JPWO2018235512A1 - Fiber reinforced plastic - Google Patents

Fiber reinforced plastic Download PDF

Info

Publication number
JPWO2018235512A1
JPWO2018235512A1 JP2018534982A JP2018534982A JPWO2018235512A1 JP WO2018235512 A1 JPWO2018235512 A1 JP WO2018235512A1 JP 2018534982 A JP2018534982 A JP 2018534982A JP 2018534982 A JP2018534982 A JP 2018534982A JP WO2018235512 A1 JPWO2018235512 A1 JP WO2018235512A1
Authority
JP
Japan
Prior art keywords
fiber
reinforced plastic
population
fibers
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018534982A
Other languages
Japanese (ja)
Other versions
JP7099318B2 (en
Inventor
藤田 雄三
雄三 藤田
足立 健太郎
健太郎 足立
唐木 琢也
琢也 唐木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018235512A1 publication Critical patent/JPWO2018235512A1/en
Application granted granted Critical
Publication of JP7099318B2 publication Critical patent/JP7099318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/20Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs

Abstract

複雑形状を有しながらも、繊維含有率の高い繊維強化プラスチックを提供するため、本発明は、繊維及び樹脂を含む繊維強化プラスチックであって、前記繊維の平均長さが5〜50mmであり、局所領域における繊維体積含有率(以下、かかる繊維体積含有率をVfという)に関する母集団を得た際に、の平均値が40〜65%、母集団の変動係数が0.15〜0.4であって、前記母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級をピーク値とすると、ピーク値を複数有する繊維強化プラスチックであることを要旨とする。(Vfに関する母集団)繊維強化プラスチックの断面画像から、直径100μmの局所領域を抽出した際に、局所領域内に含まれる繊維の合計の面積を局所領域の面積で除し、100を乗じた値をVfとする。複数の局所領域を抽出して、各局所領域におけるVfの集合体を母集団とする。【選択図】図1In order to provide a fiber-reinforced plastic having a high fiber content while having a complicated shape, the present invention is a fiber-reinforced plastic containing fibers and a resin, wherein the fibers have an average length of 5 to 50 mm, When a population related to the fiber volume content in the local region (hereinafter, such fiber volume content is referred to as Vf) is obtained, the average value of is 40 to 65%, and the coefficient of variation of the population is 0.15 to 0.4. It is to be noted that, when the population is made into a histogram with a class number of 10 and a class having a frequency greater than the frequencies of adjacent classes on the left and right is set as a peak value, a fiber reinforced plastic having a plurality of peak values is used. Use as a summary. (Vf population) A value obtained by dividing the total area of the fibers contained in the local area by the area of the local area when a local area having a diameter of 100 μm was extracted from the cross-sectional image of the fiber-reinforced plastic and multiplying by 100. Is Vf. A plurality of local regions are extracted, and a set of Vf in each local region is used as a population. [Selection diagram] Figure 1

Description

本発明は、複雑形状を有しながらも繊維含有率を高い繊維強化プラスチックに関する。   The present invention relates to a fiber reinforced plastic having a high fiber content while having a complicated shape.

繊維と樹脂とからなる繊維強化プラスチックは、比強度、比弾性率が高く、力学特性に優れること、耐候性、耐薬品性などの高機能特性を有することなどから産業用途においても注目され、航空機、宇宙機、自動車、鉄道、船舶、電化製品、スポーツ等の構造用途に展開され、その需要は年々高まりつつある。   Fiber-reinforced plastics, which consist of fibers and resins, have attracted attention in industrial applications because of their high specific strength and specific elastic modulus, excellent mechanical properties, and high functional properties such as weather resistance and chemical resistance. , Spacecraft, automobiles, railroads, ships, electrical appliances, sports, etc., and the demand is increasing year by year.

繊維強化プラスチックを製造するための中間基材のひとつに、予め密に一方向に配向した繊維に樹脂を含浸させたプリプレグが挙げられる。プリプレグは高い繊維含有率を有するため、繊維強化プラスチックにした際に高い力学特性を発現するが、繊維の配向方向には伸張しないため、複雑形状へは追従しにくく、生産性が課題となっている。そこで、特許文献1、2に代表されるような、プリプレグに切込を挿入した切込プリプレグが開発されている。   One of the intermediate base materials for producing a fiber reinforced plastic is a prepreg obtained by impregnating fibers in a densely unidirectionally oriented fiber with a resin. Since prepreg has a high fiber content, it exhibits high mechanical properties when made into fiber-reinforced plastic, but it does not stretch in the fiber orientation direction, so it is difficult to follow complex shapes, and productivity becomes an issue. There is. Then, the notch prepreg represented by patent documents 1 and 2 which inserted the notch in the prepreg is developed.

切込プリプレグは繊維方向への伸張を可能としているため、プリプレグよりも複雑形状への追従性が向上しており、高い繊維含有率と繊維の配向性を保った繊維強化プラスチックを製造可能である。   Since the notched prepreg is capable of stretching in the fiber direction, it has better followability to complex shapes than the prepreg, and it is possible to manufacture fiber reinforced plastics that maintain a high fiber content and fiber orientation. .

特開2007−261141号公報JP, 2007-261141, A 特開2008−207544号公報JP, 2008-207544, A

しかしながら、切込プリプレグを用いて成形した繊維強化プラスチックは、比較的厚みの薄いプリプレグがベースとなり、同程度の厚さの層による積層構造を有するため、比較的肉厚の部分である厚肉変化部の少ないものとなる。   However, the fiber-reinforced plastic molded using the notch prepreg is based on a relatively thin prepreg and has a laminated structure with layers of approximately the same thickness. The number of parts will be small.

そこで、本発明の課題は、厚肉変化部等の複雑形状を有しながらも、繊維含有率の高い繊維強化プラスチックを提供することにある。   Therefore, an object of the present invention is to provide a fiber reinforced plastic having a high fiber content while having a complicated shape such as a thick wall change portion.

かかる課題を解決し、複雑形状を有しながらも繊維体積含有率の高い繊維強化プラスチックとして、本発明では以下の繊維強化プラスチックを提供する。すなわち、繊維及び樹脂を含む繊維強化プラスチックであって、前記繊維の平均長さが5〜50mmであり、局所領域における繊維体積含有率(以下、かかる繊維体積含有率をVfという)に関する母集団を得た際に、母集団の平均値が40〜65%、母集団の変動係数が0.15〜0.4であって、前記母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級をピーク値とすると、ピーク値を複数有する繊維強化プラスチックである。   The present invention provides the following fiber-reinforced plastic as a fiber-reinforced plastic having a complicated shape and a high fiber volume content in order to solve such problems. That is, a fiber reinforced plastic containing fibers and a resin, wherein the average length of the fibers is 5 to 50 mm, and a population related to the fiber volume content rate in the local region (hereinafter, such fiber volume content rate is referred to as Vf) is shown. When the population is obtained, the average value of the population is 40 to 65%, the coefficient of variation of the population is 0.15 to 0.4, and when the population is made into a histogram of rank 10, it is adjacent to the left and right. A fiber reinforced plastic having a plurality of peak values, where the peak value is a class having a frequency higher than that of the class.

ここで、Vfに関する母集団は、以下のようにして得られる。   Here, the population related to Vf is obtained as follows.

繊維強化プラスチックの断面画像から、直径100μmに相当する局所領域を抽出した際に、局所領域内に含まれる繊維リッチのピクセルの合計の面積を局所領域に含まれるピクセルの合計の面積で除し、100を乗じた値をVfとする。複数の上記局所領域を抽出して、各局所領域において求められたVfの集合を母集団とする。   When a local region corresponding to a diameter of 100 μm is extracted from the cross-sectional image of the fiber-reinforced plastic, the total area of the fiber-rich pixels included in the local region is divided by the total area of the pixels included in the local region, The value obtained by multiplying by 100 is Vf. A plurality of the above-mentioned local areas are extracted, and a set of Vf obtained in each local area is used as a population.

本発明によると、複雑形状を有しながらも、繊維体積含有率の高い繊維強化プラスチックを提供でき、補強効果の高い繊維強化プラスチックを得ることができる。   According to the present invention, it is possible to provide a fiber-reinforced plastic having a high fiber volume content even though it has a complicated shape, and a fiber-reinforced plastic having a high reinforcing effect can be obtained.

繊維強化プラスチックの断面の概念図及びその一部を切り出し、二値化されたデジタル画像の概念図である。It is a conceptual diagram of the cross section of fiber reinforced plastic, and the conceptual diagram of the digital image binarized by cutting out a part thereof. 母集団をヒストグラムにした一例である。It is an example of a histogram of the population. 母集団をヒストグラムにした一例である。It is an example of a histogram of the population. 繊維強化プラスチックの断面におけるVf分布の一例である。It is an example of Vf distribution in the cross section of fiber reinforced plastic. 繊維強化プラスチックの断面の概念図の一例である。It is an example of a conceptual diagram of a cross section of a fiber-reinforced plastic. 実施例で成形した繊維強化プラスチックの寸法・形状である。It is the size and shape of the fiber-reinforced plastic molded in the examples.

