JPWO2018174106A1 - Polyamide fiber with excellent moisture absorption / release properties - Google Patents

Polyamide fiber with excellent moisture absorption / release properties Download PDF

Info

Publication number
JPWO2018174106A1
JPWO2018174106A1 JP2018525621A JP2018525621A JPWO2018174106A1 JP WO2018174106 A1 JPWO2018174106 A1 JP WO2018174106A1 JP 2018525621 A JP2018525621 A JP 2018525621A JP 2018525621 A JP2018525621 A JP 2018525621A JP WO2018174106 A1 JPWO2018174106 A1 JP WO2018174106A1
Authority
JP
Japan
Prior art keywords
molecular weight
polyamide
polyamide fiber
moisture absorption
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018525621A
Other languages
Japanese (ja)
Other versions
JP6996506B2 (en
Inventor
林 剛史
剛史 林
澤井 由美子
由美子 澤井
一 藤井
一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018174106A1 publication Critical patent/JPWO2018174106A1/en
Application granted granted Critical
Publication of JP6996506B2 publication Critical patent/JP6996506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

本発明の目的は、高い吸放湿速度のポリアミド繊維を用いたムレ感のない快適な衣料を提供することである。本発明のポリアミド繊維は、ポリアミドとポリビニルピロリドン3〜15wt%を含有し、かつ前記ポリアミドが以下の特徴を満たすポリアミド繊維である:(1)分子量分布が2つのピークを有し、低分子量側のピークの分子量が1000〜2500である;(2)前記分子量分布において低分子量側のピーク強度(IL)と高分子量側のピーク強度(IH)との比IL/IHが0.02〜0.10である。An object of the present invention is to provide a comfortable garment free from stuffiness using a polyamide fiber having a high moisture absorption / desorption rate. The polyamide fiber of the present invention is a polyamide fiber containing 3 to 15 wt% of polyamide and polyvinylpyrrolidone, and wherein the polyamide satisfies the following characteristics: (1) the molecular weight distribution has two peaks, (2) the ratio IL / IH of the peak intensity (IL) on the low molecular weight side to the peak intensity (IH) on the high molecular weight side in the molecular weight distribution is 0.02 to 0.10; It is.

Description

本発明は、吸放湿性、特に高い吸放湿速度に優れたポリアミド繊維に関するものである。   TECHNICAL FIELD The present invention relates to a polyamide fiber having excellent moisture absorption / desorption properties, particularly a high moisture absorption / desorption rate.

ポリアミドやポリエステルなどの熱可塑性樹脂から成る合成繊維は、強度、耐薬品性、耐熱性などに優れるために、衣料用途や産業用途など幅広く用いられている。   Synthetic fibers made of thermoplastic resins such as polyamides and polyesters are widely used in clothing and industrial applications because of their excellent strength, chemical resistance and heat resistance.

特にポリアミド繊維はその独特な柔らかさ、高い引っ張り強度、染色時の発色性、高い耐熱性等の特性に加え、吸湿性に優れており、インナーウエア、スポーツウエアなどの用途に広く使用されている。しかしながら、ポリアミド繊維は綿などの天然繊維と比べると吸湿性は十分とはいえず、また、ムレやべたつきといった問題点を有し、快適性の面で天然繊維に劣る、といわれ、ムレやべたつきを防ぐための優れた吸放湿性を示し、天然繊維に近い快適性を有する合成繊維の要望に応えるべく提案を続けてきた経緯がある。   In particular, polyamide fibers have excellent moisture absorption in addition to their unique softness, high tensile strength, coloring properties during dyeing, and high heat resistance, and are widely used in applications such as innerwear and sportswear. . However, compared to natural fibers such as cotton, polyamide fibers are not sufficiently hygroscopic and have problems such as stuffiness and stickiness, and are said to be inferior to natural fibers in terms of comfort, and are stuffy and sticky. There has been a history of proposals to respond to the demand for synthetic fibers that exhibit excellent moisture absorption and desorption properties for preventing odor and have comfort similar to natural fibers.

たとえば、ポリアミド繊維に親水性化合物を添加する方法が最も多く検討されてきた。特許文献1には、親水性ポリマーとしてポリビニルピロリドンをポリアミドにブレンドし、特定の製造方法で紡糸することで、吸湿性能を向上させたポリアミド繊維を生産性良く製造する方法が提案されている。   For example, the method of adding a hydrophilic compound to a polyamide fiber has been most often studied. Patent Document 1 proposes a method of blending polyvinylpyrrolidone as a hydrophilic polymer with polyamide and spinning the polyamide fiber with a specific production method, thereby producing a polyamide fiber with improved moisture absorption performance with high productivity.

また、特許文献2には、ポリビニルピロリドンを含有させるほか、ピロリドンを一定量含有することで、黄色度の小さいポリアミド繊維が提案されている。本繊維にて、乾燥速度に優れた布帛が実現できる。   Patent Document 2 proposes a polyamide fiber having a small yellowness by containing polyvinylpyrrolidone and by containing a certain amount of pyrrolidone. With this fiber, a fabric excellent in drying speed can be realized.

日本国特開昭50−148626号公報Japanese Patent Application Laid-Open No. 50-148626 日本国特開平9−188917号公報Japanese Patent Application Laid-Open No. Hei 9-188917

従来技術にて、一定の吸放湿性は得られ、その効果によりインナーを中心とする一般衣料への展開も図られてきた。また、汗をかいた場合の拡散が早い衣料が実現できた。しかし、時代の変遷とともに、要望も高度化し、単に吸放湿性が高い、乾燥速度が速いだけでは不十分であって、汗をかく前の湿度上昇による不快感をすばやく解消したいとの強い要望がある。特に運動時に発生するムレ感を即座に吸収し、拡散する即応性、すなわち、高い吸放湿速度が強く求められるようになってきた。従来はこの観点での開発は行われておらず、水分拡散と湿気吸収は別物であるとして取り扱われてきた。そのため、実際には吸放湿速度を満足する繊維は提供できていなかったのが実情である。   In the prior art, a certain level of moisture absorption / desorption properties has been obtained, and its effects have been applied to general clothing mainly for innerwear. In addition, clothing that spreads quickly when sweating is realized. However, with the change of the times, the demands have become more sophisticated, and it is not enough to simply have a high moisture absorption and desorption property and a high drying rate, and there is a strong demand to quickly eliminate the discomfort caused by the rise in humidity before sweating. is there. In particular, there has been a strong demand for a responsiveness to immediately absorb and diffuse the stuffiness generated during exercise, that is, a high moisture absorption and desorption rate. Conventionally, development from this viewpoint has not been performed, and moisture diffusion and moisture absorption have been treated as different things. Therefore, in fact, fibers that satisfy the moisture absorption and desorption rate have not been provided.

