JPWO2018124084A1 - Chemically strengthened glass plate and method for producing chemically strengthened glass plate - Google Patents

Chemically strengthened glass plate and method for producing chemically strengthened glass plate Download PDF

Info

Publication number
JPWO2018124084A1
JPWO2018124084A1 JP2018559522A JP2018559522A JPWO2018124084A1 JP WO2018124084 A1 JPWO2018124084 A1 JP WO2018124084A1 JP 2018559522 A JP2018559522 A JP 2018559522A JP 2018559522 A JP2018559522 A JP 2018559522A JP WO2018124084 A1 JPWO2018124084 A1 JP WO2018124084A1
Authority
JP
Japan
Prior art keywords
chemically strengthened
glass plate
less
strengthened glass
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018559522A
Other languages
Japanese (ja)
Inventor
浩佑 川本
健 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Publication of JPWO2018124084A1 publication Critical patent/JPWO2018124084A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明の化学強化用ガラス板は、板厚が0.4mm以上、且つ1.0mm未満であり、ビッカース硬度が500より高く、且つ650より低く、430℃のKNO3溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満になると共に、ビッカース硬度が700以上、且つ1100未満になることを特徴とする。The glass plate for chemical strengthening of the present invention has a thickness of 0.4 mm or more and less than 1.0 mm, and has a Vickers hardness higher than 500 and lower than 650 when immersed in KNO3 molten salt at 430 ° C. for 4 hours. The resulting surface compressive stress layer has a compressive stress value of 1100 MPa or more and less than 1500 MPa, and a Vickers hardness of 700 or more and less than 1100.

Description

本発明は、化学強化用ガラス板及び化学強化ガラス板の製造方法に関し、特に携帯電話、デジタルカメラ、PDA(携帯端末)、タッチパネルディスプレイのカバーガラスに好適な化学強化用ガラス板及び化学強化ガラス板の製造方法に関する。   TECHNICAL FIELD The present invention relates to a chemically strengthened glass plate and a method for producing a chemically strengthened glass plate, and in particular, a chemically strengthened glass plate and a chemically strengthened glass plate suitable for a cover glass of a mobile phone, a digital camera, a PDA (mobile terminal), and a touch panel display. It relates to the manufacturing method.

携帯電話、デジタルカメラ、PDA、タッチパネルディスプレイは、益々普及する傾向にある。これらの用途には、カバーガラスとして、イオン交換処理された化学強化ガラス板が用いられている(特許文献1、非特許文献1参照)。   Mobile phones, digital cameras, PDAs, and touch panel displays are becoming increasingly popular. For these uses, a chemically strengthened glass plate subjected to ion exchange treatment is used as a cover glass (see Patent Document 1 and Non-Patent Document 1).

特開2006−83045号公報JP 2006-83045 A 特表2016−524581号公報JP-T-2006-524581 特表2011−510903号公報Special table 2011-510903 gazette

泉谷徹郎等、「新しいガラスとその物性」、初版、株式会社経営システム研究所、1984年8月20日、p.451−498Tetsuro Izumiya et al., “New Glass and its Properties”, first edition, Management System Laboratory, Inc., August 20, 1984, p. 451-498

カバーガラス、特にスマートフォンのカバーガラスは、屋外で使用されることが多いため、照度と平行度が高い光によって、表面傷が認識され易くなり、ディスプレイの視認性を低下してしまう。よって、化学強化ガラス板の耐傷性を高めることが重要になる。   Since cover glasses, particularly smartphone cover glasses, are often used outdoors, surface scratches are easily recognized by light having high illuminance and parallelism, and the visibility of the display is reduced. Therefore, it is important to improve the scratch resistance of the chemically strengthened glass plate.

耐傷性を高める方法として、ガラスの硬度を高めることが有用であると考えられる。詳述すると、従来のガラスは、地上に多く存在するシリカ(珪砂)よりも硬度が大幅に低いため、シリカに起因して表面傷が付き易いという性質を有している。よって、ガラスの硬度を高めると、表面に傷が付き難くなると考えられる。しかし、ガラスの硬度を高めると、イオン交換処理前に、所定サイズに切断加工、端面加工等を行うことが困難になり、加工コストの高騰を招く虞がある。   As a method for improving scratch resistance, it is considered useful to increase the hardness of glass. More specifically, the conventional glass has a property that the surface is easily scratched due to the silica because the hardness is significantly lower than that of silica (silica sand) that exists a lot on the ground. Therefore, it is considered that when the hardness of the glass is increased, the surface is hardly damaged. However, when the hardness of the glass is increased, it becomes difficult to perform cutting processing, end surface processing, or the like to a predetermined size before the ion exchange treatment, which may increase the processing cost.

また、ガラス表面に硬質の薄膜を形成すると、カバーガラスの硬度が高くなることが知られている(例えば、特許文献2参照)。しかし、ガラス表面に硬質の薄膜を形成すると、カバーガラスの透明性が低下したり、膜応力によってカバーガラスに反りが発生する虞がある。   Further, it is known that when a hard thin film is formed on the glass surface, the hardness of the cover glass is increased (see, for example, Patent Document 2). However, when a hard thin film is formed on the glass surface, the transparency of the cover glass may decrease, or the cover glass may be warped due to film stress.

なお、サファイアは、硬度が高いため、カバー部材に好適であるように見える。しかし、サファイアは、大きな寸法の板状体を大量生産することが困難である。   In addition, since sapphire has high hardness, it seems that it is suitable for a cover member. However, sapphire is difficult to mass-produce large-sized plates.

本発明は、上記事情に鑑みなされたものであり、その技術的課題は、イオン交換処理前の加工性が良好であり、且つイオン交換処理後に表面傷が付き難い化学強化用ガラス板及び化学強化ガラス板の製造方法を創案することである。   The present invention has been made in view of the above circumstances, and the technical problem thereof is a glass plate for chemical strengthening and chemical strengthening that have good workability before ion exchange treatment and are less likely to be scratched after ion exchange treatment. The idea is to create a glass plate manufacturing method.

本発明者等が種々の検討を行った結果、耐傷性の指標としてビッカース硬度に着目し、イオン交換処理前のビッカース硬度を低く、イオン交換処理後のビッカース硬度を高くすると、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の化学強化用ガラス板は、板厚が0.4mm以上、且つ1.0mm未満であり、ビッカース硬度が500より高く、且つ650より低く、430℃のKNO溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満になると共に、ビッカース硬度が700以上、且つ1100未満になることを特徴とする。ここで、ビッカース硬度は、測定荷重を100gfとし、JIS Z2244に準拠した方法に基づいて測定した値を指す。また、「表面圧縮応力層の圧縮応力値」と「表面圧縮応力層の応力深さ」は、表面応力計(例えば、株式会社東芝製FSM−6000)を用いて、試料を観察した際に、観察される干渉縞の本数とその間隔から算出される値を指す。As a result of various studies by the present inventors, paying attention to Vickers hardness as an index of scratch resistance, if the Vickers hardness before ion exchange treatment is low and the Vickers hardness after ion exchange treatment is high, the above technical problem is The present invention has been found out that the problem can be solved, and is proposed as the present invention. That is, the chemically strengthened glass plate of the present invention has a plate thickness of 0.4 mm or more and less than 1.0 mm, a Vickers hardness higher than 500 and lower than 650, and a KNO 3 molten salt at 430 ° C. for 4 hours. When immersed, the surface compressive stress layer obtained has a compressive stress value of 1100 MPa or more and less than 1500 MPa, and a Vickers hardness of 700 or more and less than 1100. Here, the Vickers hardness indicates a value measured based on a method based on JIS Z2244 with a measurement load of 100 gf. In addition, the “compressive stress value of the surface compressive stress layer” and the “stress depth of the surface compressive stress layer” are determined when the sample is observed using a surface stress meter (for example, FSM-6000 manufactured by Toshiba Corporation). A value calculated from the number of observed interference fringes and their intervals.

従来、耐傷性は、ビッカース圧子の押し込みによるクラックの発生度、或いはヌープ圧子の引っ掻きによるラテラルクラックの発生度等により評価されてきた(特許文献3参照)。しかし、上記評価で発生するクラックと、照度と平行度が高い光により認識される表面傷とは、傷の発生メカニズムが異なっている。よって、従来の評価でクラックが発生し難いガラスであっても、照度と平行度が高い光により認識される表面傷が発生する場合があり、上記技術課題の解決に至らない虞がある。   Conventionally, the scratch resistance has been evaluated by the degree of occurrence of cracks caused by the indentation of a Vickers indenter or the degree of occurrence of lateral cracks caused by scratching of the Knoop indenter (see Patent Document 3). However, the crack generation mechanism differs between the crack generated in the above evaluation and the surface scratch recognized by light having high illuminance and parallelism. Therefore, even if the glass is less prone to crack in the conventional evaluation, surface scratches recognized by light having high illuminance and parallelism may occur, and the above technical problem may not be solved.

