JPWO2018212179A1 - Manufacturing method of sheet-like resin molding - Google Patents

Manufacturing method of sheet-like resin molding Download PDF

Info

Publication number
JPWO2018212179A1
JPWO2018212179A1 JP2019518802A JP2019518802A JPWO2018212179A1 JP WO2018212179 A1 JPWO2018212179 A1 JP WO2018212179A1 JP 2019518802 A JP2019518802 A JP 2019518802A JP 2019518802 A JP2019518802 A JP 2019518802A JP WO2018212179 A1 JPWO2018212179 A1 JP WO2018212179A1
Authority
JP
Japan
Prior art keywords
sheet
resin
thermoplastic resin
stretching
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019518802A
Other languages
Japanese (ja)
Other versions
JP6783480B2 (en
Inventor
祐一郎 角
重樹 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TBM Co Ltd
Original Assignee
TBM Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TBM Co Ltd filed Critical TBM Co Ltd
Publication of JPWO2018212179A1 publication Critical patent/JPWO2018212179A1/en
Application granted granted Critical
Publication of JP6783480B2 publication Critical patent/JP6783480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/28Shaping by stretching, e.g. drawing through a die; Apparatus therefor of blown tubular films, e.g. by inflation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

少なくともポリオレフィンを主たる成分とする熱可塑性樹脂および無機充填材を含有する樹脂組成物をシート状に製膜するシート状樹脂成形体の製造方法であって、該樹脂組成物は該熱可塑性樹脂と無機充填材の質量比が、15:85〜50:50であり、混練後環状ダイから押し出された該シートを、該熱可塑性樹脂の融点以上の温度でインフレーション法により延伸する第1工程、および少なくとも製膜方向および製膜方向に垂直な方向のいずれか一方に延伸する第2工程を有する、シート状樹脂成形体の製造方法。A method for producing a sheet-shaped resin molded article, in which a resin composition containing at least a thermoplastic resin mainly comprising polyolefin and an inorganic filler is formed into a sheet shape, the resin composition comprising the thermoplastic resin and an inorganic material A first step in which the mass ratio of the filler is 15:85 to 50:50, and the sheet extruded from the annular die after kneading is stretched by an inflation method at a temperature equal to or higher than the melting point of the thermoplastic resin, and at least The manufacturing method of a sheet-like resin molding which has a 2nd process extended | stretched in any one of a film forming direction and the direction perpendicular | vertical to a film forming direction.

Description

本発明は、強度特性および白色度に優れたシート状樹脂成形体の製造方法に関する。   The present invention relates to a method for producing a sheet-shaped resin molded article having excellent strength characteristics and whiteness.

従来より、無機粒子を高充填した樹脂組成物を、溶融成形することによりシート状樹脂成形体を製造することが行われてきた(特許文献1、2)。これらのシート状樹脂成形体は、合成紙としての用途に使用される場合、強度だけでなく白色度も必要とされ、インフレーション法で二軸延伸による製造も行われている。   Conventionally, a sheet-like resin molded body has been manufactured by melt-molding a resin composition highly filled with inorganic particles (Patent Documents 1 and 2). When these sheet-like resin moldings are used for applications as synthetic paper, not only strength but also whiteness is required, and production by biaxial stretching is also performed by an inflation method.

特開2011−31623号公報JP 2011-31623 A 特許第5461614号Patent No. 5461614

しかしながら前記のインフレーション法による製造方法では、強度および白色度の双方を十分に満足させることができず、さらに比重が十分に下がらず用途が限定されてきた。   However, the above-described production method based on the inflation method cannot sufficiently satisfy both the strength and the whiteness, and the specific gravity is not sufficiently lowered, so that the application has been limited.

本発明は、強度および白色度に優れ、かつ低比重のシート状樹脂成形体の製造方法の提供を目的とする。   An object of this invention is to provide the manufacturing method of the sheet-like resin molding which is excellent in intensity | strength and whiteness, and has low specific gravity.

本発明の前記目的は、下記によって達成された。   The object of the present invention has been achieved by the following.

(1)少なくともポリオレフィンを主たる成分とする熱可塑性樹脂および無機充填材を含有する樹脂組成物をシート状に製膜するシート状樹脂成形体の製造方法であって、該樹脂組成物は該熱可塑性樹脂と無機充填材の質量比が、15:85〜50:50であり、混練後環状ダイから押し出された該シートを、該熱可塑性樹脂の融点以上の温度でインフレーション法により延伸する第1工程、および少なくとも製膜方向および製膜方向に垂直な方向のいずれか一方に延伸する第2工程を有する、シート状樹脂成形体の製造方法。
(2)前記第2工程が、同時二軸延伸もしくは逐次二軸延伸である前記(1)記載のシート状樹脂成形体の製造方法。
(1) A method for producing a sheet-shaped resin molded body in which a resin composition containing at least a thermoplastic resin mainly comprising polyolefin and an inorganic filler is formed into a sheet shape, wherein the resin composition is the thermoplastic resin. The first step in which the mass ratio of the resin and the inorganic filler is 15:85 to 50:50, and the sheet extruded from the annular die after kneading is stretched by the inflation method at a temperature equal to or higher than the melting point of the thermoplastic resin. And the manufacturing method of a sheet-like resin molding which has a 2nd process extended | stretched to any one of the direction perpendicular | vertical to a film forming direction and a film forming direction at least.
(2) The method for producing a sheet-shaped resin molded article according to (1), wherein the second step is simultaneous biaxial stretching or sequential biaxial stretching.