本発明は、前記のような高度な要望に応えるべく、高い吸放湿速度のポリアミド繊維を提供することを目的として下記の構成からなる。
(1)ポリアミドと、ポリビニルピロリドン3〜15wt%を含有し、前記ポリアミドが以下の(a)、(b)の特徴を満たすポリアミド繊維:
(a)分子量分布が2つのピークを持っており、低分子量側のピークの分子量が1000〜2500である;
(b)分子量分布の低分子量側のピーク強度(I)と高分子量側のピーク強度(I)の比I/Iが0.02〜0.10である。
(2)マルチフィラメントの平均の異形度が1.1〜4であることを特徴とする(1)に記載のポリアミド繊維。
(3)マルチフィラメントの少なくとも1本のフィラメントの断面形状が3つ以上の凸部分と3つ以上の凹部分からなる多葉形断面であることを特徴とする(2)に記載のポリアミド繊維。
(4)(1)〜(3)のいずれか1項に記載のポリアミド繊維を少なくとも一部に含む繊維製品。
The present invention has the following constitution for the purpose of providing a polyamide fiber having a high moisture absorption / desorption rate in order to meet the above-mentioned high demands.
(1) A polyamide fiber containing polyamide and 3 to 15 wt% of polyvinylpyrrolidone, wherein the polyamide satisfies the following characteristics (a) and (b):
(A) the molecular weight distribution has two peaks, and the molecular weight of the low molecular weight side peak is 1000 to 2500;
(B) the ratio I L / I H of the low molecular weight side of the peak intensities of the molecular weight distribution (I L) and high molecular weight side of the peak intensity (I H) is 0.02 to 0.10.
(2) The polyamide fiber according to (1), wherein the average irregularity of the multifilament is from 1.1 to 4.
(3) The polyamide fiber according to (2), wherein the cross-sectional shape of at least one filament of the multifilament is a multilobal cross-section including three or more convex portions and three or more concave portions.
(4) A fiber product comprising at least a part of the polyamide fiber according to any one of (1) to (3).

本発明によれば、従来にない高い吸放湿速度のポリアミド繊維を提供することができる。   According to the present invention, it is possible to provide a polyamide fiber having an unprecedented high moisture absorption / release rate.

図1は、本発明の異形度を求める方法を図示したものである。FIG. 1 illustrates a method for determining the degree of irregularity according to the present invention. 図2は、本発明の断面凹凸数を求める方法、および、実施例16の断面形状を図示したものである。FIG. 2 illustrates a method for determining the number of cross-sectional irregularities according to the present invention and a cross-sectional shape of Example 16. 図3は、本発明の実施例17の断面形状を図示したものである。FIG. 3 illustrates a cross-sectional shape of a seventeenth embodiment of the present invention.

本発明のポリアミド繊維は、ポリビニルピロリドン(以下、PVPと略すことがある)を3〜15wt%、およびポリアミドを含むものである。
ポリビニルピロリドンの含有量を3wt%以上とすることで吸放湿性のポテンシャルが上がり、15wt%以下とすることでべとつきなどの不快感を抑制することができる。吸放湿性のポテンシャルは、30℃×90%RH(相対湿度)の環境下に24時間放置したときの吸湿率と20℃×65%RHの環境下に24時間放置したときの吸湿率との差で表現でき、ΔMRと表記する。PVPが3wt%以上であるとこのΔMRが良好な値となる。PVPは公知の方法でポリアミド繊維に含有させることができ、特許文献2に記載のように、PVPを準備・ポリアミドへ混練するのが好ましい一例である。PVPの含有量のより好ましい範囲は3.5〜15wt%であり、最も好ましくは4〜15wt%の範囲である。
The polyamide fiber of the present invention contains 3 to 15% by weight of polyvinylpyrrolidone (hereinafter, may be abbreviated as PVP) and a polyamide.
By setting the content of polyvinylpyrrolidone to 3% by weight or more, the potential for moisture absorption and desorption increases, and by setting the content to 15% by weight or less, discomfort such as stickiness can be suppressed. The potential for moisture absorption and desorption is determined by the difference between the moisture absorption when left for 24 hours in an environment of 30 ° C. × 90% RH (relative humidity) and the moisture absorption when left for 24 hours in an environment of 20 ° C. × 65% RH. It can be expressed as a difference and is denoted by ΔMR. If PVP is 3 wt% or more, this ΔMR becomes a good value. PVP can be contained in polyamide fiber by a known method, and as described in Patent Document 2, it is a preferable example to prepare and knead PVP into polyamide. A more preferred range for the content of PVP is 3.5-15 wt%, most preferably a range of 4-15 wt%.

また、本発明のポリアミドは、特に制約されるものではなく、例えば、ナイロン6、ナイロン66、ナイロン46、ナイロン9、ナイロン610、ナイロン11、ナイロン12、ナイロン612等、あるいはそれらとアミド形成官能基を有する化合物、例えばラウロラクタム、セバシン酸、テレフタル酸、イソフタル酸、5−ナトリウムスルホイソフタル酸等の共重合成分を含有する共重合ポリアミドがあげられる。ポリアミドには、ポリビニルピロリドンのほか、各種の添加剤、たとえば、艶消剤、難燃剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、結晶核剤、螢光増白剤、帯電防止剤、カーボンなどを必要に応じて共重合または混合していてもよい。10wt%程度添加しても大きく吸湿性能に影響を及ぼさない。   The polyamide of the present invention is not particularly limited. For example, nylon 6, nylon 66, nylon 46, nylon 9, nylon 610, nylon 11, nylon 12, nylon 612, or the like, or an amide-forming functional group. And copolymerized polyamides containing copolymerized components such as laurolactam, sebacic acid, terephthalic acid, isophthalic acid, and 5-sodium sulfoisophthalic acid. Polyamides include, in addition to polyvinylpyrrolidone, various additives such as matting agents, flame retardants, antioxidants, ultraviolet absorbers, infrared absorbers, crystal nucleating agents, optical brighteners, antistatic agents, carbon And the like may be copolymerized or mixed as necessary. Addition of about 10% by weight does not greatly affect the moisture absorption performance.

本発明のポリアミド繊維はその分子量分布が2つのピークを有しており、低分子量側のピークが分子量1000〜2500であり、かつ、低分子量側のピーク強度(I)と高分子量側のピーク強度(I)の比I/Iが0.02〜0.10であることが必要である。分子量分布が1000〜2500にピークを持つと、PVPが繊維中で効果的に働き、吸放湿速度が上がることが発見された。PVPは水に溶けやすいため、従来からPVPとポリアミドとの絡み合いを強くし、これにより水中へのPVPの溶け出しを抑制している。この絡み合いが強固であるため、吸放湿速度が上がらないと考えられるが、絡み合いが弱いとPVPが水に溶け出し、吸湿性能そのものが低下するという、いわゆるトレードオフの関係を示唆する。この関係を解消するために、鋭意検討し、本発明に至った。Polyamide fibers of the present invention has a molecular weight distribution has two peaks, the peak on the low molecular weight side is a molecular weight of 1000 to 2500, and the peak of the peak strength of the low molecular weight side (I L) high molecular weight side It is necessary that the ratio I L / I H of the intensity (I H ) is 0.02 to 0.10. It has been discovered that when the molecular weight distribution has a peak at 1000 to 2500, PVP works effectively in the fiber and the rate of moisture absorption and desorption increases. Since PVP is easily dissolved in water, the entanglement between PVP and polyamide has been conventionally strengthened, thereby suppressing the dissolution of PVP into water. Although this entanglement is strong, it is considered that the rate of moisture absorption and desorption is not increased. However, if the entanglement is weak, PVP is dissolved in water, and the moisture absorption performance itself is reduced, suggesting a so-called trade-off relationship. In order to eliminate this relationship, the present inventors have made intensive studies and have arrived at the present invention.

