JPWO2018211991A1 - Electronic component mounting substrate and method of manufacturing the same - Google Patents

Electronic component mounting substrate and method of manufacturing the same Download PDF

Info

Publication number
JPWO2018211991A1
JPWO2018211991A1 JP2019519175A JP2019519175A JPWO2018211991A1 JP WO2018211991 A1 JPWO2018211991 A1 JP WO2018211991A1 JP 2019519175 A JP2019519175 A JP 2019519175A JP 2019519175 A JP2019519175 A JP 2019519175A JP WO2018211991 A1 JPWO2018211991 A1 JP WO2018211991A1
Authority
JP
Japan
Prior art keywords
conductor
insulating layer
layer
laminated
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019519175A
Other languages
Japanese (ja)
Other versions
JP7048593B2 (en
Inventor
ベジ 佐々木
ベジ 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2018211991A1 publication Critical patent/JPWO2018211991A1/en
Application granted granted Critical
Publication of JP7048593B2 publication Critical patent/JP7048593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

基板は、絶縁層11と、前記絶縁層11に設けられた導体12と、を有している。前記導体12は、底面及び側面の少なくとも一部が、前記絶縁層11のおもて面よりも裏面側に位置している。The substrate has an insulating layer 11 and a conductor 12 provided on the insulating layer 11. At least a part of the bottom surface and the side surface of the conductor 12 is located on the back surface side with respect to the front surface of the insulating layer 11.

Description

本開示は、電子部品搭載用基板及びその製造方法に関する。   The present disclosure relates to an electronic component mounting substrate and a method for manufacturing the same.

電子装置の高密度実装に伴い、電子部品搭載用基板にも導体の高密度化、小型化、薄型化、多層化が要求されるようになってきた。導体を高密度に実装したり、小型化をすると、絶縁層と絶縁層上に形成された導体との密着性が十分でない場合は、絶縁層と導体との間の密着が不十分となる。また、導体が絶縁層内で多層となっている場合は、絶縁層と導体との間の密着が不十分となる。   With the high-density mounting of electronic devices, electronic components mounting substrates have also been required to have higher density, smaller size, thinner, and multilayered conductors. When the conductor is mounted at a high density or miniaturized, if the adhesion between the insulating layer and the conductor formed on the insulating layer is not sufficient, the adhesion between the insulating layer and the conductor becomes insufficient. Further, when the conductor is multilayered in the insulating layer, the adhesion between the insulating layer and the conductor becomes insufficient.

導体を形成するために、セミアディティブ法を利用する場合には、絶縁層を加熱することによって、絶縁層と導体との密着性を向上させる技術が提案されている(例えば、特許文献1参照。)。   When a semi-additive method is used to form a conductor, a technique has been proposed in which the insulating layer is heated to improve the adhesion between the insulating layer and the conductor (for example, see Patent Document 1). ).

特開2012−169600号公報JP 2012-169600 A

しかしながら、薄いプリント基板を作ろうとしたり、あるいはセミアディティブ法などで絶縁層のおもて面と導体とを密着させようとすると、絶縁層と導体との密着性を十分に確保できない。あるいは、絶縁層が薄い場合は、導体の剥離が生じ易くなる場合が多かった。絶縁層と導体との密着性が不十分な場合は、そもそもプリント基板の製造が不可能であったり、製造できたとしても製造歩留りの悪化が避けられないという課題があった。   However, if an attempt is made to make a thin printed circuit board, or if an attempt is made to adhere the front surface of the insulating layer to the conductor by a semi-additive method or the like, the adhesion between the insulating layer and the conductor cannot be sufficiently ensured. Alternatively, when the insulating layer is thin, the peeling of the conductor is likely to occur. When the adhesion between the insulating layer and the conductor is insufficient, there is a problem that it is impossible to manufacture a printed circuit board in the first place, or even if it can be manufactured, deterioration of the manufacturing yield cannot be avoided.

そこで、前記課題を解決するために、本開示は、電子部品搭載用基板の密着性を向上することを目的とする。   Then, in order to solve the said subject, this indication aims at improving the adhesiveness of the board for electronic component mounting.

上記目的を達成するために、絶縁層上に形成された導体を絶縁層に埋め込むこととした。また、絶縁層及び導体の組合せの層が絶縁層上に1層以上形成されている場合は、少なくともいずれかの組合せの層に含まれる導体の少なくとも一つを絶縁層の方向に埋め込むこととした。   In order to achieve the above object, a conductor formed on the insulating layer is embedded in the insulating layer. In the case where one or more layers of the combination of the insulating layer and the conductor are formed on the insulating layer, at least one of the conductors included in at least one of the combination layers is embedded in the direction of the insulating layer. .

本開示に記載の電子部品搭載用基板は、電子部品を搭載可能な基板であり、絶縁層上に導体が形成されていればよい。本開示では、絶縁層上に導体が形成されている基板を、電子部品搭載用基板と称することとする。さらに本開示は、本開示に係る電子部品搭載用基板の搭載された、電子部品、電子デバイス、及び実装装置を含む。例えば、本開示に係る実装装置は、本開示に係る電子部品搭載用基板と、前記電子部品搭載用基板を用いて予め定められた処理を実行する電子部品と、を備える任意の装置である。このように、本開示は、電子部品搭載用基板を用いて動作するあらゆる電子部品、電子デバイス、及び装置に適用できる。   The electronic component mounting substrate described in the present disclosure is a substrate on which an electronic component can be mounted, as long as a conductor is formed on the insulating layer. In the present disclosure, a substrate on which a conductor is formed on an insulating layer is referred to as an electronic component mounting substrate. Further, the present disclosure includes an electronic component, an electronic device, and a mounting apparatus on which the electronic component mounting board according to the present disclosure is mounted. For example, a mounting apparatus according to the present disclosure is an arbitrary apparatus including the electronic component mounting board according to the present disclosure and an electronic component that performs a predetermined process using the electronic component mounting board. As described above, the present disclosure can be applied to any electronic component, electronic device, and apparatus that operate using the electronic component mounting board.

本開示によれば、導体の少なくとも一部を絶縁層又は絶縁層に埋め込むため、電子部品搭載用基板の密着性すなわちピール強度を向上することができる。これにより、本開示は、電子部品搭載用基板の製造時における歩留り率の低下を防ぐとともに、電子部品搭載用基板の耐久性を向上し、電子部品搭載用基板の品質を総合的に向上することができる。さらに本開示は、本開示の配線基板を用いて動作する電子部品、電子デバイス、及び装置の信頼性を向上することができる。   According to the present disclosure, at least a part of the conductor is embedded in the insulating layer or the insulating layer, so that the adhesiveness of the electronic component mounting substrate, that is, the peel strength can be improved. As a result, the present disclosure prevents a decrease in the yield rate at the time of manufacturing the electronic component mounting substrate, improves the durability of the electronic component mounting substrate, and comprehensively improves the quality of the electronic component mounting substrate. Can be. Further, the present disclosure can improve the reliability of an electronic component, an electronic device, and an apparatus that operate using the wiring board of the present disclosure.

絶縁層上に導体の形成する導体形成工程を説明する図である。FIG. 4 is a diagram illustrating a conductor forming step of forming a conductor on an insulating layer. 絶縁層上に導体の形成する導体形成工程を説明する図である。FIG. 4 is a diagram illustrating a conductor forming step of forming a conductor on an insulating layer. 導体を絶縁層に押し込む又は沈み込ませる押し込み工程を説明する図である。FIG. 3 is a diagram illustrating a pressing step of pressing or sinking a conductor into an insulating layer. 加熱手順を説明する図である。It is a figure explaining a heating procedure. 加熱手順を説明する図である。It is a figure explaining a heating procedure. 加熱手順を説明する図である。It is a figure explaining a heating procedure. 加熱手順を説明する図である。It is a figure explaining a heating procedure. 加熱手順を説明する図である。It is a figure explaining a heating procedure. 加熱したときの模式図を説明する図である。It is a figure explaining the schematic diagram at the time of heating. 導体の押し込み工程後の状態を説明する図である。It is a figure explaining the state after the pushing process of the conductor. 導体の押し込み工程後の状態を説明する図である。It is a figure explaining the state after the pushing process of the conductor. 導体を絶縁層に押し込む又は沈み込ませる押し込み工程を説明する図である。FIG. 3 is a diagram illustrating a pressing step of pressing or sinking a conductor into an insulating layer. 導体を絶縁層に押し込む又は沈み込ませる押し込み工程を説明する図である。FIG. 3 is a diagram illustrating a pressing step of pressing or sinking a conductor into an insulating layer. 導体の押し込み工程後の状態を説明する図である。It is a figure explaining the state after the pushing process of the conductor. 導体の押し込み工程後の状態を説明する図である。It is a figure explaining the state after the pushing process of the conductor. VIA形成工程を説明する図である。It is a figure explaining a VIA formation process. 第2の実施形態に係る電子部品搭載用基板の一例を示す断面図である。It is sectional drawing which shows an example of the electronic component mounting board | substrate which concerns on 2nd Embodiment. 無電解めっき層と導体との境界部分の一例を示す断面図である。It is sectional drawing which shows an example of the boundary part of an electroless plating layer and a conductor. 凹凸の第1例を示す拡大図である。It is an enlarged view showing the 1st example of unevenness. 凹凸の第2例を示す拡大図である。It is an enlarged view showing the 2nd example of unevenness. 絶縁層のおもて面での凹凸の規則性の一例を示す。An example of the regularity of irregularities on the front surface of the insulating layer is shown. 第3の実施形態に係る電子部品搭載用基板の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the board for electronic component mounting which concerns on 3rd Embodiment. 導体凹部を有する導体を製造する方法の一例を示した断面図である。It is sectional drawing which showed an example of the method of manufacturing the conductor which has a conductor recessed part. 導体凸部を有する導体を製造する方法の一例を示した断面図である。It is sectional drawing which showed an example of the method of manufacturing the conductor which has a conductor convex part.

添付の図面を参照して本開示の実施形態を説明する。以下に説明する実施形態は本開示の実施の例であり、本開示は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。   Embodiments of the present disclosure will be described with reference to the accompanying drawings. The embodiments described below are examples of the present disclosure, and the present disclosure is not limited to the following embodiments. In the specification and the drawings, components having the same reference numerals indicate the same components.

(第1の実施形態)
本実施形態では、絶縁体層が絶縁層である場合について説明する。本開示に係る電子部品搭載用基板の製造方法は、以下に述べる導体形成工程及び押し込み工程を順に備える。これにより、本開示は、絶縁層と導体との間の密着性すなわちピール強度を向上することができる。
(First embodiment)
In this embodiment, a case where the insulator layer is an insulating layer will be described. A method for manufacturing an electronic component mounting board according to the present disclosure includes a conductor forming step and a pressing step described below in order. Accordingly, the present disclosure can improve the adhesion between the insulating layer and the conductor, that is, the peel strength.

本開示の絶縁層上に導体の形成する導体形成工程を図1(a)から図1(c)に示す。図1(a)から図1(c)において、11は絶縁層、12は導体、121は金属箔、122は金属めっきを示す。なお、図1の上下方向が基板の厚み方向であり、図1における上面がおもて面となり、図1における下面が裏面となる。   1A to 1C show a conductor forming step of forming a conductor on an insulating layer according to the present disclosure. 1A to 1C, 11 denotes an insulating layer, 12 denotes a conductor, 121 denotes a metal foil, and 122 denotes a metal plating. 1 is the thickness direction of the substrate, the upper surface in FIG. 1 is the front surface, and the lower surface in FIG. 1 is the back surface.

絶縁層11は、プリント基板に用いることの可能な絶縁体である。絶縁層11に用いられる材料は、例えば樹脂であるが、これに限らず絶縁性をもつガラスやセラミックなどの任意の物質が含まれていてもよい。絶縁層11は、2種類以上の絶縁性の物質が混合されていてもよい。例えば、絶縁層11に、繊維状又は粒状の絶縁体が含まれていてもよい。   The insulating layer 11 is an insulator that can be used for a printed board. The material used for the insulating layer 11 is, for example, a resin, but is not limited to this, and may include an arbitrary material such as glass or ceramic having an insulating property. The insulating layer 11 may be a mixture of two or more insulating substances. For example, the insulating layer 11 may include a fibrous or granular insulator.