本発明によれば、第1工程で、融点以上で延伸することにより、いわゆる溶融延伸が行われてシート強度が向上する。しかし、フィラーが存在してもシート内における空隙の増加が少なく、従ってシートの白色度向上や密度低下が少ない。そこで、第2工程で、使用樹脂の融点以下で延伸をかけシート内に空隙を発生させて、強度および白色度に優れ、且つ低比重のシート状樹脂成形体を得ることができる。   According to the present invention, in the first step, by stretching at a melting point or higher, so-called melt stretching is performed and sheet strength is improved. However, even if the filler is present, there is little increase in voids in the sheet, and therefore there is little improvement in the whiteness of the sheet and a decrease in density. Therefore, in the second step, a sheet-shaped resin molded article having excellent strength and whiteness and low specific gravity can be obtained by stretching at a temperature lower than the melting point of the resin used to generate voids in the sheet.

本発明のインフレーション装置を示す図である。It is a figure which shows the inflation apparatus of this invention.

以下、本発明の実施形態について詳細に述べる。
本発明のシート状樹脂成形体の製造方法は、少なくともポリオレフィンを主たる成分とする熱可塑性樹脂および無機充填材を含有する樹脂組成物をシート状に製膜するシート状樹脂成形体の製造方法であって、該樹脂組成物は該熱可塑性樹脂と無機充填材の質量比が、15:85〜50:50であり、混練後環状ダイから押し出されたシートを、該熱可塑性樹脂の融点以上の温度でインフレーション法により延伸する第1工程、および少なくとも製膜方向および製膜方向に垂直な方向のいずれか一方に延伸する第2工程を有する、ことを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
The method for producing a sheet-shaped resin molded body of the present invention is a method for producing a sheet-shaped resin molded body in which a resin composition containing a thermoplastic resin containing at least a polyolefin as a main component and an inorganic filler is formed into a sheet shape. The resin composition has a mass ratio of the thermoplastic resin to the inorganic filler of 15:85 to 50:50, and the sheet extruded from the annular die after kneading is heated to a temperature equal to or higher than the melting point of the thermoplastic resin. The method includes a first step of stretching by an inflation method and a second step of stretching in at least one of the film forming direction and a direction perpendicular to the film forming direction.

<熱可塑性樹脂および無機充填材を含有する樹脂組成物>
本発明の樹脂組成物は、少なくともポリオレフィンを主たる成分とする熱可塑性樹脂および無機充填材を含有し、該熱可塑性樹脂と無機充填材の質量比が、15:85〜50:50であることを特徴とする。
≪熱可塑性樹脂≫
本発明の熱可塑性樹脂として、ポリオレフィン樹脂を主たる成分とする。主たる成分とは、熱可塑性樹脂として50質量%以上含有するこという。
<Resin composition containing thermoplastic resin and inorganic filler>
The resin composition of the present invention contains at least a thermoplastic resin mainly composed of polyolefin and an inorganic filler, and the mass ratio of the thermoplastic resin to the inorganic filler is 15:85 to 50:50. Features.
≪Thermoplastic resin≫
As the thermoplastic resin of the present invention, a polyolefin resin is a main component. The main component is to contain 50% by mass or more as a thermoplastic resin.

具体的には、ポリエチレン(高密度、低密度、超高分子量)、ポリプロピレン、ポリシクロオレフィン等を挙げることができ、融点、弾性率を考慮し、適宜1種以上を選択することができる。   Specific examples include polyethylene (high density, low density, ultrahigh molecular weight), polypropylene, polycycloolefin, and the like, and one or more can be selected as appropriate in consideration of the melting point and the elastic modulus.

メルトマスフローレイト(MFR)は、0.02g/10分以上2.0g/10分以下であることが好ましく、0.1g/10以上1.0g/10分以下であることがより好ましい(JIS K 7210に準じて測定)。具体的には、メルトインデクサーにより、荷重21.18N、ポリプロピレン樹脂においては温度230℃、ポリエチレン樹脂に関しては190℃の条件でメルトフローレイトを測定する方法がある
ポリオレフィン樹脂の市販品としては、京葉ポリエチレン(株)製B5803(MFR=0.30)、同F3001(MFR=0.04)、PTT社製7000F(MFR=0.04)、SCG社製H5604(MFR=0.04)等を好ましく挙げることができる。
The melt mass flow rate (MFR) is preferably 0.02 g / 10 min or more and 2.0 g / 10 min or less, more preferably 0.1 g / 10 or more and 1.0 g / 10 min or less (JIS K). Measured according to 7210). Specifically, there is a method of measuring the melt flow rate with a melt indexer under the conditions of a load of 21.18 N, a temperature of 230 ° C. for a polypropylene resin, and a temperature of 190 ° C. for a polyethylene resin. Preferred are B5803 (MFR = 0.30) manufactured by Polyethylene Co., Ltd., F3001 (MFR = 0.04), 7000F manufactured by PTT (MFR = 0.04), H5604 manufactured by SCG (MFR = 0.04), and the like. Can be mentioned.

≪無機充填材≫
本発明の無機充填材は特に限定されないが、例えば炭酸カルシウム、酸化チタン、シリカ、クレー、タルク、カオリン、水酸化アルミニウム、硫酸カルシウム、硫酸バリウム、マイカ、酸化亜鉛、ドロマイト、ガラス繊維、中空ガラス等を挙げることができる。好ましくは炭酸カルシウムである。炭酸カルシウムに酸化チタンを混合して使用することも好ましい。この場合酸化チタンは、炭酸カルシウムに対し0.1〜30質量%の範囲で使用することが好ましい。
≪Inorganic filler≫
The inorganic filler of the present invention is not particularly limited. For example, calcium carbonate, titanium oxide, silica, clay, talc, kaolin, aluminum hydroxide, calcium sulfate, barium sulfate, mica, zinc oxide, dolomite, glass fiber, hollow glass, etc. Can be mentioned. Preferably it is calcium carbonate. It is also preferable to use calcium carbonate mixed with titanium oxide. In this case, it is preferable to use titanium oxide in the range of 0.1 to 30% by mass with respect to calcium carbonate.