すなわち、低分子量物のアミノ基の働きにより、水分を効率的にPVPに供給し、絡み合いが強い状態であっても、吸湿速度が向上するものと推測する。したがって、その低分子量側ピークは分子量1000〜2500が範囲として挙げられ、分子量1000未満であると、PVPとポリアミドの絡み合いを阻害するため水への溶出が発生してしまい吸放湿性が上がらず、分子量2500より大きくなるとPVPを効果的に働かせることができないため、吸湿速度が上がらない。より好ましい低分子量側ピークは分子量1200〜2200、もっとも好ましくは分子量1400〜2000である。さらに、低分子量側のピーク強度(I)と高分子量側のピーク強度(I)の比I/Iが0.02〜0.10であると水への溶出性抑制と吸放湿速度が両立する。0.02未満であると、吸放湿速度の向上効果が極めて少なくなり、逆に0.10よりも大きくなると水への溶出性が抑制できない。より好ましいピーク強度の比は0.03〜0.10の範囲である。In other words, it is presumed that the function of the amino group of the low molecular weight substance efficiently supplies water to PVP, and improves the moisture absorption rate even in a state of strong entanglement. Accordingly, the low molecular weight side peak is listed as having a molecular weight of 1,000 to 2,500, and if the molecular weight is less than 1,000, elution to water occurs to inhibit the entanglement of PVP and polyamide, and the moisture absorption / release property does not increase, When the molecular weight is larger than 2500, PVP cannot work effectively, so that the moisture absorption rate does not increase. More preferred low molecular weight peaks have a molecular weight of 1200-2200, most preferably 1400-2000. Further, if the ratio I L / I H of the peak strength of the low molecular weight side (I L) and high molecular weight side of the peak intensity (I H) is at 0.02-0.10 and dissolution inhibition in water absorbing Wet rate is compatible. If it is less than 0.02, the effect of improving the moisture absorption / desorption rate is extremely small, and if it is more than 0.10, the dissolution into water cannot be suppressed. A more preferred ratio of the peak intensities is in the range of 0.03 to 0.10.

低分子量側にピークを発現させるためには、低分子量のポリアミドが添加されている状態が好ましい。高分子量側のピークを形成するメインのポリアミドは前述のように、様々なものが適用可能であるが、低分子量側のポリアミドは、メインのポリアミドと同一でも良いし、異なるポリアミドでも良い。最終的に繊維の段階で、ふたつのピークを持つ分子量分布であれば良い。製糸前に添加されている低分子量ポリアミドは製糸により分子量はシフトすることが考えられる。たとえば、溶融状態で長時間保持すると、分子量は高くなるし、溶融状態で水分を与えると分子量は低下する。これらの製糸条件での調整を経て、所望の繊維を製造する。もっとも単純な方法は、溶融状態で高くなる分の分子量相当量を水分で相殺して、準備したポリアミドと、繊維となったポリアミドの分子量分布をできるだけ変化させないことである。この方法であると、製糸前にメインとなるポリアミドに所望の低分子量のポリアミドを添加することで、本発明のポリアミド繊維を製造することが容易となる。   In order to develop a peak on the low molecular weight side, a state in which a low molecular weight polyamide is added is preferable. As described above, various main polyamides forming a peak on the high molecular weight side can be applied, but the polyamide on the low molecular weight side may be the same as or different from the main polyamide. Finally, it is sufficient that the molecular weight distribution has two peaks at the fiber stage. It is conceivable that the molecular weight of the low-molecular-weight polyamide added before spinning is shifted by spinning. For example, when held in a molten state for a long time, the molecular weight increases, and when water is given in the molten state, the molecular weight decreases. A desired fiber is manufactured through adjustments under these yarn forming conditions. The simplest method is to offset as much as possible the molecular weight corresponding to the increased amount in the molten state with water so that the molecular weight distribution of the prepared polyamide and the molecular weight of the polyamide as the fiber are not changed as much as possible. According to this method, the polyamide fiber of the present invention can be easily produced by adding a desired low molecular weight polyamide to the main polyamide before spinning.

本発明のポリアミド繊維の断面形状は一般的な丸断面や異形断面、それらの中空や他のポリアミド繊維との複合など、いずれのものでも良いが、さらなる好ましい形態は、マルチフィラメントの平均の異形度が1.1〜4であること、さらには、マルチフィラメントの少なくとも1本のフィラメントの断面形状が3つ以上の凸部分と3つ以上の凹部分からなる多葉形断面であることである。本発明での異形度とは、図1に示すとおり、マルチフィラメントの任意の1本のフィラメントの断面形状を観察し、その断面の外接円の直径Doと内接円の直径Diの比である。一般的に衣料用フィラメントはマルチフィラメントであり、複数本のフィラメントが束となっているが、それぞれの断面の異形度を測定し、その平均値を本発明の異形度と規定する。たとえば、楕円形状の断面は異形度が1.1以上のものとすることができるが、楕円形状であると、表面積が真円対比大きくなるため、吸放湿速度が向上する。また、仮撚を施すことも効果的である。仮撚加工により、断面形状はつぶれるため、表面積が増加する。すべてのマルチフィラメントを同一の断面形状とする必要はなく、丸と異形断面のミックスとすることでも同様の効果が得られる。さらには、断面形状が凸部と凹部を有するいわゆる多葉断面であることが最も好ましい形態である。3つ以上の凸部と3つ以上の凹部を有する多葉断面であると、表面積がさらに増加するため、吸放湿速度が向上する。5葉、7葉と増加させると、さらに好ましい性能が得られる。凸部と凹部の計数は、図2のように実施する。まず、断面が滑らかな円形または楕円形となるような基線を引く。基線内の断面積と実断面の断面積が同一となるように基線を引く。次いで、基線に対して連続的に径が大きい部分(図2のA部分)を凸部とし、同様に連続的に径が小さい部分(図2のB部分)を凹部とする。   The cross-sectional shape of the polyamide fiber of the present invention may be any of a general round cross-section and a modified cross-section, such as composites thereof with hollow or other polyamide fibers, but a further preferable form is an average degree of irregularity of the multifilament. Is 1.1 to 4, and the cross-sectional shape of at least one filament of the multifilament is a multilobal cross-section including three or more convex portions and three or more concave portions. The irregularity in the present invention is a ratio of a diameter Do of an circumscribed circle to a diameter Di of an inscribed circle of a cross-section of an arbitrary one of the multifilaments, as shown in FIG. . Generally, clothing filaments are multifilaments, and a plurality of filaments are bundled. The irregularity of each cross section is measured, and the average value is defined as the irregularity of the present invention. For example, the cross section of an elliptical shape can have a degree of irregularity of 1.1 or more, but the elliptical shape increases the moisture absorption and desorption rate because the surface area is larger than a perfect circle. It is also effective to apply false twist. Since the cross-sectional shape is broken by the false twisting, the surface area increases. It is not necessary that all the multifilaments have the same cross-sectional shape, and a similar effect can be obtained by using a mixture of a round and an irregular cross-section. Further, the most preferable form is a so-called multi-leaf cross section having a convex portion and a concave portion. In the case of a multi-leaf cross section having three or more convex parts and three or more concave parts, the surface area is further increased, so that the moisture absorption / release rate is improved. When the number of leaves is increased to five or seven, more preferable performance is obtained. The counting of the convex portions and the concave portions is performed as shown in FIG. First, a base line is drawn so that the cross section has a smooth circular or elliptical shape. A base line is drawn so that the cross-sectional area within the base line and the cross-sectional area of the actual cross section are the same. Next, a portion having a continuously large diameter (A portion in FIG. 2) with respect to the base line is defined as a convex portion, and a portion having a continuously small diameter (B portion in FIG. 2) is defined as a concave portion.

