JPWO2018181593A1 - Copper plate material for insulating substrate with copper plate and method of manufacturing the same - Google Patents
Copper plate material for insulating substrate with copper plate and method of manufacturing the same Download PDFInfo
- Publication number
- JPWO2018181593A1 JPWO2018181593A1 JP2018540895A JP2018540895A JPWO2018181593A1 JP WO2018181593 A1 JPWO2018181593 A1 JP WO2018181593A1 JP 2018540895 A JP2018540895 A JP 2018540895A JP 2018540895 A JP2018540895 A JP 2018540895A JP WO2018181593 A1 JPWO2018181593 A1 JP WO2018181593A1
- Authority
- JP
- Japan
- Prior art keywords
- copper plate
- copper
- heat treatment
- insulating substrate
- plate material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010949 copper Substances 0.000 title claims abstract description 112
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 110
- 239000000463 material Substances 0.000 title claims abstract description 86
- 239000000758 substrate Substances 0.000 title claims abstract description 46
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000013078 crystal Substances 0.000 claims abstract description 71
- 238000005096 rolling process Methods 0.000 claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims abstract description 17
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 238000001887 electron backscatter diffraction Methods 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 13
- 229910052790 beryllium Inorganic materials 0.000 claims abstract description 13
- 229910052793 cadmium Inorganic materials 0.000 claims abstract description 13
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 13
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 13
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 13
- 229910052718 tin Inorganic materials 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000005315 distribution function Methods 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 47
- 238000000137 annealing Methods 0.000 claims description 23
- 238000005097 cold rolling Methods 0.000 claims description 22
- 238000001816 cooling Methods 0.000 claims description 21
- 238000005098 hot rolling Methods 0.000 claims description 10
- 238000005266 casting Methods 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 4
- 238000005498 polishing Methods 0.000 claims description 4
- 238000012360 testing method Methods 0.000 description 18
- 239000000919 ceramic Substances 0.000 description 16
- 238000000034 method Methods 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 238000005304 joining Methods 0.000 description 6
- 239000012535 impurity Substances 0.000 description 5
- 229910000881 Cu alloy Inorganic materials 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000001036 glow-discharge mass spectrometry Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B37/00—Joining burned ceramic articles with other burned ceramic articles or other articles by heating
- C04B37/02—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
- C04B37/021—Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/08—Alloys based on copper with lead as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2237/00—Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
- C04B2237/30—Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
- C04B2237/40—Metallic
- C04B2237/407—Copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
本発明の銅板付き絶縁基板用銅板材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、EBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満である圧延集合組織を有する。The copper plate material for an insulating substrate with a copper plate of the present invention has a total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm. , Having a composition in which the copper content is 99.96 mass% or more, and expressing the crystal orientation distribution function obtained from the texture analysis by EBSD as Euler angles (φ1, φ, φ2), φ2 = 0 °, φ1 = 0 °, the average value of the azimuth density in the range of φ = 0 ° to 90 ° is 3.0 or more and less than 35.0, and φ2 = 35 °, φ1 = 45 ° to 55 °, It has a rolling texture in which the maximum value of the orientation density in the range of Φ = 65 ° to 80 ° is 1.0 or more and less than 30.0.
Description
本発明は、銅板付き絶縁基板用銅板材、特にパワーデバイスの銅板付き絶縁基板に好適な銅板材及びその製造方法に関する。 The present invention relates to a copper plate material for an insulating substrate with a copper plate, and particularly to a copper plate material suitable for an insulating substrate with a copper plate of a power device and a method of manufacturing the same.
一般に、パワーデバイスは高電圧・大電流を使用するため、多くの熱が発生し、それに伴う材料の劣化が課題となっている。そこで、近年、絶縁性及び放熱性に優れたセラミック基板を銅板に接合した銅板付き絶縁基板を用いることによって、絶縁・放熱対策が行われてきている。 In general, a power device uses a high voltage and a large current, so that a large amount of heat is generated, and there is a problem of deterioration of the material accompanying the heat. Therefore, in recent years, insulation and heat dissipation measures have been taken by using an insulating substrate with a copper plate in which a ceramic substrate having excellent insulating properties and heat dissipation properties is joined to a copper plate.
セラミック基板と銅板との接合方法には、主に、銀系ろう材等を介して接合する接合方法、または、ろう材を介さずに銅の共晶反応を利用して接合する接合方法が用いられているが、いずれも700℃以上の高温での熱処理が必要である。また、セラミック基板には、窒化アルミニウム、アルミナ、窒化ケイ素等が用いられているが、これらの熱膨張係数は、銅板を構成する銅の熱膨張係数と異なる。そのため、セラミック基板と銅板とを高温下で接合する際に、熱膨張係数の差によって絶縁基板全体に大きなひずみが生じる傾向にある。また、セラミック基板と銅板材とでは、銅板材の方が高い熱膨張率を有するため、熱処理を行うと、セラミック基板には引張応力が加わり、銅板材には圧縮応力が加わる。これにより、絶縁基板全体が変形して寸法変化が生じるだけでなく、セラミック基板と銅板材との剥離等が生じやすくなる。さらに、銅板材に用いられる高純度の銅は、700℃以上の高温では結晶粒が著しく成長し、組織の均質化が困難になる。そのため、ボンディング性が低下し、ひずみが生じた際に粒界破壊の起点になるといった問題がある。 For the joining method of the ceramic substrate and the copper plate, mainly, a joining method of joining via a silver brazing material or a joining method utilizing a eutectic reaction of copper without using a brazing material is used. However, in each case, heat treatment at a high temperature of 700 ° C. or more is required. In addition, aluminum nitride, alumina, silicon nitride, and the like are used for the ceramic substrate, but their thermal expansion coefficients are different from those of copper constituting the copper plate. Therefore, when the ceramic substrate and the copper plate are joined at a high temperature, a large strain tends to be generated on the entire insulating substrate due to a difference in thermal expansion coefficient. In addition, since the copper plate has a higher coefficient of thermal expansion between the ceramic substrate and the copper plate, when heat treatment is performed, a tensile stress is applied to the ceramic substrate and a compressive stress is applied to the copper plate. As a result, not only the entire insulating substrate is deformed and a dimensional change is caused, but also the separation between the ceramic substrate and the copper plate material is liable to occur. Further, in high-purity copper used for a copper plate material, crystal grains grow remarkably at a high temperature of 700 ° C. or more, and it becomes difficult to homogenize the structure. For this reason, there is a problem that the bonding property is deteriorated, and when strain occurs, it becomes a starting point of grain boundary destruction.
例えば、特許文献1には、放熱基板に用いられる純銅板として、純度99.90mass%以上の純銅からなり、X線回析強度の比率を特定した純銅板が開示されている。また、特許文献2には、放熱用電子部品及び大電流用電子部品等に好適な銅合金板として、引張強さが350MPa以上であり、所定位置の結晶方位の集積度を制御した銅合金板が開示されている。
For example,
しかしながら、特許文献1に開示されている純銅板は、エッチングによって表面に凹凸が生じにくいため他の部材との密着性が優れているとされているが、高温下での他の部材との接合に関しては全く検討されていない。また、特許文献2に開示されている銅合金板は、耐熱性に関して検討されているが、200℃で30分間の熱処理による耐熱性しか考慮されていない。さらに、特許文献2に開示されている銅合金板は、引張強さが350MPa以上であり、銅板付き絶縁基板に用いる銅板材として適切な150〜330MPaの範囲に対応していない。
However, the pure copper plate disclosed in
そこで、本発明の目的は、圧延方向から板幅方向にかけて連続的に縦弾性係数が低く、さらに引張強度及び導電率に優れ、高温で熱処理(例えば、700℃以上800℃以下で10分以上5時間以下の熱処理)を行った際に結晶粒の成長が抑制される銅板付き絶縁基板用銅板材、及びその製造方法を提供することにある。 Therefore, an object of the present invention is to continuously reduce the longitudinal modulus from the rolling direction to the sheet width direction, furthermore, to excel in tensile strength and electrical conductivity, and to heat-treat at a high temperature (for example, at 700 ° C to 800 ° C for 10 minutes to 5 minutes). It is an object of the present invention to provide a copper plate material for an insulating substrate with a copper plate in which the growth of crystal grains is suppressed when heat treatment for not more than time is performed, and a method for producing the same.