本発明は、厚肉変化部を有しながらも高い繊維体積含有率を有する繊維強化プラスチックを提供するために、鋭意検討し、繊維及び樹脂を含む繊維強化プラスチックであって、前記繊維の平均長さが5〜50mmであり、局所領域における繊維体積含有率に関する母集団を得た際に、母集団の平均値が40〜65%、母集団の変動係数が0.15〜0.4であって、前記母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級をピーク値とすると、ピーク値を複数有する、繊維強化プラスチック、とすることでかかる課題を解決したものである。   In order to provide a fiber-reinforced plastic having a high fiber volume content while having a thick-walled change portion, the present invention is a fiber-reinforced plastic containing fibers and a resin, wherein the average length of the fiber is The average value of the population is 40 to 65%, and the coefficient of variation of the population is 0.15 to 0.4 when the population related to the fiber volume content in the local region is obtained. Then, when the population is made into a histogram with a class number of 10, and a class having a frequency greater than the frequencies of the classes adjacent to each other on the left and right is taken as a peak value, a fiber-reinforced plastic having a plurality of peak values is obtained. This problem is solved.

本発明において、局所領域におけるVfに関する母集団を得た際に、母集団の変動係数が0.15以上の場合に、繊維強化プラスチックの内部のVfのばらつきが大きいということができる。   In the present invention, when the population related to Vf in the local region is obtained, it can be said that the variation in Vf inside the fiber-reinforced plastic is large when the coefficient of variation of the population is 0.15 or more.

ここで、Vfに関する母集団は、繊維強化プラスチックの断面画像から、直径100μmに相当する局所領域を抽出した際に、局所領域内に含まれる繊維リッチのピクセルの合計の面積を局所領域に含まれるピクセルの合計の面積で除し、100を乗じた値をVfとして、そして複数の上記局所領域を抽出して、各局所領域において求めたVfの集合を母集団とする。   Here, the population related to Vf includes the total area of the fiber-rich pixels included in the local region when the local region corresponding to the diameter of 100 μm is extracted from the cross-sectional image of the fiber-reinforced plastic. A value obtained by dividing by the total area of pixels and multiplying by 100 is set as Vf, and a plurality of the above local regions are extracted, and a set of Vf obtained in each local region is set as a population.

より具体的には、まず、繊維強化プラスチックの断面画像を撮像し、該撮像画像の中から局所領域とする部分の設定を行う。取得する断面については、本発明が肉厚部の力学特性の維持が目的であるため、繊維強化プラスチック中の最厚部で取得する。撮像画像のサイズについては、繊維強化プラスチックの厚さ方向(縦方向)において上面、下面をともに含み、かつ繊維強化プラスチックの面内方向(幅方向)に2mmの幅で取得する。撮像画像は、必ずしも一度の撮影で取得した画像である必要はなく、複数の画像を連結することで、一枚の大きな断面画像としてもよい。また、本発明において、局所領域は直径100μmの円形の領域として設定される。局所領域は、撮像画像をまず繊維強化プラスチックにおけるサイズとして0.1μm〜3.0μm四方となるピクセルに区画し、各々のピクセルについて該ピクセルの重心を中心とした繊維強化プラスチックにおけるサイズとして直径100μmとなる円で囲まれた部分がそのピクセルを中心とした局所領域となる。すなわち、区画されたピクセルの数だけ局所領域は設定される。なお、撮像画像の辺部においては円として局所領域を設定できないが、Vfを求めるにあたって影響するものではなく、また、ピクセルの大きさと局所領域の大きさの関係から理解されるように局所領域は重なって設定される。1ピクセルのサイズは前記のとおり0.1μm〜3.0μm四方の間で任意に設定可能であるが、1ピクセルのサイズが大きすぎると正確なVfを測定することが困難となるため、3.0μm以下とする。1ピクセルのサイズが小さすぎると計算時間が大きくなるため、1ピクセルのサイズは0.1μmよりも大きい。用いる繊維の直径にも拠るが通常用いられるような繊維であれば通常は2.0μm四方とすることが選択される。そのため、撮像倍率については、上記のようにピクセルサイズが繊維強化プラスチックにおける0.1μm〜3μmに相当させることができるよう、十分大きくとる必要がある。ピクセルサイズの設定方法としては、特に限定はなく、予め撮像装置の解像度から所望のピクセルサイズを満たす撮像倍率を計算し断面画像を取得しても良いし、十分大きな倍率で断面画像を取得した後、画像処理によりピクセルサイズを設定しても良い。また、各ピクセルにおいては、画像処理によって、繊維リッチのピクセルと樹脂リッチのピクセルとを分けるために二値化処理を行う。あるピクセルについて繊維が観察される部分がそのピクセルの面積の半分以上を占めるときそのピクセルは繊維リッチのピクセルとされる。こうして撮像画像は繊維リッチのピクセルと樹脂リッチのピクセルとが集合した画像となる。なお、二値化にあたっての閾値は用いる樹脂と繊維の材料によって選択されるが、樹脂の部分のコントラストと繊維の部分のコントラストの差(色度差、明度差または彩度差)は通常明確なので、これらが分けられるよう設定すれば良い(例えば、中間値を用いる)。撮像条件を変えることでコントラスト差を強調することも可能である。   More specifically, first, a cross-sectional image of the fiber-reinforced plastic is captured, and a portion to be a local region is set from the captured image. Regarding the cross section to be obtained, the purpose of the present invention is to maintain the mechanical characteristics of the thick portion, so the cross section is obtained at the thickest portion in the fiber reinforced plastic. The size of the captured image includes both the upper surface and the lower surface in the thickness direction (longitudinal direction) of the fiber reinforced plastic, and is acquired with a width of 2 mm in the in-plane direction (width direction) of the fiber reinforced plastic. The picked-up image does not necessarily have to be an image acquired by a single shooting, and a plurality of images may be combined to form one large cross-sectional image. Further, in the present invention, the local area is set as a circular area having a diameter of 100 μm. In the local area, the captured image is first divided into pixels each having a size of 0.1 μm to 3.0 μm in the fiber reinforced plastic, and each pixel has a diameter of 100 μm as a size in the fiber reinforced plastic centered on the center of gravity of the pixel. The area surrounded by the circle is the local area centered on that pixel. That is, the local area is set by the number of partitioned pixels. Note that the local area cannot be set as a circle on the side of the captured image, but this does not affect the calculation of Vf, and as can be understood from the relationship between the pixel size and the local area size, the local area is It is set overlapping. The size of one pixel can be arbitrarily set within the range of 0.1 μm to 3.0 μm square as described above, but if the size of one pixel is too large, it becomes difficult to accurately measure Vf. It is set to 0 μm or less. If the size of 1 pixel is too small, the calculation time becomes long, and therefore the size of 1 pixel is larger than 0.1 μm. Depending on the diameter of the fiber used, if it is a fiber that is normally used, it is usually selected to be 2.0 μm square. Therefore, the imaging magnification needs to be sufficiently large so that the pixel size can be made to correspond to 0.1 μm to 3 μm in the fiber reinforced plastic as described above. The method for setting the pixel size is not particularly limited, and the cross-sectional image may be acquired by previously calculating the imaging magnification that satisfies the desired pixel size from the resolution of the imaging device, or after acquiring the cross-sectional image with a sufficiently large magnification. The pixel size may be set by image processing. Further, for each pixel, a binarization process is performed in order to separate a fiber-rich pixel and a resin-rich pixel by image processing. A pixel is considered to be a fiber-rich pixel when the area in which the fiber is observed for that pixel occupies more than half the area of that pixel. In this way, the captured image becomes an image in which fiber-rich pixels and resin-rich pixels are aggregated. The threshold for binarization is selected depending on the resin and fiber materials used, but the difference between the resin part contrast and the fiber part contrast (chromaticity difference, lightness difference or saturation difference) is usually clear. , These may be set to be divided (for example, an intermediate value is used). It is also possible to emphasize the contrast difference by changing the imaging condition.

図1は本発明の繊維強化プラスチックの断面の概念図であり、樹脂2の内に繊維1が複数存在している様子を示している。図1の(a)は図1から切り出した部分で、二値化されたデジタル画像の概念図である。デジタル画像は複数のピクセル3で構成されており、局所領域4はあるピクセルを円の中心とした円形領域である。あるピクセルが局所領域に含まれるかは、円の外周線の一部でもそのピクセルにかかっていれば局所領域に含まれるとする。   FIG. 1 is a conceptual view of a cross section of the fiber-reinforced plastic of the present invention, showing a state in which a plurality of fibers 1 are present in a resin 2. FIG. 1A is a conceptual diagram of a binarized digital image, which is a portion cut out from FIG. 1. The digital image is composed of a plurality of pixels 3, and the local area 4 is a circular area having a certain pixel at the center of a circle. Whether a certain pixel is included in the local region is included in the local region if even a part of the outer peripheral line of the circle covers the pixel.

局所領域におけるVfは、その局所領域内に含まれるとされたピクセルの総数を分母に繊維リッチであるピクセルの数を分子として100分率にて計算される。ただし、局所領域を求めるための円の外周が断面画像からはみ出る場合は、はみ出た領域はカウントせず、断面画像内にある領域のみで計算する。   The Vf in the local area is calculated at a 100-percentage ratio with the total number of pixels included in the local area as the denominator and the number of pixels that are fiber-rich as the numerator. However, when the outer circumference of the circle for obtaining the local area extends from the cross-sectional image, the area that extends is not counted, and only the area within the cross-sectional image is calculated.

こうして、各局所領域についてVfを求めると、ピクセルの数だけVfが求まることになる。本発明では、かかるVfのデータ群を「母集団」と称して取り扱う。   Thus, when Vf is obtained for each local area, Vf is obtained by the number of pixels. In the present invention, such a Vf data group is referred to as a “population”.