本発明のポリアミド繊維はその繊度やフィラメント数に制限はない。たとえば、ストッキング用途であれば、5dtex〜22dtex程度の繊度が使用され、インナーでは22dtex〜56dtex、アウターではそれ以上の繊度が好ましく使用されるが、いずれの構成でも吸放湿速度を向上させることは可能である。また、フィラメント数についてもいずれを選択することが可能である。肌触りを良くするために、単繊維繊度を0.3dtex程度まで小さくすることが好ましく実施されるが、その場合においても吸放湿速度を向上できる。強伸度特性に代表される物理特性や、染色も低分子量物が少量であることから、影響は小さく、公知の範囲で調整することが可能である。   The fineness of the polyamide fiber of the present invention and the number of filaments are not limited. For example, in the case of stocking, a fineness of about 5 dtex to 22 dtex is used, a fineness of 22 dtex to 56 dtex is preferably used for the inner, and a fineness higher than that of the outer is preferably used. It is possible. In addition, any number of filaments can be selected. In order to improve the feel, it is preferable to reduce the single fiber fineness to about 0.3 dtex. In this case, the moisture absorption / release rate can be improved. Since the physical properties typified by the high elongation properties and the dyeing are low in molecular weight, the influence is small, and it can be adjusted within a known range.

本発明のポリアミド繊維を製糸する方法においては、低分子量側ピークが移動してしまうことに注意を払うが必要であり、前述の通りの条件により制御が可能であるが、その他の製糸条件は影響が小さい。このため、従来から好ましく用いられる製糸方法のいずれも選択することが可能であり、コスト的に優位である1工程法や従来法である2工程法、仮撚を行うためのPOY紡糸、複合紡糸する方法が一例として挙げられる。そのほか、使用する口金、冷却、適用する油剤、交絡、巻取りなど公知の方法を適用できる。   In the method for producing a polyamide fiber according to the present invention, it is necessary to pay attention to the fact that the peak on the low molecular weight side moves, and the control can be performed by the above-mentioned conditions, but other conditions for producing the yarn are affected. Is small. For this reason, it is possible to select any of the conventionally used yarn-making methods, and it is possible to select a one-step method which is advantageous in cost, a two-step method which is a conventional method, POY spinning for performing false twisting, and composite spinning. An example of such a method is as follows. In addition, known methods such as a die to be used, cooling, an applied oil agent, entanglement, and winding can be applied.

得られた繊維は、仮撚加工や撚糸加工、タスラン加工に代表される複合加工など公知の糸加工を施すことができ、それによる吸湿速度の低下は無い。逆に断面形状が異形となる加工は好ましい加工である。また、織編いずれの用途にも展開が可能であり、衣料用途に展開することが好ましい。ストッキングや肌着などのインナー・下着類、ミッドレイヤー、アウターなどに好ましく用いられ、特に、吸放湿速度が求められるスポーツ用インナーは特に好ましい用途である。   The obtained fiber can be subjected to known yarn processing such as false twist processing, twisting processing, and composite processing represented by Taslan processing, and there is no decrease in the moisture absorption rate due to the processing. Conversely, processing in which the cross-sectional shape becomes irregular is preferable processing. Further, it can be developed for any use of woven or knitted fabric, and is preferably developed for clothing. It is preferably used for innerwear and underwear such as stockings and underwear, mid layers, outerwear, and the like. Particularly, sports innerwear that requires a moisture absorption / release rate is a particularly preferred use.

以下、実施例を挙げて本発明をさらに具体的に説明する。なお実施例における特性値の測定法等は次のとおりである。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the measuring method of the characteristic value in an Example is as follows.

(1)相対粘度
試料0.25gを濃度98重量%の硫酸100mlに対して1gになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98重量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度(有効数字2桁)とした。
(1) Relative viscosity 0.25 g of a sample was dissolved in 100 ml of sulfuric acid having a concentration of 98% by weight so as to be 1 g, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the falling time (T2) of only 98% by weight sulfuric acid was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid (two significant figures).

(2)繊度
1.125m/周の検尺器に繊維試料をセットし、200回転させて、ループ状かせを作製し、熱風乾燥機にて乾燥後(105±2℃×60分)、天秤にてかせ質量を量り、公定水分率を乗じた値から繊度を算出した。なお、芯鞘複合糸の公定水分率は、4.5重量%とした。
(2) Fineness 1. Set the fiber sample in a measuring instrument of 1.125 m / perimeter, rotate it 200 times to make a loop-shaped skein, dry it with a hot air dryer (105 ± 2 ° C. × 60 minutes), and balance it. The weight was measured, and the fineness was calculated from the value obtained by multiplying by the official moisture content. The official moisture regain of the core-sheath composite yarn was 4.5% by weight.

(3)PVP含有量
ポリアミド繊維中のポリアミド樹脂分が2.5mgになるように繊維を計量し、ヘキサフルオロイソプロパノール(0.005N−トリフルオロ酢酸ナトリウム添加)4mlにポリマー濃度6.2ppmで溶解し、孔径0.45μmのフィルターでろ過して得られた溶液を用いてHPLC測定を行った。なお、ポンプはWaters 515(Waters製)、検出器は示差屈折率計Waters 410(Waters製)、カラムはShodex HFIP−806M(2本)+HFIP−LGを用い、流速は0.5ml/min、試料注入量は0.1ml、温度は40℃の条件で測定した。あらかじめPVPの検量線を準備しておき、含有量を定量(少数点第2位を四捨五入)した。
(3) PVP content The fiber was weighed so that the polyamide resin content in the polyamide fiber was 2.5 mg, and dissolved in 4 ml of hexafluoroisopropanol (added with 0.005 N-sodium trifluoroacetate) at a polymer concentration of 6.2 ppm. HPLC measurement was performed using a solution obtained by filtration with a 0.45 μm filter. The pump used was Waters 515 (manufactured by Waters), the detector was Waters 410 (manufactured by Waters), the column was Shodex HFIP-806M (two) + HFIP-LG, and the flow rate was 0.5 ml / min. The injection volume was 0.1 ml and the temperature was measured at 40 ° C. A calibration curve of PVP was prepared in advance, and the content was quantified (rounded to one decimal place).