本発明者らは、銅板材の縦弾性係数を制御し、かつ700℃以上の高温における結晶粒の成長を抑制することによって、銅板材とセラミック基板との接合において、銅板材とセラミック基板との熱膨張係数の差によって生じる基板全体の負荷応力を低減し、また結晶粒の成長による組織の不均質化とボンディング性の低下を抑制できることを見出した。 The present inventors controlled the longitudinal modulus of elasticity of the copper sheet material and suppressed the growth of crystal grains at a high temperature of 700 ° C. or higher, so that the copper sheet material and the ceramic substrate could be joined at the time of joining the copper sheet material and the ceramic substrate. It has been found that the stress applied to the entire substrate caused by the difference in the thermal expansion coefficient can be reduced, and the inhomogeneity of the structure due to the growth of crystal grains and the decrease in the bonding property can be suppressed.
すなわち、本発明の要旨構成は以下のとおりである。
(1)Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、EBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満である圧延集合組織を有する、銅板付き絶縁基板用銅板材。
(2)前記銅の含有量が99.99mass%以上であり、かつ、縦弾性係数の平均値が115GPa以下であり、前記縦弾性係数は、圧延方向、板幅方向、及びこれらの間の方向で測定される、(1)に記載の銅板付き絶縁基板用銅板材。
(3)平均結晶粒径が3μm〜100μmである、(1)又は(2)に記載の銅板付き絶縁基板用銅板材。
(4)700〜800℃で10分〜5時間の熱履歴を受けた状態で、平均結晶粒径が50μm〜200μmである、(1)から(3)のいずれかに記載の銅板付き絶縁基板用銅板材。
(5)引張強度が150〜330MPaであり、かつ、導電率が95%IACS以上である、(1)から(4)のいずれかに記載の銅板付き絶縁基板用銅板材。
(6)(1)から(5)のいずれかに記載の銅板付き絶縁基板用銅板材の製造方法であって、
前記組成を有する銅素材を鋳造して得られた鋳塊に対して均質化熱処理を行う均質化熱処理工程と、
該均質化熱処理工程後に、熱間圧延を行う熱間圧延工程と、
該熱間圧延工程後に、冷却を行う冷却工程と、
該冷却工程後の被圧延材の両面を面削する面削工程と、
該面削工程後に、総加工率が75%以上である冷間圧延を行う第1冷間圧延工程と、
該第1冷間圧延工程後に、昇温速度が1〜100℃/秒、到達温度が100〜500℃、保持時間が1〜900秒、かつ、冷却速度が1〜50℃/秒である条件で熱処理を施す第1焼鈍工程と、
該第1焼鈍工程後に、総加工率が60〜95%である冷間圧延を行う第2冷間圧延工程と、
該第2冷間圧延工程後に、昇温速度が10〜100℃/秒、到達温度が200〜550℃、保持時間が10〜3600秒、かつ、冷却速度が10〜100℃/秒である条件で熱処理を施す第2焼鈍工程と、
該第2焼鈍工程後に、さらなる圧延を行う仕上げ圧延工程と、
該仕上げ圧延工程後に、最終熱処理を施す最終焼鈍工程と、
該最終焼鈍工程後に、酸洗及び研磨を行う表面酸化膜除去工程と、
を含む、銅板付き絶縁基板用銅板材の製造方法。That is, the gist configuration of the present invention is as follows.
(1) The total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr is 0.1 to 2.0 ppm, and the copper content is 99.96 mass. %, And when the crystal orientation distribution function obtained from the texture analysis by EBSD is represented by Euler angles (φ1, φ, φ2), φ2 = 0 °, φ1 = 0 °, φ The average value of the azimuth density in the range of = 0 ° to 90 ° is not less than 3.0 and less than 35.0, and is in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 °. The copper plate material for an insulating substrate with a copper plate, having a rolled texture in which the maximum value of the orientation density is 1.0 or more and less than 30.0.
(2) The content of the copper is 99.99 mass% or more, and the average value of the longitudinal elastic modulus is 115 GPa or less, and the longitudinal elastic modulus is a rolling direction, a sheet width direction, and a direction therebetween. The copper plate material for an insulating substrate with a copper plate according to (1), which is measured by:
(3) The copper plate material for an insulating substrate with a copper plate according to (1) or (2), wherein the average crystal grain size is 3 μm to 100 μm.
(4) The insulating substrate with a copper plate according to any one of (1) to (3), wherein the average crystal grain size is 50 μm to 200 μm under a heat history of 700 to 800 ° C. for 10 minutes to 5 hours. Copper plate material.
(5) The copper plate material for an insulating substrate with a copper plate according to any one of (1) to (4), wherein the tensile strength is 150 to 330 MPa and the conductivity is 95% IACS or more.
(6) The method for producing a copper plate material for an insulating substrate with a copper plate according to any one of (1) to (5),
A homogenizing heat treatment step of performing a homogenizing heat treatment on the ingot obtained by casting the copper material having the composition,
After the homogenizing heat treatment step, a hot rolling step of performing hot rolling,
After the hot rolling step, a cooling step of cooling,
A facing step of facing both sides of the material to be rolled after the cooling step,
After the facing step, a first cold rolling step of performing cold rolling with a total working ratio of 75% or more;
After the first cold rolling step, conditions in which the temperature raising rate is 1 to 100 ° C./second, the reached temperature is 100 to 500 ° C., the holding time is 1 to 900 seconds, and the cooling rate is 1 to 50 ° C./second A first annealing step of performing a heat treatment at
After the first annealing step, a second cold rolling step of performing cold rolling with a total working ratio of 60 to 95%,
After the second cold rolling step, conditions in which the temperature rising rate is 10 to 100 ° C./sec, the reached temperature is 200 to 550 ° C., the holding time is 10 to 3600 seconds, and the cooling rate is 10 to 100 ° C./sec. A second annealing step of performing a heat treatment at
After the second annealing step, a finish rolling step of performing further rolling,
After the finish rolling step, a final annealing step of performing a final heat treatment,
After the final annealing step, a surface oxide film removing step of performing pickling and polishing,
A method for producing a copper plate material for an insulating substrate with a copper plate, comprising:
本発明によれば、圧延方向から板幅方向にかけて連続的に縦弾性係数が低く、さらに引張強度及び導電率に優れ、高温で熱処理(例えば、700℃以上800℃以下で10分以上5時間以下の熱処理)を行った際に結晶粒の成長が抑制される銅板付き絶縁基板用銅板材、及びその製造方法を提供することができる。 According to the present invention, the longitudinal modulus is continuously low from the rolling direction to the sheet width direction, the tensile strength and the electrical conductivity are excellent, and the heat treatment is performed at a high temperature (for example, at 700 ° C to 800 ° C for 10 minutes to 5 hours). Heat treatment), a copper plate material for an insulating substrate with a copper plate, in which the growth of crystal grains is suppressed, and a method for manufacturing the same.
以下、本発明の銅板材の好ましい実施形態について、詳細に説明する。尚、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, preferred embodiments of the copper plate material of the present invention will be described in detail. In addition, the numerical range represented by using “to” means a range including the numerical values described before and after “to” as the lower limit and the upper limit.
本発明の銅板材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有し、かつ、EBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満である圧延集合組織を有する。 In the copper plate material of the present invention, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr is 0.1 to 2.0 ppm, and the copper content is Is 99.96 mass% or more, and when the crystal orientation distribution function obtained from the texture analysis by EBSD is represented by Euler angles (φ1, φ, φ2), φ2 = 0 °, φ1 = The average value of the azimuth density in the range of 0 °, Φ = 0 ° to 90 ° is 3.0 or more and less than 35.0, and φ2 = 35 °, φ1 = 45 ° to 55 °, Φ = 65 ° to It has a rolling texture in which the maximum value of the orientation density in the range of 80 ° is 1.0 or more and less than 30.0.
銅材料とは、(加工前であって所定の組成を有する)銅素材が所定の形状(例えば、板、条、箔、棒、線など)に加工されていることを意味する。その中で、「板材」とは、特定の厚みを有し形状的に安定しており面方向に広がりを持つ材料を指し、広義には条材を含む。本発明において、銅板材の厚さは、特に限定されるものではないが、好ましくは0.05〜7.0mm、より好ましくは0.1〜6.0mmである。 The copper material means that a copper material (before processing and having a predetermined composition) is processed into a predetermined shape (for example, a plate, a strip, a foil, a bar, a wire, and the like). Among them, the “plate material” refers to a material having a specific thickness, being stable in shape, and spreading in the surface direction, and includes a strip material in a broad sense. In the present invention, the thickness of the copper plate material is not particularly limited, but is preferably 0.05 to 7.0 mm, and more preferably 0.1 to 6.0 mm.
