heat insulation material

Publications (2)

Publication Number Publication Date
JPWO2019021359A1 true JPWO2019021359A1 (en) 2020-02-06
JP7129979B2 JP7129979B2 (en) 2022-09-02

Family

ID=65040038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019532241A Active JP7129979B2 (en) 2017-07-25 2017-07-25 Vacuum insulation material manufacturing method

Country Status (5)

Country Link
JP (1) JP7129979B2 (en)
CN (1) CN110892187B (en)
AU (1) AU2017424996B2 (en)
TW (1) TWI659177B (en)
WO (1) WO2019021359A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202113264A (en) 2019-06-14 2021-04-01 日商三菱瓦斯化學股份有限公司 Vacuum container, precursor of same, and method for producing vacuum container

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material
JPH09229290A (en) * 1996-02-28 1997-09-05 Mitsubishi Chem Corp Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator
JPH10318487A (en) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc Getter for vacuum insulating material
JPH11106539A (en) * 1997-10-03 1999-04-20 Mitsubishi Gas Chem Co Inc Getter for vacuum heat insulator and its manufacture
JP2015059642A (en) * 2013-09-20 2015-03-30 パナソニック株式会社 Vacuum heat insulation material and refrigerator using the same
JP2015178853A (en) * 2014-03-19 2015-10-08 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and manufacturing method of vacuum heat insulation material
JP2016084833A (en) * 2014-10-23 2016-05-19 三菱電機株式会社 Vacuum heat insulating material and heat insulating box

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7278279B2 (en) * 2002-03-13 2007-10-09 Matsushita Refrigeration Co. Refrigerator
JP3559035B2 (en) 2002-12-05 2004-08-25 松下冷機株式会社 Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
CN100537215C (en) * 2005-04-22 2009-09-09 海尔集团公司 Aerospace thermal-insulated plate and its preparing process
JP2011241988A (en) * 2010-05-14 2011-12-01 Hitachi Appliances Inc Heat insulation box and refrigerator
KR101323490B1 (en) * 2011-08-23 2013-10-31 (주)엘지하우시스 Vacuum insulation panel with moisture-gas adsorbing getter material and manufacturing method thereof
KR101447767B1 (en) * 2011-12-02 2014-10-07 (주)엘지하우시스 Vacuum insulation panel for high operating temperature
JP6258029B2 (en) 2012-12-26 2018-01-10 日本合成化学工業株式会社 Exterior bag for vacuum insulation structure, vacuum insulation structure using the same, method for storing or transporting exterior bag for vacuum insulation structure, and method for producing exterior bag for vacuum insulation structure
CN105051442B (en) * 2013-04-23 2018-03-02 松下知识产权经营株式会社 Include the insulator of gas absorption part
JP6132715B2 (en) * 2013-09-06 2017-05-24 三菱電機株式会社 Vacuum insulation material manufacturing method and insulation box
CN104712883A (en) * 2013-12-13 2015-06-17 陈照峰 Vacuum insulated panel with straw as core material
CN107923565B (en) * 2015-08-19 2019-08-20 三菱电机株式会社 Vacuumed insulation panel and hot box

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59225275A (en) * 1983-06-01 1984-12-18 松下電器産業株式会社 Vacuum heat-insulating material
JPH09229290A (en) * 1996-02-28 1997-09-05 Mitsubishi Chem Corp Composite material for vacuum thermal insulator and manufacture for vacuum thermal insulator
JPH10318487A (en) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc Getter for vacuum insulating material
JPH11106539A (en) * 1997-10-03 1999-04-20 Mitsubishi Gas Chem Co Inc Getter for vacuum heat insulator and its manufacture
JP2015059642A (en) * 2013-09-20 2015-03-30 パナソニック株式会社 Vacuum heat insulation material and refrigerator using the same
JP2015178853A (en) * 2014-03-19 2015-10-08 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and manufacturing method of vacuum heat insulation material
JP2016084833A (en) * 2014-10-23 2016-05-19 三菱電機株式会社 Vacuum heat insulating material and heat insulating box

Also Published As

Publication number Publication date
WO2019021359A1 (en) 2019-01-31
TWI659177B (en) 2019-05-11
AU2017424996A1 (en) 2019-12-19
CN110892187B (en) 2021-08-27
AU2017424996B2 (en) 2021-03-11
TW201908640A (en) 2019-03-01
JP7129979B2 (en) 2022-09-02
CN110892187A (en) 2020-03-17

Similar Documents

Publication Publication Date Title
KR100540522B1 (en) Vacuum insulating material and device using the same
JP3212309B2 (en) High insulation panel
US20150147514A1 (en) Vacuum heat-insulating material and method for manufacturing vacuum heat-insulating material
KR20060032656A (en) Vacuum thermally insulating material and method for production thereof, thermally insulated equipment having the vacuum thermally insulating material, and thermally insulated board
EP3150897B1 (en) Vacuum heat-insulating material
WO2015033717A1 (en) Vacuum insulation material, insulated box, and method for producing vacuum insulation material
JP2004011705A (en) Vacuum heat insulating material, heat insulator, heat insulation box, heat insulation door, storage warehouse, and refrigerator
WO2015115149A1 (en) Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
JP2015059642A (en) Vacuum heat insulation material and refrigerator using the same
KR101560125B1 (en) Method for manufacturing insulation box improved insulation performance and insulation box for the same
JPWO2019021359A1 (en) Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material
JP2016084833A (en) Vacuum heat insulating material and heat insulating box
WO2015177984A1 (en) Sealed container, thermal insulator, and gas adsorption device
JP2009063033A (en) Heat insulator
JPS59225275A (en) Vacuum heat-insulating material
AU2015405840B2 (en) Vacuum thermal insulator and thermal insulation container
KR101452211B1 (en) Core material for vacuum insulator and vacuum insulator using the same
JP2008215538A (en) Vacuum heat insulation material
AU2018412205B2 (en) Vacuum heat insulating material and heat insulating box
JPH06281089A (en) Vacuum heat-insulating material
CN112503305A (en) Opening curled edge 3D vacuum insulation panel and heat preservation container
JP4449630B2 (en) VACUUM INSULATOR AND REFRIGERATOR HAVING VACUUM INSULATOR
JP2006308078A (en) Heat insulator
KR101345275B1 (en) Core material for vacuum insulator using fumed silica with high purity and vacuum insulator using the same
WO2024084774A1 (en) Vacuum thermal insulation material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220823

R150 Certificate of patent or registration of utility model

Ref document number: 7129979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150