無機充填材は無機粒子の形状で含有され、粒状、針状、偏平状いずれも使用することができる。平均粒径は、0.01〜20μm(レーザー回折式粒度分布測定装置で測定した、積算%の分布曲線から得られる50%粒子径(d50))のものを適宜使用することができる。   The inorganic filler is contained in the form of inorganic particles, and any of granular, acicular, and flat shapes can be used. An average particle diameter of 0.01 to 20 μm (50% particle diameter (d50) obtained from an integrated% distribution curve measured with a laser diffraction particle size distribution analyzer) can be used as appropriate.

≪樹脂組成物≫
本発明の樹脂組成物は、少なくとも熱可塑性樹脂と無機充填材を有し、無機充填材は、樹脂組成物の50質量%以上、好ましくは70質量%以上85質量%以下である。熱可塑性樹脂は、樹脂組成物の1質量%以上50質量%以下であることが好ましい。
≪Resin composition≫
The resin composition of the present invention has at least a thermoplastic resin and an inorganic filler, and the inorganic filler is 50% by mass or more, preferably 70% by mass or more and 85% by mass or less of the resin composition. The thermoplastic resin is preferably 1% by mass or more and 50% by mass or less of the resin composition.

本発明の樹脂組成物においては、他に、滑剤、酸化防止剤、紫外線吸収剤、着色用顔料、分散剤、相溶化剤、帯電防止剤、難燃剤等の中から選ばれる1種以上の補助剤を、目的に反しない範囲で添加することができる。好ましくは、樹脂組成物の0.1〜5質量%である。   In the resin composition of the present invention, in addition, one or more auxiliary agents selected from a lubricant, an antioxidant, an ultraviolet absorber, a coloring pigment, a dispersant, a compatibilizer, an antistatic agent, a flame retardant, and the like. An agent can be added within a range not detrimental to the purpose. Preferably, it is 0.1-5 mass% of a resin composition.

<樹脂組成物をシート状に成膜する工程>
本発明の樹脂組成物をシート状に製膜する工程は、第1工程と第2工程を有することを特徴とする。
<Process for forming a resin composition into a sheet>
The step of forming the resin composition of the present invention into a sheet has a first step and a second step.

本発明の第1工程は、主にシート状物の強度を向上するために行われるものであり、第2工程は、主にシート状物の白色度を向上させ、比重を下げるために行われるものである。   The first step of the present invention is mainly performed to improve the strength of the sheet-like material, and the second step is mainly performed to improve the whiteness of the sheet-like material and lower the specific gravity. Is.

≪第1工程≫
本発明の第1工程は、インフレーション法に含まれる延伸工程である。インフレーション法では、通常公知の装置を使用することができ、例えば特開2011−31623号に記載の装置を適用することができる。
≪First process≫
The first step of the present invention is a stretching step included in the inflation method. In the inflation method, a generally known device can be used, for example, a device described in JP2011-31623A can be applied.

延伸温度は、熱可塑性樹脂の融点によって適宜選択されるが、熱可塑性樹脂の融点以上の温度であることが必要とされる。無機充填材が多い系では、延伸温度を高温で行うほどシートの強度特性が向上し、樹脂の融点以上で延伸を行うことは強度の点で非常に有効である。例えば、高密度ポリエチレンの場合には、120〜140℃程度の融点を有し、低密度ポリエチレンの融点は95〜130℃程度、ポリプロピレンでは165〜168℃程度であることから、それぞれの融点以上の温度で延伸を行う必要がある。上限は、熱可塑性樹脂や添加剤の熱安定性から、延伸前の押出時の溶融温度までの範囲であることが好ましい。さらに好ましくは、融点よりも50℃高い温度までの範囲で、適宜定めることができる。   The stretching temperature is appropriately selected depending on the melting point of the thermoplastic resin, but is required to be a temperature equal to or higher than the melting point of the thermoplastic resin. In a system with many inorganic fillers, the strength characteristics of the sheet are improved as the stretching temperature is increased, and it is very effective in terms of strength to perform stretching at a temperature higher than the melting point of the resin. For example, in the case of high-density polyethylene, it has a melting point of about 120 to 140 ° C, the melting point of low-density polyethylene is about 95 to 130 ° C, and that of polypropylene is about 165 to 168 ° C. It is necessary to stretch at a temperature. The upper limit is preferably in the range from the thermal stability of the thermoplastic resin and additives to the melting temperature at the time of extrusion before stretching. More preferably, it can be determined as appropriate within a range up to a temperature 50 ° C. higher than the melting point.

図1を以て説明すると、本発明の延伸温度とは、環状ダイから押し出された直後の1の温度調整部位での温度をいう。延伸前の押出時の溶融温度とは、2での温度をいう。
なお、融点とは、示差走査型熱量測定装置(DSC)の熱分析において、結晶の融解に伴う吸熱ピークの最大温度をいうものとする。
Referring to FIG. 1, the stretching temperature of the present invention refers to the temperature at one temperature adjustment site immediately after being extruded from the annular die. The melting temperature at the time of extrusion before stretching refers to the temperature at 2.
The melting point means the maximum temperature of the endothermic peak accompanying the melting of the crystal in the thermal analysis of the differential scanning calorimeter (DSC).

