JPWO2018157094A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018157094A5
JPWO2018157094A5 JP2019546337A JP2019546337A JPWO2018157094A5 JP WO2018157094 A5 JPWO2018157094 A5 JP WO2018157094A5 JP 2019546337 A JP2019546337 A JP 2019546337A JP 2019546337 A JP2019546337 A JP 2019546337A JP WO2018157094 A5 JPWO2018157094 A5 JP WO2018157094A5
Authority
JP
Japan
Prior art keywords
sap
fibers
liquid
zone
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019546337A
Other languages
Japanese (ja)
Other versions
JP2020508404A (en
JP7269175B2 (en
JP2020508404A5 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/019790 external-priority patent/WO2018157094A1/en
Publication of JP2020508404A publication Critical patent/JP2020508404A/en
Publication of JP2020508404A5 publication Critical patent/JP2020508404A5/ja
Publication of JPWO2018157094A5 publication Critical patent/JPWO2018157094A5/ja
Priority to JP2023069983A priority Critical patent/JP2023109756A/en
Application granted granted Critical
Publication of JP7269175B2 publication Critical patent/JP7269175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

今は繊維-SAP粒子を形成するための典型的システムについて述べたが、今度は図1のシステムを参照して繊維-SAP粒子の形成方法について述べる。
噴霧乾燥
図1を参照すると、繊維(例えば、セルロース繊維)のチャンバー24への導入は、繊維がチャンバー24内で分散及び/又は拡散されるような様式で行なわれる。例えば、エアロゾル(すなわち、空気若しくは別のガス中の繊維のコロイド及び場合により液滴)が形成され、繊維はチャンバー24内で空気又は他のガス中に浮遊するように繊維を導入することができる。繊維の該導入方法の一例は噴霧乾燥である。これには、液体懸濁液10中に繊維が存在する必要があり、チャンバー24内で液体に基づく液滴が作り出されて分散されるように液体懸濁液10が霧化される。液体懸濁液10の霧化は、液体懸濁液の液体の全て又は実質的に全てが繊維からチャンバー24内の周囲環境へ容易にフラッシュオフ(flash off)できるようにする。このような液体のフラッシュオフは、完成又は完成間近の吸収製品中の液体の体積又は量を減らす便利な手段であり、液体はその後の段階で乾燥又は除去され得る。
Having now described an exemplary system for forming fiber-SAP particles, a method for forming fiber-SAP particles will now be described with reference to the system of FIG.
Spray Drying Referring to FIG. 1, introduction of fibers (eg, cellulose fibers) into chamber 24 is performed in a manner such that the fibers are dispersed and/or diffused within chamber 24 . For example, an aerosol (i.e., a colloid and optionally droplets of fibers in air or another gas) may be formed and the fibers introduced so that the fibers are suspended in the air or other gas within the chamber 24. . An example of such a method of introducing fibers is spray drying. This requires that the fibers be present in the liquid suspension 10 and the liquid suspension 10 is atomized such that liquid-based droplets are created and dispersed within the chamber 24 . Atomization of the liquid suspension 10 allows all or substantially all of the liquid of the liquid suspension to readily flash off from the fibers to the ambient environment within the chamber 24 . Such liquid flash-off is a convenient means of reducing the volume or amount of liquid in a finished or near-finished absorbent product, which can be dried or removed at a later stage.

