JPWO2018180006A1 - Droplet ejection device - Google Patents

Droplet ejection device Download PDF

Info

Publication number
JPWO2018180006A1
JPWO2018180006A1 JP2019508763A JP2019508763A JPWO2018180006A1 JP WO2018180006 A1 JPWO2018180006 A1 JP WO2018180006A1 JP 2019508763 A JP2019508763 A JP 2019508763A JP 2019508763 A JP2019508763 A JP 2019508763A JP WO2018180006 A1 JPWO2018180006 A1 JP WO2018180006A1
Authority
JP
Japan
Prior art keywords
piezoelectric element
diaphragm
receiving member
voltage
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019508763A
Other languages
Japanese (ja)
Inventor
中谷 政次
政次 中谷
賢司 前田
賢司 前田
鵬搏 李
鵬搏 李
燃 宋
燃 宋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec America Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec America Corp filed Critical Nidec America Corp
Publication of JPWO2018180006A1 publication Critical patent/JPWO2018180006A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • B05B17/06Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations
    • B05B17/0607Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods using ultrasonic or other kinds of vibrations generated by electrical means, e.g. piezoelectric transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads

Abstract

【課題】圧電素子の応答性を維持しつつ変位量を増大可能な液滴吐出装置を提供する。【解決手段】液滴吐出装置10は、液体吐出口11bを有する液体貯留部11と、液体貯留部11の容積を変化させるダイヤフラム12と、ダイヤフラム12に固定される受け部材13と、受け部材13に加圧振動を加える圧電素子14とを備える。圧電素子14は、受け部材13に固定又は締結されていない。An object of the present invention is to provide a droplet discharge device capable of increasing a displacement amount while maintaining responsiveness of a piezoelectric element. A droplet discharge device includes a liquid storage unit having a liquid discharge port, a diaphragm configured to change the volume of the liquid storage unit, a receiving member fixed to the diaphragm, and a receiving member. And a piezoelectric element 14 for applying pressure vibration to the piezoelectric element. The piezoelectric element 14 is not fixed or fastened to the receiving member 13.

Description

本発明は、液滴吐出装置に関する。 The present invention relates to a droplet discharge device.

圧電効果によって電気エネルギから機械エネルギへのエネルギ変換を行う圧電素子は、応答性に優れているため、半導体、印刷、化学薬品などの広い分野において、液体を対象物の表面に吐出する液滴吐出装置に利用されている。 A piezoelectric element that performs energy conversion from electrical energy to mechanical energy by the piezoelectric effect has excellent responsiveness. In a wide range of fields, such as semiconductors, printing, and chemicals, a liquid droplet is discharged onto a surface of an object in a liquid field. Used in equipment.

ここで、圧電素子の変位量を大きくするために、ヒンジ構造を用いた変位拡大機構を設ける手法が提案されている(特許文献1及び特許文献2参照)。 Here, in order to increase the amount of displacement of the piezoelectric element, a method of providing a displacement enlarging mechanism using a hinge structure has been proposed (see Patent Documents 1 and 2).

特許文献1:特開2005−349387号公報 特許文献2:特開2008−54492号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 2005-349387 Patent Document 2: Japanese Patent Application Laid-Open No. 2008-54492

しかしながら、特許文献1,2の手法では、圧電素子の変位を大きくするためにヒンジ構造を介する必要があるため、圧電素子の応答性が損なわれてしまう。 However, in the methods of Patent Literatures 1 and 2, since the displacement of the piezoelectric element needs to be increased through a hinge structure, the response of the piezoelectric element is impaired.

本発明は、圧電素子の応答性を維持しつつ変位量を増大可能な液滴吐出装置を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a droplet discharge device capable of increasing the amount of displacement while maintaining the responsiveness of a piezoelectric element.

本発明の液滴吐出装置の一つの態様は、液体吐出口を有する液体貯留部と、液体貯留部の容積を変化させるダイヤフラムと、ダイヤフラムに固定される受け部材と、受け部材に加圧振動を加える圧電素子とを備える。圧電素子は、受け部材に固定又は締結されていない。 One aspect of the droplet discharge device of the present invention is a liquid storage unit having a liquid discharge port, a diaphragm that changes the volume of the liquid storage unit, a receiving member fixed to the diaphragm, and pressure vibration applied to the receiving member. And a piezoelectric element to be added. The piezoelectric element is not fixed or fastened to the receiving member.

本発明の一つの態様によれば、圧電素子の応答性を維持しつつ変位量を増大可能な液滴吐出装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a droplet discharge device capable of increasing the amount of displacement while maintaining the responsiveness of the piezoelectric element.

第1実施形態に係る液滴吐出装置の構成を示す模式図Schematic diagram showing the configuration of the droplet discharge device according to the first embodiment 第1実施形態に係るダイヤフラム及び圧電素子の変位波形を示すグラフ4 is a graph showing displacement waveforms of the diaphragm and the piezoelectric element according to the first embodiment. 第1実施形態に係るダイヤフラム及び圧電素子の状態を説明するための模式図Schematic diagram for explaining states of the diaphragm and the piezoelectric element according to the first embodiment. 第1実施形態に係るダイヤフラム及び圧電素子の状態を説明するための模式図Schematic diagram for explaining states of the diaphragm and the piezoelectric element according to the first embodiment. 第1実施形態に係るダイヤフラム及び圧電素子の状態を説明するための模式図Schematic diagram for explaining states of the diaphragm and the piezoelectric element according to the first embodiment. 第2実施形態に係る液滴吐出装置の構成を示す模式図Schematic diagram showing the configuration of the droplet discharge device according to the second embodiment 第2実施形態に係るダイヤフラム及び圧電素子の変位波形を示すグラフ4 is a graph showing displacement waveforms of a diaphragm and a piezoelectric element according to a second embodiment. 第2実施形態に係るダイヤフラム及び圧電素子の変位波形を示すグラフ4 is a graph showing displacement waveforms of a diaphragm and a piezoelectric element according to a second embodiment. 第2実施形態に係るダイヤフラム及び圧電素子の変位波形を示すグラフ4 is a graph showing displacement waveforms of a diaphragm and a piezoelectric element according to a second embodiment.

以下、図面を参照しながら、本発明の一実施形態に係る外観検査装置について説明する。ただし、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数等を、実際の構造における縮尺および数等と異ならせる場合がある。 Hereinafter, an appearance inspection apparatus according to an embodiment of the present invention will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Further, in the following drawings, the scale and number of each structure may be different from the scale and number of the actual structure in order to make each configuration easy to understand.

なお、本明細書において、「垂直」とは、物理的に厳密な意味で垂直な場合だけでなく、実質的に垂直な場合をも含む概念である。実質的に垂直とは、15°以下の範囲で傾いている場合をいう。 In this specification, the term “perpendicular” is a concept that includes not only a vertical case in a physically strict sense but also a substantially vertical case. The term “substantially vertical” refers to a case where it is inclined within a range of 15 ° or less.

1.第1実施形態 (液滴吐出装置10の構成) 図1は、第1実施形態に係る液滴吐出装置10の構成を示す模式図である。 1. First Embodiment (Configuration of Droplet Discharge Apparatus 10) FIG. 1 is a schematic diagram illustrating a configuration of a droplet discharge apparatus 10 according to a first embodiment.

液滴吐出装置10は、液体貯留部11、ダイヤフラム12、受け部材13、圧電素子14、当接部材15、及び制御部16を備える。 The droplet discharge device 10 includes a liquid storage unit 11, a diaphragm 12, a receiving member 13, a piezoelectric element 14, a contact member 15, and a control unit 16.

(1)液体貯留部11 液体貯留部11は、本体部11a、液室11b、及び液体吐出口11cを有する。 (1) Liquid Storage Unit 11 The liquid storage unit 11 has a main body 11a, a liquid chamber 11b, and a liquid discharge port 11c.

本体部11aは、中空状に形成される。本実施形態において、本体部11aはコップ状に形成されているが、これに限られるものではない。本体部11aは、例えば合金材料、セラミックス材料、及び合成樹脂材料などによって構成することができる。 The main body 11a is formed in a hollow shape. In the present embodiment, the main body 11a is formed in a cup shape, but is not limited to this. The main body 11a can be made of, for example, an alloy material, a ceramic material, a synthetic resin material, or the like.