絶縁層11は、樹脂に基材を混入した絶縁体であってもよい。樹脂としては、熱効硬化型樹脂、又は紫外線硬化型樹脂が好ましい。一定の耐熱性があれば、熱可塑性樹脂を使ってもよい。熱硬化性の樹脂としては、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、シアネート樹脂が例示できる。熱可塑性樹脂は、熱変形温度が50度C以上であればよい。変形温度は高ければ高いほどよい。基材としては、ガラス繊維、セラミック粒子、セルロース繊維が例示できる。蜘蛛の巣の繊維などの自然物でもよい。基材は、これらに限定されるものではない。また、ガラスクロスに上記の樹脂を含浸させて半硬化させたプリプレグを積層し、加熱・加圧して絶縁層を構成してもよい。以下のいずれの実施形態でも同様である。   The insulating layer 11 may be an insulator obtained by mixing a base material with a resin. As the resin, a heat-curable resin or an ultraviolet-curable resin is preferable. A thermoplastic resin may be used if it has a certain heat resistance. Examples of the thermosetting resin include a polyimide resin, an epoxy resin, a phenol resin, and a cyanate resin. The thermoplastic resin may have a heat deformation temperature of 50 ° C. or higher. The higher the deformation temperature, the better. Examples of the substrate include glass fibers, ceramic particles, and cellulose fibers. Natural materials such as spider web fibers may be used. The substrate is not limited to these. Alternatively, a prepreg, which is impregnated with the above resin and semi-cured by impregnating the above resin, may be laminated, and heated and pressed to form an insulating layer. The same applies to any of the following embodiments.

導体12は、プリント基板の導体に用いることの可能な任意の材料によって形成されている導体層であり、金属箔、金属めっき、圧延板を含む。導体12を構成する金属箔121、金属めっき122の材料は導電性のあるあらゆる金属、合金又はペーストである。或いは、導電性があれば、カーボンやセラミックス等の金属以外のあらゆる物質であっても、導体12の一部又は全部として用いることができる。導体12に適用する金属としては、銅、金、銀、アルミニウム、ニッケル又はこれらの金属を質量%で最も多く含む合金やペーストが例示できるが、これらに限定されるものではない。以下のいずれの実施形態でも同様である。   The conductor 12 is a conductor layer formed of any material that can be used for a conductor of a printed circuit board, and includes a metal foil, a metal plating, and a rolled plate. The material of the metal foil 121 and the metal plating 122 constituting the conductor 12 is any conductive metal, alloy or paste. Alternatively, any material other than metals such as carbon and ceramics can be used as part or all of the conductor 12 as long as it has conductivity. Examples of the metal applied to the conductor 12 include, but are not limited to, copper, gold, silver, aluminum, nickel, and alloys and pastes containing most of these metals by mass%. The same applies to any of the following embodiments.

金属箔121が張られた絶縁層11(図1(a))の金属箔121に、金属めっきを行う(図1(b))。次に、公知のパネルめっき法やパターンめっき法で、絶縁層11にパターン化された導体12を形成する(図1(c))。このように形成された導体12は、金属箔とその金属箔にめっきされた金属めっき層を含むことになる。   Metal plating is performed on the metal foil 121 of the insulating layer 11 (FIG. 1A) on which the metal foil 121 is stretched (FIG. 1B). Next, a patterned conductor 12 is formed on the insulating layer 11 by a known panel plating method or pattern plating method (FIG. 1C). The conductor 12 thus formed includes a metal foil and a metal plating layer plated on the metal foil.

本開示の絶縁層上に導体の形成する他の導体形成工程を図2(a)から図2(d)に示す。この製造方法はセミアディティブ法として知られている。図2(a)から図2(d)において、11は絶縁層、12は導体、13はパターンレジストを示す。   FIGS. 2A to 2D show another conductor forming step of forming a conductor on the insulating layer according to the present disclosure. This manufacturing method is known as a semi-additive method. 2A to 2D, 11 denotes an insulating layer, 12 denotes a conductor, and 13 denotes a pattern resist.

パターンレジスト13の材料としては、感光性ドライフィルム、液状レジスト、EDレジストが例示できるが、これらに限定されるものではない。以下のいずれの実施形態でも同様である。これらの材料は光硬化型や光溶解型がある。   Examples of the material of the pattern resist 13 include a photosensitive dry film, a liquid resist, and an ED resist, but are not limited thereto. The same applies to any of the following embodiments. These materials include a photo-curing type and a photo-dissolving type.

絶縁層11(図2(a))にパターンレジストを塗布し、最終的に導体となる部分以外のパターンレジストを除去する(図2(b))。残されたパターンレジスト13以外の部分に無電解めっきなどで導体を成長させる(図2(c))。パターンレジスト13を除去し、導体12を残す。このときに、後述する図17に示すように、絶縁層11に垂直な断面では、導体12の上面(頂面)の角12Eが丸みを帯びる。この導体形成工程で、絶縁層11にパターン化された導体12を形成する。導体形成工程は、ここで説明した方法に限定されるものではない。   A pattern resist is applied to the insulating layer 11 (FIG. 2 (a)), and the pattern resist other than a portion which will eventually become a conductor is removed (FIG. 2 (b)). A conductor is grown on the remaining portion other than the pattern resist 13 by electroless plating or the like (FIG. 2C). The pattern resist 13 is removed, and the conductor 12 is left. At this time, as shown in FIG. 17 described later, in a cross section perpendicular to the insulating layer 11, the corner 12E of the upper surface (top surface) of the conductor 12 is rounded. In this conductor forming step, a patterned conductor 12 is formed on the insulating layer 11. The conductor forming step is not limited to the method described here.

本開示の導体を絶縁層に押し込む押し込み工程を図3(a)から図3(b)に示す。図3(a)から図3(b)において、11は絶縁層、12は導体を示す。絶縁層11のおもて面に形成された導体12((図3(a))を、機械的に絶縁層11に機械的に押し込むと、導体12の一部が絶縁層11のおもて面に埋まる(図3(b))。図3(b)は、本開示の電子部品搭載用基板の例である。機械的に押し込む作業は、例えば、平面のプレス面を有するプレス機を用いて、絶縁層11のおもて面に形成された導体12の全て、又は一部を絶縁層11に押し込む。   FIG. 3A to FIG. 3B show a pushing step of pushing the conductor of the present disclosure into the insulating layer. 3A to 3B, reference numeral 11 denotes an insulating layer, and reference numeral 12 denotes a conductor. When the conductor 12 (FIG. 3A) formed on the front surface of the insulating layer 11 is mechanically pressed into the insulating layer 11, a part of the conductor 12 is 3B is an example of an electronic component mounting substrate according to the present disclosure, and the operation of mechanically pushing in is performed using, for example, a press having a flat press surface. Then, all or a part of the conductor 12 formed on the front surface of the insulating layer 11 is pressed into the insulating layer 11.

導体12を絶縁層11に押し込むことによって、導体12の底面だけでなく、導体12の側面の少なくとも一部が絶縁層11に密着し、絶縁層11と導体12との間のピール強度が向上する。   By pressing the conductor 12 into the insulating layer 11, not only the bottom surface of the conductor 12 but also at least a part of the side surface of the conductor 12 adheres to the insulating layer 11, and the peel strength between the insulating layer 11 and the conductor 12 is improved. .

導体12が絶縁層11に埋め込まれた電子部品搭載用基板を実現する方法は、絶縁層11への導体12の機械的な埋め込みに限定されない。例えば、押し込み工程において、導体12と絶縁層11の両方又はいずれかを加熱し、導体12を絶縁層11に沈み込ませてもよい。これにより、導体12に力を加えることなく、絶縁層11に導体12を埋め込むことができる。   The method of realizing the electronic component mounting substrate in which the conductor 12 is embedded in the insulating layer 11 is not limited to the mechanical embedding of the conductor 12 in the insulating layer 11. For example, in the pressing step, both or one of the conductor 12 and the insulating layer 11 may be heated to sink the conductor 12 into the insulating layer 11. Thereby, the conductor 12 can be embedded in the insulating layer 11 without applying a force to the conductor 12.

このとき、導体12を絶縁層11に押し込まなくてもよいが、弱い力で導体12を絶縁層11に押し込んでもよい。これにより、導体12の頂面である上面の位置を容易に制御することができる。このように、本開示における押し込みは、微弱な力での押し込みも含む。以下、押し込み工程の一例として、押し込み工程において、導体12を絶縁層11に機械的に押し込む押し込み手順に加え、導体12と絶縁層11の両方又はいずれかを加熱する加熱手順を有する例について説明する。   At this time, the conductor 12 does not have to be pushed into the insulating layer 11, but the conductor 12 may be pushed into the insulating layer 11 with a small force. Thereby, the position of the upper surface, which is the top surface of conductor 12, can be easily controlled. As described above, the pressing in the present disclosure includes the pressing with a weak force. Hereinafter, as an example of the pushing step, an example will be described in which in the pushing step, in addition to the pushing procedure of mechanically pushing the conductor 12 into the insulating layer 11, a heating procedure of heating both or any of the conductor 12 and the insulating layer 11 is described. .

押し込み工程において、導体12を絶縁層11に機械的に押し込む際に、導体12と絶縁層11の両方又はいずれかを加熱してもよい。絶縁層が固すぎる場合やピール強度をより向上させたい場合に有効である。加熱は、ヒータを押し当てたり、LEDライト光や赤外線を照射したり、熱風を浴びせたりすることで実現する。ヒータで加熱したパネルで導体12を機械的に押し込むことでもよい。   In the pushing step, when the conductor 12 is mechanically pushed into the insulating layer 11, both or any of the conductor 12 and the insulating layer 11 may be heated. This is effective when the insulating layer is too hard or when it is desired to further improve the peel strength. Heating is realized by pressing a heater, irradiating LED light or infrared light, or blowing hot air. The conductor 12 may be mechanically pushed in by a panel heated by a heater.

加熱手順を図4、図5、図6、図7、図8に示す。図4、図5、図6、図7、図8において、11は絶縁層、12は導体である。図4、図5、図6、図7、図8において、(a)、(b)、(c)は順番を示す。熱の加熱手順としては、まず加熱し(図4(b))、加熱しながら機械的に押し込む(図4(c))手順でもよい。まず加熱し(図5(b))、加熱を中止して機械的に押し込む(図5(c))手順でもよい。加熱することと機械的に押し込むことを同時に進める(図6(b))手順でもよい。まず機械的に押し込み(図7(b))、機械的に押し込みながら加熱する(図7(c))手順でもよい。まず機械的に押し込み(図8(b))、機械的な押し込みを中止して加熱する(図8(c))手順でもよい。   The heating procedure is shown in FIG. 4, FIG. 5, FIG. 6, FIG. 7, and FIG. 4, 5, 6, 7, and 8, reference numeral 11 denotes an insulating layer, and reference numeral 12 denotes a conductor. 4, 5, 6, 7, and 8, (a), (b), and (c) indicate the order. The procedure of heating the heat may be a procedure of first heating (FIG. 4B) and then mechanically pushing in while heating (FIG. 4C). First, heating (FIG. 5 (b)), heating may be stopped, and mechanical pressing (FIG. 5 (c)) may be performed. Heating and mechanical pushing may be simultaneously performed (FIG. 6B). First, it may be a procedure of mechanically pushing (FIG. 7 (b)) and heating while mechanically pushing (FIG. 7 (c)). First, it may be a procedure of mechanically pushing (FIG. 8 (b)), stopping the mechanical pushing and heating (FIG. 8 (c)).

加熱したときの模式図を図9(a)に示す。導体12は金属であり、絶縁層11は樹脂であるため、膨張率は絶縁層11より導体12の方が大きい。そのため、適度な温度で加熱することによって、導体12は絶縁層11に密着し、アンカー効果が得られる。その後、徐熱しても(図9(b)、導体12と絶縁層11の密着度は加熱する前より向上している。従って、絶縁層11と導体12との間のピール強度が向上する。   FIG. 9A is a schematic diagram when heating is performed. Since the conductor 12 is made of metal and the insulating layer 11 is made of resin, the expansion coefficient of the conductor 12 is higher than that of the insulating layer 11. Therefore, by heating at an appropriate temperature, the conductor 12 adheres to the insulating layer 11 and an anchor effect is obtained. Thereafter, even if the temperature is gradually decreased (FIG. 9B), the degree of adhesion between the conductor 12 and the insulating layer 11 is higher than before the heating. Therefore, the peel strength between the insulating layer 11 and the conductor 12 is improved.

押し込み工程において、導体の押し込み後の状態を図10(a)、図10(b)、図11(a)、図11(b)、図11(c)で説明する。図10(a)、図10(b)、図11(a)、図11(b)、図11(c)は、本開示の電子部品搭載用基板の例である。図10(a)、図10(b)、図11(a)、図11(b)、図11(c)において、11は絶縁層、12は導体である。これらの説明において、図10(a)に示すように、導体12では、絶縁層11の側(絶縁層11に近い側)を底面、底面に対向する側((絶縁層から遠い側)を上面(頂面)、上面と底面に挟まれる側を側面と呼称し、絶縁層11では、導体12の載っている側をおもて面と言い、反対側の面を裏面と言う。   The state after the conductor is pushed in the pushing step will be described with reference to FIGS. 10 (a), 10 (b), 11 (a), 11 (b), and 11 (c). 10 (a), 10 (b), 11 (a), 11 (b), and 11 (c) are examples of the electronic component mounting board of the present disclosure. 10 (a), 10 (b), 11 (a), 11 (b), and 11 (c), reference numeral 11 denotes an insulating layer, and reference numeral 12 denotes a conductor. In these descriptions, as shown in FIG. 10A, in the conductor 12, the side of the insulating layer 11 (the side closer to the insulating layer 11) is a bottom surface, and the side opposite to the bottom surface (the side far from the insulating layer) is the upper surface. (Top surface), the side sandwiched between the top surface and the bottom surface is referred to as a side surface, the side of the insulating layer 11 on which the conductor 12 is placed is referred to as a front surface, and the opposite surface is referred to as a back surface.

