JPWO2018207952A1 - Hair growth and / or hair growth composition - Google Patents

Hair growth and / or hair growth composition Download PDF

Info

Publication number
JPWO2018207952A1
JPWO2018207952A1 JP2019517742A JP2019517742A JPWO2018207952A1 JP WO2018207952 A1 JPWO2018207952 A1 JP WO2018207952A1 JP 2019517742 A JP2019517742 A JP 2019517742A JP 2019517742 A JP2019517742 A JP 2019517742A JP WO2018207952 A1 JPWO2018207952 A1 JP WO2018207952A1
Authority
JP
Japan
Prior art keywords
cells
hair
formula
gene
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019517742A
Other languages
Japanese (ja)
Inventor
片倉 喜範
喜範 片倉
花佳 松尾
花佳 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Original Assignee
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC filed Critical Kyushu University NUC
Publication of JPWO2018207952A1 publication Critical patent/JPWO2018207952A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/49Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing heterocyclic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q7/00Preparations for affecting hair growth
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Abstract

次式I:【化1】(式中、R1及びR3の一方は水素原子又は水酸基を表し、他方は次式IV:【化53】(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)で示される基を表し、R2は水素原子又は酸素原子を表し、R4aはR4bと同様であり、【化54】は二重結合又は単結合を表し、mは1〜4の整数を表す。)で示される化合物を含む、発毛及び/又は育毛用組成物。Formula I: embedded image (wherein one of R1 and R3 represents a hydrogen atom or a hydroxyl group, and the other is represented by Formula IV: embedded image (R4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms) , N represents an integer of 1 to 5), R2 represents a hydrogen atom or an oxygen atom, R4a is the same as R4b, and embedded image represents a double bond or a single bond. And m represents an integer of 1 to 4), and a hair growth and / or hair growth composition comprising the compound represented by the formula.

Description

本発明は、フィセチン等を含む、発毛及び/又は育毛用組成物等に関する。   The present invention relates to a hair growth and / or hair growth composition and the like containing fisetin and the like.

皮膚は、我々の体の全表面を覆い、周囲の環境から異物の侵入や刺激などを防ぐ保護機能の役割や、触覚や温度覚などの感覚器の役割を持つ器官であると共に、我々の外観にも大きく影響することから、生活の質(quality of life(QOL))の維持および向上においても重要な器官である。   The skin is an organ that covers the entire surface of our body and plays a role of a protective function that prevents invasion and irritation of foreign substances from the surrounding environment, and a role of sensory organs such as touch and temperature sensation. Since it also greatly affects the quality of life (QOL), it is an important organ in maintaining and improving the quality of life (QOL).

皮膚の構造は、外側から外胚由来の表皮(epidermis)と、中胚由来の真皮(dermis)、皮下組織(subcutaneos tissue)に分けられる。このような皮膚の付属器官として皮膚外部に露出したケラチン繊維に富む角化した細胞からなる毛の毛幹(hair shaft)を包む鞘のような毛包(hair follicle)、皮脂腺(sebaceous gland)、汗腺(sweat gland)などがある。毛包は、皮膚真皮に埋没した部分のことで、その上部が皮膚表層とつながっている外毛根鞘(outer root sheath)、その内側にある内毛根鞘(innner root sheath)、毛乳頭細胞(dermal papilla)や毛母細胞(hair matrix)などで構成されている。このうち間葉系細胞由来の毛乳頭と真皮毛根鞘細胞を除けば毛包の大部分は上皮系細胞で占められている。成長期の毛包の下端には毛幹を作り出す毛球部(hair bulb)が存在し、毛乳頭細胞を取り囲むように毛母細胞が存在する。毛母細胞では、上皮系幹細胞から分化した上皮系前駆細胞が盛んに分化・増殖し、毛が形成される。
毛包での毛の産生は、毛周期(hair cycle)のサイクルに依存して行われる。
The structure of the skin is divided into an epidermis derived from the outer embryo (epidermis), a dermis derived from the mesoderm (dermis), and a subcutaneous tissue (subcutaneos tissue) from the outside. As such an accessory organ of the skin, a hair follicle such as a sheath that encloses a hair shaft composed of keratinized cells rich in keratin fibers exposed to the outside of the skin, a sebaceous gland, There are sweat glands and the like. The hair follicle is a portion buried in the dermis of the skin, and an upper root sheath (outer root sheath) whose upper part is connected to the surface layer of the skin, an inner root sheath (inner root sheath), and a hair papilla cell (dermal). papilla) and hair matrix (hair matrix). Of these, most of the hair follicles are occupied by epithelial cells except for the dermal papilla and dermal sheath cells derived from mesenchymal cells. At the lower end of the hair follicle during growth, there is a hair bulb that creates a hair shaft, and hair matrix cells surround the hair papilla cells. In hair matrix cells, epithelial progenitor cells differentiated from epithelial stem cells are actively differentiated and proliferated to form hair.
The production of hair in the hair follicle is dependent on the cycle of the hair cycle.

毛周期には大きくanagenと呼ばれる成長期、catagenと呼ばれる休止期、telogenと呼ばれる退行期に分けられる。anagenでは、毛乳頭細胞と結びついた毛母細胞が細胞分裂し、毛を作る。続いてcatagenへと移行すると、細胞の分裂が停止し、毛の成長が止まる。telogenでは、毛乳頭組織が不明瞭になり、毛が毛乳頭組織から完全に離れる。catagenが終わるとまた次の毛髪をつくる準備に入り、再びanagenとなっていく。毛包は、この毛周期とともに成長と退縮を繰り返すが、バルジと呼ばれる毛包幹細胞が存在する領域から上方の恒常部は毛周期に関わらず維持されており、下方の可変部のみが毛周期に支配される(Muller−Rover S et al.,2001)。なお、毛包を構成する上皮系の細胞は、このバルジ領域に存在する毛包幹細胞から分化すると考えられている(Cotsarelis,2006;Oshima et al.,2001;Petersson et al.,2011)。   The hair cycle is roughly divided into a growth period called anagen, a resting period called catagen, and a catagen called telogen. In anagen, hair matrix cells associated with hair papilla cells undergo cell division to produce hair. Subsequent transfer to catagen halts cell division and halts hair growth. In telogen, the papilla tissue is obscured and the hair is completely separated from the papilla tissue. When catagen is over, preparations for the next hair are made, and it becomes anagen again. The hair follicle repeats growth and retraction along with this hair cycle, but the homeostatic part above the region where hair follicle stem cells called bulge exist is maintained regardless of the hair cycle, and only the variable part below is in the hair cycle. Dominated (Muller-Rover S et al., 2001). The epithelial cells that make up the hair follicles are considered to be differentiated from the hair follicle stem cells present in this bulge region (Cotsarelis, 2006; Oshima et al., 2001; Petersson et al., 2011).

前述した通り、我々の体には、自己再生を繰り返す皮膚の付属器官である毛包(毛髪)が存在するが、ヒトの体毛はほとんどが既に退化し、体毛が密集している部分は限られている。そのため、特に頭部の毛髪は、主に外観のための残存理由が大きいが、この毛髪は男性の多くが、加齢とともに減少していく。この毛髪の減少は、生理的な現象であり、自然な加齢現象であるが、近年までこの毛髪に関する基礎研究、及び臨床研究は不十分であった。しかし、ここ十数年で毛髪に関する研究が急速に進み、その中で、テロメラーゼ逆転写酵素telomerase reverse transcription(以下TERT)が毛髪の改善を促す因子として報告された(Sarin,K et al.,2005)。   As mentioned above, our body has hair follicles (hairs), which are the accessory organs of the skin that repeat self-renewal, but most human hair has already degenerated and the areas where hair is dense are limited. ing. Therefore, the hair of the head in particular has a large reason mainly for its appearance, but most of the hair of this man decreases with age. This reduction of hair is a physiological phenomenon and a natural aging phenomenon, but until recently, basic research and clinical research on this hair were insufficient. However, in recent decades, research on hair has rapidly progressed, and among them, telomerase reverse transcriptase telomerase reverse transcription (hereinafter referred to as TERT) has been reported as a factor promoting hair improvement (Sarin, K et al., 2005). ).

テロメラーゼとは、正常細胞で、細胞分裂のたびに短くなるテロメアの反復配列(限界まで短縮すると分裂停止のシグナルが出て細胞は増殖できなくなる。)を維持する機構として機能している、テロメアを合成するリボヌクレオタンパク質酵素である。このテロメラーゼは、鋳型RNAとしてのtelomerase RNA component(TERC)、逆転写酵素としてのtelomerase reverse transcriptase(TERT)からなる複合体であり、ガン化した細胞や不死化した細胞で活性化することが知られている(Shay and Bacchetti,1997)。   Telomerase is a normal cell that maintains a telomere repeat sequence that shortens with each cell division (when shortened to the limit, a signal for mitotic arrest is generated and the cell cannot grow). It is a ribonucleoprotein enzyme that synthesizes. This telomerase is a complex composed of telomerase RNA component (TERC) as a template RNA and telomerase reverse transcriptase (TERT) as a reverse transcriptase, and is known to be activated in cancerous cells or immortalized cells. (Shay and Baccetti, 1997).

しかし、その他に、個体の抗老化を実現することが知られているカロリー制限時にテロメラーゼが活性化すること(Pendergrass et al.,2001;Vera et al.,2013)、テロメラーゼをノックアウトしたマウスでは、貧血、創傷治癒の遅延、白髪などの老化現象がみられること(Herrera et al.,1999)、さらにテロメラーゼトランスジェニックマウスでは、皮膚、腸管、筋肉などの組織において抗老化効果が報告されている(Tomas Loba et al.,2008)。これらの結果は、テロメラーゼの活性化が必ずしもガン化などの個体にとって望ましくない効果を誘導するものではないことを示している。そしてこのテロメラーゼの活性は、現在ではテロメラーゼ触媒サブユニット遺伝子(TERT)の発現レベルで規定されているものと考えられている(Nakamura et al.,1997)。   However, in addition, telomerase activation during calorie restriction, which is known to achieve anti-aging of individuals (Pendergrass et al., 2001; Vera et al., 2013), and telomerase knockout mice, Anemia, delayed healing of wounds, aging phenomena such as gray hair are observed (Herrera et al., 1999), and telomerase transgenic mice have been reported to have anti-aging effects on tissues such as skin, intestinal tract, and muscle ( Thomas Loba et al., 2008). These results indicate that activation of telomerase does not necessarily induce undesirable effects on the individual, such as canceration. The telomerase activity is now considered to be regulated by the expression level of the telomerase catalytic subunit gene (TERT) (Nakamura et al., 1997).

ヒトTERT(hTERT)がクローニングされて以来、hTERTの機能および発現制御について様々な研究が行われている。前述したマウスの表皮におけるTERTの強制発現が毛包幹細胞の増殖を刺激し、毛髪を改善するという報告もその一つである(Sarin,K et al.,2005)。anagenの始まりは、毛包の表皮細胞で構成される外毛根鞘上のバルジ領域に存在する毛包幹細胞に依存している。毛包幹細胞は活性化されると毛母基に移動し、そこで毛の合成を促進する毛母細胞へと分化し、毛を作る。この際、anagenの毛包のみで活性化しているテロメラーゼ(TERT)を、telogen期にあるマウスの表皮で過剰に発現させ活性化させると、バルジ中の幹細胞に刺激が加わり、活発に分裂するようになる。つまり、上皮におけるTERTの強制発現は、同じ上皮に存在する毛包幹細胞の分裂を引き起こすテロメラーゼ活性を誘導し、telogenからanagenへの移行を促進することで毛髪の改善を可能にするのである。   Since the cloning of human TERT (hTERT), various studies have been conducted on the function and expression regulation of hTERT. One of the reports is that the forced expression of TERT in the mouse epidermis stimulates the proliferation of hair follicle stem cells and improves hair (Sarin, K et al., 2005). The onset of anagen depends on hair follicle stem cells present in the bulge region on the outer root sheath, which is composed of epidermal cells of the hair follicle. When activated, hair follicle stem cells migrate to the hair matrix, where they differentiate into hair matrix cells that promote the synthesis of hair and produce hair. At this time, when telomerase (TERT), which is activated only in the hair follicles of anagen, is overexpressed and activated in the epidermis of mice in the telogen stage, the stem cells in the bulge are stimulated to actively divide. become. That is, forced expression of TERT in the epithelium induces telomerase activity that causes division of hair follicle stem cells existing in the same epithelium, and promotes the transition from telogen to anagen, thereby enabling improvement of hair.

また、毛の太さは毛包の大きさに、毛の長さは主にanagenの長さに比例して決まるとされているため、毛髪量が多く見えるためには、十分なanagen期間を維持することが重要である。telogenからanagenへの移行には、シグナル伝達兼転写活性化因子STAT3、4、5や、Wnt、SHHなどのシグナルの他、インシュリン様成長因子(IGF)−1、肝細胞増殖因子(HGF)や角化細胞成長因子(KGF)などが関与すると考えられている(Krause K et al.,2006;Stenn KS et al.,2001;Cotsarelis G et al.,2001;Paus R et al.,2004)。なかでも、Wnt/β−カテニンシグナルはanagen期での上皮細胞から毛乳頭細胞へのシグナルや毛鞘細胞の分化には必要とされること(Cotsarelis G et al.,2001)や、転写因子を介して標的遺伝子の転写を活性化して細胞増殖や分化を制御し、皮膚においても毛幹の分化などに関わり、毛周期を動かす主要経路として重要であることが報告されている(Stenn and Paus,2001;Paus and Foitzik,2004)。   Moreover, it is said that the thickness of hair is determined in proportion to the size of the hair follicle, and the length of hair is mainly determined in proportion to the length of anagen. Therefore, in order to see a large amount of hair, a sufficient anagen period is required. It is important to maintain. In the transition from telogen to anagen, in addition to signals such as signal transduction and transcriptional activators STAT3, 4, 5 and Wnt and SHH, insulin-like growth factor (IGF) -1, hepatocyte growth factor (HGF) and It is believed that keratinocyte growth factor (KGF) and the like are involved (Krause K et al., 2006; Stenn KS et al., 2001; Cossarelis G et al., 2001; Paus R et al., 2004). Among them, the Wnt / β-catenin signal is required for signals from epithelial cells to dermal papilla cells and differentiation of hair sheath cells in the anagen phase (Cotsarelis G et al., 2001), and requires transcription factors. It is reported that it regulates cell proliferation and differentiation by activating the transcription of target genes via the mediation, is involved in hair shaft differentiation in the skin, and is important as a major pathway that moves the hair cycle (Stenn and Paus, 2001; Paus and Foitzik, 2004).

このWntは、胚発生や成体の組織の恒常性維持において、細胞の分化、増殖、極性などを制御する重要な役割を担っている。そもそも、Wntとは分泌タンパク質であり、いくつかの段階を経て分泌されることが知られている。まず、小胞体の膜上に局在するPorcupine(Porc)によりパルミトイル化を受けた後(MacDonald et al.,2009;Port et al.,2010)、ゴルジ体に輸送され、さらにWntless(Wls)によって細胞膜へと輸送されて分泌される。Wntが細胞表面の受容体に結合することによって活性化されるシグナル経路として、β−カテニンに依存するWnt/β−カテニン経路が存在する。β−カテニンは、カルシウム依存性の細胞間接着分子であるカドヘリンに結合している蛋白質分子の1つとして発見され(Ozawa et al.,1989)、カドヘリンを細胞骨格の1つであるアクチンフィラメントにつなぐ働きを持ち、細胞接着活性に不可欠な細胞分子として知られる。   This Wnt plays an important role in controlling cell differentiation, proliferation, polarity, etc. in embryonic development and in maintaining homeostasis of adult tissues. In the first place, Wnt is a secreted protein and is known to be secreted through several stages. First, after undergoing palmitoylation by Porcupine (Porc) localized on the membrane of the endoplasmic reticulum (MacDonald et al., 2009; Port et al., 2010), it is transported to the Golgi apparatus and further by Wntless (Wls). It is transported to the cell membrane and secreted. As a signal pathway activated by binding of Wnt to a cell surface receptor, there is a Wnt / β-catenin pathway dependent on β-catenin. β-catenin was discovered as one of the protein molecules bound to cadherin, which is a calcium-dependent cell-cell adhesion molecule (Ozawa et al., 1989), and cadherin was used as an actin filament, which is one of the cytoskeletons. It is known as a cell molecule that has a linking function and is essential for cell adhesion activity.

この経路の活性は、細胞質に存在するβ−カテニンの量によって決定される。通常、細胞質内のβ−カテニンの量はAxin、Adenomatous Polyposis Coli(APC)、Glycogen Synthase Kinase−3β(GSK−3β)、Casein Kinase 1α(CK1α)の4つからなる複合体によって制御されている。通常は、プロテアソーム依存性のタンパク質分解によって,低いレベルに抑えられている。細胞膜表面上にあるFrizzled(Fzd)及びLow−density lipoprotein Receptor−related Protein(LRP)5/6の複合体にWntタンパクが結合することで惹起されるシグナルにより、β−カテニンがリン酸化され、ユビキチン化を受けた後、プロテアソームにより分解される。しかし、リン酸化を免れたβ−カテニンは細胞質内に蓄積し、その後、核内へと移行し,転写因子TCF(T cell factor)/LEF(lymphocyte enhancer factor 1)と複合体を形成し、Wntシグナルの標的遺伝子の転写を制御する。   The activity of this pathway is determined by the amount of β-catenin present in the cytoplasm. Normally, the amount of β-catenin in the cytoplasm is controlled by a complex consisting of four components of Axin, Adenomatous Polyposis coli (APC), Glycogen Synthase Kinase-3β (GSK-3β), and Casein Kinase 1α (CK1α). It is usually suppressed to low levels by proteasome-dependent proteolysis. Β-catenin is phosphorylated by a signal generated by binding of Wnt protein to the complex of Frizzled (Fzd) and Low-density lipoprotein Receptor-related Protein (LRP) 5/6 on the surface of the cell membrane, and β-catenin is phosphorylated, resulting in ubiquitin. After undergoing oxidization, it is degraded by the proteasome. However, β-catenin that escapes phosphorylation accumulates in the cytoplasm, and then migrates into the nucleus to form a complex with the transcription factor TCF (T cell factor) / LEF (lymphocyto enhancer factor 1), and Wnt. Controls transcription of signal target genes.

最近の研究で、テロメラーゼがβ−カテニン転写複合体の中でコファクターとして働くことによって、Wnt/β−カテニンシグナル伝達を直接的に調節していること(Park JI,2009:非特許文献1)や、TERTプロモーターにβ−カテニンが結合することでTERTの発現を直接的に制御しているという報告がなされている(Rolf Kemler et al.,2012:非特許文献2)。以上のことを踏まえると、TERTによる毛髪の合成制御にWnt/βカテニンシグナルの活性が深く関わっているものと考えることができる。   Recent studies have shown that telomerase directly regulates Wnt / β-catenin signaling by acting as a cofactor in the β-catenin transcription complex (Park JI, 2009: Non-Patent Document 1). Alternatively, it has been reported that β-catenin binds to the TERT promoter to directly control the expression of TERT (Rolf Kemler et al., 2012: Non-Patent Document 2). Based on the above, it can be considered that the activity of the Wnt / β-catenin signal is deeply involved in the regulation of hair synthesis by TERT.

他方、長寿遺伝子又は抗老化遺伝子とも呼ばれ、その活性化により生物の寿命が延びるとされるサーチュイン(SIRT)遺伝子が知られている。SIRT遺伝子プロモーターの活性化により合成されるタンパク質(サーチュイン)はヒストン脱アセチル化酵素であるため、ヒストンとDNAの結合に作用し、遺伝的な調節を行うことで寿命を延ばすと考えられている。   On the other hand, a sirtuin (SIRT) gene, which is also called a longevity gene or an anti-aging gene, and whose lifespan is extended by its activation is known. Since the protein (sirtuin) synthesized by the activation of the SIRT gene promoter is a histone deacetylase, it is thought that it acts on the binding between histone and DNA and prolongs the lifespan by performing genetic regulation.

ところで、毛髪改善剤に配合される成分には、毛周期の異常を抑制する成分としてミノキシジルやピラゾール誘導体(特許5588167号:特許文献1)、男性ホルモンの作用を緩和させる成分としてエストラジオール等の女性ホルモン、細胞を賦活させる成分としてパントテン酸誘導体、血管拡張及び血流を促進させる成分としてトウガラシチンキ、l−メントール、センブリ抽出物等が用いられている。
しかしながら、多くの毛髪改善剤は、毛乳頭細胞での5αレダクターゼ阻害を機序とする。毛髪改善剤の効果は非常に個人差が大きく,満足するものは見出されていない。
By the way, as a component to be added to the hair improving agent, minoxidil or a pyrazole derivative (Patent No. 5588167: Patent Document 1) as a component for suppressing abnormalities in the hair cycle, and a female hormone such as estradiol as a component for alleviating the action of male hormones. A pantothenic acid derivative is used as a cell-activating component, and capsicum tincture, 1-menthol, and an Assemblage extract are used as components that promote vasodilation and blood flow.
However, many hair improvers are mediated by inhibition of 5α reductase in dermal papilla cells. The effects of hair improvers vary greatly among individuals, and no satisfactory ones have been found.

特許5588167号Patent 5588167

Park JI et al.,Telomerase modulates Wnt signalling by association with target gene chromatin.Nature.460:66−72,2009Park JI et al. , Telomerase modulos Wnt signaling by association with target gene chromatin. Nature. 460: 66-72, 2009 Rudloff S,Kemler R.Differential requirements for β−catenin during mouse development.Development,139:3711−21,2012Rudloff S, Kemmer R .; Differential requirements for β-catenin inducing mouse development. Development, 139: 3711--21,0212.

本発明は、発毛、育毛、又は皮膚改善用の組成物を提供することを目的とする。   The present invention aims at providing a composition for hair growth, hair growth, or skin improvement.

本発明者は、上記課題を解決するために鋭意検討を行った結果、ポリフェノールの一種であるフィセチン又はその誘導体が発毛効果、育毛効果等を奏することを見出し、本発明を完成するに至った。   The present inventors have conducted extensive studies to solve the above problems, and as a result, found that fisetin, which is a kind of polyphenol, or a derivative thereof has a hair growth effect, a hair growth effect, etc., and has completed the present invention. .

すなわち、本発明は以下の通りである。
(1)次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、発毛及び/又は育毛用組成物。
(2)次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、皮膚改善用組成物。
(3)次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、化粧品用組成物。
(4)式Iで示される化合物が、次式Ia又はIb:
(式中、R及びRは、水素原子又は水酸基を表し、Rは水素原子又は酸素原子を表し、R4a及びR4bは、それぞれ独立して水素原子又は炭素数1〜6のアルキル基を表し、
は二重結合又は単結合を表し、mは1〜4の整数を表し、nは1〜5の整数を表す。)
で示されるものである(1)〜(3)のいずれか1項に記載の組成物。
(5)式Iで示される化合物が、フィセチン、ケルセチン、カテキン、ノビレチン、アピゲニン、ゲニステイン、ルテオリン、イプリフラボン、エクオール、タンゲレチン、ビオカニンA、クリシン、又はバイカレインである(1)〜(3)のいずれか1項に記載の組成物。
(6)式IIで示される化合物が、レスベラトロール、ピセアタンノール、ピノスチルベン、イソラポンチゲニン、ラポンチゲニン、グネトール、又はオキシレスベラトロールである(1)〜(3)のいずれか1項に記載の組成物。
(7)式IIIで示される化合物が、イソリキリチゲニン又はブテインである(1)〜(3)のいずれか1項に記載の組成物。
(8)皮膚改善が、傷の治療、肌荒れの修復、しみの改善、そばかすの改善、しわ抑制、創傷治癒及び細胞老化抑制からなる群から選ばれる少なくとも1つである(2)に記載の組成物。
(9)(1)に記載の組成物を含む発毛及び/又は育毛剤。
(10)(2)に記載の組成物を含む皮膚改善剤。
(11)(3)に記載の組成物を含む化粧品。
(12)TERTプロモーター若しくはSIRT1プロモーターにリポーター遺伝子が連結されたベクターを含む細胞、又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子を含む細胞に被験物質を接触させ、当該リポーター遺伝子又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法。
(13)細胞が上皮細胞である、(12)に記載の方法。
(14)TERTがヒトTERTである(12)又は(13)に記載の方法。
(15)DNA損傷修復マーカー遺伝子を含む細胞であってDNA損傷を受けた細胞に被験物質を接触させ、当該遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法。
That is, the present invention is as follows.
(1) Formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A composition for hair growth and / or hair growth, containing any compound selected from the group consisting of the compounds represented by:
(2) The following formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A skin improving composition comprising any compound selected from the group consisting of compounds
(3) Formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A cosmetic composition comprising any compound selected from the group consisting of:
(4) The compound represented by the formula I has the following formula Ia or Ib:
(In the formula, R 1 and R 3 represent a hydrogen atom or a hydroxyl group, R 2 represents a hydrogen atom or an oxygen atom, and R 4a and R 4b each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Represents a group,
Represents a double bond or a single bond, m represents an integer of 1 to 4, and n represents an integer of 1 to 5. )
The composition according to any one of (1) to (3), which is represented by
(5) The compound represented by formula I is fisetin, quercetin, catechin, nobiletin, apigenin, genistein, luteolin, ipriflavone, equol, tangeretin, biochanin A, chrysin, or baicalein (1) to (3) The composition according to item 1.
(6) The compound represented by the formula II is resveratrol, piceatannol, pinostilbene, isolapontigenin, rapontigenin, gnetol, or oxyresveratrol (1) to (3) The composition as described.
(7) The composition according to any one of (1) to (3), wherein the compound represented by the formula III is isoliquiritigenin or butein.
(8) The composition according to (2), wherein the skin improvement is at least one selected from the group consisting of treatment of wounds, repair of rough skin, improvement of spots, improvement of freckles, suppression of wrinkles, wound healing and suppression of cell aging. Stuff.
(9) A hair-growing and / or hair-growing agent containing the composition according to (1).
(10) A skin improving agent comprising the composition according to (2).
(11) A cosmetic containing the composition according to (3).
(12) A cell containing a vector in which a reporter gene is linked to the TERT promoter or SIRT1 promoter, or a cell containing an endogenous TERT gene or an endogenous SIRT1 gene is contacted with a test substance, and the reporter gene or the endogenous TERT gene or endogenous A method of screening a substance having at least one effect selected from the group consisting of a hair growth effect, a hair growth effect and a skin improving effect, using the expression of the sex SIRT1 gene as an index.
(13) The method according to (12), wherein the cells are epithelial cells.
(14) The method according to (12) or (13), wherein TERT is human TERT.
(15) A cell containing a DNA damage repair marker gene is contacted with a DNA-damaged cell with a test substance, and the expression of the gene is used as an index to be selected from the group consisting of a hair growth effect, a hair growth effect, and a skin improving effect. And a method for screening a substance having at least one effect.

本発明により、フィセチン等の化合物を発毛及び/又は育毛剤として、あるいは皮膚改善剤として使用することが可能となった。   According to the present invention, compounds such as fisetin can be used as a hair-growth and / or hair-growth agent or a skin improving agent.

フローサイトメトリーによるhTERTp−EGFP遺伝子導入の確認実験を行った結果を示す図である。フローサイトメトリーを用いて、HaCaT細胞(赤線)及びHaCaT(hTERTp−EGFP)細胞(青線)におけるEGFPの蛍光強度を測定した。It is a figure which shows the result of having conducted the confirmation experiment of hTERTp-EGFP gene introduction by flow cytometry. Flow cytometry was used to measure the fluorescence intensity of EGFP in HaCaT cells (red line) and HaCaT (hTERTp-EGFP) cells (blue line). 定量RT−PCR法によるhTERTp−EGFP遺伝子導入の確認実験を行った結果を示す図である。HaCaT細胞及びHaCaT(hTERTp−EGFP)細胞におけるEGFPの発現量を定量RT−PCR法により確認した。なお、EGFP遺伝子の相対的発現量は、EGFP遺伝子の測定値をβ−actinの測定値で除して求めた。(mean ± SEM,n=3,**p<0.01 vs HaCaT,Student’s t−test)It is a figure which shows the result of having conducted the confirmation experiment of hTERTp-EGFP gene introduction by the quantitative RT-PCR method. The expression level of EGFP in HaCaT cells and HaCaT (hTERTp-EGFP) cells was confirmed by a quantitative RT-PCR method. The relative expression level of the EGFP gene was obtained by dividing the measured value of the EGFP gene by the measured value of β-actin. (Mean ± SEM, n = 3, ** p <0.01 vs HaCaT, Student's t-test) ポリフェノールのhTERTプロモーター活性化効果を示す図である。HaCaT(hTERTp−EGFP)細胞を用いて、ポリフェノールサンプルのhTERTプロモーターの増強をEGFP蛍光強度を指標に評価した(―:平均値)。コントロールには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,**p<0.01 ***p<0.001 vs Control,Student’s t−test)It is a figure which shows the hTERT promoter activation effect of polyphenol. Using CaCaT (hTERTp-EGFP) cells, the enhancement of the hTERT promoter in the polyphenol sample was evaluated using the EGFP fluorescence intensity as an index (-: average value). Dimethyl sulfoxide, which is a solvent for polyphenol, was used as a control. (Mean ± SEM, n = 3, ** p <0.01 *** p <0.001 vs Control, Student's t-test) ポリフェノール添加時のHaCaT細胞におけるhTERT遺伝子の発現変化を示す図である。HaCaT細胞におけるhTERT遺伝子の発現量を評価するため定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。Controlには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,***p<0.001 vs Control,Student’s t−test)It is a figure which shows the expression change of the hTERT gene in HaCaT cell at the time of polyphenol addition. Quantitative RT-PCR was performed to evaluate the expression level of the hTERT gene in HaCaT cells. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. Dimethyl sulfoxide, which is a solvent of polyphenol, was used for Control. (Mean ± SEM, n = 3, *** p <0.001 vs Control, Student's t-test) WST−8を用いた細胞増殖促進効果を示す図である。HaCaT細胞に、選定した4種類のポリフェノールを終濃度10μMで添加し、24時間ごとに、WST−8を用いて細胞数を測定した。Controlには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 vs Control,Student’s t−test)It is a figure which shows the cell growth promoting effect using WST-8. The selected four kinds of polyphenols were added to HaCaT cells at a final concentration of 10 μM, and the cell number was measured every 24 hours using WST-8. Dimethyl sulfoxide, which is a solvent of polyphenol, was used for Control. (Mean ± SEM, n = 3, * p <0.05 vs Control, Student's t-test) ポリフェノールのHaCaT細胞におけるIGF遺伝子発現に対する効果を示す図である。HaCaT細胞におけるIGF遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。コントロールには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 ***p<0.01 vs Control,Student’s t−test)It is a figure which shows the effect of polyphenol on IGF gene expression in HaCaT cells. Quantitative RT-PCR was performed to evaluate the expression level of the IGF gene in HaCaT cells. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. Dimethyl sulfoxide, which is a solvent for polyphenol, was used as a control. (Mean ± SEM, n = 3, * p <0.05 *** p <0.01 vs Control, Student's t-test) ポリフェノールのHaCaT細胞におけるKGF遺伝子発現に対する効果を示す図である。HaCaT細胞におけるKGF遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。コントロールには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 **p<0.01 vs Control,Student’s t−test)It is a figure which shows the effect of polyphenol on KGF gene expression in HaCaT cells. Quantitative RT-PCR was performed to evaluate the expression level of the KGF gene in HaCaT cells. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. Dimethyl sulfoxide, which is a solvent for polyphenol, was used as a control. (Mean ± SEM, n = 3, * p <0.05 ** p <0.01 vs Control, Student's t-test) ポリフェノールのHaCaT細胞におけるTGF−β遺伝子発現に対する効果を示す図である。HaCaT細胞におけるTGF−β遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。コントロールには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,**p<0.01 ***p<0.01 vs Control,Student’s t−test)It is a figure which shows the effect of polyphenol on TGF- (beta) gene expression in HaCaT cell. Quantitative RT-PCR was performed to evaluate the expression level of the TGF-β gene in HaCaT cells. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. Dimethyl sulfoxide, which is a solvent for polyphenol, was used as a control. (Mean ± SEM, n = 3, ** p <0.01 *** p <0.01 vs Control, Student's t-test) ポリフェノールのHaCaT細胞におけるβ−カテニン活性に対する効果を示す図である。ポリフェノールがHaCaT細胞におけるβ−カテニン活性に与える影響を検証するために、HaCaT細胞にリポータープラスミド(M50 Super 8x TOP Flash)をトランスフェクションし、ポリフェノール添加後のβ−カテニン依存的転写活性をルシフェラーゼアッセイにより評価した。(mean ± SEM,n=3,*p<0.05 **p<0.01 vs Control,Student’s t−test)It is a figure which shows the effect of polyphenol on (beta) -catenin activity in HaCaT cell. To verify the effect of polyphenols on β-catenin activity in HaCaT cells, HaCaT cells were transfected with a reporter plasmid (M50 Super 8x TOP Flash), and β-catenin-dependent transcriptional activity after addition of polyphenols was determined by luciferase assay. evaluated. (Mean ± SEM, n = 3, * p <0.05 ** p <0.01 vs Control, Student's t-test) ポリフェノールのHaCaT細胞におけるβ−カテニン増強効果を示す図である。ポリフェノールのHaCaT細胞におけるβ−カテニン増強活性を検証するために、ウエスタンブロッティングを行った。(mean ± SEM,n=3,*p<0.05 vs Control,Student’s t−test)It is a figure which shows the β-catenin enhancing effect in HaCaT cells of polyphenol. Western blotting was carried out to verify the β-catenin enhancing activity of polyphenols in HaCaT cells. (Mean ± SEM, n = 3, * p <0.05 vs Control, Student's t-test) HaCaT細胞におけるhTERT発現ノックダウンの確認試験結果を示す図である。HaCaT(sh−hTERT)細胞におけるhTERT遺伝子の発現量を定量RT−PCRにより評価した。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとして、スクランブル配列のベクター(scr)を導入した。(mean ± SEM,n=3,***p<0.001 vs Control,Student’s t−test)It is a figure which shows the confirmation test result of hTERT expression knockdown in HaCaT cell. The expression level of the hTERT gene in HaCaT (sh-hTERT) cells was evaluated by quantitative RT-PCR. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. As a control, a scrambled sequence vector (scr) was introduced. (Mean ± SEM, n = 3, *** p <0.001 vs Control, Student's t-test) HaCaT(sh−hTERT−1)細胞におけるhTERT発現を示す図である。HaCaT(sh−hTERT−1)細胞におけるhTERT遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとしては、スクランブル配列を有するノックダウンベクター(scr−shRNA)をを用いた。コントロール処理としては、ポリフェノールの溶媒であるDimethyl sulfoxide処理したものを用いた。(mean ± SEM,n=3,*p<0.05 **p<0.01 vs Control,Student’s t−test)It is a figure which shows hTERT expression in HaCaT (sh-hTERT-1) cell. Quantitative RT-PCR was performed in order to evaluate the expression level of the hTERT gene in HaCaT (sh-hTERT-1) cells. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. As the Control, a knockdown vector (scr-shRNA) having a scrambled sequence was used. As the control treatment, the one treated with dimethyl sulfoxide, which is a solvent of polyphenol, was used. (Mean ± SEM, n = 3, * p <0.05 ** p <0.01 vs Control, Student's t-test) HaCaT(sh−hTERT−2)細胞におけるhTERT発現を示す図である。HaCaT(sh−hTERT−2)細胞におけるhTERT遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとしては、スクランブル配列を有するノックダウンベクター(scr−shRNA)をを用いた。コントロール処理としては、ポリフェノールの溶媒であるDimethyl sulfoxide処理したものを用いた。。(mean ± SEM,n=3,*p<0.05 **p<0.01 vs Control,Student’s t−test)It is a figure which shows hTERT expression in HaCaT (sh-hTERT-2) cell. In order to evaluate the expression level of the hTERT gene in HaCaT (sh-hTERT-2) cells, quantitative RT-PCR was performed. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. As the Control, a knockdown vector (scr-shRNA) having a scrambled sequence was used. As the control treatment, the one treated with dimethyl sulfoxide, which is a solvent of polyphenol, was used. . (Mean ± SEM, n = 3, * p <0.05 ** p <0.01 vs Control, Student's t-test) HaCaT(scr−shRNA)における細胞数変化を示す図である。HaCaT(scr−shRNA)細胞に、選定した2種類のポリフェノールを添加し、24時間ごとに、WST−8を用いた細胞増殖促進効果の検証を行った。Controlには、ポリフェノールサンプルの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 vs Control,Student’s t−test)It is a figure which shows the cell number change in HaCaT (scr-shRNA). Two types of selected polyphenols were added to HaCaT (scr-shRNA) cells, and the cell growth promoting effect using WST-8 was verified every 24 hours. As the control, Dimethyl sulfoxide, which is a solvent for the polyphenol sample, was used. (Mean ± SEM, n = 3, * p <0.05 vs Control, Student's t-test) HaCaT(shTERT−1)における細胞数変化を示す図である。HaCaT(shTERT−1)細胞に、選定した2種類のポリフェノールを添加し、24時間ごとに、WST−8を用いた細胞増殖促進効果の検証を行った。Controlには、ポリフェノールサンプルの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 vs Control,Student’s t−test)It is a figure which shows the cell number change in HaCaT (shTERT-1). Two types of selected polyphenols were added to HaCaT (shTERT-1) cells, and the cell growth promoting effect using WST-8 was verified every 24 hours. As the control, Dimethyl sulfoxide, which is a solvent for the polyphenol sample, was used. (Mean ± SEM, n = 3, * p <0.05 vs Control, Student's t-test) HaCaT(shTERT−2)における細胞数変化を示す図である。HaCaT(shTERT−2)細胞に、選定した2種類のポリフェノールを添加し、24時間ごとに、WST−8を用いた細胞増殖促進効果の検証を行った。Controlには、ポリフェノールサンプルの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,*p<0.05 vs Control,Student’s t−test)It is a figure which shows the cell number change in HaCaT (shTERT-2). Two types of selected polyphenols were added to HaCaT (shTERT-2) cells, and the cell growth promoting effect using WST-8 was verified every 24 hours. As the control, Dimethyl sulfoxide, which is a solvent for the polyphenol sample, was used. (Mean ± SEM, n = 3, * p <0.05 vs Control, Student's t-test) ポリフェノールがHaCaT細胞におけるSIRT1遺伝子発現に与える効果を示す図である。HaCaT細胞におけるSIRT1遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、SIRT1遺伝子の相対的発現量は、SIRT1遺伝子の測定値をβ−actinの測定値で除して求めた。Controlには、ポリフェノールの溶媒であるDimethyl sulfoxideを用いた。(mean ± SEM,n=3,**p<0.01 ***p<0.001 vs Control,Student’s t−test)It is a figure which shows the effect which polyphenol gives to SIRT1 gene expression in HaCaT cell. Quantitative RT-PCR was performed to evaluate the expression level of SIRT1 gene in HaCaT cells. The relative expression level of the SIRT1 gene was obtained by dividing the measured value of the SIRT1 gene by the measured value of β-actin. Dimethyl sulfoxide, which is a solvent of polyphenol, was used for Control. (Mean ± SEM, n = 3, ** p <0.01 *** p <0.001 vs Control, Student's t-test) HaCaT細胞におけるSIRT1発現ノックダウンの確認試験結果を示す図である。HaCaT(sh−SIRT1)細胞におけるSIRT1遺伝子の発現量を定量RT−PCRにより検証した。なお、SIRT1遺伝子の相対的発現量は、SIRT1遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとして、スクランブル配列を有するベクター(scr−shRNA)を導入した。(mean ± SEM,n=3,***p<0.001 vs Control,Student’s t−test)It is a figure which shows the confirmation test result of SIRT1 expression knockdown in HaCaT cell. The expression level of SIRT1 gene in HaCaT (sh-SIRT1) cells was verified by quantitative RT-PCR. The relative expression level of the SIRT1 gene was obtained by dividing the measured value of the SIRT1 gene by the measured value of β-actin. A vector having a scrambled sequence (scr-shRNA) was introduced as Control. (Mean ± SEM, n = 3, *** p <0.001 vs Control, Student's t-test) HaCaT(sh−SIRT1)細胞におけるSIRT1発現を示す図である。HaCaT(sh−SIRT1)細胞におけるSIRT1遺伝子の発現量を定量RT−PCRにより行った。なお、SIRT1遺伝子の相対的発現量は、SIRT1遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとして、スクランブル配列を有するベクター(scr−shRNA)を導入したHaCaTを用いるとともに、コントロール処理としてはポリフェノールの溶媒であるDimethyl sulfoxide処理したものを用いた。。(mean ± SEM,n=3,* **p<0.001 vs Control,Student’s t−test)It is a figure which shows SIRT1 expression in HaCaT (sh-SIRT1) cell. The expression level of SIRT1 gene in HaCaT (sh-SIRT1) cells was measured by quantitative RT-PCR. The relative expression level of the SIRT1 gene was obtained by dividing the measured value of the SIRT1 gene by the measured value of β-actin. As Control, HaCaT into which a vector having a scrambled sequence (scr-shRNA) was introduced was used, and as a control treatment, Dimethyl sulfoxide as a solvent of polyphenol was used. . (Mean ± SEM, n = 3, *** p <0.001 vs Control, Student's t-test) HaCaT(sh−SIRT1)細胞におけるhTERT発現を示す図である。HaCaT(sh−SIRT1)細胞におけるhTERT遺伝子の発現量を定量RT−PCRにより行った。なお、hTERT遺伝子の相対的発現量は、hTERT遺伝子の測定値をβ−actinの測定値で除して求めた。Controlとして、スクランブル配列を有するベクター(scr−shRNA)を導入したHaCaTを用いるとともに、コントロール処理としてはポリフェノールの溶媒であるDimethyl sulfoxide処理したものを用いた。。(mean ± SEM,n=3,* **p<0.001 vs Control,Student’s t−test)It is a figure which shows hTERT expression in HaCaT (sh-SIRT1) cell. The expression level of the hTERT gene in HaCaT (sh-SIRT1) cells was measured by quantitative RT-PCR. The relative expression level of the hTERT gene was determined by dividing the measured value of the hTERT gene by the measured value of β-actin. As Control, HaCaT into which a vector having a scrambled sequence (scr-shRNA) was introduced was used, and as control treatment, Dimethyl sulfoxide as a solvent of polyphenol was used. . (Mean ± SEM, n = 3, *** p <0.001 vs Control, Student's t-test) ポリフェノールの育毛に対する効果を示す図である。ポリフェノールサンプルの育毛効果をC57BL/6マウスを用いて検証した。 左:コントロール群、中:Resveratrol群、右:Fisetin群(除毛約5週間後のマウス)It is a figure which shows the effect of polyphenol on hair growth. The hair growth effect of the polyphenol sample was verified using C57BL / 6 mice. Left: control group, middle: Resveratrol group, right: Fisetin group (mouse after 5 weeks of hair removal) マウスの皮膚におけるmTERT発現を示す図である。マウスの皮膚におけるmTERT遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、mTERT遺伝子の相対的発現量は、mTERT遺伝子の測定値をm−β−actinの測定値で除して求めた。(mean ± SEM,n=6,*p<0.05 vs Control,Student’s t−test)It is a figure which shows mTERT expression in the skin of a mouse. Quantitative RT-PCR was performed to evaluate the expression level of the mTERT gene in mouse skin. The relative expression level of the mTERT gene was determined by dividing the measured value of the mTERT gene by the measured value of m-β-actin. (Mean ± SEM, n = 6, * p <0.05 vs Control, Student's t-test) マウスの皮膚におけるmTERT発現を示す図である。マウスの皮膚におけるmTERT遺伝子の発現量を評価するため、定量RT−PCRを行った。なお、mTERT遺伝子の相対的発現量は、mTERT遺伝子の測定値をm−β−actinの測定値で除して求めた。(mean ± SEM,n=6,*p<0.05 vs Control,Student’s t−test)It is a figure which shows mTERT expression in the skin of a mouse. Quantitative RT-PCR was performed to evaluate the expression level of the mTERT gene in mouse skin. The relative expression level of the mTERT gene was determined by dividing the measured value of the mTERT gene by the measured value of m-β-actin. (Mean ± SEM, n = 6, * p <0.05 vs Control, Student's t-test) 試験開始5週間後のマウス皮膚におけるH&E染色結果を示す図である。ポリフェノールサンプルの育毛効果をC57BL/6マウスを用いて検証し、その皮膚をH&E染色によって染色を施し、毛包の組織形態と皮膚の厚みを可視化した。なお、スケールバーは100μMである。 上:コントロール群、中:Resveratrol群、下:Fisetin群It is a figure which shows the H & E staining result in the mouse | mouth skin 5 weeks after a test start. The hair growth effect of the polyphenol sample was verified using C57BL / 6 mice, and the skin was stained by H & E staining to visualize the tissue morphology of hair follicles and the thickness of the skin. The scale bar is 100 μM. Top: control group, middle: Resveratrol group, bottom: Fisetin group マウスの皮膚の厚みの変化を示す図である。マウスの皮膚の厚みを顕微鏡下で測定した。(mean ± SEM,n=9,**p<0.01 ***p<0.001 vs Control,Student’s t−test)It is a figure which shows the change of the skin thickness of a mouse. Mouse skin thickness was measured under a microscope. (Mean ± SEM, n = 9, ** p <0.01 *** p <0.001 vs Control, Student's t-test) 試験開始4週間後のマウス皮膚における免疫染色を示す図である。ポリフェノールサンプルの育毛効果をC57BL/6マウスを用いて検証し、その皮膚を免疫染色によって染色を施し、Ki−67とTERTの発現を検証した。なお、スケールバーは100μMである。 上:コントロール群、中:Resveratrol群、下:Fisetin群It is a figure which shows the immunostaining in the mouse | mouth skin 4 weeks after the test start. The hair growth effect of the polyphenol sample was verified using C57BL / 6 mice, and the skin was stained by immunostaining to verify the expression of Ki-67 and TERT. The scale bar is 100 μM. Top: control group, middle: Resveratrol group, bottom: Fisetin group レスベラトロール構造類似体によるSIRT1プロモーター活性化効果を示す図である。It is a figure which shows the SIRT1 promoter activation effect by a resveratrol structural analog. レスベラトロール構造類似体によるSIRT1発現増強効果を示す図である。It is a figure which shows the SIRT1 expression enhancement effect by a resveratrol structural analog. フィセチン及びレスベラトロール構造類似体によるhTERT発現増強効果を示す図である。It is a figure which shows the hTERT expression enhancement effect by fisetin and a resveratrol structural analog. フィセチン及びレスベラトロール構造類似体によるパラコート誘導性のDNA損傷修復効果を示す図である。FIG. 5 shows the paraquat-induced DNA damage repair effect of fisetin and resveratrol structural analogs.

本発明は、フィセチン又はその誘導体を含む、発毛及び/又は育毛用組成物に関する。また本発明は、フィセチン又はその誘導体を含む、皮膚改善用組成物に関する。
現在までに、毛髪の再生のために、皮膚組織内に毛髪の元となる活発な毛母細胞を含む毛包を新しく構築する技術は未だに臨床段階レベルにまで発展しているものはない。本発明では、TERT又はSIRT1に焦点を当て、TERT又はSIRT1を活性化する食品成分の探索を行い、毛周期などの進行に関わるシグナルの活性化を通じた発毛促進、育毛促進及び皮膚改善促進とそのメカニズムをin vitro及びin vivo解析から明らかにしようとしたものである。
The present invention relates to a hair growth and / or hair growth composition containing fisetin or a derivative thereof. The present invention also relates to a skin improving composition containing fisetin or a derivative thereof.
To date, no technique for newly constructing a hair follicle containing active hair matrix cells as a source of hair in skin tissue for hair regeneration has been developed to a clinical stage level. The present invention focuses on TERT or SIRT1, searches for food components that activate TERT or SIRT1, and promotes hair growth, hair growth, and skin improvement through activation of signals related to progression of the hair cycle and the like. The mechanism was clarified from in vitro and in vivo analyses.

1.本発明の組成物
本発明の組成物は、次式I、次式II又は次式IIIに示されるものである。
1. Compositions of the Invention The compositions of the invention are of formula I, formula II or formula III.

上記式Iにおいて、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
で示される基を表す。
ここで、Rは水素原子又は酸素原子を表し、R4a及びR4bは、水素原子又は炭素数1〜6のアルキル基を表す。また、
は二重結合又は単結合を表し、mは1〜4の整数を表す。
式IIにおいて、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。
式IIIにおいて、R、R4a、R4b、n1及びn2は前記と同様である。
In the above formula I, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other is represented by the following formula IV:
Represents a group represented by.
Here, R 2 represents a hydrogen atom or an oxygen atom, and R 4a and R 4b represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Also,
Represents a double bond or a single bond, and m represents an integer of 1 to 4.
In Formula II, R 4a and R 4b are the same as defined above, and n1 and n2 each independently represent an integer of 1 to 5.
In Formula III, R 2 , R 4a , R 4b , n1 and n2 are the same as defined above.

式Iに示す化合物は、例えば次式Ia:
に示す化合物、あるいは次式Ib:
に示す化合物を挙げることができる。
Compounds of formula I are represented, for example, by the formula Ia:
Or a compound of the following formula Ib:
The compounds shown in can be mentioned.

本明細書において、「炭素数1〜6のアルキル基」(「C1−6アルキル基」ともいう)とは、炭素数が1〜6個の直鎖状又は分枝鎖状のアルキル基を意味し、例えば、メチル基、エチル基、1−プロピル基(n−プロピル基)、2−プロピル基(i−プロピル基)、2−メチル−1−プロピル基(i−ブチル基)、2−メチル−2−プロピル基(t−ブチル基)、1−ブチル基(n−ブチル基)、2−ブチル基(s−ブチル基)、1−ペンチル基、2−ペンチル基、3−ペンチル基、2−メチル−1−ブチル基、3−メチル−1−ブチル基、2−メチル−2−ブチル基、3−メチル−2−ブチル基などが挙げられる。In the present specification, the “alkyl group having 1 to 6 carbon atoms” (also referred to as “C 1-6 alkyl group”) means a linear or branched alkyl group having 1 to 6 carbon atoms. Means, for example, methyl group, ethyl group, 1-propyl group (n-propyl group), 2-propyl group (i-propyl group), 2-methyl-1-propyl group (i-butyl group), 2- Methyl-2-propyl group (t-butyl group), 1-butyl group (n-butyl group), 2-butyl group (s-butyl group), 1-pentyl group, 2-pentyl group, 3-pentyl group, Examples thereof include a 2-methyl-1-butyl group, a 3-methyl-1-butyl group, a 2-methyl-2-butyl group and a 3-methyl-2-butyl group.

1−6アルキル基としては、メチル基、エチル基、1−プロピル基、2−プロピル基等を挙げることができる。
m並びにn、n1及びn2はそれぞれ独立しており、mは1〜4の整数、n、n1及びn2は1〜5の整数である。従って、mが1〜3、n、n1及びn2が1〜4の場合においてR及び/又はRがC1−6アルキル基により置換されているときは、他の置換基の位置には水素原子が結合している。
は単結合又は二重結合を表す。例えば式Iにおいて、Rが、酸素原子のときは二重結合を表し、水素原子のときは単結合を表す。
Examples of the C 1-6 alkyl group include a methyl group, an ethyl group, a 1-propyl group, a 2-propyl group and the like.
m and n, n1, and n2 are respectively independent, m is an integer of 1 to 4, and n, n1 and n2 are integers of 1 to 5. Therefore, when m is 1 to 3, n, n1 and n2 are 1 to 4 and R 3 and / or R 4 is substituted with a C 1-6 alkyl group, the position of another substituent is Hydrogen atom is bonded.
Represents a single bond or a double bond. For example, in formula I, when R 2 is an oxygen atom, it represents a double bond, and when it is a hydrogen atom, it represents a single bond.

本発明において、式Iに含まれる化合物として、フィセチン、ケルセチン、カテキン、ノビレチン、アピゲニン等が挙げられる。これらの化合物の構造式を以下に示す。
In the present invention, examples of the compound included in formula I include fisetin, quercetin, catechin, nobiletin, apigenin and the like. Structural formulas of these compounds are shown below.

ところで、フィセチンは、sirtuin活性化因子として知られている(A.Camins et al.,Biochimica et Biophysica Acta 1799(2010)740−749)。本発明においては、フィセチンと同様に、sirtuin活性化因子として機能する化合物も本発明の組成物として使用することができる。そのような化合物として、式IIに含まれる化合物、式IIIに含まれる化合物を挙げることができる。   By the way, fisetin is known as a sirtuin activator (A. Camins et al., Biochimica et Biophysica Acta 1799 (2010) 740-749). In the present invention, a compound that functions as a sirtuin activator can be used as the composition of the present invention, similar to fisetin. As such a compound, the compound contained in Formula II and the compound contained in Formula III can be mentioned.

式IIに含まれる化合物:
Compounds within Formula II:

式IIIに含まれる化合物:
Compounds included in Formula III:

その他、本発明において使用される化合物として、以下のものを挙げることができる。
In addition, the following may be mentioned as the compounds used in the present invention.

上記化合物は、化学合成により、あるいは市販品として入手することができる。
本発明の組成物は、上記有効成分以外に、医薬品又は化粧品用として許容可能な担体や公知または周知の他の添加剤を含んでいてもよい。
本発明において、上記化合物は、単独で、あるいは薬学的に許容される担体と共に投与することができ、その投与は1回又は数回に分けて行うことができる。
The above compound can be obtained by chemical synthesis or as a commercial product.
In addition to the above-mentioned active ingredients, the composition of the present invention may contain a carrier acceptable for pharmaceuticals or cosmetics and other known or well-known additives.
In the present invention, the above compounds can be administered alone or together with a pharmaceutically acceptable carrier, and the administration can be performed once or in several divided doses.

「薬学的に許容され得る担体」とは、一般に医薬又は化粧品等に使用される、賦形剤、結合剤、滑沢剤、希釈剤、懸濁化剤、増量剤、崩壊剤、安定剤、保存剤、緩衝剤、等張化剤、乳化剤、芳香剤、着色剤、甘味剤、粘稠剤、矯味矯臭剤、界面活性剤、溶解補助剤、防腐剤、抗酸化剤、安定化剤、その他の添加剤が挙げられ、これらを適宜組み合わせて使用することができる。
そのような担体の一つ以上を用いることにより、錠剤、丸剤、散剤、顆粒剤、注射剤、液剤、カプセル剤、トローチ剤、エリキシル剤、懸濁剤、乳剤あるいはシロップ剤等の形態の経口又は非経口用組成物を調製することができる。
"Pharmaceutically acceptable carrier" is generally used for pharmaceuticals or cosmetics, excipients, binders, lubricants, diluents, suspending agents, bulking agents, disintegrating agents, stabilizers, Preservatives, buffers, isotonic agents, emulsifiers, aromatics, colorants, sweeteners, thickeners, flavoring agents, surfactants, solubilizers, preservatives, antioxidants, stabilizers, etc. The above-mentioned additives can be used, and these can be used in an appropriate combination.
By using one or more of such carriers, oral forms such as tablets, pills, powders, granules, injections, solutions, capsules, troches, elixirs, suspensions, emulsions or syrups Alternatively, a parenteral composition can be prepared.

経口投与の場合、微晶質セルロース、クエン酸ナトリウム、炭酸カルシウム、リン酸ジカリウム、グリシン等の種々の賦形剤を、崩壊剤、結合剤等とともに使用することができる。崩壊剤としては、澱粉、アルギン酸、ある種のケイ酸複塩などが挙げられ、結合剤としては、例えばポリビニルピロリドン、蔗糖、ゼラチン、アラビアゴムなどが挙げられる。また、ステアリン酸マグネシウム、ラウリル硫酸ナトリウム、タルク等の滑沢剤は錠剤形成に有効である。
経口投与用として水性懸濁液又はエリキシルにする場合は、必要により乳化剤、懸濁化剤を併用し、水、エタノール、プロピレングリコール、グリセリン等、およびそれらを組み合わせた希釈剤と共に使用することができる。
For oral administration, various excipients such as microcrystalline cellulose, sodium citrate, calcium carbonate, dipotassium phosphate, glycine and the like can be used together with a disintegrant, a binder and the like. Examples of the disintegrator include starch, alginic acid, and certain types of silicic acid double salts, and examples of the binder include polyvinylpyrrolidone, sucrose, gelatin, gum arabic and the like. Lubricants such as magnesium stearate, sodium lauryl sulfate and talc are effective for tablet formation.
When it is made into an aqueous suspension or elixir for oral administration, it can be used together with an emulsifying agent and a suspending agent as necessary, and can be used together with water, ethanol, propylene glycol, glycerin, etc., and a diluent combining them. .

非経口投与のための形態としては、注射剤(静脈内、点滴、筋肉内、腹腔内、皮下)、皮膚外用剤(ローション、クリーム、スプレー、エアロゾル、軟膏、ゲル)などが挙げられる。
注射剤の場合には、例えば生理食塩水あるいは市販の注射用蒸留水等の薬学的に許容される担体中に所定濃度(例えば1μg/ml〜100mg/ml)となるように溶解又は懸濁することにより製造することができる。このようにして製造された注射剤は、被検者又は患者に対し、1回の投与において1kg体重あたり、例えば1μg〜100mgの割合や100μg〜10mgの割合で、1日あたり1回〜数回投与することができる。但し、この範囲に限定されるものではなく、投与対象の被検者等の体重、症状、投与経路等によって変動し得る。被検者等の薬物に対する感受性の差異、薬剤の処方の仕方、投与期間及び投与間隔によっても投与量に変動が生じてくるので、場合によっては前記範囲の下限より低い投与量が適当なこともある。
Examples of forms for parenteral administration include injections (intravenous, infusion, intramuscular, intraperitoneal, subcutaneous), external preparations for skin (lotions, creams, sprays, aerosols, ointments, gels) and the like.
In the case of an injection, it is dissolved or suspended in a pharmaceutically acceptable carrier such as physiological saline or commercially available distilled water for injection to a predetermined concentration (for example, 1 μg / ml to 100 mg / ml). It can be manufactured. The injection thus produced is administered to a subject or patient once per 1 kg body weight, for example, at a rate of 1 μg to 100 mg or at a rate of 100 μg to 10 mg once to several times a day. It can be administered. However, it is not limited to this range, and may vary depending on the body weight, symptoms, administration route, etc. of the subject to be administered. The dose may vary depending on the sensitivity of the subject to the drug, the method of prescribing the drug, the administration period and the administration interval, and therefore a dose lower than the lower limit of the above range may be appropriate in some cases. is there.

注射剤は、凍結乾燥法などによって無菌の固体組成物とし、使用前に無菌の注射用蒸留水又は他の溶媒に溶解するなど、用時調製の形態として使用することも可能である。
皮膚外用剤の場合は、当該剤型に適した担体に有効成分を配合し、成人1日あたり例えば0.001〜100mg/mや、0.1〜10mg/mの用量で通常1日1〜数回に分けて投与することができる。
It is also possible to use an injection as a sterile solid composition by a freeze-drying method or the like, and to dissolve it in sterile distilled water for injection or another solvent before use, so that it can be used as a ready-to-use form.
For external skin preparation, formulated with the active ingredient on a carrier suitable for the dosage form, adult e.g. 0.001 to 100 mg / m 2 and per day, usually daily at a dose of 0.1 to 10 mg / m 2 It can be administered in 1 to several divided doses.

本発明の組成物を経口投与する場合、経口用剤型としては、例えば錠剤、散剤、カプセル剤(ハードカプセル剤、ソフトカプセル剤)、顆粒剤、丸剤、液剤、シロップ等の形態としてもよい。これらの製剤は常法に従って調製することができる。
本発明の組成物は、発毛作用、育毛作用及び皮膚改善作用からなる群から選ばれる少なくとも1つの作用を有する。従って、上記組成物を、発毛剤、育毛剤、又は皮膚改善剤として使用することができる。
When the composition of the present invention is orally administered, the dosage form for oral administration may be, for example, tablets, powders, capsules (hard capsules, soft capsules), granules, pills, liquids, syrups and the like. These preparations can be prepared according to a conventional method.
The composition of the present invention has at least one action selected from the group consisting of hair growth action, hair growth action, and skin improvement action. Therefore, the above composition can be used as a hair-growth agent, hair-growth agent, or skin-improving agent.

発毛作用とは、上皮系細胞と間葉系細胞との相互作用により毛を生じる作用を意味する。無毛状態から毛が生えるまでの時間が短いほど、発毛効果が高いと言える。
育毛作用とは、毛が生えている状態を維持する作用を意味し、維持する時間が長いほど育毛効果が高いと言える。育毛効果を高めるには、毛根にある毛母細胞の分裂を活性化することが重要である。
皮膚改善作用とは、皮膚を回復させる効果・強くする効果を意味する。本発明の組成物は、皮膚に塗布することにより皮膚の厚みを増加させ、また皮膚を滑らかにすることができる。従って、本発明の組成物は、創傷治癒剤、あるいは化粧品として使用することが可能である。
皮膚改善には、例えば傷の治療、肌荒れの修復、しみの改善、そばかすの改善、及びしわ抑制、創傷治癒、細胞老化抑制などが挙げられ、本発明の組成物は、これらの1つ又は2以上の組合せに対して適用される。本発明の組成物は、例えばDNA損傷に対する修復効果を有していることから、例えば、紫外線による皮膚の肌荒れやしみなどに対して改善作用を有する。
さらに、本発明の組成物は本来食品成分由来であることから、医薬品等のほか、機能性食品の成分として含めることが可能である。
The hair growth action means an action of producing hair by an interaction between epithelial cells and mesenchymal cells. It can be said that the shorter the time from hairlessness to hair growth, the higher the hair growth effect.
The hair-growth action means an action of maintaining a hair-growth state, and it can be said that the longer the maintenance time is, the higher the hair-growth effect is. To enhance the hair-growth effect, it is important to activate the division of hair mother cells in the hair root.
The skin improving action means an effect of recovering and strengthening the skin. When applied to the skin, the composition of the present invention can increase the thickness of the skin and smooth the skin. Therefore, the composition of the present invention can be used as a wound healing agent or a cosmetic.
The skin improvement includes, for example, treatment of wounds, repair of rough skin, improvement of spots, improvement of freckles, and suppression of wrinkles, wound healing, suppression of cell aging, and the composition of the present invention includes one or two of these. It applies to the above combinations. The composition of the present invention has, for example, a repairing effect on DNA damage, and therefore has an improving effect on, for example, rough skin and stains on the skin due to ultraviolet rays.
Furthermore, since the composition of the present invention is originally derived from food ingredients, it can be included as an ingredient of functional foods in addition to pharmaceuticals and the like.

2.スクリーニング方法
本発明は、TERTプロモーターにリポーター遺伝子が連結されたベクターを含む細胞、又は内在性TERT遺伝子を含む細胞に被験物質を接触させ、当該目的遺伝子又は内在性TERT遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法を提供する。
また本発明は、SIRT1プロモーターにリポーター遺伝子が連結されたベクターを含む細胞、又は内在性SIRT1遺伝子を含む細胞に被験物質を接触させ、当該リポーター遺伝子又はSIRT1遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法を提供する。
さらに本発明は、DNA損傷修復マーカー遺伝子を含む細胞であってDNA損傷を受けた細胞に被験物質を接触させ、当該遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法を提供する。
本発明において、候補となる被験物質は特に限定されず、既存の薬剤(例えば既存の発毛剤、育毛剤、その他皮膚改善に作用する各種薬剤)でもよく、その他に、例えばペプチド、低分子化合物、高分子化合物、これらの塩又は前駆体等のあらゆる形態にあってもよい。
2. Screening Method The present invention comprises contacting a test substance with cells containing a vector in which a reporter gene is linked to a TERT promoter or cells containing an endogenous TERT gene, and expressing the target gene or the endogenous TERT gene as an index. Provided is a method for screening a substance having at least one effect selected from the group consisting of a hair effect, a hair growth effect and a skin improving effect.
Further, the present invention, a cell containing a vector in which a reporter gene is linked to the SIRT1 promoter, or a cell containing an endogenous SIRT1 gene is contacted with a test substance, and the expression of the reporter gene or SIRT1 gene is used as an index to produce a hair growth effect, Provided is a method for screening a substance having at least one effect selected from the group consisting of a hair growth effect and a skin improving effect.
The present invention further provides a group consisting of a hair damage effect, a hair growth effect and a skin improving effect, which is obtained by contacting a test substance with a cell containing a DNA damage repair marker gene and having a DNA damage, and using the expression of the gene as an index. A method for screening a substance having at least one effect selected from
In the present invention, the test substance that is a candidate is not particularly limited, and may be an existing drug (for example, an existing hair-growing agent, hair-growing agent, or any other drug that acts on skin improvement). , Polymer compounds, salts or precursors thereof, and the like.

本発明は、具体的には以下の工程を含む。
(a)TERTプロモーター若しくはSIRT1プロモーターにリポーター遺伝子が連結されたベクターを含む細胞、又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子を含む細胞に被験物質を接触させる工程
(b)前記目的遺伝子又は内在性TERT遺伝子の発現を測定する工程
本発明のスクリーニング方法では、発毛剤、育毛剤、皮膚改善剤などをスクリーニングすることができる。
The present invention specifically includes the following steps.
(A) contacting a test substance with cells containing a vector in which a reporter gene is ligated to a TERT promoter or SIRT1 promoter, or with a test substance (b) the target gene or endogenous TERT Step of measuring gene expression In the screening method of the present invention, hair growth agents, hair growth agents, skin improving agents and the like can be screened.

TERTプロモーター又はSIRT1プロモーターとリポーター遺伝子との連結は、通常の遺伝子工学的手法により行うことができる(例えば、Sambrook J.et al.,Molecular Cloning,A Laboratory Manual(4th edition)(Cold Spring Harbor Laboratory Press(2012))。
例えばTERTプロモーターの場合は、まずTERTプロモーターを合成する。当該合成は、例えば、ゲノムDNAを鋳型とし、所望のプロモーター領域を合成し得るように設計したプライマーを用いて、PCR法により行うことができる。なお、TERTプロモーターとしては、ヒトTERT(hTERT)プロモーターであることが好ましい。
SIRT1プロモーターとリポーター遺伝子との連結についても、TERTプロモーターと同様に行うことができる。
また本発明は、DNA損傷修復マーカー遺伝子を含む細胞であってDNA損傷を受けた細胞に被験物質を接触させ、当該遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法を提供する。
The TERT promoter or SIRT1 promoter and the reporter gene can be ligated by an ordinary genetic engineering technique (for example, Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory). (2012)).
For example, in the case of the TERT promoter, the TERT promoter is first synthesized. The synthesis can be performed, for example, by the PCR method using genomic DNA as a template and a primer designed to synthesize a desired promoter region. The TERT promoter is preferably human TERT (hTERT) promoter.
The SIRT1 promoter and the reporter gene can be ligated in the same manner as the TERT promoter.
The present invention also relates to a group comprising a hair damage effect, a hair growth effect, and a skin improving effect, which is a cell containing a DNA damage repair marker gene, which is contacted with a test substance to a cell damaged by the DNA, and the expression of the gene is used as an index. A method for screening a substance having at least one effect selected from

リポーター遺伝子は、リポーター遺伝子発現ベクター内の遺伝子を用い、リポーター遺伝子発現を調節するプロモーター領域は、制限酵素処理等により取り除き、その領域にhTERTプロモーター又はSIRT1プロモーターを連結することによって組換えベクターを得て、この組換えベクターを宿主細胞中に導入することによって形質転換体を得る(Sambrook J.et al.,Molecular Cloning,A Laboratory Manual(4th edition)(Cold Spring Harbor Laboratory Press(2012))。
リポーター遺伝子としては、例えば各種リポーター遺伝子が挙げられ、GFP、EGFP、ルシフェラーゼ、などが挙げられる。これらのリポーター遺伝子の発現が蛍光等で確認できれば、TERTプロモーターが発現していることが分かる。
For the reporter gene, the gene in the reporter gene expression vector is used, and the promoter region that regulates reporter gene expression is removed by restriction enzyme treatment or the like, and a recombinant vector is obtained by ligating the hTERT promoter or SIRT1 promoter to the region. A transformant is obtained by introducing this recombinant vector into a host cell (Sambrook J. et al., Molecular Cloning, A Laboratory Manual (4th edition) (Cold Spring Harbor Laboratory Press (2012)).
Examples of the reporter gene include various reporter genes, such as GFP, EGFP, and luciferase. If the expression of these reporter genes can be confirmed by fluorescence or the like, it can be seen that the TERT promoter is expressed.

ベクターには、宿主微生物で自律的に増殖し得るファージ又はプラスミドが使用される。さらに、動物ウイルス、昆虫ウイルスベクターを用いることもできる。組換えベクターの作製は、精製されたDNAを適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位等に挿入してベクターに連結すればよい。形質転換に使用する宿主としては、目的の遺伝子を発現できるものであれば特に限定されるものではない。例えば、細菌(大腸菌、枯草菌等)、酵母、動物細胞、昆虫細胞又は昆虫が挙げられる。動物細胞にはヒト上皮細胞が含まれ、ヒト上皮細胞にはヒト皮膚表皮由来細胞が含まれる。   As the vector, a phage or a plasmid that can autonomously grow in a host microorganism is used. Furthermore, animal virus or insect virus vectors can also be used. The recombinant vector may be prepared by cutting the purified DNA with an appropriate restriction enzyme, inserting it into the restriction enzyme site of an appropriate vector DNA, and ligating it with the vector. The host used for transformation is not particularly limited as long as it can express the gene of interest. Examples include bacteria (E. coli, Bacillus subtilis, etc.), yeast, animal cells, insect cells or insects. Animal cells include human epithelial cells, and human epithelial cells include human skin epidermis-derived cells.

本発明のスクリーニング方法において「接触」とは、被験物質と細胞とを接触させることを意味し、細胞培養培地に被験物質を添加する態様、被験物質の存在下で細胞を培養する態様などがある。
接触後は、上記プロモーターの下流に連結されたリポーター遺伝子の発現を公知方法によりアッセイする。あるいは、スクリーニングに使用した細胞に内在するTERT遺伝子の発現(遺伝子発現、タンパク質発現等)を、RT−PCR、ノーザンブロッティング、ウエスタンブロッティング等により確認する。
その結果、候補となる被験物質が、コントロール(例えば被験物質を接触させない細胞)と比べて、目的遺伝子又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子の発現を促進した場合は、被験物質は、発毛効果、育毛効果若しくは皮膚改善効果、又はこれらの組合せの効果を有するものと判定する。
In the screening method of the present invention, "contact" means contacting a test substance with cells, and includes a mode of adding the test substance to a cell culture medium, a mode of culturing cells in the presence of the test substance, and the like. .
After the contact, the expression of the reporter gene linked to the downstream of the above promoter is assayed by a known method. Alternatively, the expression (gene expression, protein expression, etc.) of the TERT gene existing in the cells used for screening is confirmed by RT-PCR, Northern blotting, Western blotting, etc.
As a result, when the candidate test substance promotes the expression of the target gene or the endogenous TERT gene or the endogenous SIRT1 gene as compared with the control (for example, cells not contacted with the test substance), the test substance causes hair growth. It is judged to have the effect, hair-growth effect, skin-improving effect, or the combination thereof.

また、本発明のスクリーニング方法においてDNA損傷修復マーカー遺伝子を用いる場合は、天然に当該マーカー遺伝子を有する細胞、又は遺伝子組み換えにより当該マーカー遺伝子が導入された細胞に、物理的又は化学的に遺伝子損傷を与え、これに被験物質を接触させる。その後、DNA損傷修復マーカーの発現を指標として被験物質がDNA損傷を修復する物質であるかを判断する。   When a DNA damage repair marker gene is used in the screening method of the present invention, a cell having the marker gene naturally, or a cell into which the marker gene has been introduced by gene recombination is physically or chemically damaged. The test substance is brought into contact with the test substance. Then, the expression of the DNA damage repair marker is used as an index to determine whether the test substance is a substance that repairs DNA damage.

例えば、DNA損傷により発現が増加する修復マーカー遺伝子を使用する場合は、当該遺伝子の発現が低下したときは、当該被験物質はDNA損傷修復物質であると判断し、発毛効果、育毛効果又は皮膚改善効果を有する物質として選択する。また、DNA損傷により発現が低下する修復マーカー遺伝子を使用する場合は、遺伝子の発現が増加したときは、当該被験物質はDNA損傷修復物質であると判断し、発毛効果、育毛効果又は皮膚改善効果を有する物質として選択する。   For example, in the case of using a repair marker gene whose expression increases due to DNA damage, when the expression of the gene decreases, it is determined that the test substance is a DNA damage repair substance, and the hair growth effect, hair growth effect or skin It is selected as a substance having an improving effect. When a repair marker gene whose expression is decreased by DNA damage is used, when the expression of the gene is increased, the test substance is judged to be a DNA damage repairing substance, and a hair growth effect, hair growth effect or skin improvement effect is obtained. Select as an effective substance.

本発明においては、DNA損傷修復効果は、遺伝子自体の発現のみならず、リン酸化を指標とすることもでき、また、当該遺伝子によりコードされるタンパク質の発現を指標とすることもできる。
DNA損傷を受けたときに発現又はリン酸化が増加するマーカーとして、例えばγH2AX遺伝子、p53遺伝子が挙げられ、DNA損傷を受けたときに発現又はリン酸化が増加するマーカーとして、例えばγH2AX、p53が挙げられる。
In the present invention, the DNA damage repair effect can be expressed not only by the expression of the gene itself but also by phosphorylation as an index, and also by the expression of the protein encoded by the gene as an index.
Markers whose expression or phosphorylation increases when damaged by DNA include, for example, γH2AX gene and p53 gene, and markers which increase expression or phosphorylation when damaged by DNA include, for example, γH2AX and p53. To be

以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples. However, the scope of the present invention is not limited to these examples.

[実験手法]
1.細胞培養
1.1.HaCaT細胞
ヒト皮膚のモデル細胞として、HaCaT細胞(ヒト皮膚表皮由来細胞株)を採用した。細胞は10% Fetal bovine serum(FBS;Life Technologies,CA,USA)添加DMEM培地(Dulbecco’s Modified Eagle Medium;Nissui,Tokyo,Japan)を用いて、細胞培養ディッシュ(Greiner bio−one,Tokyo,Japan)にて、37℃、5% CO存在下で継代培養した。DMEM培地としては、1LのMilli−Q水に対して、DMEM粉末10.0gを溶解し、硫酸ストレプトマイシン0.1g力価(Meiji.Tokyo,Japan)、ペニシリンGカリウム10万U(Meiji)、1M HEPES 2.38g(DOJINDO,Kumamoto,Japan)、10% NaHCO(Wako,Osaka,Japan)2.0gを添加し、0.22μmフィルター滅菌(Toyo Roshi Kaisha,Tokyo,Japan)したものを用いた。
[Experimental method]
1. Cell culture 1.1. HaCaT cells HaCaT cells (human skin epidermis-derived cell line) were adopted as human skin model cells. The cells were cultured in a cell culture dish using a 10% Fetal bovine serum (FBS; Life Technologies, CA, USA) -containing DMEM medium (Dulbecco's Modified Eagle Medium; Nisui, Tokyo, Japan), a cell culture dish, and a cell culture dish. ) At 37 ° C. in the presence of 5% CO 2 . As the DMEM medium, 10.0 g of DMEM powder was dissolved in 1 L of Milli-Q water, streptomycin sulfate 0.1 g titer (Meiji. Tokyo, Japan), penicillin G potassium 100,000 U (Meiji), 1 M. 2.38 g of HEPES (DOJINDO, Kumamoto, Japan), 2.0 g of 10% NaHCO 3 (Wako, Osaka, Japan) were added, and 0.22 μm filter sterilized (Toyo Roshi Kaisha, Tokyo, Japan) was used.

1.2.HaCaT(hTERTp−EGFP)細胞
HaCaT細胞に、hTERTプロモーターにより発現が制御されるEGFP発現ベクター(hTERTp−EGFP)を導入した。HaCaT(hTERTp−EGFP)細胞は、上記に示したHaCaT細胞の培養と同様に培養した。
1.2. HaCaT (hTERTp-EGFP) cell The HaCaT cell was introduced with an EGFP expression vector (hTERTp-EGFP) whose expression is controlled by the hTERT promoter. HaCaT (hTERTp-EGFP) cells were cultured in the same manner as the above-described culture of HaCaT cells.

1.3.293T細胞
293T細胞(ヒト胎児腎臓由来細胞)は高力価なレトロウイルス産生を可能にする細胞株として使用した。293T細胞は、上記に示したHaCaT細胞の培養と同様に培養した。
1.3.293T cells 293T cells (human embryonic kidney-derived cells) were used as a cell line capable of producing high titer retrovirus. The 293T cells were cultured in the same manner as the above-described culture of HaCaT cells.

1.4.hTERTおよびSIRT1ノックダウン細胞
hTERTまたは、SIRT1の発現をノックダウンしたHaCaT細胞は、上述のHaCaT細胞の培養と同様に培養した。
1.4. hTERT and SIRT1 Knockdown Cells hTERT or HaCaT cells knocked down in SIRT1 expression were cultured in the same manner as the above-mentioned culture of HaCaT cells.

2.HaCaT(hTERTp−EGFP)細胞の作製
2.1.HaCaT細胞への遺伝子導入
ヒトゲノムからクローニングしたヒトTERT遺伝子(hTERT)のプロモーター領域を、pEGFP−C3 Vector中のCMVプロモーター領域に挿入したベクター(phTERTp−EGFP)(伊藤、2010)をHaCaT細胞へのトランスフェクションを行った。なお、当該ベクターの作製に使用したプライマーを表1に示す。
2. Preparation of HaCaT (hTERTp-EGFP) cells 2.1. Gene Transfer to HaCaT Cells A vector (phTERTp-EGFP) (Ito, 2010) in which the promoter region of the human TERT gene (hTERT) cloned from the human genome was inserted into the CMV promoter region in pEGFP-C3 Vector was transferred to HaCaT cells. Has been carried out. Table 1 shows the primers used for producing the vector.

トランスフェクションには、Lipofectamine 2000(Thermo Fisher Scientific,Waltham,MA,USA)を使用した。HaCaT細胞を5mLディッシュ(Becton Dickinson,Franklin lakes,NJ,USA)に5×10cells/dishで播種し、10% FBS含有DMEM培地で培養した。この際、コントロールの遺伝子未導入細胞も用意した。トランスフェクション当日、1.5mLチューブにhTERTp−EGFPベクター10μgと、15μLのLipofectamineを、無血清OPTI−MEM培地を全量1.5mLになるようにし、室温で5分間インキュベートした。Lipofectamineによるトランスフェクション法は、血清非存在下で行うため、この間に播種しておいたHaCaT細胞の培養培地を除去し、5mLの無血清OPTI−MEM培地に置換した。30分後、DNA−Lipofectamine 2000混合液をHaCaT細胞に全量添加した。添加後、軽く震盪させDNA−LipofectamineとOPTI−MEMとを混和した。3時間培養後、DNA−Lipofectamine混合溶液を除去し、血清を含む培養培地に置換した。その後、5% CO、37℃で21時間培養し、新しい10% FBS含有DMEM培養培地に置換した。Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA) was used for transfection. HaCaT cells were seeded in 5 mL dishes (Becton Dickinson, Franklin lakes, NJ, USA) at 5 × 10 5 cells / dish and cultured in DMEM medium containing 10% FBS. At this time, control non-transfected cells were also prepared. On the day of transfection, 10 μg of hTERTp-EGFP vector and 15 μL of Lipofectamine were added to a 1.5 mL tube so that the total volume of serum-free OPTI-MEM medium was 1.5 mL, and the mixture was incubated at room temperature for 5 minutes. Since the transfection method using Lipofectamine is performed in the absence of serum, the culture medium of HaCaT cells seeded during this period was removed and replaced with 5 mL of serum-free OPTI-MEM medium. After 30 minutes, the entire amount of the DNA-Lipofectamine 2000 mixed solution was added to the HaCaT cells. After the addition, the mixture was gently shaken to mix DNA-Lipofectamine and OPTI-MEM. After culturing for 3 hours, the DNA-Lipofectamine mixed solution was removed and replaced with a culture medium containing serum. Then, the cells were cultured for 21 hours at 37 ° C. in 5% CO 2 and replaced with a fresh DMEM culture medium containing 10% FBS.

2.2.薬剤選択
hTERTp−EGFPベクターにはKan/Neoの薬剤耐性遺伝子が含まれている。そこで、トランスフェクションから48時間後、G418(Wako,Osaka,Japan)を終濃度70μg/mLになるよう添加し、1週間薬剤選択にかけた。継代や3日毎の培地交換を繰り返しながら、その都度G418を終濃度70μg/mlで添加し、コントロールの遺伝子未導入HaCaT細胞が完全に死滅するまで薬剤選択を行った。コントロールのHaCaT細胞が全滅したのを確認した後、G418の濃度を40μg/mLに下げて継代培養を続けた。
2.2. Drug Selection The hTERTp-EGFP vector contains the Kan r / Neo r drug resistance gene. Therefore, 48 hours after the transfection, G418 (Wako, Osaka, Japan) was added to a final concentration of 70 μg / mL, and drug selection was performed for 1 week. While repeating the subculture and medium exchange every 3 days, G418 was added at a final concentration of 70 μg / ml each time, and drug selection was performed until the control untransfected HaCaT cells were completely killed. After confirming that the control HaCaT cells were completely destroyed, the G418 concentration was lowered to 40 μg / mL and the subculture was continued.

2.3.HaCaT(hTERTp−EGFP)の樹立
hTERTp−EGFPベクターがHaCaT細胞に遺伝子導入され、安定発現株が樹立できているか、フローサイトメーターでGFPの蛍光を測定することで行った。5mLディッシュで70〜80% コンフルエントになっているコントロールのHaCaT細胞と作製したHaCaT(hTERTp−EGFP)細胞を10% FBS含有DMEM培地2mL中に懸濁し、この細胞懸濁液をナイロンメッシュ(Kyoshin Rikoh,Tokyo,Japan)にかけた後、フローサイトメーター(EPICS,Beckman Coulter,Miami,FL,USA)に供してGFP蛍光強度を測定し、コントロールのHaCaT細胞とHaCaT(hTERTp−EGFP)細胞のGFP蛍光のピークを比較した(図1)。また、後述の定量Reverse transcriptase PCR(RT−PCR)に述べるRT−PCR法によって、HaCaT細胞とHaCaT(hTERTp−EGFP)のEGFPの発現量を測定し(図2)、目的の遺伝子が導入されたことが確認した。
2.3. Establishment of HaCaT (hTERTp-EGFP) The hTERTp-EGFP vector was introduced into HaCaT cells to establish a stable expression strain, or the fluorescence of GFP was measured by a flow cytometer. Control HaCaT cells that were 70-80% confluent in 5 mL dishes and prepared HaCaT (hTERTp-EGFP) cells were suspended in 2 mL of DMEM medium containing 10% FBS, and this cell suspension was suspended with nylon mesh (Kyoshin Rikoh). , Tokyo, Japan) and subjected to a flow cytometer (EPICS, Beckman Coulter, Miami, FL, USA) to measure the GFP fluorescence intensity, and to control GFP fluorescence of HaCaT cells and HaCaT (hTERTp-EGFP) cells. The peaks were compared (Figure 1). In addition, the expression level of EGFP in HaCaT cells and HaCaT (hTERTp-EGFP) was measured by the RT-PCR method described in Quantitative Reverse transcriptase PCR (RT-PCR) described below (FIG. 2), and the target gene was introduced. Confirmed that.

3.サンプルとサンプル調整
3.1.ポリフェノール
15種類のポリフェノールを用いた(表2)。ポリフェノールは、DMSOに10mMの濃度で調整したものを4°Cで保存し、適宜解凍し、ピペッティングを行って用いた。
3. Sample and sample preparation 3.1. Polyphenols 15 kinds of polyphenols were used (Table 2). Polyphenol prepared by adjusting DMSO to a concentration of 10 mM was stored at 4 ° C., thawed appropriately, and pipetted to be used.

4.hTERTプロモーター活性を指標としたスクリーニング
4.1.EGFP蛍光強度の測定
hTERT活性は、HaCaT(hTERTp−EGFP)細胞におけるEGFP蛍光強度を、IN Cell Analyzer 1000(GE Healthcare,Amersham Place,UK)を用いて追跡することにより測定した。HaCaT(hTERTp−EGFP)細胞を96−well plate(Greiner Bio−one,Tokyo,Japan)に5.0×10cells/wellで播種し、10% FBS血清を含むDMEM培地にて培養した。翌日、各種サンプルを添加した。添加濃度は、ポリフェノールサンプルが終濃度10μMになるように添加した。コントロールとして、ポリフェノールサンプルにおいてはDMSOを各種サンプル添加量と同量加えた。
4. Screening using hTERT promoter activity as an index 4.1. Measurement of EGFP fluorescence intensity hTERT activity was measured by tracing EGFP fluorescence intensity in HaCaT (hTERTp-EGFP) cells using IN Cell Analyzer 1000 (GE Healthcare, Amersham Place, UK). HaCaT (hTERTp-EGFP) cells were seeded in 96-well plate (Greiner Bio-one, Tokyo, Japan) at 5.0 × 10 4 cells / well and cultured in DMEM medium containing 10% FBS serum. The next day, various samples were added. The addition concentration was such that the polyphenol sample had a final concentration of 10 μM. As a control, DMSO was added to the polyphenol sample in the same amount as each sample.

添加後、10%FBS血清を含むDMEM培地にて48時間培養を行った。48時間後、培地をアスピレートし、8%パラホルムアルデヒドを終濃度が4%になるように100μL/wellで添加し、室温で10分間静置することで固定した。なお、8%パラホルムアルデヒドはParaformaldehyde(Wako)を1×PBSで8%パラホルムアルデヒドになるように希釈し、60℃のウォーターバスに溶かして作製した。10分後、固定液を除去し、1×PBSで2回ウォッシュした。その後、1,000倍希釈したCellstainR−Hoechst 33342 solution(Dojindo,Kumamoto,Japan)を100μL/wellで添加して30分間室温で静置することで核染色をした。30分後、Cellstain R−Hoechst 33342 solutionを除去し、1×PBSで3回ウォッシュし、各wellに100μLのPBSを添加し、IN Cell Analyzer 1000でEGFP蛍光強度を測定した。   After the addition, the cells were cultured for 48 hours in DMEM medium containing 10% FBS serum. After 48 hours, the medium was aspirated, 8% paraformaldehyde was added at 100 μL / well so that the final concentration was 4%, and the mixture was allowed to stand at room temperature for 10 minutes for fixation. 8% paraformaldehyde was prepared by diluting Paraformaldehyde (Wako) with 1 × PBS to 8% paraformaldehyde and dissolving it in a water bath at 60 ° C. After 10 minutes, the fixative was removed, and the plate was washed twice with 1 × PBS. Thereafter, 1,000 times diluted Cellstein R-Hoechst 33342 solution (Dojindo, Kumamoto, Japan) was added at 100 μL / well, and the mixture was allowed to stand at room temperature for 30 minutes for nuclear staining. After 30 minutes, the Cellstein R-Hoechst 33342 solution was removed, the cells were washed 3 times with 1 × PBS, 100 μL of PBS was added to each well, and the EGFP fluorescence intensity was measured with IN Cell Analyzer 1000.

5.定量Reverse transcriptase−PCR(RT−PCR)反応
5.1.全RNAの調製
全RNAの調製にはHigh Pure RNA Isolation Kit(Roche Diagnostics Gmbh,Mannheim,Germany)を使用し、その製品プロトコールに従って行った。また全RNA調製から逆転写反応終了まで用いる試薬および器具はRNase Freeのものを使用した。
5. Quantitative Reverse Transcriptase-PCR (RT-PCR) Reaction 5.1. Preparation of Total RNA For preparation of total RNA, High Pure RNA Isolation Kit (Roche Diagnostics Gmbh, Mannheim, Germany) was used according to its product protocol. The reagents and instruments used from the preparation of total RNA to the end of the reverse transcription reaction were those of RNase Free.

まず、5mLの細胞培養ディッシュに5.0×10cells/wellで細胞を播種し、10%FBS血清を含むDMEM培地にて37℃で培養した。翌日、各種サンプルを添加した。添加濃度については、前記「実験手法」の「hTERTプロモーター活性を指標としたスクリーニング」の項に記載のEGFP蛍光強度の測定に準じた。添加後、10%FBS血清を含むDMEM培地にて37℃で48時間培養を行った。48時間後、培地を完全に除去し、1×PBSを200μL加えて洗浄し、この上からHigh Pure RNA Isolation Kitに含まれている細胞溶解液400μLを添加し、細胞溶解液をよくディッシュ全体に行き渡らせて溶解させ、細胞ライセート全量を1.5mLチューブへ回収した。First, cells were seeded in 5 mL of cell culture dish at 5.0 × 10 4 cells / well, and cultured at 37 ° C. in DMEM medium containing 10% FBS serum. The next day, various samples were added. The concentration to be added was in accordance with the measurement of EGFP fluorescence intensity described in the section "Screening using hTERT promoter activity as an index" in the "Experimental method". After the addition, the cells were cultured at 37 ° C. for 48 hours in DMEM medium containing 10% FBS serum. After 48 hours, the medium was completely removed, 200 μL of 1 × PBS was added for washing, and 400 μL of the cell lysate contained in the High Pure RNA Isolation Kit was added to the well, and the cell lysate was thoroughly spread over the entire dish. It was circulated and lysed, and the total amount of cell lysate was collected in a 1.5 mL tube.

回収したサンプルはボルテックスミキサーで60秒間よく懸濁し、軽くスピンダウンした。Kit中のHigh Pureフィルターチューブと回収用チューブとを組み立て、細胞ライセート溶液をフィルターチューブに加えた。室温、10,000×gにて15秒間遠心分離し、回収用チューブに排出された液を捨て、再びフィルターチューブと回収用チューブを組み立てた。
1.5mLチューブに、1チューブ当たり90μLのDNaseインキュベーションバッファーとDNase I 10μLを加え混合した。この混合液を先ほどのフィルターチューブに添加し、室温で15分間インキュベートした。15分後、Kit中のWash Buffer I 500μLをフィルターチューブに加え、室温、10,000×gにて15秒間遠心分離した。
The collected sample was well suspended by a vortex mixer for 60 seconds and lightly spun down. A High Pure filter tube in Kit and a collection tube were assembled and the cell lysate solution was added to the filter tube. After centrifugation at 10,000 xg for 15 seconds at room temperature, the liquid discharged into the collection tube was discarded, and the filter tube and the collection tube were assembled again.
90 μL of DNase incubation buffer and 10 μL of DNase I were added to each 1.5 mL tube and mixed. This mixed solution was added to the filter tube described above and incubated at room temperature for 15 minutes. After 15 minutes, 500 μL of Wash Buffer I in Kit was added to the filter tube and centrifuged at 10,000 xg for 15 seconds at room temperature.

遠心後、回収用チューブに排出された液を捨て、再びフィルターチューブと回収用チューブを組み立てた。Wash Buffer II 500μLをフィルターチューブに加え、室温、10,000×gにて15秒間遠心分離した。遠心後、回収用チューブに排出された液を捨て、再びフィルターチューブと回収用チューブを組み立てた。更に、Wash Buffer II 200μLを加え、室温、15,000×gで2分間遠心分離を行い、フィルターを洗浄した。遠心後、フィルターチューブを新しい1.5mLチューブに差し込み、溶出バッファー100μLをフィルターチューブの中心に添加し、室温で3分間静置した。その後、室温、10,000×gにて1分間遠心分離した。この操作による溶出液をRNA溶液とした。溶液中のRNA濃度は、NanoDrop2000/2000c分光光度計(Thermo Fisher Scientific,Waltham,MA)によって、260nmでの吸光値を元に算出し、以後の実験に使用した。   After centrifugation, the liquid discharged to the collection tube was discarded, and the filter tube and the collection tube were assembled again. 500 μL of Wash Buffer II was added to the filter tube and centrifuged at 10,000 × g for 15 seconds at room temperature. After centrifugation, the liquid discharged to the collection tube was discarded, and the filter tube and the collection tube were assembled again. Furthermore, 200 μL of Wash Buffer II was added, and the mixture was centrifuged at room temperature and 15,000 × g for 2 minutes to wash the filter. After centrifugation, the filter tube was inserted into a new 1.5 mL tube, 100 μL of elution buffer was added to the center of the filter tube, and the mixture was left standing at room temperature for 3 minutes. Then, it centrifuged at room temperature and 10,000xg for 1 minute. The eluate obtained by this operation was used as an RNA solution. The RNA concentration in the solution was calculated based on the absorbance value at 260 nm using a NanoDrop2000 / 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA), and used in the subsequent experiments.

5.2.cDNAの合成
(1)逆転写酵素ReverTra Aceを用いたcDNA合成
細胞から抽出した全RNA1.0μgに対して5pmolのOligo(dT)20プライマー(TOYOBO,Osaka,Japan)を加え、総液量が13μLになるようにRNase Free水を加えた。Thermal Cycler PTC−200(MJ Research,Waltham,MA,USA)にて65℃で5分間熱処理反応を行い、直ちに氷中に移して急冷した。その間に、逆転写酵素反応プログラムを42°Cの段階へ進めておき一時停止にした。氷中にて5分間冷却したサンプルへ1サンプル当たり逆転写酵素反応緩衝液4μL、10mM dNTPs(GE Healthcare)2μL、逆転写酵素ReverTra Ace(100units/μL)(TOYOBO,Osaka,Japan)0.5μLを混合した溶液を加え、穏やかに混合した。その後42°Cで20分間、99°Cで5分間、4°Cで5分間の反応させることによりcDNAを合成した。このcDNAを定量PCRに鋳型として用いた。
5.2. cDNA Synthesis (1) cDNA Synthesis Using Reverse Transcriptase ReverTra Ace To 1.0 μg of total RNA extracted from cells, 5 pmol of Oligo (dT) 20 primer (TOYOBO, Osaka, Japan) was added to give a total volume of 13 μL. RNase Free water was added thereto. A thermal treatment reaction was carried out for 5 minutes at 65 ° C. with a Thermal Cycler PTC-200 (MJ Research, Waltham, MA, USA), and immediately transferred to ice for rapid cooling. Meanwhile, the reverse transcriptase reaction program was advanced to the stage of 42 ° C and was temporarily stopped. Reverse transcriptase reaction buffer 4 μL, 10 mM dNTPs (GE Healthcare) 2 μL, reverse transcriptase ReverseTrace Ace (100 units / μL) (TOYOBO, Osaka, Japan) 0.5 μL were added to each sample cooled in ice for 5 minutes. The mixed solution was added and mixed gently. Then, cDNA was synthesized by reacting at 42 ° C for 20 minutes, at 99 ° C for 5 minutes, and at 4 ° C for 5 minutes. This cDNA was used as a template for quantitative PCR.

(2)逆転写酵素SuperScriptを用いたcDNA合成
細胞から抽出した全RNA0.7μgまたは2.0μgに対して50pmolのOligo(dT)20プライマー及び10mM dNTPs1μLを加え、総液量が12.75μLになるようにRNase Free水を加えた。Thermal Cycler PTC−200にて65℃で5分間熱処理反応を行い、直ちに氷中に移して急冷した。その間、逆転写酵素反応プログラムを55℃の段階へ進めておき一時停止にした。氷中にて1分間以上冷却したサンプルへ1サンプル当たり5×逆転写酵素反応緩衝液4μL、100mM DTT1μL、逆転写酵素SupersciptIV(100units/μL)(Thermo Fisher Scientific)0.25μLを混合した溶液を加え穏やかに混合した。その後55℃で10分間、80℃で10分間反応させることによりcDNAを合成した。このcDNAを定量PCRに鋳型として用いた。
(2) cDNA synthesis using reverse transcriptase SuperScript To 0.7 μg or 2.0 μg of total RNA extracted from cells, 50 pmol of Oligo (dT) 20 primer and 1 μL of 10 mM dNTPs were added to give a total volume of 12.75 μL. Then RNase Free water was added. A thermal treatment reaction was carried out at 65 ° C. for 5 minutes with a Thermal Cycler PTC-200, immediately transferred to ice and rapidly cooled. Meanwhile, the reverse transcriptase reaction program was advanced to the stage of 55 ° C. and was temporarily stopped. To a sample cooled for 1 minute or more in ice, a solution prepared by mixing 5 μl of 5 × reverse transcriptase reaction buffer, 1 μl of 100 mM DTT, 0.25 μl of reverse transcriptase Supercipt IV (100 units / μl) (Thermo Fisher Scientific) per sample was added. Mix gently. Then, cDNA was synthesized by reacting at 55 ° C. for 10 minutes and at 80 ° C. for 10 minutes. This cDNA was used as a template for quantitative PCR.

5.3.プライマーの設計
RT−PCRによって発現量を測定する目的遺伝子をNCBI(http://www.ncbi.nlm.nih.gov/gene/)で検索し、その配列をもとにPrimer3を用いてプライマーの配列を決定し、合成した。プライマーの合成はSigma社に委託した。内部コントロールであるβ−actinと目的遺伝子をそれぞれ検出するためのプライマーを表3に示す。
5.3. Design of primer A target gene whose expression level is to be measured by RT-PCR is searched by NCBI (http://www.ncbi.nlm.nih.gov/gene/), and Primer3 is used as a primer based on the sequence. The sequence was determined and synthesized. Primer synthesis was outsourced to Sigma. Table 3 shows the primers for detecting the internal control β-actin and the target gene, respectively.

5.4.定量Reverse transcriptase−PCR(RT−PCR)反応
作製したcDNAを鋳型として用いた。0.2mL PCRチューブに滅菌水49μL、10pmol/mLに希釈したプライマーForward/Reverse双方を3.5μLずつ、鋳型cDNA(プライマーは目的遺伝子は1/10に、β−actinは1/50に希釈した)7.0μL、高効率リアルタイムPCR用マスターミックス(2×濃度)のTHUNDERBIRD SYBR qPCR Mix(TOYOBO)24.5μLを入れ、よく懸濁した。その後、96−well plateに25μLずつ3wellに添加し、Thermal Cycler Dice Real Time System(TAKARA BIO,Siga,Japan)を用いて、定量Real time−PCRを行った。PCR反応は、変性反応を95℃で5秒間、アニーリングを60℃で10秒間、伸長反応を72℃で20秒間行い、これを45サイクル(3step)繰り返し、FAMにより検出した。検量線のためのプライマーには、β−actinを用いた。また、相対遺伝子発現量は測定した値をβ−actinの発現量値で除し求めた。なお、統計解析においては、正規分布と仮定してn=3で、Student’s t−testを行った。
5.4. Quantitative Reverse transcriptase-PCR (RT-PCR) reaction The prepared cDNA was used as a template. In a 0.2 mL PCR tube, 49 μL of sterilized water, 3.5 μL each of both primers Forward / Reverse diluted to 10 pmol / mL, template cDNA (primer was diluted to 1/10 of target gene, β-actin was diluted to 1/50). ) 7.0 μL and 24.5 μL of THUNDERBIRD SYBR qPCR Mix (TOYOBO) as a master mix for high-efficiency real-time PCR (2 × concentration) were added and well suspended. After that, 25 μL of each was added to 3 wells of 96-well plate, and quantitative Real time-PCR was performed using a Thermal Cycler Dice Real Time System (TAKARA BIO, Siga, Japan). In the PCR reaction, denaturation reaction was carried out at 95 ° C. for 5 seconds, annealing was carried out at 60 ° C. for 10 seconds, and extension reaction was carried out at 72 ° C. for 20 seconds, which was repeated for 45 cycles (3 steps) and detected by FAM. Β-actin was used as a primer for the calibration curve. The relative gene expression level was determined by dividing the measured value by the β-actin expression level value. In the statistical analysis, Student's t-test was performed at n = 3 assuming a normal distribution.

6.細胞増殖曲線
HaCaT細胞を、96−well plate(Becton Dickinson)に1.0×10cellsの細胞数で播種した。6時間後、細胞がプレートに接着した後、サンプル添加を行った。サンプル添加の終濃度は、前記「実験手法」の「hTERTプロモーター活性を指標としたスクリーニング」の項に記載のEGFP蛍光強度の測定に準じた。
6. Cell growth curve HaCaT cells were seeded on a 96-well plate (Becton Dickinson) at a cell number of 1.0 × 10 4 cells. After 6 hours, cells were allowed to attach to the plate before sample addition. The final concentration of sample addition was based on the measurement of EGFP fluorescence intensity described in the section "Screening using hTERT promoter activity as an index" in the "Experimental procedure".

サンプル添加から24時間ごとにCell Count Kit−8溶液(DOJINDO)を各wellに10μLずつ添加し、37℃、5% COの条件下で2時間呈色反応を行った。その後、マイクロプレートリーダー(Sunrise,TECAN Austria GmbH,Grodig,Austria)を用いて各wellの450nmの吸光度を測定し、測定値とした。Cell Counting Kit−8は細胞増殖試験において、細胞数を測定するキットである。高感度水溶性ホルマザンを生成する新規テトラゾリウム塩WST−8は細胞内脱水素酵素により還元され、水溶性のホルマザンを生成する。細胞数と直線的な比例関係にあるホルマザンの色素量を、450nmの吸光度で測定することで生細胞数を計測することができる。なお、統計解析においては、正規分布だと仮定してn=3で、Student’s t−testを行った。10 μL of Cell Count Kit-8 solution (DOJINDO) was added to each well every 24 hours after sample addition, and color reaction was performed for 2 hours under the conditions of 37 ° C. and 5% CO 2 . Thereafter, the absorbance at 450 nm of each well was measured using a microplate reader (Sunrise, TECAN Austria GmbH, Grodig, Austria), and the measured value was used. Cell Counting Kit-8 is a kit for measuring the number of cells in a cell proliferation test. The novel tetrazolium salt WST-8 that produces highly sensitive water-soluble formazan is reduced by intracellular dehydrogenase to produce water-soluble formazan. The number of viable cells can be measured by measuring the dye amount of formazan, which is linearly proportional to the number of cells, by the absorbance at 450 nm. In the statistical analysis, Student's t-test was performed with n = 3 assuming that the distribution was normal.

7.ルシフェラーゼアッセイ
7.1.リポータープラスミド
hTERTプロモーターを持つルシフェラーゼリポーター(pGL3b−289、pGL3b−289(E−box−mut))(Fujiki T et al.,2007)、及びTCF/LEF結合サイトを持つルシフェラーゼリポーター(M50 Super 8x TOP Flash)(Addgene,Cambridge,MA)、TCF/LEF結合サイト変異体を持つルシフェラーゼリポーター(M51 Super 8x FOP Flash)(Addgene)を用いた。
7. Luciferase Assay 7.1. Reporter plasmid A luciferase reporter (pGL3b-289, pGL3b-289 (E-box-mut)) having a hTERT promoter (Fujiki T et al., 2007), and a luciferase reporter having a TCF / LEF binding site (M50 Super 8x TOP Flas). ) (Addgene, Cambridge, MA), a luciferase reporter (M51 Super 8x FOP Flash) (Addgene) having a TCF / LEF binding site mutant.

7.2.トランスフェクション
HaCaT細胞を回収時にサブコンフルエントになるように24−well plate(Becton Dickinson)に5.0×10cells/wellで500μLずつ播種した。翌日、1.5mLチューブに、目的のプロモーター、ウミホタルルシフェラーゼコンストラクト、細胞内標準化コントロールとしてウミシイタケルシフェラーゼコンストラクト(pRL−TK)およびDMEM培地を準備した。DNAの比率及び容量は、最終容量が62.5μLになるよう添加した。これに1mg/mLのPEI(Polysciences,Inc.Warrington,PA)を1.25μL加えて混合した後、室温で15分間静置した。24−well plateから培地を完全に除去し、10% FBS含有培地及び、上記のDNA−PEI混合溶液を全量加えて、37℃、5% CO存在下で培養した。
7.2. Transfection HaCaT cells were inoculated into 24-well plates (Becton Dickinson) at a concentration of 5.0 × 10 4 cells / well so as to be subconfluent at the time of collection, 500 μL each. On the next day, a 1.5 mL tube was prepared with a target promoter, Cypridina luciferase construct, Renilla luciferase construct (pRL-TK) and DMEM medium as an intracellular standardization control. The ratio and volume of DNA was added so that the final volume was 62.5 μL. To this, 1.25 μL of 1 mg / mL PEI (Polysciences, Inc. Warrington, PA) was added and mixed, and then allowed to stand at room temperature for 15 minutes. The medium was completely removed from the 24-well plate, the 10% FBS-containing medium and the total amount of the above DNA-PEI mixed solution were added, and the mixture was cultured at 37 ° C. in the presence of 5% CO 2 .

24時間後、培養液をアスピレートし、10% FBS含有DMEM培地に交換した。交換から48時間後に測定を行った。または、培地を交換する際に、サンプル添加を、1サンプルにつき3well分、前記「実験手法」の「hTERTプロモーター活性を指標としたスクリーニング」の項に記載のEGFP蛍光強度の測定に準じた濃度で行った。トランスフェクションに使用したルシフェラーゼコンストラクトの遺伝子量及び比率を以下に記す。   After 24 hours, the culture was aspirated and replaced with DMEM medium containing 10% FBS. The measurement was performed 48 hours after the replacement. Alternatively, when the medium is exchanged, the addition of the sample should be 3 wells per sample at a concentration according to the measurement of EGFP fluorescence intensity described in the section “Screening using hTERT promoter activity as an index” in the “Experimental method”. went. The gene amount and ratio of the luciferase construct used for transfection are shown below.

β−カテニンプロモーター活性測定時の条件
リポーター(M50 Super 8x TOP Flash,M51 Super 8x FOP Flash 350ng
pRL−TK 150ng
hTERTプロモーター活性測定時の条件
リポーター(pGL3b−289、pGL3b−289(E−box−mut)) 350ng
pRL−TK 150ng
Condition reporter for measuring β-catenin promoter activity (M50 Super 8x TOP Flash, M51 Super 8x FOP Flash 350 ng
pRL-TK 150ng
Conditional reporter (pGL3b-289, pGL3b-289 (E-box-mut)) at the time of hTERT promoter activity measurement 350 ng
pRL-TK 150ng

7.3.ルシフェラーゼアッセイ
細胞抽出液の調製およびルシフェラーゼ活性の測定は、Dual Luciferase Reporter Assay System(Promega,Madison,WI)の製品プロトコールに従って行った。24−well plateの培地を完全に除去した後、1×PBS 50μL/wellで1回洗浄し、PBSを完全に除去した。その後、5×PLB(Passive Lysis Buffer)を超純水で1×PLBに希釈したものを50μL/well添加し、プレートを室温で1時間、Micro Mixer(TAITEC,Saitama,Japan)で振とうさせて細胞を溶解した。その間に遮光下で、50×Stop & Glo SubstrateをStop & Glo Bufferで50倍希釈した1×Stop & Glo Reagentを準備した。また、Luciferase Assay SubstrateをLuciferase assay Buffer IIに溶解させたLAR II(Luciferase Assay Reagent II)を12×75mmのガラス製の試験管(IWAKI,Chiba,Japan)に50μLずつ分注した。
7.3. Luciferase Assay Preparation of cell extracts and measurement of luciferase activity were performed according to the Dual Luciferase Reporter Assay System (Promega, Madison, Wis.) Product protocol. After completely removing the 24-well plate medium, the plate was washed once with 1 × PBS 50 μL / well to completely remove the PBS. Thereafter, 50 μL / well of 5 × PLB (Passive Lysis Buffer) diluted with ultrapure water to 1 × PLB was added, and the plate was shaken with a Micro Mixer (TAITEC, Saitama, Japan) at room temperature for 1 hour. The cells were lysed. Meanwhile, 1 × Stop & Glo Reagent was prepared by diluting 50 × Stop & Glo Substrate 50-fold with Stop & Glo Buffer under light shielding. In addition, LAR II (Luciferase Assay Reagent II) obtained by dissolving Luciferase Assay Substrate in Luciferase assay Buffer II was dispensed into 12 × 75 mm glass test tubes (IWAKI, μi, Chiro, and Chiba, respectively).

10μLの細胞抽出液をLAR IIに加えて混合し、試験管をルミノメーター(Lumit LB 9507,Berthold Japan K.K.,Tokyo,Japan)にセットし、ホタルルシフェラーゼ活性の発光量を細胞抽出液添加の1秒後から10秒間の積算値で測定した。引き続き、同サンプルに対して50μLの1×Stop & Glo Reagentを加えて混合し、ホタルルシフェラーゼアッセイ活性の測定と同様にウミシイタケルシフェラーゼの発光量を測定した。測定したプロモーター活性値は、ホタルルシフェラーゼ活性測定値をウミシイタケルシフェラーゼ活性測定値で割った値をそのプロモーターの比活性値とし、平均値および標準偏差値を算出して評価した。   10 μL of the cell extract was added to LAR II and mixed, and the test tube was set in a luminometer (Lumit LB 9507, Berthold Japan KK, Tokyo, Japan), and the amount of luminescence of firefly luciferase activity was added to the cell extract. It was measured by the integrated value for 10 seconds from 1 second after. Subsequently, 50 μL of 1 × Stop & Glo Reagent was added to the same sample and mixed, and the amount of Renilla luciferase luminescence was measured in the same manner as the measurement of the firefly luciferase assay activity. The measured promoter activity value was evaluated by dividing the value obtained by measuring the firefly luciferase activity value by the Renilla luciferase activity measurement value as the specific activity value of the promoter and calculating the average value and standard deviation value.

8.ウエスタンブロッティング法
8.1.試薬の調整
1:NP−40 Lysis Buffer
0.5% Nonidet P−40(Nacalai tesque,Kyoto,Japan)
5mM EDTA(DOJINDO)
2mM NaVO(Wako)
10mM Tris−HCl(pH7.6)(SIGMA,St Louis,MO,USA)
150mM NaCl(Wako)
5μg/mL Aprotinin(SIGMA)
1mM PMSF(Phenylmethyl sulfonyl fluoride)(SIGMA)
8. Western blotting method 8.1. Preparation of reagents 1: NP-40 Lysis Buffer
0.5% Nonidet P-40 (Nacalai tesque, Kyoto, Japan)
5 mM EDTA (DOJINDO)
2 mM Na 3 VO 4 (Wako)
10 mM Tris-HCl (pH 7.6) (SIGMA, St Louis, MO, USA)
150 mM NaCl (Wako)
5 μg / mL Aprotinin (SIGMA)
1 mM PMSF (Phenylmethyl sulfonyl fluoride) (SIGMA)

2:Resolving gel buffer(総量1,000ml)
90.8g Trizma−base(SIGMA)
2.0g Sodium dodecyl sulphate(SDS,Wako)12N HClでpH8.8に調整
2: Resolving gel buffer (total volume of 1,000 ml)
90.8g Trizma-base (SIGMA)
2.0g Sodium dodecyl sulphate (SDS, Wako) Adjusted to pH 8.8 with 12N HCl.

3:Stacking gel buffer(総量1000ml)
30.3g Trizma−base(SIGMA)
2.0g SDS(Wako)12N HClでpH6.8に調整
3: Stacking gel buffer (total volume 1000 ml)
30.3g Trizma-base (SIGMA)
Adjust to pH 6.8 with 2.0g SDS (Wako) 12N HCl

4:2×sample buffer
5% Sodium dodecyl sulphate(Wako)
20% Glycerol(Wako)
62.5mM Tris−HCl(pH6.8)
10% 2−Mercaptoethanol(Wako)
0.01% Bromophenol Blue(Wako)
4: 2 x sample buffer
5% Sodium dodecyl sulphate (Wako)
20% Glycerol (Wako)
62.5 mM Tris-HCl (pH 6.8)
10% 2-Mercaptoethanol (Wako)
0.01% Bromophenol Blue (Wako)

5:10×Tris Glycine SDS buffer(総量1,000ml)
30.1g Tris
144g Glycine
10g SDS
5: 10 × Tris Glycine SDS buffer (total volume of 1,000 ml)
30.1g Tris
144g Glycine
10g SDS

6:PTB(Protein Transfer Buffer)
48mM Trizma−base(SIGMA)
38mM Glycine(Wako)
20% Methanol(Wako)
6: PTB (Protein Transfer Buffer)
48 mM Trizma-base (SIGMA)
38 mM Glycine (Wako)
20% Methanol (Wako)

5:PBS−Tween(総量1,000ml)
11.5g NaHPO(Wako)
2.96g NaHPO(Wako)
5.84g NaCl(Wako)
0.1% Polyoxyethylene(20)Sorbitan Monolaurate(Tween 20)(Wako)
5: PBS-Tween (total volume 1,000 ml)
11.5 g Na 2 HPO 4 (Wako)
2.96 g NaH 2 PO 4 (Wako)
5.84g NaCl (Wako)
0.1% Polyoxyethylene (20) Sorbitano Monolaurate (Tween 20) (Wako)

8.2.タンパク質溶液の調製
HaCaT細胞を10mL dish(Greiner bio−one)に5.0×105cells/dishで播種し、10%FBS含有DMEM培地で37℃、5%COの条件下で24時間培養した。24時間後、サンプルを添加し、37℃、5% COの条件下で24時間培養した。サンプルは、Resveratrol、Fisetin、Sesamolを終濃度10μMで添加した。サンプル添加から24時間後、培地をアスピレートし、氷冷1×PBS 5mLで3回洗浄を行った。その後、NP−40 Lysis Bufferを800μL添加して細胞を溶解させ、セルスクレーパー(NIPPON Genetics,Tokyo,Japan)で一定方向に摩擦熱が生じないようゆっくりと掻き取り、シリコナイズドスナップキャップ付チューブ(Thermo Fisher Scientific)に移した。30分間氷中に置いて静置した後、超音波破砕機(TOMY SEIKO,Tokyo,Japan)でタンパク溶液を懸濁し、20,000×g、4℃で15分間遠心分離し、上清25μLをタンパク定量用に、残りの回収液をWestern Blotting用のサンプルとして数本のシリコナイズドスナップキャップ付チューブに分注し、−80℃で保存した。
8.2. Preparation of protein solution HaCaT cells were seeded in 10 mL dish (Greiner bio-one) at 5.0 × 10 5 cells / dish, and cultured in DMEM medium containing 10% FBS at 37 ° C. and 5% CO 2 for 24 hours. After 24 hours, the sample was added and cultured under the conditions of 37 ° C. and 5% CO 2 for 24 hours. As a sample, Resveratrol, Fisetin, and Sesamol were added at a final concentration of 10 μM. After 24 hours from the addition of the sample, the medium was aspirated and washed 3 times with 5 mL of ice-cold 1 × PBS. Thereafter, 800 μL of NP-40 Lysis Buffer was added to lyse the cells, and the cells were slowly scraped with a cell scraper (NIPPON Genetics, Tokyo, Japan) so as not to generate frictional heat in a certain direction, and a tube with a siliconized snap cap (Thermo). (Fisher Scientific). After leaving it on ice for 30 minutes and allowing it to stand, the protein solution was suspended with an ultrasonic crusher (TOMY SEIKO, Tokyo, Japan), centrifuged at 20,000 xg for 15 minutes at 4 ° C, and 25 μL of the supernatant was added. For protein quantification, the remaining collected solution was dispensed as a sample for Western Blotting into several tubes with siliconized snap caps and stored at -80 ° C.

8.3.タンパク定量(Bradford法)
上記8.2.項で抽出したタンパク質溶液10μLをPBSで50、100、200、400倍に段階希釈した。標準曲線のスタンダードには、ウシ血清アルブミン(BSA:Bovine serum albumin,Wako)を0〜90μg/mLになるようにPBSで10段階に希釈した液を使用した。96−well plateの2wellを1検定分として、各wellに100μLずつ添加した。次に、滅菌水で2.5倍に希釈したProtein Assay Dye(BIO−RAD Laboratories,Hercules,CA,USA)を全てのwellに100μLずつ素早く添加して、Micro Mixer(TAITEC,Saitama,Japan)で振とう後、10分間室温で遮光静置した。10分後、吸光光度計(Tecan)を用い、吸光度595nmをもとに測定を行った。測定で得られた標準曲線を基に定量を行い、タンパク質濃度を決定した。
8.3. Protein quantification (Bradford method)
The above 8.2. 10 μL of the protein solution extracted in the above section was serially diluted 50, 100, 200, and 400 times with PBS. As the standard of the standard curve, a solution obtained by diluting bovine serum albumin (BSA: Bovine serum albumin, Wako) with PBS in 10 steps so as to be 0 to 90 μg / mL was used. Two wells of 96-well plate were used as one assay, and 100 μL of each well was added. Then, 100 μL of Protein Assay Dye (BIO-RAD Laboratories, Hercules, CA, USA) diluted 2.5 times with sterilized water was quickly added to each well, and the mixture was added with Micro Mixer (TAITEC, Saitama, Japan). After shaking, the mixture was allowed to stand for 10 minutes at room temperature under light shielding. After 10 minutes, measurement was performed using an absorptiometer (Tecan) based on the absorbance of 595 nm. Quantitation was performed based on the standard curve obtained by the measurement to determine the protein concentration.

8.4.ウエスタンブロッティング
(1)SDS−PAGE
SDSポリアクリルアミド電気泳動(SDS−PAGE)を行った。泳動のゲル板は、1mm厚を使用した。上層ゲルは濃縮ゲル(stacking gel)、下層ゲルは分離ゲル(running gel)となっており、各々の組成は以下に記した。分離ゲル注入後は、その上に水飽和ブタノールを充填して空気との接地を遮断した。なお、濃縮ゲルのアクリルアミド濃度は、常時5%であるが、分離ゲルのアクリルアミド濃度は、目的タンパク質の分子量により異なったものを用いた。
8.4. Western blotting (1) SDS-PAGE
SDS polyacrylamide electrophoresis (SDS-PAGE) was performed. The electrophoresis gel plate used was 1 mm thick. The upper layer gel is a concentrated gel and the lower layer gel is a separating gel, and the composition of each is described below. After injecting the separation gel, water-saturated butanol was filled on the gel to cut off the contact with the air. The acrylamide concentration of the concentrated gel was always 5%, but the acrylamide concentration of the separation gel was different depending on the molecular weight of the target protein.

・Stacking gel
40% Acrylamide/Bis solution(37.5:1)(BIO RAD) 1.35mL
Stacking gel buffer 5.00mL
滅菌水 4.45mL
10% APS(Wako) 50μL
TEMED(Wako) 10μL
・ Stacking gel
40% Acrylamide / Bis solution (37.5: 1) (BIO RAD) 1.35 mL
Stacking gel buffer 5.00mL
Sterile water 4.45mL
10% APS (Wako) 50 μL
TEMED (Wako) 10 μL

・Running gel
40% Acrylamide/Bis solution(37.5:1)(BIO RAD) 5.6mL
Resolving gel buffer 9mL
滅菌水 3.9mL
10% APS(Wako Pure Chemical) 180μL
TEMED(Wako Pure Chemical) 18μL
・ Running gel
40% Acrylamide / Bis solution (37.5: 1) (BIO RAD) 5.6 mL
Resolving gel buffer 9mL
Sterilized water 3.9mL
10% APS (Wako Pure Chemical) 180 μL
TEMED (Wako Pure Chemical) 18 μL

上記の分離ゲルは、12%の組成を記した。
定量したタンパク質サンプル20μgを2×Sample bufferと1:1の割合で混合して、95℃で5分間加熱して変性させた。変性後、氷上に移して5分間静置してからゲルに注入した。泳動条件は、濃縮ゲルともに20V、200mAので約1〜1.5時間泳動を行った。泳動マーカーとして、Kaleidoscope Prestained Standards(1610375,BIO RAD)を使用した。
The separating gel described above has a composition of 12%.
20 μg of the quantified protein sample was mixed with 2 × Sample buffer at a ratio of 1: 1 and denatured by heating at 95 ° C. for 5 minutes. After denaturation, it was transferred to ice and left for 5 minutes, and then injected into the gel. The electrophoresis conditions were 20 V and 200 mA for both concentrated gels, and electrophoresis was performed for about 1 to 1.5 hours. Kaleidoscope Prestained Standards (1610375, BIO RAD) was used as a migration marker.

(2)ブロッティング
泳動終了後、目的タンパク質に応じて分離ゲルの必要箇所を切り、Protein Transfer Buffer(PTB液)に浸し30分間振とうした。その間に、PVDFメンブレン(GE Healthcare)と濾紙4枚をゲルと同じ面積で切り、PVDFメンブレンの前処理として100%メタノール(Wako)に20秒、超純水に5分間浸して振とうし、続いてPTB液に浸し15分間振とうした。振とう後、2連式ミニ転写装置(NA−1510B型,NIHON EIDO,Tokyo,Japan)を用いてPTBに浸した濾紙2枚、PVDFメンブレン、ゲル、濾紙2枚の順で重ね合わせ、100A、50V、60分の条件でブロッティングを行った。
(2) Blotting After the completion of the electrophoresis, necessary parts of the separation gel were cut according to the target protein, immersed in Protein Transfer Buffer (PTB solution), and shaken for 30 minutes. In the meantime, a PVDF membrane (GE Healthcare) and four pieces of filter paper were cut in the same area as the gel, pretreated with 100% methanol (Wako) for 20 seconds, and soaked in ultrapure water for 5 minutes, followed by shaking. And soaked in PTB solution and shaken for 15 minutes. After shaking, two filter papers soaked in PTB, a PVDF membrane, a gel, and two filter papers were superposed in this order with a dual-type mini transfer device (NA-1510B type, NIHON EIDO, Tokyo, Japan), 100A, Blotting was performed under the conditions of 50 V and 60 minutes.

(3)ブロッキング
ブロッティング終了後、PVDFメンブレンをブロッキング液として、5%スキムミルク(Wako)/0.1%PBS−Tweenに浸し、4℃、一晩振とうしながらブロッキングを行った。
(3) Blocking After the completion of blotting, the PVDF membrane was immersed in 5% skim milk (Wako) /0.1% PBS-Tween as a blocking solution, and blocking was performed overnight at 4 ° C with shaking.

(4)一次抗体反応
ブロッキング後、PVDFメンブレンをPBS−Tweenで2回軽く振とうしながらウォッシュした後、新しいPBS−Tweenで15分間振とうさせながらウォッシュした。ウォッシュ後、PBS−TweenあるいはCan Get Signal Immunoreaction Enhancer Solution Solution 1(TOYOBO)で希釈した1次抗体液を、振とうさせながら室温で1時間反応させ、抗原抗体反応を行った。抗体希釈率は使用した抗体により異なり、以下に記した。
(4) Primary antibody reaction After blocking, the PVDF membrane was washed with PBS-Tween by gently shaking twice, and then washed with fresh PBS-Tween with shaking for 15 minutes. After washing, the primary antibody solution diluted with PBS-Tween or Can Get Signal Immunoreaction Enhancer Solution Solution 1 (TOYOBO) was reacted for 1 hour at room temperature with shaking to perform an antigen-antibody reaction. The antibody dilution rate depends on the antibody used and is described below.

<一次抗体希釈率>
・β−catenin Antibody(#8480S,Cell Signaling Technology,Danvers,MA,USA) 1/1500
・β−actin Antibody(013−24553,Wako) 1/3000
<Primary antibody dilution rate>
Β-catenin Antibody (# 8480S, Cell Signaling Technology, Danvers, MA, USA) 1/1500
-Β-actin Antibody (013-24553, Wako) 1/3000

(5)二次抗体反応
一次抗体反応後、PBS−Tweenで2回軽く振とうし、さらに15分間振とうしながらウォッシュした。続けて、PBS−Tweenで5分間の振とう洗浄を3回繰り返して、余分な1次抗体を取り除いた。振とう後、PBS−TweenあるいはCan Get Signal Immunoreaction Enhancer Solution Solution2(TOYOBO)で希釈した2次抗体液を、振とうさせながら、室温で1時間反応させ、抗原抗体反応を行った。抗体希釈率を以下に示す。
(5) Secondary antibody reaction After the primary antibody reaction, the plate was gently shaken twice with PBS-Tween, and further washed with shaking for 15 minutes. Subsequently, the washing with PBS-Tween for 5 minutes with shaking was repeated 3 times to remove excess primary antibody. After shaking, the secondary antibody solution diluted with PBS-Tween or Can Get Signal Immunoreaction Enhancer Solution Solution 2 (TOYOBO) was reacted for 1 hour at room temperature with shaking to perform an antigen-antibody reaction. The antibody dilution rate is shown below.

<二次抗体希釈率>
・Anti−rabbit IgG,Horseradish Peroxidase linked whole antibody(GE Healthcare) 1/2500
・Anti−mouse IgG,Horseradish Peroxidase linked whole antibody(GE Healthcare) 1/2500
<Secondary antibody dilution rate>
-Anti-rabbit IgG, Horseradish Peroxidase linked whole antibody (GE Healthcare) 1/2500
-Anti-mouse IgG, Horseradish Peroxidase linked whole antibody (GE Healthcare) 1/2500

(6)検出
二次抗体反応終了後、PBS−Tweenで2回軽く振とうし、さらに15分間振とうしウォッシュした。続けて、PBS−Tweenで5分間振とうさせながらの洗浄を3回繰り返して、余分な二次抗体を取り除いた。洗浄後、Immuno Star LD(Wako)のLuminescence Solution AとLuminescence Solution Bを1:1の割合で混合させ、PVDF膜に添加して、5分間遮光して反応させた。その後、LAS−1000(FUJIFILM,Tokyo,Japan)で検出した。
(6) Detection After completion of the secondary antibody reaction, the plate was gently shaken twice with PBS-Tween, and further shaken and washed for 15 minutes. Subsequently, washing with PBS-Tween while shaking for 5 minutes was repeated 3 times to remove excess secondary antibody. After washing, Luminescence Solution A and Luminescence Solution B of Immuno Star LD (Wako) were mixed at a ratio of 1: 1 and added to the PVDF membrane to react for 5 minutes while shielding from light. Then, it detected by LAS-1000 (FUJIFILM, Tokyo, Japan).

9.動物実験
9.1.動物及び飼育方法
C57BL/6J Jclマウス(♂,6週齢)を日本クレア株式会社(Tokyo,Japan)から購入した。飼育環境は、マウス用の小型ケージ(NATSUME SEISAKUSHO,Japan)を用いて行い、1ケージに1匹とし、室温22〜26℃、湿度50〜60%、12時間明暗周期にコントロールされたラック(Oriental,Tokyo,Japan)にて飼育した。また、ガンマ線滅菌照射させた飼料(CA−1 照射線量 30kGy)(CLEA)と水を自由に摂取させた。実験飼育は、コントロール群(9匹)、Resveratrol群(9匹)、Fisetin群(10匹)の3群に分けて4週間行った。
9. Animal experiment 9.1. Animals and Breeding Method C57BL / 6J Jcl mice (♂, 6 weeks old) were purchased from CLEA Japan, Inc. (Tokyo, Japan). The breeding environment was carried out using a small cage for mice (NATSUME SEISAKUSHO, Japan), with one mouse in one cage, room temperature 22 to 26 ° C, humidity 50 to 60%, and a rack controlled under a 12-hour light-dark cycle (Oriental). , Tokyo, Japan). In addition, feed (CA-1 irradiation dose 30 kGy) (CLEA) and water that had been sterilized by gamma ray irradiation and water were freely ingested. Experimental breeding was carried out for 4 weeks by dividing into 3 groups of a control group (9 animals), a Resveratrol group (9 animals) and a Fisetin group (10 animals).

全マウスの手順と操作は、九州大学動物実験倫理委員会の承認を得て、同委員会が作成した指針実験動物の飼育と使用のためのガイドに従っており、同委員会の承認を得ている(承認番号:A28−077−0「疾患モデル動物を用いたアンチエイジング活性を有する食品の機能性評価」)   The procedure and operation of all mice are approved by the Kyushu University Animal Experiment Ethics Committee and follow the guideline for breeding and use of laboratory animals, which has been approved by the Committee. (Approval number: A28-077-0 "Functional evaluation of foods having anti-aging activity using disease model animals")

9.2.塗布試験
1週間予備飼育した後、全身吸入麻酔剤 セボフレン(Maruishi Pharmaceutical,Osaka,Japan)麻酔下でマウスの背部体毛を約2.5cm×2.5cmの大きさになるように電気バリカン(THRIVE MODEL 2100,Daito Electric Machine Industry,Osaka,Japan)で刈毛した後、電気シェーバー(Panasonic,Osaka,Japan)で剃毛処理し、翌日より実験に使用した。コントロール群は50%エタノールを、Resveratrol群及び、Fisetin群は50%エタノールに0.1%の濃度で溶解させたものを使用し、マウスの被験部に1週間のうち6日間、それぞれ50μL塗布した。試験開始から4週間後の実験終了時に、頚椎脱臼によりマウスを安楽死させた後、被験部の皮膚を採取した。
9.2. Application test After preliminarily breeding for 1 week, an electric clipper (THRIVE MODEL) was prepared so that the back hair of the mouse was about 2.5 cm × 2.5 cm under anesthesia with a general inhalation anesthetic, Sevofrene (Maruishi Pharmaceutical, Osaka, Japan). 2100, Daito Electric Machine Industry, Osaka, Japan), and then shaved with an electric shaver (Panasonic, Osaka, Japan), and used for the experiment from the next day. The control group was prepared by dissolving 50% ethanol, and the Resveratrol group and the Fisetin group were dissolved in 50% ethanol at a concentration of 0.1%. .. At the end of the experiment 4 weeks after the start of the test, the mouse was euthanized by cervical dislocation and the skin of the test site was collected.

9.3.マウスの皮膚におけるTERT発現の検証
マウス皮膚組織からのRNA抽出は、RNeasy Fibrous Tissue Mini Kit(QIAGEN,Hilden,Germany)の製品プロトコールに従って行った。
1.皮膚破砕
マウスから採取した皮膚サンプルの一部を、約3mm×3mmの大きさで切り取り、バイオマッシャーII(Nippi,Tokyo,Japan)の内側がディンプル加工された1.5mLチューブに入れた。KitのBuffer RLT 1mLに対して、あらかじめβ−メルカプトエタノール(Wako)10μL添加しておいたものを、組織の上に300μL添加し、付属の攪拌棒を回転させて、素早く皮膚組織を破砕した。この際、皮膚組織の塊が肉眼で見えなくなるまでホモジナイゼーションした。
9.3. Verification of TERT Expression in Mouse Skin RNA extraction from mouse skin tissue was performed according to the product protocol of the RNeasy Fiber Tissue Mini Kit (QIAGEN, Hilden, Germany).
1. Skin Crushing A part of a skin sample collected from a mouse was cut into a size of about 3 mm × 3 mm and placed in a 1.5 mL tube in which the inside of Biomasher II (Nippi, Tokyo, Japan) was dimple-processed. To 1 mL of Kit's Buffer RLT, 10 μL of β-mercaptoethanol (Wako) was added in advance, 300 μL was added on the tissue, and the stirring rod attached was rotated to rapidly crush the skin tissue. At this time, homogenization was performed until the lump of skin tissue was no longer visible to the naked eye.

2.RNA抽出
ホモジナイゼーションした組織溶解液を、室温、18,000×gで5分間遠心した後、ライセートをペレットが混入しないように、新しい1.5mLチューブに移した。Kitに含まれるRNaseフリー水590μL及びProteinase K溶液10μLを、ライセートに添加し、ピペッティングにより完全に混合した。その後、55°Cで10分間インキュベートさせ、室温、10,000×gで3分間遠心操作した。上清(約900μL)を、新しい1.5mLチューブにピペットで移した。0.5倍容量(今回は約450μL)の99%エタノール(Wako)を清澄化ライセートに添加し、ピペッティングにより混和した。700μLのサンプルを、Kitの2mLコレクションチューブの中にセットしたRNeasy Mini Spin Columnにアプライし、室温、8,000×g以上で15秒間遠心操作した。回収用チューブに排出されたろ液を棄て、サンプルの残りを用いて同じ操作を繰り返した。350μLのBuffer RW1をRNeasy Spin Columnに添加し、室温、8,000×g以上で15秒間遠心操作し、メンブレン洗浄した。
2. RNA Extraction The homogenized tissue lysate was centrifuged at 18,000 × g for 5 minutes at room temperature, and then the lysate was transferred to a new 1.5 mL tube so that the pellet was not contaminated. 590 μL of RNase-free water contained in Kit and 10 μL of Proteinase K solution were added to the lysate and mixed thoroughly by pipetting. Then, the mixture was incubated at 55 ° C. for 10 minutes, and centrifuged at room temperature and 10,000 × g for 3 minutes. The supernatant (about 900 μL) was pipetted into a new 1.5 mL tube. 0.5% volume (about 450 μL this time) of 99% ethanol (Wako) was added to the clarified lysate and mixed by pipetting. A 700 μL sample was applied to the RNeasy Mini Spin Column set in a 2 mL collection tube of Kit, and centrifuged at room temperature at 8,000 × g or more for 15 seconds. The filtrate discharged into the collection tube was discarded, and the same operation was repeated using the rest of the sample. 350 μL of Buffer RW1 was added to RNeasy Spin Column, and the membrane was washed by centrifugation at room temperature and 8,000 × g for 15 seconds.

DNase I(1,500 Knitz units)を550μLのRNaseフリー水で溶解させたDNase Iストック溶液10μLを70μLのBuffer RDDに添加した。DNase Iは物理的変性に敏感なため、混和はチューブを静かに上下に転倒させて静かにミックスした。チューブの壁に残っている溶液を集めるために、軽く遠心操作を行った。   10 μL of DNase I stock solution prepared by dissolving DNase I (1,500 Knitz units) in 550 μL of RNase-free water was added to 70 μL of Buffer RDD. Since DNase I is sensitive to physical denaturation, the tubes were gently mixed by gently inverting the tube. A light centrifugation was performed to collect the remaining solution on the wall of the tube.

1サンプルにつき80μLのDNase Iインキュベーション溶液をRNeasy Spin Columnメンブレンにピペットで直接アプライし、室温で15分間インキュベートした。この際、DNase分解が不完全になるのを避けるため、DNase Iインキュベーション反応液が、スピンカラムの壁につかないように、直接RNeasy Spin Columnメンブレンに添加した。15分後、350μLのBuffer RW1をRNeasy Spin Columnに添加し、室温、8,000×g以上で15秒間遠心した。次に、4×Buffer RPEを99%エタノール(Wako)で1×Buffer RPEにしたものを500μLずつRNeasy Spin Columnに添加。室温、8,000×g以上で15秒間遠心操作することでメンブレンを洗浄した。更に、RNA溶出中にエタノールがキャリーオーバーしないように、もう一度、500μLの1×Buffer RPEをRNeasy Spin Columnに添加し、室温、8,000×g以上で2分間遠心操作することでスピンカラム及びメンブレンを洗浄した。遠心操作後、RNeasy Spin Columnがろ液と接触しないように、注意深くカラムをコレクションチューブから取り除きRNeasy Spin Columnを新しい2mLコレクションチューブに移し、最高スピードで1分間遠心操作を行なった。その後RNeasy Spin Columnを新しい1.5mlコレクションチューブ(添付)にセットし、50μLのRNaseフリー水をRNeasy Spin Columnメンブレンに直接添加した。蓋を閉め、室温、8,000×g以上で1分間遠心操作を行い、この操作による溶出液をRNA溶液とした。溶液中のRNA濃度は、NanoDrop 2000/2000c分光光度計で、260nmでの吸光値を元に算出し、定量リアルタイムPCRの実験に使用した。尚、cDNA合成及び、定量リアルタイムPCR法の方法については、前述の通りである。   80 μL of DNase I incubation solution per sample was pipetted directly onto the RNeasy Spin Column membrane and incubated for 15 minutes at room temperature. At this time, in order to prevent the DNase decomposition from becoming incomplete, the DNase I incubation reaction solution was directly added to the RNeasy Spin Column membrane so as not to stick to the wall of the spin column. After 15 minutes, 350 μL of Buffer RW1 was added to the RNeasy Spin Column and centrifuged at room temperature and 8,000 × g or more for 15 seconds. Next, 500 μL of 4 × Buffer RPE made into 1 × Buffer RPE with 99% ethanol (Wako) was added to RNeasy Spin Column. The membrane was washed by centrifugation at 8,000 xg or more at room temperature for 15 seconds. Furthermore, 500 μL of 1 × Buffer RPE was added to the RNeasy Spin Column again to prevent ethanol carryover during RNA elution, and the spin column and membrane were centrifuged at room temperature at 8,000 × g or more for 2 minutes. Was washed. After the centrifugation, the column was carefully removed from the collection tube so that the RNeasy Spin Column did not come into contact with the filtrate, the RNeasy Spin Column was transferred to a new 2 mL collection tube, and centrifugation was performed at the maximum speed for 1 minute. After that, the RNeasy Spin Column was set in a new 1.5 ml collection tube (attached), and 50 μL of RNase free water was directly added to the RNeasy Spin Column membrane. The lid was closed, centrifugation was performed at room temperature at 8,000 × g or more for 1 minute, and the eluate resulting from this operation was used as an RNA solution. The RNA concentration in the solution was calculated using a NanoDrop 2000 / 2000c spectrophotometer based on the absorbance value at 260 nm, and used for the quantitative real-time PCR experiment. The method of cDNA synthesis and the quantitative real-time PCR method is as described above.

9.4.パラフィン包埋切片の作製
パラフィン包埋切片の作製及びHE染色は常法により行った。
9.4. Preparation of paraffin-embedded section Preparation of paraffin-embedded section and HE staining were performed by a conventional method.

免疫染色
1.脱パラフィン及び親水
パラフィン包埋切片を貼り付けたスライドガラスを、染色用バスケットに入れ、計3回、5分間おきに新しい染色バットに入れたキシレンへの浸漬を行った。次に、計2回、5分間おきに新しい染色バットに入れた99%エタノールへの浸漬を行った。更に、90%エタノール、80%エタノール、70%エタノールにそれぞれ5分間ずつ浸漬した。スライドガラスを新しい染色バットに移動させる際、キャリーオーバーがなるべく少なくように、余分な液をよくきってから新しい液に移した。その後、0.1%Tween 20/TBSに5分間浸して洗浄した。以下に0.1%TBS−Tの組成を示した。
Immunostaining 1. Deparaffinization and Hydrophilicity The slide glass on which the paraffin-embedded section was attached was placed in a staining basket, and immersed in xylene placed in a new staining vat every 3 minutes for a total of 3 times. Next, dipping in 99% ethanol in a new dyeing vat was performed twice every 5 minutes in total. Furthermore, it was immersed in 90% ethanol, 80% ethanol and 70% ethanol for 5 minutes each. When the slide glass was moved to a new staining vat, excess liquid was thoroughly cut off and transferred to a new liquid so that carryover was minimized. Then, it was immersed in 0.1% Tween 20 / TBS for 5 minutes for washing. The composition of 0.1% TBS-T is shown below.

・10×TBS(総量500mL)
12.1g Tris
40g NaCl
12N HClでpH7.6に調製
・0.1%Tween 20/TBS
10×TBSを超純水で1×TBSにし、Tween−20を0.5ml/500ml添加
・ 10 x TBS (500 mL in total)
12.1g Tris
40g NaCl
Adjusted to pH 7.6 with 12N HCl-0.1% Tween 20 / TBS
Make 10 × TBS into 1 × TBS with ultrapure water and add 0.5 ml / 500 ml of Tween-20.

2.抗原賦活化処理(湯浴法)
抗原賦活液10×HistoVT One(NACALAI TESQUE)をイオン交換水で1×HistoVT Oneに希釈し、ポリプロピレン製の染色バットに入れ、90°Cに設定したポットの中であらかじめ温めておいた。この中に脱パラフィン及び親水させた検体をスライドガラスのまま入れ、20分間賦活化を行った。20分後、スライドガラスを取り出し、組織が乾かないように注意しながら、スライドガラスが室温に下がるまで待ち、3分間おきに新しい0.1%Tween 20/TBSで3回洗浄を行った。
2. Antigen activation treatment (hot water method)
The antigen activating solution 10 × HistoVT One (NACALAI TESQUE) was diluted to 1 × HistoVT One with ion-exchanged water, placed in a polypropylene staining vat, and preheated in a pot set at 90 ° C. The deparaffinized and hydrophilic sample was placed in the slide glass as it was and activated for 20 minutes. After 20 minutes, the slide glass was taken out, and while being careful not to dry the tissue, the slide glass was cooled to room temperature, and washed with fresh 0.1% Tween 20 / TBS three times every 3 minutes.

3.ブロッキング
洗浄後、キムワイプ等で、スライドガラス上の検体周辺の余分な液体をふき取り、スーパーパップペン リキッドブロッカー(Daido Sangyo,Japan)で検体を囲み、撥水性サークルを作った。次に、ブロッキングバッファー、Bolcking One Histo(NACALAI TESQUE)または、5% Normal Goat Serum(Wako)/0.1%Tween 20/TBSを検体に直接かからないように注意しながら、撥水性サークルの中に1滴(約100μL)落とし、湿潤箱(AS ONE)の中で、1時間室温でインキュベートし、ブロッキングした。ブロッキング後、0.1%Tween 20/TBSで5分間洗浄した。
3. After blocking and washing, excess liquid around the sample on the slide glass was wiped off with a Kimwipe or the like, and the sample was surrounded with a Super Pap pen liquid blocker (Daido Sangyo, Japan) to form a water repellent circle. Next, 1 in the water-repellent circle, taking care not to directly apply the blocking buffer, Bocking One Histo (NACALAI TESQUE) or 5% Normal Goat Serum (Wako) /0.1% Tween 20 / TBS. A drop (about 100 μL) was dropped, and the mixture was incubated in a wet box (AS ONE) for 1 hour at room temperature for blocking. After blocking, the plate was washed with 0.1% Tween 20 / TBS for 5 minutes.

4.一次抗体反応
ブロッキングバッファー(Blocking One Histoまたは、5% Normal Goat Serum(Wako)/0.1%Tween 20/TBS)で、一次抗体を希釈し、検体に直接かからないように注意しながら、撥水性サークルの中に約100μL落とし、湿潤箱(AS ONE)の中で、4℃、一晩インキュベートした。一次抗体反応後、5分間おきに新しい0.1%Tween 20/TBSでスライドガラスごと3回洗浄を行った。一次抗体の希釈率は以下に示した。
4. Primary antibody reaction Dilute the primary antibody with a blocking buffer (Blocking One Histo or 5% Normal Goat Serum (Wako) /0.1% Tween 20 / TBS), and be careful not to hit the sample directly. Approximately 100 μL of the solution was dropped into the flask and incubated overnight at 4 ° C. in a humid box (AS ONE). After the primary antibody reaction, the slide glass was washed 3 times with fresh 0.1% Tween 20 / TBS every 5 minutes. The dilution ratio of the primary antibody is shown below.

<一次抗体希釈率>
・Ki−67(#12202,Cell Signaling Technology) 1/400
・TERT(NB100−317,Novus Biologicals,Littleton,CO,USA) 1/50
<Primary antibody dilution rate>
・ Ki-67 (# 12202, Cell Signaling Technology) 1/400
-TERT (NB100-317, Novus Biologicals, Littleton, CO, USA) 1/50

5.二次抗体反応
ブロッキングバッファー(Blocking One Histoまたは、5% Normal Goat Serum(Wako)/0.1%Tween 20/TBS)で、二次抗体を希釈し、検体に直接かからないように注意しながら、撥水性サークルの中に約100μL落とし、遮光にした湿潤箱(AS ONE)の中で、室温、1.5時間〜2時間インキュベートし、二次抗体を反応させた。二次抗体の希釈率は以下に示した。
5. Secondary antibody reaction Dilute the secondary antibody with a blocking buffer (Blocking One Histo or 5% Normal Goat Serum (Wako) /0.1% Tween 20 / TBS), and repel it while paying attention not to directly contact the sample. About 100 μL was dropped in an aqueous circle and incubated in a light-tight wet box (AS ONE) at room temperature for 1.5 hours to 2 hours to react with the secondary antibody. The dilution ratio of the secondary antibody is shown below.

<二次抗体希釈率>
・AlexaFluor 555 anti−rabbit IgG(Thermo Fisher Scientific) 1/100
・AlexaFluor 488 anti−mouse IgG(Jackson Immuno Research,West Grove,PA,USA) 1/100
<Secondary antibody dilution rate>
-AlexaFluor 555 anti-rabbit IgG (Thermo Fisher Scientific) 1/100
-AlexaFluor 488 anti-mouse IgG (Jackson Immuno Research, West Grove, PA, USA) 1/100

6.封入
余分な二次抗体を0.1%Tween 20/TBSで5分間おきに新しい0.1%Tween 20/TBSで3回洗浄を行った。次に、DAPI入りの蛍光染色用封入剤VECTASHIELD Mounting Medium(VECTOR LABORATORIES,Burlingame,CA,USA)を標本組織の左端の方1滴落とし、カバーガラス(24mm×36mm)を左端からゆっくりと倒し、気泡が入らないようにしながら封入した。封入後、スライドガラスはマッペの上で乾燥させた。
6. Encapsulation The excess secondary antibody was washed with 0.1% Tween 20 / TBS for 5 minutes and freshly washed with fresh 0.1% Tween 20 / TBS three times. Then, a drop of VECTASHIELD Mounting Medium (VECTOR LABORATORIES, Burlingame, CA, USA) containing fluorescent dye containing DAPI was dropped on the left end of the sample tissue, and the cover glass (24 mm x 36 mm) was gently dropped from the left end to form bubbles. Enclosed so as not to enter. After mounting, the slide glass was dried on a mappe.

7.検出
蛍光顕微鏡(IX50,OLYMPUS,Tokyo,Japan)で組織と核を観察することで、皮膚全体の厚さ(表皮、真皮、皮下組織を含んだ厚さ)を観察した。また、共焦点レーザー走査型顕微鏡(FV1000,OLYMPUS)で二次抗体の蛍光を観察することで、各タンパク質の局在と発現量を観察した。
7. Detection By observing the tissue and nucleus with a fluorescence microscope (IX50, OLYMPUS, Tokyo, Japan), the thickness of the entire skin (thickness including epidermis, dermis, and subcutaneous tissue) was observed. Further, the localization and expression level of each protein were observed by observing the fluorescence of the secondary antibody with a confocal laser scanning microscope (FV1000, OLYMPUS).

10.レトロウイルス発現系を用いた遺伝子導入
10.1.293T細胞への遺伝子導入
293T細胞を5mLディッシュに30〜40%コンフルエントになるように播種し、10%FBS含有DMEM培地で培養した。24時間後、トランスフェクション試薬であるHilymax 40μL、Gag−polプラスミド1.5μg、VSVGプラスミド1.5μg、目的遺伝子を2.0μgを300μLのDMEM培地に添加し、15分間室温でインキュベートした。その後、全量をそれぞれ293T細胞へ添加し37℃、5%CO条件下で6時間後培養した。6時間後、10%FBS含有DMEMで培地交換した。また、翌日のインフェクション用にターゲットとなるHaCaT細胞を10mLディッシュ(Greiner bio−one)に30〜40%コンフルエントとなるように播種し、37℃、5%CO存在下で一晩培養した。
10. Gene transfer using retrovirus expression system 10.1. Gene transfer to T293 cells 293T cells were seeded in a 5 mL dish at 30 to 40% confluence, and cultured in 10% FBS-containing DMEM medium. After 24 hours, 40 μL of Hilymax as a transfection reagent, 1.5 μg of Gag-pol plasmid, 1.5 μg of VSVG plasmid, and 2.0 μg of the target gene were added to 300 μL of DMEM medium, and incubated at room temperature for 15 minutes. Then, the whole amount was added to each 293T cell, and the cells were post-cultured at 37 ° C. under 5% CO 2 for 6 hours. After 6 hours, the medium was replaced with DMEM containing 10% FBS. In addition, the target HaCaT cells for infection on the next day were seeded in a 10 mL dish (Greiner bio-one) at 30 to 40% confluence, and cultured overnight at 37 ° C. in the presence of 5% CO 2 .

10.2.HaCaT細胞へのウイルス感染
293T細胞への遺伝子導入から24時間後に、上清5mLを0.45μm×33mmフィルター(Merck)により滅菌処理して15mL遠心管に回収し、10mg/mlポリブレン4.0μL(Merck)を添加してウイルス溶液とした。次回のウイルス溶液作製のために293T細胞に10%FBS含有DMEM培地を5mL加えた。回収したウイルス溶液は培地を除いたHaCaT細胞へ添加した。この感染作業を、午前と午後3日間、計6回行った。
10.2. Viral infection of HaCaT cells 24 hours after gene transfer to 293T cells, 5 mL of the supernatant was sterilized with a 0.45 μm × 33 mm filter (Merck), collected in a 15 mL centrifuge tube, and 10 mg / ml polybrene 4.0 μL ( Merck) was added to obtain a virus solution. For the next preparation of virus solution, 5 mL of DMEM medium containing 10% FBS was added to 293T cells. The recovered virus solution was added to HaCaT cells without the medium. This infection work was performed 6 times in total in the morning and the afternoon of 3 days.

10.3.薬剤選択
6回目のウイルス感染作業から24時間後ウイルスを感染させた細胞5.0×10cellsを10mLディッシュに播種した。その際、コントロールとして無処理のHaCaT細胞を同じ密度で播種した。ここにPuromycin(SIGMA−Aldrich)を2.0μg/mLで培地に添加した。コントロールの無処理HaCaT細胞が全滅したのを確認した後に、Puromycin濃度を0.5μg/mLに下げて継代培養を続け、実験に用いた。
[実施例1]
hTERT活性化食品成分の探索
10.3. Drug selection 24 hours after the sixth virus infection operation, 5.0 × 10 5 cells infected with the virus were seeded in a 10 mL dish. At that time, as a control, untreated HaCaT cells were seeded at the same density. Puromycin (SIGMA-Aldrich) was added to the medium at 2.0 μg / mL. After it was confirmed that the control untreated HaCaT cells were completely destroyed, the concentration of Puromycin was lowered to 0.5 μg / mL and the subculture was continued, and used for the experiment.
[Example 1]
Search for hTERT activated food ingredients

1.1.HaCaT(hTERTp−EGFP)の樹立
hTERTp−EGFPベクターがHaCaT細胞に遺伝子導入され、安定発現株が樹立できているか、フローサイトメーターを用いてGFPの蛍光強度を測定することで確認した。測定した全細胞集団に対して、細胞の大きさを示す前方拡散FS(Forward Scatter)の値が大きく、かつ細胞内の複雑さを示す側方拡散SS(Side Scatter)の値が小さい細胞集団を生細胞とみなし、この細胞の部分集団について解析ソフトのFlowJo(Tree Star,Ashland OR,USA)を利用してGFPの蛍光強度をヒストグラム化した。その結果、コントロールのHaCaT細胞と比較してHaCaT(hTERTp−EGFP)細胞のGFP蛍光のピークが、僅かながら高強度側にあることを確認した(図1)。
1.1. Establishment of HaCaT (hTERTp-EGFP) It was confirmed by measuring the fluorescence intensity of GFP using a flow cytometer whether the hTERTp-EGFP vector was introduced into HaCaT cells and a stable expression strain was established. A cell population having a large forward diffusion FS (Forward Scatter) value indicating the size of the cell and a small lateral diffusion SS (Side Scatter) value indicating the intracellular complexity with respect to the measured total cell population. The cells were regarded as living cells, and the fluorescence intensity of GFP was histogrammed for a subpopulation of this cell using analysis software FlowJo (Tree Star, Ashland OR, USA). As a result, it was confirmed that the peak of GFP fluorescence of HaCaT (hTERTp-EGFP) cells was slightly higher than that of control HaCaT cells (Fig. 1).

HaCaT(hTERTp−EGFP)細胞の安定発現株の樹立を、定量RT−PCR法においても確認した(図2)。その結果、コントロールのHaCaT細胞と比較して、HaCaT(hTERTp−EGFP)細胞においてEGFPの発現が増強していることが明らかとなり、hTERTp−EGFPが導入されていることが確認された。   The establishment of a stable expression strain of HaCaT (hTERTp-EGFP) cells was also confirmed by the quantitative RT-PCR method (Fig. 2). As a result, it was revealed that the expression of EGFP was enhanced in HaCaT (hTERTp-EGFP) cells as compared with control HaCaT cells, and it was confirmed that hTERTp-EGFP was introduced.

1.2.IN Cell Analyzer 1000を用いたhTERTプロモーター増強食品の探索
hTERTp−EGFPを組み込んだHaCaT細胞を用い、様々な食品成分を添加した際のhTERTプロモーター活性をEGFPの蛍光強度により評価した。ポリフェノールサンプルは終濃度10μMとなるように添加し、48時間後にIN Cell Analyzer 1000を用いてEGFP蛍光強度を測定した。本実施例においては、3回の測定においてコントロールサンプル添加よりも有意に高いEGFP蛍光強度を示した食品成分を選択した。
1.2. Search for hTERT promoter-enhanced foods using IN Cell Analyzer 1000 Using HaCaT cells incorporating hTERTp-EGFP, hTERT promoter activity when various food ingredients were added was evaluated by the fluorescence intensity of EGFP. The polyphenol sample was added so as to have a final concentration of 10 μM, and 48 hours later, EGFP fluorescence intensity was measured using IN Cell Analyzer 1000. In this example, a food component was selected that showed a significantly higher EGFP fluorescence intensity than the addition of the control sample in three measurements.

その結果、ポリフェノールサンプルにおいては、Resveratrol(赤ブドウ由来ポリフェノール)、Eugeniin(バラ由来ポリフェノール)、Urolithin A(ザクロプリフェノールの腸内細菌代謝産物)、Fisetin(イチゴ由来ポリフェノール)、Sesamol(ゴマ由来ポリフェノール)の5種類において、コントロールよりも有意に高いhTERTプロモーター活性を示した(図3)。
以上のhTERTp−EGFPを導入したHaCaT細胞を用いた一次スクリーニングの結果より、hTERTプロモーター活性化食品として5種類の食品成分を選定した。
As a result, in the polyphenol sample, Resveratrol (polyphenol derived from red grape), Eugeninin (polyphenol derived from rose), Urolithin A (metabolite of intestinal bacteria of pomegranate prephenol), Fisetin (polyphenol derived from strawberry), Sesamol (polyphenol derived from sesame) 5 showed significantly higher hTERT promoter activity than the control (FIG. 3).
From the results of the primary screening using the above-mentioned hTERTp-EGFP-introduced HaCaT cells, five types of food ingredients were selected as hTERT promoter-activated foods.

1.3.定量RT−PCRによる内在性hTERT遺伝子発現量の評価
1.2.項よりHaCaT(hTERTp−EGFP)細胞を用いたhTERTプロモーター活性化成分の探索の結果から選定した5種類の食品成分について、HaCaT細胞における内在性hTERT遺伝子発現に対する効果を定量RT−PCRにより評価した。ポリフェノールサンプルは終濃度10μMとなるように添加し、48時間後にRNA回収、cDNA合成を行い、定量RT−PCRにより評価した。本実施例においては、コントロールサンプル添加よりも有意に高いhTERT遺伝子の発現量を示した食品成分を選定した。
1.3. Evaluation of endogenous hTERT gene expression level by quantitative RT-PCR 1.2. From 5 items of food components selected from the results of the search for hTERT promoter activating components using HaCaT (hTERTp-EGFP) cells, the effect on endogenous hTERT gene expression in HaCaT cells was evaluated by quantitative RT-PCR. The polyphenol sample was added so as to have a final concentration of 10 μM, and after 48 hours, RNA recovery and cDNA synthesis were carried out, and evaluated by quantitative RT-PCR. In this example, food components that showed a significantly higher hTERT gene expression level than the addition of the control sample were selected.

その結果、ポリフェノールにおいては、Resveratrol(赤ブドウ由来ポリフェノール)、Urolithin A(ザクロプリフェノールの腸内細菌代謝産物)、Fisetin(イチゴ由来ポリフェノール)、Sesamol(ゴマ由来ポリフェノール)の4種類において、コントロールよりも有意に高いhTERT遺伝子の発現を示した(図4)。   As a result, among the polyphenols, Resveratrol (red grape-derived polyphenol), Urolithin A (intestinal bacterial metabolite of pomegranate prephenol), Fisetin (strawberry-derived polyphenol), and Sesamol (sesame-derived polyphenol) were compared to the control in four types. The expression of the hTERT gene was significantly higher (Fig. 4).

上記1.2.項の結果及び、本結果をふまえて、hTERTプロモーターを活性化する食品成分として4種類を選定した。以降は、この4種類のポリフェノールサンプルに関して、その機能性と分子基盤の解明を目的として解析を進めた。
[実施例2]
TERT増強食品成分の機能性
Above 1.2. Based on the results in Section 1 and this result, four types were selected as food ingredients that activate the hTERT promoter. After that, we analyzed these four kinds of polyphenol samples for the purpose of clarifying their functionality and molecular basis.
[Example 2]
Functionality of TERT-enhancing food ingredients

2.1.細胞増殖に対する効果の検証
発毛とは、上皮系細胞と間葉系細胞との相互作用により、毛を生じる現象である。すなわち、毛の発生や成長には表皮成分と真皮成分の細胞増殖が必要不可欠である(Hachiya A et al.,2009,Oliver,R.F..et al.,1988)。
そこで本項では、実施例1の結果より選定した4種類の食品成分の、上皮細胞のモデル細胞であるHaCaT細胞の細胞増殖に与える影響を評価した。細胞数を測定する試薬としては、Cell Count Kit−8溶液(DOJINDO)を採用した。
2.1. Verification of Effect on Cell Proliferation Hair growth is a phenomenon in which hair is produced by interaction between epithelial cells and mesenchymal cells. That is, cell growth of epidermal and dermal components is essential for hair development and growth (Hachiya A et al., 2009, Oliver, RF F. et al., 1988).
Therefore, in this section, the effect of four kinds of food components selected from the results of Example 1 on the cell proliferation of HaCaT cells, which are model cells of epithelial cells, was evaluated. Cell Count Kit-8 solution (DOJINDO) was adopted as a reagent for measuring the number of cells.

