JPWO2018073898A1 - Heat exchanger, outdoor unit, and apparatus and method for manufacturing heat exchanger - Google Patents

Heat exchanger, outdoor unit, and apparatus and method for manufacturing heat exchanger Download PDF

Info

Publication number
JPWO2018073898A1
JPWO2018073898A1 JP2018546075A JP2018546075A JPWO2018073898A1 JP WO2018073898 A1 JPWO2018073898 A1 JP WO2018073898A1 JP 2018546075 A JP2018546075 A JP 2018546075A JP 2018546075 A JP2018546075 A JP 2018546075A JP WO2018073898 A1 JPWO2018073898 A1 JP WO2018073898A1
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
heat transfer
heat exchange
transfer tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018546075A
Other languages
Japanese (ja)
Other versions
JP6727318B2 (en
Inventor
瑞朗 酒井
瑞朗 酒井
野花 長崎
野花 長崎
訓弘 藤田
訓弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2018073898A1 publication Critical patent/JPWO2018073898A1/en
Application granted granted Critical
Publication of JP6727318B2 publication Critical patent/JP6727318B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

熱交換器は、作動流体が流通する、一方向に配列された複数の伝熱管と、複数の伝熱管に接合され、他方向に配列された複数のフィンとを有する第1熱交換部と、複数の伝熱管と複数のフィンとを有し、第1熱交換部とはフィンの配列方向が異なるように屈曲した第2熱交換部と、を備え、第2熱交換部における伝熱管の配列方向は、第1熱交換部における伝熱管の配列方向に対して傾いている。The heat exchanger includes: a first heat exchange unit having a plurality of heat transfer tubes arranged in one direction through which a working fluid flows, and a plurality of fins connected to the plurality of heat transfer tubes and arranged in the other direction; A plurality of heat transfer tubes and a plurality of fins, and the first heat exchange unit includes a second heat exchange unit bent so that the arrangement direction of the fins is different from that of the first heat exchange unit; The direction is inclined with respect to the arrangement direction of the heat transfer tubes in the first heat exchange unit.

Description

本発明は、熱交換器及び熱交換器を備える室外機、並びに、熱交換器の製作装置及び製作方法に関するものである。   The present invention relates to a heat exchanger and an outdoor unit provided with the heat exchanger, and an apparatus and method for manufacturing the heat exchanger.

室内機において、遠心ファンの外周側を囲繞するようにしてケーシング内に立設された多角筒錐状の熱交換器が開示されている(例えば特許文献1参照)。特許文献1の熱交換器は、通風抵抗を低減して熱交換効率を向上させるために、通風路内に伝熱部が傾斜して配置される構成となっている。   In the indoor unit, there is disclosed a multi-pyramidal cylindrical heat exchanger erected in a casing so as to surround the outer peripheral side of the centrifugal fan (see, for example, Patent Document 1). The heat exchanger of Patent Document 1 has a configuration in which the heat transfer portion is disposed in an inclined manner in the ventilation passage in order to reduce the ventilation resistance and improve the heat exchange efficiency.

特開2001−304607号公報JP, 2001-304607, A

ところで、室外機においては、上述した特許文献1の室内機とは異なり、熱交換器からの排水が特に重要となる。一般に熱交換器に着霜が生じると、着霜により通風抵抗が増し、風量が低下して熱交換性能が低下する。例えば、伝熱管と伝熱管との間において凍結した結露水が着霜し易い、といった課題がある。また熱交換器に着霜が生じることにより、暖房能力(特に暖房低温能力)の低下が懸念されている。更に、伝熱管がほぼ鉛直方向に配列されている熱交換器の場合、上段の伝熱管から排水された結露水及び融解水等が下段の伝熱管に蓄積することがある。   By the way, in the outdoor unit, unlike the indoor unit of Patent Document 1 described above, drainage from the heat exchanger is particularly important. In general, when frost forms on the heat exchanger, the frost resistance increases the ventilation resistance, and the air volume decreases to lower the heat exchange performance. For example, there is a problem that condensed water frozen between the heat transfer pipe and the heat transfer pipe is likely to frost. Further, frost formation in the heat exchanger may cause a decrease in heating capacity (particularly heating low temperature capacity). Furthermore, in the case of a heat exchanger in which heat transfer tubes are arranged substantially in the vertical direction, condensed water and molten water and the like drained from the upper heat transfer tubes may accumulate in the lower heat transfer tubes.

本発明は、上記のような課題を解決するためになされたもので、着霜を抑制する熱交換器及び室外機、並びに熱交換器の製作装置及び製作方法を提供することを目的とする。   The present invention has been made to solve the problems as described above, and it is an object of the present invention to provide a heat exchanger and an outdoor unit for suppressing frost formation, and an apparatus and a method for manufacturing the heat exchanger.

本発明に係る熱交換器は、作動流体が流通する、一方向に配列された複数の伝熱管と、複数の前記伝熱管に接合され、他方向に配列された複数のフィンとを有する第1熱交換部と、複数の前記伝熱管と複数のフィンとを有し、前記第1熱交換部とは前記フィンの配列方向が異なるように屈曲した第2熱交換部と、を備え、前記第2熱交換部における前記伝熱管の配列方向は、前記第1熱交換部における前記伝熱管の配列方向に対して傾いているものである。   A heat exchanger according to the present invention includes a plurality of heat transfer tubes arranged in one direction through which a working fluid flows, and a plurality of fins connected to the plurality of heat transfer pipes and arranged in the other direction. A heat exchange unit, a plurality of the heat transfer tubes, and a plurality of fins, the second heat exchange unit being bent such that the arrangement direction of the fins is different from the first heat exchange unit; The arrangement direction of the heat transfer tubes in the second heat exchange portion is inclined with respect to the arrangement direction of the heat transfer tubes in the first heat exchange portion.

本発明の熱交換器によれば、第2熱交換部における伝熱管の配列方向は、第1熱交換部における伝熱管の配列方向に対して傾いているので、第1熱交換部及び第2熱交換部のうち少なくとも一方は鉛直方向から傾いた状態となる。したがって、配列方向が傾いている伝熱管に発生した結露水等は、伝熱管の端部へ滑水し、伝熱管の端部から下方へ移動又は落下する。これより熱交換器の排水性が改善されるので、熱交換器は着霜を抑制することができる。   According to the heat exchanger of the present invention, since the arrangement direction of the heat transfer tubes in the second heat exchange unit is inclined to the arrangement direction of the heat transfer tubes in the first heat exchange unit, the first heat exchange unit and the second heat exchange unit At least one of the heat exchange parts is in a state of being inclined from the vertical direction. Therefore, dew condensation water or the like generated in the heat transfer tube whose alignment direction is inclined slides to the end of the heat transfer tube and moves or drops downward from the end of the heat transfer tube. Since the drainage of the heat exchanger is improved by this, the heat exchanger can suppress frost formation.

本発明の実施の形態1に係る空気調和装置の室外機の概略構成を示す側面図である。It is a side view which shows schematic structure of the outdoor unit of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の曲げ加工前の概略構成図である。It is a schematic block diagram before the bending process of the heat exchanger which concerns on Embodiment 1 of this invention. 図1の熱交換器の下部周辺を示す模式図である。It is a schematic diagram which shows the lower part periphery of the heat exchanger of FIG. 本発明の実施の形態1に係る熱交換器の製作装置を示す概略平面図である。It is a schematic plan view which shows the manufacturing apparatus of the heat exchanger which concerns on Embodiment 1 of this invention. 熱交換器の曲げ加工前の状態を示す図4AのA−A断面図である。It is AA sectional drawing of FIG. 4A which shows the state before the bending process of a heat exchanger. 図4Bの熱交換器の曲げ加工後の状態を示す断面図である。It is sectional drawing which shows the state after the bending process of the heat exchanger of FIG. 4B. 本発明の実施の形態2に係る空気調和装置の室外機の構成図である。It is a block diagram of the outdoor unit of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器の部分構成図である。It is a partial block diagram of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態5に係る熱交換器の部分構成図である。It is a partial block diagram of the heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る熱交換器の部分構成図である。It is a partial block diagram of the heat exchanger which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る熱交換器の部分構成図である。It is a partial block diagram of the heat exchanger which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る熱交換器の部分構成図である。It is a partial block diagram of the heat exchanger which concerns on Embodiment 8 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る空気調和装置の室外機の概略構成を示す側面図である。図2は、本発明の実施の形態1に係る熱交換器の曲げ加工前の概略構成図である。図1に示される室外機10は、筐体9と、筐体9内に設置されたファン3と、熱源側の熱交換器1とを備えている。更に室外機10は、図示していないが、作動流体を供給する圧縮機と、冷房運転と暖房運転とを切り替える切替装置とを備えている。ファン3は、例えばプロペラファン等で構成され、熱交換器1に必要な風量を供給する。ファン3は、例えば室外機10の前後方向(矢印X方向)において熱交換器1の前方に配置されている。作動流体には、例えばオゾン層を破壊しないとされている冷媒等が使用されてもよい。例えば作動流体は、HFC冷媒、HFO冷媒、又はHFC冷媒とHFO冷媒との混合冷媒である。
Embodiment 1
FIG. 1 is a side view showing a schematic configuration of an outdoor unit of an air conditioning apparatus according to Embodiment 1 of the present invention. FIG. 2 is a schematic configuration view of the heat exchanger according to Embodiment 1 of the present invention before bending. The outdoor unit 10 shown in FIG. 1 includes a housing 9, a fan 3 installed in the housing 9, and the heat exchanger 1 on the heat source side. Furthermore, although not shown, the outdoor unit 10 is provided with a compressor that supplies the working fluid, and a switching device that switches between the cooling operation and the heating operation. The fan 3 is configured of, for example, a propeller fan, and supplies a necessary amount of air to the heat exchanger 1. The fan 3 is disposed, for example, in front of the heat exchanger 1 in the front-rear direction (the arrow X direction) of the outdoor unit 10. As the working fluid, for example, a refrigerant which is said not to destroy the ozone layer may be used. For example, the working fluid is an HFC refrigerant, an HFO refrigerant, or a mixed refrigerant of an HFC refrigerant and an HFO refrigerant.

熱交換器1は、例えばフィンチューブ型の熱交換器であり、作動流体とファン3により供給される空気との間で熱交換を行うものである。熱交換器1は、空気調和装置の暖房運転時には蒸発器として機能し、冷房運転時又は除霜運転時には凝縮器として機能する。   The heat exchanger 1 is, for example, a fin-tube type heat exchanger, and performs heat exchange between the working fluid and the air supplied by the fan 3. The heat exchanger 1 functions as an evaporator during heating operation of the air conditioner, and functions as a condenser during cooling operation or defrosting operation.