液室11bは、本体部11aの内部に形成される。液室11bには、液体が貯留される。液体としては、半田、熱硬化性樹脂、インク、機能性薄膜(配向膜、レジスト、カラーフィルタ、有機エレクトロルミネッセンスなど)を形成するための塗布液などが挙げられる。 The liquid chamber 11b is formed inside the main body 11a. The liquid is stored in the liquid chamber 11b. Examples of the liquid include a solder, a thermosetting resin, ink, and a coating liquid for forming a functional thin film (such as an alignment film, a resist, a color filter, and organic electroluminescence).

液体吐出口11cは、本体部11aを貫通するように形成される。本実施形態において、液体吐出口11cは、ダイヤフラム12と対向する位置に形成されているが、これに限られるものではない。液室11b内の液体は、液体吐出口11cから液滴となって外部に吐出される。なお、図1には図示されていないが、液体貯留部11は、液室11bに液体を供給するための液体供給口を有している。 The liquid discharge port 11c is formed so as to penetrate the main body 11a. In the present embodiment, the liquid ejection port 11c is formed at a position facing the diaphragm 12, but is not limited to this. The liquid in the liquid chamber 11b is discharged to the outside as liquid droplets from the liquid discharge port 11c. Although not shown in FIG. 1, the liquid storage section 11 has a liquid supply port for supplying liquid to the liquid chamber 11b.

(2)ダイヤフラム12 ダイヤフラム12は、液体貯留部11上に配置される。ダイヤフラム12は、液体貯留部11の液室11bを封止する。ダイヤフラム12は、後述する圧電素子14から受け部材13に加圧振動が加えられると、受け部材13とともに弾性的に振動する。これにより、ダイヤフラム12は、液室11bの容積を変化させる。 (2) Diaphragm 12 The diaphragm 12 is disposed on the liquid storage unit 11. The diaphragm 12 seals the liquid chamber 11b of the liquid storage unit 11. The diaphragm 12 elastically vibrates together with the receiving member 13 when pressure vibration is applied to the receiving member 13 from a piezoelectric element 14 described later. Thereby, the diaphragm 12 changes the volume of the liquid chamber 11b.

ダイヤフラム12は、固定部12aと可撓部12bとを有する。固定部12aは、液体貯留部11の本体部11aに固定される。固定部12aは、ダイヤフラム12の外縁である。可撓部12bは、固定部12aに囲まれた部分である。可撓部12bは、液体貯留部11の本体部11aに固定されておらず、変形可能である。 The diaphragm 12 has a fixed part 12a and a flexible part 12b. The fixing section 12a is fixed to the main body 11a of the liquid storage section 11. The fixing portion 12a is an outer edge of the diaphragm 12. The flexible portion 12b is a portion surrounded by the fixing portion 12a. The flexible part 12b is not fixed to the main body part 11a of the liquid storage part 11, and is deformable.

可撓部12bが液室11bの内部に向かって凸状に湾曲すると、液室11bの容積は小さくなる。これにより、液体吐出口11cから液体が液滴となって外部に吐出される。その後、可撓部12bが自身の弾性により図1の状態に復帰すると、液室11bの容積は元に戻る。この際、液体供給口から液室11bに液体が補充される。 When the flexible portion 12b curves convexly toward the inside of the liquid chamber 11b, the volume of the liquid chamber 11b becomes small. As a result, the liquid is discharged to the outside as liquid droplets from the liquid discharge port 11c. Thereafter, when the flexible portion 12b returns to the state of FIG. 1 due to its own elasticity, the volume of the liquid chamber 11b returns to the original state. At this time, the liquid is supplied to the liquid chamber 11b from the liquid supply port.

ダイヤフラム12を構成する材料は特に制限されないが、例えば合金材料、セラミックス材料、及び合成樹脂材料などを用いることができる。 Although the material constituting the diaphragm 12 is not particularly limited, for example, an alloy material, a ceramic material, a synthetic resin material, or the like can be used.

(3)受け部材13 受け部材13は、ダイヤフラム12のうち可撓部12bの外面12Sに固定される。受け部材13は、接着剤によって、或いは、溶接によって可撓部12bと締結することができる。 (3) Receiving Member 13 The receiving member 13 is fixed to the outer surface 12S of the flexible portion 12b of the diaphragm 12. The receiving member 13 can be fastened to the flexible portion 12b by an adhesive or by welding.

受け部材13には、後述する圧電素子14から加圧振動が加えられる。加圧振動が加えられると、受け部材13は、ダイヤフラム12の錘として機能して、ダイヤフラム12に慣性力を付勢する。その結果、ダイヤフラム12は、受け部材13が設けられていない場合に比べて大きく変位することができる。ダイヤフラム12の変位については、後に詳述する。 Pressing vibration is applied to the receiving member 13 from a piezoelectric element 14 described later. When the pressure vibration is applied, the receiving member 13 functions as a weight of the diaphragm 12 and urges the diaphragm 12 with an inertial force. As a result, the diaphragm 12 can be largely displaced as compared with the case where the receiving member 13 is not provided. The displacement of the diaphragm 12 will be described later in detail.

受け部材13を構成する材料は特に制限されないが、後述する当接部材15との接触によって破損又は摩耗することを抑えるために、耐衝撃性及び耐摩耗性に優れた材料を用いることが好ましい。このような材料としては、ジルコニア及び窒化ケイ素(シリコンナイトライド)などのセラミックス材料が挙げられる。なお、受け部材13のうち当接部材15と接触する部分には耐衝撃性及び耐摩耗性に優れた材料を用い、他の部分には錘としての重量確保のために比較的密度の高い材料(ステンレス合金及び真鍮など)を用いてもよい。 The material forming the receiving member 13 is not particularly limited, but it is preferable to use a material having excellent impact resistance and abrasion resistance in order to suppress breakage or wear due to contact with the contact member 15 described below. Examples of such a material include ceramic materials such as zirconia and silicon nitride (silicon nitride). A material having excellent impact resistance and abrasion resistance is used for a portion of the receiving member 13 which comes into contact with the contact member 15, and a material having a relatively high density is used for other portions to secure weight as a weight. (Such as stainless steel alloy and brass) may be used.

受け部材13のサイズは特に制限されないが、可撓部12bのうち受け部材13が固定された領域は撓みにくくなるため、可撓部12bの撓み量を確保できるように受け部材13のサイズを適宜調整することが好ましい。 The size of the receiving member 13 is not particularly limited. However, since the region of the flexible portion 12b to which the receiving member 13 is fixed is unlikely to bend, the size of the receiving member 13 is appropriately adjusted so as to secure the amount of bending of the flexible portion 12b. Adjustment is preferred.

具体的には、可撓部12bの外面12Sに平行な方向(以下、「第1方向」という。)において、受け部材13の幅W1は、可撓部12bの幅W2の60%以下が好ましく、50%以下がより好ましく、30%以下が特に好ましい。例えば、可撓部12bがΦ10mmの円板状である場合、Φ6mm以下の円柱状の受け部材13を外面12Sの中央に配置することが好ましい。これにより、可撓部12bに環状の可撓領域を残すことができるため、ダイヤフラム12の撓み量を確保することができる。 Specifically, in a direction parallel to the outer surface 12S of the flexible portion 12b (hereinafter, referred to as a "first direction"), the width W1 of the receiving member 13 is preferably 60% or less of the width W2 of the flexible portion 12b. , 50% or less, more preferably 30% or less. For example, when the flexible portion 12b is a disk having a diameter of 10 mm, it is preferable to arrange a columnar receiving member 13 having a diameter of 6 mm or less at the center of the outer surface 12S. Thereby, since an annular flexible region can be left in the flexible portion 12b, the amount of bending of the diaphragm 12 can be secured.

(4)圧電素子14 圧電素子14は、受け部材13と対向するように配置される。本実施形態において、圧電素子14は、第2方向において受け部材13から離れており、受け部材13に固定又は締結されていない。圧電素子14の基端部14pは、固定部材19に固定され、固定端となっている。圧電素子14の先端部14qには、後述する当接部材15が固定され、自由端となっている。 (4) Piezoelectric element 14 The piezoelectric element 14 is arranged to face the receiving member 13. In the present embodiment, the piezoelectric element 14 is separated from the receiving member 13 in the second direction, and is not fixed or fastened to the receiving member 13. The base end portion 14p of the piezoelectric element 14 is fixed to a fixing member 19 and is a fixed end. A contact member 15 described below is fixed to the tip end portion 14q of the piezoelectric element 14, and is a free end.