(4)分子量分布測定
ポリアミド繊維中のポリアミド樹脂分が2.5mgになるように繊維を計量し、ヘキサフルオロイソプロパノール(0.005N−トリフルオロ酢酸ナトリウム添加)4mlにポリマー濃度6.2ppmで溶解し、孔径0.45μmのフィルターでろ過して得られた溶液を用いてGPC測定を行った。なお、ポンプはWaters 515(Waters製)、検出器は示差屈折率計Waters 410(Waters製)、カラムはShodex HFIP−806M(2本)+HFIP−LGを用い、流速は0.5ml/min、試料注入量は0.1ml、温度は40℃の条件で測定した。分子量校正はポリメタクリル酸メチルを用いて行った。付属の解析ツールによりピーク位置、ピーク強度を読み取り、低分子量側ピーク分子量(有効数字3桁)、低分子量側のピーク強度(I)と高分子量側のピーク強度(I)の比I/I(小数点第3位を四捨五入)を特定した。
(4) Measurement of molecular weight distribution The fiber was weighed so that the polyamide resin content in the polyamide fiber was 2.5 mg, and dissolved in 4 ml of hexafluoroisopropanol (added with 0.005 N-sodium trifluoroacetate) at a polymer concentration of 6.2 ppm. GPC measurement was performed using a solution obtained by filtration with a filter having a pore size of 0.45 μm. The pump used was Waters 515 (manufactured by Waters), the detector was Waters 410 (manufactured by Waters), the column was Shodex HFIP-806M (two) + HFIP-LG, and the flow rate was 0.5 ml / min. The injection volume was 0.1 ml and the temperature was measured at 40 ° C. Molecular weight calibration was performed using polymethyl methacrylate. Peak position by the supplied analysis tools, read the peak intensity, low molecular weight side peak molecular weight (three significant figures), the ratio I L of the peak strength of the low molecular weight side (I L) and high molecular weight side of the peak intensity (I H) / I H (rounded to two decimal places).

(5)平均の異形度、断面凹凸数
ポリアミド繊維の全マルチフィラメントの断面写真(2000倍)を撮影し、各々の単糸の外接円の直径(Do)と内接円の直径(Di)の比Do/Diを算出、マルチフィラメントのDo/Diの平均値を平均の異形度(有効数字2桁)とした。断面凹凸数は全マルチフィラメントのうち、最も凹凸数の多いものを断面凹凸数とした。たとえば、丸断面の場合、断面凹凸数は0であるが、丸断面と6葉断面の混繊の場合、断面凹凸数は6となる。
(5) Average Degree of Deformity, Number of Concavo-convex Cross Section Photographs (2,000 times) of all multifilaments of polyamide fiber were taken, and the diameters of the circumscribed circle (Do) and the inscribed circle (Di) of each single yarn were measured. The ratio Do / Di was calculated, and the average value of Do / Di of the multifilament was defined as the average irregularity (two significant figures). Regarding the number of cross-sectional irregularities, the multi-filament having the largest number of concavities and convexities was defined as the number of cross-sectional irregularities. For example, in the case of a round cross-section, the number of cross-sectional irregularities is 0, but in the case of a mixed fiber of a round cross-section and a 6-leaf cross-section, the number of cross-sectional irregularities is 6.

(6)ΔMR
筒編機にて度目が50となるように調整して筒編地を作製した。繊維の正量繊度が低い場合は、筒編機に給糸する繊維の総繊度が50〜100dtexとなるように適宜合糸し、総繊度が100dtexを超える場合は、筒編機への給糸を1本で行い、前記同様度目が50となるように調整して作製した。この筒編地を、秤量瓶に1〜2g程度はかり取り、110℃に2時間保ち乾燥させて重量を測定した(W0)。次に対象物質を20℃、相対湿度65%に24時間保持した後、重量を測定した(W65)。そして、これを30℃、相対湿度90%に24時間保持した後、重量を測定した(W90)。そして、以下の式に従い計算(有効数字2桁)した。ΔMRは2.6%以上となると良好であり、3%以上で非常に良好である。
MR1=[(W65−W0)/W0]×100% ・・・・・・ (A)
MR2=[(W90−W0)/W0]×100% ・・・・・・ (B)
ΔMR=MR2−MR1 ・・・・・・・・・・・・・・・ (C)
(6) ΔMR
A cylinder knitting fabric was produced by adjusting the degree to 50 with a cylinder knitting machine. When the fineness of the fibers is low, the yarns fed to the tubular knitting machine are appropriately plied so that the total fineness of the fibers is 50 to 100 dtex. Was carried out with a single wire, and adjusted so that the degree became 50 as described above. About 1-2 g of this tubular knitted fabric was weighed into a weighing bottle, kept at 110 ° C. for 2 hours, dried, and its weight was measured (W0). Next, the target substance was kept at 20 ° C. and a relative humidity of 65% for 24 hours, and then its weight was measured (W65). Then, after maintaining this at 30 ° C. and a relative humidity of 90% for 24 hours, the weight was measured (W90). And it calculated according to the following formula (two significant figures). ΔMR is good when it is 2.6% or more, and very good when it is 3% or more.
MR1 = [(W65−W0) / W0] × 100% (A)
MR2 = [(W90−W0) / W0] × 100% (B)
ΔMR = MR2-MR1 (C)

(7)吸放湿速度
(6)と同様の筒編地を20℃、相対湿度65%に24時間放置し、密閉容器に入れた後、30℃、相対湿度90%の環境下に移した。該環境下にて密閉容器から取り出し、5分間の重量変化を読み取った。密閉容器から取り出した直後の重量(W1)と3分後の重量(W2)から1分間あたりの重量変化を読み取り、以下の式で算出し、吸放湿速度(ppm/分、有効数字2桁)とした。吸放湿速度は750ppm/分以上で良好であり、900ppm/分以上で非常に良好である。
吸放湿速度=[(W2)−(W1)] /3×1,000,000 ・・(D)
(7) Moisture absorption and desorption rate The same tubular knitted fabric as in (6) was allowed to stand at 20 ° C. and a relative humidity of 65% for 24 hours, placed in a closed container, and then transferred to an environment of 30 ° C. and a relative humidity of 90%. . Under the environment, the sample was taken out of the sealed container and the change in weight for 5 minutes was read. The weight change per minute is read from the weight (W1) immediately after being taken out of the closed container and the weight (W2) after 3 minutes, calculated by the following formula, and the moisture absorption / desorption rate (ppm / min, 2 significant figures) ). The moisture absorption / desorption rate is good at 750 ppm / min or more, and very good at 900 ppm / min or more.
Moisture absorption / release rate = [(W2)-(W1)] / 3 x 1,000,000 (D)