装置100は、バルブ及びノズルの使用、並びに該バルブ及びノズル用の手動及び/又は自動コントローラーの使用によって等の噴霧乾燥繊維、SAP16、及び添加剤18の流れ又は入力の容易な制御を可能にし;それによって、最終製品の化学及び結果として生じる繊維-SAP粒子の機械的及び物理的性質の整列を可能にする。一部の態様では、チャンバー24内で空気中に浮遊している繊維、SAP及びいずれの他の成分をもチャンバー24内での混合を維持するように空気流を方向づける。空気流を制御し及び/又は方向づけて、繊維-SAP粒子19が乾燥して混ざり合ったときに沈降させて収集できるようにする。乱流混合が引き起こすSAPと繊維の一定の撹拌は、乾燥プロセス中の凝集を最小限にする。一部の態様ではチャンバー24中に空気流を与えるように位置づけられた1つ以上のファンによって空気流は供給及び/又は制御された。ファンはチャンバー24内に渦電流を与えるように構成及び/又は配置し得る。
そのようなものとして、一部の態様では繊維は予備乾燥され、SAPは湿潤化され、ひいては活性化され、単一反応チャンバー内で予備乾燥繊維と湿潤SAPが混ざり合ってそれらの間で付着する。
Apparatus 100 allows for easy control of the flow or input of spray-dried fibers, SAP 16, and additive 18, such as through the use of valves and nozzles and manual and/or automatic controllers for the valves and nozzles; It allows alignment of the chemistry of the final product and the mechanical and physical properties of the resulting fiber-SAP particles. In some embodiments, the airflow is directed to keep the fibers, SAP, and any other ingredients suspended in the air within chamber 24 mixed within chamber 24 . The airflow is controlled and/or directed to allow the fiber-SAP particles 19 to settle and collect as they dry and intermingle. The constant agitation of SAP and fibers caused by turbulent mixing minimizes agglomeration during the drying process. In some embodiments, airflow was supplied and/or controlled by one or more fans positioned to provide airflow through chamber 24 . The fan may be constructed and/or arranged to provide eddy currents within chamber 24 .
As such, in some embodiments the fibers are pre-dried, the SAP is wetted, and then activated to mix and adhere between the pre-dried fibers and the wet SAP in a single reaction chamber. .

プロセス/システムゾーン
図8Aを参照して、本明細書に記載のプロセス、システム、及び装置について論ずる。システム800は、本プロセスの異なる工程を実行できる複数のゾーンを含む。第1のゾーン801は、液体懸濁液を供給する導入ゾーンである。第1のゾーン801内で、液体懸濁液を霧化してそのエアロゾルを形成する。一部の態様では、第1のゾーン801はSAPを欠いている。
第2のゾーン802は、液体懸濁液の液体の少なくとも一部を繊維から周囲環境へフラッシュオフさせる予備乾燥ゾーンである。繊維の部分的乾燥は、繊維が乾燥状態でより軽くなるので、システム800内における繊維のより動的な移動を可能にし得る。一部の態様では、繊維からフラッシュオフした液体が流れて、繊維がSAPと接触する前にSAPと接触する。液体がフラッシュオフして蒸気になるにつれて、システム800全体に蒸気が拡散し、システム800内の乱れた空気流パターンのため、繊維は、システム800中の空気内で相対的に浮遊した状態で維持される。この蒸気はSAP上に蓄積することができ、結果としてSAPを予備湿潤化することになる。SAPの該予備湿潤化は、SAPの少なくとも部分的な膨潤をもたらし、SAPが繊維と付着する助けになる(例えば、繊維がSAPの中に埋め込まれることになるように)。一部の態様では、第2のゾーン802はSAPを欠いている。
Process/System Zones Referring to FIG. 8A, the processes, systems, and devices described herein will be discussed. System 800 includes multiple zones in which different steps of the process can be performed. The first zone 801 is the introduction zone that supplies the liquid suspension. Within the first zone 801, the liquid suspension is atomized to form an aerosol thereof. In some embodiments, first zone 801 lacks SAP.
A second zone 802 is a pre-drying zone that flashes off at least a portion of the liquid of the liquid suspension from the fibers to the surrounding environment. Partial drying of the fibers may allow for more dynamic movement of the fibers within the system 800 as the fibers are lighter in the dry state. In some embodiments, the liquid flashed off from the fibers flows and contacts the SAP before the fibers contact the SAP. As the liquid flashes off to vapor, the vapor diffuses throughout the system 800 and the turbulent airflow pattern within the system 800 keeps the fibers relatively suspended within the air within the system 800. be done. This vapor can build up on the SAP, resulting in pre-wetting of the SAP. Such pre-wetting of the SAP results in at least partial swelling of the SAP, which helps the SAP to adhere to the fibers (eg, so that the fibers become embedded within the SAP). In some embodiments, the second zone 802 lacks SAP.