圧電素子14は、複数の圧電体14a、複数の内部電極14b、及び一対の側面電極14c,14cを有する。各圧電体14aと各内部電極14bは、交互に積層されている。各圧電体14aは、例えばジルコン酸チタン酸鉛(PZT)などの圧電セラミックスによって構成される。各電内部極14bは、一対の側面電極14c,14cのうちいずれか一方と電気的に接続される。すなわち、一方の側面電極14cと電気的に接続された内部電極14cは、他方の側面電極14cから電気的に絶縁されている。このような構造は、一般に部分電極構造として称される。 The piezoelectric element 14 has a plurality of piezoelectric bodies 14a, a plurality of internal electrodes 14b, and a pair of side electrodes 14c. Each piezoelectric body 14a and each internal electrode 14b are alternately stacked. Each piezoelectric body 14a is made of a piezoelectric ceramic such as lead zirconate titanate (PZT). Each of the inner electrodes 14b is electrically connected to one of the pair of side electrodes 14c. That is, the internal electrode 14c electrically connected to the one side electrode 14c is electrically insulated from the other side electrode 14c. Such a structure is generally called a partial electrode structure.

ただし、圧電素子14は、1つの圧電体と一対の電極とを少なくとも備えていればよく、圧電素子14には周知の様々な構造の圧電素子を適用することができる。 However, the piezoelectric element 14 only needs to include at least one piezoelectric body and a pair of electrodes, and various known piezoelectric elements can be applied to the piezoelectric element 14.

圧電素子14は、電圧の印加に応じて、第1方向に垂直な方向(以下、「第2方向」という。)に伸縮する。具体的には、圧電素子14は、一対の側面電極14c,14cに電圧が印加されていない場合、自然長の状態になる。圧電素子14は、一対の側面電極14c,14cに印加される電圧が大きくなるほど、受け部材13側に向かって伸張する。そして、一対の側面電極14c,14cに駆動電圧(すなわち、最高電位)が印加されると、圧電素子14は、受け部材13側に最も伸張した状態になる。 The piezoelectric element 14 expands and contracts in a direction perpendicular to the first direction (hereinafter, referred to as a “second direction”) in response to application of a voltage. Specifically, the piezoelectric element 14 has a natural length when no voltage is applied to the pair of side electrodes 14c. The piezoelectric element 14 expands toward the receiving member 13 as the voltage applied to the pair of side electrodes 14c, 14c increases. Then, when a drive voltage (that is, the highest potential) is applied to the pair of side electrodes 14c, 14c, the piezoelectric element 14 is in a state of being extended most toward the receiving member 13 side.

このような圧電素子14の伸張動作に伴って、非拘束状態の受け部材13に加圧振動が加えられる。非拘束状態とは、受け部材13が圧電素子14に固定又は締結されておらず、受け部材13が圧電素子14から独立して動き得る状態を意味する。 With the extension operation of the piezoelectric element 14, a pressure vibration is applied to the receiving member 13 in the non-restrained state. The non-restrained state means a state where the receiving member 13 is not fixed or fastened to the piezoelectric element 14 and the receiving member 13 can move independently of the piezoelectric element 14.

なお、一対の側面電極14c,14cに印加される電圧が駆動電圧から小さくなると、圧電素子14は、受け部材13の反対側に向かって収縮して、自然長の状態に戻る。 When the voltage applied to the pair of side electrodes 14c, 14c becomes smaller than the driving voltage, the piezoelectric element 14 contracts toward the opposite side of the receiving member 13 and returns to the natural length state.

(5)当接部材15 当接部材15は、受け部材13と圧電素子14との間に介挿される。当接部材15は、圧電素子14の先端部14qに固定されている。当接部材15は、接着剤によって、或いは、溶接によって、圧電素子14と締結することができる。当接部材15は、圧電素子14の伸縮に伴って、圧電素子14とともに第2方向に移動する。 (5) Contact Member 15 The contact member 15 is inserted between the receiving member 13 and the piezoelectric element 14. The contact member 15 is fixed to the tip 14q of the piezoelectric element 14. The contact member 15 can be fastened to the piezoelectric element 14 by an adhesive or by welding. The contact member 15 moves in the second direction together with the piezoelectric element 14 as the piezoelectric element 14 expands and contracts.

当接部材15は、受け部材13に固定又は締結されていない。当接部材15は、受け部材13と離接自在な状態で当接する。 The contact member 15 is not fixed or fastened to the receiving member 13. The contact member 15 contacts the receiving member 13 in a freely detachable manner.

当接部材15は、曲面15Sと平面15Tとを有する。曲面15Sは、受け部材13の外面13Sと対向する。平面15Tは、圧電素子14の端面14Sに接続されている。従って、当接部材15は、受け部材13と点接触し、かつ、圧電素子14と面接触する。そのため、受け部材13から当接部材15に加わる力は、当接部材15を介して圧電素子14に均等に伝達される。その結果、圧電素子14の内部に圧縮応力が集中して破損することを抑制できる。 The contact member 15 has a curved surface 15S and a flat surface 15T. The curved surface 15S faces the outer surface 13S of the receiving member 13. The plane 15T is connected to the end face 14S of the piezoelectric element 14. Therefore, the contact member 15 makes a point contact with the receiving member 13 and makes a surface contact with the piezoelectric element 14. Therefore, the force applied from the receiving member 13 to the contact member 15 is evenly transmitted to the piezoelectric element 14 via the contact member 15. As a result, it is possible to prevent the compressive stress from concentrating inside the piezoelectric element 14 and breakage.

なお、本実施形態において、当接部材15は略半球状に形成されているが、これに限られるものではない。当接部材15は、受け部材13と点接触し、かつ、圧電素子14と面接触することのできる形状であればよい。 In the present embodiment, the contact member 15 is formed in a substantially hemispherical shape, but is not limited to this. The contact member 15 may have any shape as long as it can make point contact with the receiving member 13 and make surface contact with the piezoelectric element 14.

当接部材15を構成する材料は特に制限されないが、受け部材13との衝突によって破損又は摩耗することを抑えるために、受け部材13と同様、耐衝撃性及び耐摩耗性に優れた材料を用いることが好ましい。なお、当接部材15のうち受け部材13と接触する部分には耐衝撃性及び耐摩耗性に優れた材料を用い、他の部分には比較的密度の高い材料を用いてもよい。 The material forming the contact member 15 is not particularly limited. However, in order to suppress breakage or wear due to collision with the receiving member 13, a material having excellent impact resistance and abrasion resistance is used similarly to the receiving member 13. Is preferred. A material having excellent impact resistance and abrasion resistance may be used for a portion of the contact member 15 that comes into contact with the receiving member 13, and a material having a relatively high density may be used for other portions.

(6)制御部16 制御部16は、CPU(Central Processing Unit)やDSP(Digital Signal Processor)等のマイクロプロセッサー、又は、ASIC(Appl
ication Specific Integrated Circuit)等の演算装置によって実現される。
(6) Control Unit 16 The control unit 16 includes a microprocessor such as a CPU (Central Processing Unit) or a DSP (Digital Signal Processor), or an ASIC (Appl.
communication specific integrated circuit).

制御部16は、圧電素子14を伸縮させるための駆動パルスを生成し、生成した駆動パルスに基づいて圧電素子14の一対の側面電極14c,14cに電圧を印加する。制御部16では、駆動パルスにおける最高電位(すなわち、駆動電圧)や波形を適宜設定することができる。 The control unit 16 generates a drive pulse for expanding and contracting the piezoelectric element 14, and applies a voltage to the pair of side electrodes 14c of the piezoelectric element 14 based on the generated drive pulse. The control unit 16 can appropriately set the highest potential (i.e., the drive voltage) and the waveform of the drive pulse.

(液滴吐出装置10の動作) 次に、液滴吐出装置10の動作について、図面を参照しながら説明する。 (Operation of Droplet Discharge Apparatus 10) Next, the operation of the droplet discharge apparatus 10 will be described with reference to the drawings.

図2は、ダイヤフラム12の変位量D及び圧電素子14の変位量Eの推移を示すグラフである。図3〜図5は、時刻T1〜T3におけるダイヤフラム12及び圧電素子14の状態を説明するための模式図である。なお、ダイヤフラム12の変位量Dの推移とは、ダイヤフラム12の変位波形のことである。圧電素子14の変位量Eの推移は、制御部16が生成する駆動パルスの波形と同じである。 FIG. 2 is a graph showing changes in the displacement D of the diaphragm 12 and the displacement E of the piezoelectric element 14. FIGS. 3 to 5 are schematic diagrams for explaining the states of the diaphragm 12 and the piezoelectric element 14 at times T1 to T3. The transition of the displacement amount D of the diaphragm 12 refers to a displacement waveform of the diaphragm 12. The transition of the displacement E of the piezoelectric element 14 is the same as the waveform of the drive pulse generated by the control unit 16.