熱交換器1は、平面視でL字形状を有し、筐体9の側面に対向して配置される平板状の第1熱交換部1aと、筐体9の背面に対向して配置される平板状の第2熱交換部1bとを備える。なお、第1熱交換部1aと第2熱交換部1bとの境界部分である角部1c(図4C参照)は、滑らかな角を形成している。角部1cは、例えば、底部から上部にわたり一定の曲率で設けられていてもよい。   The heat exchanger 1 has an L shape in a plan view, and is disposed so as to face the back surface of the casing 9 and the flat plate-shaped first heat exchanging portion 1 a disposed facing the side surface of the casing 9 And a second heat exchange section 1b in the form of a flat plate. In addition, the corner part 1c (refer FIG. 4C) which is a boundary part of the 1st heat exchange part 1a and the 2nd heat exchange part 1b forms the smooth angle | corner. The corner 1 c may be provided, for example, with a constant curvature from the bottom to the top.

第1熱交換部1aは、一方向に配列された複数の伝熱管2と、他方向に配列された複数のフィン4等とを有している。フィン4は、平板状に形成されており、複数の伝熱管2に装着されるための複数の貫通孔又は切り欠きが長手方向に沿って複数設けられている。伝熱管2は、例えば円管、又は扁平管等の平らな面を有する伝熱管で構成される。図1には、伝熱管2が扁平管である場合が示されている。なお、扁平管は、複数の冷媒流路が区画されるように形成された扁平多穴管であってもよいし、若しくは一つの冷媒流路が形成された扁平管であってもよい。第2熱交換部1bは、第1熱交換部1aと同様に、複数の伝熱管2と複数のフィン4とを有しているが、第1熱交換部1aに対して屈曲している。第2熱交換部1bのフィン4の配列方向は、第1熱交換部1aのフィン4の配列方向とは異なっており、第1熱交換部1aと第2熱交換部1bとは例えば90°の角度を有する。   The first heat exchange unit 1a includes a plurality of heat transfer tubes 2 arranged in one direction, and a plurality of fins 4 or the like arranged in the other direction. The fins 4 are formed in a flat plate shape, and a plurality of through holes or notches for mounting the plurality of heat transfer tubes 2 are provided along the longitudinal direction. The heat transfer tube 2 is formed of, for example, a heat transfer tube having a flat surface such as a circular tube or a flat tube. FIG. 1 shows the case where the heat transfer tube 2 is a flat tube. The flat tube may be a flat multi-hole tube formed so that a plurality of refrigerant channels are divided, or may be a flat tube in which one refrigerant channel is formed. The second heat exchange unit 1b has a plurality of heat transfer pipes 2 and a plurality of fins 4 as in the first heat exchange unit 1a, but is bent with respect to the first heat exchange unit 1a. The arrangement direction of the fins 4 of the second heat exchange unit 1b is different from the arrangement direction of the fins 4 of the first heat exchange unit 1a, and the first heat exchange unit 1a and the second heat exchange unit 1b have, for example, 90 °. Have an angle of

第1熱交換部1a及び第2熱交換部1bにおいて、複数のフィン4は、複数の伝熱管2に対する交差角度が一定の角度(例えば、90°)となるように複数の伝熱管2に接合されている。同じ列の伝熱管2は、一本の伝熱管を曲げ加工することにより形成される。また第2熱交換部1bにおける伝熱管2の配列方向31bは、第1熱交換部1aにおける伝熱管2の配列方向31aに対して傾いた構成となっている。   In the first heat exchange portion 1a and the second heat exchange portion 1b, the plurality of fins 4 are joined to the plurality of heat transfer tubes 2 such that the crossing angle with the plurality of heat transfer tubes 2 is a constant angle (for example, 90 °) It is done. The heat transfer tubes 2 in the same row are formed by bending a single heat transfer tube. Further, the arrangement direction 31b of the heat transfer tubes 2 in the second heat exchange unit 1b is configured to be inclined with respect to the arrangement direction 31a of the heat transfer tubes 2 in the first heat exchange unit 1a.

ここで、第1熱交換部1aの伝熱管2の配列方向31aは、第2熱交換部1bの伝熱管2の配列方向31bに対し、角度θだけ傾いている。図2に示される熱交換器100は、例えばそれぞれの伝熱管2が、各フィン4に形成された貫通孔又は切り欠きに挿入され、伝熱管2の外周がフィン4に接触するよう溶接等により接合されたものである。図1に示される熱交換器1は、例えば図2に示される平板状の熱交換器100から形成することができる。   Here, the arrangement direction 31a of the heat transfer tubes 2 of the first heat exchange unit 1a is inclined at an angle θ with respect to the arrangement direction 31b of the heat transfer tubes 2 of the second heat exchange unit 1b. In the heat exchanger 100 shown in FIG. 2, for example, each heat transfer tube 2 is inserted into a through hole or a notch formed in each fin 4, and welding is performed so that the outer periphery of the heat transfer tube 2 contacts the fins 4. It is joined. The heat exchanger 1 shown in FIG. 1 can be formed, for example, from a flat plate-like heat exchanger 100 shown in FIG.

平板状の熱交換器100の伝熱管2の配列方向31に対して、角度θ分傾けた曲げ位置L1に沿って曲げ加工が行われる。例えば曲げ位置L1が、図2に示されるR1方向へ傾けて設定された場合、第1熱交換部1aとなる部分では底部100eより上部の長さが長く、第2熱交換部1bとなる部分は底部100eより上部の長さが短くなる。そして曲げ位置L1が角部1cになる。なお、角度θは、例えば結露水などの転落角、及び通風抵抗等に基づいて決定されればよい。   Bending is performed along a bending position L1 which is inclined by an angle θ with respect to the arrangement direction 31 of the heat transfer tubes 2 of the flat heat exchanger 100. For example, when the bending position L1 is set to be inclined in the R1 direction shown in FIG. 2, the length of the upper portion of the portion to be the first heat exchange portion 1a is longer than that of the bottom portion 100e and the portion to be the second heat exchange portion 1b Is shorter at the top than the bottom 100e. And bending position L1 turns into corner 1c. Note that the angle θ may be determined based on, for example, a falling angle of dew condensation water, a ventilation resistance, or the like.

熱交換器1は、筐体9の底板6に設置される。このとき、第1熱交換部1aの伝熱管2の配列方向31aも第2熱交換部1bの伝熱管の配列方向31bも、鉛直方向(矢印Z方向)に対して傾斜して設置される。第2熱交換部1bは、室外機10の上下方向(矢印Z方向)において、上側が下側より筐体9の背面に傾く。第2熱交換部1bに生じた結露水等は、図1に矢印で示される滑落方向11に沿って排水される。具体的には、伝熱管2の結露水等が筐体9の背面側に向かって伝熱管2の外周を滑水し、伝熱管2の後方側の端部で、筐体9の底面9aへ向かって落下又はフィン4を伝って下方へ移動する。一方、第1熱交換部1aは、下側が上側より室外機10の内側へ傾く。そのため、第1熱交換部1aに生じた結露水等は、室外機10の内側へ向かって滑水し、伝熱管2の前方側の端部で、筐体9の底面9aへ向かって落下又はフィン4を伝って下方へ移動する。   The heat exchanger 1 is installed on the bottom plate 6 of the housing 9. At this time, the arrangement direction 31a of the heat transfer tubes 2 of the first heat exchange unit 1a and the arrangement direction 31b of the heat transfer tubes of the second heat exchange unit 1b are both inclined with respect to the vertical direction (arrow Z direction). In the second heat exchange unit 1 b, the upper side of the second heat exchange unit 1 b is inclined to the back of the housing 9 from the lower side in the vertical direction (the arrow Z direction) of the outdoor unit 10. Condensed water or the like generated in the second heat exchange portion 1b is drained along a sliding direction 11 indicated by an arrow in FIG. Specifically, condensed water or the like of the heat transfer pipe 2 slides the outer periphery of the heat transfer pipe 2 toward the back side of the housing 9, and the bottom end 9 a of the housing 9 at the rear end of the heat transfer pipe 2 Drop toward the bottom or move downward along the fins 4. On the other hand, the lower side of the first heat exchanger 1a is inclined to the inside of the outdoor unit 10 from the upper side. Therefore, dew condensation water or the like generated in the first heat exchange portion 1 a slides toward the inside of the outdoor unit 10 and falls toward the bottom surface 9 a of the housing 9 at the front end of the heat transfer tube 2 or Move down along the fin 4.

図3は、図1の熱交換器の下部周辺を示す模式図である。図3の室外機10は、第2熱交換部1bと底板6との間に緩衝材5を有する。緩衝材5は、例えば第2熱交換部1bと底板6とを電気的に絶縁する絶縁材で構成されている。緩衝材5は、角度θの傾斜した傾斜面5aを有し、傾斜面5a上に第2熱交換部1bの底部1eが接触する。   FIG. 3 is a schematic view showing the lower periphery of the heat exchanger of FIG. The outdoor unit 10 of FIG. 3 has a shock absorbing material 5 between the second heat exchange unit 1 b and the bottom plate 6. The cushioning material 5 is made of, for example, an insulating material that electrically insulates the second heat exchange portion 1 b and the bottom plate 6. The shock absorbing material 5 has the inclined surface 5a which inclined the angle (theta), and the bottom part 1e of the 2nd heat exchange part 1b contacts on the inclined surface 5a.

図1に示される熱交換器1では、第1熱交換部1aと第2熱交換部1bとは、一方が筐体9側へ傾くと他方は筐体9内側へ傾いている。そのため、後傾している第2熱交換部1bの下部には、緩衝材5は、筐体9の背面側にかけて傾斜面5aの高さが低くなるように配置される。一方、前傾している第1熱交換部1aの下部には、緩衝材5は、筐体9の側面側にかけて傾斜面5aの高さが高くなるように配置される。このように、熱交換器1と底板6との間に緩衝材5を設けることにより、熱交換器1が室外機10に安定して設置されるよう構成されている。   In the heat exchanger 1 shown in FIG. 1, when one of the first heat exchange portion 1 a and the second heat exchange portion 1 b is inclined to the housing 9 side, the other is inclined to the inside of the housing 9. Therefore, the cushioning material 5 is disposed in the lower part of the second heat exchange portion 1b which is inclined backward so that the height of the inclined surface 5a is lowered toward the back side of the housing 9. On the other hand, the cushioning material 5 is disposed in the lower part of the first heat exchange portion 1a which is inclined forward so that the height of the inclined surface 5a is increased toward the side surface side of the housing 9. As described above, the shock absorber 5 is provided between the heat exchanger 1 and the bottom plate 6 so that the heat exchanger 1 can be stably installed in the outdoor unit 10.

(熱交換器の製作装置)
図4Aは、本発明の実施の形態1に係る熱交換器の製作装置を示す概略平面図である。図4Bは、熱交換器の曲げ加工前の状態を示す図4AのA−A断面図である。図4Cは、図4Bの熱交換器の曲げ加工後の状態を示す断面図である。
(Production equipment for heat exchangers)
FIG. 4A is a schematic plan view showing the apparatus for manufacturing a heat exchanger according to Embodiment 1 of the present invention. FIG. 4B is a cross-sectional view taken along line A-A of FIG. 4A showing the heat exchanger before bending. FIG. 4C is a cross-sectional view showing the heat exchanger of FIG. 4B after bending.