本発明者等の調査によると、照度と平行度が高い光により認識される表面傷の発生度は、ビッカース硬度と相関があり、イオン交換処理後のビッカース硬度を高めると、上記表面傷を低減することができる。そこで、本発明の化学強化用ガラス板は、430℃のKNO溶融塩に4時間浸漬した時に、ビッカース硬度が700以上になることを特徴とする。しかし、ビッカース硬度を極端に高めると、イオン交換処理前の加工性が大幅に低下する虞がある。そこで、本発明の化学強化用ガラス板は、イオン交換処理前のビッカース硬度を650未満に規制している。According to the inventors' investigation, the degree of occurrence of surface scratches recognized by light with high illuminance and parallelism has a correlation with Vickers hardness, and if the Vickers hardness after ion exchange treatment is increased, the surface scratches are reduced. can do. Therefore, the glass plate for chemical strengthening of the present invention is characterized by having a Vickers hardness of 700 or more when immersed in KNO 3 molten salt at 430 ° C. for 4 hours. However, if the Vickers hardness is extremely increased, the workability before the ion exchange treatment may be significantly reduced. Therefore, the glass plate for chemical strengthening of the present invention regulates the Vickers hardness before ion exchange treatment to less than 650.

本発明者等の調査によると、ガラス組成中にAl、LiO、MgO、CaO、ZrO、Y、La等を多く導入すると、イオン交換処理前のビッカース硬度を高め易くなる。また表面圧縮応力層の圧縮応力値を高めると、イオン交換処理後のビッカース硬度を高め易くなる。According to the inventors' investigation, when a large amount of Al 2 O 3 , Li 2 O, MgO, CaO, ZrO 2 , Y 2 O 3 , La 2 O 3, etc. is introduced into the glass composition, Vickers before the ion exchange treatment It becomes easy to increase hardness. Further, when the compressive stress value of the surface compressive stress layer is increased, the Vickers hardness after the ion exchange treatment is easily increased.

また、本発明の化学強化用ガラス板は、430℃のKNO溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の応力深さが100μm未満になることが好ましい。Further, chemically tempered glass plate of the present invention, when immersed for 4 hours in KNO 3 molten salt at 430 ° C., it is preferred that the stress depth of resulting surface compressive stress layer is less than 100 [mu] m.

また、本発明の化学強化用ガラス板は、少なくとも一方の表面が研磨面であることが好ましい。   Moreover, it is preferable that at least one surface of the glass plate for chemical strengthening of the present invention is a polished surface.

また、本発明の化学強化用ガラス板は、板厚方向の中央部にオーバーフロー合流面を有することが好ましい。つまりオーバーフローダウンドロー法で成形されてなることが好ましい。   Moreover, it is preferable that the glass plate for chemical strengthening of this invention has an overflow merge surface in the center part of a plate | board thickness direction. That is, it is preferably formed by an overflow downdraw method.

また、本発明の化学強化用ガラス板は、ガラス組成として、モル%で、SiO 50〜80%、Al 12〜18%、NaO 12〜20%を含有し、モル比NaO/Alが0.9〜1.5であることが好ましい。Further, chemically tempered glass plate of the present invention has a glass composition, in mol%, SiO 2 50~80%, Al 2 O 3 12~18%, containing Na 2 O 12 to 20%, molar ratio Na 2 O / Al 2 O 3 is preferably 0.9 to 1.5.

本発明の化学強化ガラス板の製造方法は、溶融ガラスを板状に成形した後、所定寸法に切断することにより、板厚が0.4mm以上、且つ1.0mm未満であると共に、ビッカース硬度が500より高く、且つ650より低い化学強化用ガラス板を得るガラス板作製工程と、化学強化用ガラス板をイオン交換処理して、表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満であると共に、ビッカース硬度が700以上、且つ1100未満である化学強化ガラス板を得るイオン交換処理工程と、を備えることを特徴とする。   The method for producing a chemically strengthened glass plate according to the present invention includes forming a molten glass into a plate shape and then cutting it into a predetermined size, whereby the plate thickness is 0.4 mm or more and less than 1.0 mm, and the Vickers hardness is The glass plate preparation step for obtaining a glass plate for chemical strengthening higher than 500 and lower than 650, and the glass plate for chemical strengthening are subjected to ion exchange treatment, and the compressive stress value of the surface compressive stress layer is 1100 MPa or more and less than 1500 MPa. And an ion exchange treatment step for obtaining a chemically strengthened glass plate having a Vickers hardness of 700 or more and less than 1100.

また、本発明の化学強化ガラス板の製造方法は、化学強化用ガラス板をイオン交換処理して、表面圧縮応力層の応力深さが100μm未満である化学強化ガラス板を得ることが好ましい。   Moreover, it is preferable that the manufacturing method of the chemically strengthened glass plate of this invention ion-exchange-processes the glass plate for chemical strengthening, and obtains the chemically strengthened glass plate whose stress depth of a surface compressive-stress layer is less than 100 micrometers.

また、本発明の化学強化ガラス板の製造方法は、化学強化用ガラス板の少なくとも一方の表面を研磨処理する研磨工程を更に備えることが好ましい。   Moreover, it is preferable that the manufacturing method of the chemically strengthened glass plate of this invention is further equipped with the grinding | polishing process which grind | polishes at least one surface of the glass plate for chemical strengthening.

また、本発明の化学強化ガラス板の製造方法は、溶融ガラスの成形時に、化学強化用ガラス板(溶融ガラス)の徐冷点から歪点の間の温度域を3℃/分以上、且つ1000℃/分未満の冷却速度で冷却することが好ましい。ここで、「歪点」と「徐冷点」は、ASTM C336の方法に基づいて測定した値を指す。   In the method for producing a chemically strengthened glass sheet of the present invention, the temperature range between the annealing point and strain point of the chemically strengthened glass sheet (molten glass) is 3 ° C./min or more and 1000 It is preferable to cool at a cooling rate of less than ° C / min. Here, “strain point” and “annealing point” refer to values measured based on the method of ASTM C336.

また、本発明の化学強化ガラス板の製造方法は、溶融ガラスをオーバーフローダウンドロー法で成形することが好ましい。   Moreover, it is preferable that the manufacturing method of the chemically strengthened glass plate of this invention shape | molds molten glass by the overflow down draw method.

また、本発明の化学強化ガラス板の製造方法は、化学強化ガラス板が、ガラス組成として、モル%で、SiO 50〜80%、Al 12〜18%、NaO 12〜20%を含有し、モル比NaO/Alが0.9〜1.5であることが好ましい。A method of manufacturing a chemically strengthened glass plate of the present invention, chemically tempered glass is a glass composition including, in mol%, SiO 2 50~80%, Al 2 O 3 12~18%, Na 2 O 12~20 %, And the molar ratio Na 2 O / Al 2 O 3 is preferably 0.9 to 1.5.

第十二に、本発明の化学強化ガラス板の製造方法は、化学強化ガラス板をタッチパネルディスプレイに用いることが好ましい。   12thly, it is preferable that the manufacturing method of the chemically strengthened glass plate of this invention uses a chemically strengthened glass plate for a touch panel display.

本発明の化学強化用ガラス板(化学強化ガラス板)において、板厚は0.4mm以上、且つ1.0mm未満であり、好ましくは0.6〜0.9mm、特に0.75〜0.85mmである。板厚が小さいと、イオン交換処理後に、内部の引っ張り応力によってガラス表面が物理的に引き延ばされて、表面圧縮応力層の圧縮応力値が小さくなり、結果として、イオン交換処理後のビッカース硬度が低下し易くなる。一方、板厚が大きいと、カバーガラスの重量が重くなり、モバイル用途に適用し難くなる。   In the chemically strengthened glass plate (chemically strengthened glass plate) of the present invention, the plate thickness is 0.4 mm or more and less than 1.0 mm, preferably 0.6 to 0.9 mm, particularly 0.75 to 0.85 mm. It is. When the plate thickness is small, the glass surface is physically stretched by the internal tensile stress after the ion exchange treatment, and the compressive stress value of the surface compressive stress layer becomes small. As a result, the Vickers hardness after the ion exchange treatment Tends to decrease. On the other hand, if the plate thickness is large, the weight of the cover glass becomes heavy, making it difficult to apply to mobile applications.

本発明の化学強化用ガラス板において、ビッカース硬度は500より高く、且つ650より低く、好ましくは530〜640、540〜630、特に550〜620である。イオン交換処理前のビッカース硬度が低過ぎると、イオン交換処理後にビッカース硬度を十分に高めることが困難になる。一方、イオン交換処理前のビッカース硬度が高過ぎると、イオン交換処理前に、所定サイズに切断加工、端面加工等を行うことが困難になり、加工コストの高騰を招く虞がある。   In the glass plate for chemical strengthening of the present invention, the Vickers hardness is higher than 500 and lower than 650, preferably 530 to 640, 540 to 630, particularly 550 to 620. If the Vickers hardness before the ion exchange treatment is too low, it becomes difficult to sufficiently increase the Vickers hardness after the ion exchange treatment. On the other hand, if the Vickers hardness before the ion exchange treatment is too high, it becomes difficult to perform cutting processing, end face processing, or the like to a predetermined size before the ion exchange treatment, which may increase the processing cost.