[成分組成]
銅の含有量は、99.96mass%以上であり、好ましくは99.99mass%以上である。銅の含有量が99.96mass%未満であると、熱伝導率が低下し、所望する放熱性が得られない。また、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppmであり、0.1〜1.0ppmであることが好ましい。これらの金属成分の合計含有量の下限値は、特に限定されるものではないが、不可避的不純物を考慮し、0.1ppmである。一方、これらの金属成分の合計含有量が2.0ppmを超えると、所望の方位密度が得られない。また、銅板材には、銅、並びに、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分以外に、残部として不可避的不純物が含まれていてもよい。不可避的不純物は、製造工程上、不可避的に含まれうる含有レベルの不純物を意味する。[Component composition]
The copper content is at least 99.99 mass%, preferably at least 99.99 mass%. When the content of copper is less than 99.96 mass%, the thermal conductivity is reduced, and a desired heat radiation property cannot be obtained. Further, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr is 0.1 to 2.0 ppm, and 0.1 to 1.0 ppm. It is preferred that The lower limit of the total content of these metal components is not particularly limited, but is 0.1 ppm in consideration of unavoidable impurities. On the other hand, if the total content of these metal components exceeds 2.0 ppm, a desired orientation density cannot be obtained. In addition, the copper plate material contains unavoidable impurities as a balance other than copper and metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr. Is also good. The unavoidable impurity means an impurity of a content level that can be unavoidably included in a manufacturing process.
銅以外の上記金属成分の定量分析には、GDMS法を用いることができる。GDMS法とは、Glow Discharge Mass Spectrometryの略であり、具体的には、固体試料を陰極としグロー放電を用いて試料表面をスパッタし、放出された中性粒子をプラズマ内のArや電子と衝突させることによってイオン化させ、質量分析器でイオン数を計測することで、金属に含まれる極微量元素の割合を解析する技術である。 The GDMS method can be used for quantitative analysis of the above metal components other than copper. The GDMS method is an abbreviation of Glow Discharge Mass Spectrometry. Specifically, a solid sample is used as a cathode, the sample surface is sputtered using a glow discharge, and the emitted neutral particles collide with Ar and electrons in the plasma. This is a technique for analyzing the ratio of trace elements contained in metal by measuring the number of ions with a mass spectrometer.
[圧延集合組織]
本発明の銅板材は、圧延集合組織を有し、この圧延集合組織は、EBSDによる集合組織解析から得られた結晶方位分布関数(ODF:crystal orientation distribution function)をオイラー角(φ1、Φ、φ2)で表したとき、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満、好ましくは15以下であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満、好ましくは10以上である。圧延方向をRD方向、板幅方向(RD方向に対して直交する方向)をTD方向、圧延面(RD面)に対して垂直な方向をND方向としたとき、RD方向を軸とした方位回転がΦ、ND方向を軸とした方位回転がφ1、TD方向を軸とした方位回転がφ2として表される。方位密度は、集合組織における結晶方位の存在比率及び分散状態を定量的に解析する際に用いられるパラメータであり、EBSD及びX線回折を行い、(100)、(110)、(112)等の3種類以上の正極点図の測定データに基づいて、級数展開法による結晶方位分布解析法により算出される。EBSDによる集合組織解析から得られる、φ2を所定の角度で固定した断面図において、RD面内での方位密度の分布が示される。[Rolled texture]
The copper plate material of the present invention has a rolled texture, and the rolled texture is obtained by converting a crystal orientation distribution function (ODF) obtained from texture analysis by EBSD into Euler angles (φ1, φ, φ2). ), The average value of the azimuth density in the range of φ2 = 0 °, φ1 = 0 °, φ = 0 ° to 90 ° is 3.0 or more and less than 35.0, preferably 15 or less, and The maximum value of the azimuth density in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 ° is 1.0 or more and less than 30.0, and preferably 10 or more. When the rolling direction is the RD direction, the sheet width direction (the direction perpendicular to the RD direction) is the TD direction, and the direction perpendicular to the rolling surface (RD surface) is the ND direction, the azimuth rotation about the RD direction as an axis. , Azimuth rotation about the ND direction as φ1, and azimuth rotation about the TD direction as φ2. Orientation density is a parameter used when quantitatively analyzing the abundance ratio and dispersion state of the crystal orientation in the texture, and performs EBSD and X-ray diffraction to obtain (100), (110), (112), and the like. It is calculated by a crystal orientation distribution analysis method by a series expansion method based on measurement data of three or more types of positive electrode point diagrams. In a cross-sectional view obtained by texture analysis by EBSD and fixing φ2 at a predetermined angle, the distribution of azimuth density in the RD plane is shown.
図1(A)及び(B)は、本発明の銅板材の圧延集合組織をEBSDで解析した結果を示す図である。図1(A)はφ2=0°の断面図であり、図1(B)は、φ2=35°の断面図である。結晶方位分布がランダムな状態を、方位密度が1であるとし、それに対して何倍の集積となっているかが等高線で表されている。図1(A)及び(B)では、白い部分は方位密度が高く、黒い部分は方位密度が低いことを示し、灰色の部分は白に近いほど方位密度が高いことを示している。 FIGS. 1A and 1B are diagrams showing the results of analyzing the rolling texture of the copper sheet material of the present invention by EBSD. FIG. 1A is a cross-sectional view at φ2 = 0 °, and FIG. 1B is a cross-sectional view at φ2 = 35 °. A state in which the crystal orientation distribution is random is assumed to be one in which the orientation density is 1, and the number of accumulations with respect to the orientation density is represented by a contour line. 1A and 1B, a white portion indicates a high azimuth density, a black portion indicates a low azimuth density, and a gray portion indicates that the azimuth density is higher as the color is closer to white.
本発明では、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満であることにより、700℃以上の高温でも結晶粒の成長が抑制される。Φ=0°の範囲における方位密度の平均値が3.0未満であると、700℃以上の高温では、結晶粒が粒径300μm以上に著しく成長し、ボンディング性の低下や熱膨張時の負荷が大きくなる。一方、Φ=0°の範囲における方位密度の平均値が35.0以上であると、板材の強度が低下し、銅板付き絶縁基板用銅板材として使用した場合、変形が生じやすくなる。また、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が30.0以上であると、板材の強度が低下し、銅板付き絶縁基板用銅板材として使用した場合、変形が生じやすくなる。なお、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度は全体的に高いが、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度は局所的に高い。そこで、前者については、平均値を規定し、後者については、最大値を規定している。 In the present invention, the average value of the azimuth density in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° is 3.0 or more and less than 35.0, and φ2 = 35 ° and φ1 = When the maximum value of the azimuth density in the range of 45 ° to 55 ° and Φ = 65 ° to 80 ° is 1.0 or more and less than 30.0, the growth of crystal grains is suppressed even at a high temperature of 700 ° C or more. If the average value of the orientation density in the range of Φ = 0 ° is less than 3.0, at a high temperature of 700 ° C. or more, the crystal grains grow remarkably to a grain size of 300 μm or more, and the bonding property decreases and the load during thermal expansion decreases. Becomes larger. On the other hand, when the average value of the azimuth density in the range of Φ = 0 ° is 35.0 or more, the strength of the plate material is reduced, and when used as a copper plate material for an insulating substrate with a copper plate, deformation is likely to occur. When the maximum value of the azimuth density in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 ° is 30.0 or more, the strength of the plate material decreases, and the insulating substrate with a copper plate is provided. When it is used as a copper plate material for use, deformation tends to occur. The azimuth density in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° is generally high, but φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80. The orientation density in the range of ° is locally high. Therefore, an average value is defined for the former, and a maximum value is defined for the latter.
EBSD法とは、Electron BackScatter Diffractionの略であり、具体的には、走査電子顕微鏡(SEM)内で試料に電子線を照射したときに生じる反射電子を利用した結晶方位解析技術である。EBSDによる解析の際、測定面積およびスキャンステップは、試料の結晶粒の大きさに応じて決定すればよい。測定後の結晶粒の解析には、例えば、TSL社製の解析ソフトOIM Analysis(商品名)を用いることができる。EBSDによる結晶粒の解析において得られる情報は、電子線が試料に侵入する数10nmの深さまでの情報を含んでいる。板厚方向の測定箇所は、試料表面から板厚の1/8倍〜1/2倍の位置付近とすることが好ましい。
The EBSD method is an abbreviation of Electron Backscatter Diffraction, and specifically, is a crystal orientation analysis technology using reflected electrons generated when a sample is irradiated with an electron beam in a scanning electron microscope (SEM). In the analysis by EBSD, the measurement area and the scan step may be determined according to the size of the crystal grain of the sample. For analysis of the crystal grains after measurement, for example, analysis software OIM Analysis (trade name) manufactured by TSL can be used. Information obtained in the analysis of crystal grains by EBSD includes information up to a depth of several tens of nanometers at which an electron beam penetrates a sample. It is preferable that the measurement point in the plate thickness direction is near a
[縦弾性係数]
縦弾性係数の平均値は、115GPa以下であることが好ましく、110GPa以下であることがより好ましい。また、縦弾性係数の平均値の下限値は、80GPa以上であることが好ましい。縦弾性係数は、RD方向、TD方向、及びこれらの間の方向で測定される。具体的に、縦弾性係数の平均値は、RD方向からTD方向に向かって所定の角度(例えば、10°)ずつ回転した、それぞれの方向での縦弾性係数を算出した後、それらの平均値を算出することにより得られる。上記範囲で測定した縦弾性係数の平均値が115GPaを超えると、絶縁基板と接合するために熱処理を行う場合に熱膨張による負荷応力が高くなる傾向になる。[Longitudinal modulus]
The average value of the modulus of longitudinal elasticity is preferably 115 GPa or less, more preferably 110 GPa or less. The lower limit of the average value of the longitudinal elastic modulus is preferably 80 GPa or more. The modulus of longitudinal elasticity is measured in the RD direction, the TD direction, and a direction therebetween. Specifically, the average value of the modulus of longitudinal elasticity is calculated by calculating the modulus of longitudinal elasticity in each direction rotated by a predetermined angle (for example, 10 °) from the RD direction to the TD direction, and then calculates the average value of the calculated values. Is calculated. If the average value of the longitudinal elastic modulus measured in the above range exceeds 115 GPa, the load stress due to thermal expansion tends to increase when heat treatment is performed to join the insulating substrate.
[平均結晶粒径]
本発明の銅板材において、平均結晶粒径は3μm〜100μmであることが好ましく、10μm〜90μm以下であることがより好ましい。平均結晶粒径が3μm未満であると、十分な結晶方位制御ができない場合がある。一方、平均結晶粒径が100μmを超えると、引張強度が低下する傾向にある。また、700〜800℃で10分〜5時間の熱履歴を受けた状態で、平均結晶粒径は50μm〜200μmであることが好ましいく、120μm以上であることがより好ましい。熱履歴を受けた状態における平均結晶粒径が200μmを超えると、ボンディング性の低下、熱膨張時の負荷が大きくなる。なお、結晶粒径は、銅板材のRD面におけるEBSD解析により測定することができる。熱履歴を受けた状態における結晶粒径も、銅板材に対して熱処理を行った後、同様の方法で測定することができる。[Average crystal grain size]
In the copper plate material of the present invention, the average crystal grain size is preferably from 3 μm to 100 μm, more preferably from 10 μm to 90 μm. If the average crystal grain size is less than 3 μm, sufficient crystal orientation control may not be performed. On the other hand, when the average crystal grain size exceeds 100 μm, the tensile strength tends to decrease. Further, under a heat history of 10 minutes to 5 hours at 700 to 800 ° C., the average crystal grain size is preferably 50 μm to 200 μm, and more preferably 120 μm or more. If the average crystal grain size in the state subjected to the thermal history exceeds 200 μm, the bonding property decreases and the load during thermal expansion increases. Note that the crystal grain size can be measured by EBSD analysis on the RD plane of the copper sheet material. The crystal grain size in the state of having received the heat history can be measured by the same method after performing the heat treatment on the copper plate material.
[特性]
本発明の銅板材において、引張強度は150〜330MPaであることが好ましく、190MPa以上であることが好ましい。引張強度が150MPa未満であると、強度が不十分であり、引張強度が330MPaを超えると、伸び、加工性が低下する傾向にある。また、導電率は95%IACS以上であることが好ましい。導電率が95%未満であると、熱伝導率が低下し、その結果、放熱性が劣化する傾向にある。[Characteristic]
In the copper plate material of the present invention, the tensile strength is preferably 150 to 330 MPa, and more preferably 190 MPa or more. If the tensile strength is less than 150 MPa, the strength is insufficient, and if the tensile strength exceeds 330 MPa, elongation and workability tend to decrease. Further, the conductivity is preferably 95% IACS or more. If the electrical conductivity is less than 95%, the thermal conductivity tends to decrease, and as a result, the heat dissipation tends to deteriorate.
本発明の銅板材は、公知のセラミック基板と接合して積層体とすることができる。銅板材とセラミック基板との接合方法は、特に限定されないが、通常、銅板材とセラミック基板とは700℃以上の高温下で接合される。本発明の銅板材は、高温で熱処理(例えば、700℃以上800℃以下で10分以上5時間以下の熱処理)を行った際に結晶粒の成長が抑制されるため、セラミック基板と接合して積層体とした場合に、セラミック基板との接合部分において剥離等が生じにくい。したがって、本発明の銅板材は銅板付き絶縁基板用として優れている。 The copper plate material of the present invention can be joined to a known ceramic substrate to form a laminate. The method of joining the copper plate and the ceramic substrate is not particularly limited, but usually, the copper plate and the ceramic substrate are joined at a high temperature of 700 ° C. or higher. Since the growth of crystal grains is suppressed when the copper plate material of the present invention is subjected to heat treatment at a high temperature (for example, heat treatment at 700 ° C. to 800 ° C. for 10 minutes to 5 hours), it is bonded to a ceramic substrate. In the case of a laminate, peeling or the like is less likely to occur at a joint portion with the ceramic substrate. Therefore, the copper plate material of the present invention is excellent for an insulating substrate with a copper plate.
[銅板材の製造方法]
次に、本発明の銅板材の製造方法の一例を説明する。[Production method of copper plate material]
Next, an example of the method for producing a copper plate material of the present invention will be described.
本発明に係る銅板材の製造方法では、溶解・鋳造工程[工程1]、均質化熱処理工程[工程2]、熱間圧延工程[工程3]、冷却工程[工程4]、面削工程[工程5]、第1冷間圧延工程[工程6]、第1焼鈍工程[工程7]、第2冷間圧延工程[工程8]、第2焼鈍工程[工程9]、仕上げ圧延工程[工程10]、最終焼鈍工程[工程11]、表面酸化膜除去工程[工程12]を含み、これらの工程から構成される処理が順次行われる。本発明では、特に、第1冷間圧延工程[工程6]と第1焼鈍工程[工程7]と第2焼鈍工程[工程9]の条件を適切に制御することにより、銅板材のRD方向からTD方向にかけて連続的に縦弾性係数が低く、さらに、引張強度及び導電率に優れた銅板材が得られる。 In the method for producing a copper sheet material according to the present invention, a melting / casting step [step 1], a homogenizing heat treatment step [step 2], a hot rolling step [step 3], a cooling step [step 4], a facing step [step] 5], first cold rolling step [step 6], first annealing step [step 7], second cold rolling step [step 8], second annealing step [step 9], finish rolling step [step 10]. And a final annealing step [Step 11] and a surface oxide film removing step [Step 12], and the processing composed of these steps is sequentially performed. In the present invention, in particular, by appropriately controlling the conditions of the first cold rolling step [Step 6], the first annealing step [Step 7], and the second annealing step [Step 9], from the RD direction of the copper sheet material. A copper plate material having a low longitudinal elastic modulus continuously in the TD direction and further having excellent tensile strength and electrical conductivity can be obtained.
まず、溶解・鋳造工程[工程1]では、上述の組成を有する銅素材を溶解し、鋳造することによって鋳塊を得る。すなわち、銅素材は、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有する。均質化熱処理工程[工程2]では、得られた鋳塊に対して、保持温度700〜1000℃、保持時間10分〜20時間の均質化熱処理を行う。熱間圧延工程[工程3]では、総加工率が10〜90%となるように熱間圧延を行う。冷却工程[工程4]では、10℃/sec以上の冷却速度で冷却(急冷)を行う。面削工程[工程5]では、冷却された材料(被圧延材)の両面をそれぞれ約1.0mmずつ面削する。これにより、板材表面の酸化膜が除去される。 First, in a melting / casting step [step 1], a copper material having the above-described composition is melted and cast to obtain an ingot. That is, the copper material has a total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr of 0.1 to 2.0 ppm, and a copper content of It has a composition of 99.96 mass% or more. In the homogenizing heat treatment step [Step 2], the obtained ingot is subjected to a homogenizing heat treatment at a holding temperature of 700 to 1000 ° C and a holding time of 10 minutes to 20 hours. In the hot rolling step [step 3], hot rolling is performed so that the total working ratio is 10 to 90%. In the cooling step [Step 4], cooling (rapid cooling) is performed at a cooling rate of 10 ° C./sec or more. In the facing step [step 5], both sides of the cooled material (rolled material) are faced by about 1.0 mm each. Thereby, the oxide film on the surface of the plate material is removed.
