JPWO2018181432A1 - 電気泳動解析装置、電気泳動解析方法及びプログラム - Google Patents

電気泳動解析装置、電気泳動解析方法及びプログラム Download PDF

Info

Publication number
JPWO2018181432A1
JPWO2018181432A1 JP2019509948A JP2019509948A JPWO2018181432A1 JP WO2018181432 A1 JPWO2018181432 A1 JP WO2018181432A1 JP 2019509948 A JP2019509948 A JP 2019509948A JP 2019509948 A JP2019509948 A JP 2019509948A JP WO2018181432 A1 JPWO2018181432 A1 JP WO2018181432A1
Authority
JP
Japan
Prior art keywords
waveform
electrophoresis
peak
analysis
analysis target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019509948A
Other languages
English (en)
Other versions
JP6711453B2 (ja
Inventor
麻生川 稔
稔 麻生川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2018181432A1 publication Critical patent/JPWO2018181432A1/ja
Application granted granted Critical
Publication of JP6711453B2 publication Critical patent/JP6711453B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • G16B40/10Signal processing, e.g. from mass spectrometry [MS] or from PCR
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Evolutionary Biology (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Algebra (AREA)

Abstract

エレクトロフェログラムの解析精度の向上に寄与する電気泳動解析装置を提供する。電気泳動解析装置は、取得部と、推定部と、補正部と、を備える。取得部は、一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する。推定部は、実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、重畳部分における既出ピーク波形の残渣部分を推定する。補正部は、重畳部分から残渣部分を差し引き、解析対象ピークの波形を真なる解析対象波形に補正する。