本発明の化学強化用ガラス板において、430℃のKNO溶融塩に4時間浸漬した時に、ビッカース硬度は700以上、且つ1100未満になり、好ましくは710以上、720以上、730以上、740以上、750以上、760以上、770以上、780以上、790以上、800以上、810以上、820以上、830以上、840以上、特に850以上になる。また、本発明に係る化学強化ガラス板は、ビッカース硬度が700以上、且つ1100未満であり、好ましくは710以上、720以上、730以上、740以上、750以上、760以上、770以上、780以上、790以上、800以上、810以上、820以上、830以上、840以上、特に850以上である。イオン交換処理後のビッカース硬度が低いと、照度と平行度が高い光により認識される表面傷が付き易くなる。一方、イオン交換処理後のビッカース硬度が高過ぎると、化学強化ガラス板の内部の引っ張り応力が高くなる傾向があり、点衝突により化学強化ガラス板が破損し易くなる。In the glass sheet for chemical strengthening of the present invention, when immersed in KNO 3 molten salt at 430 ° C. for 4 hours, the Vickers hardness is 700 or more and less than 1100, preferably 710 or more, 720 or more, 730 or more, 740 or more, 750 or more, 760 or more, 770 or more, 780 or more, 790 or more, 800 or more, 810 or more, 820 or more, 830 or more, 840 or more, particularly 850 or more. Further, the chemically strengthened glass plate according to the present invention has a Vickers hardness of 700 or more and less than 1100, preferably 710 or more, 720 or more, 730 or more, 740 or more, 750 or more, 760 or more, 770 or more, 780 or more, 790 or more, 800 or more, 810 or more, 820 or more, 830 or more, 840 or more, particularly 850 or more. When the Vickers hardness after the ion exchange treatment is low, surface scratches recognized by light having high illuminance and parallelism are likely to be attached. On the other hand, if the Vickers hardness after the ion exchange treatment is too high, the tensile stress inside the chemically strengthened glass plate tends to be high, and the chemically strengthened glass plate is likely to be damaged by point collision.

本発明の化学強化用ガラス板において、430℃のKNO溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満になる。また、本発明に係る化学強化ガラス板は、表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満である。圧縮応力値が大きい程、イオン交換処理後のビッカース硬度が高くなる。しかし、ガラス表面に極端に大きな圧縮応力が形成されると、内部の引っ張り応力が極端に高くなり、化学強化ガラス板が破損した際に破片が飛び散る虞がある。よって、表面圧縮応力層の圧縮応力値は、好ましくは1150MPa以上、1200MPa以上、1250MPa以上、1300MPa以上、特に1350MPa以上である。また、表面圧縮応力層の圧縮応力値は、好ましくは1500MPa以下、1450MPa以下、特に1400MPa以下である。なお、ガラス組成中のAl、TiO、ZrO、MgO、ZnOの含有量を増量したり、SrO、BaOの含有量を減量すれば、圧縮応力値が大きくなる傾向がある。また、イオン交換時間を短くしたり、イオン交換溶液の温度を下げれば、圧縮応力値が大きくなる傾向がある。When the chemical strengthening glass plate of the present invention is immersed in KNO 3 molten salt at 430 ° C. for 4 hours, the compressive stress value of the obtained surface compressive stress layer becomes 1100 MPa or more and less than 1500 MPa. In the chemically strengthened glass plate according to the present invention, the compressive stress value of the surface compressive stress layer is 1100 MPa or more and less than 1500 MPa. The larger the compressive stress value, the higher the Vickers hardness after the ion exchange treatment. However, when an extremely large compressive stress is formed on the glass surface, the internal tensile stress becomes extremely high, and there is a possibility that fragments are scattered when the chemically strengthened glass plate is broken. Therefore, the compressive stress value of the surface compressive stress layer is preferably 1150 MPa or more, 1200 MPa or more, 1250 MPa or more, 1300 MPa or more, particularly 1350 MPa or more. The compressive stress value of the surface compressive stress layer is preferably 1500 MPa or less, 1450 MPa or less, and particularly 1400 MPa or less. Note that if the content of Al 2 O 3 , TiO 2 , ZrO 2 , MgO, ZnO in the glass composition is increased, or the content of SrO, BaO is decreased, the compressive stress value tends to increase. Further, if the ion exchange time is shortened or the temperature of the ion exchange solution is lowered, the compressive stress value tends to increase.

本発明の化学強化用ガラス板において、430℃のKNO溶融塩に4時間浸漬した時に、表面圧縮応力層の応力深さは、好ましくは10μm以上、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上、40μm以上、特に45μm以上になり、好ましくは100μm以下、80μm以下、特に60μm以下になる。また、本発明に係る化学強化ガラス板は、表面圧縮応力層の応力深さは、好ましくは10μm以上、15μm以上、20μm以上、25μm以上、30μm以上、35μm以上、40μm以上、特に45μm以上であり、好ましくは100μm以下、80μm以下、特に60μm以下である。応力深さが大きい程、化学強化ガラス板に深い傷が付いても、化学強化ガラス板が割れ難くなると共に、機械的強度のバラツキが小さくなる。一方、応力深さが大き過ぎると、内部の引っ張り応力が極端に高くなり、化学強化ガラス板が破損した際に破片が飛び散る虞がある。なお、ガラス組成中のKO、Pの含有量を増量したり、SrO、BaOの含有量を減量すれば、応力深さが大きくなる傾向がある。また、イオン交換時間を長くしたり、イオン交換溶液の温度を上げれば、応力深さが大きくなる傾向がある。When the glass sheet for chemical strengthening of the present invention is immersed in KNO 3 molten salt at 430 ° C. for 4 hours, the stress depth of the surface compressive stress layer is preferably 10 μm or more, 15 μm or more, 20 μm or more, 25 μm or more, 30 μm or more. , 35 μm or more, 40 μm or more, particularly 45 μm or more, preferably 100 μm or less, 80 μm or less, particularly 60 μm or less. Further, in the chemically strengthened glass plate according to the present invention, the stress depth of the surface compressive stress layer is preferably 10 μm or more, 15 μm or more, 20 μm or more, 25 μm or more, 30 μm or more, 35 μm or more, 40 μm or more, particularly 45 μm or more. , Preferably 100 μm or less, 80 μm or less, particularly 60 μm or less. As the stress depth increases, even if the chemically strengthened glass sheet is deeply damaged, the chemically strengthened glass sheet is less likely to break and the variation in mechanical strength is reduced. On the other hand, if the stress depth is too large, the internal tensile stress becomes extremely high, and there is a possibility that fragments are scattered when the chemically strengthened glass plate is broken. In addition, if the content of K 2 O or P 2 O 5 in the glass composition is increased or the content of SrO or BaO is decreased, the stress depth tends to increase. Moreover, if the ion exchange time is lengthened or the temperature of the ion exchange solution is increased, the stress depth tends to increase.

本発明の化学強化用ガラス板(化学強化ガラス板)は、少なくとも一方の表面が研磨面であり、好ましくは両表面が研磨面である。研磨処理を行う場合、その研磨量(研磨厚み)は100nm以上、500nm以上、1μm以上、5μm以上、10μm以上、50μm以上、特に100μm以上が好ましい。ガラスの火造り面(成形面)は、仮想温度が低く、アルカリ金属酸化物が少ない異質層になる。よって、ガラス表面を研磨すると、最表面の異質層がなくなって、最表面のイオン交換量が多くなり、イオン交換処理後のビッカース硬度を高めることができる。   In the chemically strengthened glass plate (chemically strengthened glass plate) of the present invention, at least one surface is a polished surface, and preferably both surfaces are polished surfaces. When performing the polishing treatment, the polishing amount (polishing thickness) is preferably 100 nm or more, 500 nm or more, 1 μm or more, 5 μm or more, 10 μm or more, 50 μm or more, and particularly preferably 100 μm or more. The fired surface (molded surface) of glass becomes a heterogeneous layer with a low fictive temperature and few alkali metal oxides. Therefore, when the glass surface is polished, the extraneous layer on the outermost surface disappears, the amount of ion exchange on the outermost surface increases, and the Vickers hardness after the ion exchange treatment can be increased.

本発明の化学強化用ガラス板(化学強化ガラス板)において、ヤング率は、好ましくは65GPa以上、69GPa以上、特に71GPa以上であり、好ましくは90Gpa以下、85GPa以下、特に80GPa以下である。ヤング率が高い程、ビッカース硬度が高くなる傾向がある。また、化学強化ガラス板が撓み難くなり、タッチパネルディスプレイ等に用いる際、ペン等で化学強化ガラス板の表面を強く押しても、化学強化ガラス板の変形量が小さくなる。結果として、カバーガラスが、背面に位置する液晶素子に接触して、表示不良になる事態を防止し易くなる。一方、ヤング率が高過ぎると、イオン交換処理前のビッカース硬度が高くなり過ぎて、イオン交換処理前に、所定サイズに切断加工、端面加工等を行うことが困難になる。   In the chemically strengthened glass plate (chemically strengthened glass plate) of the present invention, the Young's modulus is preferably 65 GPa or more, 69 GPa or more, particularly 71 GPa or more, preferably 90 GPa or less, 85 GPa or less, particularly 80 GPa or less. The higher the Young's modulus, the higher the Vickers hardness. Further, the chemically strengthened glass plate is difficult to bend, and when used for a touch panel display or the like, even if the surface of the chemically strengthened glass plate is strongly pressed with a pen or the like, the amount of deformation of the chemically strengthened glass plate is reduced. As a result, it is easy to prevent the cover glass from coming into contact with the liquid crystal element located on the back surface and causing a display defect. On the other hand, if the Young's modulus is too high, the Vickers hardness before the ion exchange treatment becomes too high, and it becomes difficult to perform cutting, end face processing, etc. to a predetermined size before the ion exchange treatment.