図8Bを参照して、本明細書に記載のプロセス、システム、及び装置の特定態様について論ずる。システム800bは、プロセスの異なる工程を実行できる複数のゾーンを含む。
ゾーン810は、液体懸濁液の液体の少なくとも一部を繊維から周囲環境へフラッシュオフさせる予備乾燥ゾーンである。繊維の部分的乾燥は、繊維が乾燥状態でより軽いので、システム800b内における繊維のより動的な移動を可能にし得る。一部の態様では、繊維からフラッシュオフした液体が流れて、繊維がSAPと接触する前にSAPと接触する。液体がフラッシュオフして蒸気になるにつれて、システム800b全体に蒸気が拡散し、システム800b内の激しい空気流パターンのため、繊維は、システム800b内で相対的に浮遊した状態で維持される。この蒸気はSAP上に蓄積することができ、結果としてSAPを予備湿潤化することになる。SAPの該予備湿潤化は、SAPの少なくとも部分的な膨潤をもたらし、SAPが繊維と付着する助けになる(例えば、繊維がSAPの中に埋め込まれることになるように)。一部の態様では、ゾーン810はSAPを欠いている。
ゾーン812は、その中でSAP、繊維、蒸気、及び空気を一緒に激しく混合する混合ゾーンである。混合ゾーン812内では、乱流条件下、SAP、繊維、蒸気、及び空気がそれぞれ懸濁状態で維持されて、それらの間の混合及び相互作用を促す。
図8Aに示して述べた1つ以上のいずれのゾーンもシステム800b内で使用し得る。
Particular aspects of the processes, systems, and devices described herein will be discussed with reference to FIG. 8B. System 800b includes multiple zones that can perform different steps of the process.
Zone 810 is a pre-drying zone that flashes off at least a portion of the liquid of the liquid suspension from the fibers to the surrounding environment. Partial drying of the fibers may allow more dynamic movement of the fibers within the system 800b because the fibers are lighter in the dry state. In some embodiments, the liquid flashed off from the fibers flows and contacts the SAP before the fibers contact the SAP. As the liquid flashes off to vapor, the vapor spreads throughout the system 800b and the fibers remain relatively suspended within the system 800b due to the violent airflow patterns within the system 800b. This vapor can build up on the SAP, resulting in pre-wetting of the SAP. Such pre-wetting of the SAP results in at least partial swelling of the SAP, which helps the SAP to adhere to the fibers (eg, so that the fibers become embedded within the SAP). In some embodiments, zone 810 lacks SAP.
Zone 812 is a mixing zone in which the SAP, fiber, steam, and air are vigorously mixed together. Within the mixing zone 812, the SAP, fibers, steam, and air are each maintained in suspension under turbulent conditions to promote mixing and interaction therebetween.
Any one or more of the zones shown and described in FIG. 8A may be used within system 800b.