Description

(関連出願についての記載)
本発明は、日本国特許出願:特願2017−066161号(2017年3月29日出願)の優先権主張に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、電気泳動解析装置、電気泳動解析方法及びプログラムに関する。
微量のタンパク質やDNA(デオキシリボ核酸)等の試料の解析に電気泳動装置が用いられる(特許文献1参照)。また、電気泳動によって取得されるエレクトロフェログラム(電気泳動図)の実波形データから試料を定量する技術が存在する。例えば、特許文献2では、実波形データに現れるピーク波形の面積を算出することで試料を定量している。
特開2002−310989号公報 特開2016−33492号公報
なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明者らによってなされたものである。
上記特許文献2に開示された技術では、実波形データが一部に重畳部分を有する少なくとも2つのピーク波形を含む場合には、試料を定量できないという問題がある。すなわち、実波形データでは、重畳部分は第1、第2ピーク波形の合算値としての波形が現れるため、第1、第2ピーク波形の各々の面積を算出することができない。
本発明は、エレクトロフェログラムの解析精度の向上に寄与する、電気泳動解析装置、電気泳動解析方法及びプログラムを提供することを主たる目的とする。
本発明乃至開示の第1の視点によれば、一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する、取得部と、前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定する、推定部と、前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正する、補正部と、を備える電気泳動解析装置が提供される。
本発明乃至開示の第2の視点によれば、一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得するステップと、前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定するステップと、前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正するステップと、を含む電気泳動解析方法が提供される。
本発明乃至開示の第3の視点によれば、一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する処理と、前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定する処理と、前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正する処理と、をコンピュータに実行させるプログラムが提供される。
なお、このプログラムは、コンピュータが読み取り可能な記憶媒体に記録することができる。記憶媒体は、半導体メモリ、ハードディスク、磁気記録媒体、光記録媒体等の非トランジェント(non-transient)なものとすることができる。本発明は、コンピュータプログラム製品として具現することも可能である。
本発明乃至開示の各視点によれば、エレクトロフェログラムの解析精度の向上に寄与する、電気泳動解析装置、電気泳動解析方法及びプログラムが、提供される。
一実施形態の概要を説明するための図である。 一実施形態の概要を説明するための図である。 第1の実施形態に係る電気泳動システムの概略構成の一例を示す図である。 蛍光強度と電気泳動経過時間との対応関係を示す図である。 第1の実施形態に係る電気泳動解析装置の処理構成の一例を示す図である。 信号強度波形の一例を示す図である。 重畳部分の発生を説明するための図である。 重畳部分の発生を説明するための図である。 重畳部分の発生を説明するための図である。 重畳部分の発生を説明するための図である。 重畳部分の発生を説明するための図である。 残渣量推定部の動作を説明するための図である。 第1の実施形態に係る電気泳動解析装置の動作の一例を示すフローチャートである。 第1の実施形態に係る電気泳動解析装置のハードウェア構成の一例を示すブロック図である。
初めに、一実施形態の概要について説明する。なお、この概要に付記した図面参照符号は、理解を助けるための一例として各要素に便宜上付記したものであり、この概要の記載はなんらの限定を意図するものではない。
一実施形態に係る電気泳動解析装置100は、図1に示すように、取得部101と、推定部102と、補正部103と、を備える。取得部101は、一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する。推定部102は、実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、重畳部分における既出ピーク波形の残渣部分を推定する。補正部103は、重畳部分から残渣部分を差し引き、解析対象ピークの波形を真なる解析対象波形に補正する。