HaCaT細胞を1.0×10で播種してから6時間後に、選定した4種類のポリフェノールサンプルを終濃度5.0μMとなるように添加した。37℃、5% CO存在下で24時間培養ごとに、Cell Count Kit−8溶液によって生成される、細胞数と直線的な比例関係にあるホルマザンの色素量を、450nmの吸光度で測定し評価した。この操作を4日間続けた(図5−(A))。その結果、細胞数が最大となる培養開始3日目において、4種類のポリフェノールサンプルのうち、Resveratrol、Fisetin、Sesamolの3種類において、Controlと比べて有為に細胞増殖を増強していることが明らかとなった(図5−(B))。Six hours after seeding the HaCaT cells at 1.0 × 10 4 , the selected four kinds of polyphenol samples were added so that the final concentration was 5.0 μM. The dye amount of formazan, which is produced by Cell Count Kit-8 solution and has a linear proportional relationship with the cell number, is measured by measuring the absorbance at 450 nm every 24 hours in the presence of 5% CO 2 at 37 ° C. did. This operation was continued for 4 days (FIG. 5- (A)). As a result, on the third day after the start of culturing in which the number of cells becomes maximum, among the four kinds of polyphenol samples, three kinds of Resveratrol, Fisetin, and Sesamol significantly enhanced cell proliferation as compared with Control. It became clear (FIG. 5- (B)).

2.2.毛包細胞活性化因子に対する効果の検証
上記2.1.項に示した通り、毛髪の成長には、上皮細胞の活性化も重要である。そこで本項では、上皮細胞の活性化遺伝子の発現量を定量RT−PCRを用いて評価した。上皮細胞の活性化因子とは、上皮細胞の活性化に関与する成長因子であり、本項においては、上皮細胞を活性化する働きがあるIGF−1(Insulin−like growth factor(インスリン様成長因子))及びKGF(Keratinocyte Growth Factor(角化細胞増殖因子))、さらに退行期誘導因子として、細胞の活動を抑制する因子であるTGF−β1(Transforming growth factor(トランスフォーミング増殖因子))の3種の遺伝子の発現量の変化を検証した。
2.2. Verification of effect on hair follicle cell activating factor 2.1. As described in the section above, activation of epithelial cells is also important for hair growth. Therefore, in this section, the expression level of the activation gene of epithelial cells was evaluated using quantitative RT-PCR. The activator of epithelial cells is a growth factor involved in the activation of epithelial cells, and in this section, IGF-1 (insulin-like growth factor (insulin-like growth factor) having a function of activating epithelial cells is used. )) And KGF (Keratinocyte Growth Factor) and TGF-β1 (Transforming growth factor) that is a factor that suppresses cell activity as a regression phase inducing factor. The change in the expression level of the gene was verified.

HaCaT細胞における内在性の各種成長因子の遺伝子の発現量を定量RT−PCRにより評価した。ポリフェノールは終濃度10μMとなるように添加し、48時間後にRNA回収、cDNA合成を行い、定量RT−PCRによって評価した。
その結果、コントロールと比較して、Resveratrol、Fisetin、Sesamolの3種類においてIGF−1(図6)、KGF(図7)の有為な発現増強を、TGF−β(図8)の有為な発現減少を確認することが出来た。一方、UrolithinではKGFにおいて有為な発現増強を確認することが出来なかった。
The expression levels of endogenous growth factor genes in HaCaT cells were evaluated by quantitative RT-PCR. Polyphenol was added so that the final concentration would be 10 μM, and after 48 hours, RNA was collected and cDNA was synthesized and evaluated by quantitative RT-PCR.
As a result, in comparison with the control, significant increase in expression of IGF-1 (FIG. 6) and KGF (FIG. 7) and significant effect of TGF-β (FIG. 8) were observed in three types of Resveratrol, Fisetin and Sesamol. It was possible to confirm a decrease in expression. On the other hand, in Urolithin, significant enhancement of expression in KGF could not be confirmed.

上記2.1.項の結果及び、本結果をふまえて、上皮細胞のモデルHaCaT細胞における細胞増殖に与える影響の高いポリフェノール成分Resveratrol、Fisetin、Sesamolの3種類を選定した。以降は、この3種類のポリフェノールサンプルに関して、その機能性と分子基盤の解明を目的とし解析を進めた。   The above 2.1. On the basis of the results of Section 1 and this result, three types of polyphenol components, Resveratrol, Fisetin, and Sesamol, which have a high effect on cell growth in epithelial cell model HaCaT cells, were selected. After that, analysis was carried out for these three types of polyphenol samples in order to clarify their functionality and molecular basis.

2.3.Wnt/β−catenin経路の活性化
β−カテニンは毛周期及び、Wntシグナル経路に関わるの転写因子であり、このWnt/β−カテニンシグナルは毛髪の成長や毛周期を促進することが報告されており(Narhi et al.,2008)、マウスの皮膚においてもWnt/β−カテニンシグナルを活性化することで毛の成長を促すことが報告されている(Jinkuk et al.,2008)。また、このβ−カテニンがTERTプロモーターに結合すると、TERTの発現を制御することも報告されている(Rolf et al.,2012)。そこで、選定しているhTERTを活性化する3種類のポリフェノールが、HaCaT細胞におけるβ−カテニン活性に与える効果を検証した。
2.3. Activation of Wnt / β-catenin pathway β-catenin is a transcription factor involved in hair cycle and Wnt signal pathway, and it has been reported that this Wnt / β-catenin signal promotes hair growth and hair cycle. (Narhi et al., 2008), and it has been reported that hair growth is promoted by activating the Wnt / β-catenin signal in mouse skin (Jinkuk et al., 2008). It has also been reported that the binding of this β-catenin to the TERT promoter controls the expression of TERT (Rolf et al., 2012). Therefore, the effect of the selected three kinds of hTERT-activating polyphenols on β-catenin activity in HaCaT cells was examined.

β−カテニンは核内でTCF/LEF転写因子(T−Cell Factor/Lymphoid−Enhancer Factor)を介してWnt標的遺伝子の発現を制御するため、まずβ−カテニン結合サイトを有するリポーターベクターを用いたルシフェラーゼアッセイにより、β−カテニン活性を検証した(図9)。細胞を播種した翌日、リポータープラスミド(M50 Super 8x TOP Flash)をトランスフェクションし、3時間後10% FBS含有DMEM培地に交換後、ポリフェノールを終濃度10μMで添加し、48時間後ルシフェラーゼアッセイを行った。その結果、Resveratrol、Fisetin、Sesamolの3種のポリフェノールがβ−カテニン依存的転写活性を活性化することが分かった。   Since β-catenin controls the expression of Wnt target gene via TCF / LEF transcription factor (T-Cell Factor / Lymphoid-Enhancer Factor) in the nucleus, first, luciferase using a reporter vector having a β-catenin binding site is used. The assay verified β-catenin activity (FIG. 9). The day after the cells were seeded, a reporter plasmid (M50 Super 8x TOP Flash) was transfected, and after 3 hours, the medium was replaced with 10% FBS-containing DMEM medium, polyphenol was added at a final concentration of 10 µM, and 48 hours later, luciferase assay was performed. . As a result, it was found that three types of polyphenols, Resveratrol, Fisetin, and Sesamol, activate β-catenin-dependent transcription activity.

次に、同条件においてβ−カテニンタンパク質に対する効果をウエスタンブロッティング法により検証した(図10−(A))。その結果、HaCaT細胞において、Resveratrol、Fisetinの2種のポリフェノールが、β−カテニンタンパク質量を有意に増加させることが明らかとなった(図10−(B))。
以上より、Resveratrol、Fisetinの2種のポリフェノールは、毛髪合成や成長促進に関わる成長因子の発現制御、あるいは、毛周期や毛髪の成長を促進するWnt/β−カテニンシグナルの活性化を通じて、発毛効果を有する可能性があると考えられた。
[実施例3]
hTERTをノックダウンしたHaCaT細胞(HaCaT(sh−hTERT))における表現型解析
Next, the effect on β-catenin protein under the same conditions was verified by Western blotting (FIG. 10- (A)). As a result, it was revealed that two types of polyphenols, Resveratrol and Fisetin, significantly increase the amount of β-catenin protein in HaCaT cells (FIG. 10- (B)).
From the above, two types of polyphenols, Resveratrol and Fisetin, regulate hair growth by controlling the expression of growth factors involved in hair synthesis and growth promotion, or by activating the Wnt / β-catenin signal that promotes hair cycle and hair growth. It was thought that it might have an effect.
[Example 3]
Phenotypic analysis in HaCaT cells (HaCaT (sh-hTERT)) that knocked down hTERT

3.1.HaCaT(sh−hTERT)を用いたhTERT増強食品の特異性検証
実施例1及び実施例2で評価したポリフェノール、Resveratrol及びFisetinによるhTERT増強効果が、hTERT依存であることを検証するために、hTERTをノックダウンしたHaCaT細胞を作製した。
3.1. Specificity verification of hTERT-enhancing foods using HaCaT (sh-hTERT) In order to verify that the hTERT-enhancing effect by the polyphenols, Resveratrol and Fisetin evaluated in Examples 1 and 2, is hTERT-dependent, Knockdown HaCaT cells were generated.

まず、HaCaT細胞において、hTERTをノックダウンした2種類のHaCaT細胞((HaCaT(sh−hTERT−1)、HaCaT(sh−hTERT−2))を作製した。この2種類の細胞におけるhTERT発現を定量RT−PCRによって評価した(図11)。その結果、2種類のHaCaT(sh−hTERT)においてhTERTがノックダウンできていることを確認した。   First, in HaCaT cells, two types of HaCaT cells ((HaCaT (sh-hTERT-1), HaCaT (sh-hTERT-2)) in which hTERT was knocked down were produced. HTERT expression in these two types of cells was quantified. It was evaluated by RT-PCR (FIG. 11), and as a result, it was confirmed that hTERT could be knocked down in two types of HaCaT (sh-hTERT).

次に、この2種類のHaCaT(sh−hTERT)にポリフェノールを終濃度10μMとなるように添加し、37℃、5% CO存在下で48時間培養後にRNA回収、cDNA合成を行い、定量RT−PCRによって評価した(図12、図13)。Controlとしてはスクランブル配列を有するノックダウンベクター(scr−shRNA)を導入した。その結果、scr−shRNAを導入したHaCaT(scr)細胞では、ResveratrolとFisetinのサンプル処理によって、hTERT発現が有意に増加したのに対し、HaCaT(sh−hTERT)では、有意なTERT発現を確認することができなかった。つまり、Resveratrol及びFisetinは、hTERT依存的にhTERTの発現を増強していることが明らかになった。Next, polyphenol was added to these two types of HaCaT (sh-hTERT) so that the final concentration was 10 μM, and RNA was recovered and cDNA was synthesized after culturing at 37 ° C. in the presence of 5% CO 2 for 48 hours, and quantitative RT was performed. -Evaluated by PCR (Figure 12, Figure 13). As a control, a knockdown vector (scr-shRNA) having a scrambled sequence was introduced. As a result, in HaCaT (scr) cells into which scr-shRNA was introduced, hTERT expression was significantly increased by sample treatment with Resveratrol and Fisetin, whereas in HaCaT (sh-hTERT), significant TERT expression was confirmed. I couldn't. That is, it was revealed that Resveratrol and Fisetin enhance hTERT expression in a hTERT-dependent manner.

3.2.HaCaT(sh−hTERT)を用いたポリフェノールの細胞増殖増強に対するhTERTの寄与の検証
実施例2で見いだした、Resveratrol及びFisetinによる細胞増殖促進効果が、hTERT依存であることを検証するために、HaCaT(sh−hTERT)を用い、その効果を検証した。細胞数の測定は実施例2、2.1項と同様に4日間連続で行った。
3.2. Verification of Contribution of hTERT to Cell Proliferation Enhancement of Polyphenol Using HaCaT (sh-hTERT) In order to verify that the cell growth promoting effect by Resveratrol and Fisetin found in Example 2 is hTERT-dependent, HaCaT ( sh-hTERT) was used to verify the effect. The cell number was measured for 4 consecutive days in the same manner as in Example 2 and 2.1.

その結果、HaCaT(scr−shRNA)(図14−(A))では、細胞数が最大となる培養開始3日目(図14−(B))において、2種類のポリフェノールにおいて、Controlと比べて有為な細胞増殖増強効果を確認できたのに対して、HaCaT(sh−hTERT−1)(図15−(A))では、細胞数が最大となる培養開始3日目(図15−(B))において、2種類のポリフェノールサンプルの両方において、Controlと比べて有為な細胞増殖に与える影響を確認することが出来なかった。更に、HaCaT(sh−hTERT−2)での結果(図16−(A)、図16−(B))でも同様の結果となった。
以上より、Resveratrol及びFisetinは、hTERT依存的に細胞の増殖を増殖することが明らかとなった。
[実施例4]
hTERT活性化食品成分のSIRT1依存性検証
As a result, in HaCaT (scr-shRNA) (FIG. 14- (A)), two types of polyphenols were compared with Control in the 3rd day of the culture initiation (FIG. 14- (B)) where the number of cells was maximum. While a significant cell growth-enhancing effect could be confirmed, in the case of HaCaT (sh-hTERT-1) (Fig. 15- (A)), the number of cells reached the maximum on the 3rd day of culture initiation (Fig. 15- ( In B)), it was not possible to confirm the effect on significant cell proliferation in comparison with Control in both of the two types of polyphenol samples. Further, the results with HaCaT (sh-hTERT-2) (FIGS. 16- (A) and 16- (B)) also showed similar results.
From the above, it was revealed that Resveratrol and Fisetin proliferate cell proliferation in a hTERT-dependent manner.
[Example 4]
Verification of SIRT1 dependence of hTERT-activated food ingredients

4.1.hTERT活性化食品成分のSIRT1増強効果
hTERT転写制御の上流に位置することが報告されているSIRT1(Yamashita S et al.,2011、Shuntaro Y et al.,2014)に着目し、HaCaT細胞において内在性のhTERT遺伝子を増強するポリフェノール2種類において、HaCaT細胞の内在性SIRT1遺伝子発現に対する効果を定量RT−PCRにより評価した。ポリフェノールを終濃度10μMとなるように添加し、48時間後にRNA回収、cDNA合成を行い、定量RT−PCRによって評価した。その結果、Resveratrol、Fisetinの双方とも、SIRT1遺伝子の発現量がコントロールよりも有意に高いことが明らかとなった(図17)。
4.1. SIRT1 enhancing effect of hTERT activated food ingredients Focusing on SIRT1 (Yamashita S et al., 2011, Shuntaro Y et al., 2014), which is reported to be located upstream of hTERT transcriptional regulation, endogenous in HaCaT cells The effect of HaCaT cells on endogenous SIRT1 gene expression was evaluated by quantitative RT-PCR in two types of polyphenols that enhance the hTERT gene. Polyphenol was added so as to have a final concentration of 10 μM, and after 48 hours, RNA was collected and cDNA was synthesized and evaluated by quantitative RT-PCR. As a result, it was revealed that the expression level of the SIRT1 gene was significantly higher in both Resveratrol and Fisetin than in the control (FIG. 17).

4.2.HaCaT(sh−SIRT1)を用いたhTERT増強食品のSIRT1依存性検証
ポリフェノールによるhTERTの活性化が、hTERTの上流に位置することが報告されているSIRT1を介しているかどうか検証を行った。
まず、SIRT1をノックダウンしたHaCaT(sh−SIRT1)細胞を作製した。Controlとして、スクランブル配列を有するノックダウンベクター(scr−shRNA)を導入したHaCaT(scr−shRNA)細胞を作製した。HaCaT(sh−SIRT1)細胞において、SIRT1のノックダウンは、定量RT−PCRによって評価した(図18)。
4.2. SIRT1-dependent verification of hTERT-enhanced foods using HaCaT (sh-SIRT1) It was verified whether the activation of hTERT by polyphenol was mediated by SIRT1 which was reported to be located upstream of hTERT.
First, HaCaT (sh-SIRT1) cells in which SIRT1 was knocked down were prepared. As a Control, a HaCaT (scr-shRNA) cell into which a knockdown vector (scr-shRNA) having a scrambled sequence was introduced was prepared. In HaCaT (sh-SIRT1) cells, knockdown of SIRT1 was evaluated by quantitative RT-PCR (FIG. 18).

次に、HaCaT(scr−shRNA)細胞及びHaCaT(sh−SIRT1)細胞に、ResveratrolおよびFisetinを終濃度10μMとなるように添加し、37℃、5% CO存在下で48時間培養後、RNAを回収し、cDNA合成後、SIRT1及びhTERTの発現量に及ぼす影響を定量RT−PCRにより評価した。
その結果、HaCaT(scr−shRNA)細胞においては、ResveratrolとFisetinの処理によって、SIRT1発現が有意に増加したのに対し、HaCaT(sh−SIRT1)細胞では、有意なSIRT1発現を確認することができなかった(図19)。
Next, Resveratrol and Fisetin were added to HaCaT (scr-shRNA) cells and HaCaT (sh-SIRT1) cells so that the final concentration was 10 μM, and after culturing at 37 ° C. in the presence of 5% CO 2 for 48 hours, RNA was added. Were collected, and after cDNA synthesis, the effect on the expression levels of SIRT1 and hTERT was evaluated by quantitative RT-PCR.
As a result, in HaCaT (scr-shRNA) cells, treatment with Resveratrol and Fisetin significantly increased SIRT1 expression, whereas in HaCaT (sh-SIRT1) cells, significant SIRT1 expression could be confirmed. None (FIG. 19).

一方、HaCaT(scr−shRNA)細胞において、ResveratrolとFisetin処理によって発現が有意に増加したhTERTは、HaCaT(sh−SIRT1)細胞においてはResveratrol処理でその発現がキャンセルされたものの、Fisetin処理ではその発現増強を解除することができなかった(図20)。また、HaCaT(sh−SIRT1)細胞のコントロールサンプル処理におけるhTERT発現は、HaCaT(scr−shRNA)細胞でのコントロールサンプル処理における発現と変化はなかった。
以上の結果より、FisetinによるhTERTの増強には、SIRT1は関与していないことが明らかとなった。
[実施例5]
TERT1活性化食品成分の育毛効果
On the other hand, in HaCaT (scr-shRNA) cells, the expression of hTERT whose expression was significantly increased by Resveratrol and Fisetin treatment was canceled in HaCaT (sh-SIRT1) cells by Resveratrol treatment, but it was expressed by Fisetin treatment. The enhancement could not be released (Fig. 20). Further, hTERT expression in the control sample treatment of HaCaT (sh-SIRT1) cells was not different from that in the control sample treatment of HaCaT (scr-shRNA) cells.
From the above results, it was revealed that SIRT1 is not involved in the enhancement of hTERT by Fisetin.
[Example 5]
Hair growth effect of TERT1 activated food ingredients

5.1.マウス塗布試験
実施例4までに同定しているhTERT活性化ポリフェノールであるResveratrol及びFisetinの発毛に対する効果をマウスを用いて検証した。
皮膚は毛周期に伴い、その機能や性質が大きく変化するため、一般に発毛に関する動物実験においては、毛周期をコントロールすることが重要であるとされている。そこで、均一な毛周期を得るために、除毛ワックスや電気シェーバーなどを用いてtelogen期の一定範囲の毛を同時に脱毛し、刺激を加えることで均一なanagen期を誘導する手法が古くから知られており(Chase,et al.,1954)、特にC57BL/6マウスで良く用いられている。C57BL/6マウスは皮膚の色が黒っぽい色の場合はanagen期であること、そして、ピンク色の場合はtelogen期であることを容易に肉眼で判断できるからである(Muller−Rover,et al.,2001)。
5.1. Mouse application test The effects of the hTERT-activating polyphenols Resveratrol and Fisetin identified in Example 4 on hair growth were examined using mice.
It is generally considered important to control the hair cycle in animal experiments relating to hair growth, because the functions and properties of the skin change greatly with the hair cycle. Therefore, in order to obtain a uniform hair cycle, hair removal wax, electric shaver, etc. are used to simultaneously remove hair within a certain range of the telogen period and induce a uniform anagen period by applying stimulation. (Chase, et al., 1954) and is often used especially in C57BL / 6 mice. This is because C57BL / 6 mice can easily be judged by the naked eye that the skin color is dark when it is in the anagen stage and that when it is pink, it is at the telogen stage (Muller-Rover, et al. , 2001).

一般にマウスでは、生後7週間で起こる最初の2サイクルの毛周期は、均一に同調して起こるが、成熟するにつれて毛周期のパターンが複雑になり、均一に同調しなくなるため(Muller−Rover,et al.,2001、Lin,et al.,2004、Plikus and Chuong,et al.,2008)、成熟したマウスで均一に同調した毛周期を得るのは困難である。そのため、発毛に関する動物実験は幼若期に実施されることが多い。   In mice, the first two cycles of hair cycle, which generally occur at 7 weeks of age, occur in a uniform synchronization, but the pattern of the hair cycle becomes more complicated as it matures, and becomes inconsistent (Muller-Rover, et al. al., 2001, Lin, et al., 2004, Plikus and Chuong, et al., 2008), it is difficult to obtain a uniformly synchronized hair cycle in adult mice. Therefore, animal experiments on hair growth are often carried out at an early age.

本実施例では、毛周期に対する影響のない電気バリカンによる除毛後に、さらに電気シェーバーによる除毛処理を行い、telogen期にある毛周期をanagen期に誘導した。そして、除毛後の皮膚状態が目視でピンク色であることを確認し、毛周期が休止期にあるマウスを使用した。試験溶液には、50%エタノールで希釈して作製した0.1% Resveratrol溶液、及び0.1% Fisetin溶液を用いた。コントロール溶液として試験溶液の溶媒である50%エタノールを使用した。   In this example, after hair removal with an electric hair clipper, which had no effect on the hair cycle, hair removal treatment with an electric shaver was further performed to induce the hair cycle in the telogen phase to the anagen phase. Then, the skin condition after hair removal was visually confirmed to be pink, and a mouse in which the hair cycle was in a resting period was used. As a test solution, a 0.1% Resveratrol solution prepared by diluting with 50% ethanol and a 0.1% Fisetin solution were used. As a control solution, 50% ethanol, which is the solvent of the test solution, was used.

試験開始前日に背部を除毛したマウスの試験被部に1週間の内6日間、試験溶液を50μLずつ塗布して飼育し、試験被部の毛が成長する様子を約5週間観察した(図21)。その結果、Control群(1/9匹で発毛)と比較してResveratrol群(4/9匹で発毛)で、さらにResveratrol群に比べてFisetin群(9/10匹で発毛)で、発毛効果を確認することができた。   On the day before the start of the test, 50 μL each of the test solution was applied to the test area of the mouse whose back was shaved for 6 days per week, and the mouse was bred, and the hair growth of the test area was observed for about 5 weeks (FIG. 21). As a result, in the Resveratrol group (hair growth in 4/9 animals) compared to the Control group (1/9 hair growth), and in the Fisetin group (9/10 hair growth) compared to the Resveratrol group, It was possible to confirm the hair growth effect.

5.2.マウスの皮膚におけるmTERT発現の検証
塗布試験が終了したマウスを頚椎脱臼により安楽死させた後、マウス背部の被検部を採取し、RNeasy Fibrous Tissue Mini Kitを使用してRNAを抽出後、cDNAを合成し、定量RT−PCR法でマウスの皮膚におけるmTERTの発現量を検証した。その結果、Resveratrol群(図22)及びFisetin群(図23)の両群においてコントロールよりも高いmTERT遺伝子の発現量を示した。
5.2. Verification of mTERT expression in mouse skin After euthanizing the mouse for which the application test was completed by cervical dislocation, the test area on the back of the mouse was collected, and RNA was extracted using the RNeasy Fibrous Tissue Mini Kit, and then cDNA was extracted. After synthesis, the expression level of mTERT in mouse skin was verified by the quantitative RT-PCR method. As a result, both the Resveratrol group (FIG. 22) and the Fisetin group (FIG. 23) showed a higher mTERT gene expression level than the control.

5.3.H&E染色
毛周期の推移は、毛包の深さに伴う皮膚の厚みの変化と良く対応している(Muller−Rover et al.,2001)。つまり、毛包の深さはanagenには深く、catagenに向かって浅くなりtelogenの間は浅いため、皮膚の厚みもanagenでは厚く、telogenでは薄くなる。また、毛包の組織形態から、毛周期のどのステージにあるか判断することもできる(Muller−Rover et al.,2001。
5.3. H & E staining The transition of the hair cycle corresponds well with the change of the skin thickness with the depth of the hair follicle (Muller-Rover et al., 2001). In other words, the depth of hair follicles is deep in anagen, shallow toward catagen, and shallow during telogen, so the skin thickness is thick in anagen and thin in telogen. It is also possible to determine at which stage of the hair cycle it is based on the tissue morphology of the hair follicle (Muller-Rover et al., 2001).

本実施例では、塗布試験が終了したマウスを頚椎脱臼により安楽死させた後、マウス背部の被検部を採取し、10%中性緩衝ホルマリンで固定し、体軸に平行な5μmのパラフィン切片を作製し、ヘマトキシリン・エオジン染色(H&E染色)を行い(図24)、組織学的検査に供することで、マウスの皮膚において毛周期のどの段階にあるか判断を行うと共に、表皮、真皮、皮下組織を含む皮膚全体の厚さを測定し、皮膚の厚みを測定した(図25)。   In this example, after the mouse for which the application test was completed was euthanized by cervical dislocation, the test area on the back of the mouse was sampled, fixed with 10% neutral buffered formalin, and 5 μm paraffin section parallel to the body axis. By making a hematoxylin / eosin stain (H & E stain) (FIG. 24) and using it for histological examination, it is possible to determine at which stage of the hair cycle in the mouse skin, and to determine the epidermis, dermis, and subcutaneous skin. The thickness of the entire skin including the tissue was measured, and the thickness of the skin was measured (FIG. 25).

その結果、Control群では多くのマウスがtelogen期のままであったのに対し、Resveratrol群では、約半数のマウスがanagen期に突入しており、Fisetin群ではほぼ全てのマウスがanagen期であった。さらに、皮膚の厚みを計測した結果、Control群のマウスの皮膚に比べ、Resveratrol群及びFisetin群のマウスの皮膚の厚みが有意に増していたことが明らかとなった。   As a result, in the Control group, many mice remained in the telogen stage, whereas in the Resveratrol group, about half of the mice entered the anagen stage, and in the Fisetin group, almost all the mice were in the anagen stage. It was Furthermore, as a result of measuring the skin thickness, it was revealed that the skin thickness of the mice of the Resveratrol group and the Fisetin group was significantly increased as compared with the skin of the mice of the Control group.

5.4.免疫染色(蛍光抗体法)
塗布試験が終了したマウスを頚椎脱臼により安楽死させた後、マウス背部の被検部を採取し、10%中性緩衝ホルマリンで固定し、体軸に平行な5μmのパラフィン切片を作製し、免疫染色を行った。一次抗体としては、増殖性細胞の核小体及び核分裂期の染色体上に発現する増殖細胞マーカーであるKi−67とTERTを使用した。
5.4. Immunostaining (fluorescent antibody method)
After euthanizing the mouse for which the application test was completed by cervical dislocation, the test area on the back of the mouse was collected, fixed with 10% neutral buffered formalin, and a 5 μm paraffin section parallel to the body axis was prepared for immunization. Dyeing was performed. As primary antibodies, Ki-67 and TERT, which are proliferating cell markers expressed on the nucleolus of proliferating cells and chromosomes in the mitotic phase, were used.

その結果、Control群ではほぼすべてのマウスの皮膚においてKi−67陰性であり、全てのマウスの皮膚においてTERT陽性細胞を確認することができなかった(図26−(A))。一方、Resveratrol群では、約半数のマウスの皮膚の毛球部を構成する毛母細胞においてKi−67陽性細胞を確認することができ、一部のマウスの皮膚においてTERT陽性細胞を確認することができた(図26−(B))。また、Fisetin群では、ほぼすべてのマウスの皮膚において毛球部毛母細胞においてKi−67陽性であり、一部のマウスの皮膚においてTERT陽性細胞を確認することができた(図26−(C))。
本実施例において、マウスを用いた動物試験により、ResveratrolとFisetinは発毛・育毛効果を有することが明らかとなった。
[実施例6]
レスベラトロール構造類似体によるSIRT1活性化
As a result, in the Control group, Ki-67 was negative in the skin of almost all mice, and TERT-positive cells could not be confirmed in the skin of all mice (FIG. 26- (A)). On the other hand, in the Resveratrol group, Ki-67 positive cells can be confirmed in the hair matrix cells that make up the hair bulb of approximately half of the mice, and TERT positive cells can be confirmed in the skin of some mice. It was possible (FIG. 26- (B)). In the Fisetin group, hair bulb hair matrix cells were Ki-67 positive in almost all mouse skins, and TERT-positive cells could be confirmed in some mouse skins (Fig. 26- (C )).
In this example, an animal test using mice revealed that Resveratrol and Fisetin have hair growth and hair growth effects.
[Example 6]
SIRT1 activation by resveratrol structural analogues

1.実験材料および方法
(1)細胞培養
本研究では、SIRT1プロモーター活性化効果を有するレスベラトロール類似体のスクリーニングにはヒト表皮角化細胞株HaCaT細胞にベクターを導入したHaCaT(SIRT1p−EGFP)細胞を、SIRT1発現増強効果の検証にはHaCaT細胞を用いた。また、TERTプロモーター活性化効果を有する成分のスクリーニングにはヒト表皮角化細胞株HaCaT細胞にベクターを導入したHaCaT(hTERTp−EGFP)細胞を用いた。どの細胞も共に、通常培地としてダルベッコ変法イーグル培地「ニッスイ」(1)[DMEM](日水製薬、東京)に、最終濃度100U/mLのペニシリン(Meiji、東京)、0.1mg/mLのストレプトマイシン(Meiji、東京)、10%FBSを混合したものを使用した。
1. Experimental Materials and Methods (1) Cell Culture In this study, HaCaT (SIRT1p-EGFP) cells obtained by introducing a vector into the human epidermal keratinocyte cell line HaCaT cells were used for screening resveratrol analogues having a SIRT1 promoter activation effect. , HaCaT cells were used to verify the SIRT1 expression enhancing effect. In addition, HaCaT (hTERTp-EGFP) cells obtained by introducing a vector into the human epidermal keratinocyte cell line HaCaT cells were used for screening for components having a TERT promoter activation effect. All cells were added to Dulbecco's modified Eagle medium “Nissui” (1) [DMEM] (Nissui Pharmaceutical, Tokyo) as a normal medium, and a final concentration of 100 U / mL penicillin (Meiji, Tokyo), 0.1 mg / mL Streptomycin (Meiji, Tokyo) mixed with 10% FBS was used.

(2)IN Cell Analyzer 1000を用いた一次スクリーニング
SIRT1プロモーター活性化能はHaCaT(SIRT1p−EGFP)細胞を対象に、TERTプロモーター活性化能はHaCaT(hTERTp−EGFP)細胞を対象に、IN Cell Analyzer 1000(GE Healthcare,Amersham Place,UK)を用いてサンプルを添加した細胞のEGFP蛍光強度を測定することで評価した。HaCaT(SIRT1p−EGFP)細胞、HaCaT(hTERTp−EGFP)細胞をそれぞれ0.6×10cells/mLとなるよう96well−plate(65590,Greiner Bio−one)に播種し、10% FBS含有DMEM培地にて24時間培養した。その後、レスベラトロール類似体を終濃度が10μMとなるようHaCaT(SIRT1p−EGFP)細胞に添加、また、別途用意したサンプルを終濃度0.1μg/mL、1μg/mL、10μg/mLとなるようHaCaT(hTERTp−EGFP)細胞に添加した。
(2) Primary Screening Using IN Cell Analyzer 1000 The SIRT1 promoter activating ability is targeted for HaCaT (SIRT1p-EGFP) cells, and the TERT promoter activating ability is targeted for HaCaT (hTERTp-EGFP) cells, and IN Cell Analyzer 1000. (GE Healthcare, Amersham Place, UK) and evaluated by measuring the EGFP fluorescence intensity of the cells to which the sample was added. HaCaT (SIRT1p-EGFP) cells and HaCaT (hTERTp-EGFP) cells were seeded on 96 well-plate (65590, Greiner Bio-one) at 0.6 × 10 5 cells / mL, and 10% FBS-containing DMEM medium was seeded. The cells were cultured for 24 hours. Then, resveratrol analog was added to HaCaT (SIRT1p-EGFP) cells so that the final concentration was 10 μM, and a separately prepared sample was added so that the final concentration was 0.1 μg / mL, 1 μg / mL, 10 μg / mL. HaCaT (hTERTp-EGFP) cells were added.

添加後10%FBS含有DMEM培地にて48時間培養後、培養液の上から8%パラホルムアルデヒド(Wako、大阪)を等量添加し、室温で15分間静置して固定した。固定後、固定液を捨ててPBSで2回洗浄し、PBSで500倍希釈したCellstrainR−Hoechst 33342 solution(Dojindo、熊本)を添加して20分間室温で静置して遮光染色した。染色後このHoechst溶液を捨て、PBSで2回洗浄し、PBSを添加してIN Cell Analyzer 1000に供し、EGFP蛍光強度を測定した。   After the addition, the cells were cultured in DMEM medium containing 10% FBS for 48 hours, 8% paraformaldehyde (Wako, Osaka) was added in an equal amount from the top of the culture solution, and the mixture was left standing at room temperature for 15 minutes for fixation. After the fixation, the fixative was discarded, the cells were washed twice with PBS, Celltrain R-Hoechst 33342 solution (Dojindo, Kumamoto) diluted 500 times with PBS was added, and the mixture was allowed to stand at room temperature for 20 minutes for light-shielding staining. After staining, the Hoechst solution was discarded, washed twice with PBS, added with PBS and subjected to IN Cell Analyzer 1000 to measure the EGFP fluorescence intensity.

SIRT1プロモーター活性化効果の検証に使用したレスベラトロール構造類似体を表4に、TERTプロモーター活性化効果を有する成分のスクリーニングに使用したサンプルを表5に示した。
Resveratrol structural analogs used for verification of the SIRT1 promoter activating effect are shown in Table 4, and samples used for screening the components having the TERT promoter activating effect are shown in Table 5.

(3)total RNAの調製
HaCaT細胞を1.0×10cells/mLとなるよう12well−plateに播種した。24時間培養後、終濃度10μMとなるようレスベラトロール構造類似体サンプルを添加し、さらに48時間培養した。本実施例ではポジティブコントロールとしてResveratrolを用い、終濃度10μMとなるよう添加した。
(3) Preparation of total RNA HaCaT cells were seeded on a 12-well plate at 1.0 × 10 5 cells / mL. After culturing for 24 hours, a resveratrol structural analog sample was added to a final concentration of 10 μM, and the cells were further cultured for 48 hours. In this example, Resveratrol was used as a positive control and added at a final concentration of 10 μM.

次に、RNA抽出を行った。培地を完全に除き、TRIzol Reagent(コスモ・バイオ、東京)を100μL添加し、液体が全体に行き渡るようにplateを回し続けた。液体の粘性がなくなったら細胞ライセートを0.5mLチューブに回収し、クロロホルム(Wako、大阪)を20μL添加し、ボルテックスミキサーで10秒間混合した。室温で5分間静置した後、4℃、15000gで5分間遠心分離し、上清を新しい1.5mLチューブに移した。回収した上清の0.55倍量に相当する99%エタノール(Wako、大阪)を加え、軽くピペッティングをした後、この細胞ライセートをEcono SpinTM for RNAカラム(Epoch Life Science Inc,Missouri,USA)に添加し、4℃、10000rpmで1分間遠心分離した。   Next, RNA extraction was performed. The medium was completely removed, 100 μL of TRIzol Reagent (Cosmo Bio, Tokyo) was added, and the plate was continuously rotated so that the liquid was spread over the whole. When the viscosity of the liquid disappeared, the cell lysate was collected in a 0.5 mL tube, 20 μL of chloroform (Wako, Osaka) was added, and mixed with a vortex mixer for 10 seconds. After leaving it at room temperature for 5 minutes, it was centrifuged at 4 ° C. and 15000 g for 5 minutes, and the supernatant was transferred to a new 1.5 mL tube. 99% ethanol (Wako, Osaka) corresponding to 0.55 times the amount of the collected supernatant was added, and after light pipetting, the cell lysate was subjected to Econo Spin ™ for RNA column (Epoch Life Science Inc, Missouri, USA). And centrifuged at 10,000 rpm for 1 minute at 4 ° C.

回収用チューブに排出された液を捨て、RNA wash Solution(Promega,Wisconsin,USA)を200μL添加し、10000rpmで1分間遠心分離した。回収用チューブに排出された液を捨て、再びRNA wash Solutionを100μL添加し、10000rpmで1分間遠心分離した。回収用チューブに排出された液を捨て、4℃、15000gで遠心分離した後、新しい1.5mLチューブにカラムをセットした。
そして溶出バッファー(Roche,Basel,Schweiz)を40μL添加し、室温で3分間静置した後15000gで1分間遠心分離し、total RNAを溶出した。溶出したtotal RNAの濃度はNano Drop 2000/2000c 分光光度計(Thermo Scientific,Waltham,MA,USA)を用いて測定した。
The liquid discharged into the collection tube was discarded, 200 μL of RNA wash Solution (Promega, Wisconsin, USA) was added, and the mixture was centrifuged at 10000 rpm for 1 minute. The liquid discharged into the collection tube was discarded, 100 μL of RNA wash Solution was added again, and the mixture was centrifuged at 10,000 rpm for 1 minute. The liquid discharged into the collection tube was discarded, the mixture was centrifuged at 4 ° C. and 15,000 g, and then the column was set in a new 1.5 mL tube.
Then, 40 μL of an elution buffer (Roche, Basel, Schweiz) was added, and the mixture was allowed to stand at room temperature for 3 minutes and then centrifuged at 15000 g for 1 minute to elute the total RNA. The concentration of the eluted total RNA was measured using a Nano Drop 2000 / 2000c spectrophotometer (Thermo Scientific, Waltham, MA, USA).

(4)cDNA合成
0.2mLチューブ(正晃)にRNA 1μg、oligo dT 0.5μLにRNaseフリーの滅菌水を加え、全量を13.5μLに調製した。次いで、サーマルサイクラー(Peltier Thermal Cycler PTC−200,MJ Research,Watertown,MA,USA)を用いて65℃で5分間アニーリングさせた後、直ちに5分間氷上に静置した。5×Reaction Buffer(TOYOBO、大阪)4μL、10mM dNTP(GEヘルスケア)2μL、ReverTra Ace(TOYOBO、大阪)0.5μLを加え、42℃で20分間、99℃で5分間反応させ、cDNA合成を行った。
(4) cDNA synthesis 1 μg of RNA and 0.5 μL of oligo dT were added to 0.2 μL tube (Seikatsu) and RNase-free sterilized water was added to adjust the total amount to 13.5 μL. Then, after using a thermal cycler (Peltier Thermal Cycler PTC-200, MJ Research, Watertown, MA, USA) for annealing at 65 ° C. for 5 minutes, it was immediately left on ice for 5 minutes. 5 × Reaction Buffer (TOYOBO, Osaka) 4 μL, 10 mM dNTP (GE Healthcare) 2 μL, and ReverseTrace Ace (TOYOBO, Osaka) 0.5 μL were added, and the mixture was reacted at 42 ° C. for 20 minutes and at 99 ° C. for 5 minutes to synthesize cDNA. went.

(5)リアルタイムPCR
作製したcDNAを鋳型として用いた。0.2mLチューブに滅菌水49μL、10μMとなるよう希釈したプライマーForward/Reverse双方を3.5μLずつ、鋳型cDNA(cDNAはSIRT1用は10倍希釈、β−actin用は50倍希釈した)7.0μL、THUNDERBIRD SYBR qPCR Mix(TOYOBO、大阪)24.5μLを入れ、よく懸濁した。
(5) Real-time PCR
The prepared cDNA was used as a template. Sterile water 49 μL in a 0.2 mL tube, 3.5 μL each of primers Forward / Reverse diluted to 10 μM, template cDNA (10-fold diluted cDNA for SIRT1, 50-fold diluted for β-actin) 7. 0 μL and 24.5 μL of THUNDERBIRD SYBR qPCR Mix (TOYOBO, Osaka) were added and well suspended.

使用したプライマーの塩基配列を以下に示す。
SIRT1
β−actin
The base sequences of the primers used are shown below.
SIRT1
β-actin

その後、96well−plateに25μLずつ3wellに添加し、Thermal Cycle Dicer Real Time System(タカラバイオ、滋賀)を用いて定量リアルタイムPCRを行った。
反応条件は、95℃ 30秒を1サイクル、95℃ 5秒→55℃ 10秒→72℃ 20秒を45サイクル、95℃ 15秒→60℃ 30秒→95℃ 15秒を1サイクルとし、FAMにより検出した。検量線のためのプライマーにはβ−actinを用いた。また、相対遺伝子発現量は測定した値をβ−actinの発現量値で除し求めた。
After that, 25 μL of each 96 well-plate was added to 3 wells, and quantitative real-time PCR was performed using a Thermal Cycle Dicer Real Time System (Takara Bio, Shiga).
The reaction conditions were 95 ° C. for 30 seconds for 1 cycle, 95 ° C. for 5 seconds → 55 ° C. for 10 seconds → 72 ° C. for 20 seconds for 45 cycles, 95 ° C. for 15 seconds → 60 ° C. for 30 seconds → 95 ° C. for 15 seconds, and FAM. Detected by. Β-actin was used as a primer for the calibration curve. The relative gene expression level was determined by dividing the measured value by the β-actin expression level value.

2.結果
(1)レスベラトロール構造類似体によるSIRT1プロモーター活性化効果の検証
HaCaT(SIRT1p−EGFP)細胞にレスベラトロール構造類似体を添加して48時間培養した後、IN Cell Analyzer 1000によってHaCaT(SIRT1p−EGFP)細胞におけるEGFP蛍光強度の変化を追跡した。その結果、9種類のレスベラトロール構造類似体のうちPinostilbene、Isorhapontigenin、Rhapontigenin、Piceatannol、Gnetol、Isoliquiritigenin、ButeinにおいてSIRT1プロモーター活性化能が見られた(図27)。
2. Results (1) Verification of SIRT1 promoter activation effect by resveratrol structural analog After adding resveratrol structural analog to HaCaT (SIRT1p-EGFP) cells and culturing for 48 hours, HaCaT (SIRT1p was measured by IN Cell Analyzer 1000). -EGFP) changes in EGFP fluorescence intensity in cells were tracked. As a result, among 9 types of resveratrol structural analogs, the SIRT1 promoter activating ability was found in Pinostilbene, Isorhapontigenin, Rhapontigenin, Piceatannol, Gnetol, Isoliquiritigenin, and Butein (FIG. 27).

(2)レスベラトロール構造類似体によるSIRT1発現増強効果の検証
一次スクリーニングでSIRT1プロモーター活性化能が確認されたレスベラトロール構造類似体のPinostilbene、Isorhapontigenin、Rhapontigenin、Piceatannol、Gnetol、Isoliquiritigenin、Buteinに対して、リアルタイムPCR法により、これらのレスベラトロール類似体を添加したHaCaT細胞におけるSIRT1 mRNA量を測定した。
本実施例では、SIRT1活性のポジティブコントロールとしてResveratrolを用いて測定した結果、DMSOを基準としてGnetol、Isoliquiritigenin、Buteinにおいて有意な発現増強が確認された(図28)。
(2) Verification of SIRT1 Expression Enhancement Effect by Resveratrol Structural Analogues Resveratrol structural analogues confirmed to have SIRT1 promoter activation ability in the primary screening were tested against Pinostilbene, Isorhapontigenin, Rhapontigenin, Piceatannol, Gnetol, Isoliquinitiriten. Then, the amount of SIRT1 mRNA in HaCaT cells to which these resveratrol analogues were added was measured by the real-time PCR method.
In this example, as a result of measurement using Resveratrol as a positive control of SIRT1 activity, significant enhancement of expression was confirmed in Gnetol, Isoliquiritigenin, and Butein based on DMSO (FIG. 28).

3.考察
本実施例では、イメージングサイトメーターを用いてのスクリーニングにより、レスベラトロール構造類似体のPinostilbene、Isorhapontigenin、Rhapontigenin、Piceatannol、Gnetol、Isoliquiritigenin、Buteinが抗老化因子であるSIRT1のプロモーターを活性化することが明らかとなった。また、この7種に対してリアルタイムPCR法によりSIRT1 mRNA量を測定した。この実施例においては、SIRT1研究において広く用いられているブドウ由来のポリフェノールであるResveratrolをポジティブコントロールとして用いた。
その結果、Gnetol、Isoliquiritigenin、Buteinの3種がHaCaT細胞においてSIRT1 mRNA発現を増強することが明らかとなった。この結果から、同定された3種のレスベラトロール構造類似体はSIRT1を活性化する可能性があると考えられる。また、IsoliquiritigeninとButeinは類似した構造を持っており、この構造がSIRT1活性化に関与すると考えられる。
3. DISCUSSION In this example, by screening using an imaging cytometer, the resveratrol structural analogs Pinostilbene, Isorhapontigenin, Rhapontigenin, Piceatannol, Gnetol, Isoliquiritigenin, and Butein are SIRT1 which are active promoters of anti-aging factors. Became clear. Moreover, the SIRT1 mRNA amount was measured for these seven species by the real-time PCR method. In this example, Resveratrol, a grape-derived polyphenol widely used in SIRT1 studies, was used as a positive control.
As a result, it was revealed that Gnetol, Isoliquiritigenin and Butein enhance SIRT1 mRNA expression in HaCaT cells. From this result, it is considered that the three identified resveratrol structural analogs may activate SIRT1. In addition, Isoliquiritigenin and Butein have similar structures, and this structure is considered to be involved in SIRT1 activation.

また、本実施例では、イメージングサイトメーターを用いてのスクリーニングにより、エクトイン(0.1μg/mL)、(アスコルビル/トコフェリル)リン酸K(0.1,10μg/mL)、タンニン酸(10μg/mL)、トラネキサム酸(0.1μg/mL)、α−Gヘスペリジン(1,10μg/mL)が、育毛を促す因子であるTERTのプロモーターを活性化することが明らかとなった。
[実施例7]
Fisetin,Resveratrol類似体によるhTERT増強効果
In addition, in this example, ectoin (0.1 μg / mL), (ascorbyl / tocopheryl) phosphoric acid K (0.1, 10 μg / mL), and tannic acid (10 μg / mL) were screened by using an imaging cytometer. ), Tranexamic acid (0.1 μg / mL), and α-G hesperidin (1,10 μg / mL) were found to activate the promoter of TERT, which is a factor promoting hair growth.
[Example 7]
HTERT enhancing effect of Fisetin and Resveratrol analogues

方法:下記のFisetin,Resveratrol類似体を、HaCaT細胞に添加後、培養し、hTERT発現をqPCR法により検証した。サンプルとして用いたポリフェノール以外は、実施例1に記載の方法と同様の方法で行った。
結果を図29に示す。
Method: The following Fisetin and Resveratrol analogues were added to HaCaT cells and then cultured, and hTERT expression was verified by the qPCR method. A method similar to the method described in Example 1 was performed except for polyphenol used as a sample.
The results are shown in Fig. 29.

図29より、Resveratrol、Fisetin、Apigenin、Luteolin、Ipriflavone、Nobiletin、(±)−Equol、Genistein、Resveratrol、Tangeretin、BiochaninA、Chrysin、Pinostilbene、Butein,Quercetin及びPiceatannolがhTERT発現を増強することが示され、中でもQuercetinは特に増強効果が高かった。
[実施例8]
Fisetin,Resveratrol類似体によるパラコート誘導性のDNA損傷修復効果
From FIG. 29, Resveratrol, Fisetin, Apigenin, Luteolin, Ipriflavone, Nobiletin, (±) -Equol, Genistein, Resveratrol, Tangeretin, BiochaninA, Chrysin, Pinoutinebene, Chrysin, Pinoutebein, and Chrysin, Pinoutinebene are shown. Among them, Quercetin had a particularly high enhancing effect.
[Example 8]
Paraquat-induced DNA damage repair effect by Fisetin and Resveratrol analogues

<材料及び方法>
1.細胞培養
本研究では、ヒト結腸がん由来株化細胞Caco−2細胞を用いた。Caco−2細胞は、10% Fetal bovine serum(FBS)添加DMEM培地(Dulbecco’s Modified Eagle Medium;Nissui,Tokyo,Japan)、細胞培養ディッシュ(Greiner bio−one)を用いて37℃、5% CO存在下で継代培養した。
<Material and method>
1. Cell Culture In this study, human colon cancer-derived cell line Caco-2 cells were used. Caco-2 cells were cultured at 37 ° C. in 5% at 37 ° C. using 10% Fetal bovine serum (FBS) -added DMEM medium (Dulbecco's Modified Eagle Medium; Nisui, Tokyo, Japan) and cell culture dish (Greiner bio-one). Subculture was performed in the presence of 2 .

2.γH2AXを指標としたDSBs修復促進能の評価
SIRT6活性化食品成分によるDNA二本鎖切断(DNA Double−Strand Breaks;DSBs)の修復促進能を評価するため、DNA損傷修復マーカーの一つであるγH2AXを指標とした免疫染色を行い、パラコート処理で誘導されたCaco−2細胞内のDSBs修復がSIRT6活性化食品成分によって促進されるかどうかを検証した。
2. Evaluation of DSBs repair-promoting ability using γH2AX as an index In order to evaluate the repair-promoting ability of DNA double-strand breaks (DSBs) by SIRT6 activated food components, one of the DNA damage repair markers, γH2AX Was used as an index to examine whether DSCs repair in Caco-2 cells induced by paraquat treatment was promoted by the SIRT6 activated food ingredient.

(1)パラコート溶液の調製
パラコート溶液は、Paraquat dichloride hydrate(Sigma−Aldrich,Osaka,Japan)を滅菌水で1Mに調製したものを−20℃で保存し、適宜解凍して使用した。使用時は最終濃度が1mMになるように添加した。
(1) Preparation of Paraquat Solution Paraquat solution was prepared by sterilizing and appropriately using Paraquat dichloride hydrate (Sigma-Aldrich, Osaka, Japan) prepared at 1M with sterilized water. At the time of use, the final concentration was 1 mM.

(2)Caco−2細胞へのパラコート処理方法
パラコート処理する前日に、96−well plate(μ Clear Fluorescence Black Plate;Greiner bio−one)にCaco−2細胞を2.0×10cells/mLで播種し、細胞をディッシュ底面に接着させた。翌日、最終濃度が1mMとなるようにパラコート溶液を添加し、37℃、5% CO存在下で2時間培養した。
(2) Method for paraquat treatment of Caco-2 cells On the day before paraquat treatment, Caco-2 cells were added to 96-well plate (μ Clear Fluorescence Black Plate; Greiner bio-one) at 2.0 × 10 5 cells / mL. The cells were seeded and the cells were allowed to adhere to the bottom of the dish. The next day, a paraquat solution was added so that the final concentration was 1 mM, and the cells were cultured at 37 ° C. in the presence of 5% CO 2 for 2 hours.

(3)細胞固定液の調製
Paraformaldehyde(Wako)を1×PBSで4% Paraformaldehyde細胞固定液になるように希釈し、60℃の湯浴で溶かして作製した。
(3) Preparation of Cell Fixation Solution Paraformaldehyde (Wako) was diluted with 1 × PBS to 4% Paraformaldehyde cell fixation solution, and dissolved in a hot water bath at 60 ° C. to prepare.

(4)ブロッキングバッファーの調製
10×PBS 1.0mL、正常ヤギ血清500μL(Wako)、滅菌水8.5mLを混合し、さらにTriton X−100(100%)30μL(Sigma−Aldrich)を添加してよく撹拌した。
(4) Preparation of blocking buffer 1.0 mL of 10 × PBS, 500 μL of normal goat serum (Wako) and 8.5 mL of sterilized water were mixed, and further 30 μL of Triton X-100 (100%) (Sigma-Aldrich) was added. Stir well.

(5)抗体希釈バッファーの調製
10×PBS 1.0mLを滅菌水9.0mLに加えて混ぜ、BSA(Bovine Serum Albumin Fraction V)0.1g(Wako)を加え溶解した。その後Triton X−100(100%)30μL(Sigma−Aldrich)を添加してよく撹拌した。
(5) Preparation of antibody dilution buffer 1.0 mL of 10 × PBS was added to 9.0 mL of sterilized water and mixed, and 0.1 g (Wako) of BSA (Bovine Serum Albumin Fraction V) was added and dissolved. After that, 30 μL of Triton X-100 (100%) (Sigma-Aldrich) was added and well stirred.

(6)免疫染色・IN Cell Analyzer 1000による測定および解析
2時間のパラコート処理をしたCaco−2細胞の培地を10% FBS含有DMEM培地と交換し、そこに10μMとなるように各食品成分サンプルを添加して37℃、5% CO存在下で4時間培養した。その後、食品成分を含む培地を除去し、Caco−2細胞を1×PBS 100μL/wellで洗浄して、細胞固定液80μL/wellで室温で15分間放置し固定した。細胞固定液を除去し、1×PBSで5分間、3回洗浄した。そして、ブロッキングバッファーで細胞を1時間ブロッキングした。
(6) Immunostaining-Measurement and analysis by IN Cell Analyzer 1000 The medium of Caco-2 cells subjected to paraquat treatment for 2 hours was replaced with 10% FBS-containing DMEM medium, and each food component sample was adjusted to 10 µM. After the addition, the cells were cultured at 37 ° C. in the presence of 5% CO 2 for 4 hours. Then, the medium containing the food components was removed, Caco-2 cells were washed with 100 μL / well of 1 × PBS, and left standing at room temperature for 15 minutes with 80 μL / well of cell fixative to fix. The cell fixing solution was removed, and the cells were washed 3 times with 1 × PBS for 5 minutes. Then, the cells were blocked with the blocking buffer for 1 hour.

バッファーを除去し、抗体希釈バッファーで希釈した一次抗体(P−Histone H2A.X;Cell Signaling Tech.,Danvers,MA,USA:1000倍希釈)を50μL/wellで細胞に添加し、4℃で一晩インキュベートした。そして1×PBSで5分間3回洗浄した。以下の操作は遮光状態で行った。抗体希釈バッファーで1,000倍に希釈した二次抗体(AlexaFlour 555 anti−rabbit IgG;Life Technologies,Gaitherburg,MD,USA)を50μL/wellで細胞に添加し、室温で1.5時間インキュベートした。PBSで5分間3回の洗浄後、細胞核染色液Hoechst33342(DOJINDO)1μL/1×PBS 1mLを100μL/wellで添加し20分間室温にて放置し染色した。 The buffer was removed, and the primary antibody (P-Histone H2A.X; Cell Signaling Tech., Danvers, MA, USA: 1000-fold diluted) diluted with an antibody dilution buffer was added to the cells at 50 μL / well, and the cells were added at 4 ° C. at 1 ° C. Incubated overnight. And it wash | cleaned 3 times for 5 minutes with 1xPBS. The following operation was performed in a light-shielded state. A secondary antibody (AlexaFlor 555 anti-rabbit IgG; Life Technologies, Gaitherburg, MD, USA) diluted 1,000 times with an antibody dilution buffer was added to the cells at 50 μL / well and incubated at room temperature for 1.5 hours. After washing with PBS three times for 5 minutes, 1 nL of cell nuclei staining solution Hoechst33342 (DOJINDO) / 1 mL of PBS was added at 100 µL / well and left standing at room temperature for 20 minutes for staining.

染色後、細胞核染色液を除去し、1×PBS100μL/wellで1回洗浄した。その後1×PBS 100μL/wellに置き換え、IN Cell Analyzer 1000(GE Healthcare)にて画像を取得した。画像はIN Cell Analyzer 1000 Workstation(GE Healthcare)で解析し、二次抗体の蛍光量を測定することで細胞内のγH2AXの発現量を調べた。その後、Spotfire DecisionSite Client 8.2 software(TOBCO Spotfire Japan)によりグラフ化した。 After staining, the cell nucleus staining solution was removed, and the cells were washed once with 100 μL / well of 1 × PBS. After that, the cells were replaced with 1 × PBS 100 μL / well, and an image was acquired with IN Cell Analyzer 1000 (GE Healthcare). The image was analyzed by IN Cell Analyzer 1000 Workstation (GE Healthcare), and the expression amount of γH2AX in the cell was examined by measuring the fluorescence amount of the secondary antibody. Then, it graphed by Spotfire DecisionSite Client 8.2 software (TOBCO Spotfire Japan).

<結果>
パラコート処理を2h、サンプル処理4hで免疫染色を行った結果を図30に示す。Genistein,Tangeretin,Baicalein,IsoliquiritigeninにおいてγH2AXの減少効果、すなわちDNA損傷修復効果が見られた。
<Results>
The results of immunostaining with paraquat treatment for 2 hours and sample treatment for 4 hours are shown in FIG. A reduction effect of γH2AX, that is, a DNA damage repair effect was observed in Genistein, Tangeretin, Baicalein, and Isoliquiritigenin.