制御部16は、時刻T0時点において、圧電素子14に電圧を印加していない。そのため、時刻T0において圧電素子14は伸張しておらず、受け部材13には加圧振動が加えられていない(図1参照)。時刻T0において、液体貯留部11の容積は最大である。 The control unit 16 has not applied a voltage to the piezoelectric element 14 at time T0. Therefore, at time T0, the piezoelectric element 14 is not extended, and no pressure vibration is applied to the receiving member 13 (see FIG. 1). At time T0, the volume of the liquid storage unit 11 is the maximum.

制御部16は、時刻T0〜T1において圧電素子14に印加する電圧を徐々に上昇させて、時刻T1時点で最高電位(駆動電圧)を印加している。そのため、時刻T0〜T1において、圧電素子14は変位量0から最大変位量Emaxまで伸張し、ダイヤフラム12は圧電素子14によって付勢され、圧電素子14と一緒に第1変位量Daまで変位する(図3参照)。ダイヤフラム12の第1変位量Daは、圧電素子14の最大変位量Emaxと同じである。 The control unit 16 gradually increases the voltage applied to the piezoelectric element 14 at times T0 to T1, and applies the highest potential (drive voltage) at time T1. Therefore, at times T0 to T1, the piezoelectric element 14 expands from the displacement amount 0 to the maximum displacement amount Emax, and the diaphragm 12 is urged by the piezoelectric element 14 to move together with the piezoelectric element 14 to the first displacement amount Da ( (See FIG. 3). The first displacement Da of the diaphragm 12 is the same as the maximum displacement Emax of the piezoelectric element 14.

制御部16は、時刻T1〜T2において圧電素子14に印加する電圧を徐々に下降させ、時刻T2時点で電圧を印加しない状態に戻っている。そのため、時刻T1〜T2において、圧電素子14は最大変位量Emaxから変位量0まで収縮している(図4参照)。一方、時刻T1〜T2において、ダイヤフラム12は、錘として機能する受け部材13の慣性力で付勢されることによって、第1変位量Daから第2変位量Db(>Da)まで更に変位している(図4参照)。 The control unit 16 gradually lowers the voltage applied to the piezoelectric element 14 from time T1 to T2, and returns to a state where no voltage is applied at time T2. Therefore, between times T1 and T2, the piezoelectric element 14 contracts from the maximum displacement amount Emax to the displacement amount 0 (see FIG. 4). On the other hand, at times T1 to T2, the diaphragm 12 is further displaced from the first displacement Da to the second displacement Db (> Da) by being urged by the inertial force of the receiving member 13 functioning as a weight. (See FIG. 4).

制御部16は、時刻T2〜T3において圧電素子14に電圧を印加していない。そのため、圧電素子14は変位量0に維持されている(図5参照)。一方、時刻T2〜T3においても、ダイヤフラム12は、錘として機能する受け部材13の慣性力で更に付勢されることによって、第2変位量Dbから最大変位量Dmax(>Db)まで更に変位している(図5参照)。ダイヤフラム12の最大変位量Dmaxは、圧電素子14の最大変位量Emaxよりも大きい。時刻T3において、液体貯留部11の容積は最小である。 The control unit 16 has not applied a voltage to the piezoelectric element 14 between times T2 and T3. Therefore, the displacement of the piezoelectric element 14 is maintained at 0 (see FIG. 5). On the other hand, also at times T2 to T3, the diaphragm 12 is further displaced from the second displacement Db to the maximum displacement Dmax (> Db) by being further urged by the inertial force of the receiving member 13 functioning as a weight. (See FIG. 5). The maximum displacement Dmax of the diaphragm 12 is larger than the maximum displacement Emax of the piezoelectric element 14. At time T3, the volume of the liquid storage unit 11 is the minimum.

制御部16は、時刻T3以降、圧電素子14に電圧を印加していないが、図2に示すように、ダイヤフラム12は、時刻T4において撓んでいない状態(以下、「原状態」という。)に戻った後、自身の弾性に応じた固有振動数で減衰振動しながら変位量は0に近づいていく。そのため、ダイヤフラム12の変位波形には、第1波の後、継続的又は過渡的な第2波〜第n波(以下、「リンギング」という。)が発生する。 The controller 16 has not applied a voltage to the piezoelectric element 14 after time T3, but as shown in FIG. 2, the diaphragm 12 is in a state in which it is not bent at time T4 (hereinafter, referred to as an “original state”). After returning, the amount of displacement approaches zero while damping and vibrating at a natural frequency corresponding to its own elasticity. Therefore, in the displacement waveform of the diaphragm 12, after the first wave, continuous or transient second to n-th waves (hereinafter, referred to as "ringing") are generated.

(特徴) (1)液滴吐出装置10において、ダイヤフラム12には錘として機能する受け部材13が設けられている。そのため、圧電素子14が最大変位量Emaxまで変位した後、ダイヤフラム12を受け部材13の慣性力で付勢することによって最大変位量Dmaxまで変位させることができる。従って、液体貯留部11に貯留された液体に大きな力を加えることができる。その結果、液体が高粘度であったとしても、加熱機構(特開2003−103207号公報、特開2000−317371号公報参照)などを設けることなく液体をスムーズに吐出することができる。さらに、圧電素子14からの加圧振動をダイヤフラム12に直接的に加えることができるため、ヒンジ構造を用いた変位拡大機構(特開2005−349387号公報、特開2008−54492号公報参照)を設ける場合に比べて応答性を向上させることができる。このように、第1実施形態に係る液滴吐出装置10によれば、圧電素子14の応答性は維持しつつ、ダイヤフラム12の変位量を増大させることができる。 (Features) (1) In the droplet discharge device 10, the diaphragm 12 is provided with the receiving member 13 functioning as a weight. Therefore, after the piezoelectric element 14 is displaced to the maximum displacement amount Emax, the diaphragm 12 can be displaced to the maximum displacement amount Dmax by being urged by the inertial force of the receiving member 13. Therefore, a large force can be applied to the liquid stored in the liquid storage unit 11. As a result, even if the liquid has a high viscosity, the liquid can be discharged smoothly without providing a heating mechanism (see JP-A-2003-103207 and JP-A-2000-317371). Further, since the pressurized vibration from the piezoelectric element 14 can be directly applied to the diaphragm 12, a displacement enlarging mechanism using a hinge structure (see JP-A-2005-349387 and JP-A-2008-54492). Responsiveness can be improved as compared with the case where the device is provided. As described above, according to the droplet discharge device 10 according to the first embodiment, the displacement of the diaphragm 12 can be increased while the responsiveness of the piezoelectric element 14 is maintained.

(2)液滴吐出装置10において、当接部材15は、圧電素子14に固定され、かつ、受け部材13と離接自在な状態で当接する当接部材15を備える。従って、圧電素子14が受け部材13と当接する場合に比べて、圧電素子14自体が破損又は摩耗することを抑制できる。また、当接部材15が受け部材13に固定されていないため、受け部材13の非拘束状態を維持することができる。 (2) In the droplet discharge device 10, the contact member 15 includes the contact member 15 fixed to the piezoelectric element 14 and in contact with the receiving member 13 in a detachable manner. Therefore, it is possible to suppress the piezoelectric element 14 itself from being damaged or worn as compared with the case where the piezoelectric element 14 contacts the receiving member 13. In addition, since the contact member 15 is not fixed to the receiving member 13, the non-restricted state of the receiving member 13 can be maintained.

(3)当接部材15は、受け部材13と点接触し、かつ、圧電素子14と面接触している。従って、受け部材13から当接部材15に加わる力を圧電素子14に均等に伝達することができるため、圧電素子14の内部に圧縮応力が集中して破損することを抑制できる。 (3) The contact member 15 is in point contact with the receiving member 13 and is in surface contact with the piezoelectric element 14. Therefore, since the force applied from the receiving member 13 to the contact member 15 can be evenly transmitted to the piezoelectric element 14, it is possible to prevent the compressive stress from being concentrated inside the piezoelectric element 14 and to be damaged.