本発明の化学強化用ガラス板(化学強化ガラス板)において、ポアソン比は、好ましくは0.21以下、0.20以下、特に0.19以下である。ポアソン比が大き過ぎると、応力に対して弾性的に変化し難くなるため、表面傷の深さが深くなり易く、結果として、視認し得る表面傷が残存し易くなる。   In the chemically strengthened glass plate (chemically strengthened glass plate) of the present invention, the Poisson's ratio is preferably 0.21 or less, 0.20 or less, particularly 0.19 or less. If the Poisson's ratio is too large, it becomes difficult to change elastically with respect to the stress, so that the depth of the surface flaws tends to be deep, and as a result, visible surface flaws tend to remain.

本発明の化学強化用ガラス板(化学強化ガラス板)は、ガラス組成として、モル%で、SiO 50〜80%、Al 12〜18%、NaO 12〜20%を含有し、モル比NaO/Alが0.9〜1.5であることが好ましい。各成分の含有範囲を限定した理由を下記に示す。なお、各成分の含有範囲の説明において、%表示は、特に断りがない限り、モル%を指す。The glass plate for chemical strengthening (chemically strengthened glass plate) of the present invention contains, as a glass composition, mol%, SiO 2 50 to 80%, Al 2 O 3 12 to 18%, Na 2 O 12 to 20%. The molar ratio Na 2 O / Al 2 O 3 is preferably 0.9 to 1.5. The reason for limiting the content range of each component is shown below. In addition, in description of the containing range of each component,% display points out mol%, unless there is particular notice.

SiOは、ガラスのネットワークを形成する成分である。SiOの含有量は、好ましくは50〜80%、56〜75%、60〜70%、62〜69%、特に64〜67%である。SiOの含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。一方、SiOの含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。SiO 2 is a component that forms a network of glass. The content of SiO 2 is preferably 50 to 80%, 56 to 75%, 60 to 70%, 62 to 69%, particularly 64 to 67%. If the content of SiO 2 is too small, vitrification becomes difficult, and the thermal expansion coefficient becomes too high, so that the thermal shock resistance tends to decrease. On the other hand, if the content of SiO 2 is too large, the meltability and moldability tend to be lowered, and the thermal expansion coefficient becomes too low to make it difficult to match the thermal expansion coefficient of the surrounding materials.

Alは、ビッカース硬度を高める成分であり、またイオン交換性能、歪点、ヤング率を高める成分である。Alの含有量が少な過ぎると、耐傷性が低下し易くなり、またイオン交換性能を十分に発揮できない虞が生じる。よって、Alの好適な下限範囲は12%以上、12.5%以上、13%以上、14%以上、14.5%以上、15%以上、15.5%以上、16%以上、16.1%以上、特に16.3%以上である。一方、Alの含有量が多過ぎると、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等でガラス板を成形し難くなる。特に、成形体耐火物としてアルミナ耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ耐火物との界面にスピネルの失透結晶が析出し易くなる。また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。また耐酸性も低下し、酸処理工程に適用し難くなる。更には高温粘性が高くなり、溶融性が低下し易くなる。よって、Alの好適な上限範囲は18%以下、17.5%以下、特に17%以下である。Al 2 O 3 is a component that increases Vickers hardness, and is a component that increases ion exchange performance, strain point, and Young's modulus. If the content of Al 2 O 3 is too small, the scratch resistance tends to be lowered, and the ion exchange performance may not be sufficiently exhibited. Therefore, the preferred lower limit range of Al 2 O 3 is 12% or more, 12.5% or more, 13% or more, 14% or more, 14.5% or more, 15% or more, 15.5% or more, 16% or more, 16.1% or more, particularly 16.3% or more. On the other hand, when the content of Al 2 O 3 is too large, devitrification crystal glass becomes easy to precipitate, and it becomes difficult to mold the glass sheet by an overflow down draw method or the like. In particular, when an alumina refractory is used as a molded refractory and a glass plate is formed by the overflow down draw method, spinel devitrification crystals are likely to precipitate at the interface with the alumina refractory. In addition, the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of the surrounding material. Moreover, acid resistance also falls and it becomes difficult to apply to an acid treatment process. Furthermore, the high-temperature viscosity becomes high and the meltability tends to be lowered. Therefore, a suitable upper limit range of Al 2 O 3 is 18% or less, 17.5% or less, particularly 17% or less.

は、高温粘度や密度を低下させると共に、ガラスを安定化させて、結晶を析出させ難くし、液相温度を低下させる成分である。しかし、Bの含有量が多過ぎると、応力深さが小さくなったり、イオン交換処理によって、ヤケと呼ばれるガラス表面の着色が発生したり、耐水性が低下し易くなる。よって、Bの好適な範囲は0〜6%、0〜5%、0〜4%、0〜3.5%、0〜3%、0〜2.5%、0〜2%、0〜1.5%、0〜1%、特に0〜1%未満である。B 2 O 3 is a component that reduces high temperature viscosity and density, stabilizes the glass, makes it difficult to precipitate crystals, and lowers the liquidus temperature. However, if the content of B 2 O 3 is too large, the stress depth becomes small, or the surface of the glass called burnt is colored due to the ion exchange treatment, and the water resistance tends to decrease. Thus, preferred range 6% of B 2 O 3, 0~5%, 0~4%, 0~3.5%, 0~3%, 0~2.5%, 0~2%, 0 to 1.5%, 0 to 1%, especially 0 to less than 1%.

NaOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。またNaOは、耐失透性、特にアルミナ耐火物との反応耐失透性を改善する成分である。NaOの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下したり、イオン交換性能が低下し易くなる。よって、NaOの好適な下限範囲は12%以上、14%以上、15%以上、15.5%以上、特に16%以上である。一方、NaOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、ガラス組成の成分バランスが崩れて、かえって耐失透性が低下する場合がある。よって、NaOの好適な上限範囲は20%以下、19%以下、18%以下、17.5%以下、特に17%以下である。Na 2 O is an ion exchange component, and is a component that lowers the high temperature viscosity and improves the meltability and moldability. Na 2 O is a component that improves devitrification resistance, particularly reaction devitrification resistance with alumina refractories. When Na 2 O content is too small, or reduced meltability, lowered coefficient of thermal expansion tends to decrease the ion exchange performance. Therefore, the preferable lower limit range of Na 2 O is 12% or more, 14% or more, 15% or more, 15.5% or more, particularly 16% or more. On the other hand, when the content of Na 2 O is too large, the thermal expansion coefficient becomes too high, the thermal shock resistance is lowered, and it becomes difficult to match the thermal expansion coefficient of the surrounding materials. In addition, the strain point may be excessively decreased, or the component balance of the glass composition may be lost, and the devitrification resistance may be decreased. Therefore, a preferable upper limit range of Na 2 O is 20% or less, 19% or less, 18% or less, 17.5% or less, particularly 17% or less.

モル比NaO/Alが小さ過ぎると、溶融性が低下したり、耐失透性、特にアルミナ耐火物との反応耐失透性が低下したり、イオン交換性能が低下し易くなる。よって、モル比NaO/Alの好適な下限範囲は0.9以上、0.95以上、0.98以上、特に1.00以上である。一方、モル比NaO/Alが大き過ぎると、ビッカース硬度やイオン交換性能が低下し易くなる。よって、モル比NaO/Alの好適な上限範囲は1.5以下、1.4以下、1.3以下、1.2以下、1.18以下、1.15以下、1.13以下、特に1.1以下である。If the molar ratio Na 2 O / Al 2 O 3 is too small, the meltability is lowered, the devitrification resistance, particularly the reaction devitrification resistance with the alumina refractory is lowered, and the ion exchange performance is likely to be lowered. Become. Therefore, the preferable lower limit range of the molar ratio Na 2 O / Al 2 O 3 is 0.9 or more, 0.95 or more, 0.98 or more, and particularly 1.00 or more. On the other hand, when the molar ratio Na 2 O / Al 2 O 3 is too large, the Vickers hardness and the ion exchange performance tend to be lowered. Therefore, the preferable upper limit range of the molar ratio Na 2 O / Al 2 O 3 is 1.5 or less, 1.4 or less, 1.3 or less, 1.2 or less, 1.18 or less, 1.15 or less, 13 or less, particularly 1.1 or less.

+NaO−Alの好適な含有量は−1.7〜2.7%、0〜2.55%、0.5〜2.4%、特に0.8〜2.2%である。このようにすれば、ビッカース硬度、溶融性、歪点及びイオン交換性能を最適化し易くなる。なお、「B+NaO−Al」は、BとNaOの合量からAlの含有量を減じたものである。Suitable content of B 2 O 3 + Na 2 O -Al 2 O 3 is -1.7~2.7%, 0 to 2.55%, 0.5 to 2.4%, especially 0.8 to 2 .2%. This makes it easy to optimize Vickers hardness, meltability, strain point and ion exchange performance. “B 2 O 3 + Na 2 O—Al 2 O 3 ” is obtained by subtracting the content of Al 2 O 3 from the total amount of B 2 O 3 and Na 2 O.

上記成分以外にも、例えば以下の成分を添加してもよい。   In addition to the above components, for example, the following components may be added.

LiOは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分であると共に、ビッカース硬度を高める成分である。更にLiOは、一般的には、アルカリ金属酸化物の中で圧縮応力値を高める効果が大きいが、NaOを12%以上含むガラス系において、LiOの含有量が極端に多くなると、かえって圧縮応力値が低下する傾向がある。またLiOの含有量が多過ぎると、イオン交換処理時にイオン交換溶液中に溶出して、イオン交換溶液を劣化させる虞がある。よって、LiOの好適な含有量は0〜2%、0〜1.7%、0〜1.5%、0〜1%、0〜1%未満、0〜0.5%、0〜0.3%、0〜0.1%、特に0〜0.05%である。Li 2 O is an ion exchange component, and is a component that lowers the high-temperature viscosity to increase the meltability and moldability, and also increases the Vickers hardness. Furthermore, Li 2 O generally has a large effect of increasing the compressive stress value among alkali metal oxides, but in a glass system containing 12% or more of Na 2 O, the content of Li 2 O is extremely large. If it becomes, there exists a tendency for a compressive stress value to fall rather. Also the content of Li 2 O is too large, eluting the ion exchange solution during ion-exchange treatment, there is a possibility to degrade the ion exchange solution. Accordingly, the preferred content of Li 2 O is 0-2%, 0 to 1.7%, from 0 to 1.5%, 0 to 1%, less than 0 to 1% 0 to 0.5% 0 0.3%, 0-0.1%, especially 0-0.05%.

Oは、イオン交換を促進する成分であり、特にアルカリ金属酸化物の中では、表面圧縮応力層の圧縮応力値を低下させて、応力深さを増大させる成分である。また高温粘度を低下させて、溶融性や成形性を高める成分である。しかし、KOの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下したり、周辺材料の熱膨張係数に整合させ難くなる。また歪点が低下し過ぎたり、耐失透性が低下する傾向がある。よって、KOの好適な上限範囲は8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下、特に2%未満である。なお、KOを添加する場合、好適な添加量は0.1%以上、0.5%以上、1%以上、1.5%以上、特に2%以上である。また、KOの添加をできるだけ回避する場合は、KOの好適な含有量は0〜1%、0〜1%未満、特に0〜0.05%である。K 2 O is a component that promotes ion exchange. Particularly in alkali metal oxides, K 2 O is a component that decreases the compressive stress value of the surface compressive stress layer and increases the stress depth. Moreover, it is a component which reduces high temperature viscosity and improves a meltability and a moldability. However, if the content of K 2 O is too large, the thermal expansion coefficient becomes too high, and the thermal shock resistance is lowered or it is difficult to match the thermal expansion coefficient of the surrounding materials. Moreover, there is a tendency that the strain point is excessively lowered and the devitrification resistance is lowered. Therefore, the preferable upper limit range of K 2 O is 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less, particularly less than 2%. Incidentally, when adding K 2 O, the preferred amount is 0.1% or more, 0.5% or more, more than 1%, 1.5% or more, particularly 2% or more. In the case of avoiding as much as possible the addition of K 2 O is, the preferred content of K 2 O 0 to 1%, less than 0 to 1%, in particular 0 to 0.05%.

MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やビッカース硬度を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。よって、MgOの好適な下限範囲は0%以上、0.1%以上、0.5%以上、1%以上、1.5%以上、2%以上、2.5%以上、3%以上、3.5%以上、特に3.7%以上である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり易く、また耐失透性、特にアルミナ耐火物との反応耐失透性が低下し易くなる。よって、MgOの好適な上限範囲は10%以下、9%以下、8%以下、7%以下、6%以下、5%以下、特に4%以下である。   MgO is a component that lowers the viscosity at high temperature, increases meltability and formability, and increases the strain point and Vickers hardness. Among alkaline earth metal oxides, MgO is a component that has a large effect on improving ion exchange performance. is there. Therefore, the preferable lower limit range of MgO is 0% or more, 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% or more, 3% or more, 3% .5% or more, particularly 3.7% or more. However, if the content of MgO is too large, the density and thermal expansion coefficient tend to increase, and devitrification resistance, particularly reaction devitrification resistance with alumina refractory, tends to decrease. Therefore, the preferable upper limit range of MgO is 10% or less, 9% or less, 8% or less, 7% or less, 6% or less, 5% or less, particularly 4% or less.

CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やビッカース硬度を高める効果が大きい成分である。しかし、CaOの含有量が多過ぎると、イオン交換性能が低下したり、イオン交換処理時にイオン交換溶液を劣化させ易くなる。よって、CaOの好適な含有量は0〜6%、0〜5%、0〜4%、0〜3.5%、0〜3%、0〜2%、0〜1%、特に0〜0.5%である。   CaO is a component that has a large effect of lowering high temperature viscosity, improving meltability and formability, and increasing strain point and Vickers hardness without lowering devitrification resistance compared to other components. is there. However, when there is too much content of CaO, ion exchange performance will fall or it will become easy to degrade an ion exchange solution at the time of ion exchange processing. Therefore, suitable content of CaO is 0-6%, 0-5%, 0-4%, 0-3.5%, 0-3%, 0-2%, 0-1%, especially 0-0. .5%.

SrOとBaOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であるが、それらの含有量が多過ぎると、イオン交換反応が阻害され易くなることに加えて、密度や熱膨張係数が高くなったり、ガラスが失透し易くなる。よって、SrOとBaOの好適な含有量は、それぞれ0〜2%、0〜1.5%、0〜1%、0〜0.5%、0〜0.1%、特に0〜0.1%未満である。   SrO and BaO are components that lower the viscosity at high temperature to increase the meltability and moldability, and increase the strain point and Young's modulus. However, if their content is excessive, the ion exchange reaction tends to be inhibited. In addition, the density and the coefficient of thermal expansion increase, and the glass tends to devitrify. Therefore, suitable content of SrO and BaO is 0 to 2%, 0 to 1.5%, 0 to 1%, 0 to 0.5%, 0 to 0.1%, particularly 0 to 0.1%, respectively. %.

ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を高める効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、応力深さが小さくなる傾向がある。よって、ZnOの好適な含有量は0〜6%、0〜5%、0〜3%、特に0〜1%である。   ZnO is a component that enhances the ion exchange performance, and is a component that is particularly effective in increasing the compressive stress value. Moreover, it is a component which reduces high temperature viscosity, without reducing low temperature viscosity. However, when the content of ZnO is too large, the glass tends to undergo phase separation, the devitrification resistance decreases, the density increases, or the stress depth decreases. Therefore, suitable content of ZnO is 0-6%, 0-5%, 0-3%, especially 0-1%.

+MgO+ZnOの好適な含有量は0.03〜3.94%、0.1〜3.8%、0.5〜3.7%、1〜3.5%、特に2〜3.4%である。このようにすれば、溶融性、耐失透性及び応力深さを最適化し易くなる。なお、「B+MgO+ZnO」は、B、MgO及びZnOの合量である。The preferred content of B 2 O 3 + MgO + ZnO is 0.03 to 3.94%, 0.1 to 3.8%, 0.5 to 3.7%, 1 to 3.5%, especially 2-3. 4%. In this way, it becomes easy to optimize the meltability, devitrification resistance and stress depth. “B 2 O 3 + MgO + ZnO” is the total amount of B 2 O 3 , MgO and ZnO.

TiOは、イオン交換性能を高める成分であり、また高温粘度を低下させる成分であるが、その含有量が多過ぎると、透明性や耐失透性が低下し易くなる。よって、TiOの含有量は0〜4.5%、0〜1%未満、0〜0.5%、特に0〜0.3%が好ましい。TiO 2 is a component that enhances ion exchange performance and a component that lowers the high-temperature viscosity. However, if its content is too large, transparency and devitrification resistance are likely to be lowered. Therefore, the content of TiO 2 is preferably 0 to 4.5%, 0 to less than 1%, 0 to 0.5%, particularly preferably 0 to 0.3%.

ZrOは、ビッカース硬度を高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞もある。よって、ZrOの好適な含有量は0〜5%、0〜4%、0〜3%、特に0.001〜2%である。ZrO 2 is a component that increases the Vickers hardness and a component that increases the viscosity and strain point in the vicinity of the liquid phase viscosity. If the content is too large, the devitrification resistance may be significantly reduced. There is also a possibility that the density becomes too high. Accordingly, the preferred content of ZrO 2 is 0-5% 0-4% 0-3%, in particular 0.001 to 2%.

SnOは、イオン交換性能を高める成分であるが、その含有量が多過ぎると、耐失透性が低下し易くなる。よって、SnOの好適な含有量は0〜3%、0.01〜3%、0.05〜3%、0.1〜3%、特に0.2〜3%である。SnO 2 is a component that enhances the ion exchange performance, but when its content is too large, the devitrification resistance tends to be lowered. Accordingly, the preferred content of SnO 2 is 0-3%, 0.01% to 3% 0.05 to 3% 0.1% to 3%, in particular 0.2 to 3%.

は、イオン交換性能を高める成分であり、特に応力深さを大きくする成分である。しかし、Pの含有量が多過ぎると、ガラスが分相したり、耐水性が低下し易くなる。よって、Pの好適な含有量は0〜10%、0〜3%、0〜1%、特に0〜0.5%である。P 2 O 5 is a component that enhances ion exchange performance, and in particular, a component that increases the stress depth. However, when the content of P 2 O 5 is too large, or glass phase separation, the water resistance tends to decrease. Therefore, the suitable content of P 2 O 5 is 0 to 10%, 0 to 3%, 0 to 1%, particularly 0 to 0.5%.

清澄剤として、Cl、SO、CeOの群(好ましくはCl、SOの群)から選択された一種又は二種以上を0.001〜1%添加してもよい。As a fining agent, Cl, SO 3, CeO 2 group (preferably Cl, SO group 3) one member selected from or two or more may be added 0.001 to 1%.

Feの好適な含有量は1000ppm未満(0.1%未満)、800ppm未満、600ppm未満、400ppm未満、特に300ppm未満である。更に、Feの含有量を上記範囲に規制した上で、モル比SnO/(Fe+SnO)を0.8以上、0.9以上、特に0.95以上に規制することが好ましい。このようにすれば、波長400〜770nm、厚み1mmにおける全光線透過率が向上し易くなる。Suitable content of Fe 2 O 3 is less than 1000 ppm (less than 0.1%), less than 800 ppm, less than 600 ppm, less than 400 ppm, especially less than 300 ppm. Further, the Fe 2 O 3 content is regulated within the above range, and the molar ratio SnO 2 / (Fe 2 O 3 + SnO 2 ) is regulated to 0.8 or more, 0.9 or more, and particularly 0.95 or more. It is preferable. If it does in this way, it will become easy to improve the total light transmittance in wavelength 400-770nm and thickness 1mm.

Nd、La等の希土類酸化物は、ビッカース硬度を高める成分である。しかし、原料自体のコストが高く、また多量に添加すると、耐失透性が低下し易くなる。よって、希土類酸化物の好適な含有量は3%以下、2%以下、1%以下、0.5%以下、特に0.1%以下である。Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase Vickers hardness. However, the cost of the raw material itself is high, and when it is added in a large amount, the devitrification resistance tends to be lowered. Therefore, the preferable content of the rare earth oxide is 3% or less, 2% or less, 1% or less, 0.5% or less, particularly 0.1% or less.

本発明の化学強化用ガラス板は、環境的配慮から、ガラス組成として、実質的にAs、Sb、PbO、及びFを含有しないことが好ましい。また、環境的配慮から、実質的にBiを含有しないことも好ましい。「実質的に〜を含有しない」とは、ガラス成分として積極的に明示の成分を添加しないものの、不純物レベルの添加を許容する趣旨であり、具体的には、明示の成分の含有量が0.05%未満の場合を指す。Chemically strengthened glass plate of the present invention, from environmental considerations, as a glass composition, substantially As 2 O 3, Sb 2 O 3, PbO, and preferably contains no F. Moreover, environmental considerations, it is also preferable to contain substantially no Bi 2 O 3. “Substantially free of” means that an explicit component is not actively added as a glass component, but the addition of an impurity level is allowed. Specifically, the content of the explicit component is 0. Indicates the case of less than 05%.

本発明の化学強化ガラス板の製造方法は、溶融ガラスを板状に成形した後、所定寸法に切断することにより、板厚が0.4mm以上、且つ1.0mm未満であると共に、ビッカース硬度が500より高く、且つ650より低い化学強化用ガラス板を得るガラス板作製工程と、化学強化用ガラス板をイオン交換処理して、表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満であると共に、ビッカース硬度が700以上、且つ1100未満である化学強化ガラス板を得るイオン交換処理工程と、を備えることを特徴とする。本発明の化学強化ガラス板の製造方法の技術的特徴は、本発明の化学強化用ガラス板の説明において一部記載済みである。本明細書では、便宜上、記載済みの技術的特徴について詳細な説明を省略する。   The method for producing a chemically strengthened glass plate according to the present invention includes forming a molten glass into a plate shape and then cutting it into a predetermined size, whereby the plate thickness is 0.4 mm or more and less than 1.0 mm, and the Vickers hardness is The glass plate preparation step for obtaining a glass plate for chemical strengthening higher than 500 and lower than 650, and the glass plate for chemical strengthening are subjected to ion exchange treatment, and the compressive stress value of the surface compressive stress layer is 1100 MPa or more and less than 1500 MPa. And an ion exchange treatment step for obtaining a chemically strengthened glass plate having a Vickers hardness of 700 or more and less than 1100. The technical features of the method for producing a chemically strengthened glass sheet of the present invention are partially described in the description of the chemically strengthened glass sheet of the present invention. In the present specification, for the sake of convenience, detailed description of the described technical features is omitted.

本発明の化学強化ガラス板の製造方法において、まず所望のガラス組成になるように調合したガラス原料を連続溶融炉に投入して、1500〜1700℃で加熱溶融し、清澄した後、溶融ガラスを成形装置に供給した上で板状に成形し、冷却することが好ましい。板状に成形した後に、所定寸法に切断加工する方法は、周知の方法を採用することができる。   In the method for producing a chemically strengthened glass sheet according to the present invention, first, a glass raw material prepared so as to have a desired glass composition is put into a continuous melting furnace, heated and melted at 1500 to 1700 ° C., clarified, and then the molten glass is heated. It is preferable that the sheet is formed into a plate shape after being supplied to the forming apparatus and then cooled. A well-known method can be adopted as a method of cutting into a predetermined dimension after forming into a plate shape.

本発明の化学強化ガラス板の製造方法において、溶融ガラスの成形時に、溶融ガラスの徐冷点から歪点の間の温度域を3℃/分以上、且つ1000℃/分未満の冷却速度で冷却することが好ましく、その冷却速度は、好ましくは10℃/分以上、20℃/分以上、30℃/分以上、特に50℃/分以上であり、好ましくは1000℃/分未満、500℃/分未満、特に300℃/分未満である。冷却速度を速過ぎると、ガラスの構造が粗になり、イオン交換処理後にビッカース硬度を高めることが困難になる。一方、冷却速度が遅過ぎると、化学強化用ガラス板の生産効率が低下してしまう。なお、溶融ガラスを板状に成形した後に、化学強化用ガラス板に対して、別途、上記冷却速度で冷却する工程を設けてもよい。   In the method for producing a chemically strengthened glass sheet according to the present invention, at the time of forming molten glass, the temperature range between the annealing point and the strain point of the molten glass is cooled at a cooling rate of 3 ° C./min or more and less than 1000 ° C./min. The cooling rate is preferably 10 ° C./min or more, 20 ° C./min or more, 30 ° C./min or more, particularly 50 ° C./min or more, preferably less than 1000 ° C./min, 500 ° C./min. Less than min, especially less than 300 ° C / min. If the cooling rate is too high, the glass structure becomes rough and it becomes difficult to increase the Vickers hardness after the ion exchange treatment. On the other hand, if the cooling rate is too slow, the production efficiency of the chemically strengthened glass plate is lowered. In addition, after shape | molding molten glass in plate shape, you may provide the process of cooling with the said cooling rate separately with respect to the glass plate for chemical strengthening.

溶融ガラスを板状に成形する方法として、オーバーフローダウンドロー法を採用することが好ましい。オーバーフローダウンドロー法は、高品位なガラス板を大量に作製し得ると共に、大型のガラス板も容易に作製し得る方法である。更に、オーバーフローダウンドロー法では、成形体耐火物として、アルミナやジルコニアが使用されるが、本発明の化学強化用ガラス板は、アルミナやジルコニア、特にアルミナとの適合性が良好であるため、これらの成形体と反応して泡やブツ等を発生させ難い。   As a method for forming molten glass into a plate shape, it is preferable to employ an overflow down draw method. The overflow downdraw method is a method capable of producing a large number of high-quality glass plates and easily producing a large glass plate. Furthermore, in the overflow downdraw method, alumina or zirconia is used as the molded body refractory. However, the glass sheet for chemical strengthening of the present invention has good compatibility with alumina and zirconia, particularly alumina. It is difficult to react with the green body and to generate bubbles and blisters.

オーバーフローダウンドロー法以外にも、種々の成形方法を採用することができる。例えば、フロート法、ダウンドロー法(スロットダウンドロー法、リドロー法等)、ロールアウト法、プレス法等の成形方法を採用することができる。   In addition to the overflow downdraw method, various molding methods can be employed. For example, a forming method such as a float method, a downdraw method (slot downdraw method, redraw method, etc.), a rollout method, a press method, or the like can be employed.

本発明の化学強化ガラス板の製造方法において、イオン交換処理の条件は、特に限定されず、ガラスの粘度特性、用途、厚み、内部の引っ張り応力、寸法変化等を考慮して最適な条件を選択すればよい。特に、KNO溶融塩中のKイオンをガラス中のNa成分とイオン交換すると、表面圧縮応力層を効率良く形成することができる。イオン交換処理の際、イオン交換溶液の温度は390〜480℃が好ましく、イオン交換時間は2〜8時間が好ましい。このようにすれば、表面圧縮応力層を効率良く形成することができる。In the method for producing a chemically strengthened glass sheet of the present invention, the conditions for the ion exchange treatment are not particularly limited, and optimum conditions are selected in consideration of the viscosity characteristics, application, thickness, internal tensile stress, dimensional change, etc. of the glass. do it. In particular, when the K ions in the KNO 3 molten salt are ion exchanged with the Na component in the glass, the surface compressive stress layer can be efficiently formed. In the ion exchange treatment, the temperature of the ion exchange solution is preferably 390 to 480 ° C., and the ion exchange time is preferably 2 to 8 hours. If it does in this way, a surface compression stress layer can be formed efficiently.

以下、実施例に基づいて、本発明を説明する。なお、以下の実施例は、単なる例示である。本発明は、以下の実施例に何ら限定されない。   Hereinafter, the present invention will be described based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.

表1は、実施例(試料No.1〜3、7〜17)と比較例(試料No.4〜6)を示している。   Table 1 shows Examples (Sample Nos. 1 to 3 and 7 to 17) and Comparative Examples (Sample Nos. 4 to 6).

Figure 2018124084
Figure 2018124084

次のようにして表中の各試料を作製した。まず表中のガラス組成になるように、ガラス原料を調合し、白金ポットを用いて1650℃で21時間溶融した。続いて、得られた溶融ガラスをカーボン板の上に流し出して、平板形状に成形した後、徐冷点から歪点の間の温度域を3℃/分で冷却し、化学強化用ガラス板を得た。得られた化学強化用ガラス板について、板厚t=0.8mmになるように表面を光学研磨した後、種々の特性を評価した。   Each sample in the table was prepared as follows. First, glass raw materials were prepared so as to have the glass composition in the table, and were melted at 1650 ° C. for 21 hours using a platinum pot. Subsequently, the molten glass obtained was poured out onto a carbon plate and formed into a flat plate shape, and then the temperature range between the annealing point and the strain point was cooled at 3 ° C./min, and the glass plate for chemical strengthening Got. About the obtained glass plate for chemical strengthening, the surface was optically polished so that plate thickness t = 0.8 mm, and various characteristics were evaluated.

密度ρは、周知のアルキメデス法によって測定した値である。   The density ρ is a value measured by the well-known Archimedes method.

歪点Ps、徐冷点Taは、ASTM C336に記載の方法に基づいて測定した値である。   The strain point Ps and the annealing point Ta are values measured based on the method described in ASTM C336.

ビッカース硬度Hvは、測定荷重を100gfとし、JIS Z2244に準拠した方法に基づいて測定した値である。   The Vickers hardness Hv is a value measured based on a method based on JIS Z2244 with a measurement load of 100 gf.

ヤング率Eは、周知の共振法で測定した値である。   The Young's modulus E is a value measured by a known resonance method.

ポワソン比は、下記数式で計算される値である。なお、剛性率Gは、周知の共振法で測定した値である。   The Poisson's ratio is a value calculated by the following mathematical formula. The rigidity G is a value measured by a known resonance method.

[数1]
ポワソン比=(E−2G)/2G
E:ヤング率(GPa)
G:剛性率(GPa)
[Equation 1]
Poisson's ratio = (E-2G) / 2G
E: Young's modulus (GPa)
G: rigidity (GPa)

続いて、表中の板厚になるように、各試料の両表面を光学研磨した。その後、430℃のKNO溶融塩中に、各試料を4時間浸漬することにより、イオン交換処理を行い、化学強化ガラス板を得た。更に、各化学強化ガラス板の表面を洗浄した上で、表面応力計(株式会社東芝製FSM−6000)を用いて観察される干渉縞の本数とその間隔から表面の圧縮応力層の圧縮応力値(CS)と応力深さ(DOL)を算出した。算出に当たり、各試料の屈折率を1.50、光学弾性定数を30[(nm/cm)/MPa]とした。Subsequently, both surfaces of each sample were optically polished so as to have a plate thickness in the table. Thereafter, the KNO 3 molten salt of 430 ° C., by dipping each sample 4 hours, subjected to ion exchange treatment to obtain a chemically tempered glass. Further, after cleaning the surface of each chemically strengthened glass plate, the compressive stress value of the compressive stress layer on the surface is determined from the number of interference fringes observed using a surface stress meter (FSM-6000 manufactured by Toshiba Corporation) and the interval between the interference fringes. (CS) and stress depth (DOL) were calculated. In the calculation, the refractive index of each sample was set to 1.50 and the optical elastic constant was set to 30 [(nm / cm) / MPa].

各化学強化ガラス板について、上記方法にてビッカース硬度Hvを測定した。   About each chemically strengthened glass plate, Vickers hardness Hv was measured by the said method.

次のようにして耐傷性試験を行った。まず各試料の上に平均粒径50μm、1mgの珪砂を均一に置き、市販のデニム生地を介して4kgの荷重で加傷した。加傷は1方向に1回のみ行い、加傷する距離を1cmとした。各試料の表面を加傷した後、ファイバーライトを用いて、照度10万luxとなる条件で傷の観察を行い、目視で確認できる傷の本数を計数した。試験は4回実施し、4回の平均値を試験結果とした。   The scratch resistance test was conducted as follows. First, silica sand having an average particle size of 50 μm and 1 mg was uniformly placed on each sample, and was injured with a load of 4 kg through a commercially available denim fabric. The scratch was performed only once in one direction, and the distance to be scratched was 1 cm. After scratching the surface of each sample, scratches were observed using a fiber light under the condition of an illuminance of 100,000 lux, and the number of scratches that could be visually confirmed was counted. The test was performed 4 times, and the average value of 4 times was used as the test result.

表1から明らかなように、試料No.1〜3、7〜17は、イオン交換処理前のビッカース硬度Hvが550〜600であった。よって、試料No.1〜3、7〜17は、イオン交換処理前の加工性が良好であるものと考えられる。そして、試料No.1〜3、7〜17は、イオン交換処理後の表面圧縮応力層の圧縮応力値CSが1100MPa〜1350MPa、ビッカース硬度Hvが710〜870、耐傷性試験での傷の本数が8〜10本であった。よって、試料No.1〜3、7〜17は、イオン交換処理後の耐傷性が高いものと考えられる。一方、試料No.4、5は、イオン交換処理後の表面圧縮応力層の圧縮応力値CSとビッカース硬度Hvが低く、耐傷性試験での傷の本数も多かった。また、試料No.6は、イオン交換処理前のビッカース硬度Hvが670であるため、イオン交換処理前の加工性が低いものと考えられる。   As is clear from Table 1, sample No. 1 to 3 and 7 to 17 had Vickers hardness Hv before ion exchange treatment of 550 to 600. Therefore, sample no. 1-3 and 7-17 are considered that the workability before an ion exchange process is favorable. And sample no. 1-3, 7-17, the compression stress value CS of the surface compressive stress layer after the ion exchange treatment is 1100 MPa to 1350 MPa, the Vickers hardness Hv is 710 to 870, and the number of scratches in the scratch resistance test is 8 to 10 there were. Therefore, sample no. 1-3 and 7-17 are considered to have high scratch resistance after the ion exchange treatment. On the other hand, sample No. In Nos. 4 and 5, the compressive stress value CS and Vickers hardness Hv of the surface compressive stress layer after the ion exchange treatment were low, and the number of scratches in the scratch resistance test was also large. Sample No. No. 6 has a Vickers hardness Hv before the ion exchange treatment of 670, so it is considered that the workability before the ion exchange treatment is low.

上記試料No.1〜3、7〜17に係るガラス組成になるように、ガラス原料を調合し、連続溶融炉に投入し、アルミナ成形体を用いて、オーバーフローダウンドロー法で板状に成形した。なお、成形時に、徐冷点から歪点の間の温度域を200℃/分で冷却した。得られた化学強化用ガラス板について、所定寸法に切断加工し、板厚t=0.8mmになるように表面を光学研磨した後、430℃のKNO溶融塩中に4時間浸漬することにより、イオン交換処理を行い、各化学強化ガラス板を得た。Sample No. above. Glass raw materials were prepared so as to have the glass compositions according to 1 to 3 and 7 to 17, put into a continuous melting furnace, and formed into a plate shape by an overflow down draw method using an alumina molded body. During molding, the temperature range between the annealing point and the strain point was cooled at 200 ° C./min. The obtained chemically strengthened glass plate was cut into a predetermined size, the surface was optically polished so that the thickness t = 0.8 mm, and then immersed in KNO 3 molten salt at 430 ° C. for 4 hours. Then, ion exchange treatment was performed to obtain each chemically strengthened glass plate.

本発明の化学強化用ガラス板及びそれを用いた化学強化ガラス板は、携帯電話、デジタルカメラ、PDA等のカバーガラス、或いはタッチパネルディスプレイ等のガラス基板として好適である。また、本発明の化学強化用ガラス板及びそれを用いた化学強化ガラス板は、これらの用途以外にも、高い機械的強度が要求される用途、例えば窓ガラス、磁気ディスク用基板、フラットパネルディスプレイ用基板、太陽電池用カバーガラス、固体撮像素子用カバーガラスへの応用が期待される。   The chemically strengthened glass plate and the chemically strengthened glass plate using the same of the present invention are suitable as a cover glass for a mobile phone, a digital camera, a PDA or the like, or a glass substrate for a touch panel display or the like. Further, the chemically strengthened glass plate of the present invention and the chemically strengthened glass plate using the same are used for applications requiring high mechanical strength, such as window glass, magnetic disk substrates, and flat panel displays. Application to substrate substrates, cover glasses for solar cells, and cover glasses for solid-state imaging devices is expected.

Claims (12)

板厚が0.4mm以上、且つ1.0mm未満であり、
ビッカース硬度が500より高く、且つ650より低く、
430℃のKNO溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満になると共に、ビッカース硬度が700以上、且つ1100未満になることを特徴とする化学強化用ガラス板。
The plate thickness is 0.4 mm or more and less than 1.0 mm,
Vickers hardness is higher than 500 and lower than 650,
When immersed in KNO 3 molten salt at 430 ° C. for 4 hours, the resulting surface compressive stress layer has a compressive stress value of 1100 MPa or more and less than 1500 MPa, and a Vickers hardness of 700 or more and less than 1100. Glass plate for chemical strengthening.
430℃のKNO溶融塩に4時間浸漬した時に、得られる表面圧縮応力層の応力深さが100μm未満になることを特徴とする請求項1に記載の化学強化用ガラス板。The glass plate for chemical strengthening according to claim 1, wherein the stress depth of the obtained surface compressive stress layer becomes less than 100 µm when immersed in KNO 3 molten salt at 430 ° C for 4 hours. 少なくとも一方の表面が研磨面であることを特徴とする請求項1又は2に記載の化学強化用ガラス板。   The glass plate for chemical strengthening according to claim 1 or 2, wherein at least one surface is a polished surface. 板厚方向の中央部にオーバーフロー合流面を有することを特徴とする請求項1〜3の何れか一項に記載の化学強化用ガラス板。   The glass plate for chemical strengthening according to any one of claims 1 to 3, wherein the glass plate for chemical strengthening has an overflow merging surface at a central portion in a plate thickness direction. ガラス組成として、モル%で、SiO 50〜80%、Al 12〜18%、NaO 12〜20%を含有し、モル比NaO/Alが0.9〜1.5であることを特徴とする請求項1〜4の何れか一項に記載の化学強化用ガラス板。As a glass composition, it contains SiO 2 50-80%, Al 2 O 3 12-18%, Na 2 O 12-20% in mol%, and a molar ratio Na 2 O / Al 2 O 3 is 0.9- It is 1.5, The glass plate for chemical strengthening as described in any one of Claims 1-4 characterized by the above-mentioned. 溶融ガラスを板状に成形した後、所定寸法に切断することにより、板厚が0.4mm以上、且つ1.0mm未満であると共に、ビッカース硬度が500より高く、且つ650より低い化学強化用ガラス板を得るガラス板作製工程と、
化学強化用ガラス板をイオン交換処理して、表面圧縮応力層の圧縮応力値が1100MPa以上、且つ1500MPa未満であると共に、ビッカース硬度が700以上、且つ1100未満である化学強化ガラス板を得るイオン交換処理工程と、を備えることを特徴とする化学強化ガラス板の製造方法。
After the molten glass is formed into a plate shape, the glass is chemically tempered by cutting it to a predetermined size so that the plate thickness is 0.4 mm or more and less than 1.0 mm, and the Vickers hardness is higher than 500 and lower than 650. A glass plate making process for obtaining a plate;
Ion exchange treatment of the chemically strengthened glass plate to obtain a chemically strengthened glass plate having a compressive stress value of the surface compressive stress layer of 1100 MPa or more and less than 1500 MPa and a Vickers hardness of 700 or more and less than 1100 A process for producing a chemically strengthened glass sheet.
化学強化用ガラス板をイオン交換処理して、表面圧縮応力層の応力深さが100μm未満である化学強化ガラス板を得ることを特徴とする請求項6に記載の化学強化ガラス板の製造方法。   The method for producing a chemically strengthened glass sheet according to claim 6, wherein the chemically strengthened glass sheet is obtained by subjecting the chemically strengthened glass sheet to an ion exchange treatment to obtain a chemically strengthened glass sheet having a stress depth of the surface compressive stress layer of less than 100 µm. 化学強化用ガラス板の少なくとも一方の表面を研磨処理する研磨工程を更に備えることを特徴とする請求項6又は7に記載の化学強化ガラス板の製造方法。   The method for producing a chemically strengthened glass sheet according to claim 6 or 7, further comprising a polishing step of polishing at least one surface of the chemically strengthened glass sheet. 溶融ガラスの成形時に、化学強化用ガラス板の徐冷点から歪点の間の温度域を3℃/分以上、且つ1000℃/分未満の冷却速度で冷却することを特徴とする請求項6〜8の何れか一項に記載の化学強化ガラス板の製造方法。   The temperature range between the annealing point and the strain point of the glass sheet for chemical strengthening is cooled at a cooling rate of 3 ° C / min or more and less than 1000 ° C / min when forming the molten glass. The manufacturing method of the chemically strengthened glass plate as described in any one of -8. 溶融ガラスをオーバーフローダウンドロー法で成形することを特徴とする請求項6〜9の何れか一項に記載の化学強化ガラス板の製造方法。   Molten glass is shape | molded with the overflow downdraw method, The manufacturing method of the chemically strengthened glass plate as described in any one of Claims 6-9 characterized by the above-mentioned. 化学強化ガラス板が、ガラス組成として、モル%で、SiO 50〜80%、Al 12〜18%、NaO 12〜20%を含有し、モル比NaO/Alが0.9〜1.5であることを特徴とする請求項6〜10の何れか一項に記載の化学強化ガラス板の製造方法。A chemically strengthened glass plate contains SiO 2 50 to 80%, Al 2 O 3 12 to 18%, Na 2 O 12 to 20% as a glass composition, and a molar ratio Na 2 O / Al 2 O. 3 is 0.9-1.5, The manufacturing method of the chemically strengthened glass plate as described in any one of Claims 6-10 characterized by the above-mentioned. 化学強化ガラス板をタッチパネルディスプレイに用いることを特徴とする請求項6〜11の何れか一項に記載の化学強化ガラス板の製造方法。   The method for producing a chemically strengthened glass plate according to any one of claims 6 to 11, wherein the chemically strengthened glass plate is used for a touch panel display.
JP2018559522A 2016-12-28 2017-12-26 Chemically strengthened glass plate and method for producing chemically strengthened glass plate Pending JPWO2018124084A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016254844 2016-12-28
JP2016254844 2016-12-28
PCT/JP2017/046679 WO2018124084A1 (en) 2016-12-28 2017-12-26 Glass plate for chemical tempering and method for producing chemically tempered glass plate

Publications (1)

Publication Number Publication Date
JPWO2018124084A1 true JPWO2018124084A1 (en) 2019-10-31

Family

ID=62710010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018559522A Pending JPWO2018124084A1 (en) 2016-12-28 2017-12-26 Chemically strengthened glass plate and method for producing chemically strengthened glass plate

Country Status (3)

Country Link
JP (1) JPWO2018124084A1 (en)
TW (1) TW201829346A (en)
WO (1) WO2018124084A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022139011A (en) * 2021-03-11 2022-09-26 日本電気硝子株式会社 Strengthened glass and method for manufacturing the same
CN113772965A (en) * 2021-09-30 2021-12-10 中国洛阳浮法玻璃集团有限责任公司 Preparation method of chemically strengthened ultrathin glass

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014073952A (en) * 2012-06-08 2014-04-24 Nippon Electric Glass Co Ltd Strengthened glass, strengthened glass plate and glass for strengthening
JP2014522798A (en) * 2011-07-01 2014-09-08 コーニング インコーポレイテッド Ion-exchangeable glass with high compressive stress
JP2014240346A (en) * 2013-05-15 2014-12-25 日本電気硝子株式会社 Glass plate for tempering and tempered glass plate
WO2015166891A1 (en) * 2014-04-30 2015-11-05 旭硝子株式会社 Glass
JP2015535521A (en) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド Ion-exchangeable glass with high hardness and high elastic modulus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014522798A (en) * 2011-07-01 2014-09-08 コーニング インコーポレイテッド Ion-exchangeable glass with high compressive stress
JP2014073952A (en) * 2012-06-08 2014-04-24 Nippon Electric Glass Co Ltd Strengthened glass, strengthened glass plate and glass for strengthening
JP2015535521A (en) * 2012-11-21 2015-12-14 コーニング インコーポレイテッド Ion-exchangeable glass with high hardness and high elastic modulus
JP2014240346A (en) * 2013-05-15 2014-12-25 日本電気硝子株式会社 Glass plate for tempering and tempered glass plate
WO2015166891A1 (en) * 2014-04-30 2015-11-05 旭硝子株式会社 Glass

Also Published As

Publication number Publication date
TW201829346A (en) 2018-08-16
WO2018124084A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6168288B2 (en) Tempered glass and tempered glass plate
JP5867574B2 (en) Tempered glass substrate and manufacturing method thereof
JP5743125B2 (en) Tempered glass and tempered glass substrate
JP6597950B2 (en) Tempered glass and tempered glass
KR20130135943A (en) Toughened glass substrate and process for producing same
TWI752252B (en) Chemically strengthened glass and method for producing chemically strengthened glass
JP5796905B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JP5413817B2 (en) Tempered glass substrate, glass and method for producing tempered glass substrate
JPWO2018124084A1 (en) Chemically strengthened glass plate and method for producing chemically strengthened glass plate
JP2023083562A (en) cover glass
JP2019031428A (en) Strengthened glass sheet and strengthened glass sphere
JP5950248B2 (en) Display device manufacturing method
TWI835766B (en) cover glass
JP7365004B2 (en) Tempered glass plate and tempered glass plate
JP7303482B2 (en) cover glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221102