(8)溶出率
(6)と同様の筒編地を110℃で8時間乾燥させた後、重量を測定した(W3)。その後、沸騰水で30分間処理をした後、再度110℃で8時間の乾燥を行い、その後重量を測定した(W4)。処理前後の重量減少率を溶出率(%)として以下の式に従い計算(有効数字2桁)した。溶出率は5%以下で良好であり、4%以下で非常に良好である。
溶出率=[{(W3)−(W4)}/(W3)]×100
(8) Elution rate After the same tubular knitted fabric as in (6) was dried at 110 ° C for 8 hours, the weight was measured (W3). Then, after treating with boiling water for 30 minutes, drying was performed again at 110 ° C. for 8 hours, and then the weight was measured (W4). The weight loss rate before and after the treatment was calculated as an elution rate (%) according to the following formula (two significant figures). The dissolution rate is good at 5% or less, and very good at 4% or less.
Elution rate = [{(W3) − (W4)} / (W3)] × 100

(9)総合評価
ΔMR、吸放湿速度、溶出性を総合的に評価し、◎、○、×の3段階に区分した。◎は非常に良好(合格)で、○は良好(合格)、×は不合格である。
(9) Comprehensive evaluation ΔMR, moisture absorption / release rate, and dissolution were comprehensively evaluated, and classified into three stages of ◎, 、, and ×. ◎ is very good (passed), は is good (passed), and × is not good.

実施例1
相対粘度2.7のナイロン6に、重量平均分子量1400のナイロン6を2.0wt%、PVPを3.0wt%混練したポリアミド樹脂を準備した。繊維とした後に分子量が変化することを抑制するため、樹脂の水分率を0.1wt%とし、ポリマー溶融から口金吐出までを13分間とした。1工程法の定法に従い、33dtex−26フィラメント、全フィラメントが丸断面であるポリアミド繊維を製造した。ポリアミド繊維の低分子量側ピーク分子量は1430、ピーク強度の比I/Iは0.04であった。
得られたポリアミド繊維のΔMRは2.8%、吸放湿速度は780ppm/分、溶出率は1.8%であり、優れた特性を示した。
Example 1
A polyamide resin was prepared by kneading 2.0 wt% of nylon 6 having a weight average molecular weight of 1400 and 3.0 wt% of PVP with nylon 6 having a relative viscosity of 2.7. In order to suppress a change in the molecular weight after forming the fiber, the water content of the resin was set to 0.1 wt%, and the time from polymer melting to discharge of the die was set to 13 minutes. According to a standard method of a one-step method, a polyamide fiber having a 33dtex-26 filament and all filaments having a round cross section was produced. The low molecular weight side peak molecular weight of the polyamide fiber was 1430, and the ratio of peak intensity I L / I H was 0.04.
The obtained polyamide fiber had a ΔMR of 2.8%, a moisture absorption / release rate of 780 ppm / min, and an elution rate of 1.8%, showing excellent properties.

実施例2、3
実施例2としてPVPを3.7wt%、実施例3としてPVPを4.1wt%とした以外は実施例1と同様にポリアミド繊維を製造した。低分子量側ピーク分子量および、ピーク強度の比I/Iは、実施例2ではそれぞれ1440、0.04、実施例3ではそれぞれ1430、0.04であるポリアミド繊維を得た。PVP量を増加することによって、ΔMRも3.0%、3.1%と向上し、吸放湿速度も830ppm/分と向上が認められた。
Examples 2 and 3
A polyamide fiber was produced in the same manner as in Example 1, except that PVP was 3.7 wt% in Example 2 and PVP was 4.1 wt% in Example 3. Low molecular weight side peak molecular weight and the ratio I L / I H of the peak intensities, respectively in Examples 2 1440,0.04 to give the polyamide fibers are each in Example 3 1430,0.04. By increasing the amount of PVP, the ΔMR was improved to 3.0% and 3.1%, and the moisture absorption / release rate was also improved to 830 ppm / min.

比較例1
PVPの量を2.5wt%とした以外は実施例1と同様にポリアミド繊維を製造した。PVPの量が少なく、ΔMRは2.5%と不十分であり、吸放湿速度も満足できなかった。
Comparative Example 1
A polyamide fiber was produced in the same manner as in Example 1 except that the amount of PVP was changed to 2.5 wt%. The amount of PVP was small, ΔMR was insufficient at 2.5%, and the moisture absorption / release rate was not satisfactory.

Figure 2018174106
Figure 2018174106

実施例4、5
ポリアミド繊維のI/Iを、実施例4で0.02、実施例5で0.07となるように調整した以外は実施例3と同様にポリアミド繊維を製造した。従来の指標であるΔMRは大きく変化ないものの、低分子量側ピークの強度を上げることで、吸放湿速度が顕著に向上し、実施例5では960ppm/分と良好な結果を得た。
Examples 4 and 5
A polyamide fiber was produced in the same manner as in Example 3, except that the ratio I L / I H of the polyamide fiber was adjusted to 0.02 in Example 4 and to 0.07 in Example 5. Although ΔMR, which is a conventional index, does not change significantly, the rate of moisture absorption and desorption is significantly improved by increasing the intensity of the low molecular weight peak, and in Example 5, a favorable result of 960 ppm / min was obtained.

比較例2、3
ポリアミド繊維のI/Iを、比較例2で0.01、比較例3で0.12となるように調整した以外は実施例3と同様にポリアミド繊維を製造した。ΔMRは3.1%と良好であったが、比較例2では吸放湿速度が不十分であり、また比較例3では溶出性が不十分であり、いずれも不合格となった。
Comparative Examples 2 and 3
A polyamide fiber was produced in the same manner as in Example 3, except that the ratio I L / I H of the polyamide fiber was adjusted to 0.01 in Comparative Example 2 and to 0.12 in Comparative Example 3. The ΔMR was as good as 3.1%, but in Comparative Example 2, the rate of moisture absorption and desorption was insufficient, and in Comparative Example 3, the dissolution was insufficient, and all were rejected.

Figure 2018174106
Figure 2018174106

実施例6〜11
混練するPVPの量を6.0wt%とし、さらに低分子量ナイロン6の分子量を変更し、表3に記載の通り、低分子量側ピークの分子量が1000〜2500であるポリアミド繊維を得た。分子量が低いほど、吸放湿性が良好であり、一方で、分子量が高いほど溶出性は良好である結果となり、いずれも優れた特性のポリアミド繊維であった。実施例6,7,9〜11の結果は表3に、実施例8の結果は表5に示した。
Examples 6 to 11
The amount of PVP to be kneaded was 6.0 wt%, and the molecular weight of low-molecular-weight nylon 6 was further changed. As shown in Table 3, a polyamide fiber having a low-molecular-weight peak having a molecular weight of 1,000 to 2,500 was obtained. The lower the molecular weight, the better the moisture absorption and desorption properties, while the higher the molecular weight, the better the elution properties, all of which were polyamide fibers having excellent properties. The results of Examples 6, 7, 9 to 11 are shown in Table 3, and the results of Example 8 are shown in Table 5.