導体12を、導体12の底面及び側面の一部が絶縁層11のおもて面よりも低い位置となるまで押し込んでもよい(図10(a))。導体12の底面の全部及び側面の一部が絶縁層11と密着するため、絶縁層11と導体12との間のピール強度が向上する。また、導体12を、導体12の上面が絶縁層11のおもて面と同一面となる位置まで押し込んでもよい(図10(b))。導体12の底面の全部及び側面の全部が絶縁層11と密着するため、絶縁層11と導体12との間のピール強度がより向上する。   The conductor 12 may be pushed in until a part of the bottom and side surfaces of the conductor 12 is lower than the front surface of the insulating layer 11 (FIG. 10A). Since the entire bottom surface and a part of the side surface of the conductor 12 are in close contact with the insulating layer 11, the peel strength between the insulating layer 11 and the conductor 12 is improved. Further, the conductor 12 may be pushed down to a position where the upper surface of the conductor 12 is flush with the front surface of the insulating layer 11 (FIG. 10B). Since the entire bottom surface and the entire side surface of the conductor 12 are in close contact with the insulating layer 11, the peel strength between the insulating layer 11 and the conductor 12 is further improved.

なお、図10(a)では、底面の両側に配置されている側面が共に絶縁層11に埋め込まれる例を示したが、本開示はこれに限定されず、例えば底面の両側に配置されている側面の片方のみが絶縁層11に埋め込まれていてもよい。図10(a)では導体12の上面がx軸方向に広がっているが、本開示はこれに限定されず、導体12の上面はx軸方向に対して傾斜していてもよい。   FIG. 10A shows an example in which both sides arranged on both sides of the bottom surface are embedded in the insulating layer 11, but the present disclosure is not limited to this, and is arranged, for example, on both sides of the bottom surface. Only one of the side surfaces may be embedded in the insulating layer 11. In FIG. 10A, the upper surface of the conductor 12 extends in the x-axis direction, but the present disclosure is not limited to this, and the upper surface of the conductor 12 may be inclined with respect to the x-axis direction.

さらに、図10(a)及び図10(b)では、導体12の断面形状が四角形である例を示したが、本開示に係る導体12の断面形状は任意である。例えば、導体12の上面は湾曲していてもよく、側面と上面との境界が連続した曲線をなしていてもよい。   Further, FIGS. 10A and 10B show an example in which the cross-sectional shape of the conductor 12 is square, but the cross-sectional shape of the conductor 12 according to the present disclosure is arbitrary. For example, the upper surface of the conductor 12 may be curved, and the boundary between the side surface and the upper surface may form a continuous curve.

導体12を、導体12の底面、側面だけでなく、上面が絶縁層11のおもて面よりも低い位置となるまで押し込んでもよい(図11(a)、図11(b)、図11(c))。図11(a)では、導体12を、導体12の上面が絶縁層11のおもて面よりも低い位置となるまで押し込んでいるが、導体12の上面は露出している。導体12の底面の全部及び側面の全部が絶縁層11と密着するため、絶縁層11と導体12との間のピール強度がより向上する。図11(b)では、導体12を、導体12の上面が絶縁層11のおもて面よりも低い位置となるまで押し込んでいるが、導体12の上面の一部は露出している。導体12の底面の全部、側面の全部及び上面の一部が絶縁層11と密着するため、絶縁層11と導体12との間のピール強度がいっそう向上する。図11(c)では、導体12を、導体12の上面が絶縁層11のおもて面よりも低い位置となるまで押し込んで、導体12の上面まで絶縁層11にうずもれている。導体12の底面の全部、側面の全部及び上面の全部が絶縁層11と密着するため、絶縁層11と導体12との間のピール強度がさらにいっそう向上する。   The conductor 12 may be pushed in not only at the bottom and side surfaces of the conductor 12 but also until the top surface is lower than the front surface of the insulating layer 11 (FIGS. 11 (a), 11 (b), 11 (b)). c)). In FIG. 11A, the conductor 12 is pushed in until the upper surface of the conductor 12 is lower than the front surface of the insulating layer 11, but the upper surface of the conductor 12 is exposed. Since the entire bottom surface and the entire side surface of the conductor 12 are in close contact with the insulating layer 11, the peel strength between the insulating layer 11 and the conductor 12 is further improved. In FIG. 11B, the conductor 12 is pushed until the upper surface of the conductor 12 is lower than the front surface of the insulating layer 11, but a part of the upper surface of the conductor 12 is exposed. Since the entire bottom surface, the entire side surface, and a part of the upper surface of the conductor 12 are in close contact with the insulating layer 11, the peel strength between the insulating layer 11 and the conductor 12 is further improved. In FIG. 11C, the conductor 12 is pushed down until the upper surface of the conductor 12 is lower than the front surface of the insulating layer 11, and the conductor 12 is buried in the insulating layer 11 up to the upper surface of the conductor 12. Since the entire bottom surface, the entire side surface, and the entire top surface of the conductor 12 are in close contact with the insulating layer 11, the peel strength between the insulating layer 11 and the conductor 12 is further improved.

なお、図10(a)、図10(b)及び図11(a)では導体12の3面が絶縁層11と密着する。y−z平面についても同様の構造を有する場合、導体12の5面が、絶縁層11と密着する。このように、x軸方向に広がる導体12の底面に加え、y軸方向に広がる導体12の側面の一部又は全部が絶縁層11と密着するため、導体12に印加されるx、z軸方向の負荷に対し、ピール強度を高めることができる。   In FIGS. 10A, 10B, and 11A, three surfaces of the conductor 12 are in close contact with the insulating layer 11. In the case where the same structure is used for the yz plane, the five surfaces of the conductor 12 are in close contact with the insulating layer 11. As described above, in addition to the bottom surface of the conductor 12 extending in the x-axis direction, part or all of the side surface of the conductor 12 extending in the y-axis direction is in close contact with the insulating layer 11, so that the x and z-axis directions applied to the conductor 12 are applied. , The peel strength can be increased.

また、図11(b)及び図11(c)では導体12の4面が絶縁層11と密着する。y−z平面についても同様の構造を有する場合、導体12の6面が、絶縁層11と密着する。このように、x軸方向に広がる導体12の底面に加え、y軸方向に広がる導体12の側面の一部又は全部、及びx軸方向に広がる導体12の上面の一部又は全部、が絶縁層11と密着するため、導体12に印加されるx、y、z軸方向の負荷に対し、ピール強度を高めることができる。   In FIGS. 11B and 11C, the four surfaces of the conductor 12 are in close contact with the insulating layer 11. In the case where the same structure is used for the yz plane, six surfaces of the conductor 12 are in close contact with the insulating layer 11. As described above, in addition to the bottom surface of the conductor 12 extending in the x-axis direction, part or all of the side surface of the conductor 12 extending in the y-axis direction, and part or all of the upper surface of the conductor 12 extending in the x-axis direction, Because of the close contact with the conductor 11, the peel strength can be increased with respect to the load applied to the conductor 12 in the x, y, and z-axis directions.

なお、図10及び図11では導体12の底面が絶縁層11と密着する例を示したが、本開示はこれに限定されない。例えば、本開示は、図10(a)、図10(b)、図11(a)において、導体12の底面の一部又は全部が絶縁層11の裏面に露出する、導体12の2面が絶縁層11と密着する形態も含む。y−z平面についても同様の構造を有する場合、導体12の4面が、絶縁層11と密着する。この場合、y軸方向に広がる導体12の側面の一部又は全部が絶縁層11と密着するため、導体12に印加されるx、z軸方向の負荷に対し、ピール強度を高めることができる。   Although FIGS. 10 and 11 show an example in which the bottom surface of the conductor 12 is in close contact with the insulating layer 11, the present disclosure is not limited to this. For example, in the present disclosure, in FIG. 10A, FIG. 10B, and FIG. 11A, two or more surfaces of the conductor 12 where a part or the whole of the bottom surface of the conductor 12 is exposed on the back surface of the insulating layer 11 are formed. A form in which it is in close contact with the insulating layer 11 is also included. In the case where the yz plane has a similar structure, the four surfaces of the conductor 12 are in close contact with the insulating layer 11. In this case, since part or all of the side surface of the conductor 12 spreading in the y-axis direction is in close contact with the insulating layer 11, the peel strength can be increased with respect to the load applied to the conductor 12 in the x and z-axis directions.

また、図11(b)において、導体12の底面の全部が絶縁層11の裏面に露出する、導体12の3面が絶縁層11と密着する形態も含む。y−z平面についても同様の構造を有する場合、導体12の5面が、絶縁層11と密着する。この場合、x軸方向に広がる導体12の上面の一部、y軸方向に広がる導体12の側面の一部又は全部、が絶縁層11と密着するため、導体12に印加されるx、y、z軸方向の負荷に対し、ピール強度を高めることができる。   Further, in FIG. 11B, a form in which the entire bottom surface of the conductor 12 is exposed to the back surface of the insulating layer 11 and the three surfaces of the conductor 12 are in close contact with the insulating layer 11 is also included. In the case where the same structure is used for the yz plane, the five surfaces of the conductor 12 are in close contact with the insulating layer 11. In this case, a part of the upper surface of the conductor 12 expanding in the x-axis direction and a part or all of the side surface of the conductor 12 expanding in the y-axis direction are in close contact with the insulating layer 11, so that x, y, The peel strength can be increased with respect to the load in the z-axis direction.

また、図11(b)において、導体12の底面の一部が絶縁層11の裏面に露出する、導体12の4面が絶縁層11と密着する形態も含む。y−z平面についても同様の構造を有する場合、導体12の6面が、絶縁層11と密着する。この場合、x軸方向に広がる導体12の上面の一部、y軸方向に広がる導体12の側面の全部、x軸方向に広がる導体12の底面の一部、が絶縁層11と密着するため、導体12に印加されるx、y、z軸方向の負荷に対し、ピール強度を高めることができる。   Further, in FIG. 11B, a mode in which a part of the bottom surface of the conductor 12 is exposed on the back surface of the insulating layer 11 and the four surfaces of the conductor 12 are in close contact with the insulating layer 11 is also included. In the case where the same structure is used for the yz plane, six surfaces of the conductor 12 are in close contact with the insulating layer 11. In this case, a part of the upper surface of the conductor 12 extending in the x-axis direction, all of the side surfaces of the conductor 12 expanding in the y-axis direction, and a part of the bottom surface of the conductor 12 expanding in the x-axis direction are in close contact with the insulating layer 11. The peel strength can be increased with respect to the load applied to the conductor 12 in the x, y, and z axis directions.

次に、電子部品搭載用基板が、絶縁層及び導体の組合せの層が絶縁層上に形成されている多層基板である例について説明する。以下の例では、絶縁層は、少なくとも1層の組合せの層に含まれる絶縁層であり、少なくとも1層の組合せの層に含まれる導体の少なくとも一部が、絶縁層に埋め込まれている。具体的には、絶縁層と、前記絶縁層に形成された導体と、前記導体及び前記絶縁体基板の上層に、絶縁層及び前記絶縁層に形成された導体の組合せを各1組以上と、を備え、前記導体のうち少なくとも一つは、前記絶縁層又は絶縁層に埋め込まれている電子部品搭載用基板について説明する。   Next, an example in which the electronic component mounting substrate is a multilayer substrate in which a combination layer of an insulating layer and a conductor is formed on the insulating layer will be described. In the following example, the insulating layer is an insulating layer included in at least one combination of layers, and at least a part of the conductor included in at least one combination of layers is embedded in the insulating layer. Specifically, an insulating layer, a conductor formed on the insulating layer, an upper layer of the conductor and the insulator substrate, a combination of one or more sets of conductors formed on the insulating layer and the insulating layer, A description will be given of an electronic component mounting substrate in which at least one of the conductors is embedded in the insulating layer or the insulating layer.

