JPWO2018105365A1 - Light guide plate, surface light emitting device, and method of manufacturing light guide plate - Google Patents

Light guide plate, surface light emitting device, and method of manufacturing light guide plate Download PDF

Info

Publication number
JPWO2018105365A1
JPWO2018105365A1 JP2018554902A JP2018554902A JPWO2018105365A1 JP WO2018105365 A1 JPWO2018105365 A1 JP WO2018105365A1 JP 2018554902 A JP2018554902 A JP 2018554902A JP 2018554902 A JP2018554902 A JP 2018554902A JP WO2018105365 A1 JPWO2018105365 A1 JP WO2018105365A1
Authority
JP
Japan
Prior art keywords
guide plate
light guide
light
resin film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018554902A
Other languages
Japanese (ja)
Other versions
JP7152662B2 (en
Inventor
直也 森
健介 泉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Publication of JPWO2018105365A1 publication Critical patent/JPWO2018105365A1/en
Application granted granted Critical
Publication of JP7152662B2 publication Critical patent/JP7152662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0051Diffusing sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0043Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided on the surface of the light guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0093Means for protecting the light guide

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Planar Illumination Modules (AREA)
  • Laminated Bodies (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

本発明の導光板は、2枚のガラス板間に散乱層を有し、該ガラス板と該散乱層とが一体化された導光板であり、該散乱層が延伸法によって得られた透明樹脂フィルムであり、該導光板のJIS K7136に準拠する方法で測定されたヘーズが0.2%以上であることを特徴とする。該導光板は、エッジライト方式の面発光装置に好適に利用できる。また、前記散乱層が、二軸延伸法によって得られた透明ポリエチレンテレフタレートフィルムであり、前記ガラス板と前記散乱層との間に、接着樹脂層を有することが好ましい。The light guide plate of the present invention is a light guide plate having a scattering layer between two glass plates, in which the glass plate and the scattering layer are integrated, and the scattering layer is obtained by a stretching method. It is a film, The haze measured by the method based on JISK7136 of this light-guide plate is 0.2% or more, It is characterized by the above-mentioned. The light guide plate can be suitably used for an edge light type surface emitting device. Moreover, it is preferable that the said scattering layer is a transparent polyethylene terephthalate film obtained by the biaxial stretching method, and has an adhesive resin layer between the said glass plate and the said scattering layer.

Description

本発明は、面発光装置に用いられる導光板に関する。   The present invention relates to a light guide plate used in a surface light emitting device.

従来より、電飾看板やディスプレイ、車両用や建築用の照明器具等として、面発光装置が用いられている。面発光装置は、発光面に対して垂直方向から光源を入射させるバックライト方式と、略平行方向から光源を入射させるエッジライト方式とがあり、近年は面発光装置の薄型化や軽量化といった観点から、エッジライト方式が広く採用されている(例えば、特許文献1を参照)。   2. Description of the Related Art Conventionally, surface light emitting devices have been used as electric signboards and displays, lighting fixtures for vehicles and buildings, and the like. There are two types of surface light emitting devices: a backlight method in which a light source is incident from a direction perpendicular to the light emitting surface and an edge light method in which the light source is incident from a substantially parallel direction. Therefore, the edge light system is widely adopted (see, for example, Patent Document 1).

上記のエッジライト方式の面発光装置は、光源にLEDを用い、入射した光を面内方向へ伝播させる導光部と、入射した光を散乱させ外部へ発光させる散乱部とを有する導光板を用いたものが広く知られている。従来より、導光部としてはアクリル樹脂、ポリカーボネート、ポリスチレン等の透明樹脂や、ガラス板が用いられており、散乱部としては、散乱機能を有するインク、塗料等が広く用いられている。   The edge light type surface light-emitting device uses an LED as a light source, and includes a light guide plate that propagates incident light in an in-plane direction and a light scattering plate that scatters incident light and emits light to the outside. The one used is widely known. Conventionally, transparent resins such as acrylic resin, polycarbonate, and polystyrene, and glass plates have been used as the light guide, and inks and paints having a scattering function have been widely used as the scattering part.

従来では上記のような導光部の板を単板で使用し、この表面にインクや塗料等を印刷したり、該単板表面をレーザー等で加工して表面の散乱性を高める方法が広く用いられていた。しかし、樹脂板は耐薬品性や耐候性、耐擦傷性等が不足するという問題がある。   Conventionally, there is a wide range of methods of using the light guide plate as described above as a single plate and printing ink or paint on the surface, or processing the surface of the single plate with a laser or the like to increase the surface scattering. It was used. However, there is a problem that the resin plate lacks chemical resistance, weather resistance, scratch resistance and the like.

上記の問題を解消するために、例えば、特許文献2には、ガラス板の間に、表面に光を散乱させる為の光散乱用の塗料又はインクを設けた樹脂板を、接着材によって一体化させた導光板が開示されている。当該文献では、導光部としてガラス板及び樹脂板、散乱部として光散乱用の塗料又はインクを用いており、該導光部として用いる樹脂板として透明なアクリル、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、シクロオレフィンポリマー(COP)、ウレタン等を挙げている。   In order to solve the above problem, for example, in Patent Document 2, a resin plate provided with a light scattering paint or ink for scattering light on a surface between glass plates is integrated with an adhesive. A light guide plate is disclosed. In this document, a glass plate and a resin plate are used as the light guide part, and a paint or ink for light scattering is used as the scattering part, and transparent acrylic, polycarbonate, polyethylene terephthalate (PET) as the resin plate used as the light guide part, Examples include polypropylene (PP), cycloolefin polymer (COP), and urethane.

また、特許文献3には、2枚のガラス板の間に、反射フィルム、導光板、及び拡散フィルム、の順に積層され、一体化された面発光合わせガラスが開示されている。当該文献では、導光部として導光板、散乱部として拡散フィルムを用いており、該導光板は表裏面で光を全反射させることによって光を伝播させるものであり、透明性の高いアクリル樹脂等の樹脂材が例示されている。また、拡散フィルムとしては、表面にバインダー樹脂や光拡散剤といった光拡散層が形成されたフィルムや、表面がサンドブラスト処理されたフィルムが挙げられており、使用するフィルムとしてはPETフィルムが挙げられている。   Patent Document 3 discloses a surface-emitting laminated glass that is laminated and integrated in the order of a reflective film, a light guide plate, and a diffusion film between two glass plates. In this document, a light guide plate is used as the light guide portion, and a diffusion film is used as the scattering portion. The light guide plate propagates light by totally reflecting light on the front and back surfaces, such as highly transparent acrylic resin, etc. The resin material is illustrated. Examples of the diffusion film include a film having a light diffusion layer such as a binder resin and a light diffusing agent formed on the surface, and a film having a surface sandblasted, and a film to be used includes a PET film. Yes.

特開2007−080531号公報JP 2007-080531 A 特開2014−164989号公報JP 2014-164989 A 特開2010−002442号公報JP 2010-002442 A

前述したように、従来の樹脂板を用いた導光板は、耐薬品性や耐候性、耐擦傷性等が不足するため、屋外での使用や直射日光に暴露される環境での使用に適さないという問題があった。   As mentioned above, conventional light guide plates using resin plates lack chemical resistance, weather resistance, scratch resistance, etc., so they are not suitable for outdoor use or in environments exposed to direct sunlight. There was a problem.

従って、本発明では、エッジライト方式の面発光装置に利用可能な、ガラス板を用いた導光板を得ることを目的とした。   Accordingly, an object of the present invention is to obtain a light guide plate using a glass plate that can be used in an edge light type surface light emitting device.

当業者常識では、ポリエチレンテレフタレート(以下、「PET」と記載することもある)は内部での散乱性が過度に高いため、光源の近くでのみ散乱してしまい面発光しないと考えられていた。また、前述した特許文献2では、PETをガラス板間に挟む導光部用の透明材料として用いることが、前述した特許文献3では、PETフィルムを拡散フィルムとして使用し、該PETフィルムに光拡散用の処理を施すことが、それぞれ開示されていた。   According to the common knowledge of those skilled in the art, polyethylene terephthalate (hereinafter sometimes referred to as “PET”) has an excessively high scattering property inside, and therefore, it is considered that the light is scattered only near the light source and does not emit surface light. Further, in Patent Document 2 described above, PET is used as a transparent material for a light guide unit sandwiched between glass plates. In Patent Document 3 described above, a PET film is used as a diffusion film, and light diffusion is performed on the PET film. It has been disclosed that the above-described processing is performed.

本発明者らが2枚のガラス板の間にPVBフィルムを介してPETフィルムを挟み、各層間を脱気して加圧・加熱環境下で一体化させた合わせガラスを作成し、得られた合わせガラスの端面からLED光源を照射したところ、驚くべきことに面発光が生じることがわかった。さらに検討を進めたところ、PETフィルムに光散乱用の塗料やインク等を塗布したり混合したりしなくとも、PETフィルムを挟んで一体化させた合わせガラスであれば、前述した面発光が得られることがわかった。すなわち、上記の合わせガラスとすることによって、PETフィルムが散乱部として機能することが新たにわかった。   The present inventors made a laminated glass in which a PET film was sandwiched between two glass plates through a PVB film, and each layer was deaerated and integrated in a pressurized / heated environment, and the resulting laminated glass When the LED light source was irradiated from the end face, it was surprisingly found that surface emission occurred. As a result of further investigations, the above-described surface emission can be obtained with a laminated glass integrated with a PET film sandwiched without coating or mixing light scattering paint or ink on the PET film. I found out that That is, it was newly found that the PET film functions as a scattering portion by using the above laminated glass.

得られた合わせガラスについて光学特性を測定したところ、ヘーズ値が0.2%以上の合わせガラスであれば導光板として使用可能であることがわかった。また、合わせガラスにする前のフィルムのヘーズ値は、合わせガラスにした後のヘーズ値よりも高い値を示していた。面発光が生じたメカニズムは不明だが、得られた知見より、例えば以下のように考えられる。使用したPETフィルムは延伸法によって作成された透明フィルムであり、一般的に延伸法によって得られたフィルムは延伸工程によってフィルム内に含まれる高分子が配向することが知られている。配向したフィルムは偏光すると考えられることから、フィルムの偏光特性によって光が散乱したと考えられる。さらに、前述したように、各層間を脱気して一体化させたことによってフィルム表面のヘーズが低下し、過度な散乱が抑制されて、光源近傍のみの散乱にとどまらず面発光に至ったと考えられる。   When the optical characteristics of the obtained laminated glass were measured, it was found that any laminated glass having a haze value of 0.2% or more can be used as a light guide plate. Moreover, the haze value of the film before making laminated glass showed a value higher than the haze value after making laminated glass. The mechanism of the occurrence of surface emission is unknown, but from the obtained knowledge, for example, it can be considered as follows. The used PET film is a transparent film prepared by a stretching method, and it is generally known that a polymer obtained by a stretching method is oriented with a polymer contained in the film by a stretching process. Since the oriented film is considered to be polarized, it is considered that light was scattered due to the polarization characteristics of the film. Furthermore, as described above, by degassing and integrating each layer, the haze on the film surface was reduced, excessive scattering was suppressed, and it was thought that surface emission occurred not only in the vicinity of the light source. It is done.

すなわち、第1の発明は、2枚のガラス板間に散乱層を有し、該ガラス板と該散乱層とが一体化された導光板であり、該散乱層が延伸法によって得られた透明樹脂フィルムであり、該導光板のJIS K7136に準拠する方法で測定されたヘーズが0.2%以上である導光板である。   That is, the first invention is a light guide plate having a scattering layer between two glass plates, the glass plate and the scattering layer being integrated, and the scattering layer is obtained by a stretching method. It is a resin film, and is a light guide plate having a haze of 0.2% or more measured by a method according to JIS K7136 of the light guide plate.

また、第2の発明は、第1ガラス板上に、延伸法によって得られた透明樹脂フィルム、及び第2ガラス板をこの順に積層し、積層体を形成する工程、該積層体の各層間を脱気する工程、及び脱気後の該積層体を一体化する工程、を有する導光板の製造方法である。   Further, the second invention is a step of laminating a transparent resin film obtained by a stretching method and a second glass plate in this order on a first glass plate, and forming a laminate, and each layer of the laminate is It is the manufacturing method of the light-guide plate which has the process of deaeration and the process of integrating this laminated body after deaeration.

本発明により、エッジライト方式の面発光装置に利用可能な、ガラス板を用いた導光板を得ることが可能となった。   According to the present invention, it is possible to obtain a light guide plate using a glass plate that can be used in an edge light type surface light emitting device.

本明細書の上辺、下辺、幅、及び厚み方向を説明する簡略図である。It is a simplified diagram explaining the upper side of this specification, a lower side, a width | variety, and the thickness direction. 本発明の一実施形態を表す断面模式図である。It is a cross-sectional schematic diagram showing one Embodiment of this invention. 本発明の一実施形態の、(a)面発光を示す断面模式図、及び(b)比較形態の導光を示す断面模式図である。It is the cross-sectional schematic diagram which shows the light guide of (a) surface emission and (b) comparative form of one Embodiment of this invention. それぞれ(a)実施例3及び(b)比較例2の面発光時の輝度分布を示す図である。It is a figure which shows the luminance distribution at the time of the surface light emission of (a) Example 3 and (b) comparative example 2, respectively. 本発明の一実施形態を表す断面模式図である。It is a cross-sectional schematic diagram showing one Embodiment of this invention.

1:用語の説明
本明細書では、図1に示したように、導光板10の光源1側の辺を下辺11、該光源1と最も遠い辺を上辺12とする。また、下辺11から上辺12への方向をY方向、下辺11及び上辺12と平行する方向をX方向、ガラス板G、接着樹脂層2、及び散乱層3の厚み方向をZ方向とし、導光板10のガラス板GのX方向の長さを導光板の幅とする。また、X−Z面、及びY−Z面を端面とする。
1: Explanation of Terms In this specification, as shown in FIG. 1, the side on the light source 1 side of the light guide plate 10 is the lower side 11, and the side farthest from the light source 1 is the upper side 12. The direction from the lower side 11 to the upper side 12 is the Y direction, the direction parallel to the lower side 11 and the upper side 12 is the X direction, and the thickness direction of the glass plate G, the adhesive resin layer 2 and the scattering layer 3 is the Z direction. The length of the ten glass plates G in the X direction is defined as the width of the light guide plate. The XZ plane and the YZ plane are end faces.

(ヘーズ)
本明細書のヘーズは、JIS K7136に準拠する方法で測定した値を用いる。測定はヘーズメーター(スガ試験機製、HZ−T)を用いて行った。また、導光板のヘーズを測定する際は、使用するガラス板を厚み2mmのソーダライムガラスとした。
(Haze)
The haze of this specification uses the value measured by the method based on JISK7136. The measurement was performed using a haze meter (HZ-T, manufactured by Suga Test Instruments). Moreover, when measuring the haze of a light-guide plate, the glass plate to be used was made into 2 mm thick soda-lime glass.

(輝度)
本明細書では、面発光を2D色彩輝度計(トプコンテクノハウス製、UA−200A)を用いて、導光板の下辺から20mm、幅方向の中央付近の輝度(cd/m2)を測定した。
(Luminance)
In this specification, the luminance (cd / m 2 ) near the center in the width direction was measured 20 mm from the lower side of the light guide plate using a 2D color luminance meter (Topcon Technohouse, UA-200A).

(透明)
本発明では、散乱層に延伸法で得られた透明樹脂フィルムを使用している。当該「透明」とは、導光板として一体化させる前のフィルムの全光線透過率が80%以上であることを指すものとする。また、本明細書における全光線透過率は、前述したヘーズメーターを用いて測定を行った。
(Transparent)
In this invention, the transparent resin film obtained by the extending | stretching method is used for a scattering layer. The “transparent” means that the total light transmittance of the film before being integrated as a light guide plate is 80% or more. Moreover, the total light transmittance in this specification was measured using the haze meter mentioned above.

2:導光板
以下に、第1の発明の好適な実施形態及びその適用例について、図2、図3及び図5を参照しながら説明する。また、本発明は当該実施形態に限定されるものではない。
2: Light Guide Plate A preferred embodiment of the first invention and an application example thereof will be described below with reference to FIGS. Further, the present invention is not limited to the embodiment.

本発明の好適な実施形態は、2枚のガラス板G間に散乱層3を有し、該ガラス板Gと該散乱層3とが接着樹脂層2によって一体化された導光板10であり、該散乱層3が延伸法によって得られた透明樹脂フィルムであり、該導光板10のJIS K7136に準拠する方法で測定されたヘーズが0.2%以上である導光板10である。   A preferred embodiment of the present invention is a light guide plate 10 having a scattering layer 3 between two glass plates G, and the glass plate G and the scattering layer 3 are integrated by an adhesive resin layer 2. The scattering layer 3 is a transparent resin film obtained by a stretching method, and the light guide plate 10 has a haze of 0.2% or more measured by a method according to JIS K7136 of the light guide plate 10.

(ガラス板G)
ガラス板Gは、市販されているガラス板を使用可能であり、特に限定するものではない。例えば、フロートガラス等の一般的なものや、強化ガラスや曲げガラス等といったガラス板に加工処理を施したもの等が挙げられる。また、ガラス板Gの組成としては、ソーダライムガラスや高透過ガラス等といった透明性の高い組成を有するガラスが好ましいが、可視光線を過度に吸収しないのであれば、着色ガラスを用いてもよい。
(Glass plate G)
As the glass plate G, a commercially available glass plate can be used, and is not particularly limited. For example, general things, such as float glass, what processed the glass plate, such as tempered glass and bending glass, etc. are mentioned. Further, as the composition of the glass plate G, glass having a highly transparent composition such as soda lime glass or highly transmissive glass is preferable, but colored glass may be used as long as it does not excessively absorb visible light.

使用するガラス板Gの厚みは特に限定するものではない。例えば、一般的な車両用や建築用で用いられている厚み(1〜25mm)程度としてもよい。また、車両用として用いる場合は、近年車体の軽量化への要求が高まっていることから1〜5mm程度とするのが好ましい。また、例えば1mm未満の薄板ガラスを用いてもよい。   The thickness of the glass plate G to be used is not particularly limited. For example, it is good also as the thickness (1-25 mm) grade used for the object for general vehicles or construction. Moreover, when using for vehicles, since the request | requirement to the weight reduction of a vehicle body is increasing in recent years, it is preferable to set it as about 1-5 mm. For example, you may use the sheet glass less than 1 mm.

また、導光板10の発光を妨げないのであれば、ガラス板Gの表面に赤外線吸収膜、赤外線反射膜、紫外線吸収膜、紫外線反射膜、着色膜、可視光反射膜、反射防止膜等の各種膜等が形成されていてもよい。   If the light emission of the light guide plate 10 is not hindered, various kinds of materials such as an infrared absorption film, an infrared reflection film, an ultraviolet absorption film, an ultraviolet reflection film, a colored film, a visible light reflection film, and an antireflection film are formed on the surface of the glass plate G. A film or the like may be formed.

(接着樹脂層2)
接着樹脂層2としては、ガラス板Gとの屈折率差が0.1未満であり、ガラス板Gと散乱層3とを一体化可能で、加熱時に着色等が生じないのであれば特に限定するものではない。上記のような樹脂としては、ポリビニルブチラール(以下、「PVB」と記載することもある)樹脂、エチレン−酢酸ビニル共重合体(以下、「EVA」と記載することもある)樹脂、シクロオレフィンポリマー樹脂、ポリウレタン樹脂、アクリル樹脂、アイオノマー樹脂、及び熱可塑性エラストマーからなる群から選ばれる少なくとも1つを含むのが好ましい。また、常温ではフィルム形状をとる熱可塑性の樹脂を用いると、作業性が良いことから、上記のうちPVB樹脂、EVA樹脂は特に好適に利用可能である。なお、透明樹脂フィルムとガラス板Gとが一体化可能であれば、接着樹脂層2を用いなくともよい。
(Adhesive resin layer 2)
The adhesive resin layer 2 is particularly limited as long as the difference in refractive index from the glass plate G is less than 0.1, the glass plate G and the scattering layer 3 can be integrated, and coloring or the like does not occur during heating. It is not a thing. Examples of the resin include polyvinyl butyral (hereinafter sometimes referred to as “PVB”) resin, ethylene-vinyl acetate copolymer (hereinafter sometimes referred to as “EVA”) resin, and cycloolefin polymer. It is preferable to include at least one selected from the group consisting of a resin, a polyurethane resin, an acrylic resin, an ionomer resin, and a thermoplastic elastomer. Moreover, since the workability is good when a thermoplastic resin having a film shape is used at room temperature, among them, PVB resin and EVA resin are particularly preferably usable. If the transparent resin film and the glass plate G can be integrated, the adhesive resin layer 2 may not be used.

また、上記接着樹脂層2として、必要に応じて遮音機能、遮熱機能や断熱機能、高い弾性等を有するものを用いてもよい。例えば、遮音性を高めたPVB樹脂や、内部に赤外線吸収材を有するPVB樹脂、高弾性のPVB樹脂、低弾性のPVB樹脂、厚みに勾配が付いたくさび型のPVB樹脂等が挙げられる。また、異なる2種類以上の樹脂を重ね合わせたものを用いてもよい。   The adhesive resin layer 2 may have a sound insulation function, a heat insulation function, a heat insulation function, high elasticity, or the like as necessary. For example, PVB resin with improved sound insulation, PVB resin having an infrared absorber inside, high-elasticity PVB resin, low-elasticity PVB resin, wedge-shaped PVB resin with a gradient in thickness, and the like can be given. Moreover, you may use what overlapped two or more types of different resin.

(散乱層3)
散乱層3としては、前述したように延伸法によって得られた透明樹脂フィルムを用いる。延伸法とは、主にフィルムの厚みを調整する為に行う処理であり、所定温度で加熱を行いながら一軸方向や二軸方向へ延伸加工を施す手法である。延伸加工を施すことによってフィルム内部に配向が生じるため、当該透明樹脂フィルムが散乱を生じるようになると考えられる。延伸法によって得られた透明樹脂フィルムとしては、例えば、PETフィルム、PENフィルム、ポリブタジエンテレフタレートフィルム、ナイロンフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等が挙げられる。また、発光を妨げないのであれば、遮音機能や、赤外線や紫外線等を吸収、反射する機能を有する粒子を内部に有していたり、上記の機能膜を表面に有していたりしてもよい。
(Scattering layer 3)
As the scattering layer 3, a transparent resin film obtained by a stretching method as described above is used. The stretching method is a process mainly performed for adjusting the thickness of the film, and is a method of performing stretching in a uniaxial direction or a biaxial direction while heating at a predetermined temperature. It is considered that the transparent resin film comes to scatter because orientation occurs inside the film by stretching. Examples of the transparent resin film obtained by the stretching method include PET film, PEN film, polybutadiene terephthalate film, nylon film, polypropylene film, and polystyrene film. Further, as long as light emission is not hindered, it may have a sound insulation function, particles having a function of absorbing and reflecting infrared rays, ultraviolet rays, and the like, or may have the above functional film on the surface. .

前記散乱層3は、二軸延伸法によって得られた透明ポリエチレンテレフタレートフィルムであるのが好ましい。二軸延伸法によって得られたフィルムの方が配向が強いと予想され、より光を散乱し易いと考えられる。また、PETフィルムの場合、散乱機能を持たせるために結晶化度を高くした不透明のPETフィルムと、結晶化を抑えて透明性を維持した透明PETフィルムとが市販されている。面発光の為には、入射した光を散乱させると共に伝播させる必要があり、後者の透明PETフィルムを用いるのが好適である。   The scattering layer 3 is preferably a transparent polyethylene terephthalate film obtained by a biaxial stretching method. The film obtained by the biaxial stretching method is expected to have a stronger orientation, and it is considered that light is more easily scattered. In the case of a PET film, an opaque PET film having a high degree of crystallization in order to have a scattering function and a transparent PET film in which crystallization is suppressed and transparency is maintained are commercially available. For surface emission, it is necessary to scatter and propagate incident light, and the latter transparent PET film is preferably used.

また、透明樹脂フィルムは、屈折率がガラス板Gや接着樹脂層2よりも大きくすることで、より面発光を向上可能であると考えられるため好ましい。特に、ガラス板Gと接着樹脂層2との屈折率差が0.1未満である場合、透明樹脂フィルムと接着樹脂層2との屈折率差が大きい方が屈折や反射が生じ易くなると考えられる。   Further, the transparent resin film is preferable because it is considered that the surface emission can be further improved by making the refractive index larger than that of the glass plate G and the adhesive resin layer 2. In particular, when the refractive index difference between the glass plate G and the adhesive resin layer 2 is less than 0.1, it is considered that refraction and reflection are more likely to occur when the refractive index difference between the transparent resin film and the adhesive resin layer 2 is larger. .

また、透明樹脂フィルムの厚みは、特に限定するものではないが、例えば30〜300μm程度であれば、作業性が良いため好ましい。なお、透明樹脂フィルムの厚みを厚くすると散乱層3が増加し、面発光が向上すると考えられることから、一体化可能であれば300μmを超えても差し支えない。   Moreover, although the thickness of a transparent resin film is not specifically limited, For example, if it is about 30-300 micrometers, workability | operativity is preferable. In addition, if the thickness of the transparent resin film is increased, the scattering layer 3 is increased and surface emission is considered to be improved. Therefore, if integration is possible, the thickness may exceed 300 μm.

本発明の散乱層3は、内部及び表面に光散乱用の塗料及びインクを意図的に含まない層としてもよい。当該散乱層3は、透明樹脂フィルムの配向によって散乱が生じると考えられる為、光散乱用の成分を意図的に加えなくとも、面発光を得ることが可能である。   The scattering layer 3 of the present invention may be a layer that intentionally does not contain light scattering paint and ink inside and on the surface. Since the scattering layer 3 is considered to be scattered due to the orientation of the transparent resin film, it is possible to obtain surface light emission without intentionally adding a light scattering component.

透明樹脂フィルムは、導光板10とした後にヘーズが0.2%以上を示すものを用いる。本発明者らが検討したところ、導光板10のヘーズの値は、透明樹脂フィルムを単体で測定した時のヘーズの値より低くなる傾向にあることがわかった。これは、導光板10とする前は、透明樹脂フィルムの表面ヘーズと該フィルムの内部ヘーズとが合わさった値が得られ、導光板10にした後は表面が接着樹脂層2と接着する為に表面ヘーズが小さくなり、主に内部ヘーズが得られているためと考えられる。従って、内部ヘーズが高い透明樹脂フィルムを用いるのが望ましい。   A transparent resin film having a haze of 0.2% or more after the light guide plate 10 is used is used. When the present inventors examined, it turned out that the haze value of the light-guide plate 10 tends to become lower than the haze value when a transparent resin film is measured alone. This is because before the light guide plate 10 is obtained, the value obtained by combining the surface haze of the transparent resin film and the internal haze of the film is obtained. After the light guide plate 10 is formed, the surface adheres to the adhesive resin layer 2. This is probably because the surface haze is reduced and the internal haze is mainly obtained. Therefore, it is desirable to use a transparent resin film having a high internal haze.

ここで、透明樹脂フィルムの内部ヘーズのみを予め測定するのは困難であり、実際に一体化させないとどの透明樹脂フィルムが適しているのか判別し難い。そこで、良好な面発光を示した導光板10について検討したところ、例えば、透明樹脂フィルムの厚みが厚くなるに伴って、該フィルムのヘーズの値が大きくなる傾向にあるフィルムを用いると、導光板10とした後もヘーズが高い値を示す傾向が見られることがわかった。また、上記の他にも、相関が小さい透明樹脂フィルムの場合でも、例えば厚みを厚くすることで導光板10のヘーズの値を0.2%以上とすることが可能である。   Here, it is difficult to measure only the internal haze of the transparent resin film in advance, and it is difficult to determine which transparent resin film is suitable unless it is actually integrated. Therefore, when the light guide plate 10 exhibiting good surface light emission was examined, for example, when a film having a tendency that the haze value of the film increases as the thickness of the transparent resin film increases, the light guide plate is used. It was found that even after setting to 10, the haze tends to show a high value. In addition to the above, even in the case of a transparent resin film having a small correlation, for example, by increasing the thickness, the haze value of the light guide plate 10 can be set to 0.2% or more.

また、透明樹脂フィルムの面積は、対向するガラス板Gの面積と同じでも、該ガラス板Gの面積より小さいものでもよい。また、該ガラス板Gが曲面を有する場合、一体化の際に該ガラス板の曲面形状に追従しようとして、該ガラス板G周縁部と重なる該透明樹脂フィルムの周縁部にシワが生じることがある。その場合、該透明樹脂フィルムの面積が該ガラス板Gの面積よりも小さいものを用いて、上記のガラス板Gの周縁部と該透明樹脂フィルムとが重ならないようにすることによって、上記のシワを抑制できるため好適である。また、該透明樹脂フィルムの周縁部に限らず、必要に応じて複数枚に分割されたり、切り抜かれた透明樹脂フィルムを用いたりしてもよい。   Moreover, the area of the transparent resin film may be the same as the area of the glass plate G facing or smaller than the area of the glass plate G. In addition, when the glass plate G has a curved surface, wrinkles may occur in the peripheral portion of the transparent resin film that overlaps the peripheral portion of the glass plate G in an attempt to follow the curved shape of the glass plate during integration. . In that case, by using a transparent resin film having an area smaller than that of the glass plate G so that the peripheral portion of the glass plate G and the transparent resin film do not overlap, Can be suppressed, which is preferable. Moreover, it is not restricted to the peripheral part of this transparent resin film, You may divide | segment into several sheets as needed, and may use the cut-out transparent resin film.

また、透明樹脂フィルムは2枚以上を積層して用いてもよい。その場合、透明樹脂フィルムと透明樹脂フィルムとを各種接着材や物理的吸着等によって一体化させるのが好ましい。また、該透明樹脂フィルムと該透明樹脂フィルムとの間に、別途機能性を有する透明フィルムを挟持し、接着材等を介して一体化させてもよい。上記の機能性を有する透明フィルムとしては、例えば調光フィルム、液晶フィルム、遮熱フィルム等が挙げられる。また、透明樹脂フィルムの間に挟持しなくとも、1枚の透明樹脂フィルムと上記の機能性を有する透明フィルムとを積層してもよく、2枚以上の機能性を有する透明フィルムの間に該透明樹脂フィルムを挟持するものでもよい。   Two or more transparent resin films may be laminated and used. In that case, it is preferable that the transparent resin film and the transparent resin film are integrated by various adhesives or physical adsorption. Further, a transparent film having additional functionality may be sandwiched between the transparent resin film and the transparent resin film, and may be integrated via an adhesive or the like. Examples of the transparent film having the above functionality include a light control film, a liquid crystal film, and a heat shielding film. In addition, a single transparent resin film and a transparent film having the above-mentioned functionality may be laminated without being sandwiched between transparent resin films, and the transparent film having two or more functionalities may be laminated. A transparent resin film may be sandwiched.

(バインダー層4)
上記の透明樹脂フィルムと接着樹脂層2とを用いて導光板10を形成する場合、強い外力を加えた時に分離や破壊が生じないようにするために、例えば図5に示したように、該透明樹脂フィルムと接着樹脂層2との接着を補助するバインダー層4を用いて接着力を向上させるのが好ましい。該バインダー層4は透明樹脂フィルムの表面と接着樹脂層2の表面とに接触し、より導光板10を一体化させ分離や破壊を生じ難くすることが可能である。すなわち、前記透明樹脂フィルムと前記接着樹脂層2との間にバインダー層4を有し、該バインダー層4が、該透明樹脂フィルム及び該接着樹脂層2と接することが好ましい。
(Binder layer 4)
When the light guide plate 10 is formed using the transparent resin film and the adhesive resin layer 2, in order to prevent separation or destruction when a strong external force is applied, for example, as shown in FIG. It is preferable to improve the adhesive force by using the binder layer 4 that assists the adhesion between the transparent resin film and the adhesive resin layer 2. The binder layer 4 is in contact with the surface of the transparent resin film and the surface of the adhesive resin layer 2 so that the light guide plate 10 can be more integrated to make separation and destruction difficult. That is, it is preferable to have a binder layer 4 between the transparent resin film and the adhesive resin layer 2, and the binder layer 4 is in contact with the transparent resin film and the adhesive resin layer 2.

バインダー層4は、透明樹脂フィルムと接着樹脂層2の両方に接着又は密着可能なものであればよく、目視可能な膜や層でなくともよい。例えば一般的な透明な接着材等を用いることが可能である。また、透明樹脂フィルム又は接着樹脂層2の表面にシランカップリング処理又はプラズマ処理を施すことによって、上記の透明樹脂フィルム及び接着樹脂層2の表面と結合可能な官能基(例えば、水酸基、カルボニル基、アミノ基等)を該バインダー層4表面に生じさせたものだと、作業性が良好なため好ましい。また、該バインダー層4は上記透明樹脂フィルムの少なくとも片面に形成されていれば接着力は向上するが、該透明樹脂フィルムの両面に形成されるのがより好ましい。該透明樹脂フィルムの両面に該バインダー層4を形成すると、該透明樹脂フィルムの面間の接着力の差を小さく出来るため、局所的な剥がれ等が生じるのを抑制することが可能である。   The binder layer 4 may be any layer that can be adhered or adhered to both the transparent resin film and the adhesive resin layer 2 and may not be a visible film or layer. For example, a general transparent adhesive can be used. Moreover, the functional group (for example, a hydroxyl group, a carbonyl group) which can be couple | bonded with the surface of said transparent resin film and the adhesive resin layer 2 by giving a silane coupling process or a plasma process to the surface of the transparent resin film or the adhesive resin layer 2 , Amino groups, etc.) are preferably generated on the surface of the binder layer 4 because workability is good. Further, the adhesive strength is improved if the binder layer 4 is formed on at least one surface of the transparent resin film, but it is more preferable that the binder layer 4 is formed on both surfaces of the transparent resin film. When the binder layer 4 is formed on both surfaces of the transparent resin film, the difference in adhesive force between the surfaces of the transparent resin film can be reduced, so that local peeling or the like can be suppressed.

上記のシランカップリング材としては、透明樹脂フィルムと接着樹脂層2とを接着可能なものを選択すればよく、特に限定するものではない。例えば、アミノ基、エポキシ基、ビニル基、メタクリル基、アクリル基、イソシアネート基等を有するシランカップリング材を用いることができる。例えば透明樹脂フィルムとしてPETフィルム、接着樹脂層2としてPVB樹脂を用いた場合は、アミノ基を有するシランカップリング材を用いるのが好適である。上記のようなシランカップリング材としては、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、及びN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン等が挙げられる。   What is necessary is just to select what can adhere | attach a transparent resin film and the adhesive resin layer 2 as said silane coupling material, It does not specifically limit. For example, a silane coupling material having an amino group, an epoxy group, a vinyl group, a methacryl group, an acrylic group, an isocyanate group, or the like can be used. For example, when a PET film is used as the transparent resin film and a PVB resin is used as the adhesive resin layer 2, it is preferable to use a silane coupling material having an amino group. Examples of the silane coupling material include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.

(導光板10)
本発明の導光板10は、前述したように、JIS K7136に準拠する方法で測定されたヘーズが0.2%以上であり、面発光を示すものである。また、上限値は特に限定するものではないが、例えば10%以下としてもよい。
(Light guide plate 10)
As described above, the light guide plate 10 of the present invention has a haze measured by a method according to JIS K7136 of 0.2% or more, and exhibits surface emission. Moreover, although an upper limit is not specifically limited, For example, it is good also as 10% or less.

導光板10は、図2に示したように、ガラス板Gと散乱層3との間に接着樹脂層2を有するものであり、当該ガラス板Gと各層が一体化されたものが好適である。また、面発光を著しく損なわないのであれば、各層間の接着性を向上させたり、面発光の輝度を向上させる等を目的として、各層間や各層内に任意の層や粒子を有していてもよい。   As shown in FIG. 2, the light guide plate 10 has the adhesive resin layer 2 between the glass plate G and the scattering layer 3, and the glass plate G and each layer are preferably integrated. . Also, if the surface emission is not significantly impaired, it has an arbitrary layer or particle in each layer or each layer for the purpose of improving the adhesion between the layers or improving the luminance of the surface emission. Also good.

また、層間を脱気した状態で一体化可能であれば、ガラス板Gと散乱層3との間に接着樹脂層2がなくてもよい。例えば、ガラス板G表面と散乱層3表面とを物理的に吸着又は密着させたり、ガラス板Gと散乱層3との間を脱気した状態で、別途固定用部材を装着し一体化させてもよい。   Moreover, the adhesive resin layer 2 may not be provided between the glass plate G and the scattering layer 3 as long as it can be integrated in a state where the layers are deaerated. For example, in the state where the glass plate G surface and the scattering layer 3 surface are physically adsorbed or adhered, or between the glass plate G and the scattering layer 3 is deaerated, a separate fixing member is attached and integrated. Also good.

また、好適な実施形態は、導光板10の全光線透過率が70%以上であるとしてもよい。本発明では透明樹脂フィルムを散乱層3として用いるため、得られる導光板10も透過性を有することが可能である。透過性を有することによって、各種窓用部材やディスプレイ、屋内や屋外の装飾用の透明パネル等に有用であるため好ましい。   In a preferred embodiment, the total light transmittance of the light guide plate 10 may be 70% or more. In the present invention, since the transparent resin film is used as the scattering layer 3, the obtained light guide plate 10 can also have transparency. The transparency is preferable because it is useful for various window members and displays, transparent panels for indoor and outdoor decoration, and the like.

(面発光装置)
本発明の好適な実施形態のひとつは、例えば図3の(a)に示したような、前記導光板10と、該導光板10の端面から光を入射可能な光源1とを有する面発光装置である。この時光源1は特に限定されないが、本発明は光が直進するLED光源であっても散乱と光の伝播を行うことが可能な為、LED光源を用いるのが好ましい。なお、本発明の導光板10は斜めから光を入射させても、X−Y面に対して入射させても、光を散乱させることが可能である。
(Surface emitting device)
One of the preferred embodiments of the present invention is a surface light emitting device having the light guide plate 10 and a light source 1 capable of entering light from an end face of the light guide plate 10 as shown in FIG. It is. At this time, the light source 1 is not particularly limited, but it is preferable to use an LED light source because the present invention can perform scattering and light propagation even if the LED light source travels straight. Note that the light guide plate 10 of the present invention can scatter light regardless of whether it is incident obliquely or incident on the XY plane.

図3の(a)に示したように、導光板10に入射した入射光によって、導光板10内を伝播する伝播光と、散乱層3によって散乱される散乱光とが生じ、面発光が得られると考えられる。また、伝播光は大気とガラス板Gとの間で全反射が生じることによって図中のY方向へ伝播すると考えられる。なお、図3の(b)に示したように、散乱層3がない場合は当該全反射が主に生じるため、面発光は得られない。   As shown in FIG. 3A, the incident light incident on the light guide plate 10 generates propagation light propagating through the light guide plate 10 and scattered light scattered by the scattering layer 3, thereby obtaining surface light emission. It is thought that. Further, it is considered that the propagating light propagates in the Y direction in the figure due to total reflection between the atmosphere and the glass plate G. In addition, as shown in FIG. 3B, since the total reflection mainly occurs when the scattering layer 3 is not provided, surface emission cannot be obtained.

3:導光板の製造方法
以下に第2の発明について記載する。本発明は、第1ガラス板上に、延伸法によって得られた透明樹脂フィルム、及び第2ガラス板をこの順に積層し、積層体を形成する工程、該積層体の各層間を脱気する工程、及び脱気後の該積層体を一体化する工程、を有する導光板の製造方法である。
3: Manufacturing method of light guide plate The second invention is described below. The present invention includes a step of laminating a transparent resin film obtained by a stretching method and a second glass plate on a first glass plate in this order to form a laminate, and a step of degassing each layer of the laminate. And a step of integrating the laminated body after deaeration.

また、本発明の好適な実施形態のひとつは、前記積層体を形成する工程が、第1ガラス板上に、順に第1接着樹脂フィルム、延伸法によって得られた透明樹脂フィルム、第2接着樹脂フィルム、及び第2ガラス板を積層し積層体を形成する工程である導光板の製造方法である。上記のように接着樹脂フィルムを用いる場合、前記積層体を一体化する工程が、脱気後の該積層体を加圧環境下で加熱し、該積層体を一体化する工程、であるのがさらに好ましい。以下に、本実施形態について記載する。なお、本発明は以下の実施形態に限定されるものではない。   In one preferred embodiment of the present invention, the step of forming the laminate includes, in order, a first adhesive resin film, a transparent resin film obtained by a stretching method, and a second adhesive resin on the first glass plate. It is the manufacturing method of the light-guide plate which is a process of laminating | stacking a film and a 2nd glass plate, and forming a laminated body. When the adhesive resin film is used as described above, the step of integrating the laminate is a step of heating the laminate after deaeration in a pressurized environment and integrating the laminate. Further preferred. The present embodiment will be described below. In addition, this invention is not limited to the following embodiment.

まず、第1ガラス板上に、順に第1接着樹脂フィルム、延伸法によって得られた透明樹脂フィルム、第2接着樹脂フィルム、及び第2ガラス板を積層し積層体を形成する。この時、各フィルムを順次積層しても、予め各フィルムをラミネートして一体化させた積層フィルムを用いてもよい。   First, a first adhesive resin film, a transparent resin film obtained by a stretching method, a second adhesive resin film, and a second glass plate are sequentially laminated on the first glass plate to form a laminate. At this time, each film may be sequentially laminated, or a laminated film obtained by previously laminating and integrating each film may be used.

次に、該積層体の各層間を脱気する。脱気の工程は既存の方法を用いればよく、例えば、ゴム系の樹脂でできたチューブを積層体の周縁に装着し排気ノズルから空気を排気して脱気する方法や、真空バッグの中に該積層体を入れて、排気ノズルから空気を排気することにより脱気する方法、また、該積層体を1対のロールで挟むようにして圧力を加え、各層間を脱気する方法等が挙げられる。   Next, each layer of the laminate is degassed. An existing method may be used for the deaeration process. For example, a tube made of a rubber-based resin is attached to the periphery of the laminated body, and air is exhausted from the exhaust nozzle to deaerate, or in a vacuum bag. Examples include a method of deaeration by putting the laminate and exhausting air from an exhaust nozzle, and a method of degassing each layer by applying pressure so that the laminate is sandwiched between a pair of rolls.

次に、積層体を加圧環境下で加熱し、該積層体を一体化させて導光板を得る。当該工程は、汎用的なオートクレーブを用いるのが簡便であり好ましい。オートクレーブを用いる場合は、接着樹脂フィルムや透明樹脂フィルムに応じて圧力や温度を適宜選択して一体化を行う。例えば、PVB樹脂やEVA樹脂を接着樹脂フィルムに、PETフィルムを透明樹脂フィルムに用いた場合は、最高温度が80〜150℃の範囲内となるまで温度を上昇させた後、20〜40分間該温度近傍を維持することにより上記の一体化が可能となる。この時、0.9〜1.5MPaの圧力範囲内となるように加圧を行う。加圧と加熱の順番はどちらが先でも、また同時に行うものでもよい。また、加熱過程の途中から加圧を行ってもよい。なお、オートクレーブの他に、加熱可能なプレス機等を用いてもよい。   Next, the laminated body is heated under a pressurized environment, and the laminated body is integrated to obtain a light guide plate. In this step, it is convenient and preferable to use a general-purpose autoclave. In the case of using an autoclave, the pressure and temperature are appropriately selected according to the adhesive resin film or the transparent resin film, and integration is performed. For example, when PVB resin or EVA resin is used for the adhesive resin film and PET film is used for the transparent resin film, the temperature is increased until the maximum temperature is within the range of 80 to 150 ° C. The above integration is possible by maintaining the vicinity of the temperature. At this time, pressurization is performed so as to be within a pressure range of 0.9 to 1.5 MPa. Either pressurization or heating may be performed first or simultaneously. Moreover, you may pressurize from the middle of a heating process. In addition to the autoclave, a heatable press or the like may be used.

また、接着樹脂フィルムを使用しない場合、前述したように、各種プレス機を用いてガラス板G表面と散乱層3表面とを物理的に吸着又は密着させてもよい。また、ガラス板Gと散乱層3との間を脱気した状態で、別途固定用部材を装着し一体化させてもよい。   Moreover, when not using an adhesive resin film, as above-mentioned, you may physically adsorb | suck or adhere the glass plate G surface and the scattering layer 3 surface using various presses. Further, a fixing member may be separately attached and integrated with the glass plate G and the scattering layer 3 being deaerated.

また、前記透明樹脂フィルムを積層する前に、該透明樹脂フィルムの表面にバインダー層4を形成する工程を有するのが好ましい。当該工程を経ることによって、該透明樹脂フィルムの表面にバインダー層4が形成された状態で、第1接着樹脂フィルムや第2接着樹脂フィルムと積層することが可能となる。   Moreover, it is preferable to have a step of forming the binder layer 4 on the surface of the transparent resin film before laminating the transparent resin film. By passing through this step, it is possible to laminate the first adhesive resin film and the second adhesive resin film in a state where the binder layer 4 is formed on the surface of the transparent resin film.

上記のバインダー層4の形成方法としては、接着樹脂フィルムとしてPVB樹脂を用いる場合、アミノ基を有するシランカップリング材を該透明樹脂フィルム表面に塗布するのが好ましい。上記の塗布方法としては、グラビアコーティング、ロールコーティング、ダイコーティング、バーコーティング、ディッピング、スプレーコーティング、スピンコーティング等の公知の塗布方法を用いることができる。特に、高速で薄い層を形成可能なロールトゥロール法を使用できるグラビアコーティングを用いることが好適である。   As a method for forming the binder layer 4, when a PVB resin is used as the adhesive resin film, it is preferable to apply a silane coupling material having an amino group to the surface of the transparent resin film. As the coating method, known coating methods such as gravure coating, roll coating, die coating, bar coating, dipping, spray coating, and spin coating can be used. In particular, it is preferable to use a gravure coating that can use a roll-to-roll method capable of forming a thin layer at high speed.

また、例えば透明樹脂フィルムとしてPETフィルム、接着樹脂層2としてPVB樹脂を用いた場合は、アミノ基を有するシランカップリング材を用いるのが好適である。上記のようなシランカップリング材としては、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、及びN−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン等が挙げられる。上記シランカップリング材を用いる場合、上記塗布方法を用いてPETフィルム表面に塗布した後、乾燥させてシランカップリング材の層を形成する。次に、該シランカップリング材と該PETフィルム表面とを反応させるために、所定時間保持させ(例えば、室温〜60℃で3日〜10日)てバインダー層4を得る。上記のような塗布方法で得られるバインダー層4の厚みは特に限定しないが、0.5μm〜10μm程度としてもよい。   For example, when a PET film is used as the transparent resin film and a PVB resin is used as the adhesive resin layer 2, it is preferable to use a silane coupling material having an amino group. Examples of the silane coupling material as described above include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, and N- (2-aminoethyl) -3-aminopropyltrimethoxysilane. When using the said silane coupling material, after apply | coating to the PET film surface using the said coating method, it is made to dry and the layer of a silane coupling material is formed. Next, in order to react the silane coupling material and the surface of the PET film, the binder layer 4 is obtained by holding for a predetermined time (for example, at room temperature to 60 ° C. for 3 days to 10 days). The thickness of the binder layer 4 obtained by the coating method as described above is not particularly limited, but may be about 0.5 μm to 10 μm.

また、透明樹脂フィルムの表面にプラズマ処理を施してもよい。プラズマ処理によって、高エネルギーの電子やイオンを該透明樹脂フィルムに当てると、該透明樹脂フィルム表面近傍にカルボキシル基、水酸基、アミノ基、カルボニル基等の反応性の高い官能基を新しく生成することが可能となる。上記の官能基は、プラズマ処理時に使用する雰囲気ガスによって異なり、透明樹脂フィルムや接着樹脂層2に応じて適宜選択すればよいが、例えば、アルゴン、ヘリウム、窒素、酸素、空気、二酸化炭素、水蒸気等を用いることができる。また、プラズマ処理は真空中でも大気圧中でもよい。例えば透明樹脂フィルムとしてPETフィルム、接着樹脂層2としてPVB樹脂を用いた場合は、大気圧中プラズマ照射表面改質装置を用いて、A4サイズのPETフィルムに対して約30秒〜3分間プラズマ処理を行うことで、該PETフィルム表面にバインダー層4を形成することが可能である。   Further, the surface of the transparent resin film may be subjected to plasma treatment. When high-energy electrons or ions are applied to the transparent resin film by plasma treatment, a highly reactive functional group such as a carboxyl group, a hydroxyl group, an amino group, or a carbonyl group may be newly generated near the surface of the transparent resin film. It becomes possible. The functional group is different depending on the atmospheric gas used during the plasma treatment, and may be appropriately selected according to the transparent resin film or the adhesive resin layer 2. For example, argon, helium, nitrogen, oxygen, air, carbon dioxide, water vapor Etc. can be used. The plasma treatment may be performed in a vacuum or at atmospheric pressure. For example, when a PET film is used as the transparent resin film and a PVB resin is used as the adhesive resin layer 2, the plasma treatment is performed for about 30 seconds to 3 minutes for an A4 size PET film using a plasma irradiation surface modification device in atmospheric pressure. It is possible to form the binder layer 4 on the surface of the PET film.

以下に、本発明の実施例と比較例を示す。なお、本発明は以下に限定されるものではない。   Below, the Example and comparative example of this invention are shown. The present invention is not limited to the following.

ガラス板は、フロート法で得られたソーダライムガラス板(約300mm×210mm、厚み2mm)を用いた。また、接着樹脂層としては、PVB樹脂フィルム(厚み0.38mm)を用いた。また、透明樹脂フィルムとしては、以下のA〜Eの二軸延伸PETフィルムを用いた。また、各透明樹脂フィルムは、導光板の作成前にヘーズを測定した。
A:超高透明ポリエステルフィルム(東洋紡製;コスモシャインA4300、厚み50μm)
B:超高透明ポリエステルフィルム(東洋紡製;コスモシャインA4300、厚み125μm)
C:ポリエステルフィルム(東レ製;ルミラーT60、厚み50μm)
D:ポリエステルフィルム(東レ製;ルミラーT60、厚み188μm)
E:ポリエステルフィルム(東レ製;ルミラーU34、厚み50μm)
As the glass plate, a soda lime glass plate (about 300 mm × 210 mm, thickness 2 mm) obtained by the float process was used. Moreover, as the adhesive resin layer, a PVB resin film (thickness 0.38 mm) was used. Moreover, as the transparent resin film, the following biaxially stretched PET films A to E were used. Moreover, each transparent resin film measured haze before preparation of a light-guide plate.
A: Ultra high transparency polyester film (Toyobo; Cosmo Shine A4300, thickness 50 μm)
B: Ultra-high transparency polyester film (Toyobo; Cosmo Shine A4300, thickness 125 μm)
C: Polyester film (Toray; Lumirror T60, thickness 50 μm)
D: Polyester film (manufactured by Toray; Lumirror T60, thickness 188 μm)
E: Polyester film (manufactured by Toray; Lumirror U34, thickness 50 μm)

[実施例1〜4、比較例1]
まず、ガラス板の上に、PVB樹脂フィルム、二軸延伸PETフィルム、PVB樹脂フィルム、及びガラス板の順に積層し積層体を得た。次に、該積層体を真空バッグ内に入れ、排気ノズルから空気を排気することによって各層間を脱気した。次に、該積層体をオートクレーブ内に入れ、加圧・加熱処理を行って各サンプルを得た。この時、温度を135℃、圧力を1MPaに設定し、処理時間を30分とした。次に、得られたサンプルについて、以下の方法でヘーズ、全光線透過率、及び輝度を測定した。
[Examples 1 to 4, Comparative Example 1]
First, a PVB resin film, a biaxially stretched PET film, a PVB resin film, and a glass plate were laminated in this order on a glass plate to obtain a laminate. Next, the laminate was placed in a vacuum bag, and air was exhausted from the exhaust nozzle to degas each layer. Next, the laminate was placed in an autoclave and subjected to pressure and heat treatment to obtain each sample. At this time, the temperature was set to 135 ° C., the pressure was set to 1 MPa, and the treatment time was 30 minutes. Next, haze, total light transmittance, and luminance were measured for the obtained samples by the following methods.

[比較例2]
300mm×300mm、厚み2mmのガラス板を用い、透明樹脂フィルムを使用しなかった他は、実施例1と同様の方法でサンプルを得て、ヘーズ、全光線透過率、及び輝度を測定した。
[Comparative Example 2]
A sample was obtained in the same manner as in Example 1 except that a 300 mm × 300 mm, 2 mm thick glass plate was used and no transparent resin film was used, and haze, total light transmittance, and luminance were measured.

(ヘーズ、全光線透過率の測定)
各透明樹脂フィルムのヘーズ、及び得られた各サンプルのヘーズと、全光線透過率について、JIS K7136に準拠する方法でヘーズメーター(スガ試験機製、HZ-T)を用いて測定した。得られた値は表1に記載した。なお、透明樹脂フィルムのヘーズを「フィルム」、サンプルのヘーズを「導光板」と記載した。
(Measurement of haze and total light transmittance)
The haze of each transparent resin film, the haze of each obtained sample, and the total light transmittance were measured using a haze meter (manufactured by Suga Test Instruments Co., Ltd., HZ-T) in accordance with JIS K7136. The values obtained are listed in Table 1. In addition, the haze of the transparent resin film was described as “film”, and the haze of the sample was described as “light guide plate”.

(輝度の測定)
まず、テープLED(エルパラ製5050テープLED8142)の発光部の上に、得られた各サンプルを設置した。この時、該サンプルの端面(X−Z面)を該テープLEDと接触させ、端面からLED光(白色)を入射させた。
次に、各サンプルのX−Y面の面発光を、2D色彩輝度計(トプコンテクノハウス製、UA−200A)を用いて輝度(cd/m2)を測定した。測定は暗室内で行い、サンプルと2D色彩輝度計の間隔を800mm、サンプルの測定点を導光板の下辺から20mm、幅方向の中央付近とした。得られた値は表1に記載した。
(Measurement of brightness)
First, each obtained sample was installed on the light emission part of tape LED (the Elpara 5050 tape LED8142). At this time, the end surface (XZ surface) of the sample was brought into contact with the tape LED, and LED light (white) was incident from the end surface.
Next, the luminance (cd / m 2 ) of the surface emission of the XY plane of each sample was measured using a 2D color luminance meter (manufactured by Topcon Technohouse, UA-200A). The measurement was performed in a dark room, the distance between the sample and the 2D color luminance meter was 800 mm, the measurement point of the sample was 20 mm from the lower side of the light guide plate, and the vicinity of the center in the width direction. The values obtained are listed in Table 1.

Figure 2018105365
Figure 2018105365

以上より、実施例1〜4は導光板のヘーズが0.2%以上であり、透明樹脂フィルムを持たない比較例2と比較しても、輝度が高い数値を示すことがわかった。また、図4(a)には実施例3の面発光時における2D色彩輝度計(トプコンテクノハウス製、UA−200A)の輝度分布を示した。図に示したように、実際に面発光が確認された。   From the above, it was found that in Examples 1 to 4, the haze of the light guide plate was 0.2% or more, and even when compared with Comparative Example 2 having no transparent resin film, the luminance was high. 4A shows the luminance distribution of a 2D color luminance meter (manufactured by Topcon Technohouse, UA-200A) at the time of surface light emission of Example 3. FIG. As shown in the figure, surface emission was actually confirmed.

一方で、比較例1はヘーズが0.1%であり、輝度が比較例2と同等だった。また、比較例2の端面に光を入射させた時の面発光について、実施例3と同様に輝度分布を測定し図4(b)に示した。その結果比較例2では、面発光が見られないことがわかった。   On the other hand, Comparative Example 1 had a haze of 0.1%, and the luminance was the same as Comparative Example 2. Further, with respect to the surface emission when light is incident on the end face of Comparative Example 2, the luminance distribution was measured in the same manner as in Example 3 and shown in FIG. As a result, it was found that no surface emission was observed in Comparative Example 2.

また、実施例1〜4及び比較例1は、いずれも導光板にする前のフィルム状態でのヘーズより、導光板のヘーズの方が低い値となった。これは、前述したようにフィルムの表面ヘーズが導光板となることによって低下した為と考えられる。   In Examples 1 to 4 and Comparative Example 1, the haze of the light guide plate was lower than the haze in the film state before making the light guide plate. This is presumably because the surface haze of the film was lowered by becoming a light guide plate as described above.

G:ガラス板、
1:光源、
2:接着樹脂層、
3:散乱層、
4:バインダー層、
10:導光板、
11:下辺、
12:上辺
G: Glass plate
1: light source
2: Adhesive resin layer,
3: scattering layer,
4: Binder layer
10: Light guide plate,
11: Lower side,
12: Upper side

Claims (14)

2枚のガラス板間に散乱層を有し、該ガラス板と該散乱層とが一体化された導光板であり、
該散乱層が延伸法によって得られた透明樹脂フィルムであり、
該導光板のJIS K7136に準拠する方法で測定されたヘーズが0.2%以上である導光板。
A light guide plate having a scattering layer between two glass plates, the glass plate and the scattering layer being integrated;
The scattering layer is a transparent resin film obtained by a stretching method,
The light guide plate whose haze measured by the method based on JISK7136 of this light guide plate is 0.2% or more.
前記散乱層が、二軸延伸法によって得られた透明ポリエチレンテレフタレートフィルムであることを特徴とする請求項1記載の導光板。 The light guide plate according to claim 1, wherein the scattering layer is a transparent polyethylene terephthalate film obtained by a biaxial stretching method. 前記ガラス板と前記散乱層との間に、接着樹脂層を有することを特徴とする請求項1又は請求項2記載の導光板。 The light guide plate according to claim 1, further comprising an adhesive resin layer between the glass plate and the scattering layer. 前記接着樹脂層が、ポリビニルブチラール樹脂、EVA樹脂、シクロオレフィンポリマー樹脂、ポリウレタン樹脂、及びアクリル樹脂からなる群から選ばれる少なくとも1つを含むことを特徴とする請求項3記載の導光板。 The light guide plate according to claim 3, wherein the adhesive resin layer includes at least one selected from the group consisting of polyvinyl butyral resin, EVA resin, cycloolefin polymer resin, polyurethane resin, and acrylic resin. 前記透明樹脂フィルムと前記接着樹脂層との間にバインダー層を有し、
該バインダー層が、該透明樹脂フィルム及び該接着樹脂層と接することを特徴とする請求項3又は請求項4に記載の導光板。
Having a binder layer between the transparent resin film and the adhesive resin layer;
The light guide plate according to claim 3 or 4, wherein the binder layer is in contact with the transparent resin film and the adhesive resin layer.
前記導光板の全光線透過率が、70%以上であることを特徴とする請求項1乃至請求項5のいずれかに記載の導光板。 The light guide plate according to claim 1, wherein the light guide plate has a total light transmittance of 70% or more. 請求項1乃至請求項6のいずれかに記載の導光板と、該導光板の端面から光を入射可能な光源とを有する面発光装置。 A surface light-emitting device comprising: the light guide plate according to claim 1; and a light source capable of entering light from an end face of the light guide plate. 前記光源が、LED光源であることを特徴とする請求項7記載の面発光装置。 The surface light-emitting device according to claim 7, wherein the light source is an LED light source. 第1ガラス板上に、延伸法によって得られた透明樹脂フィルム、及び第2ガラス板をこの順に積層し、積層体を形成する工程、
該積層体の各層間を脱気する工程、及び
脱気後の該積層体を一体化する工程、を有する導光板の製造方法。
A step of laminating a transparent resin film obtained by a stretching method and a second glass plate in this order on the first glass plate, and forming a laminate,
The manufacturing method of the light-guide plate which has the process of deaerating each interlayer of this laminated body, and the process of integrating this laminated body after deaeration.
前記積層体を形成する工程が、第1ガラス板上に、順に第1接着樹脂フィルム、延伸法によって得られた透明樹脂フィルム、第2接着樹脂フィルム、及び第2ガラス板を積層し積層体を形成する工程であることを特徴とする請求項9記載の導光板の製造方法。 The step of forming the laminate includes sequentially laminating the first adhesive resin film, the transparent resin film obtained by the stretching method, the second adhesive resin film, and the second glass plate on the first glass plate. The method of manufacturing a light guide plate according to claim 9, wherein the method is a forming step. 前記積層体を一体化する工程が、脱気後の該積層体を加圧環境下で加熱し、該積層体を一体化する工程、であることを特徴とする請求項9又は請求項10記載の導光板の製造方法。 The step of integrating the laminate is a step of heating the laminate after deaeration in a pressurized environment to integrate the laminate. Manufacturing method of the light guide plate. 前記透明樹脂フィルムを積層する前に、該透明樹脂フィルムの表面にバインダー層を形成する工程を有することを特徴とする請求項10又は請求項11記載の導光板の製造方法。 The method for producing a light guide plate according to claim 10 or 11, further comprising a step of forming a binder layer on a surface of the transparent resin film before the transparent resin film is laminated. 前記透明樹脂フィルムが、二軸延伸法によって得られた透明ポリエチレンテレフタレートフィルムであることを特徴とする請求項9乃至請求項12のいずれかに記載の導光板の製造方法。 The method for manufacturing a light guide plate according to claim 9, wherein the transparent resin film is a transparent polyethylene terephthalate film obtained by a biaxial stretching method. 前記の積層体を一体化する工程において、80〜150℃の範囲内で加熱を行うことを特徴とする請求項9乃至請求項13のいずれかに記載の導光板の製造方法。 The method for manufacturing a light guide plate according to any one of claims 9 to 13, wherein in the step of integrating the laminates, heating is performed within a range of 80 to 150 ° C.
JP2018554902A 2016-12-07 2017-11-20 Light guide plate, surface emitting device, and method for manufacturing light guide plate Active JP7152662B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016237706 2016-12-07
JP2016237706 2016-12-07
PCT/JP2017/041623 WO2018105365A1 (en) 2016-12-07 2017-11-20 Light guide plate, surface light emitting apparatus, and method for manufacturing light guide plate

Publications (2)

Publication Number Publication Date
JPWO2018105365A1 true JPWO2018105365A1 (en) 2019-10-24
JP7152662B2 JP7152662B2 (en) 2022-10-13

Family

ID=62490832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018554902A Active JP7152662B2 (en) 2016-12-07 2017-11-20 Light guide plate, surface emitting device, and method for manufacturing light guide plate

Country Status (4)

Country Link
US (1) US10775548B2 (en)
EP (1) EP3546994B1 (en)
JP (1) JP7152662B2 (en)
WO (1) WO2018105365A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7476739B2 (en) * 2019-10-09 2024-05-01 Agc株式会社 Illumination body and illumination body with light source
KR20220137106A (en) 2020-02-07 2022-10-11 코닝 인코포레이티드 Methods for treating glass surfaces and treated glass articles
WO2021204566A1 (en) 2020-04-07 2021-10-14 Saint-Gobain Glass France Method for producing a composite pane, and composite pane

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281975A (en) * 1998-03-26 1999-10-15 Teijin Ltd Polarized light transmission plate and polarized surface light source device
JP2001049008A (en) * 1998-09-29 2001-02-20 Teijin Ltd Forward scattering polymer film having haze anisotropy
JP2001337207A (en) * 2000-03-21 2001-12-07 Sumitomo Chem Co Ltd Forward scattering sheet, laminated sheet using the same and liquid crystal display device
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
WO2005083474A1 (en) * 2004-02-27 2005-09-09 Kimoto Co., Ltd. Optical member and backlight using same
JP2010036487A (en) * 2008-08-06 2010-02-18 Toyobo Co Ltd Surface light diffusing polyester film
WO2012059126A1 (en) * 2010-11-03 2012-05-10 Agc Glass Europe Laminated inorganic and organic glass diffused lighting panel
JP2012163715A (en) * 2011-02-04 2012-08-30 Fujifilm Corp Light-diffusing film for led lamp
US20130114292A1 (en) * 2010-04-23 2013-05-09 Osram Opto Semiconductors Gmbh Surface Light Guide and Planar Emitter
JP2015055833A (en) * 2013-09-13 2015-03-23 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
US20160097895A1 (en) * 2010-02-10 2016-04-07 3M Innovative Properties Company Optical article having viscoelastic layer
CN105522730A (en) * 2015-11-11 2016-04-27 陕西聚洁瀚化工有限公司 Preparation method of light diffusion film

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19534420C2 (en) * 1995-09-16 1999-05-12 Flachglas Automotive Gmbh Method for producing a laminated safety glass pane free of distortion-related optical disturbances, use of a carrier film and carrier film
FR2755685B1 (en) 1996-11-14 1999-01-08 Saint Gobain Vitrage MULTIPLE GLAZING WITH SOUND AND THERMAL INSULATION PROPERTIES
DE19711459A1 (en) * 1997-03-19 1998-09-24 Flachglas Automotive Gmbh Process for the production of a curved laminated safety glass pane
TW507104B (en) * 1998-09-16 2002-10-21 Teijin Ltd Application of light source including light guide for emanating linearly polarized light to liquid crystal display
JP2002131535A (en) * 2000-10-20 2002-05-09 Tokina:Kk Polarization filter for optics
JP2007080531A (en) 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Light-emitting diode lighting fixture
JP4650523B2 (en) 2008-06-18 2011-03-16 カシオ電子工業株式会社 Electronic device, consumable cartridge, replacement part, and method of informing the degree of use
JP5300531B2 (en) 2009-03-03 2013-09-25 中島硝子工業株式会社 Surface emitting laminated glass and manufacturing method thereof
FR2993203B1 (en) * 2012-07-11 2014-07-18 Saint Gobain BRIGHT GLAZING
JP6084483B2 (en) 2013-02-25 2017-02-22 日本電気硝子株式会社 Surface emitting device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11281975A (en) * 1998-03-26 1999-10-15 Teijin Ltd Polarized light transmission plate and polarized surface light source device
JP2001049008A (en) * 1998-09-29 2001-02-20 Teijin Ltd Forward scattering polymer film having haze anisotropy
JP2001337207A (en) * 2000-03-21 2001-12-07 Sumitomo Chem Co Ltd Forward scattering sheet, laminated sheet using the same and liquid crystal display device
JP2003043258A (en) * 2001-08-01 2003-02-13 Teijin Ltd Polymer film having scattering anisotropy and surface light source device using the same
WO2005083474A1 (en) * 2004-02-27 2005-09-09 Kimoto Co., Ltd. Optical member and backlight using same
JP2010036487A (en) * 2008-08-06 2010-02-18 Toyobo Co Ltd Surface light diffusing polyester film
US20160097895A1 (en) * 2010-02-10 2016-04-07 3M Innovative Properties Company Optical article having viscoelastic layer
US20130114292A1 (en) * 2010-04-23 2013-05-09 Osram Opto Semiconductors Gmbh Surface Light Guide and Planar Emitter
WO2012059126A1 (en) * 2010-11-03 2012-05-10 Agc Glass Europe Laminated inorganic and organic glass diffused lighting panel
JP2012163715A (en) * 2011-02-04 2012-08-30 Fujifilm Corp Light-diffusing film for led lamp
JP2015055833A (en) * 2013-09-13 2015-03-23 東洋紡株式会社 Polarizer protective film, polarizing plate, and liquid crystal display device
CN105522730A (en) * 2015-11-11 2016-04-27 陕西聚洁瀚化工有限公司 Preparation method of light diffusion film

Also Published As

Publication number Publication date
JP7152662B2 (en) 2022-10-13
EP3546994B1 (en) 2022-08-17
US10775548B2 (en) 2020-09-15
EP3546994A4 (en) 2019-10-02
US20200057189A1 (en) 2020-02-20
WO2018105365A1 (en) 2018-06-14
EP3546994A1 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
US10870262B2 (en) Laminated glass
JP5143015B2 (en) Polarizing plate protective film, polarizing plate and resistive touch panel
WO2018105365A1 (en) Light guide plate, surface light emitting apparatus, and method for manufacturing light guide plate
CN108292091A (en) Transparent screen mask, transparent screen and image display system
US20210122144A1 (en) Laminated glass
KR20210008386A (en) Manufacturing method of composite plate glass with polarization selective coating
US20240151892A1 (en) Illuminable glazing
KR20220007614A (en) Barrier film, wavelength conversion sheet using same, and display device using same
US6982023B2 (en) Electromagnetic wave shielding filter and its production process
WO2022186338A1 (en) Laminated glass and method for producing laminated glass
CN101013165A (en) Flat display and attached protective film polarization chip laminate
CN115151416A (en) Composite glass sheet and method of manufacturing a composite glass sheet
JP2011051278A (en) Lightweight substrate with excellent gas barrier properties and surface characteristics and member using this substrate
WO2021131152A1 (en) Decorative laminated body, optical laminated body, and flexible image display device
US20210276307A1 (en) Functional film and functional laminated glass
WO2021095516A1 (en) Optical film set and liquid crystal panel
JP2016190758A (en) Glass laminate and light control component for the same
TWI296720B (en)
CN113518711A (en) Laminated glass
JP4691356B2 (en) Viewing angle restriction sheet for image display device
JP2003029009A (en) Semitransmissive-semireflective film, and polarizing element and liquid crystal display device using the same
JP7053867B2 (en) Composite pane with functional elements and lighting
JP2024034104A (en) Glass laminate
WO2019194292A1 (en) Laminated glass

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7152662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150