JPH11106539A - Getter for vacuum heat insulator and its manufacture - Google Patents

Getter for vacuum heat insulator and its manufacture

Info

Publication number
JPH11106539A
JPH11106539A JP9271455A JP27145597A JPH11106539A JP H11106539 A JPH11106539 A JP H11106539A JP 9271455 A JP9271455 A JP 9271455A JP 27145597 A JP27145597 A JP 27145597A JP H11106539 A JPH11106539 A JP H11106539A
Authority
JP
Japan
Prior art keywords
getter
vacuum heat
carbon dioxide
insulating material
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9271455A
Other languages
Japanese (ja)
Inventor
Tatsuo Iwai
辰雄 岩井
Tomoharu Himejima
智晴 姫嶋
Tetsushi Watanabe
哲志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9271455A priority Critical patent/JPH11106539A/en
Publication of JPH11106539A publication Critical patent/JPH11106539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Refrigerator Housings (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a getter excellent in carbon dioxide absorption at even a vacuum of 0.005-5 Torr for preventing the lowering of heat insulation mainly by carbon dioxide for a vacuum heat insulator to seal a vacuum vessel after a core material made of urethane foam is inserted and evacuated. SOLUTION: A getter which is at least one of an oxide of an alkaline earth metal or a hydroxide of an alkaline earth metal manufactured by grinding to not greater than 150 μm average diameter under a low carbon dioxide concentration, or after grinding to not greater than 150 μm calcined at a temperature higher than its carbonate's decomposition temperature, and cooled in an atmosphere of low carbon dioxide concentration is contained in a vacuum heat insulation for sealing a vacuum vessel after a core material made of urethane foam is inserted and evacuated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、真空下で使用され
るゲッタに関する。例えば、冷蔵庫、魔法瓶、建材等に
使用される真空断熱材に用いられる真空断熱材用ゲッタ
に関する。
[0001] The present invention relates to a getter used under vacuum. For example, the present invention relates to a vacuum heat insulating material getter used for a vacuum heat insulating material used for refrigerators, thermos bottles, building materials, and the like.

【0002】[0002]

【従来の技術】気密容器内にコア材を挿入し内部を真空
にした後封止する真空断熱材において、一般に長期間真
空を維持するために、系内に発生するガスや外部から侵
入してくるガスを除去するために、ゲッタと呼ばれるガ
ス吸収剤が用いられる。
2. Description of the Related Art A vacuum heat insulating material in which a core material is inserted into an airtight container, the inside of which is evacuated, and then sealed is generally used. In order to remove the coming gas, a gas absorbent called a getter is used.

【0003】連続気泡ウレタンフォームをコア材にした
真空断熱材では、未反応のイソシアネート基(−NC
O)と発泡に使用された水分や透過してきた水分等の微
量に存在する水分が反応し炭酸ガスが発生する。この炭
酸ガスの発生が真空断熱材の断熱性能を低下させる主原
因となっていた。その炭酸ガスの吸着剤として、特公平
6−105151にはソーダ灰の利用が開示されてい
る。また、特開平8−338683には酸性ガス吸収剤
としてアルカリ金属またはアルカリ土類金属の酸化物、
水酸化物、有機酸塩、有機アミン類などの化学的反応型
炭酸ガス吸収剤を使用することが提案されている。しか
し、これらの化学的反応型の炭酸ガス吸収剤の中で、固
体の反応型の炭酸ガス吸収剤と炭酸ガスとの反応は、水
分の存在下その水分に炭酸ガスが溶解し炭酸イオンとし
て反応が起こるイオン反応であるため、水分がほとんど
存在しない真空下では、吸収反応量は非常に小さく、事
実上吸収しないといっても過言ではなかった。このた
め、炭酸ガスの吸収量を上げる試みとして微粉にするこ
とが行われたが、大気中での粉砕およびその後の大気下
での保管では、すぐに大気中の炭酸ガスを吸収し、十分
な炭酸ガス吸収性能を示すことができなかった。また、
液体の炭酸ガス吸収剤は、高真空下では吸収剤そのもの
の揮発並びに不純物として存在する僅かな低沸点物質の
揮発が起こり、真空断熱材の圧力の上昇、並びにそれに
よる熱伝導率の上昇が起こり使用できなかった。
[0003] In a vacuum insulating material using open-cell urethane foam as a core material, unreacted isocyanate groups (-NC
O) reacts with a small amount of water such as the water used for foaming or the water that has permeated to generate carbon dioxide gas. The generation of carbon dioxide gas has been the main cause of lowering the heat insulating performance of the vacuum heat insulating material. As a carbon dioxide adsorbent, Japanese Patent Publication No. 6-105151 discloses the use of soda ash. JP-A-8-338683 discloses an alkali metal or alkaline earth metal oxide as an acid gas absorbent.
It has been proposed to use chemically reactive carbon dioxide absorbents such as hydroxides, organic acid salts and organic amines. However, among these chemically reactive carbon dioxide absorbents, the reaction between the solid reactive carbon dioxide absorbent and carbon dioxide is caused by the dissolution of carbon dioxide in the moisture in the presence of moisture and the reaction as carbonate ions. Therefore, it is not an exaggeration to say that under vacuum where almost no water is present, the absorption reaction amount is very small and practically no absorption occurs. For this reason, pulverization was performed in an attempt to increase the amount of carbon dioxide absorbed, but in pulverization in the air and subsequent storage in the air, the carbon dioxide in the air was immediately absorbed and sufficient Carbon dioxide absorption performance could not be shown. Also,
Under high vacuum, liquid carbon dioxide gas absorbent volatilizes the absorbent itself and volatilizes a small amount of low-boiling substances present as impurities, resulting in an increase in the pressure of the vacuum insulation and an increase in the thermal conductivity. Could not be used.