延伸倍率は、1.01〜10倍の範囲で適宜選択することができる。二軸延伸の場合、製膜する方向の軸に垂直な方向(以下TD方向と略す)にも、1.1〜8倍の範囲で延伸することが好ましい。延伸条件は、製品の必要特性をもとに条件を決定することができる。   A draw ratio can be suitably selected in the range of 1.01 to 10 times. In the case of biaxial stretching, the film is preferably stretched in the range of 1.1 to 8 times in a direction perpendicular to the axis of the film forming direction (hereinafter abbreviated as TD direction). The stretching conditions can be determined based on the required characteristics of the product.

≪第2工程≫
本発明の第2工程は、すくなくとも製膜方向(以下MD方向と略す)および製膜方向に垂直な方向(以下TD方向と略す)のいずれかにする延伸工程であり、同時二軸延伸工程または逐次二軸延伸工程であってもよい。同時二軸延伸としては、第1延伸工程と同じ工程とすることができ、逐次延伸工程では、そのMD方向、TD方向の延伸を、時間をずらせてすることができる。第2段階の二軸延伸工程は、インフレーション法、またはロール延伸法による縦延伸工程であることが好ましく、特に白色度を向上させる点でロール延伸法による縦延伸工程であることが好ましい。
≪Second process≫
The second step of the present invention is a stretching step which is at least one of a film forming direction (hereinafter abbreviated as MD direction) and a direction perpendicular to the film forming direction (hereinafter abbreviated as TD direction). It may be a sequential biaxial stretching step. Simultaneous biaxial stretching can be the same step as the first stretching step, and in the sequential stretching step, the stretching in the MD direction and the TD direction can be shifted with time. The biaxial stretching step in the second stage is preferably a longitudinal stretching step by an inflation method or a roll stretching method, and particularly preferably a longitudinal stretching step by a roll stretching method in terms of improving whiteness.

延伸温度は、熱可塑性樹脂によって適宜定められるが、第1延伸工程の延伸温度よりも5〜70℃低い温度であることが好ましい。延伸倍率も第1延伸工程と同様の延伸倍率の範囲で、適宜選択することができる。ロール延法伸では、例えば二組の金属ニップロールの周速差によって延伸倍率を調整することができる。ロールはクラウン形状を有するものも好ましく使用することができる。   The stretching temperature is appropriately determined depending on the thermoplastic resin, but it is preferably 5 to 70 ° C. lower than the stretching temperature in the first stretching step. The draw ratio can also be appropriately selected within the range of the draw ratio similar to the first stretching step. In roll drawing, for example, the draw ratio can be adjusted by the difference in peripheral speed between two sets of metal nip rolls. A roll having a crown shape can also be preferably used.

第1工程と第2工程とは、連続で行うことが好ましく、例えば特公昭51−12669号、特開平6−340032号記載の装置を適用することができる。
第1工程と第2工程の間に、温度を調節する工程を有することも好ましい。
The first step and the second step are preferably carried out continuously. For example, apparatuses described in JP-B 51-12669 and JP-A-6-340032 can be applied.
It is also preferable to have a step of adjusting the temperature between the first step and the second step.

<曲げ処理工程>
本発明においては、前述の2工程以外に、明確に倍率を規定した延伸ではないものの、対象物であるシート、フィルムをMD方向に移動させている途中、結晶配向軸に直角な方向の固形物体に押し付けるように接触させ、折り曲げ状態を発生する工程を含んでもよい。この方法としては、例えば、WO2015/060271号公報に記載の方法を採用することができる。
<Bending process>
In the present invention, in addition to the above-mentioned two steps, the solid object in a direction perpendicular to the crystal orientation axis is in the process of moving the target sheet or film in the MD direction, although the stretching is not clearly defined. The method may include a step of bringing a contact state so as to be pressed and generating a bent state. As this method, for example, a method described in WO2015 / 060271 can be employed.

本発明では、上記第2工程を経たシート(以下単にシートと略すこともある)の表面に、棒、板またははりのような長尺の固形物体を、その長尺方向がシートの搬送方向(機械方向、MD方向)を横断するように押し当て、上記シートを曲げ処理する工程を設けることが好ましい。その際に、固形物体のシートへの当接部分にて、上記シートが折り曲げられて屈曲した状態で、上記物体と上記シートとを相対的に移動させるようにして応力を加えることが好ましい。   In the present invention, a long solid object such as a rod, a plate or a beam is placed on the surface of the sheet that has undergone the second step (hereinafter sometimes simply referred to as a sheet), and the longitudinal direction is the sheet conveyance direction ( It is preferable to provide a step of bending the sheet by pressing so as to cross the machine direction and the MD direction. At that time, it is preferable to apply a stress so that the object and the sheet are relatively moved in a state where the sheet is bent and bent at a contact portion of the solid object with the sheet.

本発明では、曲げ処理は、シートの表面または裏面に対し少なくとも一度行うとよい。前記曲げ処理は、シートの表面および裏面のいずれかのみ、あるいは、双方に対し行うことができる。そり防止の点からは、曲げ処理をシートの両面に対し行うことが好ましい。   In the present invention, the bending treatment may be performed at least once on the front surface or the back surface of the sheet. The bending process can be performed on only one or both of the front surface and the back surface of the sheet. From the viewpoint of preventing warpage, it is preferable to perform the bending process on both sides of the sheet.