図12(a)、図12(b)、図12(c)、図13(a)、図13(b)、図13(c)において、11aは積層絶縁層、12は導体、14は積層絶縁層である。図12及び図13では、積層絶縁層14及び導体12の組み合わせの一例として、積層絶縁層14−1及び導体12−1の組み合わせの層と、積層絶縁層14−2及び導体12−2の組み合わせの層と、積層絶縁層14−3及び導体12−3の組み合わせの層と、を形成する例を示す。積層絶縁層11a,14は絶縁層を構成している。   12 (a), 12 (b), 12 (c), 13 (a), 13 (b), and 13 (c), 11a is a laminated insulating layer, 12 is a conductor, and 14 is a laminated layer. It is an insulating layer. 12 and 13, as an example of a combination of the laminated insulating layer 14 and the conductor 12, a combination of the laminated insulating layer 14-1 and the conductor 12-1 and a combination of the laminated insulating layer 14-2 and the conductor 12-2 An example is shown in which a layer of a combination of the above and a layer of a combination of the laminated insulating layer 14-3 and the conductor 12-3 is formed. The laminated insulating layers 11a and 14 constitute an insulating layer.

導体形成工程又は第二の導体形成工程では、積層絶縁層11a上に、又は各積層絶縁層14上に導体を形成する(図12(a)、図12(b)、図12(c)、図13(a)、図13(b)、図13(c))。組合せの層に導体を形成するには、積層絶縁層11a上に導体12を形成する(導体形成工程)。さらに、導体12及び積層絶縁層11aの上層に、積層絶縁層14を形成して、その積層絶縁層14上にさらに導体を形成する(第二の導体形成工程)。第二の導体形成工程を所用の回数だけ繰り返す。   In the conductor formation step or the second conductor formation step, a conductor is formed on the laminated insulating layer 11a or on each laminated insulating layer 14 (FIGS. 12A, 12B, 12C, 13 (a), 13 (b) and 13 (c)). In order to form a conductor in the combination layer, the conductor 12 is formed on the laminated insulating layer 11a (conductor forming step). Further, a laminated insulating layer 14 is formed on the conductor 12 and the laminated insulating layer 11a, and a conductor is further formed on the laminated insulating layer 14 (second conductor forming step). The second conductor forming step is repeated the required number of times.

積層絶縁層14の材料は、積層絶縁層11aに適用できるものと同じでよい。以下のいずれの実施形態でも同様である。   The material of the laminated insulating layer 14 may be the same as that applicable to the laminated insulating layer 11a. The same applies to any of the following embodiments.

導体12を最上層の積層絶縁層14に押し込む又は沈み込ませる押し込み工程では、最上層の積層絶縁層14を形成した後(図12(b))、最上層の導体12を積層絶縁層14に押し込む又は沈み込ませる(図12(c))。   In the pushing step of pushing or sinking the conductor 12 into the uppermost laminated insulating layer 14, after forming the uppermost laminated insulating layer 14 (FIG. 12B), the uppermost conductor 12 is transferred to the laminated insulating layer 14. Push or sink (FIG. 12 (c)).

導体12を積層絶縁層11aに押し込む又は沈み込ませる押し込み工程や、導体12を中間の積層絶縁層14に押し込む又は沈み込ませる押し込み工程では、積層絶縁層11aに導体12を形成した後や、積層絶縁層14を形成して導体12を形成した後に、導体12を積層絶縁層11aや積層絶縁層14に機械的に押し込む(図13(a))。最後の第二の導体形成工程では、最上層の積層絶縁層14上に導体12を形成し(図13(b))、押し込み工程では、最上層の導体12を最上層の積層絶縁層14に機械的に押し込む又は沈み込ませる(図13(c))。   In the pushing step of pushing or sinking the conductor 12 into the laminated insulating layer 11a or the pushing step of pushing or sinking the conductor 12 into the intermediate laminated insulating layer 14, after the conductor 12 is formed on the laminated insulating layer 11a, After forming the insulating layer 14 to form the conductor 12, the conductor 12 is mechanically pressed into the laminated insulating layer 11a or the laminated insulating layer 14 (FIG. 13A). In the last second conductor forming step, the conductor 12 is formed on the uppermost laminated insulating layer 14 (FIG. 13B), and in the pressing step, the uppermost conductor 12 is formed on the uppermost laminated insulating layer 14. Mechanically push or sink (FIG. 13 (c)).

導体形成工程や第二の導体形成工程で導体12を形成するには、図1(a)から図1(c)に示す工程、あるいは図2(a)から図2(d)に示す工程を適用することができる。   In order to form the conductor 12 in the conductor forming step or the second conductor forming step, the steps shown in FIGS. 1A to 1C or the steps shown in FIGS. 2A to 2D are performed. Can be applied.

押し込み工程において、導体12を積層絶縁層11aや積層絶縁層14に押し込む又は沈み込ませる際に、積層絶縁層11a、積層絶縁層14、導体12の少なくともいずれかに加熱してもよい。加熱は、ヒータを押し当てたり、赤外線を照射したり、熱風を浴びせたりして、実現することができる。ヒータで加熱したパネルで導体12を機械的に押し込むことでもよい。加熱手順は図4、図5、図6、図7、図8に示したものと同様の手順が可能である。   In the pushing step, when the conductor 12 is pushed or sunk into the laminated insulating layer 11a or the laminated insulating layer 14, at least one of the laminated insulating layer 11a, the laminated insulating layer 14, and the conductor 12 may be heated. Heating can be realized by pressing a heater, irradiating infrared rays, or blowing hot air. The conductor 12 may be mechanically pushed in by a panel heated by a heater. The same heating procedure as that shown in FIGS. 4, 5, 6, 7, and 8 is possible.

本開示の電子部品搭載用基板では、積層絶縁層11aと積層絶縁層14が一体化されていることがある。あるいは、積層絶縁層14が隣接して複数ある場合は、隣接する積層絶縁層14同士が一体化されていることがある。   In the electronic component mounting board of the present disclosure, the laminated insulating layer 11a and the laminated insulating layer 14 may be integrated. Alternatively, when there are a plurality of adjacent stacked insulating layers 14, the adjacent stacked insulating layers 14 may be integrated.

押し込み工程において、積層絶縁層14への導体12の押し込み後の状態は図10(a)、図10(b)、図11(a)、図11(b)、図11(c)と同様である。積層絶縁層14への導体12の押し込み後の状態を図14(a)、図14(b)、図15(a)、図15(b)、図15(c)で説明する。図14(a)、図14(b)、図15(a)、図15(b)、図15(c)は、本開示の電子部品搭載用基板の例である。図14(a)、図14(b)、図15(a)、図15(b)、図15(c)において、12は導体、14は積層絶縁層である。これらの説明において、図14(a)に示すように、導体12では、積層絶縁層11aの側(積層絶縁層11aに近い側)を底面、底面に対向する側(積層絶縁層11aから遠い側)を上面、上面と底面に挟まれる側を側面と呼称し、積層絶縁層14でも、積層絶縁層11aから遠い側を上面と呼称する。   In the pushing step, the state after the conductor 12 is pushed into the laminated insulating layer 14 is the same as in FIGS. 10A, 10B, 11A, 11B, and 11C. is there. The state after the conductor 12 has been pushed into the laminated insulating layer 14 will be described with reference to FIGS. 14 (a), 14 (b), 15 (a), 15 (b), and 15 (c). 14 (a), 14 (b), 15 (a), 15 (b), and 15 (c) are examples of the electronic component mounting board of the present disclosure. 14 (a), 14 (b), 15 (a), 15 (b), and 15 (c), reference numeral 12 denotes a conductor, and reference numeral 14 denotes a laminated insulating layer. In these descriptions, as shown in FIG. 14A, in the conductor 12, the side of the laminated insulating layer 11a (the side close to the laminated insulating layer 11a) is the bottom surface, and the side facing the bottom surface (the side far from the laminated insulating layer 11a). ) Is referred to as an upper surface, and a side sandwiched between the upper surface and the bottom surface is referred to as a side surface.

導体12を、導体12の底面及び側面の一部が積層絶縁層14の上面よりも低い位置となるまで押し込んでもよい(図14(a))。導体12の底面の全部及び側面の一部が積層絶縁層14と密着するため、積層絶縁層14と導体12との間のピール強度が向上する。また、導体12を、導体12の上面が積層絶縁層14の上面と同一面となる位置まで押し込んでもよい(図14(b))。導体12の底面の全部及び側面の全部が積層絶縁層14と密着するため、積層絶縁層14と導体12との間のピール強度がより向上する。   The conductor 12 may be pushed in until the bottom surface and a part of the side surface of the conductor 12 are lower than the upper surface of the laminated insulating layer 14 (FIG. 14A). Since the entire bottom surface and a part of the side surface of the conductor 12 are in close contact with the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is improved. Alternatively, the conductor 12 may be pushed to a position where the upper surface of the conductor 12 is flush with the upper surface of the laminated insulating layer 14 (FIG. 14B). Since the entire bottom surface and the entire side surface of the conductor 12 are in close contact with the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is further improved.

導体12を、導体12の底面、側面だけでなく、上面が積層絶縁層14の上面よりも低い位置となるまで押し込んでもよい(図15(a)、図15(b)、図15(c))。図15(a)では、導体12を、導体12の上面が積層絶縁層14の上面よりも低い位置となるまで押し込んでいるが、導体12の上面は露出している。導体12の底面の全部及び側面の全部が積層絶縁層14と密着するため、積層絶縁層14と導体12との間のピール強度がより向上する。図15(b)では、導体12を、導体12の上面が積層絶縁層14の上面よりも低い位置となるまで押し込んでいるが、導体12の上面の一部は露出している。導体12の底面の全部、側面の全部及び上面の一部が積層絶縁層14と密着するため、積層絶縁層14と導体12との間のピール強度がいっそう向上する。図15(c)では、導体12を、導体12の上面が積層絶縁層14の上面よりも低い位置となるまで押し込んで、導体12の上面まで積層絶縁層14に埋まっている。導体12の底面の全部、側面の全部及び上面の全部が積層絶縁層14と密着するため、積層絶縁層14と導体12との間のピール強度がさらにいっそう向上する。   The conductor 12 may be pushed not only at the bottom and side surfaces of the conductor 12 but also until the top surface is lower than the top surface of the laminated insulating layer 14 (FIGS. 15A, 15B, and 15C). ). In FIG. 15A, the conductor 12 is pushed until the upper surface of the conductor 12 is lower than the upper surface of the laminated insulating layer 14, but the upper surface of the conductor 12 is exposed. Since the entire bottom surface and the entire side surface of the conductor 12 are in close contact with the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is further improved. In FIG. 15B, the conductor 12 is pushed until the upper surface of the conductor 12 is lower than the upper surface of the laminated insulating layer 14, but a part of the upper surface of the conductor 12 is exposed. Since the entire bottom surface, the entire side surface, and a part of the top surface of the conductor 12 are in close contact with the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is further improved. In FIG. 15C, the conductor 12 is pushed down until the upper surface of the conductor 12 is lower than the upper surface of the laminated insulating layer 14, and the conductor 12 is buried in the laminated insulating layer 14 up to the upper surface of the conductor 12. Since all of the bottom surface, all of the side surfaces, and all of the top surface of the conductor 12 are in close contact with the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is further improved.

最上層の導体12を積層絶縁層14に押し込む又は沈み込ませることによって、最終製品としての電子部品搭載用基板において、積層絶縁層14と導体12との間のピール強度が向上する。最上層の導体12以外の導体を積層絶縁層11aや積層絶縁層14に押し込む又は沈み込ませることによって、電子部品搭載用基板の製造過程において、積層絶縁層11aや積層絶縁層14と導体12との間のピール強度が向上して、製造過程での導体のはがれが防止できる。   By pushing or sinking the uppermost conductor 12 into the laminated insulating layer 14, the peel strength between the laminated insulating layer 14 and the conductor 12 is improved in the electronic component mounting board as a final product. By pushing or sinking a conductor other than the uppermost conductor 12 into the laminated insulating layer 11a or the laminated insulating layer 14, in the manufacturing process of the electronic component mounting board, the conductor 12 and the laminated insulating layer 11a or the laminated insulating layer 14 The peel strength during the manufacturing process can be improved, and peeling of the conductor during the manufacturing process can be prevented.

導体形成工程や第二の導体形成工程では押し込み工程を有する。その押し込み工程では、組合せの層に形成された導体12のうち、異なる層に形成された導体12同士を、電気的に接続する導体部の一例であるVIAを形成するVIA形成工程を含んでもよい。VIA形成工程の後に、導体12を積層絶縁層14に押し込む又は沈み込ませる。   The conductor forming step and the second conductor forming step include a pressing step. The indentation step may include a VIA forming step of forming a VIA, which is an example of a conductor part, for electrically connecting the conductors 12 formed in different layers among the conductors 12 formed in the combination layer. . After the VIA forming step, the conductor 12 is pushed or sunk into the laminated insulating layer 14.