図10Bに示すように、拡大部24bの周囲に沿って、SAPは拡大部24b内を循環し、流れて、中央流路近傍を移動しながら、SAPは膨潤し、蒸気及びその蓄積物との接触によってSAP16はますます膨潤してくる。このようにして、SAPが中央流路に到達して繊維と接触するときには、SAPは、繊維-SAP粒子19の形成のために、予備湿潤化及び予備膨潤(ひいては繊維との接触及び付着のために活性化)している。
当業者は、他の配置及び構造を用いて、SAPと繊維の間の接触前に、繊維から蒸発した液体によるSAPの予備湿潤化を提供し得ることを理解するであろう。また、当業者は、図10A及び10Bの模式図が正確な縮尺ではなく、説明目的のためだけであることを理解するであろう。
図11を参照すると、本開示の別の態様において、繊維付着(好ましくは埋め込まれた)SAP粒子を形成するための典型的システム1101、装置1101及びプロセス/方法1101の模式図が示されている。システム又は装置1101は、中で混合のためにSAP1131、所望の添加剤1133、及び部分的に噴霧乾燥された繊維1134(その上に液体が支持されている)粒子が一緒に提供される混合ゾーン又はチャンバー1103を含む。繊維は、繊維の液体懸濁液を装置1101の中へ方向づける噴霧乾燥デバイス1105によって導入される。混合ゾーン1103は、典型的に各種乾燥状態の繊維-SAP粒子を保持する。これらの粒子は、通過する前に混合ゾーン1103内で懸濁され、時には循環される。
この簡略図は、繊維付着(好ましくは埋め込まれた)SAP粒子用の2つの出口又は収集点1122を示す。この例では、流動化空気ジェット1111を加熱要素と共に(又はそれなしで)利用して熱を混合動態(好ましい混合ゾーン1103内)に伝えてさらなる乾燥を促す。空気ジェット1111を調整(制御)して、混合ゾーン内で所要の浮力を提供し(繊維-SAPミックスを浮遊させ)、乱流渦を発生させることもできる。所望の完成粒子(乾燥)が空気ジェット1111によって生じた浮力より重いか又は軽いかに応じて、完成繊維-SAP粒子を収集し得るか又は次の段階に伝え得る(例えば、コロナ処理若しくは架橋等の処理段階、又は収集)出口1122を決める。
As shown in FIG. 10B, along the perimeter of enlarged portion 24b, the SAP circulates and flows within enlarged portion 24b, moving near the central channel while the SAP swells and interacts with vapor and its buildup. SAP16 swells more and more upon contact. Thus, when the SAP reaches the central channel and contacts the fibers, the SAP is pre-wetted and pre-swelled (and thus for contact and adhesion with the fibers) for the formation of fiber-SAP particles 19. activated).
Those skilled in the art will appreciate that other arrangements and structures can be used to provide pre-wetting of the SAP with liquid evaporated from the fiber prior to contact between the SAP and the fiber. Also, those skilled in the art will appreciate that the schematic diagrams of FIGS. 10A and 10B are not to scale and are for illustration purposes only.
Referring to FIG. 11, in another aspect of the present disclosure, a schematic diagram of an exemplary system 1101, apparatus 1101 and process/method 1101 for forming fiber-attached (preferably embedded) SAP particles is shown. . A system or apparatus 1101 includes a mixing zone in which particles of SAP 1131, desired additives 1133, and partially spray-dried fibers 1134 (with a liquid supported thereon) are provided together for mixing. or chamber 1103. Fibers are introduced by a spray-drying device 1105 that directs a liquid suspension of fibers into apparatus 1101 . Mixing zone 1103 typically holds various dry fiber-SAP particles. These particles are suspended and sometimes circulated within the mixing zone 1103 before passing through.
This simplified diagram shows two outlets or collection points 1122 for fiber-attached (preferably embedded) SAP particles. In this example, a fluidizing air jet 1111 is utilized with (or without) a heating element to transfer heat to the mixing dynamics (within the preferred mixing zone 1103) to facilitate further drying. The air jets 1111 can also be adjusted (controlled) to provide the required buoyancy ( suspend the fiber-SAP mix) within the mixing zone and generate turbulent eddies. Depending on whether the desired finished particles (dry) are heavier or lighter than the buoyancy force generated by the air jet 1111, the finished fiber-SAP particles can be collected or passed on to the next stage (e.g. corona treatment or cross-linking, etc.). processing stage, or collection) exit 1122 .

JP2019546337A 2017-02-26 2018-02-26 Absorbent material and system and method for manufacturing same Active JP7269175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023069983A JP2023109756A (en) 2017-02-26 2023-04-21 Absorbent material, and system and method of making the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762463714P 2017-02-26 2017-02-26
US62/463,714 2017-02-26
US201762482277P 2017-04-06 2017-04-06
US62/482,277 2017-04-06
PCT/US2018/019790 WO2018157094A1 (en) 2017-02-26 2018-02-26 Absorbent material, and system and method of making same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023069983A Division JP2023109756A (en) 2017-02-26 2023-04-21 Absorbent material, and system and method of making the same

Publications (4)

Publication Number Publication Date
JP2020508404A JP2020508404A (en) 2020-03-19
JP2020508404A5 JP2020508404A5 (en) 2021-04-08
JPWO2018157094A5 true JPWO2018157094A5 (en) 2022-11-28
JP7269175B2 JP7269175B2 (en) 2023-05-08