2.第2実施形態 第2実施形態に係る液滴吐出装置20の構成について説明する。 2. Second Embodiment A configuration of a droplet discharge device 20 according to a second embodiment will be described.

第1実施形態に係る液滴吐出装置10において、ダイヤフラム12の変位波形には、第1波の後にリンギングが発生することとしたが、第2実施形態に係る液滴吐出装置20では、ダイヤフラム12のリンギングを抑制する制御(以下、「リンギング抑制制御」という。)が実行される。以下においては、第1実施形態との相違点について主に説明する。 In the droplet discharge device 10 according to the first embodiment, ringing occurs after the first wave in the displacement waveform of the diaphragm 12, but in the droplet discharge device 20 according to the second embodiment, (Hereinafter, referred to as “ringing suppression control”) is executed. Hereinafter, differences from the first embodiment will be mainly described.

(液滴吐出装置20の構成) 図6は、液滴吐出装置20の構成を示す模式図である。液滴吐出装置20は、上述した液滴吐出装置10の構成に加えて、歪みゲージ17とアンプ装置18を備える。 (Configuration of Droplet Discharge Apparatus 20) FIG. 6 is a schematic diagram illustrating a configuration of the droplet discharge apparatus 20. The droplet discharge device 20 includes a strain gauge 17 and an amplifier device 18 in addition to the configuration of the droplet discharge device 10 described above.

歪みゲージ17は、ダイヤフラム12のうち可撓部12bの外面12Sに設置される。歪みゲージ17は、可撓部12bの抵抗値の増減に応じて、可撓部12bの歪み量を検出する。歪みゲージ17は、ダイヤフラム12の変位波形(変位の経時的推移)を検出するための「変位計」の一例である。歪みゲージ17は、検出した歪み量をアンプ装置18に出力する。アンプ装置18は、歪みゲージ17から入力された歪み量を増幅して制御部16に出力する。 The strain gauge 17 is provided on the outer surface 12S of the flexible portion 12b of the diaphragm 12. The strain gauge 17 detects the amount of distortion of the flexible part 12b according to the increase or decrease of the resistance value of the flexible part 12b. The strain gauge 17 is an example of a “displacement gauge” for detecting a displacement waveform (transitional change of displacement) of the diaphragm 12. The strain gauge 17 outputs the detected strain amount to the amplifier device 18. The amplifier device 18 amplifies the amount of distortion input from the strain gauge 17 and outputs the amplified amount to the control unit 16.

制御部16は、入力された歪み量に基づいて、ダイヤフラム12の変位波形を取得する。制御部16は、前回の加圧振動におけるダイヤフラム12の変位波形に基づいて、次回の加圧振動におけるリンギング抑制制御を実行する。 The control unit 16 acquires a displacement waveform of the diaphragm 12 based on the input distortion amount. The control unit 16 executes the ringing suppression control in the next pressurized vibration based on the displacement waveform of the diaphragm 12 in the previous pressurized vibration.

(リンギング抑制制御) 以下、制御部16によるリンギング抑制制御の一例について、図面を参照しながら説明する。リンギング抑制制御の具体的手法としては様々な手法が考えられるが、以下に説明するリンギング抑制制御では、前回の加圧振動におけるダイヤフラム12の変位波形に基づいて、次回の加圧振動におけるダイヤフラム12のリンギングが抑制されるものとする。このようなリンギング抑制制御によれば、ダイヤフラム12の加圧振動を繰り返すごとに、リンギングを徐々に抑制していくことができる。 (Ringing Suppression Control) Hereinafter, an example of the ringing suppression control by the control unit 16 will be described with reference to the drawings. Various methods can be considered as a specific method of the ringing suppression control. In the ringing suppression control described below, based on the displacement waveform of the diaphragm 12 in the previous pressurized vibration, the diaphragm 12 in the next pressurized vibration is used. It is assumed that ringing is suppressed. According to such ringing suppression control, ringing can be gradually suppressed each time pressure vibration of the diaphragm 12 is repeated.

図7〜図9は、ダイヤフラム12の変位量D及び圧電素子14の変位量Eの推移を示すグラフである。ダイヤフラム12の変位量Dの推移とは、ダイヤフラム12の変位波形のことである。圧電素子14の変位量Eの推移は、制御部16が生成する駆動パルスの波形と同じである。 7 to 9 are graphs showing the transition of the displacement D of the diaphragm 12 and the displacement E of the piezoelectric element 14. FIG. The transition of the displacement amount D of the diaphragm 12 is a displacement waveform of the diaphragm 12. The transition of the displacement E of the piezoelectric element 14 is the same as the waveform of the drive pulse generated by the control unit 16.

図7〜図9では、ダイヤフラム12が所定の時間間隔で連続して3回加圧振動する場面が想定されている。図7に示す1回目の加圧振動M1では、リンギング抑制制御が実行されておらず、図8に示す2回目の加圧振動M2では、図7の変位波形に基づいてリンギング抑制制御が実行されており、図9に示す3回目の加圧振動M3では、図8の変位波形に基づいてリンギング抑制制御が実行されている。以下、詳細を説明する。 7 to 9, it is assumed that the diaphragm 12 continuously vibrates three times at predetermined time intervals. In the first pressing vibration M1 shown in FIG. 7, the ringing suppression control is not executed, and in the second pressing vibration M2 shown in FIG. 8, the ringing suppression control is executed based on the displacement waveform of FIG. In the third pressurization vibration M3 shown in FIG. 9, the ringing suppression control is executed based on the displacement waveform of FIG. Hereinafter, the details will be described.

図7に示す1回目の加圧振動M1では、ダイヤフラム12の変位波形に第1波X1〜第n波Xnが含まれており、そのうち第2波X2〜第n波Xnがリンギングである。 In the first pressurization vibration M1 shown in FIG. 7, the first wave X1 to the n-th wave Xn are included in the displacement waveform of the diaphragm 12, and the second wave X2 to the n-th wave Xn are ringing.

図8に示す2回目の加圧振動M2では、ダイヤフラム12の変位波形に第1波Y1〜第n波Ynが含まれており、そのうち第2波Y2〜第n波Ynがリンギングである。 In the second pressurization vibration M2 shown in FIG. 8, the displacement waveform of the diaphragm 12 includes the first wave Y1 to the n-th wave Yn, of which the second wave Y2 to the n-th wave Yn are ringing.

図9に示す3回目の加圧振動M3では、ダイヤフラム12の変位波形に第1波Z1〜第n波Znが含まれており、そのうち第2波Z2〜第n波Znがリンギングである。 In the third pressurization vibration M3 shown in FIG. 9, the first waveform Z1 to the n-th Zn are included in the displacement waveform of the diaphragm 12, and the second wave Z2 to the n-th Zn are ringing.

(1回目の加圧振動M1) 1回目の加圧振動M1は、上記第1実施形態において、図2を参照して説明した加圧振動と同じである。制御部16は、時刻T0〜T1の電圧上昇区間と、時刻T1〜T2の電圧下降区間とを有する駆動パルスによって圧電素子14を制御している。 (First Pressing Vibration M1) The first pressing vibration M1 is the same as the pressurizing vibration described with reference to FIG. 2 in the first embodiment. The control unit 16 controls the piezoelectric element 14 by a drive pulse having a voltage rising section from time T0 to T1 and a voltage falling section from time T1 to T2.

そのため、圧電素子14に印加される電圧は、時刻T0〜T1において0(基準電位)から駆動電圧(最高電位)まで上昇した後、時刻T1〜T2において駆動電圧から0まで下降している。 Therefore, the voltage applied to the piezoelectric element 14 increases from 0 (reference potential) to the drive voltage (maximum potential) at times T0 to T1, and then decreases from the drive voltage to 0 at times T1 to T2.

図7に示すように、1回目の加圧振動M1では、時刻T1〜T2の電圧下降区間において、圧電素子14の変位を示すLE1が、ダイヤフラム12の変位を示す線分LD1と交差していない。従って、ダイヤフラム12は、時刻T4において原状態に復帰するまで当接部材15と接触しないため、リンギングがそのまま残っている。 As shown in FIG. 7, in the first pressurization vibration M1, in the voltage drop section from time T1 to T2, LE1 indicating the displacement of the piezoelectric element 14 does not intersect with the line segment LD1 indicating the displacement of the diaphragm 12. . Therefore, since the diaphragm 12 does not contact the contact member 15 until the diaphragm 12 returns to the original state at the time T4, the ringing remains.