熱交換器1の製作装置20は、曲げ冶具21と止め冶具22と曲げ型23等とにより構成される。曲げ冶具21は、例えば固定部21bと、固定部21bとの間に間隙をあけて配置された可動部21aとを備える。可動部21aの固定部21b側には可動軸21cが設けられており、可動軸21cを中心に固定部21b側へ回転する。   The manufacturing apparatus 20 of the heat exchanger 1 is configured of a bending jig 21, a stopper jig 22, a bending die 23 and the like. The bending jig 21 includes, for example, a fixed portion 21 b and a movable portion 21 a disposed with a gap between the fixed portion 21 b and the fixed portion 21 b. A movable shaft 21c is provided on the fixed portion 21b side of the movable portion 21a, and rotates toward the fixed portion 21b around the movable shaft 21c.

止め冶具22は、曲げ冶具21に対する平板状の熱交換器100の位置及び向きを決めるものである。また止め冶具22は、例えば熱交換器100の側面100dを支持する第1止め冶具22aと、底部100eを支持する第2止め冶具22bとにより構成されている。第1止め冶具22a及び第2止め冶具22bは、例えば直角三角形状を有している。第1止め冶具22aは、側面100dを支持する面が可動部21aの可動軸21cに対し角度θ分傾くように、可動部21aにネジ等により固定されている。また第2止め冶具22bは、底部100eを支持する面が可動軸21cの垂直方向に対し角度θ部傾くように、固定部21bにネジ等により固定されている。   The stop jig 22 determines the position and the orientation of the flat heat exchanger 100 with respect to the bending jig 21. Further, the stopper jig 22 is configured of, for example, a first stopper jig 22a that supports the side surface 100d of the heat exchanger 100, and a second stopper jig 22b that supports the bottom portion 100e. The first stopper jig 22a and the second stopper jig 22b have, for example, a right triangle shape. The first stopper jig 22a is fixed to the movable portion 21a by a screw or the like so that the surface supporting the side surface 100d is inclined by an angle θ with respect to the movable shaft 21c of the movable portion 21a. The second stopper jig 22b is fixed to the fixed portion 21b by a screw or the like so that the surface supporting the bottom portion 100e is inclined at an angle θ with respect to the vertical direction of the movable shaft 21c.

曲げ型23は、熱交換器100を挟んで曲げ冶具21と対向する位置に配置され、止め冶具22により位置決めされた熱交換器100を、曲げ冶具21に対して固定するものである。曲げ型23は柱状に形成されており、図4B及び図4Cに示されるように、例えば断面水滴形状を有するものである。つまり、曲げ型23は、曲げ加工時に平板状の熱交換器100に当たり支点になる直線部23aと、直線部23aから円弧状に延び、曲げ加工時の熱交換器100のガイドになるガイド部23bとを有する。   The bending die 23 is disposed at a position facing the bending jig 21 with the heat exchanger 100 interposed therebetween, and fixes the heat exchanger 100 positioned by the stopper jig 22 to the bending jig 21. The bending die 23 is formed in a columnar shape, and as shown in FIGS. 4B and 4C, for example, has a cross-sectional water droplet shape. That is, the bending die 23 extends in a circular arc from the straight portion 23a which is a supporting point against the flat heat exchanger 100 at the time of bending, and a guide portion 23b which becomes a guide of the heat exchanger 100 at the time of bending And.

(製作方法)
曲げ加工の際には、まず曲げ冶具21に熱交換器100が設置される。このとき、側面100dが第1止め冶具22aの斜辺部分に支持され、底部100eが第2止め冶具22bの斜辺部分に支持されることで、曲げ位置L1が可動軸21cに沿うように配置される。つまり熱交換器100は、図4Aに示されるように、伝熱管2の配列方向31が可動軸21cからR2方向に角度θ傾いた状態で曲げ冶具21に設置される。曲げ型23は、第1止め冶具22aと第2止め冶具22bとの間隙に沿って熱交換器100上に配置される。このとき曲げ型23は、水滴形状の頂点部が固定部21b側に配置され、ガイド部23bが可動部21a側に配置される。
(Production method)
At the time of bending, the heat exchanger 100 is first installed in the bending jig 21. At this time, the side surface 100d is supported by the oblique side portion of the first stopper jig 22a, and the bottom 100e is supported by the oblique side portion of the second stopper jig 22b, whereby the bending position L1 is arranged along the movable shaft 21c. . That is, as shown in FIG. 4A, the heat exchanger 100 is installed in the bending jig 21 in a state where the arrangement direction 31 of the heat transfer tubes 2 is inclined at an angle θ in the R2 direction from the movable shaft 21c. The bending die 23 is disposed on the heat exchanger 100 along the gap between the first stopper jig 22a and the second stopper jig 22b. At this time, the top of the water droplet shape of the bending die 23 is disposed on the fixed portion 21 b side, and the guide portion 23 b is disposed on the movable portion 21 a side.

そして、曲げ型23により熱交換器100が曲げ冶具21に押さえられた状態で、図4Cのように可動部21aが曲げ方向24に可動軸21cを中心に回転することで、熱交換器100はガイド部23bの曲面状の外周に沿うように曲げられて角部1cが形成される。熱交換器100が、伝熱管2の配列方向31から傾いた曲げ位置L1で曲げられるため、各伝熱管2は曲げられる際にねじれて、伝熱管2の配列方向が互いに異なる第1熱交換部1aと第2熱交換部1bとが形成される。なお、金属の曲げ加工ではスプリングバックが起こるため、例えば所定の曲げ角度より多く曲げることで、所定の曲げ角度を実現することができる。   Then, in a state where the heat exchanger 100 is held down by the bending jig 21 by the bending die 23, the heat exchanger 100 is rotated about the movable shaft 21c in the bending direction 24 as shown in FIG. 4C. The corner portion 1c is formed by being bent along the curved outer periphery of the guide portion 23b. Since the heat exchanger 100 is bent at the bending position L1 inclined from the arrangement direction 31 of the heat transfer tubes 2, each heat transfer tube 2 is twisted when it is bent, and the first heat exchange portion where the arrangement directions of the heat transfer tubes 2 are different from each other 1a and the 2nd heat exchange part 1b are formed. In addition, since spring back occurs in bending of metal, for example, a predetermined bending angle can be realized by bending more than a predetermined bending angle.

実施の形態1では、熱交換器1は、作動流体が流通する、一方向に配列された複数の伝熱管2と、複数の伝熱管2に接合され、他方向に配列された複数のフィン4とを有する第1熱交換部1aと、複数の伝熱管2と複数のフィン4とを有し、第1熱交換部1aとはフィン4の配列方向が異なるように屈曲した第2熱交換部1bと、を備え、第2熱交換部1bにおける伝熱管2の配列方向31bは、第1熱交換部1aにおける伝熱管2の配列方向31aに対して傾いている。   In the first embodiment, the heat exchanger 1 includes a plurality of heat transfer tubes 2 arranged in one direction through which the working fluid flows and a plurality of fins 4 joined to the plurality of heat transfer tubes 2 and arranged in the other direction. And a plurality of heat transfer pipes 2 and a plurality of fins 4, and the second heat exchange section bent so that the arrangement direction of the fins 4 is different from that of the first heat exchange section 1 a The arrangement direction 31b of the heat transfer tubes 2 in the second heat exchange unit 1b is inclined with respect to the arrangement direction 31a of the heat transfer tubes 2 in the first heat exchange unit 1a.

これにより、熱交換器1は、室外機10に設置されると配列方向31a及び配列方向31bのうち少なくとも一方は傾いた状態となるので、伝熱管2からの排水が促進され、着霜を抑制できる。具体的には、上段の伝熱管2から移動した結露水等が下段の伝熱管2に蓄積することが抑制される。また、一般に室外機の熱交換器では暖房運転時に結露水が発生し、除霜運転中に霜が溶け出て水分が生じるが、熱交換器1はこのような水分を素早く排出できる。その結果、除霜運転時間を短縮し、次運転時の暖房性能の立上りを改善することができる。   Accordingly, when the heat exchanger 1 is installed in the outdoor unit 10, at least one of the array direction 31a and the array direction 31b is inclined, so drainage from the heat transfer tube 2 is promoted and frost formation is suppressed. it can. Specifically, condensation water or the like moved from the upper heat transfer pipe 2 is prevented from being accumulated in the lower heat transfer pipe 2. Generally, in the heat exchanger of the outdoor unit, dew condensation water is generated during heating operation, and the frost melts out during the defrosting operation to generate moisture, but the heat exchanger 1 can quickly discharge such moisture. As a result, the defrosting operation time can be shortened, and the rising of the heating performance in the next operation can be improved.

また、熱交換器1は、第1熱交換部1aと第2熱交換部1bとは一体構成されており、第1熱交換部1aと第2熱交換部1bとの境界部分である角部1cは、底部1eから上部にわたり一定の曲率を有している。これより角部1cは、平板状の熱交換器100から、柱状の曲げ型等を用いて1回の曲げ加工により形成することができる。したがって、熱交換器1の製作装置20は、L字状の熱交換器を製作する製作装置に第1止め冶具22a及び第2止め冶具22bを設けたものであればよく、従来の熱交換器よりも着霜を抑制した熱交換器1を製作することができる。   Further, in the heat exchanger 1, the first heat exchange portion 1a and the second heat exchange portion 1b are integrally configured, and a corner portion which is a boundary portion between the first heat exchange portion 1a and the second heat exchange portion 1b. 1c has a constant curvature from the bottom 1e to the top. From this, the corner portion 1c can be formed from the flat plate-like heat exchanger 100 by bending once using a columnar bending die or the like. Therefore, the manufacturing apparatus 20 of the heat exchanger 1 may be a manufacturing apparatus for manufacturing the L-shaped heat exchanger provided that the first stopper jig 22a and the second stopper jig 22b are provided. It is possible to manufacture the heat exchanger 1 in which frost formation is more suppressed.

また、伝熱管2は、扁平管である。これより、伝熱管2の平らな面が傾斜することで結露水等は平らな面上を滑水して熱交換器1から排出される。したがって、熱交換器1は、円管を用いた場合に比べて熱交換効率を向上させるとともに、扁平管において懸念される霜の形成及び成長を抑えることができる。   Further, the heat transfer tube 2 is a flat tube. From this, the flat surface of the heat transfer tube 2 is inclined, and condensed water etc. slide on the flat surface and is discharged from the heat exchanger 1. Therefore, the heat exchanger 1 can improve the heat exchange efficiency as compared with the case where a circular pipe is used, and can suppress the formation and the growth of frost which is a concern in the flat pipe.