【0004】更に、特公平7−94950には、真空断
熱材ではないが、独立気泡ウレタン断熱材の炭酸ガス吸
着剤として、物理的吸着型の炭酸ガス吸収剤である合成
ゼオライト、活性炭、シリカゲルが挙げられている。し
かし、これらの合成ゼオライト、活性炭やシリカゲルな
どの物理的吸着剤は水分不存在下でも炭酸ガスの吸収は
起こすものの真空下では著しくその吸収量が低下し、長
期間にわたり炭酸ガスの吸収を行うことが出来ず、また
これを防ぐには多量の物理的吸着剤が必要となり実用性
に乏しかった。
Further, Japanese Patent Publication No. 7-94950 discloses that as a carbon dioxide adsorbent of a closed-cell urethane heat insulator, a synthetic zeolite, activated carbon, and silica gel, which are physical adsorption type carbon dioxide gas absorbents, are not vacuum heat insulators. Are listed. However, these synthetic zeolites, activated carbon and physical adsorbents such as silica gel can absorb carbon dioxide even in the absence of moisture, but their absorption is significantly reduced under vacuum, and they must absorb carbon dioxide for a long period of time. However, in order to prevent this, a large amount of physical adsorbent was required, and the practicality was poor.

【0005】一方、特開平8−320179では、連続
気泡ウレタンフォームを高温高湿処理し、未反応のイソ
シアネート基を低減させ、炭酸ガスの発生を抑制すると
いう対策も提案されているが、処理のための工程が増え
てコスト的には厳しいものとなっていた。
[0005] On the other hand, Japanese Patent Application Laid-Open No. 8-320179 proposes a measure of treating open-celled urethane foam with high temperature and high humidity to reduce unreacted isocyanate groups and suppress the generation of carbon dioxide gas. And the number of processes for the process increased, and the cost was severe.

【0006】[0006]

【発明が解決しようとする課題】本発明は、気密容器内
にウレタンフォームのコア材を挿入し内部を真空にした
後封止する真空断熱材において、主に炭酸ガスによる断
熱性の低下を防止すべく、0.005〜5Torrの真空下
でも炭酸ガス吸収能に優れたゲッタを提供する。
SUMMARY OF THE INVENTION The present invention relates to a vacuum heat insulating material in which a urethane foam core material is inserted into an airtight container, the inside of which is evacuated, and then sealed. To provide a getter excellent in carbon dioxide gas absorbing ability even under a vacuum of 0.005 to 5 Torr.

【0007】[0007]

【課題を解決するための手段】従来水分のほとんど存在
しない真空下において、炭酸ガスのアルカリ土類金属の
酸化物および水酸化物への吸収反応は、吸収量が非常に
微量であったため、事実上吸収しないと思われていた
が、本発明者らは炭酸ガスの吸収反応が、これらの吸収
剤の表面層への吸着で起こり、表面層が覆われてしまう
と、その後の反応は表面層から内部への炭酸ガスの拡散
律速となり著しく吸収速度が低下するが、その表面積を
広くすることにより有効に炭酸ガスを吸収できることを
見出した。更に、この炭酸ガス吸収性能を十分に発揮さ
せるには、微粉にする際および微粉にした後に大気中の
炭酸ガスの吸収を防ぐことが必須であることも見出し本
発明に到達した。すなわち本発明は、気密容器内にウレ
タンフォームのコア材を挿入し内部を真空にした後封止
する真空断熱材に入れるゲッタが、平均粒径150μm
以下、より好ましくは100μm以下であるアルカリ土
類金属の酸化物、アルカリ土類金属の水酸化物の中の1
種以上である真空断熱材用ゲッタからなっている。ま
た、本発明は、上記の真空断熱材に入れるゲッタが、酸
化カルシウム、水酸化カルシウム、酸化バリウムの中の
1種以上である真空断熱材用ゲッタを用いることにより
真空断熱材の性能を長期間維持するものである。更に、
これらのゲッタは、アルカリ土類金属の酸化物またはア
ルカリ土類金属の水酸化物を低炭酸ガス濃度雰囲気中で
粉砕することを特徴とする製造方法であり、アルカリ土
類金属の酸化物またはアルカリ土類金属の水酸化物を予
め粉砕した後に、表面層に存在する炭酸塩を除去または
酸化物、水酸化物へと化学変化させることを特徴とする
製造方法である。
The absorption reaction of carbon dioxide gas on alkaline earth metal oxides and hydroxides under a vacuum in which almost no water is present has been found to occur because the absorption amount is very small. Although it was thought that the absorption did not take place, the present inventors found that the absorption reaction of carbon dioxide gas was caused by the adsorption of these absorbents to the surface layer, and when the surface layer was covered, the subsequent reaction proceeded to the surface layer. The diffusion rate of carbon dioxide from the inside to the inside becomes rate-limiting, and the absorption rate is significantly reduced. However, it has been found that the carbon dioxide can be effectively absorbed by increasing the surface area. Further, the present inventors have found that it is essential to prevent the absorption of carbon dioxide gas in the air at the time of pulverization and after the pulverization in order to sufficiently exhibit the carbon dioxide absorption performance, and have reached the present invention. That is, according to the present invention, a getter to be inserted into a vacuum heat insulating material for sealing after inserting a core material of urethane foam into an airtight container, evacuating the inside,
Or less, more preferably 100 μm or less of alkaline earth metal oxides and alkaline earth metal hydroxides.
It consists of more than one kind of vacuum heat insulating material getter. In addition, the present invention provides a vacuum heat insulating material having at least one of calcium oxide, calcium hydroxide, and barium oxide as a getter to be put into the vacuum heat insulating material, thereby improving the performance of the vacuum heat insulating material for a long time. To maintain. Furthermore,
These getters are a production method characterized in that an alkaline earth metal oxide or an alkaline earth metal hydroxide is pulverized in an atmosphere of a low carbon dioxide gas concentration. This production method is characterized in that after a hydroxide of an earth metal has been pulverized in advance, a carbonate present in a surface layer is removed or chemically changed into an oxide or a hydroxide.