第1冷間圧延工程[工程6]では、総加工率が75%以上である冷間圧延を行い、好ましくは複数回行う。第1冷間圧延工程[工程6]において、総加工率が75%未満であると、所望の圧延集合組織が得られない。 In the first cold rolling step [step 6], cold rolling is performed at a total working ratio of 75% or more, preferably a plurality of times. In the first cold rolling step [Step 6], if the total working ratio is less than 75%, a desired rolled texture cannot be obtained.
第1焼鈍工程[工程7]では、昇温速度が1〜100℃/秒、到達温度が100〜500℃、保持時間が1〜900秒、かつ、冷却速度が1〜50℃/秒である条件で熱処理を施す。前記条件から外れると所望の圧延集合組織が得られない。 In the first annealing step [Step 7], the temperature raising rate is 1 to 100 ° C./sec, the reached temperature is 100 to 500 ° C., the holding time is 1 to 900 seconds, and the cooling rate is 1 to 50 ° C./sec. Heat treatment is performed under the conditions. If the above conditions are not satisfied, a desired rolled texture cannot be obtained.
第2冷間圧延工程[工程8]では、総加工率が60〜95%である冷間圧延を行う。 In the second cold rolling step [step 8], cold rolling is performed at a total working ratio of 60 to 95%.
第2焼鈍工程[工程9]では、昇温速度が10〜100℃/秒、到達温度が200〜550℃、保持時間が10〜3600秒、かつ、冷却速度が10〜100℃/秒である条件で熱処理を施す。前記条件から外れると所望の圧延集合組織が得られない。 In the second annealing step [Step 9], the temperature raising rate is 10 to 100 ° C./sec, the reached temperature is 200 to 550 ° C., the holding time is 10 to 3600 seconds, and the cooling rate is 10 to 100 ° C./sec. Heat treatment is performed under the conditions. If the above conditions are not satisfied, a desired rolled texture cannot be obtained.
仕上げ圧延工程[工程10]では、総加工率が10〜60%である冷間圧延を行う。最終焼鈍工程[工程11]では、到達温度が125〜400℃である条件で熱処理を施す。表面酸化膜除去工程[工程12]では、板材表面の酸化膜除去と洗浄を目的として、酸洗及び研磨を行う。なお、上記圧延工程における加工率R(%)は下記式で定義される。 In the finish rolling step [Step 10], cold rolling is performed with a total working ratio of 10 to 60%. In the final annealing step [Step 11], heat treatment is performed under the condition that the ultimate temperature is 125 to 400 ° C. In the surface oxide film removing step [Step 12], pickling and polishing are performed for the purpose of removing and cleaning the surface of the plate material. The working ratio R (%) in the above rolling process is defined by the following equation.
R=(t0−t)/t0×100
式中、t0は圧延前の板厚であり、tは圧延後の板厚である。R = (t0−t) / t0 × 100
In the formula, t0 is the thickness before rolling, and t is the thickness after rolling.
以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
(実施例1〜13及び比較例1〜17)
まず、表1に示す成分組成を有する銅素材を溶解し、鋳造して鋳塊を得た[工程1]。得られた鋳塊に対して、保持温度700〜1000℃、保持時間10分〜20時間の均質化熱処理を行った[工程2]。そして、総加工率が10〜90%となるように熱間圧延を行った[工程3]後、10℃/sec以上の冷却速度で急冷を行った[工程4]。冷却された材料の両面をそれぞれ約1.0mmずつ面削した[工程5]。次に、表2に示す総加工率で第1冷間処理を行った[工程6]後、表2に示す昇温速度、到達温度、保持時間及び冷却速度で第1焼鈍を行った[工程7]。次に、表2に示す総加工率で第2冷間圧延を行った[工程8]表2に示す昇温速度、到達温度、保持時間及び冷却速度で第2焼鈍を行った[工程9]後、表2に示す総加工率で仕上げ圧延を行った[工程10]。到達温度が125〜400℃である条件で最終焼鈍を行った[工程11]後、酸洗及び研磨を行い[工程12]、銅板材(供試材)を作製した。(Examples 1 to 13 and Comparative Examples 1 to 17)
First, a copper material having a component composition shown in Table 1 was melted and cast to obtain an ingot [Step 1]. The obtained ingot was subjected to a homogenizing heat treatment at a holding temperature of 700 to 1000 ° C. and a holding time of 10 minutes to 20 hours [Step 2]. Then, hot rolling was performed so that the total working ratio was 10 to 90% [Step 3], and then rapid cooling was performed at a cooling rate of 10 ° C./sec or more [Step 4]. Both surfaces of the cooled material were chamfered by about 1.0 mm each [Step 5]. Next, the first cold treatment was performed at the total working rate shown in Table 2 [Step 6], and then the first annealing was performed at the heating rate, the attained temperature, the holding time, and the cooling rate shown in Table 2 [Step 6]. 7]. Next, the second cold rolling was performed at the total working ratio shown in Table 2 [Step 8] The second annealing was performed at the heating rate, the attained temperature, the holding time and the cooling rate shown in Table 2 [Step 9]. Thereafter, finish rolling was performed at a total processing rate shown in Table 2 [Step 10]. After the final annealing was performed under the condition that the reached temperature was 125 to 400 ° C. [Step 11], pickling and polishing were performed [Step 12] to prepare a copper plate material (test material).
(測定方法及び評価方法)
<金属成分の定量分析>
作製した各供試材について、VG 9000(VG Scientific社製)を用いて解析を行った。各供試材に含まれるAl、Be、Cd、Mg、Pb、Ni、P、Sn及びCrの含有量(ppm)、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCr(表1では単に「金属成分」と記す)の合計含有量(ppm)、並びにCuの含有量(mass%)を表1に示す。なお、各供試材には、不可避的不純物が含まれている場合がある。また、表1における「−」は、該当する金属成分が検出されなかったことを意味する。(Measurement method and evaluation method)
<Quantitative analysis of metal components>
Each of the prepared test materials was analyzed using VG 9000 (manufactured by VG Scientific). The content (ppm) of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr contained in each test material, Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr (Table Table 1 shows the total content (ppm) of Cu and the content of Cu (mass%). Each test material may contain unavoidable impurities. Further, "-" in Table 1 means that the corresponding metal component was not detected.
<方位密度>
方位密度は、OIM5.0HIKARI(TSL社製)を用い、EBSD法により測定した。測定面積は、結晶粒を200個以上含む、800μm×1600μmの範囲とし、スキャンステップを0.1μmとした。測定後の結晶粒の解析には、TSL社製の解析ソフトOIM Analysis(商品名)を用いた。解析により得られた結晶方位分布関数はオイラー角で表示された。φ2=0°の断面図より、φ1=0°、Φ=0°〜90°の範囲(表3では「範囲A」と記す)における方位密度の平均値を算出した。また、オイラー角で表示されたφ2=35°の断面図において、φ1=45°〜55°、Φ=65°〜80°の範囲(表3では「範囲B」と記す)における方位密度の最大値を読み出した。各供試材について、範囲Aにおける方位密度の平均値及び範囲Bにおける方位密度の最大値を表3に示す。<Azimuth density>
The azimuth density was measured by the EBSD method using OIM5.0HIKARI (manufactured by TSL). The measurement area was set to a range of 800 μm × 1600 μm including 200 or more crystal grains, and the scanning step was set to 0.1 μm. For analysis of the crystal grains after the measurement, analysis software OIM Analysis (trade name) manufactured by TSL was used. The crystal orientation distribution function obtained by the analysis was expressed in Euler angles. From the cross-sectional view of φ2 = 0 °, the average value of the azimuth density in the range of φ1 = 0 ° and φ = 0 ° to 90 ° (described as “range A” in Table 3) was calculated. In the cross-sectional view of φ2 = 35 ° represented by the Euler angle, the maximum of the azimuth density in the range of φ1 = 45 ° to 55 ° and φ = 65 ° to 80 ° (in Table 3, denoted as “range B”). The value was read. Table 3 shows the average value of the azimuth density in the range A and the maximum value of the azimuth density in the range B for each test material.