また、第1熱交換部1aの底部1eには、第1熱交換部1aにおける伝熱管2の配列方向31aの傾きに応じた傾斜面5aを有する緩衝材5を更に備える。これより、筐体9に配列方向31aが傾いた状態で設置される場合であっても、緩衝材5により第1熱交換部1aの底部1eと底板6との隙間を埋めることで安定して設置することができる。また、緩衝材5は傾斜面5aを備えているので、第1熱交換部1aを高さ方向に持ち上げずに、側方から隙間に緩衝材5を挿入することができる。   Moreover, the bottom part 1e of the 1st heat exchange part 1a is further equipped with the shock absorbing material 5 which has the inclined surface 5a according to the inclination of the arrangement direction 31a of the heat transfer tube 2 in the 1st heat exchange part 1a. Thus, even if the case 9 is installed with the arrangement direction 31a inclined in the housing 9, the gap between the bottom portion 1e of the first heat exchange portion 1a and the bottom plate 6 is stably filled with the buffer material 5. It can be installed. Moreover, since the shock absorbing material 5 is provided with the inclined surface 5a, the shock absorbing material 5 can be inserted into the gap from the side without raising the first heat exchange portion 1a in the height direction.

また、第2熱交換部1bの底部1eには、第2熱交換部1bにおける伝熱管2の配列方向31bの傾きに応じた傾斜面5aを有する緩衝材5を更に備える。これより、筐体9に配列方向31bが傾いた状態で設置される場合であっても、緩衝材5により安定して設置することができる。また緩衝材5は傾斜面5aを備えているので、第2熱交換部1bを持ち上げずに、隙間に緩衝材5を挿入することができる。   Moreover, the bottom part 1e of the 2nd heat exchange part 1b is further equipped with the shock absorbing material 5 which has the inclined surface 5a according to the inclination of the arrangement direction 31b of the heat transfer tube 2 in the 2nd heat exchange part 1b. As a result, even in the case where the arrangement direction 31b is installed in the housing 9 in a state where the arrangement direction 31b is inclined, the buffer material 5 can be stably installed. Moreover, since the shock absorbing material 5 is provided with the inclined surface 5a, the shock absorbing material 5 can be inserted into the gap without lifting the second heat exchange portion 1b.

また、緩衝材5は、電気的に絶縁する絶縁材で構成されている。これより、熱交換器1は、室外機10等の底板6に設置された場合に、熱交換器1と底板6との異種金属間に起こる電食等の腐食を緩衝材5により抑制できる。   Moreover, the shock absorbing material 5 is comprised with the insulating material electrically insulated. Thus, when the heat exchanger 1 is installed on the bottom plate 6 of the outdoor unit 10 or the like, the buffer material 5 can suppress corrosion such as electrolytic corrosion that occurs between dissimilar metals of the heat exchanger 1 and the bottom plate 6.

また、室外機10は、筐体9と、熱交換器1とを備えている。これより室外機10は、着霜を抑制した熱交換器1を備えているので、暖房運転時に暖房能力(特に暖房低温能力)を確保することができる。   The outdoor unit 10 further includes a housing 9 and a heat exchanger 1. Since outdoor unit 10 is equipped with heat exchanger 1 which controlled frost formation from this, heating capability (especially heating low temperature capability) is securable at the time of heating operation.

また、室外機10において熱交換器1は、筐体9内に、第1熱交換部1aが筐体9の側面に対向し、第2熱交換部1bが筐体9の背面に対向するように設置され、第2熱交換部1bにおける伝熱管2の配列方向31bは、筐体9の背面側へ傾いている。これより、熱交換器1は、室外機10に設置された状態で第2熱交換部1bが後傾した状態となり、熱交換器1で発生した結露水等を筐体9側へ排出できる。したがって、筐体9内部の機器等に熱交換器1からの排水がはねかかることを抑制できる。   Further, in the outdoor unit 10, in the casing 9, the first heat exchange unit 1a faces the side surface of the casing 9 and the second heat exchange unit 1b faces the rear surface of the casing 9 in the casing 9. The arrangement direction 31 b of the heat transfer tubes 2 in the second heat exchange section 1 b is inclined to the back side of the housing 9. As a result, the heat exchanger 1 is installed in the outdoor unit 10, and the second heat exchange unit 1b is inclined backward, so that condensation water and the like generated in the heat exchanger 1 can be discharged to the housing 9 side. Therefore, it can suppress that the drainage from the heat exchanger 1 is splashed on the apparatus inside the housing | casing 9, and the like.

また、室外機10において作動流体は、HFC冷媒、HFO冷媒、又はHFC冷媒とHFO冷媒との混合冷媒である。これより、オゾン層を破壊しないとされるこれらの冷媒を用いた室外機10においても、熱交換器1は着霜を抑制して暖房運転時の暖房能力(特に暖房低温能力)を確保することができる。   In the outdoor unit 10, the working fluid is an HFC refrigerant, an HFO refrigerant, or a mixed refrigerant of an HFC refrigerant and an HFO refrigerant. From this, also in the outdoor unit 10 using these refrigerants that are considered not to destroy the ozone layer, the heat exchanger 1 suppresses frost formation and secures the heating capacity (particularly heating low-temperature capacity) during heating operation. Can.

また熱交換器1の製作装置20は、固定部21bと、固定部21bとの間に間隙を有して配置され、可動軸21cを中心に固定部21b側へ回転する可動部21aとを有し、複数の伝熱管2と複数のフィン4とを有する平板状の熱交換器100が設置される曲げ冶具21と、曲げ冶具21に設けられ、曲げ冶具21に設置された平板状の熱交換器100を伝熱管2の配列方向31が可動軸21cに対して傾くように支持する止め冶具22と、熱交換器1を挟んで曲げ冶具21と対向する位置に配置され、間隙に沿って可動部21a側に曲面状の外周を有する曲げ型23とを備えるものである。これより、例えば止め冶具22を変更することで、従来の曲げ冶具を用いて熱交換器1の構成を実現することができる。   In addition, the manufacturing apparatus 20 of the heat exchanger 1 has the fixed portion 21 b and the movable portion 21 a which is disposed with a gap between the fixed portion 21 b and rotates toward the fixed portion 21 b about the movable shaft 21 c. And the flat plate-like heat exchanger 100 having the plurality of heat transfer pipes 2 and the plurality of fins 4 installed, and the flat plate-like heat exchange provided on the bending jig 21 and installed on the bending jig 21. A jig 22 supporting the heat exchanger 100 so that the arrangement direction 31 of the heat transfer tubes 2 is inclined with respect to the movable shaft 21c, and a position facing the bending jig 21 across the heat exchanger 1 And a bending die 23 having a curved outer periphery on the side of the portion 21a. From this, the configuration of the heat exchanger 1 can be realized using, for example, a conventional bending jig by changing the stopper jig 22.

また、熱交換器1の製作方法は、複数の伝熱管2と複数のフィン4とを有する平板状の熱交換器100を、平板状の熱交換器100の伝熱管2の配列方向31に対して傾けた曲げ位置L1で曲げ加工する工程を含む。これより、従来の熱交換器と同様に伝熱管2とフィン4とが接合された熱交換器100から、曲げ位置L1を傾けて曲げ加工することにより、配列方向が異なる2つの面を有する熱交換器1が容易に製作できる。   Further, in the method of manufacturing the heat exchanger 1, the flat heat exchanger 100 having the plurality of heat transfer tubes 2 and the plurality of fins 4 is arranged in the arrangement direction 31 of the heat transfer tubes 2 of the flat heat exchanger 100. And bending at the inclined bending position L1. From this, from the heat exchanger 100 in which the heat transfer pipe 2 and the fins 4 are joined as in the conventional heat exchanger, the bending position L1 is inclined and bending is performed, so that the heat having two surfaces different in the arrangement direction The exchanger 1 can be easily manufactured.

実施の形態2.
図5は、本発明の実施の形態2に係る空気調和装置の室外機の構成図である。実施の形態2において、実施の形態1と同一の構成を有する部位には同一の符号を付してその説明を省略する。図5に示される熱交換器101は、図1の熱交換器1と傾斜方向が異なる。
Second Embodiment
FIG. 5 is a block diagram of the outdoor unit of the air conditioning apparatus according to Embodiment 2 of the present invention. In the second embodiment, parts having the same configuration as in the first embodiment are assigned the same reference numerals and descriptions thereof will be omitted. The heat exchanger 101 shown in FIG. 5 is different in inclination direction from the heat exchanger 1 of FIG.

熱交換器101は、筐体9の水平な底板6に設置された状態では、熱交換器1の厚さ方向において第2熱交換部101bは筐体9の内側へ前傾している。そして図5に示されるように、熱交換器101の第2熱交換部101bは、下側が上側より筐体9の背面に近く配置される。したがって、熱交換器101の第2熱交換部101bに生じた結露水等は、図5に矢印で示される滑落方向111に沿って排水される。具体的には、伝熱管2の結露水等が室外機10の内側すなわち図5のファン3側に向かって伝熱管2の外周を滑水し、伝熱管2の前方側の端部で、筐体9の底面9aへ向かって落下又はフィン4を伝って下方へ移動する。一方、第1熱交換部101aは、熱交換器101の厚さ方向において後傾しており、上側が下側より筐体9の側面に近く配置される。そのため、第1熱交換部101aに生じた結露水等は筐体9の側面側へ向かって滑水し、伝熱管2の後方側の端部で、筐体9の底面9aに向かって落下又はフィン4を伝って下方へ移動する。   When the heat exchanger 101 is installed on the horizontal bottom plate 6 of the housing 9, the second heat exchange unit 101 b is inclined forward to the inside of the housing 9 in the thickness direction of the heat exchanger 1. And as FIG. 5 shows, the 2nd heat exchange part 101b of the heat exchanger 101 is arrange | positioned closer to the back surface of the housing | casing 9 from upper side below. Therefore, the condensed water etc. which arose in the 2nd heat exchange part 101b of the heat exchanger 101 are drained along the sliding direction 111 shown by the arrow in FIG. Specifically, dew condensation water of the heat transfer pipe 2 slides the outer periphery of the heat transfer pipe 2 toward the inside of the outdoor unit 10, ie, the fan 3 side in FIG. It falls toward the bottom surface 9 a of the body 9 or travels downward along the fins 4. On the other hand, the first heat exchange portion 101a is inclined rearward in the thickness direction of the heat exchanger 101, and the upper side is disposed closer to the side surface of the housing 9 than the lower side. Therefore, dew condensation water or the like generated in the first heat exchange portion 101 a slides toward the side of the housing 9 and falls toward the bottom 9 a of the housing 9 at the rear end of the heat transfer tube 2 or Move down along the fin 4.