本発明における繊維強化プラスチックは、高いVfとするために、母集団の平均値は40〜65%である。母集団の平均値が40〜65%であることで、高い力学特性を維持することができる。また、繊維強化プラスチック中のVfのばらつき、すなわち変動係数、を大きくすることで、成形時に自在に流動可能である低いVfの箇所を含みつつ、さらに高いVfの箇所を有して、結果として厚肉部を滑らかに形状追従させつつ高い力学特性を有する繊維強化プラスチックとすることができる。つまり本発明において、母集団の平均値は40〜65%であるが、繊維強化プラスチックの断面において全ての局所領域を40〜65%程度に制御する態様よりも、高いVfを有する箇所と低いVfを有する箇所の両方を存在させて、変動係数を一定の範囲としつつ、母集団の平均値を40〜65%とすることにより本発明の目的は達成できるのである。母集団の変動係数が0.15以上であれば、繊維及び樹脂を良好に流動させるための低いVfの体積が十分確保できる。一方で、力学特性または生産性から見た母集団の変動係数としては0.4が最大である。すなわち、本発明において、母集団の変動係数は、0.15〜0.4である。   Since the fiber-reinforced plastic in the present invention has a high Vf, the average value of the population is 40 to 65%. When the average value of the population is 40 to 65%, high mechanical properties can be maintained. Further, by increasing the variation of Vf in the fiber reinforced plastic, that is, the coefficient of variation, a low Vf portion that can be freely flowed during molding is included, and a higher Vf portion is included, resulting in a thicker portion. It is possible to obtain a fiber-reinforced plastic having a high mechanical property while allowing the meat portion to smoothly follow the shape. That is, in the present invention, the average value of the population is 40 to 65%, but a portion having a higher Vf and a lower Vf than the aspect in which all local regions are controlled to about 40 to 65% in the cross section of the fiber reinforced plastic. It is possible to achieve the object of the present invention by making both of the points having the value of ## EQU1 ## exist and making the coefficient of variation within a certain range and setting the average value of the population to be 40 to 65%. When the coefficient of variation of the population is 0.15 or more, it is possible to secure a sufficient volume of low Vf for allowing the fibers and the resin to flow well. On the other hand, 0.4 is the maximum as the coefficient of variation of the population in terms of mechanical characteristics or productivity. That is, in the present invention, the coefficient of variation of the population is 0.15 to 0.4.

なお、変動係数は標準偏差を平均値で除したパラメータとして知られているところである。   The coefficient of variation is known as a parameter obtained by dividing the standard deviation by the average value.

また本発明においては、繊維の平均長さが5〜50mmである。このようにすることで、高いVfの箇所も厚肉変化部以外において曲面や凹凸形状に追従した繊維強化プラスチックとすることができる。繊維の平均長さが5〜50mmの範囲内であっても、繊維の平均長さが長いほど繊維強化プラスチックの力学特性は向上し、平均繊維長さが短いほど繊維強化プラスチックは複雑な形状を実現することができる。さらに好ましい繊維の平均長さの下限は10mm以上であり、上限としては30mm以下である。本発明において、繊維の平均長さが5〜50mmであれば、繊維長さが5mmより小さい繊維または50mmより長い繊維が含まれていてもよい。繊維強化プラスチック内の繊維の平均長さは、繊維強化プラスチックに含まれる全ての繊維の長さを測定して算出するのは現実的ではないため、繊維強化プラスチック内から任意に抽出した300本の繊維の長さの平均値とする。繊維強化プラスチック内から繊維を抽出する方法は、高温にて樹脂を焼き飛ばす方法がある。例えば、エポキシ樹脂であれば450℃にて焼き飛ばすことができ、繊維強化プラスチック内の繊維を抽出することができる。ただし、繊維強化プラスチックを切断して得た繊維強化プラスチックの小片の樹脂を焼き飛ばす際は、切断面に接触する繊維が元々繊維強化プラスチックの中に存在していた時点よりも短くなっている可能性があるため、抽出の対象外とする。   Further, in the present invention, the average fiber length is 5 to 50 mm. By doing so, it is possible to obtain a fiber-reinforced plastic that follows a curved surface or a concavo-convex shape even at a portion having a high Vf other than the thick-walled portion. Even if the average length of the fibers is in the range of 5 to 50 mm, the longer the average length of the fibers is, the more the mechanical properties of the fiber-reinforced plastic are improved, and the shorter the average fiber length is, the more complicated the shape of the fiber-reinforced plastic is. Can be realized. A more preferable lower limit of the average fiber length is 10 mm or more, and the upper limit thereof is 30 mm or less. In the present invention, fibers having a fiber length of less than 5 mm or fibers having a length of more than 50 mm may be included as long as the average length of the fibers is 5 to 50 mm. Since it is not realistic to calculate the average length of the fibers in the fiber-reinforced plastic by measuring the lengths of all the fibers contained in the fiber-reinforced plastic, 300 fibers arbitrarily extracted from the fiber-reinforced plastic are selected. The average length of the fiber is used. As a method of extracting fibers from the fiber-reinforced plastic, there is a method of burning off the resin at a high temperature. For example, an epoxy resin can be burnt out at 450 ° C., and the fibers in the fiber reinforced plastic can be extracted. However, when the resin of a small piece of fiber-reinforced plastic obtained by cutting the fiber-reinforced plastic is burned off, the fibers that come into contact with the cut surface may be shorter than when they were originally in the fiber-reinforced plastic. Therefore, it is excluded from the target of extraction.

また、本発明の繊維強化プラスチックは、図3に示すように母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級をピーク値とすると、ピーク値を複数有する。なお、本発明において、階級は、母集団中最小のVfの値から最大のVfの値の範囲を等しく10分割することで階級数を10とする。例えば、母集団中最小のVfの値が10%、最大のVfの値が60%の場合は、10〜15%、15〜20%、20〜25%、25〜30%、30〜35%、35〜40%、40〜45%、45〜50%、50〜55%、および55〜60%の計10階級とする。さらに本発明においては、少なくとも一つのピーク値の中心値、例えばそのピーク値が50〜55%の繊維含有率の階級であったときは52.5%、は母集団の平均値より低く、少なくとも一つのピーク値の中心値は母集団の平均値よりも高いことが好ましい。本発明の繊維強化プラスチックが、母集団を階級数10のヒストグラムにした際にピーク値を複数有することで、低いVfの箇所が、厚肉変化への追従に必要な分量含まれ、高いVfの箇所が力学特性を担保するために十分な分量含むことができる。本発明の繊維強化プラスチックにおいて、母集団を階級数10のヒストグラムにした際に、ピーク値を複数有する態様とするためには、例えば、繊維体積含有率の大きなプリプレグと繊維体積含有率の小さなプリプレグを交互に積層することで積層体として、それを硬化して繊維強化プラスチックとする方法をあげることができる。   Further, the fiber-reinforced plastic of the present invention has a peak value when a class having a frequency greater than the frequencies of adjacent classes on the left and right is taken as a peak value when a population is made into a histogram with a class number of 10 as shown in FIG. It has multiple values. In the present invention, the class is set to 10 by equally dividing the range of the minimum Vf value to the maximum Vf value in the population into 10. For example, when the minimum Vf value in the population is 10% and the maximum Vf value is 60%, 10-15%, 15-20%, 20-25%, 25-30%, 30-35%. 35 to 40%, 40 to 45%, 45 to 50%, 50 to 55%, and 55 to 60%, for a total of 10 classes. Furthermore, in the present invention, the central value of at least one peak value, for example, 52.5% when the peak value is a class of fiber content of 50 to 55%, is lower than the average value of the population, and at least The central value of one peak value is preferably higher than the average value of the population. Since the fiber-reinforced plastic of the present invention has a plurality of peak values when the population is made into a histogram of rank 10, a portion of low Vf is included in an amount necessary for following the change in thickness, and a high Vf of The location can contain a sufficient amount to ensure mechanical properties. In the fiber-reinforced plastic of the present invention, when the population is made into a histogram of rank 10, the prepreg having a large fiber volume content and the prepreg having a small fiber volume content can be provided in order to have a mode having a plurality of peak values. It is possible to cite a method in which the layers are alternately laminated to form a laminate, which is cured to form a fiber-reinforced plastic.

本発明の繊維強化プラスチックの態様としては、母集団を階級数50のヒストグラムにした際に、ピーク値、なお階級の分け方は上記と同様に最大のVfと最小のVfとの間を50区間に均等に分け、また、ピーク値の意味は上記と同義であり両隣の階級よりも高い度数を示す階級である、を3つ以上有していてもよい。   As an embodiment of the fiber reinforced plastic of the present invention, when the population is made into a histogram of 50 ranks, the peak value, and how to divide the class is 50 sections between the maximum Vf and the minimum Vf as above. In addition, the peak value may have the same meaning as above, and it may have three or more classes that are higher in frequency than the classes on both sides.

本発明の繊維強化プラスチックの好ましい態様としては、母集団の平均値よりも大きなVfを有する領域と、母集団の平均値よりも小さなVfを有する領域の2領域のいずれもが、実質的に線状に存在することが挙げられる。ここで、母集団の平均値よりも大きなVfとは、40〜65%の間にある平均値よりも5%以上大きなVf(以下、Vf1という)であり、母集団の平均値よりも小さなVfとは、40〜65%の間にある平均値よりも5%以上小さなVf(以下、Vf2という)である。実質的に線状に存在するとは、Vfを求めるのに用いた撮像画像において、VfがVf1以上である局所領域の中心となっているピクセル、VfがVf2以下である局所領域の中心となっているピクセルの各々を区別してマーキングしたとき、繊維強化プラスチックの表面に平行な方向(かかる方向を幅方向とする)での長さ及び該表面に垂直な方向(かかる方向を高さ方向とする。つまりは、繊維強化プラスチックの厚み方向)での長さの比(幅/高さ)が2以上である領域が、VfがVf1以上である局所領域の中心となっているピクセルの群(かかるピクセルの群をVf1ピクセル群という)およびVfがVf2以下である局所領域の中心となっているピクセルの群(かかるピクセルの群をVf2ピクセル群という)ともに存在することを意味する。   In a preferred embodiment of the fiber-reinforced plastic of the present invention, both of the two regions, that is, the region having a Vf larger than the average value of the population and the region having a Vf smaller than the average value of the population are substantially linear. Existing in the form of. Here, Vf larger than the average value of the population is Vf larger than the average value between 40 and 65% by 5% or more (hereinafter, referred to as Vf1), and Vf smaller than the average value of the population. Is Vf (hereinafter referred to as Vf2) that is 5% or more smaller than the average value between 40 and 65%. The substantially linear existence means that in the captured image used for obtaining Vf, the pixel is the center of the local area where Vf is Vf1 or more and the center of the local area where Vf is Vf2 or less. When each of the pixels is marked with distinction, the length in the direction parallel to the surface of the fiber-reinforced plastic (the width direction is the width direction) and the direction perpendicular to the surface (the height direction is the height direction). In other words, a region having a length ratio (width / height) of 2 or more in the thickness direction of the fiber-reinforced plastic is a group of pixels serving as the center of a local region having Vf of Vf1 or more (such pixel). Group of pixels is referred to as a Vf1 pixel group) and a group of pixels serving as a center of a local region in which Vf is Vf2 or less (the group of such pixels is referred to as a Vf2 pixel group). Means.

図4を参照しつつこれを具体的に説明する。図4は、断面画像において各局所領域の中心となっているピクセルをVfの値で以て色分けして示したピクセルの分布を表す図の一例である。図4にては、Vf1ピクセル群である領域5と、Vf2ピクセル群である領域6を認めることができる。   This will be specifically described with reference to FIG. FIG. 4 is an example of a diagram showing the distribution of pixels in which the pixel at the center of each local area in the cross-sectional image is color-coded by the value of Vf. In FIG. 4, a region 5 which is a Vf1 pixel group and a region 6 which is a Vf2 pixel group can be recognized.

このような領域が観察されることは、繊維の厚み方向へのうねりが小さいことを指し、そのような繊維強化プラスチックは力学特性が高くなるために、好ましい。局所領域のVfを求めた撮像画像中、Vf1ピクセル群とVf2ピクセル群はその全てが線状に存在していることが好ましいが、全ての群が線状に存在しているといえなくとも、各々の群において少なくとも1つが線状に存在していれば良い。   The observation of such a region indicates that the waviness in the thickness direction of the fiber is small, and such a fiber-reinforced plastic is preferable because it has high mechanical properties. It is preferable that all of the Vf1 pixel group and the Vf2 pixel group exist linearly in the captured image in which Vf of the local region is obtained, but even if it cannot be said that all groups exist linearly, It suffices that at least one is present linearly in each group.

上記のように、Vf1ピクセル群とVf2ピクセル群が、実質的に線状に存在する繊維強化プラスチックを製造するための方法としては、例えば、繊維体積含有率の大きなプリプレグと繊維体積含有率の小さなプリプレグを交互に積層することで積層体として、それを硬化して繊維強化プラスチックとする方法をあげることができる。   As described above, as a method for producing a fiber-reinforced plastic in which the Vf1 pixel group and the Vf2 pixel group are substantially linear, for example, a prepreg having a high fiber volume content and a small fiber volume content can be used. A method in which prepregs are alternately laminated to form a laminate, which is cured to form a fiber-reinforced plastic, can be mentioned.

さらに好ましくは、少なくとも1つのVf1ピクセル群、好ましくはVf1ピクセル群の半数以上、また好ましくは全てのVf1ピクセル群、が繊維強化プラスチックの少なくとも一方の表面から該繊維強化プラスチックの厚みの30%までの領域に存在する繊維強化プラスチックである。また該Vf1ピクセル群は線状に存在していることが好ましい。表面に近い領域、つまり表層部にVf1ピクセル群が存在することで、特に繊維強化プラスチックの曲げ剛性が向上するために好ましい。また、Vfのばらつきに起因する表面の凹凸の発生が抑制され、繊維強化プラスチック表面を平滑とできる。より好ましい態様は、Vf1ピクセル群が繊維強化プラスチックの両方の面において、各面から厚み方向の30%までの領域に存在する繊維強化プラスチックである。   More preferably, at least one Vf1 pixel group, preferably more than half of the Vf1 pixel groups, and preferably all Vf1 pixel groups, are present on at least one surface of the fiber-reinforced plastic up to 30% of the thickness of the fiber-reinforced plastic. It is a fiber reinforced plastic that exists in the area. Further, it is preferable that the Vf1 pixel group exists linearly. The presence of the Vf1 pixel group in the region close to the surface, that is, in the surface layer portion is preferable because the bending rigidity of the fiber-reinforced plastic is particularly improved. Further, generation of surface irregularities due to variations in Vf is suppressed, and the fiber-reinforced plastic surface can be made smooth. A more preferred embodiment is the fiber-reinforced plastic in which the Vf1 pixel group is present on both surfaces of the fiber-reinforced plastic in an area up to 30% in the thickness direction from each surface.

本発明の繊維強化プラスチックの好ましい態様としては、繊維が実質的に一方向に配向した層、及び、繊維が多方向に配向した層を有することが挙げられる。以下、繊維が実質的に一方向に配向した層を一方向層、繊維が多方向に配向した層を多方向層と呼ぶ。図5は本発明の好ましい繊維強化プラスチックの例であって、層構造を有する繊維強化プラスチックの概念図である。図5には層A、B、C、D、Eが含まれており、層A、B、D、Eは一方向層である。   Preferred embodiments of the fiber-reinforced plastic of the present invention include having a layer in which the fibers are oriented substantially in one direction and a layer in which the fibers are oriented in multiple directions. Hereinafter, a layer in which fibers are substantially oriented in one direction is called a unidirectional layer, and a layer in which fibers are oriented in multiple directions is called a multidirectional layer. FIG. 5 is an example of a preferred fiber reinforced plastic of the present invention, which is a conceptual diagram of a fiber reinforced plastic having a layered structure. FIG. 5 includes layers A, B, C, D, E, and layers A, B, D, E are unidirectional layers.

一方向層とは、繊維強化プラスチックの断面において、同一の繊維断面形状が表れる繊維強化プラスチック表面に実質的に平行な領域(層)である。同一の繊維断面形状とは、繊維強化プラスチックの断面中の幅2mm、縦は繊維強化プラスチックの上面と下面までの領域の中に、幅2mmでかつ厚みの等しい層をみたとき、その領域内から無作為に選んだ100個の繊維断面の長径を測定して平均値を算出した際に、90個以上の断面の長径がそれらの平均値の±10%以内である場合を意味する。繊維強化プラスチック表面に実質的に平行とは、繊維強化プラスチックの断面を見た際に、集合体の境界と、繊維強化プラスチックの表面とが−10°〜+10°の範囲内となる場合を意味する。また、繊維強化プラスチックの断面において、一方向層が存在する場合に限って、該断面のその他の領域も層とみなすことができ、層Cのように2つの一方向層に挟まれた領域あるいは、一方向層と繊維強化プラスチックの表面に挟まれた領域も層とみなす。一方向層の存在によって、効率的に力学特性を向上することが可能となる。また、一方向層がVf1ピクセル群に対応する層であることで、より効率的に力学特性を向上させることが可能となる。   The unidirectional layer is a region (layer) that is substantially parallel to the surface of the fiber reinforced plastic in which the same fiber cross sectional shape appears in the cross section of the fiber reinforced plastic. The same fiber cross-sectional shape means a width of 2 mm in the cross-section of the fiber-reinforced plastic, and a lengthwise area of the fiber-reinforced plastic from the upper surface to the lower surface of the fiber-reinforced plastic. This means that when the major axis of 100 randomly selected fiber cross sections is measured and the average value is calculated, the major axis of 90 or more cross sections is within ± 10% of the average value. “Substantially parallel to the surface of the fiber reinforced plastic” means the case where the boundary of the aggregate and the surface of the fiber reinforced plastic are within the range of −10 ° to + 10 ° when the cross section of the fiber reinforced plastic is viewed. To do. Further, in the cross section of the fiber-reinforced plastic, the other region of the cross section can be regarded as a layer only when the unidirectional layer is present, and a region sandwiched between two unidirectional layers like the layer C or The region sandwiched between the unidirectional layer and the surface of the fiber reinforced plastic is also considered as a layer. The presence of the unidirectional layer makes it possible to efficiently improve the mechanical properties. Further, since the unidirectional layer is a layer corresponding to the Vf1 pixel group, it becomes possible to more efficiently improve the mechanical characteristics.

また、繊維強化プラスチックの断面において、一方向層が存在する場合に限っては、該断面のその他の領域も層とみなすことができ、層Cのように2つの一方向層に挟まれた領域あるいは、一方向層と繊維強化プラスチックの表面に挟まれた領域を層とみなしたとき、繊維強化プラスチックの断面中の同一の層中の幅2mmの領域内に100本以上繊維断面が見られ、かつ上述の一方向層の定義を満たさない層を多方向層とする。多方向層は、2つのパターンが存在する。一つは、図5の層Cのように、層C内をさらに断面形状の近い繊維が集合した領域が存在する場合である。断面形状が近いとは、繊維強化プラスチックの断面写真に観察される繊維断面における長径と該長径に一致する線分を該繊維の直断面に写像したときの径、すなわち該長径に対応したその繊維の実際の直径とから断面を基準面とした繊維配向角を計算した際、配向角の違いが10°以内であるということを意味する。なお、繊維の配向角θ[°]は、θ=arcsin((繊維直径)/(繊維断面の長径))×180/πで計算される。層C内は、さらに集合体C1、C2、C3、C4のように、繊維の断面形状が近い集合体が存在している。多方向層と認定されるもう一つのパターンは、断面形状が異なる繊維同士が互いに入り組んだように構成されていて、繊維の断面形状が近い集合体に分割することができない場合である。特に、Vf2ピクセル群に対応する層が多方向層であれば、小さなVfを有する領域中の強化繊維の繊維長が比較的長い場合であっても等方的な力学特性を有するようになる。したがって、力学特性に影響の大きい一方向層の選定を制限なくできるため好ましい。さらに、多方向層が断面形状の近い領域群が複数存在する様態であれば、基材の製造工程において強化繊維束を単糸分散させる工程が必要ないことから、生産コストに優れるためより好ましい。   Further, in the cross section of the fiber reinforced plastic, the other region of the cross section can be regarded as a layer only when a unidirectional layer is present, and a region sandwiched between two unidirectional layers like the layer C. Alternatively, when the region sandwiched between the unidirectional layer and the surface of the fiber reinforced plastic is regarded as a layer, 100 or more fiber cross sections are seen in a region of width 2 mm in the same layer in the cross section of the fiber reinforced plastic, A layer that does not satisfy the above definition of the unidirectional layer is a multidirectional layer. There are two patterns in the multidirectional layer. One is the case where there is a region in which fibers having a closer cross-sectional shape gather in the layer C, such as the layer C in FIG. The cross-sectional shape is close means a diameter when a major axis in a fiber cross section observed in a cross-sectional photograph of a fiber-reinforced plastic and a line segment corresponding to the major axis are mapped to a straight section of the fiber, that is, the fiber corresponding to the major axis. When the fiber orientation angle with the cross section as the reference plane is calculated from the actual diameter of the above, it means that the difference in orientation angle is within 10 °. The fiber orientation angle θ [°] is calculated by θ = arcsin ((fiber diameter) / (major axis of fiber cross section)) × 180 / π. Within the layer C, there are aggregates having similar fiber cross-sectional shapes, such as aggregates C1, C2, C3, and C4. Another pattern recognized as a multidirectional layer is when fibers having different cross-sectional shapes are intertwined with each other and cannot be divided into aggregates having similar cross-sectional shapes. In particular, if the layer corresponding to the Vf2 pixel group is a multidirectional layer, it will have isotropic mechanical characteristics even if the fiber length of the reinforcing fiber in the region having a small Vf is relatively long. Therefore, the selection of the unidirectional layer, which has a great influence on the mechanical properties, can be performed without limitation, which is preferable. Furthermore, it is more preferable that the multidirectional layer has a plurality of region groups having similar cross-sectional shapes, because the step of dispersing the reinforcing fiber bundle into a single yarn is not necessary in the step of manufacturing the base material, and the production cost is excellent.

繊維が実質的に一方向に配向した層、及び、繊維が多方向に配向した層を有する繊維強化プラスチックとするためには、例えば、繊維が実質的に一方向に配向したプリプレグ、及び、繊維が多方向に配向したプリプレグ(例えば、SMC)を交互に積層することで積層体として、それを硬化して繊維強化プラスチックとする方法をあげることができる。   To obtain a fiber-reinforced plastic having a layer in which fibers are oriented substantially in one direction and a layer in which fibers are oriented in multiple directions, for example, a prepreg in which fibers are oriented substantially in one direction, and a fiber A method can be given in which a prepreg (for example, SMC) oriented in multiple directions is alternately laminated to form a laminate, which is cured to form a fiber-reinforced plastic.

本発明の繊維強化プラスチックは、繊維及び樹脂を含むものであり、本発明の繊維強化プラスチックにおいて、繊維とはガラス繊維、ケブラー繊維、炭素繊維、グラファイト繊維またはボロン繊維等の一般的に繊維強化プラスチックの強化材として用いられる繊維を意味する。この内、比強度及び比弾性率の観点からは、炭素繊維が好ましい。   The fiber-reinforced plastic of the present invention contains a fiber and a resin. In the fiber-reinforced plastic of the present invention, the fiber is generally a fiber-reinforced plastic such as glass fiber, Kevlar fiber, carbon fiber, graphite fiber or boron fiber. Means a fiber used as a reinforcing material. Of these, carbon fibers are preferable from the viewpoint of specific strength and specific elastic modulus.

本発明において繊維強化プラスチックの意味は一般的に用いられている用語の意味と同義であり、すなわち、樹脂中に繊維、強化繊維ともいう、が含有された物であり該繊維により当該物全体の強度等の機械特性の改善が図られたものである。本発明の繊維強化プラスチックにおいて用いられる樹脂は熱硬化性樹脂でも熱可塑性樹脂でもよい。熱硬化性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、ベンゾオキサジン樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂及びポリイミド樹脂等が挙げられる。熱可塑性樹脂としては、例えば、ポリアミド(PA)、ポリアセタール、ポリアクリレート、ポリスルフォン、ABS、ポリエステル、アクリル、ポリブチレンテレフタラート(PBT)、ポリカーボネート(PC)、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)、ポリエーテルケトンケトン(PEKK)、液晶ポリマー、塩ビ、ポリテトラフルオロエチレンなどのフッ素系樹脂、シリコーンなどが挙げられる。   In the present invention, the meaning of the fiber-reinforced plastic has the same meaning as the term generally used, that is, the resin contains a fiber, also referred to as a reinforcing fiber, and the fiber is used to The mechanical properties such as strength are improved. The resin used in the fiber-reinforced plastic of the present invention may be a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include unsaturated polyester resin, vinyl ester resin, epoxy resin, benzoxazine resin, phenol resin, urea resin, melamine resin and polyimide resin. As the thermoplastic resin, for example, polyamide (PA), polyacetal, polyacrylate, polysulfone, ABS, polyester, acrylic, polybutylene terephthalate (PBT), polycarbonate (PC), polyethylene terephthalate (PET), polyethylene, polypropylene, Examples thereof include polyphenylene sulfide (PPS), polyetheretherketone (PEEK), polyetherimide (PEI), polyetherketoneketone (PEKK), liquid crystal polymer, vinyl chloride, fluorine resin such as polytetrafluoroethylene, and silicone.

本発明の繊維強化プラスチックは自動車、航空機等における構造部材として、好ましく用いることができる。   The fiber-reinforced plastic of the present invention can be preferably used as a structural member in automobiles, aircrafts and the like.

以下、実施例により本発明をさらに具体的に説明するが、本発明は、実施例に記載の発明に限定して解釈されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention should not be construed as being limited to the invention described in Examples.

<樹脂フィルムの作製>
エポキシ樹脂(ジャパンエポキシレジン(株)製“jER(登録商標)”828:35質量部、“jER(登録商標)”1001:30質量部、“jER(登録商標)”154:35質量部)に、熱可塑性樹脂ポリビニルホルマール(チッソ(株)製“ビニレック(登録商標)”K)5質量部をニーダーで加熱混練してポリビニルホルマールを均一に溶解させた後、硬化材ジシアンジアミド(ジャパンエポキシレジン(株)製DICY7)3.5質量部と、硬化促進剤3−(3,4―ジクロロフェニル)―1,1−ジメチルウレア(保土谷化学工業(株)製DCMU99)4質量部を、ニーダーで混練して未硬化のエポキシ樹脂組成物を調整した。このエポキシ樹脂組成物を、リバースロールコーターを用いて、シリコーンコーティング処理させた離型紙上に塗布して目付62g/mの樹脂フィルムを作製した。
<Production of resin film>
To epoxy resin (Japan Epoxy Resin Co., Ltd. "jER (registered trademark)" 828: 35 parts by mass, "jER (registered trademark)" 1001: 30 parts by mass, "jER (registered trademark)" 154: 35 parts by mass) After heating and kneading 5 parts by mass of a thermoplastic resin polyvinyl formal (“Vinilec (registered trademark)” K manufactured by Chisso Corporation) with a kneader to uniformly dissolve polyvinyl formal, a curing agent dicyandiamide (Japan Epoxy Resins Co., Ltd. ) DICY7) 3.5 parts by mass and a curing accelerator 3- (3,4-dichlorophenyl) -1,1-dimethylurea (Hodogaya Chemical Co., Ltd.'s DCMU99) 4 parts by mass are kneaded with a kneader. To prepare an uncured epoxy resin composition. This epoxy resin composition was applied onto a silicone-coated release paper using a reverse roll coater to prepare a resin film having a basis weight of 62 g / m 2 .

<切込プリプレグの作製>
切込プリプレグを作製するため、その元となる連続繊維プリプレグを、全体を平均した繊維体積含有率(Vf)が58%となるように、一方向に配列させた目付250g/mの炭素繊維(T700S)の両面に上記手順により得られた目付62g/mの樹脂フィルムをそれぞれ重ね、加熱・加圧することによって樹脂を含浸させて得た。得られた連続繊維プリプレグに、刃が設けられたロール(回転刃)を用いて、連続繊維プリプレグ内の全ての繊維が分断されるように切込プリプレグAと切込プリプレグBを得た。
<Production of notch prepreg>
In order to produce a cut prepreg, the continuous fiber prepreg which is the basis of the cut prepreg is arranged in one direction so that the average fiber volume content (Vf) is 58%, and a carbon fiber having a basis weight of 250 g / m 2 The resin film having a basis weight of 62 g / m 2 obtained by the above procedure was placed on both surfaces of (T700S) and impregnated with the resin by heating and pressurizing. A cut prepreg A and a cut prepreg B were obtained by using a roll (rotary blade) provided with a blade on the obtained continuous fiber prepreg so that all the fibers in the continuous fiber prepreg were cut.

切込プリプレグAは全ての繊維が22mmの長さとなるように、切込が挿入されており、切込と繊維方向との角度は14°、一つ一つの切込の長さは1mmとした。   The notch prepreg A has notches inserted so that all the fibers have a length of 22 mm, the angle between the notches and the fiber direction is 14 °, and the length of each notch is 1 mm. .

切込プリプレグBは全ての繊維が11mmの長さとなるように、切込が挿入されており、切込と繊維方向との角度は25°、一つ一つの切込の長さは3mmとした。   The notch prepreg B has notches inserted so that all the fibers have a length of 11 mm, the angle between the notch and the fiber direction is 25 °, and the length of each notch is 3 mm. .

<SMCの作製>
上記連続繊維プリプレグを幅0.3mm長さ30mmにカットしたチョップドプリプレグを、各チョップドプリプレグの繊維方向がランダムに配向するように配置し、さらに全体を平均した繊維体積含有率(Vf)が30%となるように、上述の樹脂フィルムで挟み、70℃で1分間真空圧着することで製造した。
<Production of SMC>
A chopped prepreg obtained by cutting the continuous fiber prepreg into a width of 0.3 mm and a length of 30 mm is arranged so that the fiber directions of the chopped prepregs are randomly oriented, and the total fiber volume content (Vf) is 30%. It was manufactured by sandwiching the above-mentioned resin film so as to be, and vacuum-pressing at 70 ° C. for 1 minute.

<プレス成形>
上記切込プリプレグA、切込プリプレグB、樹脂フィルム、SMCを組み合わせた積層体を、図6に示すような箱型形状を成形する両面型を用いてプレス成形にて固化し、繊維強化プラスチックを得た。得られる繊維強化プラスチックは幅方向が150mm、長さ方向が200mmの箱型形状で、底面の厚さが3mmで、側面の厚さTは4mmと6mmの2パターンを用意した。型は余剰分が流れ出る構造となっている。
<Press molding>
A laminate obtained by combining the cut prepreg A, the cut prepreg B, the resin film, and the SMC is solidified by press molding using a double-sided mold for molding a box shape as shown in FIG. Obtained. The obtained fiber reinforced plastic had a box shape having a width direction of 150 mm and a length direction of 200 mm, a bottom surface thickness of 3 mm, and a side surface thickness T of 2 patterns of 4 mm and 6 mm. The mold has a structure in which surplus flows out.

プレス成形方法としては、プレス機の内部であらかじめ130℃に温めておいた型の中央に配置した後、上型と下型で挟み、成形温度130℃、成形圧力6.0MPaで30分間保持した。その後脱型し、所定の繊維強化プラスチックを得た。   As a press molding method, after placing the mold in the center of the mold which was previously heated to 130 ° C. inside the pressing machine, it was sandwiched between the upper mold and the lower mold, and held at a molding temperature of 130 ° C. and a molding pressure of 6.0 MPa for 30 minutes. . Then, the mold was removed to obtain a predetermined fiber reinforced plastic.

<Vfに関する母集団の取得>
得られた繊維強化プラスチックの最厚部(本成形体では側面部)を切り出し、樹脂に埋め込みバフ研磨を行った。研磨した繊維強化プラスチックの断面をデジタル顕微鏡にて撮影し、1ピクセルの一辺が繊維強化プラスチックの2μmに相当するサイズで、繊維強化プラスチックの最厚部の表面に平行な方向を幅、該表面に垂直な方向(すなわち、厚み方向)を高さ(T)として、幅2000個、T=4mmの場合は高さ2000個、T=6mmの場合は高さ3000個の正方形のピクセルで構成される繊維強化プラスチック断面のデジタル画像を得た。次に、断面のデジタル画像を2値化処理して繊維リッチのピクセルと樹脂リッチのピクセルとに区分した。各々のピクセルの重心を中心に直径100μmの局所領域をT=4mmの場合は2000×2000個、T=6mmの場合は2000×3000個設定し、各局所領域においてVfを求めて母集団とした。ただし、局所領域を画する外周円が前記デジタル画像からはみ出る場合は、直径100μmの円とデジタル画像の重なる領域を局所領域とした。以下、特に限定しない場合、平均値は母集団の平均値、変動係数は母集団の変動係数を意味する。各参考例、実施例及び比較例での測定結果は表1に示すとおりである。
<Acquisition of population related to Vf>
The thickest part of the obtained fiber reinforced plastic (the side part in the present molded body) was cut out and embedded in a resin and buffed. A cross-section of the polished fiber-reinforced plastic was photographed with a digital microscope. One pixel had a size corresponding to 2 μm of the fiber-reinforced plastic, and the width parallel to the surface of the thickest part of the fiber-reinforced plastic was measured on the surface. The height (T) is the vertical direction (that is, the thickness direction), and it is composed of square pixels with a width of 2000, a height of 2000 when T = 4 mm, and a height of 3000 when T = 6 mm. A digital image of the fiber reinforced plastic cross section was obtained. Next, the digital image of the cross section was binarized to be divided into fiber-rich pixels and resin-rich pixels. A local area having a diameter of 100 μm centering on the center of gravity of each pixel is set to 2000 × 2000 when T = 4 mm and 2000 × 3000 when T = 6 mm, and Vf is calculated in each local area to be a population. . However, in the case where the outer circumference circle that demarcates the local area protrudes from the digital image, the area where the circle having a diameter of 100 μm and the digital image overlap is defined as the local area. Hereinafter, unless otherwise specified, the average value means the average value of the population, and the coefficient of variation means the coefficient of variation of the population. The measurement results in each of the reference examples, examples and comparative examples are as shown in Table 1.

<Vfの分布状況評価>
前記のデジタル画像において、各局所領域において求められたVfの値に従って、該局所領域の中心のピクセルをマーキングしてVfの分布図を得た。上述の方法で、Vf1ピクセル群およびVf2ピクセル群を求め、観測されたこれらの群が実質的に線状であるかを評価した。Vf1ピクセル群の幅/高さの最大値、Vf2ピクセル群の幅/高さの最大値を表に記載した。
<Vf distribution evaluation>
In the digital image, a pixel at the center of the local area was marked according to the value of Vf obtained in each local area to obtain a Vf distribution chart. By the method described above, the Vf1 pixel group and the Vf2 pixel group were obtained, and it was evaluated whether these observed groups were substantially linear. The maximum width / height of the Vf1 pixel group and the maximum width / height of the Vf2 pixel group are shown in the table.

<繊維強化プラスチックの層構造評価>
断面のデジタル画像から、繊維強化プラスチックが層構造を有する場合に、上述の方法で各層について繊維が実質的に一方向に配向した層であるか、繊維が多方向に配向した層であるかを評価した。
<Evaluation of layer structure of fiber reinforced plastic>
From the digital image of the cross section, in the case where the fiber reinforced plastic has a layered structure, whether the fibers are substantially unidirectionally oriented layers or the fibers are multidirectionally oriented layers for each layer by the above method. evaluated.

表1には、繊維強化プラスチックが、層構造を有していない場合はW、繊維が実質的に一方向に配向した層のみで構成されている場合はX、繊維が実質的に一方向に配向した層と、繊維が多方向に配向した層で構成されている場合はYとした。   In Table 1, when the fiber reinforced plastic does not have a layered structure, W, when the fiber is composed of only a layer which is oriented substantially in one direction, X, and when the fiber is substantially oriented in one direction. When the fiber was composed of an oriented layer and a layer in which fibers were oriented in multiple directions, it was designated as Y.


(参考例1)
切込プリプレグAと切込プリプレグBを、幅方向を0°として[−45°/0°/+45°/90°]の積層構成で積層し、2つの積層体の間に樹脂フィルム2枚を挟んで、300mm×300mmの切込プリプレグA、切込プリプレグB、樹脂フィルムとからなる基材積層体を得た。

(Reference example 1)
The cut prepreg A and the cut prepreg B are laminated in a laminated constitution of [-45 ° / 0 ° / + 45 ° / 90 °] s with the width direction of 0 °, and two resin films are provided between the two laminated bodies. A substrate laminate having a cut prepreg A, a cut prepreg B, and a resin film, each having a size of 300 mm × 300 mm, was obtained.

この基材積層体をT=4mmの型で、側面表面が切込プリプレグBとなるようにプレス成形を行った。得られた繊維強化プラスチックはボイド等の欠損はみられなかった。一方で、側面表面の繊維が大きくうねっていた。T=6mmの型でのプレス成形では型との非接触部等の成形不良が見られ、力学特性の低下が推測された。   This base material laminate was press-molded with a mold of T = 4 mm so that the side surface was cut prepreg B. No defects such as voids were found in the obtained fiber reinforced plastic. On the other hand, the fibers on the side surface were greatly undulated. In press molding with a mold of T = 6 mm, molding defects such as a non-contact portion with the mold were observed, and it was speculated that the mechanical properties were deteriorated.

得られた繊維強化プラスチックのVfに関する母集団を取得し、母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級であるピーク値は1箇所であった。   When the population related to Vf of the obtained fiber reinforced plastic was acquired and the population was made into a histogram of the class number 10, the peak value, which is the class having a frequency greater than the frequency of the classes adjacent to the left and right, is one place. there were.

(参考例2)
切込プリプレグAを、幅方向を0°として[―45°/0°/+45°/90°]の積層構成で2枚積層し、2つの積層体の間に樹脂フィルム4枚を挟んで、300mm×300mmの切込プリプレグA、樹脂フィルムとからなる基材積層体を得た。
(Reference example 2)
Two notch prepregs A are laminated in a laminated constitution of [-45 ° / 0 ° / + 45 ° / 90 °] s with 0 ° in the width direction, and four resin films are sandwiched between the two laminated bodies. , A 300 mm × 300 mm cut prepreg A, and a resin film were obtained.

この基材積層体をT=4mmの型でプレス成形して得られた繊維強化プラスチックはボイド等の欠損はみられず、側面表面の繊維のうねりは実施例1よりも少なかった。断面を見ると、繊維強化プラスチック内部で大きく繊維がうねっている様子が見られた。T=6mmの型でのプレス成形では型との非接触部等の成形不良が見られ、力学特性の低下が推測された。   The fiber-reinforced plastic obtained by press-molding this substrate laminate with a mold of T = 4 mm showed no defects such as voids, and the waviness of the fibers on the side surface was smaller than that in Example 1. From the cross section, it can be seen that the fibers are greatly wavy inside the fiber reinforced plastic. In press molding with a mold of T = 6 mm, molding defects such as a non-contact portion with the mold were observed, and it was speculated that the mechanical properties were deteriorated.

得られた繊維強化プラスチックのVfに関する母集団を取得し、母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級であるピーク値が1箇所であった。   When the population related to Vf of the obtained fiber reinforced plastic was acquired and the population was made into a histogram of the class number 10, the peak value, which is the class having a frequency greater than the frequencies of the classes adjacent to the left and right, was found at one place. there were.

(実施例1)
切込プリプレグAを、幅方向を0°として[―45°/0°/+45°/90°]の積層構成で積層し、4mmの厚さのSMC重ねて、300mm×300mmの切込プリプレグA、SMCの基材積層体を得た。
(Example 1)
The notch prepreg A is laminated in a laminated constitution of [-45 ° / 0 ° / + 45 ° / 90 °] s with the width direction of 0 °, and the SMC having a thickness of 4 mm is overlaid, and the notch prepreg of 300 mm × 300 mm is formed. A base material laminate of A and SMC was obtained.

基材積層体をT=6mmの型で、繊維強化プラスチックの外面側がSMCとなるように、プレス成形を行った。得られた繊維強化プラスチックはボイド等の欠損はみられなかった。SMCの側面は手触りで凹凸があることが感じられた。断面を見ると、繊維が実質的に一方向に配向している層と、繊維が多方向に配向した層が存在していた。繊維が多方向に配向した層は、断面形状の近い繊維が集合する複数の領域が存在していた。繊維が多方向に配向した層では、繊維が大きく面外へうねっている様子が見られた。   The base laminate was press-molded in a mold of T = 6 mm so that the outer surface side of the fiber reinforced plastic was SMC. No defects such as voids were found in the obtained fiber reinforced plastic. It was felt that the side surface of the SMC was uneven to the touch. When viewed in cross section, there were layers in which the fibers were oriented substantially in one direction and layers in which the fibers were oriented in multiple directions. In the layer in which the fibers are oriented in multiple directions, there were a plurality of regions where fibers having similar cross-sectional shapes gathered together. In the layer in which the fibers were oriented in multiple directions, it was observed that the fibers were largely undulating out of the plane.

得られた繊維強化プラスチックのVfに関する母集団を取得し、母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級であるピーク値が2箇所あった。   When the population related to Vf of the obtained fiber reinforced plastic was acquired and the population was made into a histogram of class number 10, there were two peak values which were classes having frequencies greater than the frequencies of the classes adjacent to the left and right. It was

(実施例2)
切込プリプレグAを、幅方向を0°として[―45°/0°/+45°/90°]の積層構成で2セット積層し、2つの積層体の間に3mmの厚さのSMCを挟んで、300mm×300mmの切込プリプレグA、SMCの基材積層体を得た。
(Example 2)
Two sets of the notch prepreg A are laminated in a laminated constitution of [-45 ° / 0 ° / + 45 ° / 90 °] s , with the width direction being 0 °, and an SMC having a thickness of 3 mm is provided between the two laminated bodies. By sandwiching, a base material laminate of cut prepreg A and SMC of 300 mm × 300 mm was obtained.

基材積層体をT=6mmの型で、プレス成形を行った。得られた繊維強化プラスチックはボイド等の欠損はみられなかった。側面の手触りは凹凸がなく、平滑であった。
得られた繊維強化プラスチックのVfに関する母集団を取得し、母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級であるピーク値が2箇所あった。
The base laminate was press-molded with a mold of T = 6 mm. No defects such as voids were found in the obtained fiber reinforced plastic. The texture of the side surface was smooth and smooth.
When the population related to Vf of the obtained fiber-reinforced plastic was acquired and the population was made into a histogram of class number 10, there were two peak values which were classes having frequencies greater than the frequencies of the classes adjacent to the left and right. It was

断面を見ると、層構造を有しており、繊維が実質的に一方向に配向している層と、繊維が多方向に配向した層が存在していた。繊維が多方向に配向した層は、断面形状の近い繊維が集合する複数の領域が存在していた。Vfの分布状況評価では、実質的に線状であり、母集団の平均値よりも大きなVfを有する領域と、実質的に線状である平均値よりも小さなVfを有する領域が、共に存在していることが確認できた。   When viewed in cross section, it had a layered structure, and there were a layer in which the fibers were substantially oriented in one direction and a layer in which the fibers were oriented in multiple directions. In the layer in which the fibers are oriented in multiple directions, there were a plurality of regions where fibers having similar cross-sectional shapes gathered together. In the evaluation of the distribution of Vf, there is a region that is substantially linear and has a Vf larger than the average value of the population, and a region that has a substantially linear Vf that is smaller than the average value. I was able to confirm.

また、母集団の平均値よりも大きなVfを有する領域が、表層から厚み方向の30%よりも小さい範囲に存在していた。   Further, a region having Vf larger than the average value of the population was present in a range smaller than 30% in the thickness direction from the surface layer.

(比較例1)
連続繊維プリプレグを、幅方向を0°として[―45°/0°/+45°/90°]の積層構成で2セット積層して、間に樹脂フィルムを2枚挟み、300mm×300mmの基材積層体を得た。
(Comparative Example 1)
Two sets of continuous fiber prepregs are laminated in a laminated constitution of [-45 ° / 0 ° / + 45 ° / 90 °] s with 0 ° in the width direction, and two resin films are sandwiched between them to form a 300 mm × 300 mm base. A material laminate was obtained.

基材積層体をT=4mmの型で、プレス成形を行った。得られた繊維強化プラスチックは側面の大部分が型に接触しておらず、品質が良好ではなかった。そのため、力学特性の低下が推測された。   The base laminate was press-molded with a T = 4 mm mold. The obtained fiber reinforced plastic was not in good quality because most of the side surfaces did not contact the mold. Therefore, it was speculated that the mechanical properties would deteriorate.

(比較例2)
切込プリプレグAを、幅方向を0°として[―45°/0°/+45°/90°]の積層構成で2セット積層して、間に樹脂フィルムを2枚挟み、300mm×300mmの基材積層体を得た。
(Comparative example 2)
Two sets of the cut prepreg A having a width direction of 0 ° and a laminated structure of [−45 ° / 0 ° / + 45 ° / 90 °] s are laminated, and two resin films are sandwiched between them to form a 300 mm × 300 mm A substrate laminate was obtained.

基材積層体をT=4mmの型で、プレス成形を行った。得られた繊維強化プラスチックは比較例1よりも改善されていたものの、側面の部分が型に接触していない箇所があり、品質が良好ではなく、力学特性の低下が推測された。   The base laminate was press-molded with a T = 4 mm mold. Although the obtained fiber reinforced plastic was improved as compared with Comparative Example 1, there was a part of the side surface that was not in contact with the mold, the quality was not good, and it was speculated that the mechanical properties were deteriorated.

(比較例3)
SMCを6mmの厚さとなるように積層し、300mm×300mmのSMC積層体を得た。
(Comparative example 3)
SMCs were laminated to have a thickness of 6 mm to obtain a 300 mm × 300 mm SMC laminate.