比較例4、5
低分子量側ピークの分子量が790、2830であるポリアミド繊維を準備し、評価を行った。分子量が低いと溶出性が不十分であり、分子量が高すぎると吸放湿速度が不十分なため、いずれも不合格であった。
Comparative Examples 4 and 5
A polyamide fiber having a low molecular weight side peak having a molecular weight of 790 or 2830 was prepared and evaluated. When the molecular weight was low, the dissolution property was insufficient, and when the molecular weight was too high, the rate of moisture absorption and desorption was insufficient, and all were rejected.

Figure 2018174106
Figure 2018174106

実施例12
PVPを13.0wt%含有した以外は実施例8と同様にポリアミド繊維を製造し、低分子量側ピークの分子量が1620、I/Iが0.04であるポリアミド繊維を得た。ΔMRは6.7%、吸放湿速度が1080ppm/分、溶出率が4.3%と良好であった。
Example 12
Except that containing PVP 13.0 wt% will produce a polyamide fiber in the same manner as in Example 8, the molecular weight of the low molecular weight side peak 1620, I L / I H to obtain a polyamide fiber is 0.04. The ΔMR was 6.7%, the moisture absorption / release rate was 1080 ppm / min, and the elution rate was 4.3%, which was good.

実施例13
その他の添加剤として、二酸化チタンを2.0wt%添加し、11dtex−10フィラメントの繊維とした以外は実施例8と同様にポリアミド繊維を製造した。二酸化チタンを添加した影響は見られず、良好な結果であった。
Example 13
As another additive, a polyamide fiber was produced in the same manner as in Example 8 except that 2.0 wt% of titanium dioxide was added to obtain a fiber of 11 dtex-10 filament. The effect of adding titanium dioxide was not observed, and the result was good.

実施例14
全フィラメントの断面形状を25%の中空とし、25dtex−26フィラメントの繊維とした以外は実施例8と同様にポリアミド繊維を得た。中空繊維であっても、良好な性能を発揮した。
Example 14
A polyamide fiber was obtained in the same manner as in Example 8, except that the cross-sectional shape of all the filaments was 25% hollow and the fibers were 25 dtex-26 filaments. Even with hollow fibers, good performance was exhibited.

Figure 2018174106
Figure 2018174106

実施例15〜18
断面形状を丸断面から表5のように変更した以外は実施例8と同様にポリアミド繊維を製造した。
実施例15は全フィラメントの異形度が2.5である楕円断面とした。実施例8と比較すると吸放湿速度の向上が若干見られ、異形化の効果を確認した。
実施例16は全フィラメントが図2の4葉の断面とした。この場合の平均の異形度は1.5、断面凹凸数は4である。このポリアミド繊維の吸放湿速度は920ppm/分まで上がり、良好な結果となった。
実施例17は全フィラメントを図3の扁平8葉の断面とした。この場合の平均の異形度は3.7、断面凹凸数は8となる。このポリアミド繊維の吸放湿速度は1020ppm/分であり、異形度、断面凹凸数の効果が確認できた。
実施例18は13本のフィラメントを丸断面、残りの13本のフィラメントを異形度が1.4である6葉断面とし、さらに二酸化チタンを2wt%添加して試験を実施した。平均の異形度は1.2、断面凹凸数は6となる。表5のように良好な吸放湿速度を示した。
Examples 15 to 18
A polyamide fiber was produced in the same manner as in Example 8, except that the cross-sectional shape was changed from the round cross-section as shown in Table 5.
Example 15 had an elliptical cross section in which the irregularity of all the filaments was 2.5. As compared with Example 8, the rate of moisture absorption / release was slightly improved, and the effect of deforming was confirmed.
In Example 16, all the filaments had the four-leaf cross section of FIG. In this case, the average degree of irregularity is 1.5, and the number of cross-sectional irregularities is 4. The moisture absorption / desorption rate of this polyamide fiber was increased to 920 ppm / min, and good results were obtained.
In Example 17, all the filaments had the cross-section of the flat eight leaves shown in FIG. In this case, the average degree of irregularity is 3.7, and the number of cross-sectional irregularities is 8. The moisture absorption and desorption rate of this polyamide fiber was 1020 ppm / min, and the effects of the degree of irregularity and the number of cross-sectional irregularities could be confirmed.
In Example 18, 13 filaments were made into a round cross section, the remaining 13 filaments were made into a 6-leaf cross section having a degree of irregularity of 1.4, and a test was carried out by further adding 2 wt% of titanium dioxide. The average degree of irregularity is 1.2, and the number of cross-sectional irregularities is 6. As shown in Table 5, good moisture absorption and desorption rates were exhibited.

実施例19
実施例8と同様のポリアミド樹脂を41dtex−26フィラメントの部分配向糸(POY)とし、仮撚加工を施して、33dtex−26フィラメントのポリアミド繊維を得た。仮撚加工を施したため、断面形状が崩れ、平均の異形度は1.3となった。ランダムに崩れたため、断面凹凸数は判断せず、ゼロとした。得られた繊維の吸放湿速度は実施例8よりも向上しており、仮撚による異形化でも効果が見られた。
Example 19
The same polyamide resin as in Example 8 was used as a partially oriented yarn (POY) of 41 dtex-26 filament, and subjected to false twisting to obtain a polyamide fiber of 33 dtex-26 filament. Since the false twisting was performed, the cross-sectional shape collapsed, and the average irregularity was 1.3. Since it collapsed randomly, the number of cross-sectional irregularities was not determined and was set to zero. The moisture absorption and desorption rate of the obtained fiber was higher than that of Example 8, and the effect was observed even when the fiber was deformed by false twisting.

比較例6
低分子量側ピークの分子量を810、ピーク強度比I/Iを0.01、断面形状を扁平8葉とした以外は実施例8と同様にしてポリアミド繊維を製造した。表5から明らかなように扁平8葉断面ではあるが吸放湿速度は満足できるものではなかった。
Comparative Example 6
A polyamide fiber was produced in the same manner as in Example 8, except that the molecular weight of the low molecular weight side peak was 810, the peak intensity ratio I L / I H was 0.01, and the cross-sectional shape was flat eight leaves. As is clear from Table 5, although it has a flat 8-leaf cross section, the rate of moisture absorption and desorption was not satisfactory.

Figure 2018174106
Figure 2018174106

本出願は、2017年3月24日出願の日本特許出願2017−059427に基づくものであり、その内容はここに参照として取り込まれる。   This application is based on Japanese Patent Application No. 2017-059427 filed on March 24, 2017, the contents of which are incorporated herein by reference.