【0008】[0008]

【発明の実施の形態】本発明のアルカリ土類金属の酸化
物、水酸化物とは、酸化カルシウム、酸化バリウム、水
酸化カルシウム、水酸化バリウム等をいい、特に酸化カ
ルシウム、酸化バリウムが炭酸ガス吸収性能が高く、ま
た真空下での水分の放出が少なく好ましい。これらのア
ルカリ土類金属の酸化物および水酸化物は、単独で用い
てもよいし混合して用いてもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The alkaline earth metal oxides and hydroxides of the present invention include calcium oxide, barium oxide, calcium hydroxide, barium hydroxide and the like. In particular, calcium oxide and barium oxide contain carbon dioxide gas. It is preferable because it has high absorption performance and releases less moisture under vacuum. These alkaline earth metal oxides and hydroxides may be used alone or as a mixture.

【0009】本発明の水分のほとんど存在しない真空下
における炭酸ガスのアルカリ土類金属の酸化物および水
酸化物への吸収は、これらの表面層への吸着で行われる
ため、できるだけ微粉にすることにより表面積を広くす
ることが効果的であり、その平均粒径は、150μm以
下が好ましく、100μm以下がより好ましい。
In the present invention, the absorption of carbon dioxide into alkaline earth metal oxides and hydroxides in a vacuum in which almost no water is present is carried out by adsorption to these surface layers. It is effective to increase the surface area, and the average particle size is preferably 150 μm or less, more preferably 100 μm or less.

【0010】また本発明に用いるアルカリ土類金属の酸
化物および水酸化物は、担体に担持させることにより表
面積を広くすることも真空下で十分な反応速度が期待で
き好ましい。担体としては、シリカゲル、シリカ、アル
ミナ、活性炭、モレキュラーシーブス等の合成ゼオライ
ト、モルデナイト、エリオナイト等の天然ゼオライト、
パーライト、セピオライト、珪藻土、活性白土等の粘土
鉱物等が挙げられる。この中で特にゼオライトや活性
炭、シリカが好ましい。本発明に用いる平均粒径150
μm以下の真空断熱材用ゲッタは、粒状のアルカリ土類
金属の酸化物、アルカリ土類金属の水酸化物を炭酸ガス
濃度1ppm以下、好ましくは0.1ppm以下で粉砕
することを特徴とする製造方法である。本発明において
空気中に存在する約330ppmの炭酸ガス濃度から低
炭酸ガス濃度雰囲気をつくるには、窒素ガス、アルゴン
ガス等の不活性ガスによる置換が一般に用いられる。ま
た、ここで用いる粉砕方法は、特に限定されるものでは
なく、振動ミル、ボールミル、ディスクミル等の公知の
粉砕機により粉砕が行われる。本発明における真空断熱
材用ゲッタを得る別の方法としては、アルカリ土類金属
の酸化物、アルカリ土類金属の水酸化物を、公知の粉砕
機を用いて大気下で予め粉砕した後に、表面層に存在す
る炭酸塩を炭酸塩の分解温度である898℃(解離圧1
atm)以上の温度で焼成することにより酸化物、水酸
化物へと化学変化させ、その後炭酸ガス濃度1ppm以
下好ましくは0.1ppm以下の雰囲気で冷却すること
により製造される。また、ここで得られる真空断熱材用
ゲッタは、アルミ箔ラミネートフイルム、ポリ塩化ビニ
リデンフイルム、アルミニウム蒸着ポリエチレンテレフ
タレートフイルム等のガスバリア性の高いフイルムを用
いた袋、金属容器、ガラス容器等の二酸化炭素が侵入し
がたい雰囲気で保存することが好ましい。
The alkaline earth metal oxides and hydroxides used in the present invention are preferably supported on a carrier to increase the surface area, since a sufficient reaction rate under vacuum can be expected. As the carrier, silica gel, silica, alumina, activated carbon, synthetic zeolites such as molecular sieves, mordenite, natural zeolites such as erionite,
Clay minerals such as perlite, sepiolite, diatomaceous earth, and activated clay are listed. Among them, zeolite, activated carbon and silica are particularly preferred. Average particle size 150 used in the present invention
The getter for vacuum heat insulating materials having a size of μm or less is characterized in that a granular alkaline earth metal oxide or alkaline earth metal hydroxide is pulverized at a carbon dioxide gas concentration of 1 ppm or less, preferably 0.1 ppm or less. Is the way. In the present invention, replacement with an inert gas such as nitrogen gas or argon gas is generally used to create an atmosphere having a low carbon dioxide concentration from a carbon dioxide concentration of about 330 ppm existing in the air. The pulverization method used here is not particularly limited, and pulverization is performed by a known pulverizer such as a vibration mill, a ball mill, and a disk mill. Another method of obtaining the vacuum heat insulating material getter according to the present invention is as follows: an alkaline earth metal oxide, an alkaline earth metal hydroxide, are preliminarily pulverized in the atmosphere using a known pulverizer, and then the surface is pulverized. The carbonate present in the layer is converted to a carbonate decomposition temperature of 898 ° C. (dissociation pressure 1).
Atm) or more is calcined to form oxides or hydroxides by firing, and then cooled in an atmosphere having a carbon dioxide gas concentration of 1 ppm or less, preferably 0.1 ppm or less. In addition, the getter for vacuum heat insulating material obtained here is a bag using a film having a high gas barrier property such as an aluminum foil laminated film, a polyvinylidene chloride film, an aluminum vapor-deposited polyethylene terephthalate film, and a carbon container such as a metal container and a glass container. It is preferable to store in an atmosphere that is difficult to penetrate.