積層絶縁層14で組合せの層に形成された導体12のうち、異なる層に形成された導体12同士を電気的に接続する導体部の一例であるVIAについて説明する。図16(a)、図16(b)、図16(c)、図16(d)にVIA形成工程を示す。図16(a)、図16(b)、図16(c)、図16(d)において、11aは積層絶縁層、12は導体、14は積層絶縁層、15はVIAである。   A VIA, which is an example of a conductor portion that electrically connects the conductors 12 formed in different layers among the conductors 12 formed in a combination of layers in the laminated insulating layer 14, will be described. 16A, 16B, 16C, and 16D show a VIA forming process. 16 (a), 16 (b), 16 (c), and 16 (d), 11a is a laminated insulating layer, 12 is a conductor, 14 is a laminated insulating layer, and 15 is a via.

導体形成工程や第二の導体形成工程では、積層絶縁層11a上に導体12、積層絶縁層14、導体12を順次形成していく(図16(a)、図16(b))。異なる層に形成された導体12同士をVIA15で電気的に接続する(図16(c))。この後、導体12を積層絶縁層14に機械的に押し込む又は沈み込ませると、VIA15が圧縮されて、アンカー効果が高まり、積層絶縁層14と導体12との間のピール強度が向上する。ここでは、積層絶縁層11a上の導体12と積層絶縁層14上の導体12同士を電気的に接続するVIA15について説明したが、積層絶縁層14上の導体12と積層絶縁層14上の導体12同士を電気的に接続するVIA15についても同様である。最上層の導体12とその下層の導体12同士を電気的に接続するVIA15についても同様である。   In the conductor forming step and the second conductor forming step, the conductor 12, the laminated insulating layer 14, and the conductor 12 are sequentially formed on the laminated insulating layer 11a (FIGS. 16A and 16B). The conductors 12 formed in different layers are electrically connected to each other by the via 15 (FIG. 16C). Thereafter, when the conductor 12 is mechanically pushed or sunk into the laminated insulating layer 14, the VIA 15 is compressed, the anchor effect is enhanced, and the peel strength between the laminated insulating layer 14 and the conductor 12 is improved. Here, the VIA 15 for electrically connecting the conductors 12 on the laminated insulating layer 11a and the conductors 12 on the laminated insulating layer 14 has been described, but the conductor 12 on the laminated insulating layer 14 and the conductor 12 on the laminated insulating layer 14 are described. The same applies to the vias 15 that electrically connect each other. The same applies to the VIA 15 that electrically connects the uppermost conductor 12 and the lower conductors 12 to each other.

上記では、VIA形成工程の後に、導体12を積層絶縁層11aや積層絶縁層14に機械的に押し込む又は沈み込ませたが、導体12を積層絶縁層11aや積層絶縁層14に機械的に押し込む又は沈み込ませた後にVIA15を形成してもよいことはいうまでもない。   In the above description, after the VIA forming step, the conductor 12 is mechanically pressed or sunk into the laminated insulating layer 11a or the laminated insulating layer 14, but the conductor 12 is mechanically pressed into the laminated insulating layer 11a or the laminated insulating layer 14. Alternatively, it goes without saying that the VIA 15 may be formed after being sunk.

上記各実施形態では、積層絶縁層の片側を示しつつ説明したが、片面基板に適用するのみならず、両面基板や多層基板の場合は、積層絶縁層の両側のそれぞれの側に本開示の技術が適用できる。両面基板や多層基板の場合、本実施形態でいう上層や上面は、積層絶縁層から遠い側の層や面を上層や上面と考えてよい。   In each of the above embodiments, the description has been given while showing one side of the laminated insulating layer. However, not only the application to a single-sided substrate, but also the case of a double-sided substrate or a multilayer substrate, the technology of the present disclosure is applied to both sides of the laminated insulating layer. Can be applied. In the case of a double-sided substrate or a multilayer substrate, the upper layer or upper surface in this embodiment may be regarded as a layer or surface farther from the laminated insulating layer.

多層基板の場合、積層絶縁層上の導体、積層絶縁層から最も遠い最外層の導体及び積層絶縁層と最外層の間の層の任意の層の導体のうち、任意の導体を積層絶縁層や積層絶縁層に押し込む又は沈み込ませてもよい。例えば、最外層の導体が押し込まれ又は沈み込んでおり、かつ、積層絶縁層と最外層の間の中間層の導体が押し込まれ又は沈み込んだ形態、あるいは積層絶縁層と最外層の間の中間層の導体が押し込まれ又は沈み込んだ形態のいずれも含まれる。   In the case of a multi-layer substrate, any of the conductors on the laminated insulating layer, the outermost layer conductor farthest from the laminated insulating layer, and the conductor of any layer between the laminated insulating layer and the outermost layer, may be any one of the laminated insulating layers or It may be pressed or sink into the laminated insulating layer. For example, the outermost conductor is pushed or sunk, and the middle conductor between the laminated insulating layer and the outermost layer is pushed or sunk, or the middle between the laminated insulating layer and the outermost layer. Either the conductor of the layer is pressed or sunken.

両面基板や多層基板の場合、両側の導体を押し込む又は沈み込ませるときは、両側から同時に導体に圧力をかけて、押し込む又は沈み込ませてもよい。   In the case of a double-sided board or a multilayer board, when pushing or sinking the conductors on both sides, pressure may be applied to the conductors from both sides simultaneously to push or sink the conductors.

加えて薄いプリント基板を作る際に、銅箔が傷みやすく、キャリア付銅箔の利用を余儀なくされている現状があり、この現状は、第一にキャリア付銅箔の価格の高さ、第二に不良率の高さ、第三に製造工程の管理度への要求の高さという課題もあった。本開示によれば、キャリア付銅箔を使用しなくても、基板厚の薄い一層プリント基板あるいは多層プリント基板を作ることが出来る。さらに、VIAを作ることによるビルドアップ法、あるいは貫通孔を作ることによるスルーホール法も本開示の技術の中で利用することができる。   In addition, when making thin printed circuit boards, copper foil is easily damaged and there is a current situation where copper foil with a carrier has to be used.This current situation is mainly due to the high price of copper foil with a carrier, Another problem is that the defect rate is high, and thirdly, there is a high demand for control of the manufacturing process. According to the present disclosure, a single-layer printed board or a multilayer printed board having a small board thickness can be manufactured without using a copper foil with a carrier. Further, a build-up method by forming a VIA or a through-hole method by forming a through-hole can also be used in the technology of the present disclosure.

(第2の実施形態)
第1の実施形態において、絶縁層11のうちの導体12と接するおもて面に、導体12との密着性の高い密着層(不図示)が設けられてよい。密着層は、絶縁体層11及び導体12との密着性が高い絶縁性の任意の物質である。この場合、本開示に係る電子部品搭載用基板の製造方法は、導体形成工程の前にさらに密着層形成工程を備える。
(Second embodiment)
In the first embodiment, an adhesive layer (not shown) having high adhesiveness to the conductor 12 may be provided on the front surface of the insulating layer 11 that contacts the conductor 12. The adhesion layer is an arbitrary insulating material having high adhesion to the insulator layer 11 and the conductor 12. In this case, the method for manufacturing an electronic component mounting substrate according to the present disclosure further includes an adhesion layer forming step before the conductor forming step.

密着層形成工程では、絶縁層11上に密着層を形成する。導体形成工程では、密着層の上面に導体12を形成する。密着層は、絶縁層11上の導体12の配置される領域の少なくとも一部に形成される。密着層は、導体12の配置される全領域に形成されていることが好ましく、絶縁層11の全体に形成されていてもよい。   In the adhesion layer forming step, an adhesion layer is formed on the insulating layer 11. In the conductor forming step, the conductor 12 is formed on the upper surface of the adhesion layer. The adhesion layer is formed on at least a part of a region on the insulating layer 11 where the conductor 12 is arranged. The adhesion layer is preferably formed on the entire region where the conductor 12 is arranged, and may be formed on the entire insulating layer 11.

密着層は、絶縁層11よりも導体12との密着性の高い任意の物質である。密着層は、絶縁層11と導体12との間の少なくとも一部に配置されている。密着層は、絶縁層11と導体12との間の少なくとも一部に配置されていれば絶縁層11と導体12との密着強度を高めることができ、絶縁層11と導体12との間の全領域に配置されていてもよい。密着層は、絶縁層11と導体12との密着強度を高める物質を含む。密着強度を高める物質は、化学的相互作用、物理的相互作用及び機械的結合のいずれを用いたものであってもよい。機械的結合としては、例えば、後述する第2の実施形態に説明する凹凸が例示できる。   The adhesion layer is an arbitrary substance having higher adhesion to the conductor 12 than the insulating layer 11. The adhesion layer is disposed at least partially between the insulating layer 11 and the conductor 12. If the adhesion layer is disposed at least in part between the insulating layer 11 and the conductor 12, the adhesion strength between the insulating layer 11 and the conductor 12 can be increased. It may be arranged in an area. The adhesion layer contains a substance that increases the adhesion strength between the insulating layer 11 and the conductor 12. The substance for increasing the adhesion strength may be one using any of chemical interaction, physical interaction, and mechanical bonding. As the mechanical coupling, for example, the unevenness described in a second embodiment described later can be exemplified.

化学的相互作用によって密着強度を高める物質として、密着層の一部又は全部に、接着剤として用いられている物質などが含まれていてもよい。例えば、一部又は全部の絶縁性物質による密着層の樹脂材料としては、ポリイミド樹脂、エポキシ樹脂、フェノール樹脂、シアネート樹脂などの他、無機材料など、導体12と絶縁層11の双方に対して密着性の高い物質であれば何でもよい。金属酸化物、金属窒化物、金属炭化物及び酸化還元剤等の無機系の物質が、一部又は全部に含まれていてもよい。   A substance used as an adhesive or the like may be contained in a part or the entirety of the adhesion layer as the substance that increases the adhesion strength by a chemical interaction. For example, as the resin material of the adhesive layer made of a part or all of the insulating material, a polyimide resin, an epoxy resin, a phenol resin, a cyanate resin, or the like, or an inorganic material can be used to adhere to both the conductor 12 and the insulating layer 11. Any substance having a high property may be used. Inorganic substances such as metal oxides, metal nitrides, metal carbides, and redox agents may be contained partially or entirely.

物理的相互作用によって密着強度を高める物質として、密着層の一部又は全部に、還元作用を有する還元剤及び酸化作用を有する酸化剤の少なくともいずれかが含まれていてもよい。還元剤は、導体12、絶縁層11及び密着層の少なくともいずれかに含まれる物質を還元する作用を有する。酸化剤は、導体12、絶縁層11及び密着層の少なくともいずれかに含まれる物質を酸化する作用を有する。還元剤及び酸化剤は、導体12、絶縁層11及び密着層だけでなく、空気や水などの周辺環境その他の触媒などと単独又は相互の組み合わせで反応させるものであってもよい。   As a substance for increasing the adhesive strength by physical interaction, at least one of a reducing agent having a reducing action and an oxidizing agent having an oxidizing action may be contained in a part or the whole of the adhesive layer. The reducing agent has a function of reducing a substance contained in at least one of the conductor 12, the insulating layer 11, and the adhesion layer. The oxidizing agent has an action of oxidizing a substance contained in at least one of the conductor 12, the insulating layer 11, and the adhesion layer. The reducing agent and the oxidizing agent may react alone or in combination with the conductor 12, the insulating layer 11, and the adhesion layer, as well as the surrounding environment such as air and water or other catalysts.

還元剤は、密着層の全体に含まれていてもよいし、密着層の導体12側のおもて面のみに含まれていてもよいし、絶縁層11側のおもて面のみに含まれていてもよい。酸化剤についても同様である。例えば、密着層の導体12側のおもて面に還元剤が含まれ、密着層の絶縁層11側のおもて面に酸化剤が含まれていてもよい。密着層に含まれている還元剤の割合は任意であり、還元する性質があれば微量であってもよい。酸化剤についても同様である。   The reducing agent may be contained in the entire adhesion layer, may be contained only in the front surface on the conductor 12 side of the adhesion layer, or may be contained only in the front surface on the insulating layer 11 side. It may be. The same applies to the oxidizing agent. For example, a reducing agent may be contained in the front surface of the contact layer on the conductor 12 side, and an oxidizing agent may be contained in the front surface of the contact layer on the insulating layer 11 side. The ratio of the reducing agent contained in the adhesion layer is arbitrary, and may be a small amount as long as it has a reducing property. The same applies to the oxidizing agent.