曲げ処理をシートの表面および裏面の両方に行う場合は、曲げ処理を表面および裏面に対し連続して行うことも、表面あるいは裏面のいずれかに対し先に曲げ処理を行った後、改めて反対側の面に対して曲げ処理を行うこともできる。また、第2工程後のシートを一旦ロールに巻き取り原反ロールを作製した後、該原反ロールに対して曲げ処理を行うこともできるし、シートの製造と曲げ処理を連続的に行うこともできるが、連続的に行うことが好ましい。   When performing the bending process on both the front and back surfaces of the sheet, the bending process can be performed continuously on the front surface and the back surface, or after the first bending process is performed on either the front surface or the back surface, It is also possible to perform a bending process on the surface. Moreover, after winding the sheet | seat after a 2nd process once to a roll and producing an original fabric roll, a bending process can also be performed with respect to this original fabric roll, and manufacture and a bending process of a sheet | seat are performed continuously. However, it is preferable to carry out continuously.

本発明における固形物体は、種々の幅を有するシートへ当接させて一定の押圧力をもってシートに押し当てるため、長尺の部材を採用することが有効である。具体的には、棒、板、または、はりのような形状を有する部材とすることができる。板部材を使用する場合は、その端部を押圧するための部位として使用する。   Since the solid object in the present invention is brought into contact with a sheet having various widths and pressed against the sheet with a constant pressing force, it is effective to employ a long member. Specifically, it can be a member having a shape such as a bar, a plate, or a beam. When using a plate member, it uses as a part for pressing the end.

シートの幅方向の各位置にバラツキのない圧力を印加するためには、前記固形物体の長手方向の長さを、シートの幅方向(MD方向またはTD方向)よりも十分長くし、成形シートの搬送方向を横断するように配置することが好ましい。その際、固形物体の長手方向と成形シートの搬送方向とは垂直または垂直近傍とすることが、シートの幅方向の各位置において、バラツキのない押圧力を印加するうえで好ましい。
固形物体の長手方向とシートの搬送方向との角度は垂直であることが望ましいが、たとえば、垂直に対し、±20度、好ましくは±10度、さらに好ましくは±5度の範囲に設定することができる。
In order to apply pressure without variation to each position in the width direction of the sheet, the length of the solid object in the longitudinal direction is sufficiently longer than the width direction (MD direction or TD direction) of the sheet, It is preferable to arrange so as to cross the transport direction. At that time, it is preferable that the longitudinal direction of the solid object and the conveying direction of the formed sheet be perpendicular or close to each other in order to apply a pressing force without variation at each position in the width direction of the sheet.
It is desirable that the angle between the longitudinal direction of the solid object and the conveying direction of the sheet is vertical, but for example, it is set within a range of ± 20 degrees, preferably ± 10 degrees, more preferably ± 5 degrees with respect to the vertical. Can do.

本発明における固形物体の材質は特に限定されるものではなく、目的に応じ周知の材質の中から選択することができる。たとえば、SUS等の各種金属材料、FRP等を挙げることができるが、これらに限定されるものではない。シートの幅方向に、バラツキのない、均一な応力を印加するため、固形物体の材質として、剛性の高い材質を選ぶことが好ましい。   The material of the solid object in the present invention is not particularly limited, and can be selected from well-known materials according to the purpose. For example, various metal materials such as SUS, FRP, and the like can be mentioned, but are not limited thereto. In order to apply a uniform stress without variation in the width direction of the sheet, it is preferable to select a material having high rigidity as the material of the solid object.

本発明における固形物体を長手方向視した場合の断面形状は、円、楕円、三角形、方形、その他多角形等、特に限定されることなく採用することが可能である。三角形、方形またはその他多角形を使用することにより、一つの固形物体により、同時に2回以上の曲げ処理を行うこともできる。   The cross-sectional shape when the solid object in the present invention is viewed in the longitudinal direction can be adopted without particular limitation, such as a circle, an ellipse, a triangle, a square, and other polygons. By using triangles, squares, or other polygons, a single solid object can be bent twice or more at the same time.

さらに、上記固形物体と成形シートの当接部分の断面形状は、シートが破断しない程度に鋭角な角部を有するか、または、曲率半径が小さいR部を有することが望ましい。固形物体のシートへの当接部分の形状を上記のようになすことにより、シートに十分な垂直力(フィルムの厚さ方向に印加する力)を与える事ができ、その結果、成形シートに対する取扱い性や型追従性が向上する。   Furthermore, it is desirable that the cross-sectional shape of the contact portion between the solid object and the molded sheet has an acute corner that does not break the sheet, or an R portion having a small curvature radius. By making the shape of the contact portion of the solid object to the sheet as described above, a sufficient vertical force (force applied in the thickness direction of the film) can be applied to the sheet, and as a result, the sheet can be handled. And mold followability are improved.

前記シートを引っ張りながら、前記固形物体との当接部分で折り曲げられるような状態にして、曲げ処理を行うと、フィラーが高充填されたシートの強度を向上させることができる。これは、シートの内部に引張応力が働いている過程で、固形物体の当接により強い垂直力が働くと、成形シートの厚さ方向に垂直応力が作用し、その結果、シートの搬送方向に剪断応力が発生してシート内部構造を弛緩させると考えている。   When the sheet is bent at the contact portion with the solid object while being pulled, the bending process can be performed to improve the strength of the sheet highly filled with the filler. This is a process in which tensile stress is applied to the inside of the sheet, and if a strong vertical force is applied due to the contact of the solid object, the vertical stress acts in the thickness direction of the molded sheet, and as a result, in the sheet conveying direction. It is considered that shear stress is generated to relax the internal structure of the sheet.