Family

ID=63254094

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019546337A Active JP7269175B2 (en) 2017-02-26 2018-02-26 Absorbent material and system and method for manufacturing same
JP2023069983A Pending JP2023109756A (en) 2017-02-26 2023-04-21 Absorbent material, and system and method of making the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023069983A Pending JP2023109756A (en) 2017-02-26 2023-04-21 Absorbent material, and system and method of making the same

Country Status (12)

Country Link
US (2) US11027039B2 (en)
EP (1) EP3585938A4 (en)
JP (2) JP7269175B2 (en)
KR (2) KR20230152808A (en)
CN (2) CN110678604B (en)
AU (2) AU2018224296B2 (en)
BR (1) BR112019017765B1 (en)
CA (1) CA3054447A1 (en)
MX (2) MX2019010145A (en)
MY (1) MY194709A (en)
PH (1) PH12019501958A1 (en)
WO (1) WO2018157094A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10702626B2 (en) * 2016-12-22 2020-07-07 Lg Chem. Ltd. Method for preparing superabsorbent polymer and superabsorbent polymer
IT201900004097A1 (en) * 2019-03-21 2020-09-21 Gdm Spa Device for forming a composite web of an absorbent pad for absorbent articles
KR102581880B1 (en) * 2020-03-06 2023-09-26 유중도 Colostrum negative ion sanitary pad
KR20230005255A (en) 2020-04-30 2023-01-09 킴벌리-클라크 월드와이드, 인크. Absorbent Composite Containing Embossed Superabsorbent Material
KR20220049962A (en) * 2020-10-15 2022-04-22 주식회사 엘지화학 Polymerization reactores for preparation of super absorbent polymer

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661154A (en) 1969-05-26 1972-05-09 David Torr Water-absorbing material
DE3641893A1 (en) * 1986-12-08 1988-06-09 Steen Hanfspinnerei Fibre-containing polymer product of high absorbency, production thereof and use thereof
US5432000A (en) * 1989-03-20 1995-07-11 Weyerhaeuser Company Binder coated discontinuous fibers with adhered particulate materials
US5300192A (en) * 1992-08-17 1994-04-05 Weyerhaeuser Company Wet laid fiber sheet manufacturing with reactivatable binders for binding particles to fibers
CN1095643C (en) * 1994-12-09 2002-12-11 普罗克特和甘保尔公司 Absorbent composites and absorbent articles containing the same
EP2295493B1 (en) * 1996-12-13 2012-09-19 DSG International Limited Highly absorbent composite compositions, absorbent sheets provided with the compositions, and process for producing the same
JP3016367B2 (en) * 1996-12-13 2000-03-06 株式会社日本吸収体技術研究所 Superabsorbent three-dimensional composite and method for producing the same
JPH1193073A (en) * 1997-09-17 1999-04-06 Kao Corp Production of composite of polymer and fiber
US6387495B1 (en) * 1999-04-16 2002-05-14 Kimberly-Clark Worldwide, Inc. Superabsorbent-containing composites
US6794557B1 (en) * 1999-07-16 2004-09-21 Associated Hygienic Products Llc Disposable absorbent article employing an absorbent composite and method of making the same
US6497688B2 (en) * 1999-07-19 2002-12-24 Mcneil-Ppc, Inc. Absorbent article comprising flocked fibers
US6720073B2 (en) 2000-04-07 2004-04-13 Kimberly-Clark Worldwide, Inc. Material enhancement to maintain high absorbent capacity under high loads following rigorous process conditions
US6533978B1 (en) * 2000-08-03 2003-03-18 Kimberly-Clark Worldwide, Inc. Process and apparatus for forming a stabilized absorbent web
US6720389B2 (en) * 2000-09-20 2004-04-13 Nippon Shokubai Co., Ltd. Water-absorbent resin and production process therefor
US6645407B2 (en) * 2001-12-14 2003-11-11 Kimberly-Clark Worldwide, Inc. Process for making absorbent material with in-situ polymerized superabsorbent
KR100985399B1 (en) 2002-07-18 2010-10-06 디에스지 인터내셔널 리미티드 Method and apparatus for producing microfibrillated cellulose
CA2495919A1 (en) * 2002-08-26 2004-03-04 Tyco Healthcare Retail Services Ag Core for absorbent articles and method of making the same
US7367342B2 (en) * 2002-12-02 2008-05-06 Life Support Technologies, Inc. Wound management systems and methods for using the same
US20050129846A1 (en) 2003-12-10 2005-06-16 Kimberly-Clark Worldwide, Inc. Methods of preparing surface crosslinked superabsorbent-containing composites
EP1841380A4 (en) * 2004-07-19 2009-05-20 Bruce Fine Superabsorbent pad
JP5078131B2 (en) 2007-03-27 2012-11-21 旭化成ケミカルズ株式会社 Absorbent composite with ultrafast absorption capability
US20110172507A1 (en) * 2009-08-25 2011-07-14 Sns Nano Fiber Technology, Llc Textile Composite Material Comprising Nanofiber Nonwoven
DE102009055951A1 (en) 2009-11-27 2011-06-01 Glatfelter Falkenhagen Gmbh Absorbing structure
US8372320B2 (en) 2010-04-27 2013-02-12 University Of Maine System Board Of Trustees Method for drying cellulose nanofibrils
US8802786B2 (en) * 2011-04-21 2014-08-12 Evonik Corporation Particulate superabsorbent polymer composition having improved performance properties
US20130260988A1 (en) * 2012-03-30 2013-10-03 Basf Se Color-Stable Superabsorbent
JP2014079566A (en) * 2012-09-30 2014-05-08 Uni Charm Corp Absorbent article
MX358551B (en) 2013-03-15 2018-08-23 Dsg Technology Holdings Ltd Multi-layered absorbent article.
US9789014B2 (en) * 2013-03-15 2017-10-17 Dsg Technology Holdings Ltd. Method of making an absorbent composite and absorbent articles employing the same
BR112015032807B1 (en) * 2013-07-03 2022-01-11 Dsg Technology Holdings Ltd METHOD OF FORMING AN ABSORBENT COMPOSITE FOR INCORPORATION IN A DISPOSABLE ABSORBENT ARTICLE