(2回目の加圧振動M2) 次に、制御部16は、図7の変位波形を歪みゲージ17から取得する。そして、制御部16は、図7の変位波形に含まれるリンギングが低減するように、電圧を減少させるタイミングと電圧の減少速度(傾き)とを決定し、それに基づいて駆動パルスの波形を調整する。 (Second Pressing Vibration M2) Next, the control unit 16 acquires the displacement waveform in FIG. Then, the control unit 16 determines the voltage decreasing timing and the voltage decreasing speed (slope) so that the ringing included in the displacement waveform of FIG. 7 is reduced, and adjusts the waveform of the drive pulse based on the timing. .

具体的には、図8に示すように、制御部16は、時刻T5〜T6の電圧上昇区間と、時刻T6〜T7の電圧維持区間と、時刻T7〜T8の電圧下降区間とを有する駆動パルスによって圧電素子14を制御している。 Specifically, as shown in FIG. 8, the control unit 16 generates a drive pulse having a voltage rising section between times T5 and T6, a voltage maintaining section between times T6 and T7, and a voltage falling section between times T7 and T8. This controls the piezoelectric element 14.

そのため、圧電素子14に印加される電圧は、時刻T5〜T6において0(基準電位)から駆動電圧(最高電位)まで上昇し、時刻T6〜T7において駆動電圧に維持された後、時刻T7〜T8において駆動電圧から0まで下降している。時刻T6〜T7における電圧維持区間の時間幅はTW1である。 Therefore, the voltage applied to the piezoelectric element 14 rises from 0 (reference potential) to the drive voltage (maximum potential) at times T5 to T6, and is maintained at the drive voltage at times T6 to T7, and then at times T7 to T8. In this case, the drive voltage drops from 0 to 0. The time width of the voltage maintaining section between times T6 and T7 is TW1.

図8に示すように、2回目の加圧振動M2では、時刻T7〜T8の電圧下降区間において、圧電素子14の変位を示すLE2が、ダイヤフラム12の変位を示す線分LD2と交差している。このことは、ダイヤフラム12が、時刻T7〜T8において原状態に復帰する途中で、収縮中の当接部材15と接触していることを意味する。 As shown in FIG. 8, in the second pressurization vibration M2, in the voltage drop section from time T7 to T8, LE2 indicating the displacement of the piezoelectric element 14 intersects with the line segment LD2 indicating the displacement of the diaphragm 12. . This means that the diaphragm 12 is in contact with the contracting abutting member 15 during the return to the original state between the times T7 and T8.

そのため、ダイヤフラム12の振動が当接部材15の収縮に吸収されることによって、図8のリンギングが、図7のリンギングに比べて低減されている。 For this reason, the vibration of the diaphragm 12 is absorbed by the contraction of the contact member 15, so that the ringing in FIG. 8 is reduced as compared with the ringing in FIG.

(3回目の加圧振動M3) 次に、制御部16は、図8の変位波形を歪みゲージ17から取得する。そして、制御部16は、図8の変位波形に含まれるリンギングが更に低減するように、電圧を減少させるタイミングと電圧の減少速度(傾き)とを決定し、それに基づいて駆動パルスの波形をさらに調整する。 (Third Pressing Vibration M3) Next, the control unit 16 acquires the displacement waveform in FIG. Then, the control unit 16 determines the timing of decreasing the voltage and the decreasing speed (gradient) of the voltage so that the ringing included in the displacement waveform of FIG. 8 is further reduced, and further changes the waveform of the drive pulse based on the timing. adjust.

具体的には、図9に示すように、制御部16は、時刻T9〜T10の電圧上昇区間と、時刻T10〜T11の電圧維持区間と、時刻T11〜T12の電圧下降区間とを有する駆動パルスによって圧電素子14を制御している。そのため、圧電素子14に印加される電圧は、時刻T9〜T10において0(基準電位)から駆動電圧(最高電位)まで上昇し、時刻T10〜T11において駆動電圧に維持された後、時刻T11〜T12において駆動電圧から0まで下降している。時刻T10〜T11における電圧維持区間の時間幅TW2は、2回目の加圧振動M2の時刻T6〜T7における電圧維持区間の時間幅TW1よりも長い。 Specifically, as shown in FIG. 9, the control unit 16 generates a drive pulse having a voltage rising section from time T9 to T10, a voltage maintaining section from time T10 to T11, and a voltage falling section from time T11 to T12. This controls the piezoelectric element 14. Therefore, the voltage applied to the piezoelectric element 14 rises from 0 (reference potential) to the drive voltage (maximum potential) from time T9 to T10, and is maintained at the drive voltage from time T10 to T11, and then from time T11 to T12. In this case, the drive voltage drops from 0 to 0. The time width TW2 of the voltage maintaining section at times T10 to T11 is longer than the time width TW1 of the voltage maintaining section at times T6 to T7 of the second pressurization vibration M2.

図9に示すように、3回目の加圧振動M3では、時刻
T10〜T11の電圧下降区間において、圧電素子14の変位を示すLE3は、ダイヤフラム12の変位を示す線分LD3と交差している。従って、ダイヤフラム12は、時刻T11〜T12において原状態に復帰する途中で、収縮中の当接部材15と接触している。
As shown in FIG. 9, in the third pressurization vibration M3, in the voltage drop section from time T10 to T11, LE3 indicating the displacement of the piezoelectric element 14 intersects with the line segment LD3 indicating the displacement of the diaphragm 12. . Therefore, the diaphragm 12 is in contact with the contracting contact member 15 during the return to the original state at the times T11 to T12.

さらに、電圧維持区間の時間幅TW2が時間幅TW1よりも長く設定されているため、ダイヤフラム12が当接部材15と接触するタイミングが若干遅れている。そのため、ダイヤフラム12の振動が当接部材15の収縮により吸収されることによって、図9のリンギングは、図8のリンギングに比べて更に低減されている。 Further, since the time width TW2 of the voltage maintaining section is set longer than the time width TW1, the timing at which the diaphragm 12 contacts the contact member 15 is slightly delayed. Therefore, the vibration of the diaphragm 12 is absorbed by the contraction of the contact member 15, so that the ringing in FIG. 9 is further reduced as compared with the ringing in FIG.

(4回目以降の加圧振動) 以上、3回目までの加圧振動について説明したが、4回目以降も同様のリンギング抑制制御を継続して実行してもよい。或いは、リンギングの最大変位が所定値未満になったときの駆動パルスを、その後継続して使用し、リンギングの最大変位が所定値以上になったときに、リンギング抑制制御を再開するようにしてもよい。 (Fourth Pressing Vibration) The third pressurizing vibration has been described above, but the same ringing suppression control may be continuously executed after the fourth pressing vibration. Alternatively, the drive pulse when the maximum displacement of the ringing becomes less than the predetermined value is continuously used thereafter, and the ringing suppression control is restarted when the maximum displacement of the ringing becomes more than the predetermined value. Good.

(特徴) (1)液滴吐出装置20において、制御部16は、2回目の加圧振動M2において、圧電素子14に駆動電圧を印加した後、リンギングが低減するように、時刻T7〜T8においてリンギング抑制制御を実行している。そのため、液体吐出口11cから液滴となって外部に吐出される液体量を制限することができるため、高精細に液滴を吐出することができる。 (Characteristics) (1) In the droplet discharge device 20, the control unit 16 applies a driving voltage to the piezoelectric element 14 in the second pressurization vibration M2, and then controls the ringing at times T7 to T8 so as to reduce ringing. The ringing suppression control is being executed. Therefore, it is possible to limit the amount of liquid that is discharged as liquid droplets from the liquid discharge port 11c to the outside, and it is possible to discharge liquid droplets with high definition.

(2)液滴吐出装置20において、制御部16は、3回目の加圧振動M3におけるリンギングz2〜znが、2回目の加圧振動M2におけるリンギングよりも更に低減されるように、時刻T11〜T12においてリンギング抑制制御を改善している。そのため、液体吐出口11cから液滴となって外部に吐出される液体量をより制限することができるため、より高精細に液滴を吐出することができる。 (2) In the droplet discharge device 20, the control unit 16 controls the times T11 to T11 so that the ringing z2 to zn in the third pressurization vibration M3 is further reduced than the ringing in the second pressurization vibration M2. At T12, the ringing suppression control is improved. Therefore, the amount of liquid discharged from the liquid discharge port 11c as liquid droplets to the outside can be further restricted, so that liquid droplets can be discharged with higher definition.