取得部101は、図2の(a)に示すような電気泳動の実波形データを取得する。図2の(a)に示す実波形データは、図2の(b)に示す第1、第2ピーク波形の一部が重畳したものであり、重畳部分は、第1、第2ピーク波形の合算値としての波形が現れる。推定部102は、例えば、第1ピークの前半部の波形から第1ピークの全体波形を推定し、重畳部分における第1ピーク波形の残渣部分を推定する。補正部103は、実波形データから第1ピーク波形の残渣部分を差し引く。なお、補正部103は、実波形データから第1ピークの全体波形を差し引いても良く、その場合には、図2の(c)に示すように、実波形データは、第2ピーク単独の波形データを示すように補正される。
以下に具体的な実施の形態について、図面を参照してさらに詳しく説明する。なお、各実施形態において同一構成要素には同一の符号を付し、その説明を省略する。また、各図におけるブロック間の接続線は、双方向及び単方向の双方を含む。一方向矢印については、主たる信号(データ)の流れを模式的に示すものであり、双方向性を排除するものではない。さらに、本願開示に示す回路図、ブロック図、内部構成図、接続図などにおいて、明示は省略するが、入力ポート及び出力ポートが各接続線の入力端及び出力端のそれぞれに存在する。入出力インターフェイスも同様である。
[第1の実施形態]
第1の実施形態について、図面を用いてより詳細に説明する。
第1の実施形態では、蛍光標識したDNA鎖を泳動する電気泳動装置について説明する。
本願開示では、電気泳動の対象となるDNA鎖を下記のように表記する。電気泳動を実行し、検出窓に到着するDNA群の順序を序数により表記する。例えば、同じ蛍光標識が付与され、配列長(分子量)の異なる2つのDNA群が存在すれば、先に検出窓に到着するDNA群を第1DNA群、遅れて到着するDNA群を第2DNA群と表記する。
図3は、第1の実施形態に係る電気泳動システムの概略構成の一例を示す図である。第1の実施形態では、図3に示すキャピラリ10を用いて電気泳動が実施される。キャピラリ10の両端は、電極槽202−1及び電極槽202−2に接続されている。
キャピラリ10には、蛍光標識したDNA鎖を含むサンプルが注入される。また、電極槽202−1及び202−2には、電極23−1、23−2が挿入される。
電気泳動システムは、電気泳動装置20、電気泳動解析装置30も含む。
電気泳動装置20は、キャピラリ10を用いて電気泳動を実行する装置である。電気泳動装置20は、電気泳動検出部21と電源部22を含んで構成される。
電気泳動検出部21は、蛍光標識を検出する機構である。電気泳動検出部21は、蛍光標識検出機構としてアルゴンイオンレーザなどの励起デバイス及びフィルタやカメラなどの検出デバイスを有する。
電源部22は、キャピラリ10に泳動電圧を印加する手段である。より具体的には、電源部22は、電極槽202−1及び202−2に挿入される電極23−1、23−2に接続されている。電源部22は、これらの電極に直流電圧を印加する。なお、電気泳動装置20は、電気泳動を開始するとその旨を電気泳動解析装置30に通知する。
電源部22を介して電極23に直流電圧が印加されてキャピラリ電気泳動が開始されると、蛍光標識されたDNA鎖は、電極槽202−1から電極槽202−2の方向に向かって移動する。また、電気泳動検出部21は、電気泳動が実行されると、検出窓を介してキャピラリをモニタし、蛍光輝度の経時的な変化を示す実波形データを作成する。そして電気泳動検出部21は、作成した実波形データを電気泳動解析装置30に出力する。
具体的には、電気泳動検出部21は、検出窓を介してレーザ光をキャピラリ10に向けて照射し、撮像素子等によって検出窓における蛍光を受光する。電気泳動検出部21は、図4に示すように、受光した蛍光の輝度を電気泳動の開始からの経過時間と対応付けて記憶媒体(図示せず)に格納し、検出結果として管理する。なお、検出結果は、横軸を経過時間とし、縦軸を蛍光輝度とする実波形データ(例えば、図7参照)としても表わされる。本願開示では、図4に示すようなデジタルの検出結果も実波形データと称する。
電気泳動解析装置30は、実波形データを解析する。図5は、電気泳動解析装置30の構成の一例を示す図である。図5に示すように、電気泳動解析装置30は、波形データ取得部301と、残渣量推定部302と、波形補正部303と、波形解析部304と、を含んで構成される。
波形データ取得部301は、電気泳動装置20から実波形データを取得する手段である。具体的には、波形データ取得部301は、電気泳動装置20から取得した実波形データを解析してピーク波形を検出する。
概念的には、波形データ取得部301は、図6(a)に示すような実波形パターンを取得する。図6(a)に示す実波形パターンは、第1及び第2DNA群をなすDNA鎖が泳動により移動する過程を示すものである。第1DNA群は時刻T02を中心とする第1ピーク波形(1つ目のピークを含む波形)として、第2DNA群は時刻T04を中心とする第2ピーク波形(2つ目のピークを含む波形)として表わされる。また、図6(a)に示す実波形パターンでは、時刻T03〜T05は第1DNA群と第2DNA群の重畳部分を含む。
以下では、上記重畳部分が生じる理由を説明する。
図7(a)は、電気泳動により得られる信号波形(実測波形)の一例を示す図である。また、図7(b)は、図7(a)の領域401の拡大図である。