Similar Documents

Publication Publication Date Title
JP7177136B2 (en) Ultra-efficient spray drying equipment and processes
KR100196539B1 (en) A process and a device for preparation of expanded thermoplastic microspheres
CA2394775A1 (en) Bitumen coating of particulate material
US5425902A (en) Method for humidifying air
JPWO2018157094A5 (en)
JP7269175B2 (en) Absorbent material and system and method for manufacturing same
CN104034127A (en) Microwave-hot air combined fluidized bed drying experiment device
CN100591836C (en) Steam ironing device having vortex generating elements for obtaining vortices in the steam flow
US3940514A (en) Method of coating electrostatographic carrier particles
CN111739701A (en) Cable surface dewatering and drying device for cable production line
CN110500877B (en) Structure and method for regulating humid exhaust gas
US3113062A (en) Apparatus for spray drying pulverulent materials
JPS59127662A (en) Method and apparatus for treating powder or particles
JP2005081313A (en) Production method for monolith type catalyst, and drying apparatus used for the same
US1501876A (en) Method and device for evaporating the volatile constituents of solutions, emulsions, and suspensions
DK200101419A (en) Process for coating particles
DE10048516B4 (en) Device for heat and mass exchanges
JPH105844A (en) Method and device for cooling rolled heated shape, and cooling medium
JP2004174316A (en) Dryer and drying method
DE1198292B (en) Method and apparatus for drying colloidal layers on webs
DE102005040481B4 (en) Process for the controlled drying of water-containing substances in a drying chamber and drying chamber for carrying out the process
JP4099077B2 (en) Apparatus for producing thermally expanded microcapsules and method for producing thermally expanded microcapsules
Pandey et al. A Commentary on Scale‐Up of Pan Coating Process Using Microenvironmental Control
US20200378062A1 (en) Apparatus and method for applying materials to substrates and related products
Tolmac et al. A comparative analysis of theoretical models and experimental research for spray drying