【0011】本発明の真空用ゲッタは、真空系内で共存
する物質、用途、使用雰囲気等に応じて脱湿剤、脱酸素
剤、有機ガス吸収剤と併用しても良い。また、真空用ゲ
ッタに、炭酸ガス吸収剤の機能と脱湿剤、有機ガス吸収
剤等の機能を併せ持つものを選ぶのも実用的な使用方法
である。
The getter for vacuum of the present invention may be used in combination with a dehumidifier, a deoxidizer, and an organic gas absorbent depending on the substance, application, use atmosphere and the like coexisting in the vacuum system. It is also a practical usage to select a vacuum getter that has both the function of a carbon dioxide gas absorbent and the functions of a dehumidifier, an organic gas absorbent, and the like.

【0012】脱湿剤としては、シリカゲル、酸化アルミ
ニウム、モレキュラーシーブスに代表される合成ゼオラ
イト、モルデナイトやエリオナイト等の天然ゼオライ
ト、パーライト、酸性白土や活性白土等の粘土鉱物、多
孔質ガラス、珪酸マグネシウム、珪酸アルミニウム、高
分子吸着剤、活性炭、活性炭素繊維、モレキュラーシー
ビングカーボン、骨炭、酸化カルシウム、酸化バリウ
ム、塩化カルシウム、臭化バリウム、臭化カルシウム、
臭化亜鉛、硫酸カルシウム、塩化マグネシウム、酸化マ
グネシウム、硫酸マグネシウム、硫酸アルミニウム、硫
酸ナトリウム、炭酸ナトリウム、炭酸カリウム、塩化亜
鉛、過塩素酸マグネシウム、過塩素酸バリウム、過塩素
酸リチウム、水酸化ナトリウム、水酸化カリウム等が例
示される。その中でも比較的乾燥能力が高いゼオライト
(天然ゼオライト、合成ゼオライト)、酸化カルシウ
ム、酸化バリウム、塩化カルシウム、塩化マグネシウム
または硫酸カルシウムが好ましい。脱酸素剤としては、
酸素の吸収に水分を必要としないものが好ましく、不飽
和脂肪酸化合物や不飽和基を有する鎖状炭化水素重合物
等の不飽和有機化合物、ポリアミドやポリオレフィン等
の熱可塑性重合物を主剤とし、遷移金属塩等の酸素吸収
促進物質を含む酸素吸収剤が例示されるが、特に不飽和
脂肪酸化合物および/または不飽和基を有する鎖状炭化
水素重合物を主剤とし、酸素吸収促進物質を含む酸素吸
収剤が好ましい。有機ガス吸収剤としては、活性炭、モ
レキュラーシーブス等の合成ゼオライト、モルデナイト
やエリオナイト等の天然ゼオライト等が例示される。
Examples of the dehumidifier include synthetic zeolites typified by silica gel, aluminum oxide and molecular sieves, natural zeolites such as mordenite and erionite, perlite, clay minerals such as acid clay and activated clay, porous glass, magnesium silicate , Aluminum silicate, polymer adsorbent, activated carbon, activated carbon fiber, molecular sieving carbon, bone charcoal, calcium oxide, barium oxide, calcium chloride, barium bromide, calcium bromide,
Zinc bromide, calcium sulfate, magnesium chloride, magnesium oxide, magnesium sulfate, aluminum sulfate, sodium sulfate, sodium carbonate, potassium carbonate, zinc chloride, magnesium perchlorate, barium perchlorate, lithium perchlorate, sodium hydroxide, Potassium hydroxide and the like are exemplified. Among them, zeolite (natural zeolite, synthetic zeolite), calcium oxide, barium oxide, calcium chloride, magnesium chloride or calcium sulfate having a relatively high drying ability is preferable. As the oxygen scavenger,
Those which do not require moisture for oxygen absorption are preferable, and unsaturated organic compounds such as unsaturated fatty acid compounds and chain hydrocarbon polymers having unsaturated groups, and thermoplastic polymers such as polyamides and polyolefins as main components, and Oxygen absorbents containing an oxygen absorption promoting substance such as a metal salt are exemplified, and in particular, an oxygen absorbing substance containing an unsaturated fatty acid compound and / or a chain hydrocarbon polymer having an unsaturated group as a main component and containing an oxygen absorption promoting substance is exemplified. Agents are preferred. Examples of the organic gas absorbent include activated carbon, synthetic zeolites such as molecular sieves, and natural zeolites such as mordenite and erionite.

【0013】本発明の真空断熱材用ゲッタと、脱湿剤、
脱酸素剤、有機ガス吸収剤は、混合して用いても良い
し、別々の状態で分けて用いても良い。これらは適宜、
粉状、粒状、錠剤状、シート状等の形態で用いられる。
また、これらは包装材料で包まずに使用しても差し支え
ないが、取扱いを容易にするため、通常は、通気性の包
装材料で包装された包装体として用いられる。包装体の
形態は特に限定されるものではないが、目的に応じて、
小袋状、シート状、ブリスター包装した形態が選ばれ
る。
[0013] The getter for vacuum heat insulating material of the present invention, a dehumidifier,
The oxygen scavenger and the organic gas absorbent may be used as a mixture, or may be used separately in different states. These are, as appropriate,
It is used in the form of powder, granules, tablets, sheets and the like.
Although they may be used without being wrapped in a packaging material, they are usually used as a package packaged with a breathable packaging material for easy handling. The form of the package is not particularly limited, but depending on the purpose,
A pouch, sheet, or blister-packed form is selected.