図7(b)を参照すると、ピーク時刻の後に、蛍光輝度の変化を示す波形(以下では「蛍光波形」と称する)がベースライン402に対して持ち上がっていることが確認できる。つまり、図7(b)では、ピーク時刻経過後にベースライン402に対して長さLのオフセットが生じている。
ここで、蛍光波形は、本来、ガウス分布の形状となることが想定される。つまり、図7(b)の例では、ピーク時刻の後に蛍光波形はベースライン402に収束することが想定される。しかし、実際の蛍光輝度は、上述のようにベースライン402に対してオフセット(基準となるベースライン402からのずれ)を有している。
そこで、上記オフセットの発生原因を考察する。
電気泳動を図8(a)に示すような流路(キャピラリ)で実施することとする。図8(a)は、キャピラリに注入された直後のDNA鎖の分布を示している。DNA鎖が注入された位置は、X=−5とし、直流電圧が流路の両端に印加されることで、DNAは左から右に移動する。蛍光輝度の測定は、X=5の位置にて行われる。図8(a)では、X=5の位置にて蛍光検出用の間隙(検出窓)が設けられる。また、キャピラリに注入された直後のDNA鎖の分布は図8(b)に示すとおりとなる。図8(b)を参照すると、DNA鎖はX=−5を中心に分布していることが分かる。
図9(a)は、流路の両端に直流電圧(左側に負電圧、右側に正電圧)を印加し、電圧の印加から10秒経過した際のDNA分布を示す。図9(b)は、流路の両端に直流電圧を印加してから10秒経過するまでの蛍光波形を示す。図9を参照すると、時刻T=10にて蛍光標識されたDNA群の中心が検出窓を通過するので、蛍光輝度が最大となる(ピークが形成される)。その後、注入されたDNAの全てが検出窓を順調に通過すれば、図9(b)に点線で示すような蛍光波形が取得されるものと想定される。つまり、注入された蛍光標識されたDNA鎖の移動速度が同様(実質的に同じ)であれば、ガウス分布の形状のピークを有する蛍光波形が得られることが想定される。
しかし、理論上は同一配列長のDNAであれば同一速度で泳動されるが、ブラウン運動のような拡散現象によって同一配列長のDNAであっても一律に泳動されない。また、例えば、図10(a)に示すように、クロスインジェクション方式でサンプルをキャピラリにインジェクションした場合には、インジェクション流路にサンプルDNAが残った状態で電気泳動が実行される。ここで、理想的には、図10(b)に示すように、インジェクション流路とキャピラリ流路が交差する位置のサンプルDNAのみが泳動される。しかしながら、実際には、図10(c)に示すように、インジェクション流路上に残ったサンプルDNAもキャピラリ流路に引き込まれて、遅れて移動する。なお、キャピラリ電気泳動においても、ポリマー、バッファ、キャピラリの汚染等の原因によって、DNAが遅れて移動する様な現象が発生し得る。
図11(a)は、流路の両端に直流電圧を印加し、電圧の印加から10秒経過した際のDNA鎖の分布を示す。図11(b)は、流路の両端に直流電圧を印加してから15秒経過するまでの蛍光波形を示す。図11(a)を参照すると、電圧の印加から10秒経過しているにも関わらず、X=−5やX=0に蛍光標識されたDNA鎖が残留していることがわかる。
この残留DNAは、他のDNA鎖よりも遅れて検出窓(X=5の位置)に到着することになる。この遅れて到着したDNA鎖も検出窓にて検出されるため、図11(b)に示すような蛍光波形が得られる。つまり、上記遅れて到着したDNA鎖が図7(b)に示す長さLのオフセットの原因となる。
図6に説明を戻すと、時刻T02を中心とした第1ピーク波形をもたらす第1DNA群の一部は、第1DNA群の大部分よりも遅れて検出窓に到達するため、第1ピーク波形の後半部の蛍光強度はゼロにならない。このような遅延DNA鎖が常に一定量存在すると仮定すれば、時刻T04を中心とした第2ピーク波形をもたらす第2DNA群と同時に、遅延DNA鎖も検出窓に到達することになる。換言すると、実波形データは、第2ピーク波形と第1ピーク波形の残渣部分(つまり遅延DNA鎖)とが重畳した蛍光波形となる。概念的には、遅延DNA鎖は、図6(a)の時刻T03〜T05の重畳部分を生じさせる。
図5に説明を戻すと、残渣量推定部302は、波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形の波形から、重畳部分における既出ピーク波形の残渣部分を推定する手段である。ここで、既出ピーク波形は図6における時刻T02を中心とした第1ピーク波形に相当し、解析対象ピーク波形は時刻T04を中心とした第2ピーク波形に相当する。
残渣量推定部302は、第1ピーク波形をもたらす第1DNA群の遅延DNA鎖の量を第1ピーク波形の残渣部分として推定する。この第1ピーク波形の残渣部分は、図7に示す、ベースライン402に対するオフセットの長さLに相当する。
概念的に説明すると、残渣量推定部302は、残渣部分を推定する際に、図6(a)の時刻T01〜T03の波形に着目する。図12(a)は、図6(a)に示す第1ピーク波形の時刻T01〜T03の部分を切り出した図である。図12(a)に示す第1ピーク波形は、図12(b)に示すガウス波形と図12(c)に示す飽和波形とに分解することができる。
図12(b)に示すガウス波形は、移動速度が同様であると仮定したDNA鎖によってもたらされる蛍光波形である。この図12(b)に示すガウス波形は下記の式(1)によりモデル化できる。