本発明の曲げ処理において、上記固形物体を一つのみ使用しても構わないが、2つ以上の固形物体を同時に使用することも可能である。   In the bending process of the present invention, only one solid object may be used, but two or more solid objects may be used simultaneously.

<シート状樹脂成形体>
本発明のシート状樹脂成形体は、膜厚が25〜300μmであり、白色度は78〜95%(JIS P8148に準じて測定)、不透明度は80〜95%(JIS P8149に準じて測定)である。好ましくは、白色度は80〜92%であり、不透明度は85〜92%である。見かけ比重(JIS K 7112)は、白色度の点から0.55〜1.40であることが好ましい。
本発明のシート状樹脂成形体は合成紙等として有用である。
<Sheet-shaped resin molding>
The sheet-shaped resin molded product of the present invention has a film thickness of 25 to 300 μm, whiteness of 78 to 95% (measured according to JIS P8148), and opacity of 80 to 95% (measured according to JIS P8149). It is. Preferably, the whiteness is 80-92% and the opacity is 85-92%. The apparent specific gravity (JIS K 7112) is preferably 0.55 to 1.40 in terms of whiteness.
The sheet-like resin molded product of the present invention is useful as a synthetic paper or the like.

(実施例1)
樹脂組成物として高密度ポリエチレン樹脂(京葉ポリエチレン(株)製B5803 MFR=0.30)と炭酸カルシウム粉末(ライトンS4平均粒径5.7μm備北粉化工業(株)製)とを、質量比40:60となるように調節し、更に、グリセロールモノステアレート(リケマールAS−003理研ビタミン(株)製)を樹脂組成物の1質量%となるように配合して、HTM50型異方向回転式二軸押出機((株)シーティーイー製)を用いて溶融混合、混練して原料ペレットを調製した。
Example 1
As a resin composition, a high-density polyethylene resin (B5803 MFR = 0.30 manufactured by Keiyo Polyethylene Co., Ltd.) and calcium carbonate powder (Ryton S4 average particle size 5.7 μm, manufactured by Bihoku Powdered Industries Co., Ltd.) are used in a mass ratio of 40. : 60, and glycerol monostearate (Rikemar AS-003 manufactured by Riken Vitamin Co., Ltd.) is blended so as to be 1% by mass of the resin composition. Raw material pellets were prepared by melt mixing and kneading using a shaft extruder (CTC Co., Ltd.).

上記ペレットをインフレーション装置(ダイ口径100mm住友重機モダン(株)製)にて、溶融温度210℃、ダイス出口温度190℃でダイス出口からシートを袋状に押出し、袋状シートの中にブロー比2.7倍となるように空気を押し込み、引取り方向に対し垂直な方向に2.7倍、引取り方向速度23.6m/分で2.7倍、190℃で同時二軸第1延伸を行った。この時点のシート状樹脂組成物は、厚み197μm、密度1.382g/cm、弾性率1047MPa、白色度78.1%であった。The pellet was extruded into a bag shape from a die outlet at a melting temperature of 210 ° C. and a die outlet temperature of 190 ° C. using an inflation device (die diameter: 100 mm, manufactured by Sumitomo Heavy Industries Modern Co., Ltd.). Air is pushed in so that it becomes 7 times, 2.7 times in the direction perpendicular to the take-up direction, 2.7 times at a take-up direction speed of 23.6 m / min, and simultaneous biaxial first stretching at 190 ° C. went. The sheet-shaped resin composition at this time had a thickness of 197 μm, a density of 1.382 g / cm 3 , an elastic modulus of 1047 MPa, and a whiteness of 78.1%.

さらに、それらのシートを、テンター式実験用二軸延伸装置(高温用東洋精機製作所製)を用い、45℃、60℃、70℃、延伸倍率MD、TDがいずれも1.2倍、1.5倍、2倍、10m/minの速度で、同時二軸第2延伸した試料を得た。強度は弾性率をもって評価し、JIS−C−2051に準じた引張弾性率で示した。比重はJIS−K−6760に準じた密度を求めた。結果を表1に示す。なお、各測定は、23℃55%RHの雰囲気下で行った。   Furthermore, these sheets were subjected to a tenter type experimental biaxial stretching apparatus (manufactured by Toyo Seiki Seisakusho for high temperature) at 45 ° C., 60 ° C., 70 ° C., and draw ratios MD and TD were all 1.2 times. Simultaneously biaxial second stretched samples were obtained at a speed of 5 times, 2 times, and 10 m / min. The strength was evaluated based on the elastic modulus and indicated by a tensile elastic modulus according to JIS-C-2051. The specific gravity determined the density according to JIS-K-6760. The results are shown in Table 1. Each measurement was performed in an atmosphere of 23 ° C. and 55% RH.

Figure 2018212179
Figure 2018212179

(実施例2)
樹脂組成物として高密度ポリエチレン樹脂(京葉ポリエチレン(株)製F3001 MFR=0.04)と炭酸カルシウム粉末(ライトンS4平均粒径5.7μm備北粉化工業(株)製)とを、質量比30:70となるように調節し、更に、グリセロールモノステアレート(リケマールAS−003理研ビタミン(株)製)を樹脂組成物の1質量%となるように配合して、HTM50型異方向回転式二軸押出機((株)シーティーイー製)を用いて溶融混合、混練して原料ペレットを調製した。
(Example 2)
As a resin composition, a high-density polyethylene resin (F3001 MFR = 0.04 manufactured by Keiyo Polyethylene Co., Ltd.) and calcium carbonate powder (Ryton S4 average particle size 5.7 μm manufactured by Bihoku Powdered Industries Co., Ltd.) are used at a mass ratio of 30. : 70, and glycerol monostearate (Rikemar AS-003 manufactured by Riken Vitamin Co., Ltd.) is blended so as to be 1% by mass of the resin composition. Raw material pellets were prepared by melt mixing and kneading using a shaft extruder (CTC Co., Ltd.).

上記ペレットをインフレーション装置(ダイ口径85mプラコー(株)製)にて、溶融温度180℃、ダイス出口温度190℃、ダイス出口からシートを袋状に押出し、袋状シートの中にブロー比2.0倍となるように空気を押し込み、引取り方向に対し垂直な方向に2.0倍、引取り速度15.0m/分2.0倍となるように190℃で同時二軸第1延伸を行った。この時点のシート状樹脂組成物は、厚み90μm、密度1.390g/cm、弾性率761.3MPa(引き取り方向)335.2MPa(引き取り方向と垂直方向)、白色度87.2%であった。The above pellets were extruded into a bag shape from a die outlet with a melt temperature of 180 ° C., a die outlet temperature of 190 ° C. using an inflation device (die diameter: 85 m, manufactured by Placo Corporation), and a blow ratio of 2.0 was inserted into the bag-like sheet. Air is pushed in so that it is doubled, and simultaneous biaxial first stretching is performed at 190 ° C. so as to be 2.0 times perpendicular to the take-up direction and take-up speed 15.0 m / min 2.0 times. It was. The sheet-shaped resin composition at this time had a thickness of 90 μm, a density of 1.390 g / cm 3 , an elastic modulus of 761.3 MPa (take-up direction), 335.2 MPa (perpendicular to the take-up direction), and a whiteness of 87.2%. .

さらにそれらのシートを、ロール式一軸延伸装置(ヒラノ技研製)を用い、120℃でMD方向(インフレーション時ロール引き取り方向)に2.0倍延伸した試料を得た。強度は弾性率をもって評価し、JIS−C−2051に準じた引張弾性率で示した。比重はJIS−K−6760に準じた密度を求めた。結果を表2に示す。なお、各測定は、23℃55%RHの雰囲気下で行った。   Furthermore, using a roll type uniaxial stretching apparatus (manufactured by Hirano Giken), a sample obtained by stretching the sheet 2.0 times in the MD direction (the roll take-up direction during inflation) was obtained. The strength was evaluated based on the elastic modulus and indicated by a tensile elastic modulus according to JIS-C-2051. The specific gravity determined the density according to JIS-K-6760. The results are shown in Table 2. Each measurement was performed in an atmosphere of 23 ° C. and 55% RH.

Figure 2018212179
上記表1、2で示す通り2段階延伸した場合に強度、白色度の改善が顕著である。
Figure 2018212179
As shown in Tables 1 and 2 above, the improvement in strength and whiteness is remarkable when the film is stretched in two stages.

1 延伸時の温度調節器
2 環状ダイ
3 押出機
4 樹脂組成物パイプ
5 ニップロール
6 ガイドロール
DESCRIPTION OF SYMBOLS 1 Temperature controller 2 at the time of drawing 2 Ring die 3 Extruder 4 Resin composition pipe 5 Nip roll 6 Guide roll

Claims (3)

少なくともポリオレフィンを主たる成分とする熱可塑性樹脂および無機充填材を含有する樹脂組成物をシート状に製膜するシート状樹脂成形体の製造方法であって、該樹脂組成物は該熱可塑性樹脂と無機充填材の質量比が、15:85〜50:50であり、混練後環状ダイから押し出されたシートを、該熱可塑性樹脂の融点以上の温度でインフレーション法により延伸する第1工程、および少なくとも製膜方向および製膜方向に垂直な方向のいずれか一方に延伸する第2工程を有するシート状樹脂成形体の製造方法。   A method for producing a sheet-shaped resin molded body, comprising forming a resin composition containing at least a thermoplastic resin mainly comprising polyolefin and an inorganic filler into a sheet shape, the resin composition comprising the thermoplastic resin and an inorganic material. A first step in which the mass ratio of the filler is 15:85 to 50:50, and the sheet extruded from the annular die after kneading is stretched by an inflation method at a temperature equal to or higher than the melting point of the thermoplastic resin; The manufacturing method of the sheet-like resin molding which has a 2nd process extended | stretched in any one of a film | membrane direction and the direction perpendicular | vertical to a film forming direction. 前記第2工程が、ロール延伸工程である請求項1記載のシート状樹脂成形体の製造方法。   The method for producing a sheet-shaped resin molded body according to claim 1, wherein the second step is a roll stretching step. 前記第2工程の後、前記シートを搬送方向に移動させる途中で、前記シートの表面に固体物体を押し付け、その当接部分において前記シートを折り曲げた状態にすることにより、前記シートの内部に作用する応力を発生させる曲げ処理工程を有する、請求項1または2に記載のシート状樹脂成形体の製造方法。   After the second step, in the middle of moving the sheet in the conveying direction, a solid object is pressed against the surface of the sheet, and the sheet is bent at the contact portion to act on the inside of the sheet. The manufacturing method of the sheet-like resin molding of Claim 1 or 2 which has the bending process process which generate | occur | produces the stress to perform.
JP2019518802A 2017-05-16 2018-05-15 Manufacturing method of sheet-shaped resin molded product Active JP6783480B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017097331 2017-05-16
JP2017097331 2017-05-16
PCT/JP2018/018759 WO2018212179A1 (en) 2017-05-16 2018-05-15 Method for producing sheet-shaped resin object

Publications (2)

Publication Number Publication Date
JPWO2018212179A1 true JPWO2018212179A1 (en) 2019-11-07
JP6783480B2 JP6783480B2 (en) 2020-11-11

Family

ID=64273796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019518802A Active JP6783480B2 (en) 2017-05-16 2018-05-15 Manufacturing method of sheet-shaped resin molded product

Country Status (3)

Country Link
JP (1) JP6783480B2 (en)
TW (1) TW201908376A (en)
WO (1) WO2018212179A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112669B1 (en) * 1965-03-12 1976-04-21
JPS6297901A (en) * 1985-10-25 1987-05-07 花王株式会社 Absorbable article
JPH06340032A (en) * 1990-03-23 1994-12-13 W R Grace & Co Oriented film of high transparency and high glossiness
JPH0760833A (en) * 1993-08-23 1995-03-07 Mitsubishi Chem Corp Molding method for inflation resin film
JP2001064426A (en) * 1999-06-25 2001-03-13 Japan Polyolefins Co Ltd Porous film and its production
JP2003238720A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Polyolefinic porous membrane
JP2006306004A (en) * 2005-03-30 2006-11-09 Tokuyama Corp Manufacturing method of porous polyethylene film
JP2008214425A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Method for producing finely porous polyolefin membrane
JP2012169286A (en) * 2012-04-20 2012-09-06 Mitsubishi Plastics Inc Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2012219206A (en) * 2011-04-11 2012-11-12 Daiwa Can Co Ltd Polyolefin resin composition highly containing inorganic filler and inflation film formed of the same
WO2015060271A1 (en) * 2013-10-21 2015-04-30 株式会社Tbm Process for manufacturing filler-containing plastic sheet

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112669B1 (en) * 1965-03-12 1976-04-21
JPS6297901A (en) * 1985-10-25 1987-05-07 花王株式会社 Absorbable article
JPH06340032A (en) * 1990-03-23 1994-12-13 W R Grace & Co Oriented film of high transparency and high glossiness
JPH0760833A (en) * 1993-08-23 1995-03-07 Mitsubishi Chem Corp Molding method for inflation resin film
JP2001064426A (en) * 1999-06-25 2001-03-13 Japan Polyolefins Co Ltd Porous film and its production
JP2003238720A (en) * 2002-02-20 2003-08-27 Asahi Kasei Corp Polyolefinic porous membrane
JP2006306004A (en) * 2005-03-30 2006-11-09 Tokuyama Corp Manufacturing method of porous polyethylene film
JP2008214425A (en) * 2007-03-01 2008-09-18 Asahi Kasei Chemicals Corp Method for producing finely porous polyolefin membrane
JP2012219206A (en) * 2011-04-11 2012-11-12 Daiwa Can Co Ltd Polyolefin resin composition highly containing inorganic filler and inflation film formed of the same
JP2012169286A (en) * 2012-04-20 2012-09-06 Mitsubishi Plastics Inc Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2015060271A1 (en) * 2013-10-21 2015-04-30 株式会社Tbm Process for manufacturing filler-containing plastic sheet

Also Published As

Publication number Publication date
JP6783480B2 (en) 2020-11-11
TW201908376A (en) 2019-03-01
WO2018212179A1 (en) 2018-11-22

Similar Documents

Publication Publication Date Title
JP5461614B2 (en) Manufacturing method of inorganic substance powder high-mixing thin film sheet
CN105330876B (en) Imitative paper membrane and its preparation method
WO2014034771A1 (en) Microporous member, method for producing same, battery separator, and resin composition for nonaqueous electrolyte secondary battery separator
WO2013011909A1 (en) Biaxially stretched nylon film for cold molding, laminate film, and molded body
JP6852528B2 (en) Manufacturing method for each of polyolefin resin composition and film
Kader et al. A study on melt processing and thermal properties of fluoroelastomer nanocomposites
CN112029173A (en) Polyethylene breathable film and preparation method thereof
JP6492269B2 (en) Method for producing filler-containing plastic sheet
JP6675530B2 (en) Precursor for vacuum forming sheet, vacuum forming sheet and method for producing the same, and method for producing molded article
WO2018212179A1 (en) Method for producing sheet-shaped resin object
JP7010721B2 (en) Resin pellets
JP6334247B2 (en) Recycled filler-containing plastic sheet and method for producing the same
JP6310736B2 (en) Method for producing thermoplastic resin composition and thermoplastic resin composition
WO2018096834A1 (en) Method for producing molded resin object
JP6582217B1 (en) LAMINATED SHEET, METHOD FOR PRODUCING LAMINATED SHEET, AND MOLDED BODY
JP2020151907A (en) Biaxially stretched multilayer film
Kumar et al. Effect of chemically modified nano zirconia addition on properties of LLDPE/LDPE/PLA/MA-g-PE bio-nanocomposite blown films for packaging applications
JP6713095B2 (en) Method for producing resin molded body, method for producing resin molding pellets and method for improving smoothness
JPH0753754A (en) Popypropylene-based synthetic paper and its production
JPH05104620A (en) Manufacture of polypropylene oriented matter
JP2022045226A (en) Ultra high molecular weight polyethylene solid phase roll rolled film and method for manufacturing the same
JPH03205126A (en) Oriented polyethylene film and its manufacture
WO2013104815A1 (en) Composition and method for obtaining a film of microporous thermoplastic polymer that is especially suited to the production of personal hygiene articles such as diapers and sanitary dressings
CN115516015A (en) Polyolefin resin foam sheet and laminate
JPWO2020162339A1 (en) A resin composition and a method for manufacturing a three-dimensional model using the resin composition.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190612

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200221

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201015

R150 Certificate of patent or registration of utility model

Ref document number: 6783480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250