【0014】[0014]

【実施例】以下に本発明の具体的な実施例を示し、本発
明をさらに詳細に説明する。なお、本発明は実施例に限
定されるものではない。熱伝導率の測定は英弘精機
(株)製HC−070型熱伝導率計を用いて測定した。
The present invention will be described below in more detail with reference to specific examples of the present invention. The present invention is not limited to the embodiments. The thermal conductivity was measured using an HC-070 type thermal conductivity meter manufactured by Eiko Seiki Co., Ltd.

【0015】実施例1 試薬の酸化カルシウムを炭酸ガス濃度0.1ppm以下
まで窒素置換したグローブボックス中で乳鉢を用い粉砕
し、これを120メッシュと200メッシュの篩を用い
て篩い分けし、平均粒径100μmの酸化カルシウムを
得た。尚、ここでは篩分けした篩の目開きの平均値を平
均粒径とした。この平均粒径100μmの酸化カルシウ
ム5gを微小な通気孔を有する包装袋(PET12μm
/PE30μm、内寸:5cm×5cm、デンソメータ
ー透気度20秒)に充填して熱溶着し、小袋包装体を得
た。この小袋包装体と120℃で2時間乾燥した連続気
泡からなる発泡ポリウレタン(200×200×20t
mm)を、アルミニウム蒸着ポリエチレンテレフタレー
ト/アルミニウム箔/ポリエチレン(12μm /12μ
m /80μm )よりなる真空断熱材用ガスバリア容器に
入れ、これをヒートシール装置を具備した真空包装装置
内において0.01Torrの真空度に排気した状態で、真
空断熱材用ガスバリア容器の開口部をヒートシールして
密封し、200×200×20tmmの真空断熱材を得
た。この真空断熱材を40℃、90%RHの雰囲気に9
0日間放置した後の熱伝導率を測定した結果を表1に示
す。
Example 1 In a glove box in which calcium oxide as a reagent was replaced with nitrogen to a carbon dioxide gas concentration of 0.1 ppm or less using a mortar, pulverized, and sieved using a 120-mesh and a 200-mesh sieve. 100 μm diameter calcium oxide was obtained. Here, the average value of the openings of the sieved screen was defined as the average particle size. 5 g of calcium oxide having an average particle diameter of 100 μm was placed in a packaging bag (PET 12 μm
/ PE 30 μm, inner size: 5 cm × 5 cm, air permeability of densometer 20 seconds) and heat-sealed to obtain a small bag package. Foamed polyurethane (200 × 200 × 20t) consisting of this small bag package and open cells dried at 120 ° C. for 2 hours
mm) was converted to aluminum-deposited polyethylene terephthalate / aluminum foil / polyethylene (12 μm / 12 μm).
m / 80 μm), and in a vacuum packaging apparatus equipped with a heat-sealing apparatus, while evacuating to a vacuum of 0.01 Torr, open the opening of the gas barrier container for vacuum heat insulating material. Heat sealing was carried out to obtain a vacuum heat insulating material of 200 × 200 × 20 tmm. This vacuum insulating material is placed in an atmosphere of 40 ° C. and 90% RH for 9 hours.
Table 1 shows the results of measuring the thermal conductivity after leaving for 0 days.

【0016】実施例2 試薬の酸化バリウムを実施例1と同様に粉砕し平均粒径
100μmの酸化バリウムを得た。実施例1の平均粒径
100μmの酸化カルシウム5gの代わりに、この平均
粒径100μmの酸化バリウム5gを用いて、実施例1
と全く同様にして小袋包装体を作製し、さらにそれを用
いて真空断熱材を作製し、実施例1と同様の測定を行っ
た。この結果を表1に示す。
Example 2 Barium oxide as a reagent was ground in the same manner as in Example 1 to obtain barium oxide having an average particle diameter of 100 μm. Example 1 was replaced with 5 g of barium oxide having an average particle size of 100 μm in place of 5 g of calcium oxide having an average particle size of 100 μm.
In the same manner as in Example 1, a small bag package was produced, and further, a vacuum heat insulating material was produced using the same, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0017】実施例3 実施例1の平均粒径100μmの酸化カルシウム5gの
代わりに、この平均粒径100μmの酸化カルシウム4
gと試薬の水酸化カルシウムを実施例1と同様に粉砕し
た平均粒径100μmの水酸化カルシウム1gを混合し
て用いて、実施例1と全く同様にして小袋包装体を作製
し、さらにそれを用いて真空断熱材を作製し、実施例1
と同様の測定を行った。この結果を表1に示す。
Example 3 In place of 5 g of calcium oxide having an average particle diameter of 100 μm in Example 1, calcium oxide 4 having an average particle diameter of 100 μm was used.
g and calcium hydroxide as a reagent were pulverized in the same manner as in Example 1, and 1 g of calcium hydroxide having an average particle diameter of 100 μm was mixed and used. Example 1 was prepared by using a vacuum heat insulating material.
The same measurement was performed. Table 1 shows the results.