図5には空気の流れ方向32が矢印で示されている。ファン3の駆動中、室外機10外の空気は筐体9の背面及び側面等から室外機10内に吸い込まれ、吸い込まれた空気は伝熱管2及びフィン4の隙間を通過し、ファン3を通って室外機10外へ吐き出される。また、上述のように、第2熱交換部101bの結露水等は滑落方向111に沿って移動する。そのため、ファン3の駆動で生じる空気の流れによって結露水等の滑水が付勢される。   The flow direction 32 of the air is shown by the arrow in FIG. During operation of the fan 3, air outside the outdoor unit 10 is sucked into the outdoor unit 10 from the back and side surfaces of the housing 9, and the sucked air passes through the gap between the heat transfer tube 2 and the fins 4. It is discharged to the outside of the outdoor unit 10 through. Further, as described above, the condensed water and the like of the second heat exchange unit 101b move along the sliding direction 111. Therefore, water such as dew condensation water is energized by the flow of air generated by driving the fan 3.

なお、図2の熱交換器1では、曲げ位置L1は、伝熱管2の配列方向31からR1方向に角度θ傾けて設定されたが、図5の熱交換器101は、曲げ位置をR1方向とは逆向きに角度θ傾けた設定して曲げ加工を行うことで製作できる。   In the heat exchanger 1 of FIG. 2, the bending position L1 is set to be inclined at an angle θ from the arrangement direction 31 of the heat transfer tubes 2 to the R1 direction. However, the heat exchanger 101 of FIG. It can be manufactured by performing bending processing while setting the angle θ inclined in the opposite direction.

また、熱交換器101は、図4A〜図4Cに示される製作装置20において、第1止め冶具22a及び第2止め冶具22bの位置及び向きを曲げ冶具21上で上下に反転させて配置した製作装置により製作できる。この場合、熱交換器101は、伝熱管2の配列方向が可動部21aの可動軸21cから図4AのR2方向とは逆向きに角度θ傾いた状態で曲げ冶具21に設置されて曲げ加工される。また実施の形態2においても、実施の形態1の場合と同様に、熱交換器101と底板6との間に緩衝材5を設けてもよい。この場合、緩衝材5は、熱交換器101の厚さ方向において、傾斜が実施の形態1の場合とは逆向きになるように配置されればよい。   In addition, the heat exchanger 101 is arranged such that the positions and directions of the first stopper jig 22a and the second stopper jig 22b are vertically inverted on the bending jig 21 in the manufacturing apparatus 20 shown in FIGS. 4A to 4C. It can be manufactured by the device. In this case, the heat exchanger 101 is installed and bent in the bending jig 21 in a state in which the arrangement direction of the heat transfer tubes 2 is inclined at an angle θ from the movable shaft 21c of the movable portion 21a in the direction opposite to the R2 direction of FIG. Ru. Also in the second embodiment, as in the first embodiment, the shock absorbing material 5 may be provided between the heat exchanger 101 and the bottom plate 6. In this case, the cushioning material 5 may be disposed in the thickness direction of the heat exchanger 101 such that the inclination is opposite to that in the first embodiment.

実施の形態2においても、熱交換器101は、第2熱交換部101bにおける伝熱管2の配列方向131bが、第1熱交換部101aにおける伝熱管2の配列方向131aに対して傾いている。   Also in the second embodiment, in the heat exchanger 101, the arrangement direction 131b of the heat transfer tubes 2 in the second heat exchange unit 101b is inclined to the arrangement direction 131a of the heat transfer tubes 2 in the first heat exchange unit 101a.

これより、実施の形態2の熱交換器101においても実施の形態1と同様に、排水が促進され、着霜を抑制することができる。具体的には、上段の伝熱管2からの結露水等が下段の伝熱管2に蓄積することが抑制される。また、熱交換器101に生じた結露水等を素早く排出できるので、除霜運転時間を短縮し、次運転時の暖房性能の立上りを改善することができる。   Thus, in the heat exchanger 101 of the second embodiment, drainage is promoted as in the first embodiment, and frost formation can be suppressed. Specifically, accumulation of condensation water and the like from the upper heat transfer pipe 2 in the lower heat transfer pipe 2 is suppressed. Further, since the condensed water and the like generated in the heat exchanger 101 can be discharged quickly, the defrosting operation time can be shortened and the rising of the heating performance in the next operation can be improved.

また、室外機10の熱交換器1は、筐体9内に、第1熱交換部1aが筐体9の側面に対向し、第2熱交換部1bが筐体9の背面に対向するように設置され、第2熱交換部101bにおける伝熱管2の配列方向131bは、筐体9の前面側へ傾いている。   In the heat exchanger 1 of the outdoor unit 10, the first heat exchange unit 1 a faces the side of the case 9 and the second heat exchange unit 1 b faces the back of the case 9 in the case 9. The arrangement direction 131 b of the heat transfer tubes 2 in the second heat exchange unit 101 b is inclined toward the front side of the housing 9.

これより、結露水等が伝熱管2を下っていく方向に空気が流れているので、結露水等を飛散もしくは滑水を付勢して随時熱交換器1から排出することができる。また、これより霜の成長を抑制でき、暖房連続運転時間を長く保つことができる。   Since air flows in the direction in which the condensed water etc. descends the heat transfer pipe 2 from this, the condensed water etc. can be scattered or the lubricating water can be energized and discharged from the heat exchanger 1 as needed. Moreover, the growth of frost can be suppressed by this, and heating continuous operation time can be kept long.

実施の形態3.
図6は、本発明の実施の形態3に係る熱交換器の部分構成図である。図6において、紙面上下方向に伝熱管2の配列方向が沿うように示されている。実施の形態3においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いており、実施の形態1と同様の効果を有している。なお、実施の形態1と同様の構成には同一の符号を付してその説明を省略する。
Third Embodiment
FIG. 6 is a partial configuration diagram of a heat exchanger according to Embodiment 3 of the present invention. In FIG. 6, the arrangement direction of the heat transfer tubes 2 is shown to be along the vertical direction in the drawing. Also in the third embodiment, in the heat exchanger 1, the arrangement direction 31b in the second heat exchange portion 1b is inclined to the arrangement direction 31a in the first heat exchange portion 1a, and the same effect as in the first embodiment have. The same components as those in the first embodiment will be assigned the same reference numerals and descriptions thereof will be omitted.

実施の形態3において、フィン40には溝部41aが形成されている。溝部41aは、表面を凹ませて形成した溝であっても良いし、又は貫通した孔であってもよい。溝部41aは、フィン40と伝熱管2との接合部に沿うように形成されている。具体的には、溝部41aは、熱交換器1の厚さ方向における伝熱管2の端部2bに沿うように設けられている。   In the third embodiment, the groove 40 a is formed in the fin 40. The groove 41a may be a groove formed by indenting the surface, or may be a through hole. The groove 41 a is formed along the joint between the fin 40 and the heat transfer tube 2. Specifically, the groove 41 a is provided along the end 2 b of the heat transfer tube 2 in the thickness direction of the heat exchanger 1.

熱交換器1が室外機10内に設置されると、筐体9背面に沿って配置された第2熱交換部1bは後傾し、結露水等は滑落方向11へ移動する。そして端部2bに形成された溝部41aでは、排水が毛細管現象により促進される。特に、伝熱管2の端部2a及び端部2bのうち重力方向で下方に位置する端部2bに溝部41aが形成される場合には、伝熱管2を伝い端部2bに移動してきた結露水等が効率よく下方へ導かれる。   When the heat exchanger 1 is installed in the outdoor unit 10, the second heat exchange unit 1b disposed along the rear surface of the housing 9 is inclined backward, and condensation water and the like move in the sliding direction 11. In the groove 41a formed in the end 2b, drainage is promoted by capillary action. In particular, when the groove portion 41a is formed in the end portion 2b of the end portion 2a and the end portion 2b of the heat transfer tube 2 positioned below in the direction of gravity, the condensed water which has moved along the heat transfer tube 2 to the end portion 2b Etc. are efficiently guided downward.

なお、溝部41aは、伝熱管2から結露水を誘導し排水する流水路を形成するものであれば、どのような形状でもよい。また、実施の形態3のフィン40は、実施の形態2にも適用することができる。図6では、溝部41aが端部2bの位置に形成された場合を例に説明したが、端部2aの位置だけ、又は、端部2a及び端部2bの位置に設けられてもよい。実施の形態2の熱交換器101のフィン4に溝部41aを形成する場合には、第2熱交換部101bは前傾するため、前方側の端部2aの位置に溝部41aを形成しておくことで、上述した場合と同様の効果を得ることができる。また、熱交換器1が室外機10に設置された状態で、例えば第1熱交換部1aが筐体9側に傾き、かつ第2熱交換部1bが筐体9の内側に傾いている場合には、端部2a及び端部2bの双方の位置に溝部41aをそれぞれ形成しておくことで、第1熱交換部1a及び第2熱交換部1bにおいて排水が促進される。また、第1熱交換部1a及び第2熱交換部1bのうち設置面積が大きい方にて下方に位置する端部に、溝部41aが設けられる構成であってもよい。   The groove portion 41 a may have any shape as long as it forms a water flow path for guiding condensed water from the heat transfer pipe 2 and discharging the condensed water. The fin 40 of the third embodiment can also be applied to the second embodiment. Although FIG. 6 illustrates the case where the groove 41a is formed at the position of the end 2b, it may be provided only at the position of the end 2a or at the positions of the end 2a and the end 2b. When the groove 41a is formed in the fin 4 of the heat exchanger 101 according to the second embodiment, the second heat exchange portion 101b is inclined forward, so the groove 41a is formed at the position of the end 2a on the front side. Thus, the same effects as those described above can be obtained. In the case where the heat exchanger 1 is installed in the outdoor unit 10, for example, the first heat exchange unit 1a is inclined to the housing 9 side and the second heat exchange unit 1b is inclined to the inside of the housing 9 In the first heat exchange section 1a and the second heat exchange section 1b, drainage is promoted by forming the grooves 41a at the positions of both the end 2a and the end 2b. Alternatively, the groove 41 a may be provided at an end of the first heat exchange unit 1 a and the second heat exchange unit 1 b that is positioned below the larger installation area.

実施の形態3において、フィン40には、伝熱管2の端部2a、2bの位置に溝部41aが形成されている。これより溝部41aは、伝熱管2の端部2bに移動してきた結露水等を、毛細管現象により更に端部2bから移動させることができる。そのため溝部41aは、伝熱管2からの排水を促進するとともに、結露水等が端部2bに滞留することによる着霜を抑制できる。   In the third embodiment, grooves 41 a are formed in the fins 40 at the positions of the end portions 2 a and 2 b of the heat transfer tube 2. From this, the groove 41a can move the condensed water etc. which has moved to the end 2b of the heat transfer tube 2 further from the end 2b by capillary action. Therefore, the groove portion 41a can promote drainage from the heat transfer tube 2 and suppress frost formation due to condensation water or the like staying in the end portion 2b.

また、溝部41aは、伝熱管2の端部2a、2bのうち、重力方向で下方に位置する端部2bに形成されている。これより熱交換器1は、傾斜していることにより伝熱管2の端部2bに移動してきた結露水等を、溝部41aにより更に端部2bから移動させることができるため、熱交換器1から効率よく排水することができる。   Further, the groove portion 41 a is formed at the end portion 2 b of the end portions 2 a and 2 b of the heat transfer tube 2 which is positioned below in the gravity direction. Since the heat exchanger 1 can further move the condensed water etc. which has moved to the end 2b of the heat transfer tube 2 from the end 2b by the groove 41a, the heat exchanger 1 can be moved away from the heat exchanger 1 It can drain efficiently.