(他の実施形態) 本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなる。 (Other Embodiments) Although the present invention has been described by the above embodiments, it should not be understood that the description and drawings forming part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.

上記第1及び第2実施形態では、ダイヤフラム12と圧電素子14との間に当接部材15が介挿されることとしたが、当接部材15は介挿されていなくてもよい。この場合には、受け部材13が圧電素子14と直接接触することになる。受け部材13が圧電素子14と直接接触する場合、受け部材13は圧電素子14と点接触することが好ましい。 In the first and second embodiments, the contact member 15 is interposed between the diaphragm 12 and the piezoelectric element 14, but the contact member 15 may not be interposed. In this case, the receiving member 13 comes into direct contact with the piezoelectric element 14. When the receiving member 13 comes into direct contact with the piezoelectric element 14, it is preferable that the receiving member 13 makes point contact with the piezoelectric element 14.

上記第1及び第2実施形態において、当接部材15は、受け部材13と点接触する曲面15Sを有することとしたが、これに限られるものではない。当接部材15は、受け部材13と点接触していればよく、例えば受け部材13が曲面を有する場合には、当接部材15は平面であってもよい。 In the first and second embodiments, the contact member 15 has the curved surface 15S that makes point contact with the receiving member 13, but is not limited to this. The contact member 15 only needs to be in point contact with the receiving member 13. For example, when the receiving member 13 has a curved surface, the contact member 15 may be flat.

上記第1及び第2実施形態において、当接部材15は略半球状に形成されており、その全体が受け部材13と圧電素子14との間に介挿されることとしたが、これに限られるものではない。当接部材15は、その一部のみが受け部材13と圧電素子14との間に介挿されていてもよい。例えば、当接部材15は、圧電素子14を収容する箱状の収容器であってもよい。この場合には、受け部材13と圧電素子14との間に挟まれた収容器の底板が当接部材として機能する。 In the first and second embodiments, the contact member 15 is formed in a substantially hemispherical shape, and the whole is inserted between the receiving member 13 and the piezoelectric element 14, but is not limited thereto. Not something. The contact member 15 may be partially inserted between the receiving member 13 and the piezoelectric element 14. For example, the contact member 15 may be a box-shaped container that stores the piezoelectric element 14. In this case, the bottom plate of the container sandwiched between the receiving member 13 and the piezoelectric element 14 functions as a contact member.

上記第1及び第2実施形態では特に触れていないが、圧電素子14が伸縮する第2方向は、鉛直方向であってもよいし、鉛直方向と交差する方向であってもよい。すなわち、圧電素子14の伸縮方向は鉛直方向に関わらず自由に設定することができる。従って、ダイヤフラム12は、液体貯留部11の側面に配置されていてもよいし、液体貯留部11の底面に配置されていてもよい。 Although not specifically mentioned in the first and second embodiments, the second direction in which the piezoelectric element 14 expands and contracts may be a vertical direction or a direction intersecting the vertical direction. That is, the expansion and contraction direction of the piezoelectric element 14 can be freely set regardless of the vertical direction. Therefore, the diaphragm 12 may be disposed on the side surface of the liquid storage unit 11 or may be disposed on the bottom surface of the liquid storage unit 11.

上記第2実施形態において、制御部16は、2回目及び3回目の加圧振動M2,M3において、リンギングの全てを低減させるようにリンギング抑制制御を実行することとしたが、これに限られるものではない。制御部16は、リンギングの一部が低減しないようにリンギング抑制制御を実行してもよい。このように、例えば第2波や第3波を低減させずに敢えて残すことによって、液滴の体積を増大させることができる。 In the second embodiment, the control unit 16 executes the ringing suppression control so as to reduce all of the ringing in the second and third pressurization vibrations M2 and M3, but is not limited thereto. is not. The control unit 16 may execute the ringing suppression control so that a part of the ringing is not reduced. In this way, for example, by leaving the second wave and the third wave without reducing them, the volume of the droplet can be increased.

上記第2実施形態において、液滴吐出装置20は、リンギング抑制制御において、ダイヤフラム12の電圧減少タイミングと電圧減少速度とを毎回決定することとしたが、これに限られるものではない。例えば、1回目の変位波形に基づいて決定した電圧減少タイミングと電圧減少速度を、その後継続的に使用してもよい。この場合には、ダイヤフラム12の変位が所定値以下になったときを電圧減少タイミングとすればよい。 In the above-described second embodiment, the droplet discharge device 20 determines the voltage reduction timing and the voltage reduction speed of the diaphragm 12 each time in the ringing suppression control. However, the present invention is not limited to this. For example, the voltage decrease timing and the voltage decrease speed determined based on the first displacement waveform may be continuously used thereafter. In this case, the time when the displacement of the diaphragm 12 becomes equal to or less than a predetermined value may be set as the voltage decrease timing.

上記第2実施形態において、液滴吐出装置20は、リンギング抑制制御を実行するために、歪みゲージ17とアンプ装置18を備えることとしたが、歪みゲージ17とアンプ装置18を備えていなくてもリンギング抑制制御を実行することができる。例えば、所望の液体を用いたときのダイヤフラム12の変位波形を予め取得して、リンギングを抑制可能な駆動パルスを決定しておけば、制御部16が駆動パルスを調整する必要はないため、歪みゲージ17とアンプ装置18は不要である。 In the second embodiment, the droplet discharge device 20 includes the strain gauge 17 and the amplifier device 18 in order to execute the ringing suppression control. However, the droplet discharge device 20 may not include the strain gauge 17 and the amplifier device 18. Ringing suppression control can be executed. For example, if a displacement waveform of the diaphragm 12 when a desired liquid is used is obtained in advance and a drive pulse capable of suppressing ringing is determined, the control unit 16 does not need to adjust the drive pulse. The gauge 17 and the amplifier device 18 are unnecessary.

上記第2実施形態において、制御部16は、第3回目の加圧振動M3において、電圧維持区間の時間幅、すなわち、電圧を減少させるタイミングを調整することとしたが、これに限られるものではない。制御部16は、電圧の減少速度(単位時間当たりの減少電位)を調整することによっても、リンギングの低減量を調整することができる。電圧の減少速度を調整するとは、具体的には、図8のT7〜T8や図9のT11〜T12の時間を可変して立下りのスロープを変えることである。また、制御部16は、電圧を減少させるタイミングと電圧の減少速度との両方を調整することによって、リンギングの低減量を調整することもできる。 In the second embodiment, the control unit 16 adjusts the time width of the voltage maintaining section, that is, the timing of decreasing the voltage in the third pressurization oscillation M3, but is not limited to this. Absent. The control unit 16 can also adjust the amount of reduction in ringing by adjusting the rate of decrease in voltage (decrease potential per unit time). Adjusting the voltage decreasing rate specifically means changing the falling slope by changing the time from T7 to T8 in FIG. 8 and T11 to T12 in FIG. Further, the control unit 16 can also adjust the amount of reduction in ringing by adjusting both the timing of decreasing the voltage and the rate of decrease of the voltage.

上記第2実施形態において、制御部16は、1回目及び2回目の加圧振動M1,M2におけるダイヤフラム12の変位量に基づいてリンギング抑制制御を実行することとしたが、これに限られるものではない。制御部16は、リンギング抑制制御用に予め設定された所定の駆動パルスを用いてリンギング抑制制御を実行することができる。この場合、液滴吐出装置20は、歪みゲージ17とアンプ装置18を備えていなくてよい。 In the second embodiment, the control unit 16 executes the ringing suppression control based on the displacement amount of the diaphragm 12 in the first and second pressurizing vibrations M1 and M2, but is not limited thereto. Absent. The control unit 16 can execute the ringing suppression control by using a predetermined drive pulse preset for the ringing suppression control. In this case, the droplet discharge device 20 need not include the strain gauge 17 and the amplifier device 18.

上記第2実施形態では、ダイヤフラム12の変位波形を検出するための変位計の一例として歪みゲージ17について説明したが、これに限られるものではない。変位計としては、ダイヤフラム12の寸法を直接測定する形状測定機などを用いることができる。 In the second embodiment, the strain gauge 17 has been described as an example of the displacement gauge for detecting the displacement waveform of the diaphragm 12, but the present invention is not limited to this. As the displacement meter, a shape measuring device or the like for directly measuring the dimensions of the diaphragm 12 can be used.