<平均結晶粒径>
平均結晶粒径は、方位密度と同様の方法で測定した。測定範囲に含まれる全ての結晶粒より、平均結晶粒径を算出した。各供試材の平均結晶粒径を表3に示す。<Average crystal grain size>
The average crystal grain size was measured in the same manner as the orientation density. The average crystal grain size was calculated from all the crystal grains included in the measurement range. Table 3 shows the average crystal grain size of each test material.
<縦弾性係数>
各供試材から、RD方向と、TD方向と、RD方向からTD方向にかけて10°おきに回転させた方向において、それぞれ幅20mm、長さ200mmの短冊状試験片を採取した。まず、試験片の長さ方向に引張試験機により応力を付与した。そして、降伏するときの歪量の80%の歪量を最大変位量とし、その最大変位量までを10分割した変位を与えた。その10点で歪と応力の比例定数を算出し、各比例定数の平均値を縦弾性係数の平均値とした。縦弾性係数の平均値が115GPa以下である場合を「良好」、115GPaを超える場合を「不良」と評価した。各供試材について、縦弾性係数の平均値を表3に示す。<Longitudinal modulus>
From each test material, strip-shaped test pieces having a width of 20 mm and a length of 200 mm were collected in the RD direction, the TD direction, and the direction rotated every 10 ° from the RD direction to the TD direction. First, stress was applied in the length direction of the test piece using a tensile tester. Then, a strain amount of 80% of the strain amount at the time of yielding was set as a maximum displacement amount, and a displacement obtained by dividing the up to the maximum displacement amount into 10 was given. The proportional constants of strain and stress were calculated at the ten points, and the average value of each proportional constant was defined as the average value of the longitudinal elastic modulus. The case where the average value of the longitudinal elastic modulus was 115 GPa or less was evaluated as “good”, and the case where the average value exceeded 115 GPa was evaluated as “bad”. Table 3 shows the average value of the modulus of longitudinal elasticity of each test material.
<導電率>
導電率は、20℃(±0.5℃)に保たれた恒温槽中で四端子法により計測した比抵抗の数値から算出した。なお、端子間距離は100mmとした。導電率が95%IACS以上である場合を「良好」、95%IACS未満である場合を「不良」と評価した。各供試材の導電率を表3に示す。<Conductivity>
The conductivity was calculated from the value of the specific resistance measured by a four-terminal method in a thermostat kept at 20 ° C. (± 0.5 ° C.). The distance between the terminals was 100 mm. The case where the conductivity was 95% IACS or more was evaluated as “good”, and the case where the conductivity was less than 95% IACS was evaluated as “poor”. Table 3 shows the conductivity of each test material.
<引張強度>
各供試材のRD方向から、JIS Z2201−13B号の試験片を3本切り出した。JIS Z2241に準じて、各試験片の引張強度を測定し、その平均値を算出した。引張強度が150MPa以上330MPa以下である場合を「良好」、150MPa未満である場合又は330MPaを超える場合を「不良」と評価した。各供試材の引張強度を表3に示す。<Tensile strength>
Three test pieces of JIS Z2201-13B were cut out from the RD direction of each test material. The tensile strength of each test piece was measured according to JIS Z2241, and the average value was calculated. The case where the tensile strength was 150 MPa or more and 330 MPa or less was evaluated as “good”, and the case where the tensile strength was less than 150 MPa or more than 330 MPa was evaluated as “bad”. Table 3 shows the tensile strength of each test material.
<耐熱性>
各供試材に対して、アルゴン雰囲気又は窒素雰囲気下の管状炉で800℃で5時間の熱処理を施した後、上記平均結晶粒径の測定方法と同様の方法で、平均結晶粒径を測定した。熱処理後の平均結晶粒径が200μm以下である場合を耐熱性が「良好」、200μmを超える場合を耐熱性が「不良」と評価した。各供試材について、熱処理後の平均結晶粒径を表3に示す。一般的に、結晶粒径は、熱処理を高温で長時間行うほど成長する。すなわち、800℃で5時間の熱処理を行った後に平均結晶粒径が200μm以下である供試材については、700〜800℃で10分以上5時間以内の熱処理を行った場合に、平均結晶粒径が200μm以下であることは自明である。<Heat resistance>
After subjecting each test material to a heat treatment at 800 ° C. for 5 hours in a tube furnace under an argon atmosphere or a nitrogen atmosphere, the average crystal grain size is measured in the same manner as the above-mentioned average crystal grain size measurement method. did. When the average crystal grain size after the heat treatment was 200 μm or less, the heat resistance was evaluated as “good”, and when it exceeded 200 μm, the heat resistance was evaluated as “bad”. Table 3 shows the average crystal grain size of each test material after the heat treatment. Generally, the crystal grain size grows as the heat treatment is performed at a high temperature for a long time. That is, for a test material having an average crystal grain size of 200 μm or less after performing a heat treatment at 800 ° C. for 5 hours, the average crystal grain size is increased when the heat treatment is performed at a temperature of 700 to 800 ° C. for 10 minutes to 5 hours. It is obvious that the diameter is 200 μm or less.
表1及び表3に示すように、実施例1〜13では、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が0.1〜2.0ppm、銅の含有量が99.96mass%以上である組成を有していた。また、実施例1〜13では、EBSDによる集合組織解析から得られた結晶方位分布関数をオイラー角(φ1、Φ、φ2)で表したとき、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0以上35.0未満であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が1.0以上30.0未満である圧延集合組織を有していた。そのため、RD方向からTD方向における縦弾性係数の平均値が115GPa以下と低く、引張強度が150〜330MPaであり、さらに導電率が95%IACS以上と高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が200μm以下であったため、結晶粒の成長が抑制されることが分かった。 As shown in Tables 1 and 3, in Examples 1 to 13, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr is 0.1%. The composition had a composition of 1 to 2.0 ppm and a copper content of 99.96 mass% or more. In Examples 1 to 13, when the crystal orientation distribution function obtained from the texture analysis by EBSD is represented by Euler angles (φ1, φ, φ2), φ2 = 0 °, φ1 = 0 °, φ = 0. The average value of the orientation density in the range of ° to 90 ° is 3.0 or more and less than 35.0, and the orientation in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, φ = 65 ° to 80 °. It had a rolling texture in which the maximum value of the density was 1.0 or more and less than 30.0. Therefore, the average value of the longitudinal elastic modulus from the RD direction to the TD direction was as low as 115 GPa or less, the tensile strength was from 150 to 330 MPa, and the electric conductivity was as high as 95% IACS or more. In addition, since the average crystal grain size after performing the heat treatment at 800 ° C. for 5 hours was 200 μm or less, it was found that the growth of the crystal grains was suppressed.
これに対して、比較例1、2、4、6、8では、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が2.0ppmを超えており、かつ、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が3.0未満であった。そのため、RD方向からTD方向における縦弾性係数の平均値が、それぞれ115GPaを超えていた。また、800℃で5時間の熱処理を行った後の平均結晶粒径が、それぞれ200μmを超えていたため、結晶粒の成長がそれぞれ確認された。 On the other hand, in Comparative Examples 1, 2, 4, 6, and 8, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr is 2 It exceeded 0.0 ppm, and the average value of the azimuth density in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° was less than 3.0. Therefore, the average values of the longitudinal elastic modulus in the RD direction to the TD direction each exceeded 115 GPa. Further, since the average crystal grain size after the heat treatment at 800 ° C. for 5 hours exceeded 200 μm, the growth of the crystal grains was confirmed.
比較例3、7では、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量がそれぞれ150.0ppm、130.0ppmと多く、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値がそれぞれ2.3、0.1と低く、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値がそれぞれ31.0、37.0と高かった。そのため、RD方向からTD方向における縦弾性係数の平均値が、それぞれ135GPa、150GPaと高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が、それぞれ368μm、399μmと大きく、結晶粒の成長が確認された。 In Comparative Examples 3 and 7, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr was as large as 150.0 ppm and 130.0 ppm, respectively, and φ2 = 0 °, φ1 = 0 °, and the average value of the azimuth density in the range of φ = 0 ° to 90 ° are as low as 2.3 and 0.1, respectively, and φ2 = 35 ° and φ1 = 45 ° to 55 °. , Φ = 65 ° to 80 °, the maximum values of the azimuth density were as high as 31.0 and 37.0, respectively. Therefore, the average values of the longitudinal elastic modulus in the RD direction from the RD direction were as high as 135 GPa and 150 GPa, respectively. The average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 368 μm and 399 μm, respectively, and the growth of crystal grains was confirmed.