実施の形態4.
図6に基づき、実施の形態4の熱交換器1について説明する。実施の形態4においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いている。なお、実施の形態4において実施の形態3と同様の構成には同一の符号を付してその説明を省略する。
Fourth Embodiment
The heat exchanger 1 of the fourth embodiment will be described based on FIG. Also in the fourth embodiment, in the heat exchanger 1, the arrangement direction 31b of the second heat exchange unit 1b is inclined to the arrangement direction 31a of the first heat exchange unit 1a. In the fourth embodiment, the same components as those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

実施の形態4では、溝部41aが設けられる領域に着目して説明する。フィン40に形成された溝部41aは、伝熱管2の端部2bに沿わせた円弧状に設けられたものである。溝部41aでは、排水が毛細管現象により促進される。また、重力方向で下方に位置する端部2bに対応して溝部41aが形成されている場合、溝部41aは、伝熱管2を伝い端部2bに移動してきた結露水等を効率よく下方へ導くことができる。特に、溝部41aが端部2bの上側部分に対応して形成されていれば、溝部41aは、室外機10の前後方向(矢印X方向)において下段の伝熱管2の端部2bから離れた位置で結露水等を下方に誘導できる。   The fourth embodiment will be described focusing on the region where the groove 41a is provided. The groove portion 41 a formed in the fin 40 is provided in an arc shape along the end portion 2 b of the heat transfer tube 2. In the groove 41a, drainage is promoted by capillary action. Further, when the groove 41a is formed corresponding to the end 2b positioned downward in the direction of gravity, the groove 41a efficiently guides the dew condensation water etc. which has moved along the heat transfer tube 2 to the end 2b. be able to. In particular, when the groove 41a is formed corresponding to the upper portion of the end 2b, the groove 41a is a position away from the end 2b of the heat transfer tube 2 in the lower direction in the front-rear direction (arrow X direction) of the outdoor unit 10. Can lead condensation water downward.

実施の形態4において、溝部41aは、伝熱管2の端部2bに沿わせた円弧状に形成されている。これより溝部41aは、伝熱管2の端部2bに移動してきた結露水等を、毛細管現象により更に端部2bから移動させることができる。そのため溝部41bは、伝熱管2からの排水を促進するとともに、結露水等が端部2bに滞留してしまうのを防止することができる。特に溝部41bは円弧状に設けられているので、その曲面により結露水等を下方に導くことができる。   In the fourth embodiment, the groove portion 41 a is formed in an arc shape along the end portion 2 b of the heat transfer tube 2. From this, the groove 41a can move the condensed water etc. which has moved to the end 2b of the heat transfer tube 2 further from the end 2b by capillary action. Therefore, the groove 41 b can promote drainage from the heat transfer tube 2 and prevent condensation water and the like from staying in the end 2 b. In particular, since the groove 41 b is provided in an arc shape, it is possible to guide condensation water and the like downward by its curved surface.

実施の形態5.
図7は、本発明の実施の形態5に係る熱交換器の部分構成図である。実施の形態5においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いている。なお、実施の形態5において実施の形態3と同様の構成には同一の符号を付してその説明を省略する。
Embodiment 5
FIG. 7 is a partial configuration diagram of a heat exchanger according to Embodiment 5 of the present invention. Also in the fifth embodiment, in the heat exchanger 1, the arrangement direction 31b of the second heat exchange unit 1b is inclined to the arrangement direction 31a of the first heat exchange unit 1a. In the fifth embodiment, the same components as those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

実施の形態5では、溝部41bが設けられる領域に着目して説明する。溝部41bは、複数の伝熱管2の配列方向に直線状に設けられている。このような溝部41bの構造により、熱交換器1は、伝熱管2の形状によらず排水を促進することができる。特に図7に示されるように、溝部41bが、複数の伝熱管2の端部に連続して形成されている場合、上段の伝熱管2から溝部41bを伝って移動した結露水は、下段の伝熱管2からの結露水と合わさることで液滴が大きくなり、重力によって排水され易くなる。   The fifth embodiment will be described focusing on the region where the groove 41b is provided. The grooves 41 b are provided linearly in the arrangement direction of the plurality of heat transfer tubes 2. With such a groove 41 b structure, the heat exchanger 1 can promote drainage regardless of the shape of the heat transfer tube 2. In particular, as shown in FIG. 7, when the groove 41b is continuously formed at the end of the plurality of heat transfer tubes 2, the condensed water moved along the groove 41b from the upper heat transfer tube 2 is By combining with the condensed water from the heat transfer tube 2, the droplets become large and are easily drained by gravity.

なお、図7に基づき、溝部41bを直線状に加工する構成について説明したが、特にこれに限定されない。溝部41bは、伝熱管2の配列方向に断続的に設けられたものであってもよい。   In addition, although the structure which processes the groove part 41b into linear form was demonstrated based on FIG. 7, it is not specifically limited to this. The grooves 41 b may be provided intermittently in the arrangement direction of the heat transfer tubes 2.

実施の形態5において、溝部41bは、複数の伝熱管2の配列方向に直線状に形成されている。これより溝部41bは、毛細管現象により伝熱管2から結露水等を移動させるとともに、複数の伝熱管2から移動してきた結露水等を合流させて水滴の質量を増加させることで、重力により排水し易くすることができる。   In the fifth embodiment, the groove portion 41 b is formed in a straight line in the arrangement direction of the plurality of heat transfer tubes 2. From this, the groove 41b moves condensed water and the like from the heat transfer pipe 2 by capillary phenomenon, and combines the condensed water and the like moved from the plurality of heat transfer pipes 2 to increase the mass of water droplets, thereby draining by gravity. It can be made easy.

実施の形態6.
図8は、本発明の実施の形態6に係る熱交換器の部分構成図である。実施の形態6においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いている。なお、実施の形態6において実施の形態3と同様の構成には同一の符号を付してその説明を省略する。
Sixth Embodiment
FIG. 8 is a partial configuration diagram of a heat exchanger according to Embodiment 6 of the present invention. Also in the sixth embodiment, in the heat exchanger 1, the arrangement direction 31b of the second heat exchange unit 1b is inclined to the arrangement direction 31a of the first heat exchange unit 1a. In the sixth embodiment, the same components as those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

実施の形態6では、溝部41cが設けられる領域に着目して説明する。溝部41cは、伝熱管2の端部2bに傾斜した直線状に設けられたものである。溝部41cでは、排水が毛細管現象により促進される。また、重力方向で下方に位置する端部2bに対応して溝部41cが形成されている場合、溝部41cは、伝熱管2を伝い端部2bに移動してきた結露水等を効率よく下方へ導くことができる。特に図8に示されるように、溝部41cが端部2bの上側部分に傾斜して設けられた場合には、伝熱管2の端部2bに移動した結露水等は、下方に傾斜した溝部41bにより下方へ誘導される。   The sixth embodiment will be described focusing on the area where the groove 41c is provided. The groove portion 41 c is provided in an inclined linear shape at the end portion 2 b of the heat transfer tube 2. In the groove 41c, drainage is promoted by capillary action. Further, when the groove 41c is formed corresponding to the end 2b located downward in the direction of gravity, the groove 41c efficiently guides the dew condensation water and the like moving along the heat transfer tube 2 to the end 2b downward. be able to. Particularly, as shown in FIG. 8, when the groove 41c is provided on the upper side of the end 2b, the dew condensation water or the like moved to the end 2b of the heat transfer tube 2 is inclined downward. It is guided downward by

実施の形態6において、溝部41cは、伝熱管2の端部2bに傾斜した直線状に形成されている。これより溝部41cは、伝熱管2の端部2bに移動してきた結露水等を、毛細管現象により更に端部2bから移動させることができる。そのため溝部41cは、伝熱管2からの排水を促進するとともに、結露水等が端部2bに滞留してしまうのを防止することができる。特に溝部41cは傾斜した直線状に設けられているので、その傾斜により結露水等を下方に導くことができる。   In the sixth embodiment, the groove 41 c is formed in an inclined linear shape at the end 2 b of the heat transfer tube 2. Thus, the groove 41c can move the condensed water and the like moved to the end 2b of the heat transfer tube 2 from the end 2b by capillary action. Therefore, the groove 41c can promote drainage from the heat transfer tube 2 and prevent condensation water and the like from staying in the end 2b. In particular, since the groove 41c is provided in an inclined linear shape, dew condensation water and the like can be guided downward by the inclination.

実施の形態7.
図9は、本発明の実施の形態7に係る熱交換器の部分構成図である。実施の形態7においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いている。なお、実施の形態7において実施の形態3と同様の構成には同一の符号を付してその説明を省略する。
Embodiment 7
FIG. 9 is a partial configuration diagram of a heat exchanger according to Embodiment 7 of the present invention. Also in the seventh embodiment, in the heat exchanger 1, the arrangement direction 31b of the second heat exchange unit 1b is inclined to the arrangement direction 31a of the first heat exchange unit 1a. In the seventh embodiment, the same components as those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

実施の形態7では、溝部41dが設けられる領域に着目して説明する。溝部41dは、伝熱管2の端部2bに沿わせたL字状に設けられたものである。溝部41dでは、排水が毛細管現象により促進される。また、重力方向で下方に位置する端部2bに対応して溝部41dが形成されている場合、溝部41dは、伝熱管2を伝い端部2bに移動してきた結露水等を効率よく下方へ導くことができる。特に図9に示されるように、溝部41dが、端部2bの上側部分に直角に曲折する角を有している場合、水切れを良くし、排水を更に促進することができる。   The seventh embodiment will be described focusing on the region where the groove 41 d is provided. The groove 41 d is provided in an L shape along the end 2 b of the heat transfer tube 2. In the groove 41 d, drainage is promoted by capillary action. Further, when the groove 41d is formed corresponding to the end 2b located downward in the direction of gravity, the groove 41d efficiently leads downward the condensation water etc. which has moved along the heat transfer tube 2 to the end 2b. be able to. In particular, as shown in FIG. 9, when the groove 41d has a corner bent at a right angle to the upper portion of the end 2b, the drainage can be improved and drainage can be further promoted.

なお、溝部41dが曲折する回数は1回に限定されず、2回以上であっても良い。また、図9ではL字状の溝部41dの一辺が伝熱管2の配列方向に対し垂直方向に設けられているが、特にこれに限定されない。   The number of times the groove 41 d is bent is not limited to one, and may be two or more. Further, in FIG. 9, one side of the L-shaped groove portion 41d is provided in the direction perpendicular to the arrangement direction of the heat transfer tubes 2, but it is not particularly limited thereto.