10 液滴吐出装置11 液体貯留部12 ダイヤフラム13 受け部材14 圧電素子15 当接部材16 制御部17 歪みゲージ REFERENCE SIGNS LIST 10 droplet discharge device 11 liquid storage unit 12 diaphragm 13 receiving member 14 piezoelectric element 15 contact member 16 control unit 17 strain gauge

Claims (7)

液体吐出口を有する液体貯留部と、 前記液体貯留部の容積を変化させるダイヤフラムと、 前記ダイヤフラムに固定される受け部材と、 前記受け部材に加圧振動を加える圧電素子と、を備え、 前記圧電素子は、前記受け部材に固定されていない、液滴吐出装置。 A liquid storage unit having a liquid discharge port, a diaphragm that changes the volume of the liquid storage unit, a receiving member fixed to the diaphragm, and a piezoelectric element that applies pressure vibration to the receiving member. A droplet discharging device, wherein the element is not fixed to the receiving member. 前記受け部材に当接する当接部材を備え、 前記当接部材は、前記圧電素子に固定され、かつ、前記受け部材に固定されていない、請求項1に記載の液滴吐出装置。 The droplet discharging device according to claim 1, further comprising a contact member that contacts the receiving member, wherein the contact member is fixed to the piezoelectric element and is not fixed to the receiving member. 前記当接部材は、前記受け部材と点接触し、かつ、前記圧電素子と面接触する、請求項1に記載の液滴吐出装置。 2. The droplet discharge device according to claim 1, wherein the contact member makes point contact with the receiving member and makes surface contact with the piezoelectric element. 3. 前記圧電素子に電圧を印加することによって、前記圧電素子の伸張量を制御する制御部を備え、 前記制御部は、前記圧電素子に電圧を印加した後、前記ダイヤフラムのリンギングの少なくとも一部が低減するように電圧を減少させるリンギング抑制制御を実行する、請求項1乃至3のいずれかに記載の液滴吐出装置。 A control unit that controls an amount of expansion of the piezoelectric element by applying a voltage to the piezoelectric element, wherein the control unit reduces at least a part of ringing of the diaphragm after applying a voltage to the piezoelectric element. 4. The droplet discharge device according to claim 1, wherein the control device executes ringing suppression control for decreasing the voltage so as to reduce the voltage. 前記制御部は、前記ダイヤフラムのリンギングの一部を低減させないように前記リンギング抑制制御を実行する、請求項4に記載の液滴吐出装置。 5. The droplet discharge device according to claim 4, wherein the control unit executes the ringing suppression control so as not to reduce a part of the ringing of the diaphragm. 前記ダイヤフラムの変位波形を検出する変位計を備え、 前記制御部は、前記ダイヤフラムの変位波形に基づいて、前記リンギング抑制制御において電圧を減少させるタイミングと電圧の減少速度とを決定する、請求項4又は5に記載の液滴吐出装置。 5. The apparatus according to claim 4, further comprising: a displacement meter configured to detect a displacement waveform of the diaphragm, wherein the control unit determines, based on the displacement waveform of the diaphragm, a timing at which a voltage is reduced in the ringing suppression control and a rate at which the voltage is reduced. Or the droplet discharge device according to 5. 前記制御部は、前記開始タイミングと前記減少速度とでリンギングが低減された変位波形に基づいて、次回のリンギング抑制制御において電圧を減少させるタイミングと電圧の減少速度との少なくとも一方を変更する、請求項6に記載の液滴吐出装置。 The control unit, based on a displacement waveform in which ringing has been reduced at the start timing and the reduction speed, changes at least one of a timing at which a voltage is reduced in the next ringing suppression control and a voltage reduction speed. Item 7. A droplet discharge device according to Item 6.
JP2019508763A 2017-03-27 2018-02-20 Droplet ejection device Pending JPWO2018180006A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017060866 2017-03-27
JP2017060866 2017-03-27
PCT/JP2018/005914 WO2018180006A1 (en) 2017-03-27 2018-02-20 Droplet discharge device

Publications (1)

Publication Number Publication Date
JPWO2018180006A1 true JPWO2018180006A1 (en) 2020-02-06

Family

ID=63674666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019508763A Pending JPWO2018180006A1 (en) 2017-03-27 2018-02-20 Droplet ejection device

Country Status (4)

Country Link
JP (1) JPWO2018180006A1 (en)
KR (1) KR20190113908A (en)
CN (1) CN110461608A (en)
WO (1) WO2018180006A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202770A (en) * 2017-06-06 2018-12-27 セーレン株式会社 Inkjet head and inkjet recording device
WO2019230816A1 (en) * 2018-06-01 2019-12-05 日本電産株式会社 Liquid agent applying device
EP4299196A1 (en) * 2021-02-24 2024-01-03 Yamagata University Inkjet head, method for producing same, method for producing semiconductor device using same, and printing device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3147132B2 (en) * 1992-03-03 2001-03-19 セイコーエプソン株式会社 Inkjet recording head, diaphragm for inkjet recording head, and method of manufacturing diaphragm for inkjet recording head
JP3356187B2 (en) * 1993-04-23 2002-12-09 セイコーエプソン株式会社 Ink jet head and driving method thereof
JP2000033694A (en) * 1998-07-17 2000-02-02 Max Co Ltd Ink jet head mechanism
JP3250530B2 (en) * 1998-10-14 2002-01-28 日本電気株式会社 Ink jet recording head and ink jet recording apparatus
EP1070589A3 (en) * 1999-07-19 2001-07-18 Nec Corporation Ink-jet recording head, method for fabricating same and method for ejecting ink droplets
WO2005009734A2 (en) * 2003-07-31 2005-02-03 Nissim Einat Ink jet printing method and apparatus
US7694855B2 (en) 2004-04-23 2010-04-13 Nordson Corporation Dispenser having a pivoting actuator assembly
JP4994126B2 (en) 2006-07-28 2012-08-08 ノイベルク有限会社 Piezoelectric drive device and liquid discharge device
JP2008195001A (en) * 2007-02-15 2008-08-28 Mimaki Engineering Co Ltd Nozzle head and liquid ejector
JP2010089275A (en) * 2008-10-03 2010-04-22 Riso Kagaku Corp Liquid agent ejection apparatus and liquid agent ejection method
JP5590302B2 (en) * 2010-03-30 2014-09-17 セイコーエプソン株式会社 Liquid ejecting head, liquid ejecting head unit, and liquid ejecting apparatus
JP2012143975A (en) * 2011-01-13 2012-08-02 Ricoh Co Ltd Liquid ejection head, method for manufacturing vibrating plate member, and image forming apparatus
JP6269084B2 (en) * 2014-01-15 2018-01-31 株式会社リコー Image forming apparatus and head drive control method

Also Published As

Publication number Publication date
WO2018180006A1 (en) 2018-10-04
KR20190113908A (en) 2019-10-08
CN110461608A (en) 2019-11-15

Similar Documents

Publication Publication Date Title
JPWO2018180006A1 (en) Droplet ejection device
CN102144355B (en) Piezoelectric power generating device
JP5409925B2 (en) Piezoelectric vibration device and portable terminal using the same
JP2011091719A (en) Flexural oscillating actuator
JP2011124891A (en) Controller for capacitance type electromechanical conversion device, and method for controlling the same
JP5118485B2 (en) Method for driving liquid ejection device and liquid ejection device using the method
WO2013051400A1 (en) Ultrasonic-wave generation device
JP2006087984A (en) Apparatus for jetting air bubble
JP2011129971A (en) Flexible vibration actuator
JP2005117103A (en) Ultrasonic transducer
CN110944274A (en) Tunable MEMS piezoelectric transducer with mass load based on Pitton-mode
US20230294132A1 (en) Acoustic transducer
CN109848021B (en) Ultrasonic device and ultrasonic measuring apparatus
JP4515348B2 (en) Piezoelectric device for generating acoustic signals
KR20170057658A (en) High efficiency ultrasonic vibrator
US20200282726A1 (en) Liquid agent application device
EP2693772B1 (en) Oscillator
JP2000205934A (en) Weight detection apparatus
CN111032360A (en) Liquid coating device
KR101898312B1 (en) Ultrasonic transducer array having a glass-ceramic layer as an acoustic matching layer
JP2021014788A (en) Liquid application device
JP7409249B2 (en) ultrasonic transducer
WO2016093228A1 (en) Vibrating body and vibrating body array
WO2019064782A1 (en) Liquid agent application device
JP5855142B2 (en) Capacitance transducer control apparatus and capacitance transducer control method