比較例5では、Al、Be、Cd、Mg、Pb、Ni、P、Sn及びCrからなる群から選択される金属成分の合計含有量が250.0ppmと多く、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が0.8と低く、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が35.0と高かった。そのため、800℃で5時間の熱処理を行った後の平均結晶粒径が456μmと大きく、結晶粒の成長が確認された。 In Comparative Example 5, the total content of metal components selected from the group consisting of Al, Be, Cd, Mg, Pb, Ni, P, Sn and Cr was as large as 250.0 ppm, and φ2 = 0 ° and φ1 = 0. °, the average of the azimuth density in the range of Φ = 0 ° to 90 ° is as low as 0.8, and the azimuth in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, Φ = 65 ° to 80 ° The maximum value of the density was as high as 35.0. Therefore, the average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 456 μm, and growth of the crystal grains was confirmed.
比較例9では、銅の含有量が99.00mass%であり、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が31.0と高かった。そのため、導電率が93.4%IACSと低かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が400μmと大きく、結晶粒の成長が確認された。 In Comparative Example 9, the copper content was 99.00 mass%, and the maximum value of the azimuth density in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 ° was 31. It was as high as 0. Therefore, the conductivity was as low as 93.4% IACS. Further, the average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 400 μm, and growth of the crystal grains was confirmed.
比較例10、12、14、17では、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値がそれぞれ1.9、2.5、2.9、2.9と低かった。そのため、RD方向からTD方向における縦弾性係数の平均値が、それぞれ129GPa、143GPa、153GPa、128GPaと高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が、それぞれ402μm、420μm、400μm、399μmと大きく、結晶粒の成長がそれぞれ確認された。 In Comparative Examples 10, 12, 14, and 17, the average values of the azimuth densities in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° were 1.9, 2.5, 2.9, and 1.9, respectively. It was as low as 2.9. Therefore, the average value of the longitudinal elastic modulus in the RD direction from the RD direction was as high as 129 GPa, 143 GPa, 153 GPa, and 128 GPa, respectively. The average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 402 μm, 420 μm, 400 μm, and 399 μm, respectively, and the growth of crystal grains was confirmed.
比較例11では、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が42.5と高かった。そのため、引張強度が145MPaと低かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が275μmと大きく、結晶粒の成長が確認された。 In Comparative Example 11, the average value of the azimuth density in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° was as high as 42.5. Therefore, the tensile strength was as low as 145 MPa. The average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 275 μm, and growth of the crystal grains was confirmed.
比較例13では、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が39.0と高かった。そのため、RD方向からTD方向における縦弾性係数の平均値が165GPaと高く、引張強度も385MPaと高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が435μmと大きく、結晶粒の成長が確認された。 In Comparative Example 13, the maximum value of the azimuth density in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 ° was as high as 39.0. Therefore, the average value of the longitudinal elastic modulus from the RD direction to the TD direction was as high as 165 GPa, and the tensile strength was as high as 385 MPa. The average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 435 μm, and growth of the crystal grains was confirmed.
比較例15では、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が31.0と高かった。そのため、RD方向からTD方向における縦弾性係数の平均値が129GPaと高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が380μmと大きく、結晶粒の成長が確認された。 In Comparative Example 15, the maximum value of the azimuth density in the range of φ2 = 35 °, φ1 = 45 ° to 55 °, and φ = 65 ° to 80 ° was as high as 31.0. Therefore, the average value of the longitudinal elastic modulus in the RD direction from the RD direction was as high as 129 GPa. The average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 380 μm, and growth of the crystal grains was confirmed.
比較例16では、φ2=0°、φ1=0°、Φ=0°〜90°の範囲における方位密度の平均値が2.7と低く、かつ、φ2=35°、φ1=45°〜55°、Φ=65°〜80°の範囲における方位密度の最大値が32.0と高かった。そのため、RD方向からTD方向における縦弾性係数の平均値が130GPaと高かった。また、800℃で5時間の熱処理を行った後の平均結晶粒径が432μmと大きく、結晶粒の成長が確認された。 In Comparative Example 16, the average value of the azimuth density in the range of φ2 = 0 °, φ1 = 0 °, and φ = 0 ° to 90 ° was as low as 2.7, and φ2 = 35 ° and φ1 = 45 ° to 55. The maximum value of the azimuth density in the range of ° and Φ = 65 ° to 80 ° was as high as 32.0. Therefore, the average value of the longitudinal elastic modulus from the RD direction to the TD direction was as high as 130 GPa. Further, the average crystal grain size after heat treatment at 800 ° C. for 5 hours was as large as 432 μm, and growth of the crystal grains was confirmed.
以上より、本発明の銅板材は、圧延方向から板幅方向にかけて連続的に縦弾性係数が低く、さらに引張強度及び導電率に優れている。また、本発明の銅板材は、高温で熱処理を行った際に結晶粒の成長が抑制されるため、セラミック基板と接合した場合に、セラミック基板との接合部分において剥離等が生じにくい。したがって、本発明の銅板材は銅板付き絶縁基板用として優れている。 As described above, the copper sheet material of the present invention has a low longitudinal elasticity coefficient continuously from the rolling direction to the sheet width direction, and further has excellent tensile strength and electrical conductivity. Moreover, since the growth of crystal grains is suppressed when the copper plate material of the present invention is heat-treated at a high temperature, peeling or the like is less likely to occur at the joint portion with the ceramic substrate when joined to the ceramic substrate. Therefore, the copper plate material of the present invention is excellent for an insulating substrate with a copper plate.
Claims (6)
前記組成を有する銅素材を鋳造して得られた鋳塊に対して均質化熱処理を行う均質化熱処理工程と、
該均質化熱処理工程後に、熱間圧延を行う熱間圧延工程と、
該熱間圧延工程後に、冷却を行う冷却工程と、
該冷却工程後の被圧延材の両面を面削する面削工程と、
該面削工程後に、総加工率が75%以上である冷間圧延を行う第1冷間圧延工程と、
該第1冷間圧延工程後に、昇温速度が1〜100℃/秒、到達温度が100〜500℃、保持時間が1〜900秒、かつ、冷却速度が1〜50℃/秒である条件で熱処理を施す第1焼鈍工程と、
該第1焼鈍工程後に、総加工率が60〜95%である冷間圧延を行う第2冷間圧延工程と、
該第2冷間圧延工程後に、昇温速度が10〜100℃/秒、到達温度が200〜550℃、保持時間が10〜3600秒、かつ、冷却速度が10〜100℃/秒である条件で熱処理を施す第2焼鈍工程と、
該第2焼鈍工程後に、さらなる圧延を行う仕上げ圧延工程と、
該仕上げ圧延工程後に、最終熱処理を施す最終焼鈍工程と、
該最終焼鈍工程後に、酸洗及び研磨を行う表面酸化膜除去工程と、
を含む、銅板付き絶縁基板用銅板材の製造方法。It is a manufacturing method of the copper-plate material for insulating substrates with a copper plate as described in any one of Claims 1 to 5,
A homogenizing heat treatment step of performing a homogenizing heat treatment on the ingot obtained by casting the copper material having the composition,
After the homogenizing heat treatment step, a hot rolling step of performing hot rolling,
After the hot rolling step, a cooling step of cooling,
A facing step of facing both sides of the material to be rolled after the cooling step,
A first cold rolling step of performing cold rolling having a total working ratio of 75% or more after the facing step;
After the first cold rolling step, conditions in which the temperature raising rate is 1 to 100 ° C./sec, the reached temperature is 100 to 500 ° C., the holding time is 1 to 900 seconds, and the cooling rate is 1 to 50 ° C./sec. A first annealing step of performing a heat treatment at
After the first annealing step, a second cold rolling step of performing cold rolling with a total working ratio of 60 to 95%,
After the second cold rolling step, conditions in which the temperature raising rate is 10 to 100 ° C./sec, the reached temperature is 200 to 550 ° C., the holding time is 10 to 3600 seconds, and the cooling rate is 10 to 100 ° C./sec. A second annealing step of performing a heat treatment at
After the second annealing step, a finish rolling step of performing further rolling,
After the finish rolling step, a final annealing step of performing a final heat treatment,
After the final annealing step, a surface oxide film removing step of performing pickling and polishing,
A method for producing a copper plate material for an insulating substrate with a copper plate, comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017069734 | 2017-03-31 | ||