参考文献
・Fuchs,Elaine,Raghavan,Srikala
Getting Under the Skin of Epidermal Morphogenesis
Nature Reviews Genetics,3:199−209,2002
・K.S. Stenn,R. Paus
Controls of Hair Follicle Cycling
Physiological Reviews Published,81:449−494,2001
・George Cotsarelis,Tung−Tien Sun,Robert M.Lavker”
Label−retaining cells reside in the bulge area of pilosebaceous unit:
Implications for follicular stem cells,hair cycle,and skin
carcinogenesis
Cells,61:1329−1337,1990
・Mak SS,Moriyama M,Nishioka E,Osawa M,Nishikawa S
Indispensable role of Bc12 in the development of the melanocyte
Stem cell,291:144−53,2006
・Yusur Al−Nuaimi,Gerold Baier,Rachel E.B.Watson,Cheng−Ming
Chuong and Ralf Paus
The cycling hair follicle as an ideal systems biology research model
Experimental Dermatology,19:707−713,2010
・Muller−Rover S.,Handjiski B.,Van Der Veen C.,Eichmuller S.,
Foitzik K.,McKay I.A.,Stenn K.S.and Paus R.
A comprehensive guide for the accurate classification of murine hair
follicles in distinct hair cycle stages.
J.Invest.Dermatol.117:3−15,2001
・Cotsarelis G.
Epithelial stem cells:a folliculocentric view.
J.Invest.Dermatol,126:1459−68,2006
・Oshima H,Rochat A,Kedzia C,Kobayashi K,Barrandon Y.
Morphogenesis and renewal of hair follicles from adult multipotent
stem cells.
Cell,104:233−45,2001
・Petersson M,Brylka H,Kraus A,John S,Rappl G,Schettina P,
Niemann C.
TCF/Lef1 activity controls establishment of diverse stem and
progenitor cell compartments in mouse epidermis.
EMBO J,30:3004−18,2011
・Sarin,K.Y.,Cheung,P.,Gilison,D.,Lee,E.,Tennen,R.I.,Wang,
E.,Artandi,S.E.
Conditional telomerase induction causes proliferation of hair follicle
stem cells.Nature,436:1048−1052,2005
・Greider CW,Blackburn EH.
A telomeric sequence in the RNA of Tetrahymena telomerase required for
telomere repeat synthesis.
Nature.337:331−7,1989
・Harrington JJ,Van Bokkelen G,Mays RW,Gustashaw K,Willard HF.
Formation of de novo centromeres and construction of first−generation
human artificial microchromosomes.
Nat Genet,15:345−55,1997
・Shay JW1,Bacchetti S.
A survey of telomerase activity in human cancer.
Eur J Cancer,33:787−91,1997
・Pendergrass WR,Penn PE,Li J,Wolf NS.
Age−related telomere shortening occurs in lens epithelium from old
rats and is slowed by caloric restriction.
Exp Eye Res,73:221−8,2001
・Vera E,Bernardes de Jesus B,Foronda M,Flores JM,Blasco MA.
Telomerase reverse transcriptase synergizes with calorie restriction
to increase health span and extend mouse longevity.
PLoS One.8(1):e53760,2013
・Herrera E,Samper E,Martin−Caballero J,Flores JM,Lee HW,Blasco
MA.
Disease states associated with telomerase deficiency appear earlier in
mice with short telomeres.
EMBO J,18:2950−60,1999
・Tomas−Loba A,Folres I,Fernandez−Marcos PJ,Cayuela ML,Maraver A,
Tejera A,Borras C,Matheu A,Klatt P,Flores JM,Vina J,Serrano M,
Blasco MA.
Telomerase reverse transcriptase delays aging in cancer−resistant mice.
Cell,135:609−22,2008
・Nakamura K,Wang W,Kang UJ.
The role of glutathione in dopaminergic neuronal survival.
J Neurochem,69:1850−8,1997
・Krause K,Foitzik K
Biology of the hair follicle:the basics.
Semin Cutan Med Surg,25:2−10,2006
・Cotsarelis G,Millar SE.
Towards a molecular understanding of hair loss and its treatment.
Trends Mol Med,7:293−301,2001
・Paus R,Foitzik K.
In search of the ″hair cycle clock″:a guided tour.
Differentiation,72:489−511,2004
・MacDonald BT,Tamai K,He X.
Wnt/beta−catenin signaling:components,mechanisms,and diseases.
Dev Cell,17:9−26,2009
・Port F,Basler K.
Wnt trafficking:new insights into Wnt maturation,secretion and
spreading.
Traffic,11:1265−71,2010
・Komekado H1,Yamamoto H,Chiba T,Kikuchi A.
Glycosylation and palmitoylation of Wnt−3a are coupled to produce an
active form of Wnt−3a.
Genes Cells,12:521−34,2007
・Kurayoshi M,Yamamoto H,Izumi S,Kikuchi A.
Post−translational palmitoylation and glycosylation of Wnt−5a are
necessary for its signalling.
Biochem J,402:515−23,2007
・Ozawa M,Baribault H,Kemler R.
The cytoplasmic domain of the cell adhesion molecule uvomorulin
associates with three independent proteins structurally related in
different species.
EMBO J,8:1711−7,1989
・Park JI,Venteicher AS,Hong JY,Choi J,Jun S,Shkreli M,Chang W,
Meng Z,Cheung P,Ji H,McLaughlin M,Veenstra TD,Nusse R,McCrea PD,
Artandi SE
Telomerase modulates Wnt signalling by association with target gene
chromatin.
Nature.460:66−72,2009
・Hoffmeyer K,Raggioli A,Rudloff S,Anton R,Hierholzer A,Del Valle
I,Hein K,Vogt R,Kemler R
Wnt/β−catenin signaling regulates telomerase in stem cells and cancer
cells.
・Hachiya A,Sriwiriyanont P,Kobayashi T,Nagasawa A,Yoshida H,
Ohuchi A,Kitahara T,Visscher MO,Takema Y,Tsuboi R,Boissy RE.
Stem cell factor−KIT signalling plays a pivotal role in regulating
pigmentation in mammalian hair.
J Pathol,218:30−9,2009
・Oliver RF1,Jahoda CA.
Dermal−epidermal interactions.
Clin Dermatol,6:74−8,1988
・Narhi K1,Jarvinen E,Birchmeier W,Taketo MM,Mikkola ML,Thesleff
I.
Sustained epithelial beta−catenin activity induces precocious hair
development but disrupts hair follicle down−growth and hair shaft
formation.
Development,135:1019−28,2008
・Jinkuk Choi,Lucinda K Southworth,Kavita Y Sarin,Andrew S
Venteicher,Wenxiu Ma,Woody Chang,Peggie Cheung,Sohee Jun,Maja K
Artandi,Naman Shah,Stuart K Kim,Steven E Artandi
TERT Promotes Epithelial Proliferation through Transcriptional Control
of a Myc−and Wnt−Related Developmental Program
PLoS Gene,4:e10,2008
・Rudloff S,Kemler R.
Differential requirements for β−catenin during mouse development.
Development,139:3711−21,2012
・Yamashita S,Ogawa K,Ikei T,Udono M,Fujiki T,Katakura Y.
SIRT1 prevents replicative senescence of normal human umbilical cord
fibroblast through potentiating the transcription of human telomerase
reverse transcriptase gene.
Biochem Biophys Res Commun,417:630−4,2012
・Yamashita S,Ogawa K,Ikei T,Fujiki T,Katakura Y.
FOXO3a potentiates hTERT gene expression by activating c−MYC and
extends the replicative life−span of human fibroblast.
PLoS One,9:e101864,2014
・Chase H.B.
Growth of hair.
Physiol.Rev,34:113−126,1954
・Lin K.K.,Chudova D.,Hatfield G.W.,Smyth P.and Anderson B.
Identification of hair cycle−associated genes from time−course gene
expression profile data by using replicate variance
Proc Natl Acad Sci U S A,101:15955−15960,2004
・Maksim V.Plikus and Cheng−Ming Chuong
Complex hair cycle domain patterns and regenerative hair waves in
living rodents
J Invest Dermatol,128:1071−1080,2008
・Chen ML,Li J,Xiao WR,Sun L,Tang H,Wang L,Wu LY,Chen X,Xie HF.
Protective effect of resveratrol against oxidative damage of UVA
irradiated HaCaT cells.
Zhong Nan Da Xue Xue Bao Yi Xue Ban,31:635−9,2006
・Park K,Lee JH.
Protective effects of resveratrol on UVB−irradiated HaCaT cells
through attenuation of the caspase pathway.
Oncol Rep,19(2):413−7,2008
・Seo SH,Jeong GS.
Fisetin inhibits TNF−α−induced inflammatory action and hydrogen
peroxide−induced oxidative damage in human keratinocyte HaCaT cells
through PI3K/AKT/Nrf−2−mediated heme oxygenase−1 expression.
Int Immunopharmacol,29:246−53,2015
・Philpott M.P.,Sanders D.A.and Kealey T.
Effects of insulin and insulin−like growth factors on cultured human
hair follicles,IGF−I at physiologic concentrations is an important
regulator of hair follicle growth in vitro.
Invest.Dermatol,102:857−861,1994
・Batch J.A.,Mercuri F.A.and Werther G.A.
Identification and localization of insulin−like growth factor−binding
protein(IGFBP)messenger RNAs in human hair follicle dermal papilla.
Invest.Dermatol,106:471−475,1996
・Ristow H.J.and Messmer T.O.
Basic fibroblast growth factor and insulin−like growth factor I are
strong mitogens for cultured mouse keratinocytes.
Cell.Physiol,137:277−284,1988
・Wertheimer E.,Trebicz M.,Eldar T.,Gartsbein M.,Nofeh−Moses S.
and Tennenbaum T.
Differential roles of insulin receptor and insulin−like growth factor−
1 receptor in differentiation of murine skin keratinocytes.
J.Invest.Dermatol,115:24−29,2000
・Gat U,DasGupta R,Degenstein L,Fuchs E.
De Novo hair follicle morphogenesis and hair tumors in mice expressing
a truncated beta−catenin in skin.
Cell,95:605−14,1998
・Masoro EJ.
The role of hormesis in life extension by dietary restriction.
Interdiscip Top Gerontol,35:1−17.2007
・Colman RJ,Anderson RM,Johnson SC,Kastman EK,Kosmatka KJ,Beasley
TM,Allison DB,Cruzen C,Simmons HA,Kemnitz JW,Weindruch R.
Caloric restriction delays disease onset and mortality in rhesus
monkeys.
Science,325:201−204,2009
・Kim SC,Kim YH,Son SW,Moon EY,Pyo S,Um SH.
Fisetin induces Sirt1 expression while inhibiting early adipogenesis
in 3T3−L1 cells.
Biochem Biophys Res Commun,467:638−44,2015
References ・ Fuchs, Elaine, Raghavan, Srikala
Getting Under the Skin of Epidemic Morphogenesis
Nature Reviews Genetics, 3: 199-209, 2002.
・ K. S. Stenn, R.A. Paus
Controls of Hair Follicle Cycling
Physiologic Reviews Published, 81: 449-494, 2001.
-George Cossarelis, Tung-Tien Sun, Robert M .; Lavker ”
Label-retaining cells resin in the bulk area of pillose base unit:
Implications for follicular stem cells, hair cycle, and skin
carcinogenesis
Cells, 61: 1329-1337, 1990.
・ Mak SS, Moriyama M, Nishioka E, Osawa M, Nishikawa S
Indispensable role of Bc12 in the development of the melanocyte
Stem cell, 291: 144-53, 2006.
-Yusur Al-Nuaimi, Gerold Baier, Rachel E .; B. Watson, Cheng-Ming
Chuong and Ralf Paus
The cycling hair follicle as an ideal systems biology research model
Experimental Dermatology, 19: 707-713, 2010
Muller-Rover S. , Handjiski B. , Van Der Veen C .; Eichmuller S., et al. ,
Foitzik K. , McKay I .; A. , Sten K. S. and Paus R.
A comprehensive guide for the accurate classification of murine hair
follicles in distinct hair cycle stages.
J. Invest. Dermatol. 117: 3-15, 2001
-Cotsarelis G.
Epithelial stem cells: a folliculocentric view.
J. Invest. Dermatol, 126: 1459-68, 2006.
-Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y .;
Morphogenesis and renewal of hair follicles from adult multipotent
stem cells.
Cell, 104: 233-45, 2001.
-Petersson M, Brylka H, Kraus A, John S, Rappl G, Schettina P,
Niemann C.
TCF / Lef1 activity controls establishment of diversity system and
Progenitor cell components in mouse epidermis.
EMBO J, 30: 3004-18, 2011.
-Sarin, K .; Y. Cheung, P .; Gilson, D .; Lee, E .; Tennen, R .; I. , Wang,
E. FIG. , Artandi, S .; E. FIG.
Conditional telomerase induction poses promotion of hair follicle
stem cells. Nature, 436: 1048-1052, 2005.
-Greider CW, Blackburn EH.
A telomeric sequence in the RNA of Tetrahymena telomerase required for
telomere repeat synthesis.
Nature. 337: 331-7, 1989.
-Harrington JJ, Van Bokekelen G, Mays RW, Gustashaw K, Willard HF.
Formation of de novo centromeres and construction of first-generation
human artificial microchromosomes.
Nat Genet, 15: 345-55, 1997.
-Shay JW1, Bacchetti S.
A survey of telomerase activity in human cancer.
Eur J Cancer, 33: 787-91, 1997.
-Penderglass WR, Penn PE, Li J, Wolf NS.
Age-related telomere shortening occurs in length epithelium from old
rats and is slowed by caloric restriction.
Exp Eye Res, 73: 221-8, 2001.
Vera E, Bernardes de Jesus B, Foronda M, Flores JM, Blasco MA.
Telomerase reverse transcript synergies with calorie restraint
to increase health span and extend mouse longevity.
PLoS One. 8 (1): e53760, 2013
-Herrera E, Samper E, Martin-Caballero J, Flores JM, Lee HW, Blasco
MA.
Disease states associated with telomerase deficiency apparent earlier in
mice with short telomeres.
EMBO J, 18: 2950-60, 1999.
-Tomas-Loba A, Folres I, Fernandez-Marcos PJ, Cayuela ML, Maraver A,
Tejera A, Borras C, Matheu A, Klatt P, Flores JM, Vina J, Serrano M,
Blasco MA.
Telomerase reverse transcriptase delays in cancer-resistant mice.
Cell, 135: 609-22, 2008.
-Nakamura K, Wang W, Kang UJ.
The Role of Glutathione in Dopaminergic Neuronal Survival.
J Neurochem, 69: 1850-8, 1997.
・ Krause K, Foitzik K
Biology of the hair follicle: the basics.
Semin Cutan Med Surg, 25: 2-10, 2006.
-Cottarelis G, Millar SE.
Towards a molecular understanding of hair loss and it's treatment.
Trends Mol Med, 7: 293-301, 2001.
Paus R, Foitzik K.
In search of the "hair cycle clock": a guided tour.
Differentiation, 72: 489-511, 2004.
-MacDonald BT, Tamai K, He X.
Wnt / beta-catenin signaling: components, mechanisms, and diseases.
Dev Cell, 17: 9-26, 2009.
-Port F, Basler K.
Wnt trafficking: new insights into Wnt measurement, division and
spreading.
Traffic, 11: 1265-71, 2010.
-Komekado H1, Yamamoto H, Chiba T, Kikuchi A .;
Glycosylation and palmitoylation of Wnt-3a are coupled to produce an
active form of Wnt-3a.
Genes Cells, 12: 521-34, 2007.
-Kurayoshi M, Yamamoto H, Izumi S, Kikuchi A .;
Post-translational palmitoylation and glycosylation of Wnt-5a are
cessation for it's signaling.
Biochem J, 402: 515-23, 2007.
Ozawa M, Bariault H, Kemmer R .;
The cytoplasmic domain of the cell adhesion molecule uvomorulin
associates with three independent proteins structurally related in
different types.
EMBO J, 8: 1711-7, 1989.
-Park JI, Venteicher AS, Hong JY, Choi J, Jun S, Shkreli M, Chang W,
Meng Z, Cheung P, Ji H, McLaughlin M, Veenstra TD, Nusse R, McCrea PD,
Artandi SE
Telomerase modulos Wnt signaling by association with target gene
chromatin.
Nature. 460: 66-72, 2009
・ Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle
I, Hein K, Vogt R, Kemler R
Wnt / β-catenin signaling regulations telomerase in stem cells and cancer
cells.
・ Hachiya A, Sriwiyanont P, Kobayashi T, Nagasawa A, Yoshida H,
Ohuchi A, Kitahara T, Vischer MO, Takema Y, Tsuboi R, Boissy RE.
Stem cell factor-KIT signalling plays a private role in regularing
pigmentation in mammalian hair.
J Pathol, 218: 30-9, 2009.
-Oliver RF1, Jahoda CA.
Dermal-epidemal interactions.
Clin Dermatol, 6: 74-8, 1988.
・ Narhi K1, Jarvinen E, Birchmeier W, Taketoto MM, Mikkola ML, Thesleff
I.
Sustained epithelial beta-catenin activity induces precocient hair
development but discharges hair fold down-growth and hair sharft
formation.
Development, 135: 1019-28, 2008.
・ Jinkuk Choi, Lucinda K Southworth, Kavita Y Sarin, Andrew S
Venteicher, Wenxiu Ma, Woody Chang, Peggie Cheung, Sohee Jun, Maja K.
Artandi, Naman Shah, Stuart K Kim, Steven E Artandi
TERT Promotes Epithelial Proliferation through Transcriptional Control
of a Myc-and Wnt-Related Development Program
PLoS Gene, 4: e10, 2008.
-Rudloff S, Kemler R.
Differential requirements for β-catenin inducing mouse development.
Development, 139: 3711--21,0212.
-Yamashita S, Ogawa K, Ikei T, Udono M, Fujiki T, Katakura Y.
SIRT1 ingredients replica senence of normal human umbilical cord
fibroblast through potentiation the transcription of human telomerase
reverse transcriptase gene.
Biochem Biophys Res Commun, 417: 630-4, 2012.
-Yamashita S, Ogawa K, Ikei T, Fujiki T, Katakura Y.
FOXO3a potentiates hTERT gene expression by activating c-MYC and
extends the replicative life-span of human fibroblast.
PLoS One, 9: e101864, 2014
-Chase H. B.
Growth of hair.
Physiol. Rev, 34: 113-126, 1954.
-Lin K. K. , Chudova D .; , Hatfield G .; W. , Smyth P. and Anderson B.A.
Identification of hair cycle-associated genes from time-course gene
expression profile data by using replicate variance
Proc Natl Acad Sci USA, 101: 15955-15960, 2004.
-Maksim V. Plikus and Cheng-Ming Chuong
Complex hair cycle domain patterns and regenerative hair waves in
living rodents
J Invest Dermatol, 128: 1071-1080, 2008.
-Chen ML, Li J, Xiao WR, Sun L, Tang H, Wang L, Wu LY, Chen X, Xie HF.
Protective effect of resveratrol againstaging damage of UVA
irradiated HaCaT cells.
Zhong Nan Da Xue Xue Bao Yi Xue Ban, 31: 635-9, 2006.
-Park K, Lee JH.
Protective effects of resveratrol on UVB-irradiated HaCaT cells
through attenuation of the caspase pathway.
Oncol Rep, 19 (2): 413-7, 2008.
-Seo SH, Jeong GS.
Fisetin inhibits TNF-α-induced inflammatory action and hydrogen
peroxide-induced oxidative damage in human keratinocyte HaCaT cells
through PI3K / AKT / Nrf-2-mediated heme oxygenase-1 expression.
Int Immunopharmacol, 29: 246-53, 2015.
-Philpott M. P. , Sanders D .; A. and Kealey T.
Effects of insulin and insulin-like grow factors on cultured human
hair follicles, IGF-I at physiological con- centrations is an important
regulator of hair follicle grow in vitro.
Invest. Dermatol, 102: 857-861, 1994.
-Batch J. A. , Mercuri F .; A. and Werther G. A.
Identification and localization of insulin-like growth factor-binding
protein (IGFBP) messenger RNAs in human hair follicle dermal papilla.
Invest. Dermatol, 106: 471-475, 1996.
-Ristow H. J. and Messmer T.S. O.
Basic fibroblast grow factor and insulin-like grow factor factor I are
strong mitogens for cultured mouse keratinocytes.
Cell. Physiol, 137: 277-284, 1988.
・ Wertheimer E. , Trebicz M .; Eldar T .; , Gartsbein M .; , Nofeh-Moses S .;
and Tennenbaum T.
Differentiated roles of insulin receptor and insulin-like growth factor-
1 receptor in differentiation of murine skin keratinocytes.
J. Invest. Dermatol, 115: 24-29, 2000.
Gat U, DasGupta R, Degenstein L, Fuchs E .;
De Novo hair follicle morphogenesis and hair tumours in mice expressing
a truncated beta-catenin in skin.
Cell, 95: 605-14, 1998.
-Masoro EJ.
The role of hormones in life extension by dietary restraint.
Interdiscip Top Gerontol, 35: 1-17.2007.
・ Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley
TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW, Weindruch R .;
Caloric restriction delays disease onset and morality in rhesus
monkeys.
Science, 325: 201-204, 2009.
-Kim SC, Kim YH, Son SW, Moon EY, Pyo S, Um SH.
Fisetin induces Sirt1 expression while inhibiting early adipogenesis
in 3T3-L1 cells.
Biochem Biophys Res Commun, 467: 638-44, 2015.

配列番号1〜20:合成DNA
[配列表]
SEQ ID NOS: 1-20: Synthetic DNA
[Sequence list]

Claims (15)

次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、発毛及び/又は育毛用組成物。
Formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A composition for hair growth and / or hair growth, containing any compound selected from the group consisting of the compounds represented by:
次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、皮膚改善用組成物。
Formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A skin improving composition comprising any compound selected from the group consisting of compounds
次式I:
(式中、R及びRの一方は水素原子又は水酸基を表し、他方は次式IV:
(R4bは水素原子又は炭素数1〜6のアルキル基を表し、nは1〜5の整数を表す。)
で示される基を表し、Rは水素原子又は酸素原子を表し、R4aはR4bと同様であり、
は二重結合又は単結合を表し、mは1〜4の整数を表す。)
で示される化合物、
次式II:
(式中、R4a及びR4bは前記と同様であり、n1及びn2は、それぞれ独立して1〜5の整数を表す。)
で示される化合物、及び次式III:
(式中、R、R4a、R4b、n1及びn2並びに
は前記と同様である。)
で示される化合物からなる群から選ばれるいずれかの化合物を含む、化粧品用組成物。
Formula I:
(In the formula, one of R 1 and R 3 represents a hydrogen atom or a hydroxyl group, and the other represents the following formula IV:
(R 4b represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and n represents an integer of 1 to 5.)
Represents a group represented by, R 2 represents a hydrogen atom or an oxygen atom, R 4a is the same as R 4b ,
Represents a double bond or a single bond, and m represents an integer of 1 to 4. )
A compound represented by
Formula II:
(In the formula, R 4a and R 4b are the same as above, and n1 and n2 each independently represent an integer of 1 to 5.)
And a compound of the following formula III:
(Wherein R 2 , R 4a , R 4b , n1 and n2 and
Is the same as above. )
A cosmetic composition comprising any compound selected from the group consisting of:
式Iで示される化合物が、次式Ia又はIb:
(式中、R及びRは、水素原子又は水酸基を表し、Rは水素原子又は酸素原子を表し、R4a及びR4bは、それぞれ独立して水素原子又は炭素数1〜6のアルキル基を表し、
は二重結合又は単結合を表し、mは1〜4の整数を表し、nは1〜5の整数を表す。)
で示されるものである請求項1〜3のいずれか1項に記載の組成物。
The compound of formula I has the formula Ia or Ib:
(In the formula, R 1 and R 3 represent a hydrogen atom or a hydroxyl group, R 2 represents a hydrogen atom or an oxygen atom, and R 4a and R 4b each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms. Represents a group,
Represents a double bond or a single bond, m represents an integer of 1 to 4, and n represents an integer of 1 to 5. )
The composition according to any one of claims 1 to 3, which is represented by
式Iで示される化合物が、フィセチン、ケルセチン、カテキン、ノビレチン、アピゲニン、ゲニステイン、ルテオリン、イプリフラボン、エクオール、タンゲレチン、ビオカニンA、クリシン、又はバイカレインである請求項1〜3のいずれか1項に記載の組成物。 The compound of formula I is fisetin, quercetin, catechin, nobiletin, apigenin, genistein, luteolin, ipriflavone, equol, tangeretin, biochanin A, chrysin, or baicalein. Composition. 式IIで示される化合物が、レスベラトロール、ピセアタンノール、ピノスチルベン、イソラポンチゲニン、ラポンチゲニン、グネトール、又はオキシレスベラトロールである請求項1〜3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the compound represented by the formula II is resveratrol, piceatannol, pinostilbene, isolapontigenin, rapontigenin, gnetol, or oxyresveratrol. 式IIIで示される化合物が、イソリキリチゲニン又はブテインである請求項1〜3のいずれか1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein the compound of formula III is isoliquiritigenin or butein. 皮膚改善が、傷の治療、肌荒れの修復、しみの改善、そばかすの改善、しわ抑制、創傷治癒及び細胞老化抑制からなる群から選ばれる少なくとも1つである請求項2に記載の組成物。 The composition according to claim 2, wherein the skin improvement is at least one selected from the group consisting of treatment of wounds, repair of rough skin, improvement of spots, improvement of freckles, suppression of wrinkles, wound healing and suppression of cell aging. 請求項1に記載の組成物を含む発毛及び/又は育毛剤。 A hair growth and / or hair growth agent comprising the composition according to claim 1. 請求項2に記載の組成物を含む皮膚改善剤。 A skin improving agent comprising the composition according to claim 2. 請求項3に記載の組成物を含む化粧品。 A cosmetic comprising the composition according to claim 3. TERTプロモーター若しくはSIRT1プロモーターにリポーター遺伝子が連結されたベクターを含む細胞、又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子を含む細胞に被験物質を接触させ、当該リポーター遺伝子又は内在性TERT遺伝子若しくは内在性SIRT1遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法。 A cell containing a vector in which a reporter gene is linked to a TERT promoter or SIRT1 promoter, or a cell containing an endogenous TERT gene or an endogenous SIRT1 gene is contacted with a test substance, and the reporter gene, the endogenous TERT gene or an endogenous SIRT1 gene is contacted. A method of screening a substance having at least one effect selected from the group consisting of a hair growth effect, a hair growth effect, and a skin improving effect, using the expression of the above as an index. 細胞が上皮細胞である、請求項12に記載の方法。 13. The method of claim 12, wherein the cells are epithelial cells. TERTがヒトTERTである請求項12又は13に記載の方法。 The method according to claim 12 or 13, wherein the TERT is human TERT. DNA損傷修復マーカー遺伝子を含む細胞であってDNA損傷を受けた細胞に被験物質を接触させ、当該遺伝子の発現を指標として、発毛効果、育毛効果及び皮膚改善効果からなる群から選ばれる少なくとも1つの効果を有する物質をスクリーニングする方法。 At least one selected from the group consisting of a hair-growth effect, a hair-growth effect, and a skin-improving effect, in which a test substance is brought into contact with a cell containing a DNA damage repair marker gene and having a DNA damage, and the expression of the gene is used as an index. Method for screening substances having two effects.
JP2019517742A 2017-05-12 2018-05-11 Hair growth and / or hair growth composition Pending JPWO2018207952A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017095235 2017-05-12
JP2017095235 2017-05-12
PCT/JP2018/019419 WO2018207952A1 (en) 2017-05-12 2018-05-11 Composition for hair growth and/or hair restoration

Publications (1)

Publication Number Publication Date
JPWO2018207952A1 true JPWO2018207952A1 (en) 2020-04-16

Family

ID=64105343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019517742A Pending JPWO2018207952A1 (en) 2017-05-12 2018-05-11 Hair growth and / or hair growth composition

Country Status (2)

Country Link
JP (1) JPWO2018207952A1 (en)
WO (1) WO2018207952A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115915970A (en) * 2020-06-15 2023-04-04 国立大学法人东海国立大学机构 White hair inhibitor
KR20220091869A (en) * 2020-12-24 2022-07-01 경희대학교 산학협력단 Composition for improving hair loss and promoting hair growth containing Euphrasiae herba
CN113201481B (en) * 2021-04-19 2023-10-13 清华大学深圳国际研究生院 Skin microsphere and preparation method and application thereof
CN116236425A (en) * 2021-12-07 2023-06-09 华熙生物科技股份有限公司 Composition for scalp care after hair implantation, preparation method and application thereof

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213775A (en) * 2000-02-03 2001-08-07 Pola Chem Ind Inc Stress mitigating preparation and skin care preparation including it
JP2004175731A (en) * 2002-11-28 2004-06-24 Noevir Co Ltd Skin care preparation for external use for preventing aging
JP2005206546A (en) * 2004-01-23 2005-08-04 Maruzen Pharmaceut Co Ltd Androgen receptor-binding inhibitor, hair tonic, sebum secretion inhibitor and prostatomegaly inhibitor
JP2005535614A (en) * 2002-06-25 2005-11-24 コズメシューティック ソリューションズ プロプライエタリー リミテッド Topical beauty composition
JP2005330238A (en) * 2004-05-20 2005-12-02 Advangen Inc Epigallocatechin-containing hair tonic
JP2006515590A (en) * 2002-12-27 2006-06-01 ハンコック ファーム.カンパニー インコーポレーティッド Hanazou extract having antioxidant and aging inhibitory activity, and cosmetic composition for antioxidant, skin aging inhibition and wrinkle improvement containing the same
JP2007056035A (en) * 2006-10-19 2007-03-08 Fancl Corp Differentiation inhibiting agent for normal keratinized human epithelium cell
WO2008126752A1 (en) * 2007-04-09 2008-10-23 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Skin-lightening agent containing equol compound as active ingredient
JP2009001523A (en) * 2007-06-22 2009-01-08 Maruzen Pharmaceut Co Ltd Antiandrogenic agent, hair grower and hair cosmetic
US20100076071A1 (en) * 2002-07-24 2010-03-25 Edwin Douglas Lephart Use of equol for treating skin diseases
US20110112181A1 (en) * 2007-03-12 2011-05-12 Sungkyunkwan University Foundation For Corporate Collaboration Polyphenol compounds with modulating neurotransmitter release
KR20120075766A (en) * 2010-12-29 2012-07-09 경희대학교 산학협력단 Composition for preventing hair loss or promoting hair growth
KR20130040664A (en) * 2011-10-14 2013-04-24 (주)생명의나무 A cosmetic composition comprising an extract of rhus verniciflua stokes for trichogenousness
JP2013119535A (en) * 2011-12-08 2013-06-17 Picaso Cosmetic Laboratory Ltd Hair-growing agent composition
KR20130089559A (en) * 2012-02-02 2013-08-12 주식회사 알엔에스 Anti-aging composition
JP2014504505A (en) * 2011-01-18 2014-02-24 光則 小野 Flavonol composition and method for producing the same
WO2014095289A2 (en) * 2012-12-20 2014-06-26 Unilever Plc Method of treating hair ageing
JP2015129112A (en) * 2014-11-10 2015-07-16 マイスターバイオ株式会社 Catalase expression-inducing agents
US20150359830A1 (en) * 2013-01-30 2015-12-17 The Beauty Cartel, Llc. Hair Loss Compositions and Methods of Making and Using Same
JP2016088912A (en) * 2014-11-10 2016-05-23 森永製菓株式会社 W/o/w type emulsion
KR101651833B1 (en) * 2015-07-17 2016-09-19 명지대학교 산학협력단 Composition for preventing hair loss or promoting hair growth comprising extract of citrus preicarp
JP2017014178A (en) * 2015-07-07 2017-01-19 日油株式会社 Skin Cosmetic
KR20170038449A (en) * 2015-09-30 2017-04-07 (주)아모레퍼시픽 Composition containing fisetin for promoting regeneration of skin

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209299A (en) * 2012-03-30 2013-10-10 Kose Corp Dna damage suppressant, and skin care preparation, cosmetic material and food and drink containing the same
LT3495495T (en) * 2012-11-30 2021-02-25 Geron Corporation Diagnostic markers for treating cell proliferative disorders with telomerase inhibitors
JP6403039B2 (en) * 2013-11-19 2018-10-10 国立大学法人九州大学 Activator of SIRT3 and SIRT6
JP2015178485A (en) * 2014-02-25 2015-10-08 株式会社コーセー Hair restoration composition
JP6927660B2 (en) * 2015-08-21 2021-09-01 共栄化学工業株式会社 Topical skin composition and oral composition
JP2017048141A (en) * 2015-09-01 2017-03-09 株式会社シャンソン化粧品 Composition comprising resveratrol
KR102139659B1 (en) * 2015-12-08 2020-07-30 주식회사 엘지생활건강 Composition for improving the skin

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001213775A (en) * 2000-02-03 2001-08-07 Pola Chem Ind Inc Stress mitigating preparation and skin care preparation including it
JP2005535614A (en) * 2002-06-25 2005-11-24 コズメシューティック ソリューションズ プロプライエタリー リミテッド Topical beauty composition
US20100076071A1 (en) * 2002-07-24 2010-03-25 Edwin Douglas Lephart Use of equol for treating skin diseases
JP2004175731A (en) * 2002-11-28 2004-06-24 Noevir Co Ltd Skin care preparation for external use for preventing aging
JP2006515590A (en) * 2002-12-27 2006-06-01 ハンコック ファーム.カンパニー インコーポレーティッド Hanazou extract having antioxidant and aging inhibitory activity, and cosmetic composition for antioxidant, skin aging inhibition and wrinkle improvement containing the same
JP2005206546A (en) * 2004-01-23 2005-08-04 Maruzen Pharmaceut Co Ltd Androgen receptor-binding inhibitor, hair tonic, sebum secretion inhibitor and prostatomegaly inhibitor
JP2005330238A (en) * 2004-05-20 2005-12-02 Advangen Inc Epigallocatechin-containing hair tonic
JP2007056035A (en) * 2006-10-19 2007-03-08 Fancl Corp Differentiation inhibiting agent for normal keratinized human epithelium cell
US20110112181A1 (en) * 2007-03-12 2011-05-12 Sungkyunkwan University Foundation For Corporate Collaboration Polyphenol compounds with modulating neurotransmitter release
WO2008126752A1 (en) * 2007-04-09 2008-10-23 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Skin-lightening agent containing equol compound as active ingredient
JP2009001523A (en) * 2007-06-22 2009-01-08 Maruzen Pharmaceut Co Ltd Antiandrogenic agent, hair grower and hair cosmetic
KR20120075766A (en) * 2010-12-29 2012-07-09 경희대학교 산학협력단 Composition for preventing hair loss or promoting hair growth
JP2014504505A (en) * 2011-01-18 2014-02-24 光則 小野 Flavonol composition and method for producing the same
KR20130040664A (en) * 2011-10-14 2013-04-24 (주)생명의나무 A cosmetic composition comprising an extract of rhus verniciflua stokes for trichogenousness
JP2013119535A (en) * 2011-12-08 2013-06-17 Picaso Cosmetic Laboratory Ltd Hair-growing agent composition
KR20130089559A (en) * 2012-02-02 2013-08-12 주식회사 알엔에스 Anti-aging composition
WO2014095289A2 (en) * 2012-12-20 2014-06-26 Unilever Plc Method of treating hair ageing
US20150359830A1 (en) * 2013-01-30 2015-12-17 The Beauty Cartel, Llc. Hair Loss Compositions and Methods of Making and Using Same
JP2015129112A (en) * 2014-11-10 2015-07-16 マイスターバイオ株式会社 Catalase expression-inducing agents
JP2016088912A (en) * 2014-11-10 2016-05-23 森永製菓株式会社 W/o/w type emulsion
JP2017014178A (en) * 2015-07-07 2017-01-19 日油株式会社 Skin Cosmetic
KR101651833B1 (en) * 2015-07-17 2016-09-19 명지대학교 산학협력단 Composition for preventing hair loss or promoting hair growth comprising extract of citrus preicarp
KR20170038449A (en) * 2015-09-30 2017-04-07 (주)아모레퍼시픽 Composition containing fisetin for promoting regeneration of skin

Also Published As

Publication number Publication date
WO2018207952A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Weng et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies
Yu et al. Membrane receptor‐dependent N otch1/H es1 activation by melatonin protects against myocardial ischemia–reperfusion injury: in vivo and in vitro studies
Farahzadi et al. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways
JPWO2018207952A1 (en) Hair growth and / or hair growth composition
Ramirez et al. Vitamin D inhibition of pro-fibrotic effects of transforming growth factor β1 in lung fibroblasts and epithelial cells
Neviani et al. PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells
Williamson et al. AMPK inhibits myoblast differentiation through a PGC-1α-dependent mechanism
US20170267970A1 (en) Three-Dimensional Hydrogels that Support Growth of Physiologically Relevant Tissue and Methods of Use Thereof
EP2873727A1 (en) Brown fat cells and method for preparing same
JP7419347B2 (en) Improved methods for inducing tissue regeneration and senolysis in mammalian cells
Kwon et al. Human placental extract exerts hair growth-promoting effects through the GSK-3β signaling pathway in human dermal papilla cells
Che et al. Functional TRPV2 and TRPV4 channels in human cardiac c‐kit+ progenitor cells
Assis et al. RG108 increases NANOG and OCT4 in bone marrow-derived mesenchymal cells through global changes in DNA modifications and epigenetic activation
Bussolati et al. Renal CD133+/CD73+ progenitors produce erythropoietin under hypoxia and prolyl hydroxylase inhibition
Zhou et al. Magnolol prevents ossified tendinopathy by inhibiting PGE2-induced osteogenic differentiation of TDSCs
Piwkowska et al. High glucose increases glomerular filtration barrier permeability by activating protein kinase G type Iα subunits in a Nox4-dependent manner
Bak et al. Protective effects of human umbilical cord blood‑derived mesenchymal stem cells against dexamethasone‑induced apoptotic cell death in hair follicles
Choi et al. Regulation of ROS-independent ERK signaling rescues replicative cellular senescence in ex vivo expanded human c-kit-positive cardiac progenitor cells
US20200352954A1 (en) Methods of treating age-related symptoms in mammals and compositions therefor
CN110904107B (en) Application of human TMEFF1 gene and related product
Kim et al. Keap1 knockdown in melanocytes induces cell proliferation and survival via HO-1-associated β-catenin signaling
Paduano et al. A Dedifferentiation Strategy to Enhance the Osteogenic Potential of Dental Derived Stem Cells
TWI713590B (en) Method and composition for treatment of hair loss
EP3901252A1 (en) Composition for removing pluripotent stem cells and method of removing pluripotent stem cells
Jadkauskaite Activity of Nrf2 in the human hair follicle: understanding Dkk-1 and mast cells regulation by Nrf2

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A801

Effective date: 20191029

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20191029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220426