実施の形態7においては、溝部41dは、伝熱管2の端部2bにL字状に形成されている。これより溝部41dは、伝熱管2の端部2bに移動してきた結露水等を、毛細管現象により更に端部2bから移動させることができる。そのため溝部41dは、伝熱管2からの排水を促進するとともに、結露水等が端部2bに滞留してしまうのを防止することができる。特に溝部41dは角を有するL字状に設けられているので水切れを良くすることができる。   In the seventh embodiment, the groove 41 d is formed in an L shape at the end 2 b of the heat transfer tube 2. Thus, the groove 41 d can move the condensed water and the like moved to the end 2 b of the heat transfer tube 2 further from the end 2 b by capillary action. Therefore, the groove 41 d can promote drainage from the heat transfer tube 2 and prevent condensation water and the like from staying in the end 2 b. In particular, the groove 41 d is provided in an L-shape having a corner, so that water drainage can be improved.

実施の形態8.
図10は、本発明の実施の形態8に係る熱交換器の部分構成図である。実施の形態8においても、熱交換器1は、第2熱交換部1bにおける配列方向31bが、第1熱交換部1aにおける配列方向31aに対して傾いている。なお、実施の形態6において実施の形態3と同様の構成には同一の符号を付してその説明を省略する。
Eighth Embodiment
FIG. 10 is a partial configuration diagram of a heat exchanger according to Embodiment 8 of the present invention. Also in the eighth embodiment, in the heat exchanger 1, the arrangement direction 31b of the second heat exchange unit 1b is inclined to the arrangement direction 31a of the first heat exchange unit 1a. In the sixth embodiment, the same components as those of the third embodiment are designated by the same reference numerals and the description thereof will be omitted.

実施の形態8では、溝部41eが設けられる領域に着目して説明する。溝部41eは、伝熱管2の端部2bに沿わせて鈍角に曲折させて設けられている。溝部41eでは、排水が毛細管現象により促進される。また、重力方向で下方に位置する端部2bに対応して溝部41eが形成されている場合、溝部41eは、伝熱管2を伝い端部2bに移動してきた結露水等を効率よく下方へ導くことができる。特に図10に示される溝部41eは、実施の形態7の溝部41dと同様に曲折する角を有しているので水切れを良くすることができる。また溝部41eは、曲折の角度を、第1熱交換部1a又は第2熱交換部1bの傾き角度に対して排水しやすい方向に設定することができ、排水性を更に向上させることができる。例えば溝部41eの曲折角度を直角より角度θ分大きく形成した場合、熱交換器1が設置された状態で溝部41eの一辺が鉛直方向となるように構成することができる。   The eighth embodiment will be described focusing on the region where the groove 41e is provided. The groove 41 e is provided along the end 2 b of the heat transfer tube 2 by being bent at an obtuse angle. In the groove 41e, drainage is promoted by capillary action. Further, when the groove 41e is formed corresponding to the end 2b located downward in the direction of gravity, the groove 41e efficiently guides the dew condensation water etc. which has moved along the heat transfer tube 2 to the end 2b. be able to. In particular, the groove 41 e shown in FIG. 10 has a corner bent as in the groove 41 d of the seventh embodiment, so that the water drainage can be improved. Further, the groove 41e can set the angle of bending in a direction in which drainage can be easily performed with respect to the inclination angle of the first heat exchange unit 1a or the second heat exchange unit 1b, and the drainage can be further improved. For example, when the bending angle of the groove 41e is formed to be larger than the right angle by the angle θ, one side of the groove 41e can be configured to be in the vertical direction in a state where the heat exchanger 1 is installed.

なお、図10には溝部41eにおいて曲折回数を1回にした場合が示されているが、曲折回数は2回以上であっても良い。また、溝部41eの他方の一辺は、伝熱管2の配列方向に対し垂直方向でなくともよい。   Although FIG. 10 shows the case where the number of turns is one in the groove 41e, the number of turns may be two or more. The other side of the groove 41 e may not be perpendicular to the arrangement direction of the heat transfer tubes 2.

実施の形態8において、溝部41eは、伝熱管2の端部2bに沿わせたL字状に形成されている。これより、伝熱管2の端部2bに移動してきた結露水等を、毛細管現象により更に端部2bから移動させることができる。そのため溝部41eは、伝熱管2からの排水を促進するとともに、結露水等が端部2bに滞留してしまうのを防止することができる。特に溝部41eは鈍角に曲折されたL字状に設けられている場合、水切れを改善するとともに、熱交換器1の傾斜角度θに応じた曲折角度に設定して更に排水性を向上させることができる。   In the eighth embodiment, the groove 41 e is formed in an L shape along the end 2 b of the heat transfer tube 2. Thereby, the condensed water etc. which have moved to the end 2b of the heat transfer tube 2 can be further moved from the end 2b by capillary action. Therefore, the groove 41 e can promote drainage from the heat transfer tube 2 and prevent condensation water and the like from staying in the end 2 b. In particular, when the groove 41e is provided in an L-shape bent at an obtuse angle, water drainage can be improved and the drainage angle can be further improved by setting the bending angle according to the inclination angle θ of the heat exchanger 1 it can.

なお、本発明の実施の形態は上記実施の形態に限定されず、種々の変更を行うことができる。例えば、曲げ加工は、複数のフィン4と複数の伝熱管2とに加え、伝熱管2へ作動流体を流入させる流入側分配器と、伝熱管2から作動流体を流出させる流出側分配器等とが組まれて一体化された熱交換器に対して実施されてもよい。   The embodiment of the present invention is not limited to the above embodiment, and various modifications can be made. For example, in addition to the plurality of fins 4 and the plurality of heat transfer tubes 2, the bending process includes an inflow side distributor that allows the working fluid to flow into the heat transfer pipe 2, and an outflow side distributor that causes the working fluid to flow out of the heat transfer pipe 2. May be implemented for an integrated heat exchanger.

また、熱交換器1、101の形状はL字状のものに限定されない。熱交換器1、101は、例えば3つの熱交換部を有するU字状のものであって、室外機10の両側面と背面とに3つの熱交換部がそれぞれ対向して配置されるものであってもよい。U字状の熱交換器は、例えば中央の第2熱交換部について対称にすることができる。そして室外機10に設置された状態では、例えばU字状の熱交換器の背面側の第2熱交換部は後傾し、側面側の2つの第1熱交換部はそれぞれ前傾する。   Further, the shape of the heat exchangers 1 and 101 is not limited to the L-shaped one. The heat exchangers 1 and 101 are, for example, U-shaped having three heat exchange parts, and three heat exchange parts are disposed opposite to each other on both sides and the back of the outdoor unit 10, respectively. It may be. The U-shaped heat exchanger can, for example, be symmetrical with respect to the central second heat exchanger. And in the state installed in outdoor unit 10, the 2nd heat exchange part by the side of the back of a U-shaped heat exchanger for example inclines backwards, and the two 1st heat exchange parts by the side of a side incline forward, respectively.

また、第1熱交換部1a及び第2熱交換部1bが一体である場合について説明したが、別体として構成されてもよい。   Moreover, although the case where the 1st heat exchange part 1a and the 2nd heat exchange part 1b were integral was demonstrated, you may be comprised as another body.

1,100,101 熱交換器、1a,101a 第1熱交換部、1b,101b 第2熱交換部、1c 角部、1e,100e 底部、100d 側面、2 伝熱管、2a,2b 端部、3 ファン、4,40 フィン、41a〜41e 溝部、5 緩衝材、5a 傾斜面、6 底板、9 筐体、9a 筐体の底面、10 室外機、11,111 滑落方向、20 製作装置、21 曲げ冶具、21a 可動部、21b 固定部、21c 可動軸、22 止め冶具、22a 第1止め冶具、22b 第2止め冶具、23 曲げ型、23a 直線部、23b ガイド部、24 曲げ方向、31,31a,31b,131a,131b (伝熱管の)配列方向、32 空気の流れ方向、L0,L1 曲げ位置、R1,R2 方向、θ 角度。   1, 100, 101 heat exchanger, 1a, 101a first heat exchange unit, 1b, 101b second heat exchange unit, 1c corner, 1e, 100e bottom, 100d side, 2 heat transfer tubes, 2a, 2b end, 3 Fan, 4, 40 fins, 41a to 41e grooves, 5 cushioning materials, 5a inclined surface, 6 bottom plate, 9 case, 9a case bottom surface, 10 outdoor unit, 11, 111 sliding direction, 20 manufacturing device, 21 bending jig , 21a movable portion, 21b fixed portion, 21c movable shaft, 22 stopper jig, 22a first stopper jig, 22b second stopper jig, 23 bending die, 23a straight portion, 23b guide portion, 24 bending direction 31, 31a, 31b , 131a, 131b (in heat transfer tube) arrangement direction, 32 air flow direction, L0, L1 bending position, R1, R2 direction, θ angle.

Claims (18)