Figure 2018181432
・・・(1)

式(1)において、Xcはガウス分布のセンタ位置を、Wはガウス分布の半値半幅(HWHM;Half-Width at Half-Maximum)を、Hはガウス分布の高さをそれぞれ示す(図12(b)参照)。
図12(c)に示す飽和波形は、第1ピーク波形の残渣部分(つまり遅延DNA鎖)がもたらす蛍光波形である。
移動速度のばらつきはガウス分布に従うと仮定すると、上記飽和波形は「ガウス関数の積分」と相似形となる。但し、キャピラリ10に注入されたDNA(第1DNA群)の全てが遅延DNA鎖ではないので、上記ガウス関数の積分に所定の係数を乗算し、遅延DNA鎖による信号強度の波形を近似する(図12(c)参照)。
図12(c)に示す波形は下記の式(2)によりモデル化できる。

Figure 2018181432
・・・(2)

なお、αは上記した「ガウス関数の積分」に乗じる所定の係数である。また、erfは誤差関数であり、sqrtは平方根を求める関数である。
このように、図12(a)に示す第1ピーク波形は、図12(b)に示すガウス波形と図12(c)に示す飽和波形とに分解される。言い換えると、図12(a)に示す第1ピーク波形は、以下の式(3)によりモデル化できる。

f(x)=f1(x)+f2(x) ・・・(3)

式(3)によれば、図12(a)に示す波形は、4つのパラメータ(Xc、W、H、α)により特定可能であることがわかる。
残渣量推定部302は、上述の考えに基づき、第1ピーク波形の残渣部分を推定する。具体的には、残渣量推定部302は、波形データ取得部301によって取得された実波形データからピーク波形を検出する。図6(a)の例では、残渣量推定部302は、時刻T02を中心としたピーク波形を検出する。
次に、残渣量推定部302は、検出したピークを中心に所定の範囲のデータ(蛍光輝度)を取得する。例えば、図6(a)の例では、残渣量推定部302は、時刻T02を中心として、時刻T01〜T03までの蛍光輝度を取得する。
次に、残渣量推定部302は、検出したピークを中心とした所定範囲のデータに基づき、当該所定範囲の蛍光波形を規定する上記4つのパラメータ(Xc、W、H、α)を特定する。具体的には、残渣量推定部302は、検出したピーク波形と、当該検出したピーク波形をモデル化する式(3)により得られる波形と、を比較し、式(3)をなす4つのパラメータを算出する。例えば、残渣量推定部302は、4つのパラメータを変化させて得られる波形と対応する実波形(図6(a)の時刻T01〜T03の波形)との差分が最小となるように、4つのパラメータを決定する。
4つのパラメータが決定されると、式(3)が求まる。また、4つのパラメータを用いることで式(2)が求まる。式(2)は、図12(c)に示すように、第1ピーク波形の残渣部分の蛍光輝度を示す。
このように、残渣量推定部302は、図6(a)の時刻T01〜T03に示すような波形データを式(3)によりモデル化する。モデル化の結果、式(1)及び(2)のそれぞれを特徴付ける4つのパラメータが算出される。その結果、式(2)を導出することができる。なお、図6(a)に示すような波形データのモデル化の際に、式(1)及び式(2)を個別に導出することはできない。式(1)及び(2)を確認すれば分かるように、図12(b)や図12(c)に示す波形を特徴付けるパラメータが共通するためである。
波形補正部303は、実波形データから残渣部分を差し引き、解析対象ピーク波形を真なる解析対象波形に補正する手段である。具体的には、波形補正部303は、第1ピーク波形の残渣部分がもたらす蛍光輝度を、実波形データの蛍光強度から減算する。
例えば、図6(a)の例では、波形補正部303は、時刻T03〜T05までの蛍光輝度から、式(2)により計算される残渣部分の蛍光輝度を減算する。このようにして補正された第2ピーク波形は、第1ピーク波形の残渣部分に起因する蛍光輝度を排除したもの、つまり、真なる第2ピーク波形となる。例えば、図6(a)の例では、第1ピーク波形の残渣部分(つまり、重畳部分)を排除すると、図6(b)に示す真なる第2ピーク波形が得られる。
波形解析部304は、真なる解析対象波形を解析する手段である。例えば、波形解析部304は、真なる解析対象波形に含まれるピーク領域の面積を算出し、DNA量を推定する。例えば、図6(b)を参照すると、時刻T03〜T05までの波形が波形補正部303により補正された真なる解析対象波形といえるから、波形解析部304は、時刻T03〜T05の期間における蛍光輝度と横軸の経過時間により形成される領域の面積を算出し、第2ピーク波形をもたらす第2DNA群のDNA量とする。
電気泳動解析装置30の動作をまとめると、図13に示すフローチャートのとおりとなる。
ステップS01において、波形データ取得部301は、電気泳動による信号を取り込む。
ステップS02において、残渣量推定部302は、第1DNA群の残渣量を推定する。
ステップS03において、波形補正部303は、推定された残渣量を用いて実波形パターンを補正する。実波形パターンの補正により真の解析対象波形が得られる。
ステップS04において、波形解析部304は、補正された実波形パターンに対する解析を実行する。
第1の実施形態に係る電気泳動解析装置30のハードウェア構成を説明する。
図14は、第1の実施形態に係る電気泳動解析装置30のハードウェア構成の一例を示すブロック図である。電気泳動解析装置30は、所謂、コンピュータ(情報処理装置)により構成可能であり、図14に例示する構成を備える。例えば、電気泳動解析装置30は、内部バスにより相互に接続される、CPU(Central Processing Unit)31、メモリ32及び入出力インターフェイス33等を備える。
但し、図14に示す構成は、電気泳動解析装置30のハードウェア構成を限定する趣旨ではない。電気泳動解析装置30は、図示しないハードウェアを含んでもよいし、必要に応じてNIC(Network Interface Card)等の通信手段を備えていてもよい。また、電気泳動解析装置30に含まれるCPU等の数も図14の例示に限定する趣旨ではなく、例えば、複数のCPUが電気泳動解析装置30に含まれていてもよい。
メモリ32は、RAM(Random Access Memory)、ROM(Read Only Memory)、補助記憶装置(ハードディスク等)である。
入出力インターフェイス33は、図示しない表示装置や入力装置のインターフェイスである。表示装置は、例えば、液晶ディスプレイ等である。入力装置は、例えば、キーボードやマウス等のユーザ操作を受け付ける装置や、USB(Universal Serial Bus)メモリ等の外部記憶装置から情報を入力する装置である。ユーザは、キーボードやマウス等を用いて、必要な情報を電気泳動解析装置30に入力する。また、入出力インターフェイス33には、電気泳動装置20と接続するためのインターフェイス(例えば、USBインターフェイス)も含まれる。
電気泳動解析装置30の機能は、上述の処理モジュールにより実現される。当該処理モジュールは、例えば、メモリ32に格納されたプログラムをCPU31が実行することで実現される。また、そのプログラムは、ネットワークを介してダウンロードするか、あるいは、プログラムを記憶した記憶媒体を用いて、更新することができる。さらに、上記処理モジュールは、半導体チップにより実現されてもよい。即ち、上記処理モジュールが行う機能は、何らかのハードウェア及び/又はソフトウェアにより実現できればよい。また、コンピュータの記憶部に、上述したコンピュータプログラムをインストールすることにより、コンピュータを電気泳動解析装置30として機能させることができる。さらにまた、上述したコンピュータプログラムをコンピュータに実行させることにより、コンピュータにより電気泳動解析方法(残渣量推定方法、波形補正方法、波形解析方法等)を実行することができる。
以上のように、第1の実施形態に係る電気泳動解析装置30は、第1DNA群の残渣量を実波形パターンの解析により推定する。解析対象となる実波形パターンから推定された残渣量を差し引くことで、より正確な解析対象パターンを得ることができる。このようして得られた解析対象は、先にピークを生じさせた第1DNA群の残渣が排除されているため、より正確な解析が実現できる。
上記実施形態にて説明したシステム構成や動作は例示であって、種々の変形が可能である。例えば、図3に示す電気泳動装置20と電気泳動解析装置30が一体化されていてもよい。
また、上記実施形態では、第1及び第2DNA群により得られる波形(図6(a)に示すような波形)を例にとり電気泳動解析装置30の動作を説明したが、電気泳動解析装置30に入力される波形は2つ以上のピークを持つものであってもよい。例えば、4種のDNAに対して電気泳動が実行され、4つのピークを持つ実波形パターンを解析の対象としてもよい。この場合、第3DNA群の実測波形には、第1及び第2DNA群の残渣が現れているので、第1及び第2DNA群の残渣を推定し、2つの残渣量を第3DNA群の実測波形から差し引けば、真の解析対象波形を得ることができる。
上記の実施形態の一部又は全部は、以下の形態のようにも記載され得るが、以下には限られない。
[形態1]
上述の第1の視点に係る電気泳動解析装置のとおりである。
[形態2]
前記推定部は、
前記既出ピーク波形と、前記既出ピーク波形をモデル化する所定の式による波形と、を比較し、前記所定の式をなすパラメータを算出することで、前記既出ピーク波形の残渣部分を推定する、形態1の電気泳動解析装置。
[形態3]
前記既出ピーク波形をモデル化する所定の式は、
Figure 2018181432
であり、Xcはガウス分布のセンタ位置を、Wはガウス分布の半値半幅を、Hはガウス分布の高さを、αは所定の係数をそれぞれ示す、形態2の電気泳動解析装置。
[形態4]
前記推定部は、下記の式、
Figure 2018181432
により計算される値を前記残渣部分の推定値とする、形態3の電気泳動解析装置。
[形態5]
前記真なる解析対象波形に含まれるピーク領域の面積を算出する、波形解析部をさらに備える、形態1乃至4のいずれか一に記載の電気泳動解析装置。
[形態6]
前記実波形データは、DNAキャピラリ電気泳動により得られるデータである、形態1乃至5のいずれか一に記載の電気泳動解析装置。
[形態7]
前記実波形データは、
クロスインジェクション方式を用いたサンプルインジェクションによるDNAキャピラリ電気泳動である、形態6の電気泳動解析装置。
[形態8]
上述の第2の視点に係る電気泳動解析方法のとおりである。
[形態9]
上述の第3の視点に係るプログラムのとおりである。
なお、形態8、形態9は、形態1と同様に、形態2〜形態7のように展開することが可能である。
なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の全開示の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。特に、本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
10 キャピラリ
20 電気泳動装置
21 電気泳動検出部
22 電源部
23、23−1、23−2 電極
30、100 電気泳動解析装置
31 CPU(Central Processing Unit)
32 メモリ
33 入出力インターフェイス
101 取得部
102 推定部
103 補正部
202−1、202−2 電極槽
301 波形データ取得部
302 残渣量推定部
303 波形補正部
304 波形解析部
401 領域
402 ベースライン

Claims (9)

  1. 一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する、取得部と、
    前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定する、推定部と、
    前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正する、補正部と、
    を備える電気泳動解析装置。
  2. 前記推定部は、
    前記既出ピーク波形と、前記既出ピーク波形をモデル化する所定の式による波形と、を比較し、前記所定の式をなすパラメータを算出することで、前記既出ピーク波形の残渣部分を推定する、請求項1の電気泳動解析装置。
  3. 前記既出ピーク波形をモデル化する所定の式は、
    Figure 2018181432
    であり、Xcはガウス分布のセンタ位置を、Wはガウス分布の半値半幅を、Hはガウス分布の高さを、αは所定の係数をそれぞれ示す、請求項2の電気泳動解析装置。
  4. 前記推定部は、下記の式、
    Figure 2018181432
    により計算される値を前記残渣部分の推定値とする、請求項3の電気泳動解析装置。
  5. 前記真なる解析対象波形に含まれるピーク領域の面積を算出する、波形解析部をさらに備える、請求項1乃至4のいずれか一項に記載の電気泳動解析装置。
  6. 前記実波形データは、DNAキャピラリ電気泳動により得られるデータである、請求項1乃至5のいずれか一項に記載の電気泳動解析装置。
  7. 前記実波形データは、
    クロスインジェクション方式を用いたサンプルインジェクションによるDNAキャピラリ電気泳動である、請求項6の電気泳動解析装置。
  8. 一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得するステップと、
    前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定するステップと、
    前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正するステップと、
    を含む電気泳動解析方法。
  9. 一部に重畳部分を含む少なくとも2つのピーク波形を有する電気泳動の実波形データを取得する処理と、
    前記実波形データにおいて波形解析の対象となる解析対象ピーク波形よりも前に現れた既出ピーク波形から、前記重畳部分における前記既出ピーク波形の残渣部分を推定する処理と、
    前記重畳部分から前記残渣部分を差し引き、前記解析対象ピーク波形を真なる解析対象波形に補正する処理と、
    をコンピュータに実行させるプログラム。
JP2019509948A 2017-03-29 2018-03-28 電気泳動解析装置、電気泳動解析方法及びプログラム Active JP6711453B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017066161 2017-03-29
JP2017066161 2017-03-29
PCT/JP2018/012657 WO2018181432A1 (ja) 2017-03-29 2018-03-28 電気泳動解析装置、電気泳動解析方法及びプログラム

Publications (2)

Publication Number Publication Date
JPWO2018181432A1 true JPWO2018181432A1 (ja) 2020-02-06
JP6711453B2 JP6711453B2 (ja) 2020-06-17

Family

ID=63675838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509948A Active JP6711453B2 (ja) 2017-03-29 2018-03-28 電気泳動解析装置、電気泳動解析方法及びプログラム

Country Status (3)

Country Link
US (1) US20200103372A1 (ja)
JP (1) JP6711453B2 (ja)
WO (1) WO2018181432A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321242A (ja) * 1999-05-12 2000-11-24 Inst Of Physical & Chemical Res マルチキャピラリー電気泳動装置
JP2003247979A (ja) * 2002-02-25 2003-09-05 Tochigi Prefecture キャピラリ電気泳動装置
JP2004527728A (ja) * 2000-08-14 2004-09-09 インサイト・ゲノミックス・インコーポレイテッド ベースコーリング装置及びプロトコル
JP2011123039A (ja) * 2009-12-10 2011-06-23 Aska Special Laboratory Co Ltd 遺伝的アルゴリズムを使用する濃度波形の解析法及び定量法
WO2016035167A1 (ja) * 2014-09-03 2016-03-10 株式会社島津製作所 クロマトグラムデータ処理方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000321242A (ja) * 1999-05-12 2000-11-24 Inst Of Physical & Chemical Res マルチキャピラリー電気泳動装置
JP2004527728A (ja) * 2000-08-14 2004-09-09 インサイト・ゲノミックス・インコーポレイテッド ベースコーリング装置及びプロトコル
JP2003247979A (ja) * 2002-02-25 2003-09-05 Tochigi Prefecture キャピラリ電気泳動装置
JP2011123039A (ja) * 2009-12-10 2011-06-23 Aska Special Laboratory Co Ltd 遺伝的アルゴリズムを使用する濃度波形の解析法及び定量法
WO2016035167A1 (ja) * 2014-09-03 2016-03-10 株式会社島津製作所 クロマトグラムデータ処理方法及び装置

Also Published As

Publication number Publication date
JP6711453B2 (ja) 2020-06-17
US20200103372A1 (en) 2020-04-02
WO2018181432A1 (ja) 2018-10-04

Similar Documents

Publication Publication Date Title
US8611588B2 (en) Method of measuring progress of alopecia
EP3501828B1 (en) Printed circuit board inspecting apparatus, method for detecting anomaly in solder paste and computer readable recording medium
CN103389937A (zh) 一种界面测试方法和装置
US9706104B2 (en) Image auto-focusing method and camera using same
EP3164825B1 (en) Deconstructing overlapped peaks in experimental pcr data
CN109726195A (zh) 一种数据增强方法及装置
EP3068083A1 (en) Method and apparatus for remaining lifetime aging
CN114565627A (zh) 一种轮廓提取方法、装置、设备及存储介质
CN104394026A (zh) 网页加载时间的测量方法及装置
JPWO2018181432A1 (ja) 電気泳動解析装置、電気泳動解析方法及びプログラム
CN112529014A (zh) 直线检测方法、信息提取方法、装置、设备及存储介质
Pizzonia Product Application Focus: Electrophoresis Gel Image Processing and Analysis Using the KODAK1D Software
CN110223290A (zh) 膜条评估方法、装置、计算机设备和存储介质
US10458923B2 (en) Print data processing method, print data processing device, and recording medium having recorded therein print data processing program
CN107566826A (zh) 栅格图像处理器的测试方法及装置
CN115131784B (zh) 一种图像处理方法、装置、电子设备及存储介质
JP2023047003A (ja) 機械学習システム、学習データ収集方法及び学習データ収集プログラム
JP6039821B2 (ja) 印刷処理時間を取得する方法及び印刷機能を有する電子装置
JPWO2021166210A5 (ja)
JP6773531B2 (ja) 情報処理装置及びプログラム
CN110658618A (zh) 样本图像拟合聚焦的方法、装置、计算机设备和存储介质
JPWO2017130349A1 (ja) 塩基配列決定装置、キャピラリアレイ電気泳動装置及び方法
JP2010025818A (ja) 溶接ビード検査方法、及び、溶接ビード検査装置
EP4242852A1 (en) Method and system for identifying relevant changes for incremental verification of evolving software
KR101373060B1 (ko) 전기영동 및 젤 다큐멘테이션 기능이 통합된 통합장치의 이미지 분석 방법, 이미지 분석 시스템 및 바이오 진단 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150