密着層の絶縁層11側のおもて面に含まれている還元剤は、密着層の導体12側のおもて面に含まれている還元剤と異なってもよいし、同じであってもよい。異なる例としては、例えば、密着層の導体12側に導体12の還元に適した還元剤が含まれ、密着層の絶縁層11側に絶縁層11に適した還元剤が含まれている構成も採用しうる。同じ例としては例えば、絶縁層11と導体12との間に還元剤として機能する物質が含まれていれば、本開示に係る密着層を備えることになる。酸化剤も同様である。   The reducing agent contained on the front surface of the adhesion layer on the insulating layer 11 side may be different from or the same as the reducing agent contained on the front surface of the adhesion layer on the conductor 12 side. Is also good. As a different example, for example, a configuration in which a reducing agent suitable for reducing the conductor 12 is included on the conductor 12 side of the adhesion layer and a reducing agent suitable for the insulating layer 11 is included on the insulating layer 11 side of the adhesion layer is also available. Can be adopted. As the same example, for example, if a substance that functions as a reducing agent is included between the insulating layer 11 and the conductor 12, the adhesion layer according to the present disclosure will be provided. The same applies to the oxidizing agent.

図12〜図13に示す多層基板の例では、組合せの層に密着層を設けることができる。例えば、絶縁層11とその上に形成される導体12との間、組み合わせの層を構成する絶縁層14−1及び導体12−1の間、に密着層(不図示)を設ける。また、組合せの層を構成する絶縁層14−1上に形成されている導体12−1とその上に形成される絶縁層14−2との間に、密着層(不図示)を設けてもよい。この場合、絶縁層14−2及び導体12−2の組み合わせの層に代えて、密着層及び導体12−2の組み合わせの層が形成されていてもよい。   In the example of the multilayer substrate shown in FIGS. 12 and 13, an adhesion layer can be provided on the combined layers. For example, an adhesion layer (not shown) is provided between the insulating layer 11 and the conductor 12 formed thereon, and between the insulating layer 14-1 and the conductor 12-1 that constitute a combined layer. Further, an adhesion layer (not shown) may be provided between the conductor 12-1 formed on the insulating layer 14-1 constituting the combination layer and the insulating layer 14-2 formed thereon. Good. In this case, instead of the combination layer of the insulating layer 14-2 and the conductor 12-2, a combination layer of the adhesion layer and the conductor 12-2 may be formed.

本実施形態に係る電子部品搭載用基板の製造方法は、導体形成工程の後に、第1の実施形態で説明した押し込み工程をさらに有していてもよい。これにより、ピール強度をさらに向上することができる。   The method for manufacturing an electronic component mounting board according to the present embodiment may further include the pressing step described in the first embodiment after the conductor forming step. Thereby, the peel strength can be further improved.

(第3の実施形態)
図17に、本開示の実施形態に係る電子部品搭載用基板の一例を示す。本実施形態に係る電子部品搭載用基板は、絶縁層11上に導体12が形成されている。導体12は、絶縁層11側の最下層に、無電解めっき層21を含む。例えば、導体12は、絶縁層11側の最下層から、順に、無電解めっき層21及び電解めっき層22が積層されている。このように、絶縁層11と無電解めっき層21が接していることで、絶縁層11及び導体12の密着強度を高めることができる。
(Third embodiment)
FIG. 17 illustrates an example of an electronic component mounting board according to an embodiment of the present disclosure. In the electronic component mounting board according to the present embodiment, the conductor 12 is formed on the insulating layer 11. The conductor 12 includes an electroless plating layer 21 in the lowermost layer on the insulating layer 11 side. For example, in the conductor 12, an electroless plating layer 21 and an electrolytic plating layer 22 are sequentially stacked from the lowermost layer on the insulating layer 11 side. Since the insulating layer 11 and the electroless plating layer 21 are in contact with each other, the adhesion strength between the insulating layer 11 and the conductor 12 can be increased.

無電解めっき層21は、電解めっきではない任意の方法で形成された任意の導体である。図17では、無電解めっき層21の上に電解めっき層22が積層されている例を示すが、電解めっき層22の配置されていない、導体12の全体が無電解めっき層21で形成されている形態もありうる。   The electroless plating layer 21 is an arbitrary conductor formed by an arbitrary method other than the electrolytic plating. FIG. 17 shows an example in which the electrolytic plating layer 22 is laminated on the electroless plating layer 21, but the entire conductor 12 in which the electrolytic plating layer 22 is not arranged is formed by the electroless plating layer 21. There may be some forms.

図18に、絶縁層11及び導体12の境界部分の拡大図を示す。図18(b)は絶縁層11のおもて面11Uでの断面形状を示し、図18(a)はA−A’断面形状を示す。絶縁層11は、導体12側のおもて面11Uに、凹凸を有する。凹凸は、凹部若しくは凸部又はこれらの両方でありうる。   FIG. 18 shows an enlarged view of a boundary portion between the insulating layer 11 and the conductor 12. FIG. 18B shows a cross-sectional shape at the front surface 11U of the insulating layer 11, and FIG. 18A shows a cross-sectional shape taken along the line A-A '. The insulating layer 11 has irregularities on the front surface 11U on the conductor 12 side. The irregularities can be concave or convex or both.

本開示では、絶縁層11のおもて面11Uに凹凸を形成し、その上から無電解めっき層21を形成する。このため、図19に示すように、無電解めっき層21は、絶縁層11側に配置されている導体12下部から成長し、絶縁層11のおもて面11Uと直接接する。ここで、符号112−6及び112−9に示す凸部は、形成されていてもよいし、形成されていなくてもよい。   In the present disclosure, unevenness is formed on the front surface 11U of the insulating layer 11, and the electroless plating layer 21 is formed thereon. Therefore, as shown in FIG. 19, the electroless plating layer 21 grows from below the conductor 12 disposed on the insulating layer 11 side, and directly contacts the front surface 11U of the insulating layer 11. Here, the protrusions indicated by reference numerals 112-6 and 112-9 may or may not be formed.

アンカー効果を得るために導体12に凸形状を形成した場合、密着層のおもて面Uと無電解めっき層21との間には、凸形状を形成するためのNiやFeなどの粒状物質が含まれている。一方、本開示は、密着層のおもて面に凹凸を形成するため、導体12に凸形状を形成するための粒状物質が含まれていない。このため、導体12の最下層における、無電解めっき層21とは異なる物質の含有量が30%以下である。例えば、本開示の導体12の最下層は、無電解めっき層21が単一の物質で形成されている。ここで、「単一の物質」は、金属及び合金を含む。また、本開示の導体12側から密着層側への導体凸部同士では、図22に示すトンネル113のような、密着層内での導通部が形成されていない。すなわち、無電解めっき層21は、密着層のおもて面の片側のみに形成されている。   When a convex shape is formed on the conductor 12 in order to obtain an anchor effect, a particulate substance such as Ni or Fe for forming the convex shape is formed between the front surface U of the adhesion layer and the electroless plating layer 21. It is included. On the other hand, according to the present disclosure, since irregularities are formed on the front surface of the adhesion layer, the conductor 12 does not include a particulate material for forming a convex shape. For this reason, the content of the substance different from the electroless plating layer 21 in the lowermost layer of the conductor 12 is 30% or less. For example, in the lowermost layer of the conductor 12 of the present disclosure, the electroless plating layer 21 is formed of a single substance. Here, the “single substance” includes a metal and an alloy. In addition, between the conductor protrusions from the conductor 12 side to the contact layer side of the present disclosure, a conductive portion in the contact layer, such as a tunnel 113 shown in FIG. 22, is not formed. That is, the electroless plating layer 21 is formed only on one side of the front surface of the adhesion layer.

導体12に形成した凸形状を用いてアンカーが形成されている場合、導体12の位置から密着層の中心方向に向かって導体12が成長している。このため、導体12の配置されている密着層のおもて面付近から密着層の中心方向に向かって導体12が細くなる。これに対し、本開示は、密着層のおもて面に凹凸を形成するため、密着層のおもて面付近から絶縁層11に向かって導体12が細くなる形状だけでなく、図18の凹部111−1、111−3、111−6に示すような、密着層21のおもて面付近から絶縁層11に向かって広がる形状もありうる。   When the anchor is formed using the convex shape formed on the conductor 12, the conductor 12 grows from the position of the conductor 12 toward the center of the adhesion layer. For this reason, the conductor 12 becomes thinner from the vicinity of the front surface of the adhesion layer where the conductor 12 is arranged toward the center of the adhesion layer. On the other hand, according to the present disclosure, since irregularities are formed on the front surface of the adhesion layer, not only the shape in which the conductor 12 becomes thinner from the vicinity of the front surface of the adhesion layer toward the insulating layer 11, but also the shape of FIG. As shown in the concave portions 111-1, 111-3, and 111-6, there may be a shape spreading from the vicinity of the front surface of the adhesive layer 21 toward the insulating layer 11.

図18の凹部111−8及び111−9は、図20に示すように、絶縁層11のおもて面11U付近から絶縁層11の中心方向に向かって斜めに形成されていてもよい。この場合、凹部111−8と凹部111−9との距離は、おもて面11U付近よりも絶縁層11の深くの方が近いことが好ましい。これにより、凹部111−8と凹部111−9とで絶縁層11を抱え込み、導体12と絶縁層11とのピール強度をより高めることができる。   As shown in FIG. 20, the recesses 111-8 and 111-9 in FIG. 18 may be formed obliquely from near the front surface 11U of the insulating layer 11 toward the center of the insulating layer 11. In this case, it is preferable that the distance between the concave portion 111-8 and the concave portion 111-9 is shorter in the insulating layer 11 than in the vicinity of the front surface 11U. Thereby, the insulating layer 11 is held between the concave portions 111-8 and 111-9, and the peel strength between the conductor 12 and the insulating layer 11 can be further increased.

また、本開示は、絶縁層11のおもて面11Uに凹凸を形成するため、絶縁層11のおもて面11Uでの凹凸の配置が、凹凸の形成方法に起因する規則性を有する。   Further, in the present disclosure, since the unevenness is formed on the front surface 11U of the insulating layer 11, the arrangement of the unevenness on the front surface 11U of the insulating layer 11 has a regularity due to the method of forming the unevenness.

平面上又はロール上に形成された凹凸形状を用いて凹凸を形成した場合、平面又はロールの凹凸形状がそのままおもて面11Uに現れる。例えば、凹凸形状に一定幅又は一定間隔の直線が含まれる場合、図18に示す符号111−8,111−9及び図21(a)に示すような、一定幅又は一定間隔の凹部又は凸部が残る。おもて面11Uを切削して凹凸を形成した場合、図21(b)及び図21(c)に示すような、切削方向に線状の跡が残る。   When the unevenness is formed using the unevenness formed on the flat surface or the roll, the unevenness of the flat surface or the roll appears on the front surface 11U as it is. For example, when the uneven shape includes a straight line having a constant width or a constant interval, concave portions or convex portions having a constant width or a constant interval as shown in reference numerals 111-8 and 111-9 shown in FIG. 18 and FIG. Remains. When the front surface 11U is cut to form irregularities, a linear mark remains in the cutting direction as shown in FIGS. 21 (b) and 21 (c).

起泡性の薬品を用いて凹凸を形成した場合、図18に示す符号111−1〜111−7及び図21(d)に示すような、円形状の泡の跡が残る。凹部111−1〜111−7の内径は、一定であってもよいし、異なってもよい。また、凹部111−1のように、凹部111−1のなかに凸部112−1が形成されている二重円形状もある。この凸部112−1は、凹部111−2〜111−7にも形成されていてもよい。また、凹凸に含まれる円形は、凹部だけでなく凸部に形成されていてもよい。なお、図18(a)及び図18(b)のそれぞれに示す凹凸の断面形状は、上述の形状に限定されず、凹凸を形成する際に形成される任意の形状を含む。例えば、楔形状、鉤形状、台形、振り子、2山を持った台形などが例示できる。   When the irregularities are formed using a foaming chemical, traces of circular bubbles are left as shown in reference numerals 111-1 to 111-7 shown in FIG. 18 and FIG. 21D. The inner diameters of the recesses 111-1 to 111-7 may be constant or different. Also, there is a double circular shape in which the convex portion 112-1 is formed in the concave portion 111-1, like the concave portion 111-1. The convex 112-1 may be formed also in the concaves 111-2 to 111-7. Further, the circle included in the unevenness may be formed not only in the concave portion but also in the convex portion. Note that the cross-sectional shapes of the concavities and convexities shown in FIGS. 18A and 18B are not limited to the above-described shapes, but include any shapes formed when the concavities and convexities are formed. For example, a wedge shape, a hook shape, a trapezoid, a pendulum, a trapezoid having two peaks, and the like can be exemplified.

凹凸の規則性は、狭い範囲で規則性が見られなくても、広い範囲まで含めると規則性を見出すことができる。特に、電子部品搭載用基板はチップに分離されて電子部品等に搭載されるため、凹凸の形成方法によっては凹凸の規則性は1チップ内では現れないこともありうる。この場合は、2以上の任意の数のチップで初めて凹凸形成物質の痕跡が表れうる。   Even if the regularity of the unevenness is not seen in a narrow range, the regularity can be found by including the irregularity in a wide range. In particular, since the electronic component mounting substrate is separated into chips and mounted on electronic components or the like, the regularity of the irregularities may not appear in one chip depending on the method of forming the irregularities. In this case, traces of the concavo-convex forming material can appear only for an arbitrary number of chips of 2 or more.