【0018】実施例4 酸素の吸収に水分を必要としない酸素吸収剤の主剤とし
て大豆油3重量部、酸素吸収促進物質としてナフテン酸
コバルト0.06重量部の混合物にモレキュラーシーブ
ス13Xを10重量部加えブレンダーで混合後25℃で
10分間静置し、流動性のある粉粒体を得た。この酸素
吸収剤粉粒体Aを2gと平均粒径100μmの酸化カル
シウム5gを混合した後、微小な通気孔を有する包装袋
(PET12μm/PE30μm、内寸:5cm×5c
m、デンソメーター透気度20秒)に充填して熱溶着
し、小袋包装体を得た。実施例1の小袋包装体の代わり
にこの小袋包装体を用いて実施例1と同様に真空断熱材
を作製し、実施例1と同様の測定を行った。この結果を
表1に示す。
EXAMPLE 4 10 parts by weight of molecular sieves 13X in a mixture of 3 parts by weight of soybean oil as a main component of an oxygen absorbent that does not require moisture for oxygen absorption and 0.06 parts by weight of cobalt naphthenate as an oxygen absorption promoting substance In addition, after mixing with a blender, the mixture was allowed to stand at 25 ° C. for 10 minutes to obtain a fluid granular material. After mixing 2 g of the oxygen absorbent powder A with 5 g of calcium oxide having an average particle size of 100 μm, a packaging bag having fine vents (PET 12 μm / PE 30 μm, inner size: 5 cm × 5 c)
m, densometer air permeability: 20 seconds) and heat-sealed to obtain a small bag package. Using this small bag package instead of the small bag package of Example 1, a vacuum heat insulating material was produced in the same manner as in Example 1, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0019】実施例5 (株)三喜製作所製ボールミル(HM型)を用い、顆粒
状酸化カルシウム50kgを入れ、窒素流通により炭酸
ガス濃度を0.1ppm以下まで低下させた後に、平均
粒径100μmまで粉砕を行った。実施例1の平均粒径
100μmの酸化カルシウム5gの代わりに、ここで粉
砕した酸化カルシウム5gを用いて、実施例1と全く同
様にして小袋包装袋を作製し、さらにそれを用いて真空
断熱材を作製し、実施例1と同様な測定を行った。この
結果を表1に示す。
Example 5 Using a ball mill (HM type) manufactured by Miki Seisakusho Co., Ltd., 50 kg of granular calcium oxide was charged, and the concentration of carbon dioxide was reduced to 0.1 ppm or less by flowing nitrogen, and then the average particle diameter was reduced to 100 μm. Grinding was performed. Instead of 5 g of calcium oxide having an average particle diameter of 100 μm in Example 1, 5 g of the pulverized calcium oxide was used to prepare a small bag packaging bag in exactly the same manner as in Example 1, and further used for vacuum insulation. And the same measurement as in Example 1 was performed. Table 1 shows the results.

【0020】比較例1 実施例1の平均粒径100μmの酸化カルシウム5gを
用いなかった他は実施例1と全く同様にして小袋包装体
を作製し、さらにそれを用いて真空断熱材を作製し、実
施例1と同様の測定を行った。この結果を表1に示す。
Comparative Example 1 A small bag package was produced in the same manner as in Example 1 except that 5 g of calcium oxide having an average particle diameter of 100 μm was not used, and a vacuum heat insulating material was produced using the same. The same measurement as in Example 1 was performed. Table 1 shows the results.

【0021】比較例2 実施例1の平均粒径100μmの酸化カルシウム5gを
20メッシュと40メッシュで篩い分けした平均粒径6
00μmの酸化カルシウムに替えた他は実施例1と全く
同様にして小袋包装体を作製し、さらにそれを用いて真
空断熱材を作製し、実施例1と同様の測定を行った。こ
の結果を表1に示す。
Comparative Example 2 5 g of calcium oxide having an average particle size of 100 μm of Example 1 was sieved through 20 mesh and 40 mesh to obtain an average particle size of 6 μm.
A small bag package was produced exactly in the same manner as in Example 1 except that calcium oxide of 00 μm was used, and a vacuum heat insulating material was produced using the same, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0022】比較例3 実施例1の平均粒径100μmの酸化カルシウム5gを
20メッシュと40メッシュで篩い分けした平均粒径6
00μmの水酸化カルシウム5gに替えた他は実施例1
と全く同様にして小袋包装体を作製し、さらにそれを用
いて真空断熱材を作製し、実施例1と同様の測定を行っ
た。この結果を表1に示す。
Comparative Example 3 5 g of calcium oxide having an average particle diameter of 100 μm of Example 1 was sieved through 20 mesh and 40 mesh, and the average particle diameter was 6
Example 1 except that 5 g of 00 μm calcium hydroxide was used.
In the same manner as in Example 1, a small bag package was produced, and further, a vacuum heat insulating material was produced using the same, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0023】比較例4 実施例1の平均粒径100μmの酸化カルシウム5gを
試薬のモレキュラーシーブス13X、5gに替えた他は
実施例1と全く同様にして小袋包装体を作製し、さらに
それを用いて真空断熱材を作製し、実施例1と同様の測
定を行った。この結果を表1に示す。
Comparative Example 4 A small bag package was prepared in exactly the same manner as in Example 1 except that 5 g of calcium oxide having an average particle diameter of 100 μm in Example 1 was replaced with molecular sieves 13X and 5 g as reagents. To produce a vacuum heat insulating material, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0024】比較例5 実施例1の酸化カルシウムの粉砕をグローブボックス中
で粉砕する代わりに大気中で粉砕を行った他は実施例1
と全く同様にして小袋包装袋を作製し、さらにそれを用
いて真空断熱材を作製し、実施例1と同様な測定を行っ
た。この結果を表1に示す。
Comparative Example 5 Example 1 was repeated except that the pulverization of calcium oxide in Example 1 was performed in the air instead of pulverization in a glove box.
In the same manner as in Example 1, a small bag packaging bag was produced, and further, a vacuum heat insulating material was produced therefrom, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0025】実施例6 比較例5で作製した平均粒径100μmの酸化カルシウ
ムを電気炉を用いて1000℃で加熱し、その後窒素気
流下室温まで放冷した。この焼成した平均粒径100μ
mの酸化カルシウム5gを用いて、実施例1と全く同様
にして小袋包装袋を作製し、さらにそれを用いて真空断
熱材を作製し、実施例1と同様な測定を行った。この結
果を表1に示す。
Example 6 Calcium oxide having an average particle size of 100 μm produced in Comparative Example 5 was heated at 1000 ° C. in an electric furnace, and then allowed to cool to room temperature under a nitrogen stream. This fired average particle size of 100μ
A small pouch packaging bag was produced in exactly the same manner as in Example 1 using 5 g of calcium oxide m, and a vacuum heat insulating material was produced using the same, and the same measurement as in Example 1 was performed. Table 1 shows the results.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【発明の効果】本発明では、真空断熱材用ゲッタとして
低二酸化炭素濃度雰囲気で平均粒径150μm以下に粉
砕若しくは、粒径150μm以下に粉砕後、炭酸塩が分
解する温度以上で焼成し、低二酸化炭素濃度雰囲気で冷
却して製造した、アルカリ金属の水酸化物並びにアルカ
リ土類金属の酸化物および水酸化物を使用することによ
り、真空度を低下させる主原因である炭酸ガスを効率よ
く吸収し、これにより真空断熱材の長期間にわたる低圧
維持が可能となり、その実用的効果は極めて大きい。
According to the present invention, the getter for vacuum heat insulating material is pulverized to an average particle size of 150 μm or less in a low carbon dioxide concentration atmosphere or pulverized to a particle size of 150 μm or less, and then fired at a temperature or higher at which carbonates are decomposed. By using alkali metal hydroxide and alkaline earth metal oxide and hydroxide, which are manufactured by cooling in a carbon dioxide concentration atmosphere, carbon dioxide gas, which is the main cause of lowering the degree of vacuum, is efficiently absorbed. However, this makes it possible to maintain the vacuum insulating material at a low pressure for a long period of time, and its practical effect is extremely large.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 気密容器内にウレタンフォームのコア材
を挿入し内部を高真空にした後封止する真空断熱材に入
れるゲッタが、平均粒径150μm以下であるアルカリ
土類金属の酸化物、アルカリ土類金属の水酸化物の中の
いずれか1種以上であることを特徴とする真空断熱材用
ゲッタ。
1. A getter for inserting a urethane foam core material into an airtight container, applying a high vacuum to the inside, and then placing the getter in a vacuum heat insulating material for sealing, comprising: an oxide of an alkaline earth metal having an average particle size of 150 μm or less; A getter for a vacuum heat insulating material, wherein the getter is any one or more of hydroxides of alkaline earth metals.
【請求項2】 真空断熱材に入れるゲッタが、酸化カル
シウム、水酸化カルシウム、酸化バリウムの中のいずれ
か1種以上であることを特徴とする請求項1記載の真空
断熱材用ゲッタ。
2. The getter for a vacuum heat insulating material according to claim 1, wherein the getter to be put into the vacuum heat insulating material is at least one of calcium oxide, calcium hydroxide and barium oxide.
【請求項3】 アルカリ土類金属の酸化物またはアルカ
リ土類金属の水酸化物を低炭酸ガス濃度雰囲気中で粉砕
することを特徴とする請求項1または請求項2に記載の
真空断熱材用ゲッタの製造方法。
3. The vacuum heat insulating material according to claim 1, wherein the alkaline earth metal oxide or the alkaline earth metal hydroxide is crushed in an atmosphere having a low carbon dioxide gas concentration. Getter manufacturing method.
【請求項4】 アルカリ土類金属の酸化物またはアルカ
リ土類金属の水酸化物を予め粉砕した後に、表面層に存
在する炭酸塩を除去または酸化物、水酸化物へと化学変
化させることを特徴とする請求項1又は請求項2に記載
の真空断熱材用ゲッタの製造方法。
4. The method according to claim 1, wherein after the alkaline earth metal oxide or the alkaline earth metal hydroxide is crushed in advance, the carbonate present in the surface layer is removed or chemically changed to an oxide or a hydroxide. The method for manufacturing a getter for a vacuum heat insulating material according to claim 1 or 2, wherein
JP9271455A 1997-10-03 1997-10-03 Getter for vacuum heat insulator and its manufacture Pending JPH11106539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9271455A JPH11106539A (en) 1997-10-03 1997-10-03 Getter for vacuum heat insulator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9271455A JPH11106539A (en) 1997-10-03 1997-10-03 Getter for vacuum heat insulator and its manufacture

Publications (1)

Publication Number Publication Date
JPH11106539A true JPH11106539A (en) 1999-04-20

Family

ID=17500280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9271455A Pending JPH11106539A (en) 1997-10-03 1997-10-03 Getter for vacuum heat insulator and its manufacture

Country Status (1)

Country Link
JP (1) JPH11106539A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242006A (en) * 2007-03-27 2008-10-09 Konica Minolta Business Technologies Inc Image forming apparatus
JP2015098907A (en) * 2013-11-19 2015-05-28 旭ファイバーグラス株式会社 Vacuum heat insulation material
WO2016103679A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
JP2018194016A (en) * 2017-05-12 2018-12-06 東芝ホームテクノ株式会社 Vacuum heat insulation material, manufacturing method of the same, and heat insulation storage including the same
WO2019021359A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and method for manufacturing vacuum heat insulation material

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165996A (en) * 1984-09-07 1986-04-04 シャープ株式会社 Vacuum heat-insulating structure
JPH0753769A (en) * 1993-08-10 1995-02-28 Matsushita Electric Ind Co Ltd Foamed thermal insulator and its production
JPH07286694A (en) * 1993-12-22 1995-10-31 General Electric Co <Ge> Preparation of insulating material and insulating form
JPH08105687A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Vacuum insulating material
JPH08291965A (en) * 1995-04-20 1996-11-05 Hitachi Ltd Vacuum thermal insulating material
JPH08338683A (en) * 1995-04-14 1996-12-24 Mitsubishi Gas Chem Co Inc Vacuum insulation material
JPH0947652A (en) * 1995-08-07 1997-02-18 Saes Getters Spa Combination of getter substance and apparatus for receiving the same
JPH09118731A (en) * 1995-06-19 1997-05-06 General Electric Co <Ge> Heat insulating foam with low thermal conductivity and production thereof
WO1997019894A1 (en) * 1995-11-27 1997-06-05 Saes Getters S.P.A. Process for producing calcium oxide, strontium oxide and barium oxide showing a high value of water sorption speed and oxides thus obtained
JPH09262463A (en) * 1996-01-23 1997-10-07 Mitsubishi Gas Chem Co Inc Vacuum getter and its production
JPH10318487A (en) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc Getter for vacuum insulating material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165996A (en) * 1984-09-07 1986-04-04 シャープ株式会社 Vacuum heat-insulating structure
JPH0753769A (en) * 1993-08-10 1995-02-28 Matsushita Electric Ind Co Ltd Foamed thermal insulator and its production
JPH07286694A (en) * 1993-12-22 1995-10-31 General Electric Co <Ge> Preparation of insulating material and insulating form
JPH08105687A (en) * 1994-10-05 1996-04-23 Hitachi Ltd Vacuum insulating material
JPH08338683A (en) * 1995-04-14 1996-12-24 Mitsubishi Gas Chem Co Inc Vacuum insulation material
JPH08291965A (en) * 1995-04-20 1996-11-05 Hitachi Ltd Vacuum thermal insulating material
JPH09118731A (en) * 1995-06-19 1997-05-06 General Electric Co <Ge> Heat insulating foam with low thermal conductivity and production thereof
JPH0947652A (en) * 1995-08-07 1997-02-18 Saes Getters Spa Combination of getter substance and apparatus for receiving the same
WO1997019894A1 (en) * 1995-11-27 1997-06-05 Saes Getters S.P.A. Process for producing calcium oxide, strontium oxide and barium oxide showing a high value of water sorption speed and oxides thus obtained
JPH09262463A (en) * 1996-01-23 1997-10-07 Mitsubishi Gas Chem Co Inc Vacuum getter and its production
JPH10318487A (en) * 1997-05-16 1998-12-04 Mitsubishi Gas Chem Co Inc Getter for vacuum insulating material

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008242006A (en) * 2007-03-27 2008-10-09 Konica Minolta Business Technologies Inc Image forming apparatus
JP2015098907A (en) * 2013-11-19 2015-05-28 旭ファイバーグラス株式会社 Vacuum heat insulation material
WO2016103679A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
CN106661882A (en) * 2014-12-26 2017-05-10 松下知识产权经营株式会社 Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
JPWO2016103679A1 (en) * 2014-12-26 2017-10-05 パナソニックIpマネジメント株式会社 Residential wall with vacuum insulation and vacuum insulation
US10246872B2 (en) 2014-12-26 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
JP2018194016A (en) * 2017-05-12 2018-12-06 東芝ホームテクノ株式会社 Vacuum heat insulation material, manufacturing method of the same, and heat insulation storage including the same
WO2019021359A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Vacuum heat insulation material, heat insulation box, and method for manufacturing vacuum heat insulation material
JPWO2019021359A1 (en) * 2017-07-25 2020-02-06 三菱電機株式会社 Vacuum insulation material, insulation box, and method of manufacturing vacuum insulation material
CN110892187A (en) * 2017-07-25 2020-03-17 三菱电机株式会社 Vacuum heat insulator, heat insulating box, and method for manufacturing vacuum heat insulator
CN110892187B (en) * 2017-07-25 2021-08-27 三菱电机株式会社 Vacuum heat insulator, heat insulating box, and method for manufacturing vacuum heat insulator

Similar Documents

Publication Publication Date Title
JP3171259B2 (en) Oxygen absorber
KR101874671B1 (en) Getter devices containing a combination of getter materials
JP3182083B2 (en) A getter material combination, a getter device, and a thermally insulating jacket containing the getter material combination
EP0036575B1 (en) A method for storing roasted coffee or beans
EP1550506A1 (en) Oxygen scavenger composition
EP0737833B1 (en) Vacuum heat insulator
JPH11106539A (en) Getter for vacuum heat insulator and its manufacture
KR101455902B1 (en) Gatter having nano porous material and manufacturing method thereof
JP2006043604A (en) Gas adsorption material and heat-insulation body
JP4453797B2 (en) Oxygen absorber composition
JP2007239904A (en) Information apparatus
EP0261673B1 (en) Cooling method
JP2010259967A (en) Device for adsorbing gas
JPH057773A (en) Deoxidizing agent
JP3580334B2 (en) Vacuum insulation
JPH10318487A (en) Getter for vacuum insulating material
JPH09262463A (en) Vacuum getter and its production
JPH09267873A (en) Vacuum heat insulating material
JPS6218217B2 (en)
JP3788057B2 (en) Deoxygenated resin composition, deoxygenated packaging material, and dry oxygen storage method using these
JPH09262462A (en) Vacuum getter and its production
JP7238913B2 (en) Oxygen absorber, method for producing oxygen absorber, oxygen absorber package, and food package
JPS58128145A (en) Oxygen absorbing agent
CA2257555A1 (en) Sorbent for vacuum insulation units
JP2018043216A (en) Deoxidant, manufacturing method of deoxidant, deoxidant package and food package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061115