基材積層体をT=6mmの型で、プレス成形を行った。得られた繊維強化プラスチックは目立った欠陥はなかったが、Vfに関する母集団を得たところ、母集団の平均値はいずれの実施例よりも低い値となった。   The base laminate was press-molded with a mold of T = 6 mm. Although the obtained fiber reinforced plastic did not have any noticeable defects, when the population related to Vf was obtained, the average value of the population was lower than that of any of the examples.

Figure 2018235512
Figure 2018235512

表において「ピーク値の個数」とは、母集団を階級数10のヒストグラムとしたとき、ピークとして観察される階級の個数を意味する。例えば、図3の態様では2である。   In the table, “the number of peak values” means the number of classes observed as peaks when the population is a histogram with a class number of 10. For example, it is 2 in the mode of FIG.


本出願は、2017年06月19日出願の日本国特許出願、特願2017−119288に基づくものであり、その内容はここに参照として取り込まれうる。

This application is based on a Japanese patent application filed on Jun. 19, 2017, Japanese Patent Application No. 2017-119288, the content of which is incorporated herein by reference.

1:繊維部
2:樹脂部
3:ピクセル
4:局所領域
5:Vf1ピクセル群
6:Vf2ピクセル群
1: Fiber part 2: Resin part 3: Pixel 4: Local area 5: Vf1 pixel group 6: Vf2 pixel group

Claims (5)

繊維及び樹脂を含む繊維強化プラスチックであって、
前記繊維の平均長さが5〜50mmであり、
局所領域における繊維体積含有率(以下、かかる繊維体積含有率をVfという)に関する母集団を得た際に、母集団の平均値が40〜65%、母集団の変動係数が0.15〜0.4であって、前記母集団を階級数10のヒストグラムにした際に、左右に隣接する階級の度数よりも大きな度数を有する階級をピーク値とすると、ピーク値を複数有する、繊維強化プラスチック。
(Vfに関する母集団)
繊維強化プラスチックの断面画像から、直径100μmに相当する局所領域を抽出した際に、局所領域内に含まれる繊維リッチのピクセルの合計の面積を局所領域に含まれるピクセルの合計の面積で除し、100を乗じた値をVfとする。複数の前記局所領域を抽出して、各局所領域において求められたVfの集合を母集団とする。
A fiber-reinforced plastic containing fibers and resin,
The average length of the fibers is 5 to 50 mm,
When the population related to the fiber volume content in the local region (hereinafter, such fiber volume content is referred to as Vf) is obtained, the average value of the population is 40 to 65%, and the coefficient of variation of the population is 0.15 to 0. .4, wherein when the population is made into a histogram with a class number of 10, and a class having a frequency greater than the frequencies of the classes adjacent to the left and right is a peak value, the fiber-reinforced plastic has a plurality of peak values.
(Vf population)
When a local region corresponding to a diameter of 100 μm is extracted from the cross-sectional image of the fiber-reinforced plastic, the total area of the fiber-rich pixels included in the local region is divided by the total area of the pixels included in the local region, The value obtained by multiplying by 100 is Vf. A plurality of the local regions are extracted and a set of Vf obtained in each local region is used as a population.
前記母集団の平均値よりも大きなVfを有する領域、及び、前記母集団の平均値よりも小さなVfを有する領域のいずれもが、実質的に線状に存在する、請求項1に記載の繊維強化プラスチック。   The fiber according to claim 1, wherein both the region having a Vf larger than the average value of the population and the region having a Vf smaller than the average value of the population are substantially linear. Reinforced plastic. 前記母集団の平均値よりも大きなVfを有する領域が、少なくとも片方の表層から厚み方向の30%よりも小さい範囲に存在する、請求項1または2に記載の繊維強化プラスチック。   The fiber-reinforced plastic according to claim 1 or 2, wherein the region having Vf larger than the average value of the population exists in a range smaller than 30% in the thickness direction from at least one surface layer. 繊維が実質的に一方向に配向した層、及び、繊維が多方向に配向した層を有する、請求項1〜3のいずれかに記載の繊維強化プラスチック。   The fiber-reinforced plastic according to any one of claims 1 to 3, which has a layer in which the fibers are oriented substantially in one direction and a layer in which the fibers are oriented in multiple directions. 繊維が多方向に配向した層内において、断面形状の近い領域群が複数存在する、請求項4に記載の繊維強化プラスチック。   The fiber-reinforced plastic according to claim 4, wherein a plurality of region groups having close cross-sectional shapes are present in the layer in which the fibers are oriented in multiple directions.
JP2018534982A 2017-06-19 2018-05-23 Fiber reinforced plastic Active JP7099318B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017119288 2017-06-19
JP2017119288 2017-06-19
PCT/JP2018/019851 WO2018235512A1 (en) 2017-06-19 2018-05-23 Fiber-reinforced plastic

Publications (2)

Publication Number Publication Date
JPWO2018235512A1 true JPWO2018235512A1 (en) 2020-04-16
JP7099318B2 JP7099318B2 (en) 2022-07-12

Family

ID=64737224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534982A Active JP7099318B2 (en) 2017-06-19 2018-05-23 Fiber reinforced plastic

Country Status (4)

Country Link
JP (1) JP7099318B2 (en)
CN (1) CN110612196B (en)
TW (1) TW201905052A (en)
WO (1) WO2018235512A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7181465B2 (en) * 2019-03-27 2022-12-01 ダイキン工業株式会社 Resin composition and molded product
JPWO2021187043A1 (en) * 2020-03-18 2021-09-23

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308929A (en) * 1994-05-18 1995-11-28 Hitachi Chem Co Ltd Manufacture of frp molded product and frp molded product
JP2004291265A (en) * 2003-03-25 2004-10-21 Mitsubishi Rayon Co Ltd Fiber recinforced plastic molded product and its manufacturing method
JP2008207544A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2010018724A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Prepreg layered substrate and fiber-reinforced plastic
JP2010030193A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
JP2017082210A (en) * 2015-10-27 2017-05-18 東レ株式会社 Cross ply laminate and manufacturing method of fiber-reinforced plastic
WO2017110616A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Method for manufacturing base material layered body and fiber-reinforced plastic

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123512B2 (en) * 2006-06-23 2013-01-23 ユニ・チャーム株式会社 Non-woven
EP2557223A1 (en) * 2010-03-31 2013-02-13 Kuraray Co., Ltd. Leather-like sheet
CA2870948C (en) * 2012-04-23 2017-01-24 The Procter & Gamble Company Fibrous structures and methods for making same
JP5749868B1 (en) * 2014-08-28 2015-07-15 帝人株式会社 Composite material containing unidirectional continuous fiber and thermoplastic resin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07308929A (en) * 1994-05-18 1995-11-28 Hitachi Chem Co Ltd Manufacture of frp molded product and frp molded product
JP2004291265A (en) * 2003-03-25 2004-10-21 Mitsubishi Rayon Co Ltd Fiber recinforced plastic molded product and its manufacturing method
JP2008207544A (en) * 2007-02-02 2008-09-11 Toray Ind Inc Notched prepreg substrate, laminated substrate, fiber-reinforced plastic, and method for manufacturing notched prepreg substrate
JP2010018724A (en) * 2008-07-11 2010-01-28 Toray Ind Inc Prepreg layered substrate and fiber-reinforced plastic
JP2010030193A (en) * 2008-07-30 2010-02-12 Toray Ind Inc Method for manufacturing fiber-reinforced plastic
JP2017082210A (en) * 2015-10-27 2017-05-18 東レ株式会社 Cross ply laminate and manufacturing method of fiber-reinforced plastic
WO2017110616A1 (en) * 2015-12-25 2017-06-29 東レ株式会社 Method for manufacturing base material layered body and fiber-reinforced plastic

Also Published As

Publication number Publication date
TW201905052A (en) 2019-02-01
JP7099318B2 (en) 2022-07-12
CN110612196A (en) 2019-12-24
WO2018235512A1 (en) 2018-12-27
CN110612196B (en) 2022-04-22

Similar Documents

Publication Publication Date Title
JP6962191B2 (en) Manufacturing method of fiber reinforced plastic and fiber reinforced plastic
JP6481778B2 (en) Composite structure and manufacturing method thereof
CN107614579B (en) Tape-shaped prepreg and fiber-reinforced molded article
TWI709482B (en) Base material laminate and manufacturing method of fiber reinforced plastic
TWI793144B (en) Prepreg laminate and method for producing fiber-reinforced plastic using prepreg laminate
JP6907503B2 (en) Manufacturing method of cross-ply laminate and fiber reinforced plastic
JP7099318B2 (en) Fiber reinforced plastic
CN113728038A (en) Method for producing fiber-reinforced composite material molded article, reinforced fiber base material, and fiber-reinforced composite material molded article
JP6977709B2 (en) Manufacturing method of fiber reinforced plastic
JP6947163B2 (en) Manufacturing method of fiber reinforced plastic
JP7447791B2 (en) Notch prepreg and fiber reinforced plastic
WO2022050213A1 (en) Thermoplastic prepreg, fiber-reinforced plastic, and manufacturing method therefor
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
JP6965530B2 (en) Notch prepreg and method of manufacturing notch prepreg
JPH0661883B2 (en) Carbon fiber reinforced resin molded article having fine uneven surface and method for producing the same
JP2024020028A (en) fiber reinforced composite material
JP2024024408A (en) Fiber-reinforced composite material and method for producing fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220613

R151 Written notification of patent or utility model registration

Ref document number: 7099318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151