図22を参照しながら、本開示に係る電子部品搭載用基板の製造方法を説明する。本実施形態に係る電子部品搭載用基板の製造方法は、導体形成工程の前に凹凸形成工程を有する。   A method for manufacturing an electronic component mounting board according to the present disclosure will be described with reference to FIG. The method for manufacturing an electronic component mounting board according to the present embodiment includes an unevenness forming step before the conductor forming step.

凹凸形成工程では、絶縁層11を用意し(図22(a))、絶縁層11のおもて面11Uに凹凸を形成する(図22(b))。凹凸の形成は、おもて面11Uのうちの導体12の配線パターンの形成されうる全体の領域に行う。おもて面11Uの全体に凹凸を形成した場合、絶縁層11の導体12の存在するおもて面11Uの側の導体12の配置されていない領域にも、図18に示すような凹凸が形成されている。   In the unevenness forming step, the insulating layer 11 is prepared (FIG. 22A), and unevenness is formed on the front surface 11U of the insulating layer 11 (FIG. 22B). The unevenness is formed on the entire surface of the front surface 11U where the wiring pattern of the conductor 12 can be formed. When the unevenness is formed on the entire front surface 11U, the unevenness as shown in FIG. 18 is also formed in the region of the insulating layer 11 where the conductor 12 is located on the side of the front surface 11U where the conductor 12 is not present. Is formed.

凹凸の形成方法は任意であり、例えば、平面上又はロール上に形成された凹凸形状をおもて面11Uに転写する、或いは凹凸形状を有する絶縁性のシートをおもて面11Uに埋め込むなどの物理的な形成、ブラシなどによっておもて面11Uを切削するなどの機械的な形成、薬品を用いておもて面11Uを溶解又は膨潤させるなどの化学的な形成、が例示でき、これらを組み合わせてもよい。なお、絶縁層11のおもて面11Uの凹凸形状は、導体12の配置されている領域とそうでない領域とで異なっていてもよい。   The method of forming the irregularities is arbitrary. For example, the irregularities formed on a flat surface or a roll are transferred to the front surface 11U, or an insulating sheet having the irregularities is embedded in the front surface 11U. Physical formation, mechanical formation such as cutting the front surface 11U with a brush, etc., and chemical formation such as dissolving or swelling the front surface 11U using chemicals. May be combined. In addition, the uneven shape of the front surface 11U of the insulating layer 11 may be different between a region where the conductor 12 is arranged and a region where the conductor 12 is not.

導体形成工程は、前述の第1の実施形態において説明したとおりであるが、本実施形態は無電解めっき層21を備える点で異なる。無電解めっき層21を形成し(図22(c))、電解めっき層22を形成し(図22(d))、無電解めっき層21を除去する(図22(e))。無電解めっき層21の形成は、化学めっきのほか、液状又はペースト状の導体の塗布が例示できる。無電解めっき層21の形成は、おもて面11Uのうちの導体12の配線パターンの形成されうる全体の領域に行う。電解めっき層22は、配線パターンの形状に形成する。無電解めっき層21の除去は、電解めっき層22を残しつつ、配線パターン以外の領域に形成されている無電解めっき層21を除去する。このときに、導体12の角(図17に示す符号12E)が丸くなる。本開示では、導体12を絶縁層11側から成長させるため、絶縁層11に垂直な断面では、導体12の絶縁層11側の面に対向する上面の角が丸みを帯びている。   The conductor forming step is the same as that described in the first embodiment, but the present embodiment is different in that an electroless plating layer 21 is provided. The electroless plating layer 21 is formed (FIG. 22 (c)), the electrolytic plating layer 22 is formed (FIG. 22 (d)), and the electroless plating layer 21 is removed (FIG. 22 (e)). The electroless plating layer 21 can be formed by applying a liquid or paste-like conductor in addition to chemical plating. The electroless plating layer 21 is formed on the entire surface of the front surface 11U where the wiring pattern of the conductor 12 can be formed. The electrolytic plating layer 22 is formed in the shape of a wiring pattern. The removal of the electroless plating layer 21 removes the electroless plating layer 21 formed in a region other than the wiring pattern while leaving the electrolytic plating layer 22. At this time, the corners of the conductor 12 (reference numeral 12E shown in FIG. 17) are rounded. In the present disclosure, since the conductor 12 is grown from the insulating layer 11 side, in a cross section perpendicular to the insulating layer 11, the corner of the upper surface of the conductor 12 facing the surface on the insulating layer 11 side is rounded.

なお、絶縁層11のおもて面11Uのうちの凹凸を形成する領域、及び、無電解めっき層21を形成する領域は、おもて面11Uのうちの導体12の配線パターンの形成される領域のみであってもよい。   In addition, the region of the front surface 11U of the insulating layer 11 where the irregularities are formed and the region where the electroless plating layer 21 is formed have the wiring pattern of the conductor 12 on the front surface 11U. Only the area may be used.

また、電解めっき層22を形成せず、配線パターンの形状に無電解めっき層21を直接形成してもよい。この場合、導体12の全体が無電解めっき層21で構成される。   Further, the electroless plating layer 21 may be directly formed in the shape of the wiring pattern without forming the electrolytic plating layer 22. In this case, the entire conductor 12 is constituted by the electroless plating layer 21.

また、本実施形態では、本開示に係る電子部品搭載用基板の一例として片面基板を例示したが、本開示はこれに限定されない。例えば、本開示に係る電子部品搭載用基板は両面基板であってもよい。この場合、本実施形態で説明した絶縁層11及び導体12の構造が片面のみに形成されていてもよいし、両面に形成されていてもよい。また、本開示に係る電子部品搭載用基板は多層基板であってもよい。この場合、本実施形態で説明した絶縁層11及び導体12の構造が多層基板の少なくとも一つの層に含まれていればよい。   Further, in the present embodiment, a single-sided substrate is exemplified as an example of the electronic component mounting substrate according to the present disclosure, but the present disclosure is not limited to this. For example, the electronic component mounting substrate according to the present disclosure may be a double-sided substrate. In this case, the structure of the insulating layer 11 and the conductor 12 described in the present embodiment may be formed on only one side, or may be formed on both sides. Further, the electronic component mounting substrate according to the present disclosure may be a multilayer substrate. In this case, the structure of the insulating layer 11 and the conductor 12 described in the present embodiment may be included in at least one layer of the multilayer substrate.

以上説明したように、本実施形態は、導体12が絶縁層11側の最下層に無電解めっき層21を含み、絶縁層11及び無電解めっき層21が接している。このため、本実施形態は、ピール強度の強い電子部品搭載用基板を提供することができる。   As described above, in the present embodiment, the conductor 12 includes the electroless plating layer 21 in the lowermost layer on the insulating layer 11 side, and the insulating layer 11 and the electroless plating layer 21 are in contact with each other. Therefore, the present embodiment can provide an electronic component mounting substrate having a high peel strength.

なお、本実施形態では第1の実施形態への適用例について説明したが、本実施形態は第2の実施形態に適用してもよい。この場合、凹凸を形成するのは、導体12に接する密着層のおもて面であってもよいし、絶縁層11に接する密着層のおもて面であってもよいし、密着層に接する絶縁層11のおもて面11Uであってもよい。   Note that, in the present embodiment, an example of application to the first embodiment has been described, but the present embodiment may be applied to the second embodiment. In this case, the unevenness may be formed on the front surface of the contact layer in contact with the conductor 12, on the front surface of the contact layer in contact with the insulating layer 11, or on the contact layer. The front surface 11U of the insulating layer 11 which is in contact may be used.

(第4の実施形態)
次に、第4の実施形態について説明する。本実施の形態の導体12は側面に導体凹部(凹部)200を有する。
(Fourth embodiment)
Next, a fourth embodiment will be described. The conductor 12 of the present embodiment has a conductor recess (recess) 200 on the side surface.

この導体凹部200は、粒状物質250を含有するレジスト材料を用いることで形成されてもよい。具体的な一例を示す。   The conductor concave portion 200 may be formed by using a resist material containing the particulate matter 250. A specific example will be described.

まず、粒状物質250を含有するレジスト材料を用いてレジスト層290を形成する(図23(a)参照)。   First, a resist layer 290 is formed using a resist material containing the particulate matter 250 (see FIG. 23A).

その後、レジスト層290のうちの導体12を設ける箇所をエッジング等によって除去する(図23(b)参照)。この際、エッジング剤を選択する等して、粒状物質250を除去しないようにする。なお、レジスト層290内に含有されている粒状物質250はレジスト層290とともに除去されることになる。   Thereafter, a portion of the resist layer 290 where the conductor 12 is provided is removed by edging or the like (see FIG. 23B). At this time, the particulate matter 250 is not removed by selecting an edging agent or the like. Note that the particulate matter 250 contained in the resist layer 290 is removed together with the resist layer 290.

その後、レジスト層290に設けられた開口295の側面から粒状物質250を露出させた状態で無電解めっき又は電解めっき等によるめっきを行い、導体12を形成する。この結果、導体凹部200を有する導体12が形成されることになる(図23(c)参照)。   After that, plating is performed by electroless plating or electrolytic plating in a state where the particulate matter 250 is exposed from the side surface of the opening 295 provided in the resist layer 290 to form the conductor 12. As a result, the conductor 12 having the conductor concave portion 200 is formed (see FIG. 23C).

その後、レジスト層290及び粒状物質250をエッチング等によって除去する。この際も、レジスト層290内に含有されている粒状物質250はレジスト層290とともに除去されることになる(図23(d)参照)。   After that, the resist layer 290 and the particulate matter 250 are removed by etching or the like. Also at this time, the particulate matter 250 contained in the resist layer 290 is removed together with the resist layer 290 (see FIG. 23D).

次に、導体凹部200を有する導体12を半硬化状態の絶縁層11に押し込み(図23(e)参照)、その後で絶縁層11を硬化させる。   Next, the conductor 12 having the conductor concave portion 200 is pushed into the semi-cured insulating layer 11 (see FIG. 23E), and then the insulating layer 11 is cured.

以上のような工程を経ることで、導体12の導体凹部200内に絶縁層11の一部が位置することになり、導体12の絶縁層11に対する密着力を高めることができる。   Through the steps described above, a part of the insulating layer 11 is located in the conductor recess 200 of the conductor 12, and the adhesion of the conductor 12 to the insulating layer 11 can be increased.

(第5の実施形態)
次に、第5の実施形態について説明する。本実施の形態の導体12の側面が導体凸部(凸部)210を有する。なお、導体12の側面には導体凸部210と導体凹部200とが混在して設けられてもよい。
(Fifth embodiment)
Next, a fifth embodiment will be described. The side surface of the conductor 12 of the present embodiment has a conductor protrusion (projection) 210. In addition, the conductor protrusion 210 and the conductor recess 200 may be provided on the side surface of the conductor 12 in a mixed manner.

この導体凸部210は、粒状物質250を含有するレジスト材料を用いることで形成されてもよい。具体的な一例を示す。   The conductor protrusion 210 may be formed by using a resist material containing the particulate matter 250. A specific example will be described.

まず、粒状物質250を含有するレジスト材料を用いてレジスト層290を形成する(図24(a)参照)。   First, a resist layer 290 is formed using a resist material containing the particulate matter 250 (see FIG. 24A).

その後、レジスト層290のうちの導体12を設ける箇所をエッジング等によって除去する(図24(b)参照)。この際、エッジング剤を選択する等して、粒状物質250を除去するようにする。なお、レジスト層290内に含有されている粒状物質250はレジスト層290とともに除去されることになる。   Thereafter, the portion of the resist layer 290 where the conductor 12 is to be provided is removed by edging or the like (see FIG. 24B). At this time, the particulate matter 250 is removed by selecting an edging agent or the like. Note that the particulate matter 250 contained in the resist layer 290 is removed together with the resist layer 290.

その後、無電解めっき又は電解めっき等によるめっきを行い、導体12を形成する(図24(c)参照)。この結果、導体凸部210を有する導体12が形成されることになる。   Thereafter, plating by electroless plating or electrolytic plating is performed to form the conductor 12 (see FIG. 24C). As a result, the conductor 12 having the conductor protrusion 210 is formed.

その後、レジスト層290をエッチング等によって除去する(図24(d)参照)。この際も、レジスト層290内に含有されている粒状物質250はレジスト層290とともに除去されることになる。   After that, the resist layer 290 is removed by etching or the like (see FIG. 24D). Also at this time, the particulate matter 250 contained in the resist layer 290 is removed together with the resist layer 290.

次に、導体凸部210を有する導体12を半硬化状態の絶縁層11に押し込み、その後で絶縁層11を硬化させる(図24(e)参照)。   Next, the conductor 12 having the conductor protrusion 210 is pressed into the semi-cured insulating layer 11, and then the insulating layer 11 is cured (see FIG. 24E).

以上のような工程を経ることで、絶縁層11内に導体凸部210が位置することになり、導体12の絶縁層11に対する密着力を高めることができる。   Through the above-described steps, the conductor protrusion 210 is located in the insulating layer 11, and the adhesion of the conductor 12 to the insulating layer 11 can be increased.

(第6の実施形態)
本実施形態では、本開示に係る電子部品搭載用基板の適用例について説明する。本実施形態に係る電子部品は、本開示に係る電子部品搭載用基板を備え、本開示に係る電子部品搭載用基板を用いて予め定められた処理を実行する。処理は電子部品による任意の処理である。
(Sixth embodiment)
In the present embodiment, an application example of the electronic component mounting board according to the present disclosure will be described. The electronic component according to the present embodiment includes the electronic component mounting board according to the present disclosure, and executes a predetermined process using the electronic component mounting board according to the present disclosure. The processing is an arbitrary processing by an electronic component.

本実施形態に係る電子デバイスは、搭載されている電子部品の少なくとも1つに、本開示に係る電子部品が用いられている。本実施形態に係る実装装置は、搭載されている電子部品及び電子デバイスのうちの少なくとも1つに、本開示に係る電子部品又は電子デバイスが用いられている。   The electronic device according to the embodiment uses the electronic component according to the present disclosure for at least one of the mounted electronic components. In the mounting apparatus according to the embodiment, the electronic component or the electronic device according to the present disclosure is used for at least one of the mounted electronic component and the electronic device.

本開示は、電子部品搭載用基板を備えるあらゆる装置に適用可能である。本開示を適用可能な装置の一例を挙げると、例えば、自動車、家電製品、通信機器、制御機器、センサー、ロボット、ドローン、飛行機、宇宙船、船、生産機械、工事用機械、試験用機械、測量用機械、コンピュータ関連製品、デジタル機器、遊戯機器及び時計、が例示できる。   The present disclosure is applicable to any device including an electronic component mounting substrate. Examples of devices to which the present disclosure can be applied include, for example, automobiles, home appliances, communication devices, control devices, sensors, robots, drones, airplanes, spacecraft, ships, production machinery, construction machinery, test machinery, Examples include a surveying machine, a computer-related product, a digital device, an amusement device, and a clock.

装置には、装置に応じた任意の機能が搭載されている。この機能を実行する際に用いられる電子チップなどの電子デバイスに、本開示に係る電子部品搭載用基板を用いる。本開示に係る電子部品搭載用基板は、ピール強度を向上することができるため、電子部品、電子デバイス及び装置の信頼性を向上することができる。   The device is provided with an arbitrary function corresponding to the device. The electronic component mounting board according to the present disclosure is used for an electronic device such as an electronic chip used when executing this function. The electronic component mounting board according to the present disclosure can improve the peel strength, so that the reliability of the electronic component, the electronic device, and the device can be improved.

本開示の電子部品搭載用基板及びその製造法は、各種の電子装置に実装したり、電子装置の製造に適用することができる。   The electronic component mounting substrate and the method of manufacturing the same according to the present disclosure can be applied to various electronic devices or applied to the manufacture of electronic devices.

11:絶縁層
12:導体
121:金属箔
122:金属めっき
13:パターンレジスト
14:絶縁層
15:VIA
11U:おもて面
111−1〜111−9:凹部
112−1、112−6、112−9:凸部
113:トンネル
21:無電解めっき層
22:電解めっき層
11: Insulating layer 12: Conductor 121: Metal foil 122: Metal plating 13: Pattern resist 14: Insulating layer 15: VIA
11U: Front surfaces 111-1 to 111-9: concave portions 112-1, 112-6, 112-9: convex portions 113: tunnel 21: electroless plating layer 22: electrolytic plating layer

Claims (12)

絶縁層と、
前記絶縁層に設けられた導体と、
を備え、
前記導体は、底面及び側面の少なくとも一部が、前記絶縁層のおもて面よりも裏面側に位置していることを特徴とする基板。
An insulating layer,
A conductor provided on the insulating layer,
With
The substrate, wherein at least a part of the bottom surface and the side surface of the conductor is located on the back surface side of the front surface of the insulating layer.
前記導体の側面の全部が、前記絶縁層のおもて面よりも裏面側に位置していることを特徴とする請求項1に記載の基板。   2. The substrate according to claim 1, wherein all of the side surfaces of the conductor are located on a back surface side of the front surface of the insulating layer. 3. 前記導体の頂面と前記絶縁層のおもて面とは厚み方向において同じ高さに位置することを特徴とする請求項1又は2のいずれかに記載の基板。   3. The substrate according to claim 1, wherein a top surface of the conductor and a front surface of the insulating layer are located at the same height in a thickness direction. 前記導体の頂面は、前記絶縁層のおもて面よりも裏面側に位置することを特徴とする請求項1又は2のいずれかに記載の基板。   The substrate according to claim 1, wherein a top surface of the conductor is located on a back surface side of a front surface of the insulating layer. 前記導体の前記側面は凹部を有することを特徴とする請求項1乃至4のいずれか1項に記載の基板。   The substrate according to claim 1, wherein the side surface of the conductor has a concave portion. 前記導体の前記側面は凸部を有することを特徴とする請求項1乃至5のいずれか1項に記載の基板。   The substrate according to claim 1, wherein the side surface of the conductor has a protrusion. 前記絶縁層は、積層された複数の積層絶縁層を有し、
前記積層絶縁層の1つ以上に前記導体が設けられ、
前記導体は、底面及び側面の少なくとも一部が、前記積層絶縁層のおもて面よりも裏面側に位置していることを特徴とする請求項1乃至6のいずれか1項に記載の基板。
The insulating layer has a plurality of stacked insulating layers,
The conductor is provided on one or more of the laminated insulating layers,
The substrate according to claim 1, wherein at least a part of the bottom surface and the side surface of the conductor is located on a back surface side of the front surface of the laminated insulating layer. .
1つ以上の前記導体は、当該導体が設けられているある積層絶縁層のおもて面よりも頂面がおもて面側に位置し、
前記導体の頂面及び側面は、前記ある積層絶縁層に積層された他の積層絶縁層内に埋設されていることを特徴とする請求項7に記載の基板。
One or more of the conductors are such that the top surface is located closer to the front surface than the front surface of a certain laminated insulating layer on which the conductor is provided;
The substrate according to claim 7, wherein a top surface and side surfaces of the conductor are buried in another laminated insulating layer laminated on the certain laminated insulating layer.
ある積層絶縁層に設けられた導体と、前記ある積層絶縁層に積層された他の積層絶縁層に設けられた導体とは、導体部を介して接続されることを特徴とする請求項7又は8のいずれかに記載の基板。   The conductor provided on a certain laminated insulating layer and the conductor provided on another laminated insulating layer laminated on the certain laminated insulating layer are connected via a conductor part. 9. The substrate according to any one of 8. 前記絶縁層は密着層を有し、
前記密着層に前記導体が設けられていることを特徴とする請求項1乃至9のいずれか1項に記載の基板。
The insulating layer has an adhesion layer,
The substrate according to any one of claims 1 to 9, wherein the conductor is provided on the adhesion layer.
請求項1乃至10のいずれか1項に記載の基板と、
前記基板に設けられた電子部品と、
を備え、
前記電子部品は前記導体に設けられていることを特徴とする電子装置。
A substrate according to any one of claims 1 to 10,
Electronic components provided on the substrate,
With
The electronic device, wherein the electronic component is provided on the conductor.
請求項11に記載の電子装置を備えた実装装置。   A mounting apparatus comprising the electronic device according to claim 11.
JP2019519175A 2017-05-19 2018-05-02 Substrate for mounting electronic components and its manufacturing method Active JP7048593B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2017099580 2017-05-19
JP2017099580 2017-05-19
JP2017221807 2017-11-17
JP2017221807 2017-11-17
PCT/JP2018/017502 WO2018211991A1 (en) 2017-05-19 2018-05-02 Board for mounting electronic component, and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JPWO2018211991A1 true JPWO2018211991A1 (en) 2020-04-09
JP7048593B2 JP7048593B2 (en) 2022-04-05

Family

ID=64274049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019519175A Active JP7048593B2 (en) 2017-05-19 2018-05-02 Substrate for mounting electronic components and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7048593B2 (en)
KR (1) KR102631808B1 (en)
CN (1) CN110915307B (en)
WO (1) WO2018211991A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148733A (en) * 1995-11-28 1997-06-06 Shin Etsu Polymer Co Ltd Laminate for printed wiring board
JP2003273509A (en) * 2002-03-14 2003-09-26 Fujitsu Ltd Wiring board and its manufacturing method
JP2008124339A (en) * 2006-11-14 2008-05-29 Shinko Electric Ind Co Ltd Wiring substrate and manufacturing method therefor
JP2011014644A (en) * 2009-06-30 2011-01-20 Kyocer Slc Technologies Corp Wiring board and manufacturing method thereof
JP2015122386A (en) * 2013-12-20 2015-07-02 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10107435A (en) * 1996-09-27 1998-04-24 Ibiden Co Ltd Printed wiring board and manufacturing method thereof and plate resist composition
JP2003209343A (en) 2002-01-16 2003-07-25 Airex Inc Printed circuit board
JP4351129B2 (en) * 2004-09-01 2009-10-28 日東電工株式会社 Printed circuit board
TW200820853A (en) * 2006-09-29 2008-05-01 Nippon Steel Chemical Co Manufacturing method of flexible substrate
JP5154055B2 (en) * 2006-10-19 2013-02-27 株式会社プライマテック Electronic circuit board manufacturing method
WO2012101992A1 (en) 2011-01-26 2012-08-02 住友ベークライト株式会社 Method for producing printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09148733A (en) * 1995-11-28 1997-06-06 Shin Etsu Polymer Co Ltd Laminate for printed wiring board
JP2003273509A (en) * 2002-03-14 2003-09-26 Fujitsu Ltd Wiring board and its manufacturing method
JP2008124339A (en) * 2006-11-14 2008-05-29 Shinko Electric Ind Co Ltd Wiring substrate and manufacturing method therefor
JP2011014644A (en) * 2009-06-30 2011-01-20 Kyocer Slc Technologies Corp Wiring board and manufacturing method thereof
JP2015122386A (en) * 2013-12-20 2015-07-02 新光電気工業株式会社 Wiring board, semiconductor device and wiring board manufacturing method

Also Published As

Publication number Publication date
WO2018211991A1 (en) 2018-11-22
KR20200010363A (en) 2020-01-30
CN110915307B (en) 2023-02-03
CN110915307A (en) 2020-03-24
JP7048593B2 (en) 2022-04-05
KR102631808B1 (en) 2024-01-31

Similar Documents

Publication Publication Date Title
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
TWI415541B (en) Multilayer wiring board
TW201005892A (en) Embedded chip substrate and fabrication method thereof
US10186486B2 (en) Wiring board
JP2003309370A (en) Component for connection between wiring films, its manufacture method, and manufacture method of multilayer wiring substrate
US20170256478A1 (en) Wiring substrate and method for manufacturing the same
JP2011096998A (en) Printed circuit board containing via pad with irregular pattern and method of manufacturing the same
JP2008124398A (en) Semiconductor package and its manufacturing method
TW201513761A (en) Circuit board, production method of circuit board, and electronic equipment
KR101049678B1 (en) Heat spreading printed-circuit-board and method fabricating the same
JP2010123829A (en) Printed wiring board and manufacturing method thereof
JP6775083B2 (en) Substrate for mounting electronic components and its manufacturing method
JP7048593B2 (en) Substrate for mounting electronic components and its manufacturing method
JP4961180B2 (en) Printed wiring board
JP2019067864A (en) Method for manufacturing printed wiring board
WO2019097745A1 (en) Substrate for mounting electronic component, and method for manufacturing same
TW202038688A (en) Method for manufacturing circuit board having thermal conductor embedded therein and circuit board having thermal conductor embedded therein manufactured by the same
TWI616120B (en) Flexible circuit board structure combined with carrier board and manufacturing method thereof
TWI706702B (en) Via structures in the circuit board and fabrication methods thereof
JP5303532B2 (en) Printed wiring board, manufacturing method thereof, multilayer printed wiring board, and manufacturing method thereof
JP3854910B2 (en) Wiring board manufacturing method and wiring board
JP5409519B2 (en) Wiring board and manufacturing method thereof
KR100871031B1 (en) Forming method of bump for the printed circuit board
JP5607573B2 (en) MULTILAYER WIRING BOARD, COMPONENT BUILT-IN BOARD, AND METHOD FOR PRODUCING MULTILAYER WIRING BOARD
JP2007311723A (en) Multi-layer circuit board

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211203

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220324

R150 Certificate of patent or registration of utility model

Ref document number: 7048593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150