発明のポリアミド繊維により、高い吸放湿速度のポリアミド繊維を提供でき、快適な衣料を提供できる。   The polyamide fiber of the present invention can provide a polyamide fiber having a high moisture absorption / release rate, and can provide comfortable clothing.

A:凸部
B:凹部
A: convex portion B: concave portion

Claims (4)

ポリアミドと、ポリビニルピロリドン3〜15wt%を含有し、かつ前記ポリアミドが以下の特徴を満たすポリアミド繊維:
(1)分子量分布が2つのピークを有し、低分子量側のピークの分子量が1000〜2500である;
(2)前記分子量分布において低分子量側のピーク強度(I)と高分子量側のピーク強度(I)の比I/Iが0.02〜0.10である。
Polyamide and a polyamide fiber containing 3 to 15 wt% of polyvinylpyrrolidone, wherein the polyamide satisfies the following characteristics:
(1) the molecular weight distribution has two peaks, and the molecular weight of the low molecular weight side peak is 1000 to 2500;
(2) In the molecular weight distribution, a ratio I L / I H of a peak intensity (I L ) on a low molecular weight side to a peak intensity (I H ) on a high molecular weight side is 0.02 to 0.10.
ポリアミド繊維を構成するフィラメントの平均の異形度が1.1〜4であることを特徴とする請求項1に記載のポリアミド繊維。   The polyamide fiber according to claim 1, wherein the average degree of irregularity of the filament constituting the polyamide fiber is 1.1 to 4. ポリアミド繊維を構成する少なくとも1本のフィラメントの横断面形状が3つ以上の凸部と3つ以上の凹部を有する多葉形断面であることを特徴とする請求項2に記載のポリアミド繊維。   The polyamide fiber according to claim 2, wherein the cross-sectional shape of at least one filament constituting the polyamide fiber is a multilobal cross-section having three or more convex portions and three or more concave portions. 請求項1〜3のいずれか1項に記載のポリアミド繊維を少なくとも一部に含む繊維製品。   A textile product comprising at least a part of the polyamide fiber according to claim 1.
JP2018525621A 2017-03-24 2018-03-20 Polyamide fiber with excellent moisture absorption and desorption Active JP6996506B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017059427 2017-03-24
JP2017059427 2017-03-24
PCT/JP2018/011222 WO2018174106A1 (en) 2017-03-24 2018-03-20 Polyamide fiber having excellent moisture absorption/releasing performance

Publications (2)

Publication Number Publication Date
JPWO2018174106A1 true JPWO2018174106A1 (en) 2020-01-23
JP6996506B2 JP6996506B2 (en) 2022-01-17

Family

ID=63585618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018525621A Active JP6996506B2 (en) 2017-03-24 2018-03-20 Polyamide fiber with excellent moisture absorption and desorption

Country Status (4)

Country Link
JP (1) JP6996506B2 (en)
CN (1) CN110462119B (en)
TW (1) TWI768013B (en)
WO (1) WO2018174106A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369610A (en) * 1989-06-05 1991-03-26 E I Du Pont De Nemours & Co Pvp/paralamide fiber and method for its manufacture
JPH07150414A (en) * 1993-11-26 1995-06-13 Toray Ind Inc Hygroscopic polyamide fiber and inner wear, hosiery and sportswear composed thereof
JPH1112806A (en) * 1997-04-28 1999-01-19 Toray Ind Inc Inner wear with excellent hygroscopicity
JP2003049066A (en) * 2001-08-03 2003-02-21 Nippon Shokubai Co Ltd Highly hygroscopic polyamide having improved color tone

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3804097B2 (en) * 1996-03-29 2006-08-02 東レ株式会社 Support stockings with excellent wearing comfort
US6123760A (en) * 1998-10-28 2000-09-26 Hercules Incorporated Compositions and methods for preparing dispersions and methods for using the dispersions
EP1338616A1 (en) * 2002-02-22 2003-08-27 Dsm N.V. Process for preparing a high-molecular polyamide, polyester, copolyesters or polyester-amide block copolymer
KR101436089B1 (en) * 2012-02-01 2014-08-29 아주대학교산학협력단 Conductive polymer blend composition and producing method thereof
CN103668535A (en) * 2012-09-19 2014-03-26 东丽纤维研究所(中国)有限公司 Polyamide fiber, fabric containing polyamide fiber and production method
CN103882549A (en) * 2012-12-24 2014-06-25 东丽纤维研究所(中国)有限公司 High moisture absorption and anti-yellowing polyamide fibers and production method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0369610A (en) * 1989-06-05 1991-03-26 E I Du Pont De Nemours & Co Pvp/paralamide fiber and method for its manufacture
JPH07150414A (en) * 1993-11-26 1995-06-13 Toray Ind Inc Hygroscopic polyamide fiber and inner wear, hosiery and sportswear composed thereof
JPH1112806A (en) * 1997-04-28 1999-01-19 Toray Ind Inc Inner wear with excellent hygroscopicity
JP2003049066A (en) * 2001-08-03 2003-02-21 Nippon Shokubai Co Ltd Highly hygroscopic polyamide having improved color tone

Also Published As

Publication number Publication date
TW201840712A (en) 2018-11-16
CN110462119B (en) 2022-03-11
CN110462119A (en) 2019-11-15
TWI768013B (en) 2022-06-21
JP6996506B2 (en) 2022-01-17
WO2018174106A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
JP3804097B2 (en) Support stockings with excellent wearing comfort
EP2537965A1 (en) Highly-moldable, highly-functional polyethylene fiber
KR102465144B1 (en) Hygroscopic core-sheath composite yarn and its manufacturing method
TWI695098B (en) Polyamide fiber, fiber structure using the same, and clothing
TWI702319B (en) Hygroscopic core sheath composite wire and cloth
JP6996506B2 (en) Polyamide fiber with excellent moisture absorption and desorption
JPH0941204A (en) Stocking excellent in hygroscopicity
JP3309524B2 (en) Hygroscopic polyamide fiber and innerwear, socks and sportswear comprising the same
JP2849424B2 (en) Woven and knitted fabric
JP5324360B2 (en) Fabrics and textile products including core-sheath type composite false twisted yarn
JP2009074188A (en) Circular knitted fabric and textile product
JP3418607B2 (en) Covering yarn
JP2006132041A (en) Stocking
JP2004270109A (en) Fibrous product using super porous synthetic fiber
JP2003183904A (en) Inner wear
JP2000234205A (en) Stockings
JP2004277954A (en) Compound textured yarn and cloth made thereof
JP2018172831A (en) Sea-island type composite fiber
JP2005048308A (en) Polyamide knitted fabric and textile product composed of the same
JP2004060129A (en) Highly moisture absorbing/desorbing polyamide fiber and method for producing the same
JP2005113342A (en) Hosiery
JP2003278057A (en) Stretch knitted fabric
JP2003064548A (en) Multi-component textured yarn
JP2004218165A (en) Stocking
JPH0373641B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R151 Written notification of patent or utility model registration

Ref document number: 6996506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151