JP2017069734 | 2017-03-31 | ||
PCT/JP2018/013002 WO2018181593A1 (en) | 2017-03-31 | 2018-03-28 | Copper sheet material for copper sheet-provided insulating substrate and production method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018181593A1 true JPWO2018181593A1 (en) | 2020-02-06 |
JP6678757B2 JP6678757B2 (en) | 2020-04-08 |
Family
ID=63677024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018540895A Active JP6678757B2 (en) | 2017-03-31 | 2018-03-28 | Copper plate material for insulating substrate with copper plate and method of manufacturing the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6678757B2 (en) |
KR (1) | KR102326618B1 (en) |
CN (1) | CN110462074A (en) |
WO (1) | WO2018181593A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019138971A1 (en) | 2018-01-10 | 2019-07-18 | 古河電気工業株式会社 | Insulated wire |
KR102343189B1 (en) * | 2018-03-29 | 2021-12-24 | 후루카와 덴끼고교 가부시키가이샤 | Insulation substrate and method for manufacturing the same |
WO2019187767A1 (en) * | 2018-03-29 | 2019-10-03 | 古河電気工業株式会社 | Insulating substrate and method for manufacturing same |
EP3896179A4 (en) * | 2018-12-13 | 2022-10-19 | Mitsubishi Materials Corporation | Pure copper plate |
JP6982710B1 (en) * | 2020-01-15 | 2021-12-17 | 古河電気工業株式会社 | Copper plate material and its manufacturing method, and insulating substrate with copper plate material |
JP7342956B2 (en) * | 2020-03-06 | 2023-09-12 | 三菱マテリアル株式会社 | pure copper plate |
US12035469B2 (en) | 2020-03-06 | 2024-07-09 | Mitsubishi Materials Corporation | Pure copper plate, copper/ceramic bonded body, and insulated circuit board |
WO2021177461A1 (en) * | 2020-03-06 | 2021-09-10 | 三菱マテリアル株式会社 | Pure copper plate, copper/ceramic joined body, and insulated circuit substrate |
JP7342924B2 (en) * | 2020-10-23 | 2023-09-12 | 三菱マテリアル株式会社 | Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards |
US20230313342A1 (en) * | 2020-10-23 | 2023-10-05 | Mitsubishi Materials Corporation | Slit copper material, part for electric/electronic device, bus bar, heat dissipation substrate |
JP7342923B2 (en) * | 2020-10-23 | 2023-09-12 | 三菱マテリアル株式会社 | Slit copper materials, parts for electronic and electrical equipment, bus bars, heat dissipation boards |
WO2022085718A1 (en) * | 2020-10-23 | 2022-04-28 | 三菱マテリアル株式会社 | Slit copper material, component for electronic/electric devices, bus bar, and heat dissipation substrate |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102690A (en) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | Copper alloy tube for heat exchanger having excellent fracture strength |
WO2016171054A1 (en) * | 2015-04-24 | 2016-10-27 | 古河電気工業株式会社 | Copper alloy sheet material, and method for producing same |
JP2018016823A (en) * | 2016-07-25 | 2018-02-01 | 古河電気工業株式会社 | Copper alloy plate material for heat dissipation member, and method for producing the same |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4563495B1 (en) * | 2009-04-27 | 2010-10-13 | Dowaメタルテック株式会社 | Copper alloy sheet and manufacturing method thereof |
JP5961335B2 (en) * | 2010-04-05 | 2016-08-02 | Dowaメタルテック株式会社 | Copper alloy sheet and electrical / electronic components |
WO2013018228A1 (en) * | 2011-08-04 | 2013-02-07 | 株式会社神戸製鋼所 | Copper alloy |
JP6256733B2 (en) * | 2012-02-29 | 2018-01-10 | 日立金属株式会社 | Ceramic circuit board manufacturing method and ceramic circuit board |
JP5991103B2 (en) * | 2012-09-14 | 2016-09-14 | 三菱マテリアル株式会社 | Power module substrate with heat sink, power module with heat sink, and method for manufacturing power module substrate with heat sink |
JP5475914B1 (en) | 2012-09-28 | 2014-04-16 | Jx日鉱日石金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP5619977B2 (en) * | 2012-09-28 | 2014-11-05 | Jx日鉱日石金属株式会社 | Copper alloy sheet with excellent heat dissipation and repeated bending workability |
JP6202718B2 (en) | 2013-03-26 | 2017-09-27 | 三菱マテリアル株式会社 | Heat dissipation board |
CN105568047B (en) * | 2015-12-29 | 2017-10-10 | 宁波博威合金材料股份有限公司 | High strength and high flexibility high-conductivity copper alloy |
-
2018
- 2018-03-28 CN CN201880022820.7A patent/CN110462074A/en active Pending
- 2018-03-28 JP JP2018540895A patent/JP6678757B2/en active Active
- 2018-03-28 KR KR1020187026843A patent/KR102326618B1/en active IP Right Grant
- 2018-03-28 WO PCT/JP2018/013002 patent/WO2018181593A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009102690A (en) * | 2007-10-23 | 2009-05-14 | Kobelco & Materials Copper Tube Inc | Copper alloy tube for heat exchanger having excellent fracture strength |
WO2016171054A1 (en) * | 2015-04-24 | 2016-10-27 | 古河電気工業株式会社 | Copper alloy sheet material, and method for producing same |
JP2018016823A (en) * | 2016-07-25 | 2018-02-01 | 古河電気工業株式会社 | Copper alloy plate material for heat dissipation member, and method for producing the same |
Also Published As
Publication number | Publication date |
---|---|
KR20190134455A (en) | 2019-12-04 |
KR102326618B1 (en) | 2021-11-16 |
CN110462074A (en) | 2019-11-15 |
WO2018181593A1 (en) | 2018-10-04 |
JP6678757B2 (en) | 2020-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6678757B2 (en) | Copper plate material for insulating substrate with copper plate and method of manufacturing the same | |
JP4516154B1 (en) | Cu-Mg-P copper alloy strip and method for producing the same | |
JP4563508B1 (en) | Cu-Mg-P-based copper alloy strip and method for producing the same | |
EP3666914B1 (en) | High strength/highly conductive copper alloy plate material and method for producing same | |
US11732329B2 (en) | Copper alloy, copper alloy plastic-processed material, component for electronic and electric devices, terminal, bus bar, and heat-diffusing substrate | |
JP6984799B1 (en) | Pure copper plate, copper / ceramic joint, insulated circuit board | |
EP3922391A1 (en) | Production method for copper/ceramic joined body, production method for insulated circuit board, copper/ceramic joined body, and insulated circuit board | |
JP6719316B2 (en) | Copper alloy plate material for heat dissipation member and manufacturing method thereof | |
TW201510254A (en) | Hot-rolled copper plate | |
JP6640435B1 (en) | Copper alloy sheet material, method for producing the same, heat dissipating component and shield case for electric and electronic equipment | |
KR20050007139A (en) | High strength and electric conductivity copper alloy excellent in ductility | |
KR20220149679A (en) | Pure copper plate, copper/ceramic bonded body, insulated circuit board | |
WO2019187767A1 (en) | Insulating substrate and method for manufacturing same | |
US20220403485A1 (en) | Copper alloy, copper alloy plastic working material, electronic/electrical device component, terminal, busbar, and heat-diffusing substrate | |
JP6472477B2 (en) | Cu-Ni-Si copper alloy strip | |
JP2017150015A (en) | Sputtering target, and production method of sputtering target | |
JP2015203148A (en) | Copper alloy material, ceramic wiring board and production method of ceramic wiring board | |
JP2017179511A (en) | Cu-Ni-Si-BASED COPPER ALLOY STRIPE AND MANUFACTURING METHOD THEREFOR | |
JP6582159B1 (en) | Insulating substrate and manufacturing method thereof | |
TWI639163B (en) | Cu-Co-Ni-Si alloy for electronic parts, and electronic parts | |
JP7445096B1 (en) | Copper alloy plate materials and drawn parts | |
US20240312946A1 (en) | Ai bonding wire for semiconductor devices | |
TWI529255B (en) | Cu-ni-si alloy and method of producing the alloy | |
JP6599059B1 (en) | Clad material and manufacturing method thereof | |
JP2007291516A (en) | Copper alloy and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20191202 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191202 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20191224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200317 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6678757 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |