JPWO2018084052A1 - Optical panel, method of manufacturing the same, and apparatus - Google Patents

Optical panel, method of manufacturing the same, and apparatus Download PDF

Info

Publication number
JPWO2018084052A1
JPWO2018084052A1 JP2018548959A JP2018548959A JPWO2018084052A1 JP WO2018084052 A1 JPWO2018084052 A1 JP WO2018084052A1 JP 2018548959 A JP2018548959 A JP 2018548959A JP 2018548959 A JP2018548959 A JP 2018548959A JP WO2018084052 A1 JPWO2018084052 A1 JP WO2018084052A1
Authority
JP
Japan
Prior art keywords
substance
region
optical panel
resin
ionizing radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018548959A
Other languages
Japanese (ja)
Other versions
JP6924202B2 (en
Inventor
宏記 鈴木
宏記 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2018084052A1 publication Critical patent/JPWO2018084052A1/en
Application granted granted Critical
Publication of JP6924202B2 publication Critical patent/JP6924202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

反射防止機能を果たすために微粒子の存在を必須としない光学パネル100として、透光性を備えた基材10と、基材10の上に位置する外観層20とを備え、外観層20は、光学パネル100の外観層20側からの入射光の反射率が相対的に低い第1領域R1および反射率が相対的に高い第2領域R2を備え、外観層20は、第1樹脂系材料および第2樹脂系材料を含み、第1領域R1の面R1Aは、第1樹脂系材料からなり外観層の厚さ方向に突出して外光を散乱する突出点群21を備える光学パネル100が提供される。As an optical panel 100 that does not require the presence of fine particles to perform an antireflective function, the optical panel 100 includes a light transmitting substrate 10 and an appearance layer 20 located on the substrate 10, and the appearance layer 20 is A first region R1 having a relatively low reflectance of incident light from the appearance layer 20 side of the optical panel 100 and a second region R2 having a relatively high reflectance, and the appearance layer 20 includes a first resin material and An optical panel 100 is provided which includes a second resin-based material, a surface R1A of the first region R1 is made of the first resin-based material, and includes projecting point groups 21 that project in the thickness direction of the appearance layer and scatter external light. Ru.

Description

本発明は、光学パネルおよびその製造方法ならびに上記の光学パネルを備える機器に関する。   The present invention relates to an optical panel, a method of manufacturing the same, and an apparatus including the optical panel described above.

特許文献1には、透明基材上に積層される反射防止膜であって、前記反射防止膜が、透明樹脂と該透明樹脂中に分散された微粒子とからなり、前記微粒子の最近接粒子同士の中心間の平均距離が50〜800nmの範囲にあり、前記反射防止膜中の前記微粒子の配列構造がアモルファス構造であり、且つ、前記反射防止膜の表面に凸部の平均高さが40〜500nmの範囲にある凹凸形状が形成されていること、を特徴とする反射防止膜が開示されている。   Patent Document 1 discloses an antireflective film laminated on a transparent substrate, wherein the antireflective film comprises a transparent resin and fine particles dispersed in the transparent resin, and the closest particles of the fine particles to each other The average distance between the centers of the particles is in the range of 50 to 800 nm, the arrangement structure of the fine particles in the antireflective film is an amorphous structure, and the average height of the protrusions on the surface of the antireflective film is 40 to There is disclosed an anti-reflection film characterized in that a concavo-convex shape in the range of 500 nm is formed.

特開2009−139796号公報JP, 2009-139796, A

特許文献1に記載される反射防止膜は、膜中に分散された微粒子が反射防止膜の面に凹凸を作り、この凹凸によって外光を散乱して反射防止が行われている。そして、この凹凸を形成するために、微粒子が分散するマトリックス材料を選択的に除去する加工が行われている。すなわち、特許文献1に記載される反射防止膜は、マトリックス材料とこの材料とは除去加工性が十分に異なる微粒子との存在が不可欠である。このため、反射防止膜中に微粒子を存在させることを望まない場合には、特許文献1に記載される反射防止膜を用いることができない。また、反射防止膜中に微粒子を存在させることを望む場合であっても、このマトリックス材料とは除去加工性が十分に異なる微粒子の存在が必須となるため、微粒子の選択自由度が著しく低くなる。   In the anti-reflection film described in Patent Document 1, fine particles dispersed in the film make asperities on the surface of the anti-reflection film, and the asperity scatters external light to perform anti-reflection. And in order to form this unevenness | corrugation, the process which selectively removes the matrix material which microparticles | fine-particles disperse | distribute is performed. That is, in the antireflective film described in Patent Document 1, the presence of the matrix material and the fine particles whose removal processability is sufficiently different from this material is indispensable. For this reason, when it is not desirable to make fine particles in the antireflective film, the antireflective film described in Patent Document 1 can not be used. In addition, even when it is desired to allow the presence of fine particles in the antireflective film, the presence of fine particles sufficiently different in removal processability from this matrix material becomes essential, so the degree of freedom in selecting the fine particles becomes extremely low. .

本発明は、反射防止機能を果たすために微粒子の存在を必須としない光学パネルを提供することを目的とする。本発明は、かかる光学パネルの製造方法および上記の光学パネルを備える機器を提供することも目的とする。   An object of the present invention is to provide an optical panel which does not require the presence of fine particles to perform an antireflective function. Another object of the present invention is to provide a method of manufacturing such an optical panel and an apparatus provided with the above-described optical panel.

上記の課題を解決するために提供される本発明は、一態様において、透光性を備えた基材と、前記基材の上に位置する外観層とを備える光学パネルであって、前記外観層は、前記光学パネルの前記外観層側からの入射光の反射率が相対的に低い第1領域および前記反射率が相対的に高い第2領域を備え、前記外観層は、第1樹脂系材料および第2樹脂系材料を含み、前記第1領域の面は、前記第1樹脂系材料からなり前記外観層の厚さ方向に突出して外光を散乱する突出点群を備えることを特徴とする光学パネルである。   The present invention provided to solve the above problems is, in one aspect, an optical panel comprising a light-transmissive substrate and an appearance layer located on the substrate, the appearance The layer includes a first region having a relatively low reflectance of incident light from the outer appearance layer side of the optical panel and a second region having a relatively high reflectance, and the outer appearance layer is made of a first resin A material and a second resin-based material, wherein the surface of the first region is provided with a projecting point group which is made of the first resin-based material and protrudes in the thickness direction of the appearance layer to scatter external light. Optical panel.

上記の本発明に係る光学パネルは、樹脂系材料からなる突出点群によって外光を散乱させる反射防止機能を実現している。したがって、外観層が微粒子を含有することは、反射防止機能の発現と切り離されている。それゆえ、外観層の組成の設計自由度を高めることが可能である。   The above-described optical panel according to the present invention realizes an anti-reflection function of scattering external light by a group of protruding points made of a resin-based material. Therefore, the inclusion of fine particles in the appearance layer is separated from the expression of the antireflective function. Therefore, it is possible to increase the design freedom of the composition of the appearance layer.

上記の光学パネルにおいて、前記第1領域は前記外観層の厚さ方向に組成が相違していてもよい。この場合において、前記基材に対向する側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記基材に対向する側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高くてもよい。   In the above-described optical panel, the first region may be different in composition in the thickness direction of the appearance layer. In this case, the ratio of the content of the first resin-based material to the content of the second resin-based material on the side opposite to the side facing the base is the first on the side facing the base The ratio of the content of the resin-based material to the content of the second resin-based material may be higher.

上記の光学パネルにおいて、前記突出点群は、前記第2領域の面よりも突出していてもよい。   In the above-mentioned optical panel, the projected point group may project beyond the surface of the second area.

上記の光学パネルにおいて、前記第1領域と前記第2領域とは、全体組成が等しく、前記外観層の厚さ方向の組成分布が相違していてもよい。この場合には、第1領域と第2領域とで外観層を形成するための材料を共通なものとしておいて、異なったプロセスを実施することによって第1領域と第2領域とを作り分けることができる。   In the above-described optical panel, the first region and the second region may have the same overall composition, and may have a different composition distribution in the thickness direction of the appearance layer. In this case, the materials for forming the appearance layer are common to the first region and the second region, and the first region and the second region are formed separately by performing different processes. Can.

本発明は、他の一態様として、透光性を備えた基材と、前記基材の上に位置する外観層とを備える光学パネルを提供する。かかる光学パネルにおいては、前記外観層は、第1樹脂系材料および第2樹脂系材料を含み、前記外観層の面は、少なくとも一部の領域において、前記第1樹脂系材料からなり前記外観層の厚さ方向に突出して外光を散乱する突出点群を備える。   In another aspect, the present invention provides an optical panel comprising a translucent substrate and an appearance layer located on the substrate. In the optical panel, the appearance layer includes a first resin-based material and a second resin-based material, and the surface of the appearance layer is made of the first resin-based material in at least a part of the area. A projecting point group that protrudes in the thickness direction of the light source and scatters external light.

かかる光学パネルも、上記の第1領域および第2領域を備える光学パネルと同様に、外観層の組成の設計自由度を高めることが可能である。   Such an optical panel can also increase the design freedom of the composition of the appearance layer, similarly to the optical panel provided with the first area and the second area described above.

上記の光学パネルにおいて、前記突出点群を備える領域は前記外観層の厚さ方向に組成が相違していてもよい。この場合において、前記基材に対向する側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記基材に対向する側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高くてもよい。   In the above-described optical panel, the region including the protruding point group may have a different composition in the thickness direction of the appearance layer. In this case, the ratio of the content of the first resin-based material to the content of the second resin-based material on the side opposite to the side facing the base is the first on the side facing the base The ratio of the content of the resin-based material to the content of the second resin-based material may be higher.

上記の光学パネルにおいて、前記外観層はフィラー成分をさらに含んでもよいし、前記外観層はフィラー成分を含まなくてもよい。   In the above-mentioned optical panel, the appearance layer may further contain a filler component, and the appearance layer may not contain a filler component.

上記の光学パネルにおいて、前記第1樹脂系材料は電離放射線重合性の第1物質の重合体を含んでいてもよく、前記第2樹脂系材料は、前記第1物質とは異なる電離放射線重合性の第2物質の重合体を含んでいてもよい。この場合において、前記外観層は重合開始剤をさらに含んでいてもよい。また、前記第1物質に対する相溶性を有する第3物質を含んでいてもよい。第3物質はフェノール系化合物が好ましく、融点が100℃以下のフェノール系化合物がさらに好ましく、ヒンダードフェノール系化合物が特に好ましい。第3物質を含むことにより、第2領域の平滑性や光学特性が高まることもある。   In the above optical panel, the first resin material may include a polymer of an ionizing radiation polymerizable first substance, and the second resin material may be an ionizing radiation polymerizable different from the first substance. And a polymer of the second substance of In this case, the appearance layer may further contain a polymerization initiator. Moreover, you may contain the 3rd substance which has compatibility with respect to said 1st substance. The third substance is preferably a phenolic compound, more preferably a phenolic compound having a melting point of 100 ° C. or less, particularly preferably a hindered phenolic compound. By including the third substance, the smoothness and the optical characteristics of the second region may be enhanced.

本発明は、他の一態様として、透光性を有する基材と、前記基材の上に位置して外光を散乱する突出点群を備える面を有する外観層とを備える光学パネルの製造方法を提供する。かかる製造方法は、電離放射線重合性の第1物質と、前記第1物質とは異なる電離放射線重合性の第2物質と、前記第2物質よりも前記第1物質を溶解しやすい第1溶媒と、前記第1物質よりも前記第2物質を溶解しやすく前記第1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を、前記基材の一方の面に塗布して前記基材上に塗膜を形成する第1ステップ;前記塗膜に含有される前記第1溶媒を揮発させることにより、前記第1物質を含む析出体を前記塗膜の表面に位置させて析出塗膜を得る第2ステップ;および前記析出塗膜の少なくとも一部の領域に電離放射線を照射することにより、前記電離放射線が照射された領域に位置する前記第1物質および前記第2物質を重合させる第3ステップを備え、前記第3ステップにより、前記外観層の前記突出点群を備える面が形成されることを特徴とする。   According to another aspect of the present invention, there is provided an optical panel comprising: a light transmitting substrate; and an appearance layer having a surface located on the substrate and having a projecting point group for scattering external light. Provide a way. This manufacturing method comprises: an ionizing radiation polymerizable first substance; an ionizing radiation polymerizable second substance different from the first substance; and a first solvent which dissolves the first substance more easily than the second substance. A liquid containing a second solvent which dissolves the second substance more easily than the first substance and which has a boiling point higher than that of the first solvent is applied to one surface of the base material; A first step of forming a coating film on the coating film; by depositing the first substance-containing precipitate on the surface of the coating film by volatilizing the first solvent contained in the coating film; And irradiating the ionizing radiation to at least a partial area of the deposited coating to polymerize the first substance and the second substance located in the area irradiated with the ionizing radiation. Comprising a step, said third step Wherein the surface comprises the projecting point group appearance layer.

このような製造方法により外観層を形成することにより、反射防止機能を有する外観層を、組成上の制約少なく、特にフィラー成分の含有を必須とすることなく製造することができる。   By forming the appearance layer by such a manufacturing method, the appearance layer having an antireflective function can be manufactured with few restrictions on composition, and in particular without the necessity of containing a filler component.

上記の製造方法において、前記第3ステップでは、前記析出塗膜の全体に前記電離放射線を照射することにより、前記突出点群を全面に備える前記外観層を前記析出塗膜から形成してもよい。かかる製造方法を採用することにより、全面に反射防止機能を有する外観層を製造することができる。   In the above manufacturing method, in the third step, the entire appearance of the deposition coating may be formed from the deposition coating by irradiating the ionizing radiation to the entire deposition coating. . By adopting this manufacturing method, it is possible to manufacture an appearance layer having an antireflection function on the entire surface.

上記の製造方法において、前記外観層は、前記突出点群を備える面を有する第1領域と、前記突出点群を備えない面を有する第2領域とからなり、前記第3ステップでは、前記析出塗膜の一部の領域である第1塗膜領域について前記電離放射線を照射することにより、前記第1塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第1領域を形成し、前記第3ステップに続いて、前記析出塗膜における前記電離放射線が照射されていない第2塗膜領域を加熱して、前記第2塗膜領域の面平滑性を高める第4ステップ;および前記面平滑性が高められた第2塗膜領域に電離放射線を照射することにより、前記第2塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第2領域を形成する第5ステップを備えてもよい。かかる製造方法を採用することにより、反射防止機能を有する第1領域と反射防止機能を有しない第2領域とを備える外観層を製造することができる。   In the above manufacturing method, the appearance layer is composed of a first region having a surface provided with the protruding point group and a second region having a surface not provided with the protruding point group, and in the third step, the deposition is performed. The first substance and the second substance located in the first coating area are polymerized by irradiating the first coating area, which is a partial area of the coating, with the ionizing radiation, and the first substance is polymerized. Forming a region, and heating the second coating region which is not irradiated with the ionizing radiation in the deposited coating, following the third step, to enhance the surface smoothness of the second coating region; And irradiating the second coating film region having the enhanced surface smoothness with ionizing radiation to polymerize the first substance and the second substance located in the second coating film area; Equipped with a fifth step to form two regions It may be. By adopting this manufacturing method, it is possible to manufacture an appearance layer including a first region having an antireflective function and a second region not having an antireflective function.

上記の製造方法において、前記液状体はフィラー成分をさらに含んでいてもよい。この場合には、外観層はフィラー成分を含有するものとなる。上記の製造方法において、前記液状体はフィラー成分を含まなくてもよい。この場合には、外観層はフィラー成分を含有しないものとなる。このように、液状体の組成を変化させることによって、外観層がフィラー成分を含有するか否かを設定することができる。   In the above manufacturing method, the liquid may further contain a filler component. In this case, the appearance layer contains a filler component. In the above manufacturing method, the liquid may not contain a filler component. In this case, the appearance layer contains no filler component. Thus, by changing the composition of the liquid, it can be set whether the appearance layer contains a filler component.

上記の製造方法において、前記液状体は重合開始剤を含んでいてもよい。この場合には、前記第1物質および前記第2物質の重合を、可視光や紫外光などの電磁波の照射により行うことができる。   In the above production method, the liquid may contain a polymerization initiator. In this case, the polymerization of the first substance and the second substance can be performed by irradiation of an electromagnetic wave such as visible light or ultraviolet light.

上記の製造方法において、前記第4ステップでは、前記析出塗膜における前記第1物質の析出体が溶融するように加熱を行ってもよい。析出塗膜では第1物質の析出体により析出塗膜の表面が粗面化していることから、この第1物質の析出体を溶解することにより、表面の平滑性を高めることができる。   In the above manufacturing method, in the fourth step, heating may be performed so as to melt the precipitate of the first substance in the deposition coating. In the deposited coating film, the surface of the deposited coating film is roughened by the precipitates of the first substance. Therefore, by dissolving the precipitates of the first substance, the smoothness of the surface can be enhanced.

前記液状体は前記第1物質に対する相溶性を有する第3物質を含有していてもよい。この場合において、前記第2ステップで形成される前記第1物質を含む析出体は前記第3物質を含み、前記第1物質を含む析出体は前記第1物質からなる析出体よりも融点が低いことが好ましい。第3物質はフェノール系化合物が好ましく、融点が100℃以下のフェノール系化合物がさらに好ましく、ヒンダードフェノール系化合物が特に好ましい。第3物質を含むことにより、第2領域の平滑性や光学特性が高まることもある。   The liquid body may contain a third substance having compatibility with the first substance. In this case, the precipitate containing the first substance formed in the second step contains the third substance, and the precipitate containing the first substance has a melting point lower than that of the precipitate consisting of the first substance. Is preferred. The third substance is preferably a phenolic compound, more preferably a phenolic compound having a melting point of 100 ° C. or less, particularly preferably a hindered phenolic compound. By including the third substance, the smoothness and the optical characteristics of the second region may be enhanced.

本発明は、別の一態様として、上記の本発明の一態様に係る光学パネルを備える機器を提供する。   The present invention provides, as another aspect, an apparatus comprising the optical panel according to the above aspect of the present invention.

本発明は、また別の一態様として、転写元面を有する転写層を備える転写体を提供する。かかる転写体において、前記転写層は、電離放射線重合性の第1物質の重合体を含む第1樹脂系材料、および前記第1物質とは異なる電離放射線重合性の第2物質の重合体を含む第2樹脂系材料を含み、前記転写元面は、前記第1樹脂系材料からなり前記転写層の厚さ方向に突出して外光を散乱する突出点群を備え、前記転写層における前記転写元面を含む領域は、前記転写層の厚さ方向に組成が相違し、前記転写元面側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記転写元面側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高い。このように、上記の本発明に係る光学パネルの外観層を、被転写物に転写面を形成するための転写元面を有する転写層として用いることが可能である。上記の転写体において、前記第1物質に対する相溶性を有する第3物質を含んでいてもよい。第3物質はフェノール系化合物が好ましく、融点が100℃以下のフェノール系化合物がさらに好ましく、ヒンダードフェノール系化合物が特に好ましい。   In another aspect, the present invention provides a transfer body comprising a transfer layer having a transfer source surface. In the transfer body, the transfer layer includes a first resin material containing a polymer of an ionizing radiation polymerizable first substance, and a polymer of an ionizing radiation polymerizable second substance different from the first substance. The transfer source surface includes a projecting point group which is made of the first resin-based material and which protrudes in the thickness direction of the transfer layer to scatter external light, and the transfer source in the transfer layer includes the second resin-based material. In the region including the surface, the composition is different in the thickness direction of the transfer layer, and the ratio of the content of the first resin material to the content of the second resin material on the transfer source surface side is the transfer The ratio of the content of the first resin-based material to the content of the second resin-based material on the side opposite to the original surface side is higher. Thus, the appearance layer of the optical panel according to the present invention can be used as a transfer layer having a transfer source surface for forming a transfer surface on a transfer target. The above-mentioned transfer body may contain a third substance having compatibility with the first substance. The third substance is preferably a phenolic compound, more preferably a phenolic compound having a melting point of 100 ° C. or less, particularly preferably a hindered phenolic compound.

本発明は、また別の一態様として、外光を散乱する突出点群を備える転写元面を有する転写層を備える転写体の製造方法を提供する。かかる製造方法は、電離放射線重合性の第1物質と、前記第1物質とは異なる電離放射線重合性の第2物質と、前記第2物質よりも前記第1物質を溶解しやすい第1溶媒と、前記第1物質よりも前記第2物質を溶解しやすく前記第1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を、基材の一方の面に塗布して前記基材上に塗膜を形成する第1ステップ;前記塗膜に含有される前記第1溶媒を揮発させることにより、前記第1物質を含む析出体を前記塗膜の表面に位置させて析出塗膜を得る第2ステップ;および前記析出塗膜の少なくとも一部の領域に電離放射線を照射することにより、前記電離放射線が照射された領域に位置する前記第1物質および前記第2物質を重合させる第3ステップを備え、前記第3ステップにより、前記突出点群を備える前記転写元面が形成される。   According to another aspect of the present invention, there is provided a method of manufacturing a transfer body including a transfer layer having a transfer source surface including a projecting point group that scatters external light. This manufacturing method comprises: an ionizing radiation polymerizable first substance; an ionizing radiation polymerizable second substance different from the first substance; and a first solvent which dissolves the first substance more easily than the second substance. A liquid containing a second solvent which dissolves the second substance more easily than the first substance and which has a boiling point higher than the first solvent is applied to one surface of the base material, and the base material is coated on the base material. A first step of forming a coating film; by depositing the first substance-containing precipitate on the surface of the coating film by volatilizing the first solvent contained in the coating film, a deposited coating film is obtained A second step; and a third step of polymerizing the first substance and the second substance located in the area irradiated with the ionizing radiation by irradiating the ionizing radiation to at least a partial area of the deposited coating film. And, in the third step, The transfer flank with a point cloud is formed.

上記の転写体の製造方法において、前記転写層は、前記突出点群を備える面を有する第1領域と、前記突出点群を備えない面を有する第2領域とからなり、前記第3ステップでは、前記析出塗膜の一部の領域である第1塗膜領域について前記電離放射線を照射することにより、前記第1塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第1領域を形成し、前記第3ステップに続いて、前記析出塗膜における前記電離放射線が照射されていない第2塗膜領域を加熱して、前記第2塗膜領域の面平滑性を高める第4ステップ;および前記面平滑性が高められた第2塗膜領域に電離放射線を照射することにより、前記第2塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第2領域を形成する第5ステップを備えていてもよい。かかる製造方法によれば、転写層の転写元面が位置する面に平滑性に優れる面を設けることができる。   In the method of manufacturing a transfer body as described above, the transfer layer includes a first area having a surface provided with the protruding point group and a second area having a surface not provided with the protruding point group, and in the third step The first substance and the second substance located in the first coating region are polymerized by irradiating the first coating region, which is a partial region of the deposited coating, with the ionizing radiation; The first coating region is formed, and following the third step, the second coating region not irradiated with the ionizing radiation in the deposited coating is heated to make the surface smoothness of the second coating region A fourth step of enhancing; and irradiating the second coating film area having the enhanced surface smoothness with ionizing radiation to polymerize the first substance and the second substance located in the second coating film area; A fifth step forming the second region It may be provided with a flop. According to this manufacturing method, it is possible to provide a surface with excellent smoothness on the surface on which the transfer source surface of the transfer layer is located.

上記の転写体の製造方法において、前記第4ステップでは、前記析出塗膜における前記第1物質を含む析出体が溶融するように加熱を行ってもよい。この場合において、前記液状体は前記第1物質に対する相溶性を有する第3物質を含有し、前記第2ステップで形成される前記第1物質を含む析出体は前記第3物質を含み、前記第1物質を含む析出体は前記第1物質からなる析出体よりも融点が低いことが好ましい。第3物質はフェノール系化合物が好ましく、融点が100℃以下のフェノール系化合物がさらに好ましく、ヒンダードフェノール系化合物が特に好ましい。   In the method of manufacturing a transfer body described above, in the fourth step, heating may be performed so as to melt the precipitate containing the first substance in the deposited coating film. In this case, the liquid contains a third substance having compatibility with the first substance, and the precipitate containing the first substance formed in the second step contains the third substance, and The precipitate containing one substance is preferably lower in melting point than the precipitate consisting of the first substance. The third substance is preferably a phenolic compound, more preferably a phenolic compound having a melting point of 100 ° C. or less, particularly preferably a hindered phenolic compound.

本発明によれば、反射防止機能を果たすために微粒子の存在を必須としない光学パネル、かかる光学パネルの製造方法および上記の光学パネルを備える機器が提供される。   According to the present invention, there is provided an optical panel which does not require the presence of fine particles to perform an antireflective function, a method of manufacturing such an optical panel, and an apparatus comprising the optical panel described above.

本発明の一実施形態に係る光学パネルの構造を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the structure of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the optical panel which concerns on one Embodiment of this invention. 本発明の一実施形態に係る光学パネルの製造方法(第1ステップ)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (the 1st step) of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法(第2ステップ)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (the 2nd step) of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法(第3ステップ)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (3rd step) of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法(第3ステップ後)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (after the 3rd step) of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法(第4ステップ)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (the 4th step) of the optical panel concerning one embodiment of the present invention. 本発明の一実施形態に係る光学パネルの製造方法(第5ステップ)を模式的に示す部分断面図である。It is a fragmentary sectional view showing typically the manufacturing method (the 5th step) of the optical panel concerning one embodiment of the present invention.

以下、本発明の実施の形態について図面を参照しつつ説明する。なお、各図面中、同様の構成要素には同一の符号を付して詳細な説明は適宜省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the same components are denoted by the same reference numerals and the detailed description will be appropriately omitted.

図1は、本発明の一実施形態に係る光学パネルを模式的に示す部分断面図である。   FIG. 1 is a partial cross-sectional view schematically showing an optical panel according to an embodiment of the present invention.

図1に示されるように、本発明の一実施形態に係る光学パネル100は、透光性を備えた基材10と、基材10の上に位置する外観層20とを備える。   As shown in FIG. 1, an optical panel 100 according to an embodiment of the present invention includes a light transmitting base material 10 and an appearance layer 20 located on the base material 10.

基材10を構成する材料は適切な透光性を有する限り、限定されない。かかる材料として、ポリエチレンテレフタレート、ポリカーボネート、アクリル樹脂、ガラスなどが例示される。基材は、複数の部材の積層構造体から構成されていてもよい。   The material which comprises the base material 10 is not limited as long as it has appropriate translucency. Examples of such a material include polyethylene terephthalate, polycarbonate, acrylic resin, glass and the like. The substrate may be composed of a laminated structure of a plurality of members.

外観層20は、図1に示されるように、基材10に直接的に接するように設けられていてもよいし、基材10と外観層20との間に介在層が存在していてもよい。かかる介在層は、基材10と同様に、適切な透光性を有するべきである。   The appearance layer 20 may be provided so as to be in direct contact with the substrate 10 as shown in FIG. 1, or even if there is an intervening layer between the substrate 10 and the appearance layer 20. Good. Such an intervening layer, like the substrate 10, should have appropriate translucency.

外観層20は、光学パネル100の外観層20側からの入射光の反射率が相対的に低い第1領域R1および反射率が相対的に高い第2領域R2を備える。外観層20は、第1樹脂系材料および第2樹脂系材料を含む。第1領域R1の面R1Aは、第1樹脂系材料からなり外観層20の厚さ方向に突出して外光を散乱する突出点群21を備える。   The appearance layer 20 includes a first region R1 in which the reflectance of incident light from the appearance layer 20 side of the optical panel 100 is relatively low, and a second region R2 in which the reflectance is relatively high. The appearance layer 20 includes a first resin-based material and a second resin-based material. The surface R1A of the first region R1 is provided with a projecting point group 21 which is made of a first resin material and which protrudes in the thickness direction of the appearance layer 20 and scatters external light.

第1樹脂系材料および第2樹脂系材料の具体的な組成は限定されない。アクリル系樹脂、エポキシ系樹脂など電離放射線重合性の物質の重合体を含有していてもよい。本明細書において、「電離放射線」とは、光(赤外線、可視光、および紫外線を含む。)、X線等の電磁波および電子など、原子・分子を直接的または間接的に電離させることが可能な放射線を意味する。   The specific composition of the first resin material and the second resin material is not limited. It may contain a polymer of an ionizing radiation polymerizable substance such as an acrylic resin or an epoxy resin. In the present specification, "ionizing radiation" can directly or indirectly ionize atoms and molecules such as light (including infrared light, visible light, and ultraviolet light), electromagnetic waves such as X-rays, and electrons. Mean radiation.

第1樹脂系材料と第2樹脂系材料とは組成が異なっていてもよいし、共通であってもよい。一具体例として、第1樹脂系材料は電離放射線重合性の第1物質の重合体を含み、第2樹脂系材料は、第1物質とは異なる電離放射線重合性の第2物質の重合体を含む。この場合において、外観層20は、重合開始剤を含有していてもよい。重合開始剤の具体例として、α‐ヒドロキシアルキルフェノン、ビス(2,4,6‐トリメチルベンゾイル)‐フェニルフォスフィンオキサイドなどの光重合開始剤が挙げられる。   The first resin-based material and the second resin-based material may have different compositions or be in common. As one specific example, the first resin material includes a polymer of an ionizing radiation polymerizable first substance, and the second resin material includes a polymer of an ionizing radiation polymerizable second substance different from the first substance. Including. In this case, the appearance layer 20 may contain a polymerization initiator. Specific examples of the polymerization initiator include photopolymerization initiators such as α-hydroxyalkylphenone and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide.

図1に示される外観層20の第2領域R2は、外観層20の厚さ方向の全体が第1樹脂系材料と第2樹脂系材料との混合材料からなる層24からなる。   In the second region R2 of the appearance layer 20 shown in FIG. 1, the entire thickness direction of the appearance layer 20 is formed of a layer 24 made of a mixed material of a first resin material and a second resin material.

外観層20の厚さは限定されない。例示的に示せば、外観層20の厚さは、0.001μm以上200μm以下であり、1μm以上20μm以下であることが好ましい場合がある。   The thickness of the appearance layer 20 is not limited. If illustrated as an example, the thickness of the appearance layer 20 may be 0.001 μm or more and 200 μm or less, and preferably 1 μm or more and 20 μm or less.

外観層20の第1領域R1は、突出点群21を備えるため、光学パネル100の外観層20側からの入射光の反射率が、第2領域R2における同様の反射率よりも低い。具体的には、外観層20の第1領域R1は、JIS K7375:2008に規定される全光線反射率が、10%以下であって、5%以下であることが好ましい場合がある。   Since the first region R1 of the appearance layer 20 includes the protruding point group 21, the reflectance of the incident light from the side of the appearance layer 20 of the optical panel 100 is lower than the similar reflectance in the second region R2. Specifically, in the first region R1 of the appearance layer 20, the total light reflectance defined in JIS K7375: 2008 may be 10% or less and preferably 5% or less.

後述するように、外観層20において、フィラー成分は任意的な含有成分である。   As described later, in the appearance layer 20, the filler component is an optional component.

第1領域R1の外観層20全体における大きさの割合および配置、ならびに第2領域R2の外観層20全体における大きさの割合および配置は、用途に応じて適宜設定されるべきものである。図1に示される光学パネル100では、第1領域R1は、平面視で外観層20の中央部に位置し、第1領域R1を平面視で囲むように第2領域R2が位置しているが、これに限定されない。第1領域R1および第2領域R2以外の領域を外観層20が有していてもよい。   The ratio and size of the size in the entire appearance layer 20 of the first region R1 and the ratio and size of the size in the entire appearance layer 20 of the second region R2 should be appropriately set according to the application. In the optical panel 100 shown in FIG. 1, the first region R1 is located at the center of the appearance layer 20 in plan view, and the second region R2 is located so as to surround the first region R1 in plan view. Not limited to this. The appearance layer 20 may have a region other than the first region R1 and the second region R2.

第1領域R1は突出点群21において外光を散乱させることから、突出点群21を備える面(第1領域面)R1Aは第2領域R2の面よりも粗な面となる。具体的には、第1領域面R1Aは、JIS B0601:2001において規定される表面粗さの最大高さRzが、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、1.5μm以上であることが特に好ましい。第1領域面R1Aの表面粗さの上限は限定されないが、第1領域面R1Aの表面粗さが過度に大きい場合には、光学パネル100の透光性が低下してしまう場合がある。光学パネル100は、基材10がプラスチックからなる場合を例とすると、JIS 7375:2008に規定される全光線透過率が50%以上(好ましくは70%以上、より好ましくは90%以上)となる程度の透光性を有するように、第1領域面R1Aの表面粗さは設定されるべきである。   Since the first region R1 scatters external light in the protruding point group 21, the surface (first region surface) R1A including the protruding point group 21 is a rougher surface than the surface of the second region R2. Specifically, in the first region surface R1A, the maximum height Rz of the surface roughness defined in JIS B0601: 2001 is preferably 0.5 μm or more, more preferably 1 μm or more, 1 It is particularly preferable that the thickness is 0.5 μm or more. Although the upper limit of the surface roughness of the first region surface R1A is not limited, when the surface roughness of the first region surface R1A is excessively large, the light transmittance of the optical panel 100 may be reduced. In the optical panel 100, the total light transmittance defined in JIS 7375: 2008 is 50% or more (preferably 70% or more, more preferably 90% or more), for example, when the base material 10 is made of plastic. The surface roughness of the first region surface R1A should be set to have a certain degree of light transmission.

図1に示されるように、第1領域面R1Aに位置する突出点群21は、第2領域R2の面(第2領域面)R2Aよりも突出している。このように突出点群21が配置されることにより、外観層20の突出点群21以外の部分における組成の自由度を高めることが可能となる場合がある。例えば、特許文献1に記載される反射防止膜は、透明樹脂中に微粒子が分散された構造を有し、透明樹脂が選択的に除去されることにより、表面に凹凸を形成して、反射防止機能を有する面が形成されている。したがって、凹凸(外観層20の突出点群21に相当する。)が形成されている領域の表面は、凹凸を有しない領域の表面をよりも必然的に窪んでしまう。   As shown in FIG. 1, the projected point group 21 located on the first area surface R1A protrudes more than the surface (second area surface) R2A of the second area R2. By arranging the protruding point group 21 in this manner, it may be possible to increase the degree of freedom of the composition in the portion other than the protruding point group 21 of the appearance layer 20. For example, the antireflective film described in Patent Document 1 has a structure in which fine particles are dispersed in a transparent resin, and the transparent resin is selectively removed to form asperities on the surface to prevent reflection. A surface having a function is formed. Therefore, the surface of the region in which the unevenness (corresponding to the protruding point group 21 of the appearance layer 20) is formed is more inevitably recessed than the surface of the area having no unevenness.

第1領域R1と第2領域R2とは、全体組成が等しく、外観層20の厚さ方向の組成分布が相違していてもよい。この場合には、後述するように、共通の部材からプロセスを調整することにより第1領域R1および第2領域R2を形成することが可能な場合があり、この場合には光学パネル100は生産性に優れ、それゆえ、品質安定性にも優れる。   The overall composition of the first region R1 and the second region R2 may be equal, and the composition distribution in the thickness direction of the appearance layer 20 may be different. In this case, as described later, there are cases where it is possible to form the first region R1 and the second region R2 by adjusting the process from a common member, and in this case, the optical panel 100 has productivity. And therefore, the quality stability is also excellent.

図1に示される光学パネル100が備える外観層20では、第1領域R1は外観層20の厚さ方向に組成が相違する。具体的には、外観層20の厚さ方向において、表面側の上層部分22(突出点群21を含む。以下同じ。)と、基材10側の下層部分23との少なくとも2層構造を有する。上層部分22は第1樹脂系材料からなり、下層部分23は第2樹脂系材料からなる。上層部分22と下層部分23との界面領域では、図1に示されるように両部分(上層部分22、下層部分23)が明確に分離していてもよいし、第1樹脂系材料および第2樹脂系材料を含む層(この層は外観層20の厚さ方向に組成が変化していてもよい。)を有していてもよい。上層部分22は第1樹脂系材料を主成分とし第2樹脂系材料をある程度含有していてもよいし、下層部分23は第2樹脂系材料を主成分とし第1樹脂系材料をある程度含有していてもよい。すなわち第1領域R1では、上層部分22(基材10に対向する側とは反対側)における第1樹脂系材料の含有量の第2樹脂系材料の含有量に対する比は、下層部分23(基材10に対向する側)における記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高い。   In the appearance layer 20 provided in the optical panel 100 shown in FIG. 1, the composition of the first region R1 differs in the thickness direction of the appearance layer 20. Specifically, in the thickness direction of the appearance layer 20, it has at least a two-layer structure of the upper layer portion 22 on the surface side (including the projecting point group 21. The same applies hereinafter) and the lower layer portion 23 on the substrate 10 side. . The upper layer portion 22 is made of a first resin-based material, and the lower layer portion 23 is made of a second resin-based material. In the interface region between the upper layer portion 22 and the lower layer portion 23, as shown in FIG. 1, the two portions (upper layer portion 22, lower layer portion 23) may be clearly separated, and the first resin material and the second It may have a layer containing a resin-based material (the composition may change in the thickness direction of the appearance layer 20). The upper layer portion 22 may contain the first resin material as a main component and may contain the second resin material to some extent, and the lower layer portion 23 may mainly contain the second resin material and contain the first resin material to some extent It may be That is, in the first region R1, the ratio of the content of the first resin-based material to the content of the second resin-based material in the upper layer portion 22 (the side opposite to the side facing the substrate 10) is The ratio of the content of the first resin material to the content of the second resin material in the side facing the material 10) is higher.

本発明の一実施形態に係る光学パネル100の外観層20は、フィラー成分をさらに含んでいてもよいし、フィラー成分を含まなくてもよい。外観層20がフィラー成分を含有する場合には、フィラー成分とマトリックス成分(樹脂成分)との間の密着性が経時的に変化するなどの理由により、外観層20に白化現象が生じる場合がある。したがって、外観層20はフィラー成分を含有しないことが好ましい場合もある。外観層20がフィラー成分を含有する場合において、フィラー成分の種類は特に限定されない。フィラー成分はシリカ、ジルコニア、チタニアのような無機系材料から構成されていてもよいし、メラミン樹脂のような有機系材料から構成されていてもよい。フィラー成分は有機系材料と無機系材料との双方を含有していてもよい。また、フィラー成分の粒径分布も任意である。これに対し、特許文献1に記載される外観層に相当する層は、前述のように、フィラー成分の粒径分布を精密に制御する必要がある。   The appearance layer 20 of the optical panel 100 according to an embodiment of the present invention may further contain a filler component or may not contain a filler component. When the appearance layer 20 contains a filler component, a whitening phenomenon may occur in the appearance layer 20 because the adhesion between the filler component and the matrix component (resin component) changes with time. . Therefore, it may be preferable that the appearance layer 20 does not contain a filler component. When the appearance layer 20 contains a filler component, the type of the filler component is not particularly limited. The filler component may be composed of an inorganic material such as silica, zirconia, or titania, or may be composed of an organic material such as a melamine resin. The filler component may contain both an organic material and an inorganic material. Also, the particle size distribution of the filler component is optional. On the other hand, in the layer corresponding to the appearance layer described in Patent Document 1, as described above, it is necessary to precisely control the particle size distribution of the filler component.

以上説明した本発明の一実施形態に係る光学パネルが備える外観層20は、突出点群21を備える第1領域R1と突出点群を備えない第2領域R2とから構成されるが、これに限定されない。例えば、外観層20の全面が突出点群21を備えていてもよいし、第1領域R1および第2領域R2とは光学的な特性が異なる他の領域を備えていてもよい。   The appearance layer 20 included in the optical panel according to the embodiment of the present invention described above is configured of the first region R1 including the protruding point group 21 and the second region R2 including no protruding point group. It is not limited. For example, the entire surface of the appearance layer 20 may be provided with the projecting point group 21, or the first region R1 and the second region R2 may be provided with other regions having different optical characteristics.

本発明の一実施形態に係る外観層を備える光学パネルの製造方法は限定されない。次に説明する製造方法を採用すれば、本発明の一実施形態に係る光学パネルを効率的に製造することができる。   The manufacturing method of the optical panel provided with the appearance layer which concerns on one Embodiment of this invention is not limited. The optical panel according to the embodiment of the present invention can be efficiently manufactured by adopting the manufacturing method described below.

図2は、本発明の一実施形態に係る光学パネルの製造方法を示すフローチャートである。本発明の一実施形態に係る光学パネルの製造方法は、次に説明する第1ステップから第3ステップを備え、さらに、第4ステップおよび第5ステップを備える。第1ステップから第3ステップを実施することにより、全面に突出点群を有する外観層を備える光学パネルを製造することが可能である。第1ステップから第5ステップを実施することにより、図1に示されるような第1領域R1および第2領域R2から構成される外観層20を備える光学パネル100を製造することができる。以下の説明では、図2に示されるように第1ステップから第5ステップを実施して、図1に示される光学パネル100を製造する場合を具体例とする。   FIG. 2 is a flowchart showing a method of manufacturing an optical panel according to an embodiment of the present invention. A method of manufacturing an optical panel according to an embodiment of the present invention includes first to third steps described below, and further includes fourth and fifth steps. By performing the first to third steps, it is possible to manufacture an optical panel provided with an appearance layer having projecting point groups on the entire surface. By performing the first to fifth steps, it is possible to manufacture the optical panel 100 provided with the appearance layer 20 configured of the first region R1 and the second region R2 as shown in FIG. In the following description, the first to fifth steps are performed as shown in FIG. 2 to manufacture the optical panel 100 shown in FIG. 1 as a specific example.

図3は、本発明の一実施形態に係る光学パネルの製造方法(第1ステップ)を模式的に示す部分断面図である。図4は、本発明の一実施形態に係る光学パネルの製造方法(第2ステップ)を模式的に示す部分断面図である。図5は、本発明の一実施形態に係る光学パネルの製造方法(第3ステップ)を模式的に示す部分断面図である。図6は、本発明の一実施形態に係る光学パネルの製造方法(第3ステップ後)を模式的に示す部分断面図である。図7は、本発明の一実施形態に係る光学パネルの製造方法(第4ステップ)を模式的に示す部分断面図である。図8は、本発明の一実施形態に係る光学パネルの製造方法(第5ステップ)を模式的に示す部分断面図である。   FIG. 3 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (first step) according to an embodiment of the present invention. FIG. 4 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (second step) according to an embodiment of the present invention. FIG. 5 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (third step) according to an embodiment of the present invention. FIG. 6 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (after the third step) according to an embodiment of the present invention. FIG. 7 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (fourth step) according to an embodiment of the present invention. FIG. 8 is a partial cross-sectional view schematically showing a method of manufacturing an optical panel (fifth step) according to an embodiment of the present invention.

まず、電離放射線重合性の第1物質と、第1物質とは異なる電離放射線重合性の第2物質と、第2物質よりも第1物質を溶解しやすい第1溶媒と、第1物質よりも前記第2物質を溶解しやすく1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を用意する。この液状体の組成の具体例は次のとおりである。液状体は液体のみから構成されていなくてもよく、フィラー成分を含有していてもよい。
第1物質:多官能アクリレート樹脂
第1溶媒:メチルイソブチルケトン
第2物質:ポリエーテル系アクリレート樹脂
第2溶媒:1−プロパノール
First, the ionizing radiation polymerizable first substance, the ionizing radiation polymerizable second substance different from the first substance, the first solvent which dissolves the first substance more easily than the second substance, and the first substance A liquid containing a second solvent which easily dissolves the second substance and a second solvent having a boiling point higher than that of one solvent is prepared. Specific examples of the composition of this liquid are as follows. The liquid does not have to be composed only of the liquid, and may contain a filler component.
First substance: Polyfunctional acrylate resin First solvent: Methyl isobutyl ketone Second substance: Polyether acrylate resin Second solvent: 1-propanol

第1物質、第1溶媒、第2物質および第2溶媒のそれぞれは、一種類の物質から構成されていてもよいし、複数種類の物質の混合体から構成されていてもよい。第1物質のSP値と第1溶媒のSP値とが近くなるように設定することにより、第1物質を第1溶媒に溶解しやすくすることができる。第2物質のSP値と第2溶媒のSP値とが近くなるように設定することにより、第2物質を第2溶媒に溶解しやすくすることができる。例えば、第1物質および第2物質が、いずれもアクリレート樹脂やメタクリレート樹脂のようなアクリル系樹脂であっても、内部構造を変化させること(内部構造の具体例として、エーテル構造、ポリエステル構造、ウレタン構造、フェノール構造などが挙げられる。)により、SP値を変化させることができる。同じような構造を有する材料であっても、分子量を変化させることによってSP値を変化させることができる場合もある。   Each of the first substance, the first solvent, the second substance and the second solvent may be composed of one kind of substance or may be composed of a mixture of plural kinds of substances. By setting the SP value of the first substance and the SP value of the first solvent to be close to each other, the first substance can be easily dissolved in the first solvent. The second substance can be easily dissolved in the second solvent by setting the SP value of the second substance and the SP value of the second solvent to be close to each other. For example, even if each of the first substance and the second substance is an acrylic resin such as an acrylate resin or a methacrylate resin, changing the internal structure (as a specific example of the internal structure, an ether structure, a polyester structure, urethane SP value can be changed depending on the structure, phenol structure and the like. Even in the case of materials having similar structures, it may be possible to change the SP value by changing the molecular weight.

上記のように各成分のSP値を設定するとともに、さらに、第1溶媒のSP値と第2溶媒のSP値とが大きく異ならないように設定すれば、第1溶媒と第2溶媒とが混和してなる混合溶媒に第1物質および第2物質を溶解させることにより液状体を得ることができる。あるいは、第1溶媒に第1物質を溶解させて第1溶液を得て、第2溶媒に第2物質を溶解させて第2溶液を得て、第1溶液と第2溶液とを混合することによって液状体を得てもよい。液状体がフィラー成分を含有する場合には、フィラー成分を添加するタイミングは任意である。   If the SP value of each component is set as described above and the SP value of the first solvent and the SP value of the second solvent do not differ significantly, the first solvent and the second solvent are mixed. The liquid substance can be obtained by dissolving the first substance and the second substance in the mixed solvent. Alternatively, the first substance is dissolved in the first solvent to obtain the first solution, and the second substance is dissolved in the second solvent to obtain the second solution, and the first solution and the second solution are mixed. The liquid may be obtained by When the liquid contains a filler component, the timing of adding the filler component is arbitrary.

第1ステップでは、図3に示されるように、基材10の一方の面に液状体を塗布して基材10上に塗膜30を形成する(S101)。なお、図3では、以降の説明を容易にするために、第1溶媒および第2溶媒からなる混合溶媒31に、第1物質41および第2物質42が溶解している状態を、第1物質41および第2物質42を破線で示すことにより表現している。実際には、第1物質41および第2物質42は、塗膜30において混合溶媒31内に溶解し、個別に識別できる状態ではない。   In the first step, as shown in FIG. 3, a liquid is applied to one surface of the substrate 10 to form a coating film 30 on the substrate 10 (S101). In FIG. 3, in order to facilitate the description below, the state in which the first substance 41 and the second substance 42 are dissolved in the mixed solvent 31 composed of the first solvent and the second solvent is referred to as the first substance. 41 and the second substance 42 are represented by broken lines. In practice, the first substance 41 and the second substance 42 are dissolved in the mixed solvent 31 in the coating film 30 and are not in an individually distinguishable state.

第2ステップでは、塗膜30に含有される第1溶媒32を揮発させることにより、第1物質41を塗膜の表面に析出させて析出塗膜34を得る(S102,図4)。第1溶媒32の揮発方法は限定されない。前述のように、第1溶媒32は第2溶媒33よりも沸点が低いため、基材10上の塗膜30を放置する、あるいは緩やかに乾燥すると、塗膜30内の混合溶媒31から第1溶媒32が第2溶媒33よりも優先的に揮発して、塗膜30内の第1溶媒32の含有量が低下する。第1物質41は主として第1溶媒32に溶解しているため、塗膜30内の第1溶媒32の量が少なくなると、塗膜30に溶解しうる第1物質41の量が少なくなる。その結果、図4に示されるように、第1物質40は析出体41cとなって塗膜30上に位置し、基材10上には析出塗膜34が形成されることになる。   In the second step, the first substance 41 is deposited on the surface of the coating by volatilizing the first solvent 32 contained in the coating 30 to obtain a deposited coating 34 (S102, FIG. 4). The volatilization method of the first solvent 32 is not limited. As described above, since the first solvent 32 has a boiling point lower than that of the second solvent 33, when the coating film 30 on the substrate 10 is allowed to stand or is gently dried, the first mixed solvent 31 in the coating film 30 The solvent 32 volatilizes preferentially over the second solvent 33, and the content of the first solvent 32 in the coating film 30 decreases. Since the first substance 41 is mainly dissolved in the first solvent 32, when the amount of the first solvent 32 in the coating 30 decreases, the amount of the first substance 41 that can dissolve in the coating 30 decreases. As a result, as shown in FIG. 4, the first substance 40 becomes a precipitate 41 c and is positioned on the coating film 30, and the deposition coating 34 is formed on the substrate 10.

図4では、塗膜30の混合溶媒31に含まれていた全ての第1溶媒32が揮発して、析出塗膜34における溶媒は全て第2溶媒33から構成されているが、これに限定されない。析出塗膜34に含まれる溶媒に第1溶媒32がある程度残留していてもよい。また、図4では、塗膜30に含有されていた第1物質41の全てが析出体41cとなっているが、これに限定されない。析出塗膜34の溶媒内にある程度の第1物質41が溶解していてもよい。また、後述するように、析出体41cは第1物質40以外の物質(第3物質)を積極的に含有する場合もある。   In FIG. 4, all the first solvents 32 contained in the mixed solvent 31 of the coating film 30 are volatilized, and all the solvents in the deposited coating 34 are composed of the second solvent 33, but the invention is not limited thereto. . The first solvent 32 may remain to some extent in the solvent contained in the deposited coating 34. Moreover, in FIG. 4, although all of the 1st substance 41 contained in the coating film 30 are the precipitates 41c, it is not limited to this. A certain amount of the first substance 41 may be dissolved in the solvent of the deposited coating 34. In addition, as described later, the precipitate 41 c may positively contain a substance (third substance) other than the first substance 40.

第3ステップでは、析出塗膜34の少なくとも一部の領域に電離放射線を照射することにより、電離放射線が照射された領域に位置する第1物質41および第2物質42を重合させる(S103,図5,図6)。図5では、第1領域R1および第2領域R2を有する外観層20を備える光学パネル100を製造するために、第1領域R1に対応する領域に開口部を有するマスクMSKが用いられている。マスクMSKの開口部に位置する、析出塗膜34の一部の領域である第1塗膜領域R11に、光源LRDからの電離放射線(この場合は紫外光)UVLが照射される。その結果、図6に示されるように、第1塗膜領域R11に位置する第1物質41(少なくとも一部は析出体41cとなっている。)および第2物質42が重合して、その全体が第1樹脂系材料および第2樹脂系材料からなる第1領域R1が形成される。なお光源LRDおよびマスクMSKを基材10の裏側(基材10の析出塗膜34が設けられている側とは反対側)に配置して、基材10の裏側から電離放射線(図5の場合は紫外光)UVLを照射して、基材10を透過した電離放射線UVLを析出塗膜34に照射して第1物質41および第2物質42を重合させることもできる。   In the third step, at least a partial region of the deposited film 34 is irradiated with ionizing radiation to polymerize the first substance 41 and the second substance 42 located in the region irradiated with the ionizing radiation (S103, FIG. 5, 6). In FIG. 5, in order to manufacture the optical panel 100 provided with the appearance layer 20 having the first region R1 and the second region R2, the mask MSK having an opening in the region corresponding to the first region R1 is used. Ionizing radiation (in this case, ultraviolet light) UVL from a light source LRD is applied to a first coating film region R11 which is a partial region of the deposited coating 34 located at the opening of the mask MSK. As a result, as shown in FIG. 6, the first substance 41 (at least a part of which is a precipitate 41c) located in the first coating film region R11 and the second substance 42 are polymerized, and the whole thereof is obtained. A first region R1 is formed of the first resin material and the second resin material. The light source LRD and the mask MSK are disposed on the back side of the substrate 10 (the side opposite to the side on which the deposition coating 34 of the substrate 10 is provided), and ionizing radiation (in the case of FIG. The first substance 41 and the second substance 42 can also be polymerized by irradiating the deposited film 34 with the ionizing radiation UVL transmitted through the substrate 10 by irradiating the UV light with UV light.

図6に示される第1領域R1は、析出塗膜34の厚さ方向に異なる組成分布を有する。具体的には、基材10側には、第2物質42から形成された第2樹脂系材料からなる部分(下層部分)23が位置する。突出点群21を含む基材10から遠位な側には、第1物質41の析出体41cから形成された第1樹脂系材料からなる突出点群21を含んで、第1物質41から形成された第1樹脂系材料からなる部分(上層部分)22が位置する。   The first region R1 shown in FIG. 6 has a different composition distribution in the thickness direction of the deposited film 34. Specifically, a portion (lower layer portion) 23 made of the second resin-based material formed of the second substance 42 is located on the substrate 10 side. On the side distant from the base material 10 including the projecting point group 21, the projecting point group 21 made of the first resin material formed from the precipitate 41c of the first substance 41 is formed from the first substance 41 The portion (upper layer portion) 22 made of the first resin-based material is positioned.

このように、第3ステップを実施することにより、外観層20の突出点群21を備える面R1Aが形成される。なお、第3ステップにおいて、マスクMSKを用いず、析出塗膜34の全体に電離放射線UVLを照射すれば、突出点群21を全面に備える外観層20を析出塗膜34から形成することができる。   As described above, by performing the third step, the surface R1A including the projecting point group 21 of the appearance layer 20 is formed. In the third step, if the entire deposition coating 34 is irradiated with the ionizing radiation UVL without using the mask MSK, the appearance layer 20 having the projecting point group 21 on the entire surface can be formed from the deposition coating 34 .

第4ステップでは、析出塗膜34における電離放射線UVLが照射されていない領域である第2塗膜領域R12を加熱して、第2塗膜領域R12の面平滑性を高める(S104,図7)。加熱手段は限定されない。図7では、外観層20全体を加熱可能な加熱装置HDにより第2塗膜領域R12を加熱する。この加熱装置HDにより第1領域R1も加熱されるが、第1領域R1はすでに重合反応が完了しているため、加熱装置HDからの熱によって、突出点群21の形状が大きく変化することはない。第1物質41の析出体41cの融点、第1物質41から形成された突出点群21の軟化点、および加熱装置HDの加熱温度を適切に設定することにより、析出体41cは適切に溶融して析出塗膜34内に拡散して析出塗膜34の第2塗膜領域R12の面平滑性を高めることができ、その一方で突出点群21によりもたらされる第1領域R1が粗面化された状態を維持することが可能である。   In the fourth step, the second coating film region R12 which is a region not irradiated with the ionizing radiation UVL in the deposited coating film 34 is heated to improve the surface smoothness of the second coating film region R12 (S104, FIG. 7) . The heating means is not limited. In FIG. 7, the second coating film region R <b> 12 is heated by the heating device HD capable of heating the entire appearance layer 20. Although the first region R1 is also heated by the heating device HD, the polymerization reaction is already completed in the first region R1. Therefore, the shape of the projecting point group 21 is largely changed by the heat from the heating device HD. Absent. By appropriately setting the melting point of the precipitate 41c of the first substance 41, the softening point of the projecting point group 21 formed of the first substance 41, and the heating temperature of the heating device HD, the precipitate 41c is appropriately melted. Can be diffused in the deposited coating 34 to enhance the surface smoothness of the second coated region R12 of the deposited coating 34, while the first region R1 provided by the projecting point group 21 is roughened. It is possible to maintain a steady state.

第2塗膜領域R12において析出体41cが溶融して析出塗膜34内に拡散することを促進する観点から、液状体は、第1物質41に対して相溶性を有し、析出体41cの第2溶媒33への溶解を促進する第3物質を含有していることが好ましい。液状体が第3物質を含有する場合には、第2ステップにおいて形成される析出体41cは、第1物質41と第3物質とを含む。この析出体41cの融点が第1物質の析出体の融点よりも低くなるように、第3物質は選定される。この観点から、第3物質の融点は低いことが好ましい。具体的には、第3物質の融点は、第1物質41の融点の2倍の温度以下であることが好ましく、第1物質41の融点の1.5倍の温度以下であることがより好ましい。   From the viewpoint of promoting the melting and diffusion of the precipitates 41c in the second coating film region R12 into the deposited film 34, the liquid has compatibility with the first substance 41, and It is preferable to contain a third substance that promotes the dissolution in the second solvent 33. When the liquid contains the third substance, the precipitate 41c formed in the second step includes the first substance 41 and the third substance. The third substance is selected such that the melting point of the precipitate 41c is lower than the melting point of the precipitate of the first substance. From this viewpoint, the melting point of the third substance is preferably low. Specifically, the melting point of the third substance is preferably not more than twice the melting point of the first substance 41, and more preferably not more than 1.5 times the melting point of the first substance 41 .

析出体41cの析出塗膜34内への拡散が促進されることにより、第2塗膜領域R12に位置する析出塗膜34の面平滑性を高めることがより安定的に実現される。したがって、液状体に第3物質を含有させることにより、第2塗膜領域R12に位置する析出塗膜34から形成される外観層20の第2領域R2の面平滑性を高めることが可能である。また、液状体に第3物質を含有させることにより析出体41cが析出塗膜34内により安定的に溶解するため、第2塗膜領域R12に位置する析出塗膜34の均一性が高まる。このため、第2塗膜領域R12に位置する析出塗膜34から形成される外観層20の第2領域R2は、曇りやギラツキといった外観層20の不均一性に起因する外観不良が生じにくい。なお、曇りはヘイズ(ヘーズ)により定量的に評価することができる(JIS K7136:2000)。このように液状体に含有させた第3物質は、外観層20においても残存する。したがって、外観層20が第3物質を含有する場合には、外観層20の第2領域R2は高い面平滑性を有しやすく、また、曇りやギラツキといった外観層20の不均一性に起因する外観不良が生じにくい。   By promoting the diffusion of the precipitate 41c into the deposited coating 34, the surface smoothness of the deposited coating 34 located in the second coating region R12 is more stably realized. Therefore, by containing the third substance in the liquid, it is possible to improve the surface smoothness of the second region R2 of the appearance layer 20 formed of the deposited coating 34 located in the second coating region R12. . In addition, since the precipitates 41c are more stably dissolved in the deposited film 34 by containing the third substance in the liquid, the uniformity of the deposited film 34 located in the second film region R12 is enhanced. For this reason, in the second region R2 of the appearance layer 20 formed of the deposited coating 34 located in the second coating region R12, appearance defects due to nonuniformity of the appearance layer 20 such as fogging and glare do not easily occur. The haze can be quantitatively evaluated by haze (JIS K7136: 2000). The third substance thus contained in the liquid also remains in the appearance layer 20. Therefore, when the appearance layer 20 contains the third substance, the second region R2 of the appearance layer 20 tends to have high surface smoothness, and is caused by the non-uniformity of the appearance layer 20 such as fogging or glare. Poor appearance is unlikely to occur.

第3物質は第1物質41が有する官能基と共通する官能基を有していることにより、第1物質41への相溶性を実現できる場合がある。例えば、第1物質41が水酸基を有している場合には、第3物質も水酸基を有することにより、第1物質41への相溶性を実現することができる。また、取扱い性を高めるとともに塗膜30や外観層20の均一性を高める観点から、第3物質は混合溶媒31や第1溶媒32に溶解しうることが好ましい。第3物質の第1物質41の質量および第2物質42の質量の総和を基準とした添加量は限定されない。塗膜30や外観層20の均一性を確保できる限り、第3物質の添加量は高ければ高いほど析出体41cの融点を効率的に降下させるため、好ましい。   The third substance may achieve compatibility with the first substance 41 by having a functional group common to the functional group of the first substance 41. For example, when the first substance 41 has a hydroxyl group, compatibility with the first substance 41 can be realized by the third substance also having a hydroxyl group. Further, from the viewpoint of enhancing the handleability and the uniformity of the coating film 30 and the appearance layer 20, it is preferable that the third substance can be dissolved in the mixed solvent 31 or the first solvent 32. The amount of addition based on the sum of the mass of the first substance 41 and the mass of the second substance 42 of the third substance is not limited. As long as the uniformity of the coating film 30 and the appearance layer 20 can be ensured, the higher the addition amount of the third substance, the more preferable because the melting point of the precipitate 41c is lowered efficiently.

上記の水酸基を有する第3物質の例として、フェノール系化合物(芳香環に水酸基が結合した部位を有する化合物)を挙げることができ、融点が100℃以下のフェノール系化合物を好ましい例、ヒンダードフェノール系化合物をより好ましい例、融点が100℃以下のヒンダードフェノール化合物を特に好ましい例として挙げることができる。そのような、融点が100℃以下のヒンダードフェノール系化合物の具体例として、後述する実施例において使用された、3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオン酸オクタデシル、ブチルヒドロキシアニソール、2,6−ジ−tert−ブチル−4−メチルフェノール、および4−tert−ブチルフェノールが挙げられる。   Examples of the above-mentioned third substance having a hydroxyl group include phenol compounds (compounds having a site in which a hydroxyl group is bonded to an aromatic ring), and a phenol compound having a melting point of 100 ° C. or less is a preferred example, hindered phenol More preferable examples of the compound of the present invention and hindered phenol compounds having a melting point of 100 ° C. or less can be mentioned as particularly preferable examples. As a specific example of such a hindered phenol compound having a melting point of 100 ° C. or less, octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate used in the examples described later And butyl hydroxyanisole, 2,6-di-tert-butyl-4-methylphenol, and 4-tert-butylphenol.

第5ステップでは、第4ステップの実施により面平滑性が高められた状態にある第2塗膜領域R12に光源LRDからの電離放射線UVLを照射することにより、第2塗膜領域R12に位置する第1物質41および第2物質42を重合させて、第1樹脂系材料および第2樹脂系材料からなる第2領域R2を形成する(S105,図8)。第1ステップから第5ステップまでを実施することにより、第1領域R1および第2領域R2を有する外観層20を備える光学パネル100が製造される。   In the fifth step, the second coating film region R12 in a state in which the surface smoothness is enhanced by the execution of the fourth step is irradiated with ionizing radiation UVL from the light source LRD to be positioned in the second coating film region R12 The first substance 41 and the second substance 42 are polymerized to form a second region R2 made of the first resin material and the second resin material (S105, FIG. 8). By performing the first to fifth steps, the optical panel 100 including the appearance layer 20 having the first region R1 and the second region R2 is manufactured.

第2ステップおよび第5ステップにおいて行われる光源LRDからの電離放射線UVLの照射の条件は、照射領域の大きさ、第1物質41および第2物質42の種類、析出塗膜34の厚さなどを考慮して適宜設定されるべきものである。   The conditions of the irradiation of ionizing radiation UVL from the light source LRD performed in the second and fifth steps include the size of the irradiation area, the types of the first substance 41 and the second substance 42, the thickness of the deposited film 34, etc. It should be set appropriately in consideration.

このような製造方法によれば、反射防止機能を直接的に果たす突出点群21は樹脂系材料から構成されるため、液状体がフィラー成分を含有するか否かと外観層20が反射防止機能を有するか否かとを独立して設定することができる。したがって、液状体は、フィラー成分をさらに含んでいてもよいし、フィラー成分を含まなくてもよい。   According to such a manufacturing method, since the protruding point group 21 directly performing the reflection preventing function is made of the resin material, the appearance layer 20 has the reflection preventing function whether the liquid contains the filler component or not. Whether or not to have can be set independently. Therefore, the liquid may further contain a filler component or may not contain a filler component.

液状体は重合開始剤を含んでいてもよい。この場合には、第1物質41および第2物質42の重合を、紫外光などの電磁波の照射により行うことができる。重合開始剤の具体例は前述のとおりである。   The liquid may contain a polymerization initiator. In this case, the polymerization of the first substance 41 and the second substance 42 can be performed by irradiation of an electromagnetic wave such as ultraviolet light. Specific examples of the polymerization initiator are as described above.

上記の製造方法では、第4ステップにおいて、析出塗膜34において析出している第1物質41の析出体41cが溶融するように加熱が行われているが、これに限定されない。例えば、析出塗膜34が加熱されることにより、第1物質41の析出体41cの第2溶媒33に対する溶解度が高まって、第2溶媒33内に第1物質41が溶解することにより、析出体41cが消失して、析出塗膜34の面平滑度が高まってもよい。   In the above-described manufacturing method, heating is performed so that the precipitate 41c of the first substance 41 deposited in the deposition coating 34 is melted in the fourth step, but is not limited thereto. For example, when the deposited film 34 is heated, the solubility of the precipitate 41c of the first substance 41 in the second solvent 33 is increased, and the first substance 41 is dissolved in the second solvent 33, whereby the precipitate is deposited. 41c may disappear and the surface smoothness of the deposited coating 34 may be enhanced.

本発明の一実施形態に係る機器は、上記の本発明の一実施形態に係る光学パネル100を備える。そのような機器の具体例として、スマートフォン、携帯電話、ノートパソコン等の携帯情報端末;テレビ、カーナビゲーション等の画像表示機器;自動車、飛行機などの移動体のインパネ(計器板)、コンソールパネルなどが挙げられる。本発明の一実施形態に係る機器は、反射防止機能を有する光学パネル100を備えるため、表示画像の視認性に優れる。   An apparatus according to an embodiment of the present invention includes the optical panel 100 according to an embodiment of the present invention described above. Specific examples of such devices include portable information terminals such as smartphones, cell phones, notebook computers, etc .; image display devices such as televisions and car navigations; instrument panels (instrument panels) of moving objects such as automobiles and airplanes, console panels, etc. It can be mentioned. The device according to an embodiment of the present invention is excellent in the visibility of the display image because it includes the optical panel 100 having the reflection preventing function.

以上説明した本発明の一実施形態に係る光学パネル100の外観層20は、被転写物に転写面を形成するための転写元面を有する転写層として用いることができる。そのような転写層を備える転写体の転写元面を被転写物に押し付けることにより、転写元面の反転面となる転写面を被転写物に形成することができる。具体的には、転写層は、電離放射線重合性の第1物質の重合体を含む第1樹脂系材料、および第1物質とは異なる電離放射線重合性の第2物質の重合体を含む第2樹脂系材料を含み、転写元面は、第1樹脂系材料からなり転写層の厚さ方向に突出して外光を散乱する突出点群を備え、転写層における転写元面を含む領域は、転写層の厚さ方向に組成が相違し、転写元面側における第1樹脂系材料の含有量の第2樹脂系材料の含有量に対する比は、転写元面側とは反対側における第1樹脂系材料の含有量の第2樹脂系材料の含有量に対する比よりも高い。上記の転写体において、第1物質に対する相溶性を有する第3物質を含んでいてもよい。転写層の他の特徴は外観層20と同様であるから、説明を省略する。   The appearance layer 20 of the optical panel 100 according to the embodiment of the present invention described above can be used as a transfer layer having a transfer source surface for forming a transfer surface on a transfer target. By pressing the transfer source surface of the transfer body provided with such a transfer layer against the transfer target, it is possible to form the transfer surface, which is the reverse surface of the transfer source surface, on the transfer target. Specifically, the transfer layer includes a first resin material containing a polymer of an ionizing radiation polymerizable first substance, and a second resin containing an ionizing radiation polymerizable second substance polymer different from the first substance. The transfer source surface includes a resin-based material, and includes a projection point group which is made of the first resin-based material and protrudes in the thickness direction of the transfer layer to scatter external light, and a region including the transfer source surface in the transfer layer is transferred The composition is different in the thickness direction of the layer, and the ratio of the content of the first resin material to the content of the second resin material on the transfer source surface side is the first resin material on the side opposite to the transfer source surface The ratio of the content of the material to the content of the second resin-based material is higher. The above-mentioned transfer body may contain a third substance having compatibility with the first substance. The other features of the transfer layer are the same as those of the appearance layer 20, and thus the description thereof is omitted.

上記の転写体は、光学パネル100の製造方法と同様の製造方法により製造することができる。かかる製造方法は、電離放射線重合性の第1物質と、第1物質とは異なる電離放射線重合性の第2物質と、第2物質よりも第1物質を溶解しやすい第1溶媒と、第1物質よりも第2物質を溶解しやすく第1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を、基材の一方の面に塗布して基材上に塗膜を形成する第1ステップ;塗膜に含有される第1溶媒を揮発させることにより、第1物質を含む析出体を塗膜の表面に位置させて析出塗膜を得る第2ステップ;および析出塗膜の少なくとも一部の領域に電離放射線を照射することにより、電離放射線が照射された領域に位置する第1物質および第2物質を重合させる第3ステップを備え、第3ステップにより、突出点群を備える転写元面が形成される。この製造方法において、基材は光学パネル100の基材とは異なり、透光性を有している必要はない。また、基材における液状体が塗布される面は平面である必要はないが、平面であることが塗膜の厚さの均一性を高める観点などから好ましい。基材は、転写体の構成要素でなくてもよい。すなわち、第3ステップ後に転写元面を備える転写層が形成されたら、この転写層を基材から剥離して、転写層単独で、あるいは転写元面が位置する面とは反対側の面を別の部材に対向配置して、その部材と転写層とを備える転写体を得てもよい。   The transfer body described above can be manufactured by the same manufacturing method as the method of manufacturing the optical panel 100. Such a manufacturing method comprises: an ionizing radiation polymerizable first substance; an ionizing radiation polymerizable second substance different from the first substance; a first solvent which dissolves the first substance more easily than the second substance; A liquid containing a second solvent that dissolves the second substance more easily than the substance and has a boiling point higher than the first solvent is applied to one surface of the substrate to form a coating film on the substrate A second step of depositing a first substance on the surface of the coating by volatilizing a first solvent contained in the coating to obtain a deposited coating; and at least one of the deposited coatings A third step of polymerizing the first substance and the second substance located in the region irradiated with ionizing radiation by irradiating the region of the part with ionizing radiation; and A face is formed. In this manufacturing method, unlike the substrate of the optical panel 100, the substrate does not have to be translucent. The surface of the substrate on which the liquid material is applied does not have to be flat, but it is preferable from the viewpoint of improving the uniformity of the thickness of the coating film. The substrate may not be a component of the transfer body. That is, when a transfer layer having a transfer source surface is formed after the third step, the transfer layer is peeled off from the substrate, and the transfer layer alone or a surface opposite to the surface on which the transfer source surface is located is separated. The transfer member may be disposed to face the member of (1) to obtain a transfer body including the member and the transfer layer.

上記の転写体の製造方法において、転写層は、突出点群を備える面を有する第1領域と、突出点群を備えない面を有する第2領域とからなり、第3ステップでは、析出塗膜の一部の領域である第1塗膜領域について電離放射線を照射することにより、第1塗膜領域に位置する第1物質および第2物質を重合させて、第1領域を形成し、第3ステップに続いて、析出塗膜における電離放射線が照射されていない第2塗膜領域を加熱して、第2塗膜領域の面平滑性を高める第4ステップ;および面平滑性が高められた第2塗膜領域に電離放射線を照射することにより、第2塗膜領域に位置する第1物質および第2物質を重合させて、第2領域を形成する第5ステップを備えていてもよい。かかる製造方法によれば、転写層の転写元面が位置する面に、平滑性に優れる面を設けることができる。   In the method of manufacturing a transfer body as described above, the transfer layer comprises a first region having a surface having a projecting point group and a second region having a surface not having a projecting point group, and in the third step, the deposited film is deposited. The first substance and the second substance located in the first coating area are polymerized to form the first area by irradiating the first coating area, which is a partial area of the first coating area, with ionizing radiation. A fourth step of heating the second coating film area which is not irradiated with ionizing radiation in the deposited coating film to increase the surface smoothness of the second coating film area; The method may further comprise a fifth step of polymerizing the first substance and the second substance located in the second coating film area by irradiating the coating film area with ionizing radiation to form a second area. According to this manufacturing method, it is possible to provide a surface with excellent smoothness on the surface on which the transfer source surface of the transfer layer is located.

上記の転写層が第1領域および第2領域を有する転写体の製造方法において、第4ステップでは、析出塗膜における第1物質を含む析出体が溶融するように加熱を行ってもよい。この場合において、液状体は第1物質に対する相溶性を有する第3物質を含有し、第2ステップで形成される第1物質を含む析出体は第3物質を含み、第1物質を含む析出体は第1物質からなる析出体よりも融点が低いことが好ましい。このような製造方法を採用することにより、第2領域の面平滑性を向上させることがより安定的に実現される。転写体の製造方法における他の特徴は、光学パネル100の製造方法と同様であるから、説明を省略する。   In the method of producing a transfer body in which the transfer layer has the first region and the second region, in the fourth step, heating may be performed so that the precipitate containing the first substance in the deposited coating film is melted. In this case, the liquid contains a third substance having compatibility with the first substance, the precipitate containing the first substance formed in the second step contains the third substance, and the precipitate contains the first substance Preferably, the melting point is lower than that of the precipitate made of the first substance. By adopting such a manufacturing method, improving the surface smoothness of the second region is more stably realized. The other features of the method of manufacturing the transfer body are the same as the method of manufacturing the optical panel 100, and thus the description thereof is omitted.

上記に本実施形態およびその適用例を説明したが、本発明はこれらの例に限定されるものではない。例えば、前述の各実施形態またはその適用例に対して、当業者が適宜、構成要素の追加、削除、設計変更を行ったものや、各実施形態の特徴を適宜組み合わせたものも、本発明の要旨を備えている限り、本発明の範囲に含有される。   Although this embodiment and its application example were described above, the present invention is not limited to these examples. For example, those skilled in the art may appropriately add, delete, or change design elements of the above-described embodiments or their application examples, or may appropriately combine the features of the embodiments. As long as it comprises the gist, it is included within the scope of the present invention.

(実施例1から実施例5および比較例1から比較例3)
以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(Examples 1 to 5 and Comparative Examples 1 to 3)
Hereinafter, the present invention will be more specifically described by way of examples and the like, but the scope of the present invention is not limited to these examples and the like.

第1物質、第1溶媒、第2物質、第2溶媒として次の材料を用意した。第1物質および第2物質は、アクリル系樹脂であり、その内部に有する構造(エーテル構造、ポリエステル構造、ウレタン構造、フェノール構造など)を変化させることにより、物質としてのSP値を互いに異なるように設定したものである。なお、第1物質の融点は48℃であった。   The following materials were prepared as a first substance, a first solvent, a second substance, and a second solvent. The first substance and the second substance are acrylic resins, and by changing the structure (ether structure, polyester structure, urethane structure, phenol structure, etc.) contained inside, the SP values as substances are made to differ from each other. It is set. The melting point of the first substance was 48 ° C.

第1物質:多官能アクリレート樹脂(ペンタエリスリトールトリアクリレート)
第1溶媒:メチルイソブチルケトン
第2物質:ポリエーテル系アクリレート樹脂(フェニル基を有するウレタンプレポリマーであって、多官能アクリレート樹脂のSP値に対して1.2倍のSP値を有する。)
第2溶媒:1−プロパノール(メチルイソブチルケトンのSP値に対して1.37倍のSP値を有する。)
First substance: Multifunctional acrylate resin (pentaerythritol triacrylate)
First solvent: methyl isobutyl ketone Second substance: polyether-based acrylate resin (a urethane prepolymer having a phenyl group and having an SP value of 1.2 times that of the polyfunctional acrylate resin)
Second solvent: 1-propanol (having an SP value of 1.37 times that of methyl isobutyl ketone)

第1物質15gを第1溶媒50mLに溶解して第1溶液を得て、第2物質15gを第2溶媒50mLに溶解して第2溶液を得た。第1溶液50mLと第2溶液50mLとを混合して、さらに重合開始剤を添加(添加量:固形分に対して2質量%)して、混合溶液を得た。用いた重合開始剤は、次の2種類のいずれかであった(表1参照)。   15 g of the first substance was dissolved in 50 mL of the first solvent to obtain a first solution, and 15 g of the second substance was dissolved in 50 mL of the second solvent to obtain a second solution. 50 mL of the first solution and 50 mL of the second solution were mixed, and a polymerization initiator was further added (addition amount: 2% by mass with respect to solid content) to obtain a mixed solution. The polymerization initiator used was one of the following two types (see Table 1).

重合開始剤1:ケトン系重合開始剤(BASF社製「Irgacure 184」)
重合開始剤2:フォスフィンオキサイド系重合開始剤(BASF社製「Irgacure 819」)
Polymerization initiator 1: Ketone-based polymerization initiator ("Irgacure 184" manufactured by BASF)
Polymerization initiator 2: Phosphine oxide polymerization initiator ("Irgacure 819" manufactured by BASF Corp.)

得られた混合溶液からなる液状体をポリカーボネートからなる基材上に塗布して、塗膜を得た(第1ステップ)。塗布直後の塗膜の厚さは約10μmであった。   The liquid obtained from the mixed solution was applied onto a substrate made of polycarbonate to obtain a coating (first step). The thickness of the coating immediately after application was about 10 μm.

基材上の塗膜を大気中(室温25℃)に放置したところ、1分間程度の放置により、第1溶媒がおおむね揮発して、塗膜内の第1物質が析出し、基材上に析出塗膜が得られた(第2ステップ)。   When the coating on the substrate is left to stand in the air (at room temperature 25 ° C.), the first solvent volatilizes almost by leaving for about 1 minute, and the first substance in the coating is deposited, and the substrate is deposited on the substrate A deposited coating was obtained (second step).

ビューエリアに相当する領域に開口部を有するマスクを用意し、析出塗膜の上に配置し、開口部により露出する第1塗膜領域に光源から紫外光を照射し、第1塗膜領域から第1領域を形成した(第3ステップ)。用いた光源の種類、照度(単位:mW/cm)および積算照射量(単位:mJ/cm)は表1に示したとおりであった。Prepare a mask having an opening in the area corresponding to the view area, place it on the deposited coating, and irradiate the first coating area exposed by the opening with ultraviolet light from the light source, and from the first coating area The first region was formed (third step). The type of light source used, the illuminance (unit: mW / cm 2 ) and the integrated dose (unit: mJ / cm 2 ) were as shown in Table 1.

マスクを除去して、全域を照射可能な赤外線ランプを用いて、部分的に重合した領域(第1領域)を有する析出塗膜を加熱(80℃、10分間)して、未重合の領域である第2塗膜領域に存在する第1物質の析出体を溶融して、第2塗膜領域の面平滑度を高めた(第4ステップ)。   Remove the mask and heat (80 ° C., 10 minutes) the deposited film with partially polymerized area (first area) using an infrared lamp capable of irradiating the entire area, in the unpolymerized area The deposit of the first substance present in the second coating film area was melted to improve the surface smoothness of the second coating film area (fourth step).

続いて、光源から紫外光を全域に照射して、第2塗膜領域から第2領域を形成し、基材上に外観層を得た(第5ステップ)。用いた光源の種類、照度(単位:mW/cm)および積算照射量(単位:mJ/cm)は表1に示したとおりであった。Subsequently, the entire region was irradiated with ultraviolet light from a light source to form a second region from the second coating film region, and an appearance layer was obtained on the substrate (fifth step). The type of light source used, the illuminance (unit: mW / cm 2 ) and the integrated dose (unit: mJ / cm 2 ) were as shown in Table 1.

得られた外観層の第1領域および第2領域の粗さ(JIS B0601:2001において規定される表面粗さの最大高さRz)を測定した。その結果を表2に示す。また、第1領域の粗さと第2領域の粗さとの相違に基づいて、反射防止機能を部分的に有する外観層を作ることができたか否かの評価を行った。評価結果を表2に示す。具体的には、第1領域における上記の表面粗さの最大高さRzが第2領域の粗さにおける上記の表面粗さの最大高さRzよりも0.5μm以上大きい場合に、反射防止機能を部分的に有する外観層を作ることができた(表2中「A」)と判断し、上記の差が0.5μm未満の場合には反射防止機能を部分的に有する外観層を作ることができなかった(表2中「B」)と判断した。   The roughness (maximum height Rz of the surface roughness defined in JIS B 0601: 2001) of the first region and the second region of the obtained appearance layer was measured. The results are shown in Table 2. Further, based on the difference between the roughness of the first region and the roughness of the second region, it was evaluated whether or not it was possible to form an appearance layer partially having an antireflection function. The evaluation results are shown in Table 2. Specifically, when the maximum height Rz of the surface roughness in the first region is larger than the maximum height Rz of the surface roughness in the roughness of the second region by 0.5 μm or more, the anti-reflection function It is judged that it was possible to make an appearance layer having a part of it ("A" in Table 2), and make an appearance layer having a partially antireflective function if the above difference is less than 0.5 μm. It could not be done ("B" in Table 2).

表2に示されるように、第1塗膜領域への電離放射線の積算照射量を適切に設定することにより、突出点群が適切に形成され、その後の加熱によっても突出点群が維持されることが確認された。また、第2塗膜領域に形成された第1物質の析出体を加熱により適切に溶解することによって、第2塗膜領域から形成された第2領域を平滑な面とすることができることも確認された。すなわち、本発明の一実施形態に係る製造方法を実施することにより、反射防止機能を有する領域と反射性の高い領域とを有する外観層を製造することができることが確認された。   As shown in Table 2, by appropriately setting the integrated dose of ionizing radiation to the first coating film area, the protruding point group is appropriately formed, and the protruding point group is maintained even by the subsequent heating That was confirmed. In addition, it is also confirmed that the second region formed from the second coating region can be made smooth by dissolving appropriately the precipitate of the first substance formed in the second coating region by heating. It was done. That is, it was confirmed that an appearance layer having an area having an antireflection function and an area having high reflectivity can be manufactured by carrying out the manufacturing method according to an embodiment of the present invention.

(実施例6から実施例13)
実施例1で用いた第1物質25gを第1溶媒50mLに溶解して第1溶液を得て、第2物質25gを第2溶媒50mLに溶解して第2溶液を得た。第1溶液50mLと第2溶液50mLとを混合して、さらに重合開始剤としてケトン系重合開始剤(BASF社製「Irgacure 184」)を固形分に対して2質量%添加して、混合溶液を得た。
この混合溶液に、第1物質の質量および第2物質の質量の総和を基準とした表3に示される添加量(単位:質量%)で、第3物質を添加した。各実施例に係る第3物質の物質名および融点は表3に示したとおりである。第3物質はいずれも水酸基を有し、水酸基を有する点で第1物質と共通するため、第3物質は第1物質に相溶性を有する。それゆえ、第3物質が添加された液状体を用いて形成される析出体は、第1物質および第3物質を含む。#12バーコーターを用いて塗布直後の塗膜の厚さを14μmとしたこと以外は、実施例1と同様にして、第1領域および第2領域を有する外観層を基材上に形成した。
(Examples 6 to 13)
25 g of the first substance used in Example 1 was dissolved in 50 mL of the first solvent to obtain a first solution, and 25 g of the second substance was dissolved in 50 mL of the second solvent to obtain a second solution. A mixture of 50 mL of the first solution and 50 mL of the second solution is further added with 2% by mass of a ketone-based polymerization initiator ("Irgacure 184" manufactured by BASF Corp.) as a polymerization initiator based on the solid content. Obtained.
The third substance was added to this mixed solution in an amount (unit: mass%) shown in Table 3 based on the total of the mass of the first substance and the mass of the second substance. The substance name and the melting point of the third substance according to each example are as shown in Table 3. The third substance is compatible with the first substance because all of the third substances have a hydroxyl group and are common to the first substance in that they have a hydroxyl group. Therefore, the precipitate formed by using the liquid to which the third substance is added contains the first substance and the third substance. An appearance layer having a first region and a second region was formed on a substrate in the same manner as in Example 1 except that the thickness of the coating film immediately after application was 14 μm using a # 12 bar coater.

得られた外観層の第1領域および第2領域について、次の評価を行った。
(1)JIS B0601:2001において規定される表面粗さの最大高さRz(単位:μm)
(2)JIS K7375:2008において規定される全光線透過率(単位:%)
(3)JIS K7136:2000において規定されるヘーズ(ヘイズ、単位:%)
第2領域については、ギラツキの程度についてさらに評価した。
(4)ギラツキ
一般的な外観検査用の蛍光灯が照射された外観層を目視して、次の3水準で評価した。
(A)ギラツキなし
(B)軽度のギラツキあり
(C)明確なギラツキあり
評価結果を表4に示す。
The following evaluation was performed about the 1st area | region and 2nd area | region of the obtained appearance layer.
(1) The maximum height Rz of surface roughness specified in JIS B0601: 2001 (unit: μm)
(2) Total light transmittance (unit:%) defined in JIS K7375: 2008
(3) Haze (haze, unit:%) defined in JIS K7136: 2000
The second area was further evaluated for the degree of glare.
(4) Glare The appearance layer irradiated with a fluorescent lamp for general appearance inspection was visually observed and evaluated on the following three levels.
(A) no glaring (B) mild glaring (C) clear glaring Table 4 shows the evaluation results.

表4に示されるように、第3物質を添加した場合(実施例6から実施例12)には、第3物質を添加しない場合(実施例13)に比べて、第2領域の最大高さRzが小さくなり、面平滑性が向上した。また、第3物質を添加することにより、ヘイズが低減される傾向があることおよびギラツキが生じにくくなる傾向があることが確認された。この傾向は、添加した第3物質の融点が低く、第3物質の添加量が多いほど顕著であった。なお、第1領域および第2領域のいずれについても、第3物質を添加したことによる透過率の変化はほとんど認められなかった。第1領域において、第3物質を添加したことにより最大高さRzおよびヘイズが低減する傾向がみられたが、その程度は、いずれも第3物質を添加しない場合(実施例13)に対する変化率で10%以下であった。   As shown in Table 4, when the third substance is added (Examples 6 to 12), the maximum height of the second region is higher than when the third substance is not added (Example 13). Rz decreased and surface smoothness improved. In addition, it was confirmed that the addition of the third substance tends to reduce the haze and the tendency for the glare to be difficult to occur. This tendency was remarkable as the melting point of the added third substance was low and the amount of the third substance added was large. In addition, the change of the transmittance | permeability by having added the 3rd substance was hardly recognized about any of 1st area | region and 2nd area | region. In the first region, the maximum height Rz and the haze tended to be reduced by the addition of the third substance, but the degree of the change relative to the case where no third substance is added (Example 13) Was less than 10%.

100 光学パネル
10 基材
20 外観層
R1 第1領域
R2 第2領域
R1A 第1領域R1の面(第1領域面)
R2A 第2領域R2の面(第2領域面)
21 突出点群
22 上層部分
23 下層部分
24 混合樹脂系材料からなる層
S101 第1ステップ
S102 第2ステップ
S103 第3ステップ
S104 第4ステップ
S105 第5ステップ
30 塗膜
31 混合溶媒
41 第1物質
42 第2物質
32 第1溶媒
33 第2溶媒
34 析出塗膜
41c 析出体
LRD 光源
UVL 電離放射線(紫外光)
MSK マスク
HD 加熱装置
R11 第1塗膜領域
R12 第2塗膜領域
100 Optical Panel 10 Base Material 20 Appearance Layer R1 First Region R2 Second Region R1A Surface of First Region R1 (First Region Surface)
R2A Surface of second region R2 (second region surface)
21 projecting point group 22 upper layer portion 23 lower layer portion 24 layer made of mixed resin material S101 first step S102 second step S103 third step S104 fourth step S105 fifth step 30 coating 31 mixed solvent 41 first substance 42 first substance 42 2 substances 32 1st solvent 33 2nd solvent 34 precipitation coating 41c precipitation LRD light source UVL ionizing radiation (ultraviolet light)
MSK mask HD heating device R11 first coating area R12 second coating area

Claims (29)

透光性を備えた基材と、前記基材の上に位置する外観層とを備える光学パネルであって、
前記外観層は、前記光学パネルの前記外観層側からの入射光の反射率が相対的に低い第1領域および前記反射率が相対的に高い第2領域を備え、
前記外観層は、第1樹脂系材料および第2樹脂系材料を含み、
前記第1領域の面は、前記第1樹脂系材料からなり前記外観層の厚さ方向に突出して外光を散乱する突出点群を備えること
を特徴とする光学パネル。
An optical panel comprising: a light transmitting base material; and an appearance layer located on the base material,
The appearance layer includes a first area in which the reflectance of incident light from the appearance layer side of the optical panel is relatively low, and a second area in which the reflectance is relatively high.
The appearance layer includes a first resin-based material and a second resin-based material,
An optical panel comprising a projecting point group which is made of the first resin material and which protrudes in the thickness direction of the appearance layer to scatter external light.
前記第1領域は前記外観層の厚さ方向に組成が相違し、前記基材に対向する側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記基材に対向する側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高い、請求項1に記載の光学パネル。   The composition of the first region is different in the thickness direction of the appearance layer, and the content of the first resin material on the side opposite to the side facing the substrate relative to the content of the second resin material The optical panel according to claim 1, wherein a ratio is higher than a ratio of the content of the first resin material on the side facing the base material to the content of the second resin material. 前記突出点群は、前記第2領域の面よりも突出している、請求項1または2に記載の光学パネル。   The optical panel according to claim 1, wherein the projection point group projects more than the surface of the second area. 前記第1領域と前記第2領域とは、全体組成が等しく、前記外観層の厚さ方向の組成分布が相違する、請求項1から3のいずれか一項に記載の光学パネル。   The optical panel according to any one of claims 1 to 3, wherein the first region and the second region have the same overall composition and a different composition distribution in the thickness direction of the appearance layer. 透光性を備えた基材と、前記基材の上に位置する外観層とを備える光学パネルであって、
前記外観層は、第1樹脂系材料および第2樹脂系材料を含み、
前記外観層の面は、少なくとも一部の領域において、前記第1樹脂系材料からなり前記外観層の厚さ方向に突出して外光を散乱する突出点群を備えること
を特徴とする光学パネル。
An optical panel comprising: a light transmitting base material; and an appearance layer located on the base material,
The appearance layer includes a first resin-based material and a second resin-based material,
An optical panel comprising, in at least a partial region, a surface of the appearance layer, and a projecting point group which is made of the first resin-based material and protrudes in the thickness direction of the appearance layer to scatter external light.
前記突出点群を備える領域は前記外観層の厚さ方向に組成が相違し、前記基材に対向する側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記基材に対向する側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高い、請求項5に記載の光学パネル。   In the region including the projecting point group, the composition is different in the thickness direction of the appearance layer, and the content of the first resin-based material on the side opposite to the side facing the base is the second resin-based material The optical panel according to claim 5, wherein the ratio to the content is higher than the ratio of the content of the first resin material to the content of the second resin material on the side facing the substrate. 前記外観層はフィラー成分をさらに含む、請求項1から6のいずれか一項に記載の光学パネル。   The optical panel according to any one of claims 1 to 6, wherein the appearance layer further comprises a filler component. 前記外観層はフィラー成分を含まない、請求項1から6のいずれか一項に記載の光学パネル。   The optical panel according to any one of claims 1 to 6, wherein the appearance layer contains no filler component. 前記第1樹脂系材料は電離放射線重合性の第1物質の重合体を含み、前記第2樹脂系材料は、前記第1物質とは異なる電離放射線重合性の第2物質の重合体を含む、請求項1から8のいずれか一項に記載の光学パネル。   The first resin material includes a polymer of an ionizing radiation polymerizable first substance, and the second resin material includes a polymer of an ionizing radiation polymerizable second substance different from the first substance. The optical panel according to any one of claims 1 to 8. 前記外観層は重合開始剤を含む、請求項9に記載の光学パネル。   The optical panel according to claim 9, wherein the appearance layer contains a polymerization initiator. 前記外観層は前記第1物質に対する相溶性を有する第3物質を含む、請求項9または10に記載の光学パネル。   The optical panel according to claim 9, wherein the appearance layer includes a third substance having compatibility with the first substance. 前記第3物質がフェノール系化合物である、請求項11に記載の光学パネル。   The optical panel according to claim 11, wherein the third substance is a phenolic compound. 透光性を有する基材と、前記基材の上に位置して外光を散乱する突出点群を備える面を有する外観層とを備える光学パネルの製造方法であって、
電離放射線重合性の第1物質と、前記第1物質とは異なる電離放射線重合性の第2物質と、前記第2物質よりも前記第1物質を溶解しやすい第1溶媒と、前記第1物質よりも前記第2物質を溶解しやすく前記第1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を、前記基材の一方の面に塗布して前記基材上に塗膜を形成する第1ステップ;
前記塗膜に含有される前記第1溶媒を揮発させることにより、前記第1物質を含む析出体を前記塗膜の表面に位置させて析出塗膜を得る第2ステップ;および
前記析出塗膜の少なくとも一部の領域に電離放射線を照射することにより、前記電離放射線が照射された領域に位置する前記第1物質および前記第2物質を重合させる第3ステップ
を備え、
前記第3ステップにより、前記外観層の前記突出点群を備える面が形成されることを特徴とする光学パネルの製造方法。
What is claimed is: 1. A method of manufacturing an optical panel, comprising: a light transmitting base material; and an appearance layer having a surface on the base material and having a projecting point group that scatters external light,
An ionizing radiation polymerizable first substance, an ionizing radiation polymerizable second substance different from the first substance, a first solvent capable of dissolving the first substance more easily than the second substance, and the first substance A liquid containing a second solvent that dissolves the second substance more easily and has a boiling point higher than that of the first solvent is applied to one surface of the substrate to form a coating on the substrate First step to form;
A second step of positioning a deposit containing the first substance on the surface of the coating by volatilizing the first solvent contained in the coating; and obtaining a deposited coating; and The method further comprises a third step of polymerizing the first substance and the second substance located in the area irradiated with the ionizing radiation by irradiating at least a part of the area with the ionizing radiation;
According to the third aspect of the present invention, there is provided a method of manufacturing an optical panel, wherein a surface including the group of projecting points of the appearance layer is formed.
前記第3ステップでは、前記析出塗膜の全体に前記電離放射線を照射することにより、前記突出点群を全面に備える前記外観層を前記析出塗膜から形成する、請求項13に記載の光学パネルの製造方法。   The optical panel according to claim 13, wherein, in the third step, the appearance layer provided with the projecting point group on the entire surface is formed from the deposited coating by irradiating the whole of the deposited coating with the ionizing radiation. Manufacturing method. 前記外観層は、前記突出点群を備える面を有する第1領域と、前記突出点群を備えない面を有する第2領域とからなり、
前記第3ステップでは、前記析出塗膜の一部の領域である第1塗膜領域について前記電離放射線を照射することにより、前記第1塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第1領域を形成し、
前記第3ステップに続いて、
前記析出塗膜における前記電離放射線が照射されていない第2塗膜領域を加熱して、前記第2塗膜領域の面平滑性を高める第4ステップ;および
前記面平滑性が高められた第2塗膜領域に電離放射線を照射することにより、前記第2塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第2領域を形成する第5ステップ
を備える、請求項13に記載の光学パネルの製造方法。
The appearance layer includes a first area having a surface provided with the protruding point group and a second area having a surface not provided with the protruding point group,
In the third step, the first substance and the second substance located in the first coating film region are irradiated by irradiating the ionizing radiation to the first coating film region which is a partial region of the deposited coating film. Are polymerized to form the first region,
Following the third step,
A fourth step of heating the second coating film region not irradiated with the ionizing radiation in the deposited coating film to increase the surface smoothness of the second coating film region; and the second step of improving the surface smoothness The method further comprises a fifth step of polymerizing the first substance and the second substance located in the second coating region by irradiating the coating region with ionizing radiation to form a second region. The manufacturing method of the optical panel of Claim 13.
前記液状体はフィラー成分をさらに含む、請求項13から15のいずれか一項に記載の光学パネルの製造方法。   The method for manufacturing an optical panel according to any one of claims 13 to 15, wherein the liquid further contains a filler component. 前記液状体はフィラー成分を含まない、請求項13から15のいずれか一項に記載の光学パネルの製造方法。   The method for manufacturing an optical panel according to any one of claims 13 to 15, wherein the liquid does not contain a filler component. 前記液状体は重合開始剤を含み、前記第1物質および前記第2物質の重合は、電磁波の照射により行う、請求項13から17のいずれか一項に記載の光学パネルの製造方法。   The method for producing an optical panel according to any one of claims 13 to 17, wherein the liquid contains a polymerization initiator, and the polymerization of the first substance and the second substance is performed by irradiation of an electromagnetic wave. 前記第4ステップでは、前記析出塗膜における前記第1物質を含む析出体が溶融するように加熱を行う、請求項15から18のいずれか一項に記載の光学パネルの製造方法。   The manufacturing method of the optical panel as described in any one of Claims 15-18 which heats so that the precipitate which contains the said 1st substance in the said precipitation coating film may fuse | melt in said 4th step. 前記液状体は前記第1物質に対する相溶性を有する第3物質を含有し、前記第2ステップで形成される前記第1物質を含む析出体は前記第3物質を含み、前記第1物質を含む析出体は前記第1物質からなる析出体よりも融点が低い、請求項19に記載の光学パネルの製造方法。   The liquid body contains a third substance having compatibility with the first substance, and the deposit containing the first substance formed in the second step contains the third substance and contains the first substance The method for manufacturing an optical panel according to claim 19, wherein the precipitate has a melting point lower than that of the precipitate made of the first substance. 前記第3物質がフェノール系化合物である、光学パネルの製造方法。   The manufacturing method of the optical panel whose said 3rd substance is a phenol type compound. 請求項1から12のいずれか一項に記載される光学パネルを備える機器。   An apparatus comprising the optical panel according to any one of claims 1 to 12. 転写元面を有する転写層を備える転写体であって、
前記転写層は、電離放射線重合性の第1物質の重合体を含む第1樹脂系材料、および前記第1物質とは異なる電離放射線重合性の第2物質の重合体を含む第2樹脂系材料を含み、
前記転写元面は、前記第1樹脂系材料からなり前記転写層の厚さ方向に突出して外光を散乱する突出点群を備え、
前記転写層における前記転写元面を含む領域は、前記転写層の厚さ方向に組成が相違し、前記転写元面側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比は、前記転写元面側とは反対側における前記第1樹脂系材料の含有量の前記第2樹脂系材料の含有量に対する比よりも高いこと
を特徴とする転写体。
A transfer body comprising a transfer layer having a transfer source surface,
The transfer layer is a first resin-based material containing a polymer of an ionizing radiation-polymerizable first substance, and a second resin-based material containing a polymer of an ionizing radiation-polymerizable second substance different from the first substance. Including
The transfer source surface includes a projecting point group which is made of the first resin-based material and protrudes in the thickness direction of the transfer layer to scatter external light.
The region including the transfer source surface in the transfer layer is different in composition in the thickness direction of the transfer layer, and the content of the first resin material on the transfer source surface side is the content of the second resin material A transfer body characterized in that the ratio to the amount is higher than the ratio of the content of the first resin material on the side opposite to the transfer source surface side to the content of the second resin material.
前記第1物質に対する相溶性を有する第3物質を含む、請求項23に記載の転写体。   24. The transfer body according to claim 23, comprising a third substance having compatibility with the first substance. 前記第3物質がフェノール系化合物である、請求項23または24に記載の転写体。   25. The transfer body according to claim 23 or 24, wherein the third substance is a phenolic compound. 外光を散乱する突出点群を備える転写元面を有する転写層を備える転写体の製造方法であって、
電離放射線重合性の第1物質と、前記第1物質とは異なる電離放射線重合性の第2物質と、前記第2物質よりも前記第1物質を溶解しやすい第1溶媒と、前記第1物質よりも前記第2物質を溶解しやすく前記第1溶媒よりも沸点が高い第2溶媒と、を含有する液状体を、基材の一方の面に塗布して前記基材上に塗膜を形成する第1ステップ;
前記塗膜に含有される前記第1溶媒を揮発させることにより、前記第1物質を含む析出体を前記塗膜の表面に位置させて析出塗膜を得る第2ステップ;および
前記析出塗膜の少なくとも一部の領域に電離放射線を照射することにより、前記電離放射線が照射された領域に位置する前記第1物質および前記第2物質を重合させる第3ステップ
を備え、
前記第3ステップにより、前記突出点群を備える前記転写元面が形成されることを特徴とする転写体の製造方法。
What is claimed is: 1. A method of manufacturing a transfer body comprising a transfer layer having a transfer source surface including a projecting point group that scatters external light, comprising:
An ionizing radiation polymerizable first substance, an ionizing radiation polymerizable second substance different from the first substance, a first solvent capable of dissolving the first substance more easily than the second substance, and the first substance A liquid containing a second solvent which dissolves the second substance more easily and has a boiling point higher than the first solvent is applied to one surface of the substrate to form a coating film on the substrate The first step to do;
A second step of positioning a deposit containing the first substance on the surface of the coating by volatilizing the first solvent contained in the coating; and obtaining a deposited coating; and The method further comprises a third step of polymerizing the first substance and the second substance located in the area irradiated with the ionizing radiation by irradiating at least a part of the area with the ionizing radiation;
According to the third aspect of the invention, there is provided a method of manufacturing a transfer body, wherein the transfer source surface including the projecting point group is formed by the third step.
前記転写層は、前記突出点群を備える面を有する第1領域と、前記突出点群を備えない面を有する第2領域とからなり、
前記第3ステップでは、前記析出塗膜の一部の領域である第1塗膜領域について前記電離放射線を照射することにより、前記第1塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第1領域を形成し、
前記第3ステップに続いて、
前記析出塗膜における前記電離放射線が照射されていない第2塗膜領域を加熱して、前記第2塗膜領域の面平滑性を高める第4ステップ;および
前記面平滑性が高められた第2塗膜領域に電離放射線を照射することにより、前記第2塗膜領域に位置する前記第1物質および前記第2物質を重合させて、前記第2領域を形成する第5ステップ
を備える、請求項26に記載の転写体の製造方法。
The transfer layer includes a first region having a surface provided with the protruding point group and a second region having a surface not provided with the protruding point group,
In the third step, the first substance and the second substance located in the first coating film region are irradiated by irradiating the ionizing radiation to the first coating film region which is a partial region of the deposited coating film. Are polymerized to form the first region,
Following the third step,
A fourth step of heating the second coating film region not irradiated with the ionizing radiation in the deposited coating film to increase the surface smoothness of the second coating film region; and the second step of improving the surface smoothness The method further comprises a fifth step of polymerizing the first substance and the second substance located in the second coating region by irradiating the coating region with ionizing radiation to form a second region. 26. The method for producing a transfer body according to 26.
前記第4ステップでは、前記析出塗膜における前記第1物質を含む析出体が溶融するように加熱を行い、
前記液状体は前記第1物質に対する相溶性を有する第3物質を含有し、前記第2ステップで形成される前記第1物質を含む析出体は前記第3物質を含み、前記第1物質を含む析出体は前記第1物質からなる析出体よりも融点が低い、請求項27に記載の転写体の製造方法。
In the fourth step, heating is performed so as to melt the precipitate containing the first substance in the deposition coating,
The liquid body contains a third substance having compatibility with the first substance, and the deposit containing the first substance formed in the second step contains the third substance and contains the first substance The method for producing a transfer body according to claim 27, wherein the deposit has a melting point lower than that of the deposit made of the first substance.
前記第3物質がフェノール系化合物である、請求項27または28に記載の転写体の製造方法。   29. The method for producing a transfer body according to claim 27, wherein the third substance is a phenolic compound.
JP2018548959A 2016-11-01 2017-10-25 Optical panel and its manufacturing method, equipment and transfer body and its manufacturing method Active JP6924202B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016214240 2016-11-01
JP2016214240 2016-11-01
JP2017108950 2017-06-01
JP2017108950 2017-06-01
PCT/JP2017/038542 WO2018084052A1 (en) 2016-11-01 2017-10-25 Optical panel, method for producing same, and device

Publications (2)

Publication Number Publication Date
JPWO2018084052A1 true JPWO2018084052A1 (en) 2019-06-27
JP6924202B2 JP6924202B2 (en) 2021-08-25

Family

ID=62076169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018548959A Active JP6924202B2 (en) 2016-11-01 2017-10-25 Optical panel and its manufacturing method, equipment and transfer body and its manufacturing method

Country Status (3)

Country Link
JP (1) JP6924202B2 (en)
CN (1) CN110073250A (en)
WO (1) WO2018084052A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121620A (en) * 2001-10-19 2003-04-23 Konica Corp Antidazzle low reflective film, method for manufacturing the film, polarizing plate and display device
JP2007182519A (en) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd Antiblocking photosetting resin composition, antiblocking structure obtained by applying and curing the composition to substrate and method for producing the same
JP2008046497A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate, and image display device
JP2008051944A (en) * 2006-08-23 2008-03-06 Sharp Corp Antiglare film and display device
JP2008216330A (en) * 2007-02-28 2008-09-18 Lintec Corp Antiglare hard coat film
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010163535A (en) * 2009-01-15 2010-07-29 Nippon Paint Co Ltd Antiblocking curable resin composition, antiblocking hard coat film, antiblocking layered structure, display including the antiblocking layered structure, and production method thereof
US20120013987A1 (en) * 2010-07-16 2012-01-19 Kazuhiro Oki Light scattering sheet and method for producing the same
JP2012187563A (en) * 2011-03-14 2012-10-04 Fujifilm Corp Method for producing optical film
WO2013191091A1 (en) * 2012-06-22 2013-12-27 シャープ株式会社 Antireflection structure, transfer mold, production methods therefor, and display device
JP2014085371A (en) * 2012-10-19 2014-05-12 Daicel Corp Anti-glare film and method for manufacturing the same
US20150253466A1 (en) * 2014-03-07 2015-09-10 Fujifilm Corporation Antireflection film, polarizing plate, image display device and a manufacturing method for antireflection film

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1164611A (en) * 1997-08-26 1999-03-05 Nitto Denko Corp Light diffusing film
JP5046456B2 (en) * 1999-09-20 2012-10-10 スリーエム イノベイティブ プロパティズ カンパニー Optical film having at least one particle-containing layer
JP2002148405A (en) * 2000-11-07 2002-05-22 Nitto Denko Corp Antireflection film and low reflection polarizing plate using the same
WO2003071316A1 (en) * 2002-02-25 2003-08-28 Fuji Photo Film Co., Ltd. Antiglare and antireflection film, polarizing plate and display device
CN1503009A (en) * 2002-11-20 2004-06-09 力特光电科技股份有限公司 Glaring-proof film
CN100353187C (en) * 2004-03-29 2007-12-05 株式会社巴川制纸所 Antiglare film
EP2161596A4 (en) * 2007-06-28 2011-10-12 Sony Corp Optical film and its production method, and glare-proof polarizer using same and display apparatus
KR20120085755A (en) * 2009-09-04 2012-08-01 스미또모 가가꾸 가부시키가이샤 Light-diffusing film, manufacturing method therefor, light-diffusing polarizing plate, and liquid-crystal display device
JP5779863B2 (en) * 2009-11-30 2015-09-16 大日本印刷株式会社 Manufacturing method of optical film, optical film, polarizing plate and display
EP2567269A1 (en) * 2010-05-07 2013-03-13 3M Innovative Properties Company Antireflective films comprising microstructured surface
JP2013190628A (en) * 2012-03-14 2013-09-26 Toppan Printing Co Ltd Antireflection body
JP6167005B2 (en) * 2013-10-04 2017-07-19 富士フイルム株式会社 Antireflection film, polarizing plate, cover glass, and image display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121620A (en) * 2001-10-19 2003-04-23 Konica Corp Antidazzle low reflective film, method for manufacturing the film, polarizing plate and display device
JP2007182519A (en) * 2006-01-10 2007-07-19 Nippon Paint Co Ltd Antiblocking photosetting resin composition, antiblocking structure obtained by applying and curing the composition to substrate and method for producing the same
JP2008046497A (en) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd Optical laminate, its manufacturing method, polarizing plate, and image display device
JP2008051944A (en) * 2006-08-23 2008-03-06 Sharp Corp Antiglare film and display device
JP2008216330A (en) * 2007-02-28 2008-09-18 Lintec Corp Antiglare hard coat film
JP2009204687A (en) * 2008-02-26 2009-09-10 Sumitomo Chemical Co Ltd Antiglare film, antiglare polarizing plate and image display device
JP2010163535A (en) * 2009-01-15 2010-07-29 Nippon Paint Co Ltd Antiblocking curable resin composition, antiblocking hard coat film, antiblocking layered structure, display including the antiblocking layered structure, and production method thereof
US20120013987A1 (en) * 2010-07-16 2012-01-19 Kazuhiro Oki Light scattering sheet and method for producing the same
JP2012187563A (en) * 2011-03-14 2012-10-04 Fujifilm Corp Method for producing optical film
WO2013191091A1 (en) * 2012-06-22 2013-12-27 シャープ株式会社 Antireflection structure, transfer mold, production methods therefor, and display device
JP2014085371A (en) * 2012-10-19 2014-05-12 Daicel Corp Anti-glare film and method for manufacturing the same
US20150253466A1 (en) * 2014-03-07 2015-09-10 Fujifilm Corporation Antireflection film, polarizing plate, image display device and a manufacturing method for antireflection film

Also Published As

Publication number Publication date
JP6924202B2 (en) 2021-08-25
WO2018084052A1 (en) 2018-05-11
CN110073250A (en) 2019-07-30

Similar Documents

Publication Publication Date Title
KR100932825B1 (en) Method for producing anti-glare film, anti-glare film, anti-glare polarizer, display device and optical film
JP4155337B1 (en) Anti-glare film, method for producing the same, and display device
JP4238936B2 (en) Anti-glare film, optical film, anti-glare polarizer, and display device
WO1995031737A1 (en) Glare-proof film
KR20010049433A (en) Glare reducing film and method of manufacturing thereof
CN106133588A (en) Anisotropic optical film
JP2009109683A (en) Antiglare and anti-newton film
KR20140001749A (en) Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
CN105278014B (en) A kind of solvent type UV optical diffusions and preparation method thereof
KR100917496B1 (en) Anti-glare device and method for making the same
JP2008064946A (en) Anti-newton, anti-glare film
CN102650705B (en) Optical multilayer film and display device
CN100353187C (en) Antiglare film
JP6924202B2 (en) Optical panel and its manufacturing method, equipment and transfer body and its manufacturing method
WO2019208136A1 (en) Light-shielding film and method for manufacturing light-shielding film
JP2008152268A (en) Antiglare film and its manufacturing method
JP2004046258A (en) Antiglare film and manufacturing method therefor
WO2019181615A1 (en) Antiglare film
WO2019208135A1 (en) Light shielding film and method for manufacturing light shielding film
JP2002182015A (en) Antiglare film and method for producing the same
JP2021507319A (en) Anti-glare film, polarizing plate and display device
JP2004077781A (en) Diffusing film
JP2005037802A (en) Light scattering film and display device using the same
JP2011186066A (en) Antiglare film
CN102375317A (en) Rear projection screen with single-layer structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210730

R150 Certificate of patent or registration of utility model

Ref document number: 6924202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150