作動流体が流通する、一方向に配列された複数の伝熱管と、複数の前記伝熱管に接合され、他方向に配列された複数のフィンとを有する第1熱交換部と、
複数の前記伝熱管と複数のフィンとを有し、前記第1熱交換部とは前記フィンの配列方向が異なるように屈曲した第2熱交換部と、を備え、
前記第2熱交換部における前記伝熱管の配列方向は、前記第1熱交換部における前記伝熱管の配列方向に対して傾いている
熱交換器。
A first heat exchange portion having a plurality of heat transfer tubes arranged in one direction through which a working fluid flows, and a plurality of fins connected to the plurality of heat transfer tubes and arranged in the other direction;
A plurality of heat transfer tubes and a plurality of fins, and the first heat exchange unit includes a second heat exchange unit bent so that the arrangement direction of the fins is different from the first heat exchange unit;
An arrangement direction of the heat transfer tubes in the second heat exchange unit is inclined to an arrangement direction of the heat transfer tubes in the first heat exchange unit.
前記第1熱交換部と前記第2熱交換部とは一体構成されており、前記第1熱交換部と前記第2熱交換部との境界部分である角部は、底部から上部にわたり一定の曲率を有する
請求項1記載の熱交換器。
The first heat exchange portion and the second heat exchange portion are integrally configured, and a corner portion which is a boundary portion between the first heat exchange portion and the second heat exchange portion is constant from the bottom to the top The heat exchanger according to claim 1, having a curvature.
前記伝熱管は、扁平管である請求項1又は2記載の熱交換器。   The heat exchanger according to claim 1, wherein the heat transfer tube is a flat tube. 前記フィンには、前記伝熱管の端部の位置に溝部が形成されている請求項1〜3のいずれか一項記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein a groove is formed in the fin at a position of an end of the heat transfer tube. 前記溝部は、前記伝熱管の前記端部に沿わせた円弧状に形成されている請求項4記載の熱交換器。   The heat exchanger according to claim 4, wherein the groove portion is formed in an arc shape along the end portion of the heat transfer pipe. 前記溝部は、前記伝熱管の前記端部に傾斜した直線状に形成されている請求項4記載の熱交換器。   The heat exchanger according to claim 4, wherein the groove portion is formed in an inclined linear shape at the end of the heat transfer pipe. 前記溝部は、前記伝熱管の前記端部にL字状に形成されている請求項4記載の熱交換器。   The heat exchanger according to claim 4, wherein the groove portion is formed in an L shape at the end of the heat transfer tube. 前記溝部は、前記伝熱管の配列方向に直線状に形成されている請求項4記載の熱交換器。   The heat exchanger according to claim 4, wherein the groove portion is formed in a linear shape in the arrangement direction of the heat transfer tubes. 前記溝部は、前記伝熱管の前記端部のうち、重力方向で下方に位置する端部に形成されている請求項4〜8のいずれか一項記載の熱交換器。   The heat exchanger according to any one of claims 4 to 8, wherein the groove portion is formed at an end portion of the end portion of the heat transfer pipe, which is located downward in a gravity direction. 前記第1熱交換部の底部に設けられ、前記第1熱交換部における前記伝熱管の配列方向の傾きに応じた傾斜面を有する緩衝材を更に備える請求項1〜9のいずれか一項記載の熱交換器。   The shock absorbing material according to any one of claims 1 to 9, further comprising: a shock absorbing material provided at a bottom portion of the first heat exchange portion and having an inclined surface corresponding to an inclination of the heat transfer tubes in the first heat exchange portion. Heat exchanger. 前記第2熱交換部の底部に設けられ、前記第2熱交換部における前記伝熱管の配列方向の傾きに応じた傾斜面を有する緩衝材を更に備える請求項1〜10のいずれか一項記載の熱交換器。   The shock absorbing material according to any one of claims 1 to 10, further comprising: a shock absorbing material provided at the bottom of the second heat exchange unit, and having an inclined surface corresponding to the inclination direction of the heat transfer tubes in the second heat exchange unit. Heat exchanger. 前記緩衝材は、電気的に絶縁する絶縁材で構成される請求項10又は11記載の熱交換器。   The heat exchanger according to claim 10, wherein the buffer material is composed of an insulating material that electrically insulates. 筐体と、
前記筐体に設置される請求項1〜12のいずれか一項記載の熱交換器と、を備える
室外機。
And
An outdoor unit comprising: the heat exchanger according to any one of claims 1 to 12 installed in the housing.
前記熱交換器は、前記筐体内に、前記第1熱交換部が前記筐体の側面に対向し、前記第2熱交換部が前記筐体の背面に対向するように設置され、
前記第2熱交換部における前記伝熱管の配列方向は、前記筐体の背面側へ傾いている請求項13記載の室外機。
The heat exchanger is installed in the housing such that the first heat exchange portion faces the side surface of the housing, and the second heat exchange portion faces the rear surface of the housing.
The outdoor unit according to claim 13, wherein an arrangement direction of the heat transfer tubes in the second heat exchange unit is inclined to a back side of the housing.
前記熱交換器は、前記筐体内に、前記第1熱交換部が前記筐体の側面に対向し、前記第2熱交換部が前記筐体の背面に対向するように設置され、
前記第2熱交換部における前記伝熱管の配列方向は、前記筐体の前面側へ傾いている請求項13記載の室外機。
The heat exchanger is installed in the housing such that the first heat exchange portion faces the side surface of the housing, and the second heat exchange portion faces the rear surface of the housing.
The outdoor unit according to claim 13, wherein an arrangement direction of the heat transfer tubes in the second heat exchange portion is inclined to a front side of the housing.
前記作動流体は、HFC冷媒、HFO冷媒、又はHFC冷媒とHFO冷媒との混合冷媒である請求項13〜15のいずれか一項記載の室外機。   The outdoor unit according to any one of claims 13 to 15, wherein the working fluid is an HFC refrigerant, an HFO refrigerant, or a mixed refrigerant of an HFC refrigerant and an HFO refrigerant. 請求項1〜12のいずれか一項記載の熱交換器の製作装置であって、
固定部と、前記固定部との間に間隙を有して配置され、可動軸を中心に前記固定部側へ回転する可動部とを有し、複数の前記伝熱管と複数の前記フィンとを有する平板状の熱交換器が設置される曲げ冶具と、
前記曲げ冶具に設けられ、前記曲げ冶具に設置された前記平板状の熱交換器を前記伝熱管の配列方向が前記可動軸に対して傾くように支持する止め冶具と、
前記熱交換器を挟んで前記曲げ冶具と対向する位置に配置され、前記間隙に沿って前記可動部側に曲面状の外周を有する曲げ型と、を備える
熱交換器の製作装置。
An apparatus for manufacturing a heat exchanger according to any one of claims 1 to 12,
A plurality of heat transfer tubes and a plurality of the fins, which have a fixed portion and a movable portion disposed with a gap between the fixed portion and rotating toward the fixed portion about a movable axis; A bending jig on which a flat plate-like heat exchanger is installed;
A stop jig provided in the bending jig and supporting the flat heat exchanger installed in the bending jig such that the arrangement direction of the heat transfer tubes is inclined with respect to the movable axis;
And a bending die disposed at a position facing the bending jig with the heat exchanger interposed therebetween and having a curved outer periphery along the gap on the movable portion side.
請求項1〜12のいずれか一項記載の熱交換器の製作方法であって、
複数の前記伝熱管と複数の前記フィンとを有する平板状の熱交換器を、前記平板状の熱交換器の前記伝熱管の配列方向に対して傾けた曲げ位置で曲げ加工する工程を含む
熱交換器の製作方法。
A method of manufacturing a heat exchanger according to any one of claims 1 to 12,
Bending a flat heat exchanger having a plurality of heat transfer tubes and a plurality of fins at a bending position inclined to the arrangement direction of the heat transfer tubes of the flat heat exchanger How to make an exchange.
JP2018546075A 2016-10-18 2016-10-18 Outdoor unit, outdoor unit manufacturing apparatus, and manufacturing method Expired - Fee Related JP6727318B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/080862 WO2018073898A1 (en) 2016-10-18 2016-10-18 Heat exchanger, outdoor unit, and manufacturing device and manufacturing method for heat exchanger

Publications (2)

Publication Number Publication Date
JPWO2018073898A1 true JPWO2018073898A1 (en) 2019-06-24
JP6727318B2 JP6727318B2 (en) 2020-07-22

Family

ID=62018372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018546075A Expired - Fee Related JP6727318B2 (en) 2016-10-18 2016-10-18 Outdoor unit, outdoor unit manufacturing apparatus, and manufacturing method

Country Status (3)

Country Link
JP (1) JP6727318B2 (en)
CN (1) CN208588117U (en)
WO (1) WO2018073898A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111765570B (en) * 2020-07-10 2021-09-14 沧州双印空调安装工程有限公司 Air conditioner heat pump heat exchange structure with condensate water discharging function
CN116171369A (en) * 2020-07-30 2023-05-26 大金工业株式会社 Unit for air conditioner and air conditioner
JP7530003B2 (en) 2022-07-19 2024-08-07 ダイキン工業株式会社 Heat exchanger

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304607A (en) * 2000-04-18 2001-10-31 Daikin Ind Ltd Heat exchanger, method of producing thereof and air conditioner provided therewith
US20070204978A1 (en) * 2006-03-06 2007-09-06 Henry Earl Beamer Heat exchanger unit
JP2010151387A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Outdoor unit of air conditioner
JP2012037154A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube heat exchanger and refrigerating cycle device using the same
WO2013161802A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
JP2013231527A (en) * 2012-04-27 2013-11-14 Daikin Industries Ltd Heat exchanger
JP2015010766A (en) * 2013-06-28 2015-01-19 株式会社デンソー Outdoor unit for heat pump cycle
JP2015031490A (en) * 2013-08-06 2015-02-16 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2016155134A (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Flexure device of heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304607A (en) * 2000-04-18 2001-10-31 Daikin Ind Ltd Heat exchanger, method of producing thereof and air conditioner provided therewith
US20070204978A1 (en) * 2006-03-06 2007-09-06 Henry Earl Beamer Heat exchanger unit
JP2010151387A (en) * 2008-12-25 2010-07-08 Mitsubishi Electric Corp Outdoor unit of air conditioner
JP2012037154A (en) * 2010-08-09 2012-02-23 Mitsubishi Electric Corp Fin tube heat exchanger and refrigerating cycle device using the same
WO2013161802A1 (en) * 2012-04-26 2013-10-31 三菱電機株式会社 Heat exchanger and air conditioner
JP2013231527A (en) * 2012-04-27 2013-11-14 Daikin Industries Ltd Heat exchanger
JP2015010766A (en) * 2013-06-28 2015-01-19 株式会社デンソー Outdoor unit for heat pump cycle
JP2015031490A (en) * 2013-08-06 2015-02-16 ダイキン工業株式会社 Heat exchanger and air conditioner
JP2016155134A (en) * 2015-02-23 2016-09-01 三菱電機株式会社 Flexure device of heat exchanger

Also Published As

Publication number Publication date
WO2018073898A1 (en) 2018-04-26
CN208588117U (en) 2019-03-08
JP6727318B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
JP5863956B2 (en) HEAT EXCHANGER, HEAT EXCHANGER MANUFACTURING METHOD, AND AIR CONDITIONER
US10627175B2 (en) Heat exchanger and refrigeration cycle apparatus
US20150068244A1 (en) Heat exchanger and air-conditioning apparatus
US20070151716A1 (en) Heat exchanger and fin of the same
JP5661202B2 (en) Plate fin tube type heat exchanger and refrigeration air conditioning system including the same
JP6847229B2 (en) Heat exchanger and refrigeration cycle equipment
JP2014142138A (en) Air conditioner
JPWO2018073898A1 (en) Heat exchanger, outdoor unit, and apparatus and method for manufacturing heat exchanger
JP6120978B2 (en) Heat exchanger and air conditioner using the same
US20170030662A1 (en) Heat exchanger
US9528779B2 (en) Heat exchanger
JPWO2019026240A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2017017789A1 (en) Heat exchanger and refrigeration cycle apparatus
WO2020012549A1 (en) Heat exchanger, heat exchange device, heat exchanger unit, and refrigeration system
JP2014163633A (en) Cooler and refrigerator
JP2016133248A (en) Heat exchanger
JP3854423B2 (en) Heat exchanger, its manufacturing method and refrigerator equipped with the same
US9605908B2 (en) Heat exchanger
JP6833042B2 (en) Heat exchanger and refrigeration cycle equipment
JPWO2017017814A1 (en) Heat exchanger and refrigeration cycle apparatus
JP7006376B2 (en) Heat exchanger
CN110945300B (en) Refrigerant distributor, heat exchanger, and refrigeration cycle device
WO2020012548A1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JP2012032100A (en) Finned tube hear exchanger, method for manufacturing the same, and air conditioner having the finned tube heat exchanger
KR20080060580A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200630

R150 Certificate of patent or registration of utility model

Ref document number: 6727318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees