JPWO2018037981A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
JPWO2018037981A1
JPWO2018037981A1 JP2018535623A JP2018535623A JPWO2018037981A1 JP WO2018037981 A1 JPWO2018037981 A1 JP WO2018037981A1 JP 2018535623 A JP2018535623 A JP 2018535623A JP 2018535623 A JP2018535623 A JP 2018535623A JP WO2018037981 A1 JPWO2018037981 A1 JP WO2018037981A1
Authority
JP
Japan
Prior art keywords
dead time
command value
value
axis
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018535623A
Other languages
English (en)
Other versions
JP6512372B2 (ja
Inventor
博明 高瀬
博明 高瀬
亮 皆木
亮 皆木
澤田 英樹
英樹 澤田
孝義 菅原
孝義 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Application granted granted Critical
Publication of JP6512372B2 publication Critical patent/JP6512372B2/ja
Publication of JPWO2018037981A1 publication Critical patent/JPWO2018037981A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors
    • H02P21/08Indirect field-oriented control; Rotor flux feed-forward control
    • H02P21/09Field phase angle calculation based on rotor voltage equation by adding slip frequency and speed proportional frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/50Vector control arrangements or methods not otherwise provided for in H02P21/00- H02P21/36
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/12Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation pulsing by guiding the flux vector, current vector or voltage vector on a circle or a closed curve, e.g. for direct torque control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】インバータのデッドタイムを補償する複数のデッドタイム補償機能を有し、チューニング作業もなく、操舵状態に応じてデッドタイム補償機能を切り換えて補償し、操舵性能を向上すると共に、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供する。【解決手段】少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、前記インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、前記複数のデッドタイム補償機能1つから他のデッドタイム補償機能に所定条件で切り換えて前記デッドタイム補償を実施する。【選択図】図5

Description

本発明は、3相ブラシレスモータの駆動をdq軸回転座標系でベクトル制御すると共に、複数のデッドタイム補償機能(例えばモータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能と電流指令値モデルに基づくインバータのデッドタイム補償機能)を所定条件で切り換え(条件分岐し)、操舵状態に応じたデッドタイム補償を実施することにより、操舵性能を向上して、滑らかで操舵音のないアシスト制御を可能とした電動パワーステアリング装置に関する。
車両のステアリング機構にモータの回転力で操舵補助力(アシスト力)を付与する電動パワーステアリング装置(EPS)は、アクチュエータとしてのモータの駆動力を、減速機を介してギア又はベルト等の伝達機構により、ステアリングシャフト或いはラック軸に操舵補助力を付与するようになっている。かかる従来の電動パワーステアリング装置は、操舵補助力のトルクを正確に発生させるため、モータ電流のフィードバック制御を行っている。フィードバック制御は、操舵補助指令値(電流指令値)とモータ電流検出値との差が小さくなるようにモータ印加電圧を調整するものであり、モータ印加電圧の調整は、一般的にPWM(パルス幅変調)制御のDutyの調整で行っている。
電動パワーステアリング装置の一般的な構成を図1に示して説明すると、ハンドル1のコラム軸(ステアリングシャフト、ハンドル軸)2は減速ギア3、ユニバーサルジョイント4a及び4b、ピニオンラック機構5、タイロッド6a,6bを経て、更にハブユニット7a,7bを介して操向車輪8L,8Rに連結されている。また、コラム軸2には、ハンドル1の舵角θを検出する舵角センサ14と、ハンドル1の操舵トルクThを検出するトルクセンサ10とが設けられており、ハンドル1の操舵力を補助するモータ20が減速ギア3を介してコラム軸2に連結されている。電動パワーステアリング装置を制御するコントロールユニット(ECU)30には、バッテリ13から電力が供給されると共に、イグニションキー11を経てイグニションキー信号が入力される。コントロールユニット30は、トルクセンサ10で検出された操舵トルクThと車速センサ12で検出された車速Vsとに基づいてアシスト(操舵補助)指令の電流指令値の演算を行い、演算された電流指令値に補償等を施した電圧制御指令値Vrefによってモータ20に供給する電流を制御する。舵角センサ14は必須のものではなく、配設されていなくても良く、モータ20に連結されたレゾルバ等の回転センサから舵角(モータ回転角)θを得ることもできる。
コントロールユニット30には、車両の各種情報を授受するCAN(Controller Area Network)40が接続されており、車速VsはCAN40から受信することも可能である。また、コントロールユニット30には、CAN40以外の通信、アナログ/ディジタル信号、電波等を授受する非CAN41も接続可能である。
このような電動パワーステアリング装置において、コントロールユニット30は主としてCPU(MPUやMCU等を含む)で構成されるが、そのCPU内部においてプログラムで実行される一般的な機能を示すと、例えば図2に示されるような構成となっている。
図2を参照してコントロールユニット30の機能及び動作を説明すると、トルクセンサ10からの操舵トルクTh及び車速センサ12からの車速Vsは操舵補助指令値演算部31に入力され、操舵補助指令値演算部31は操舵トルクTh及び車速Vsに基づいてアシストマップ等を用いて操舵補助指令値Iref1を演算する。演算された操舵補助指令値Iref1は加算部32Aで、特性を改善するための補償部34からの補償信号CMと加算され、加算された操舵補助指令値Iref2が電流制限部33で最大値を制限され、最大値を制限された電流指令値Irefmが減算部32Bに入力され、モータ電流検出値Imと減算される。
減算部32Bでの減算結果である偏差ΔI(=Irefm−Im)はPI(Proportional-Integral)制御部35でPI(比例積分)等の電流制御をされ、電流制御された電圧制御指令値Vrefが変調信号(三角波キャリア)CFと共にPWM制御部36に入力されてDuty指令値を演算され、Duty指令値を演算されたPWM信号でインバータ37を介してモータ20をPWM駆動する。モータ20のモータ電流値Imはモータ電流検出器38で検出され、減算部32Bに入力されてフィードバックされる。
補償部34は、検出若しくは推定されたセルフアライニングトルク(SAT)を加算部344で慣性補償値342と加算し、その加算結果に更に加算部345で収れん性制御値341を加算し、その加算結果を補償信号CMとして加算部32Aに入力し、特性改善を実施する。
近年、電動パワーステアリング装置のアクチュエータは3相ブラシレスモータが主流となっていると共に、電動パワーステアリング装置は車載製品であるため、稼動温度範囲が広く、フェールセーフの観点からモータを駆動するインバータは家電製品を代表とする一般産業用と比較して、デッドタイムを大きく(産業用機器<EPS)する必要がある。一般にスイッチング素子(例えばFET(Field-Effect Transistor))にはOFFの際に遅れ時間があるため、上下アームのスイッチング素子のOFF/ON切り換えを同時に行うと、直流リンクを短絡する状況になり、これを防ぐため、上下アーム両方のスイッチング素子がOFFになる時間(デッドタイム)を設けている。
その結果、電流波形が歪み、電流制御の応答性や操舵感が悪化する。例えばハンドルがオンセンター付近にある状態でゆっくり操舵すると、トルクリップル等による不連続な操舵感などが生じる。また、中・高速操舵時におけるモータの逆起電圧や、巻線間の干渉電圧が電流制御に対して外乱として作用するため、転追性や切り返し操舵時の操舵感を悪化させている。
3相ブラシレスモータのロータの座標軸であるトルクを制御するq軸と、磁界の強さを制御するd軸とを独立に設定し、dq軸が90°の関係にあることから、そのベクトルで各軸に相当する電流(d軸電流指令値及びq軸電流指令値)を制御するベクトル制御方式が知られている。
図3は、ベクトル制御方式で3相ブラシレスモータ100を駆動制御する場合の構成例を示しており、操舵トルクTh、車速Vs等に基づいて2軸(dq軸座標系)の操舵補助指令値(Iref2(idref,iqref))が演算され、最大値を制限された2軸のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qで求められた電流偏差Δid *及びΔiq *はそれぞれPI制御部120d及び120qに入力される。PI制御部120d及び120qでPI制御された電圧指令値vd及びvqは、それぞれ減算部141d及び加算部141qに入力され、減算部141dで求められた電圧Δvd及び加算部141qで求められた電圧Δvqはdq軸/3相交流変換部150に入力される。dq軸/3相交流変換部150で3相に変換された電圧指令値Vu*,Vv*,Vw*はPWM制御部160に入力され、演算された3相のDuty指令値(Dutyu,Dutyv,Dutyw)に基づくPWM信号UPWM,VPWM,WPWMにより、図4に示すような上下アームのブリッジ構成で成るインバータ(インバータ印加電圧VR)161を介してモータ100が駆動される。上側アームはスイッチング素子としてのFETQ1,Q3,Q5で構成され、下側アームはFETQ2,Q4,Q6で構成されている。
モータ100の3相モータ電流iu,iv,iwは電流検出器162で検出され、検出された3相モータ電流iu,iv,iwは3相交流/dq軸変換部130に入力され、3相交流/dq軸変換部130で変換された2相のフィードバック電流id及びiqはそれぞれ減算部131d及び131qに減算入力されると共に、d−q非干渉制御部140に入力される。また、モータ100には回転センサ等が取り付けられており、センサ信号を処理する角度検出部110からモータ回転角θ及びモータ回転数(回転速度)ωが出力される。モータ回転角θはdq軸/3相交流換部150及び3相交流/dq軸変換部130に入力され、モータ回転数ωはd−q非干渉制御部140に入力される。d−q非干渉制御部140からの2相の電圧vd1 *及びvq1 *はそれぞれ減算部141d及び加算部141qに入力され、減算部141dで電圧Δvdが算出され、加算部141qで電圧Δvqが算出される。
このようなベクトル制御方式の電動パワーステアリング装置は、運転者の操舵をアシストする装置であると同時に、モータの音や振動、リップル等はハンドルを介して運転者へ力の感覚として伝達される。インバータを駆動するパワーデバイスは一般的にFETが用いられており、モータへ通電を行うが、3相モータの場合には、図4に示されるように各相毎に上下アームの直列接続されたFETが用いられている。上下アームのFETは交互にON/OFFを繰り返すが、FETは理想スイッチではなく、ゲート信号の指令通りに瞬時にON/OFFせず、ターンオン時間やターンオフ時間を要する。このため、上側アームFETへのON指令と下側アームのOFF指令が同時になされると、上側アームFETと下側アームFETが同時にONになって、上下アームが短絡する問題がある。FETのターンオン時間とターンオフ時間には差があり、同時にFETに指令を出した場合、上側FETにON指令を出してターンオン時間が短い場合(例えば100ns)、直ぐにFETがONになり、下側FETにOFF指令を出してもターンオフ時間が長い場合(例えば400ns)、直ぐにFETがOFFにならず、瞬間的に上側FETがON、下側FETがONになる状態(例えば、400ns−100ns間、ON−ON)が発生することがある。
そこで、上側アームFETと下側アームFETが同時にONすることの無い様に、ゲート駆動回路にデッドタイムという所定時間をおいてON信号を与えることが行われる。このデッドタイムは非線形であるため電流波形は歪み、制御の応答性能が悪化し、音や振動、リップルが発生する。コラム式電動パワーステアリング装置の場合、ハンドルと鋼製のコラム軸で接続されるギアボックスに直結されるモータの配置が、その構造上運転者に極めて近い位置となっているため、モータに起因する音、振動、リップル等には、下流アシスト方式の電動パワーステアリング装置に比べて、特に配慮する必要がある。
インバータのデッドタイムを補償する手法として、従来はデッドタイムが発生するタイミングを検出して補償値を足し込んだり、電流制御におけるdq軸上の外乱オブザーバによってデッドタイムを補償している。
インバータのデッドタイムを補償する電動パワーステアリング装置は、例えば特許第4681453号公報(特許文献1)、特開2015−171251号公報(特許文献2)に開示されている。特許文献1では、モータ、インバータを含む電流制御ループのリファレンスモデル回路に電流指令値を入力して電流指令値を基にモデル電流を作成し、モデル電流を基にインバータのデッドタイムの影響を補償するデッドバンド補償回路を備えている。また、特許文献2では、Duty指令値に対してデッドタイム補償値に基づく補正を行うデッドタイム補償部を備え、電流指令値に基づいてデッドタイム補償値の基礎値である基本補償値を演算する基本補償値演算部と、基本補償値に対してLPFに対応するフィルタリング処理を施すフィルタ部とを有している。
特許第4681453号公報 特開2015−171251号公報
特許文献1の装置は、q軸電流指令値の大きさによるデッドタイム補償量の計算と3相電流リファレンスモデルとを使用して、補償符号を推定する方式である。補償回路の出力値が、所定の固定値以下ではモデル電流に比例する変化値であり、所定の固定値以上では、固定値とモデル電流に比例する変化値の加算値であり、電流指令から電圧指令へと出力されるが、所定の固定値を出力するヒステリシス特性を決めるためのチューニング作業が必要である。
また、特許文献2の装置は、デッドタイム補償値を決定する際、q軸電流指令値とそれをLPF処理した補償値とでデッドタイム補償を行っているが、LPF処理により遅れが生じ、モータへの最終的な電圧指令に対して、デッドタイム補償値を操作するものではないという問題がある。
更に、操舵性能向上のため特定の領域で複数のデッドタイム補償機能を切り換える場合がある。例えば高速操舵時においてd軸電流指令値が0[A]以外の場合、デッドタイム補償値の特性が大きく変わることから、単一機能のデッドタイム補償で全領域を補償しようとした場合、特定の領域で補償精度が悪くなり、トルクリップルや音、振動が発生する場合がある。
フィードフォワードタイプのデッドタイム補償(角度フィードフォワードタイプ、電流指令値モデルタイプ)は、モータ出力軸をロックして専用ソフトでモータに電流が流れるために、必要とされるデッドタイム補償量を実機にて測定する必要がある。また、モータ試験装置を用いてモータ単体で定負荷定回転で回転させ、位相合わせや電流指令値によって補償符号を決定するための閾値のチューニング作業が必要である。インバータ印加電圧やモータ回転数などを割り振り、複数回行う必要があり、チューニング作業の軽減化が要請されている。
また、フィードフォワードタイプのデッドタイム補償では、適切な補償量と適切なタイミングで符号を切り換えないと、ゼロクロス付近や低負荷・低速操舵時にチャタリングが発生する。補償量が合わないデッドタイム補償やタイミングが合わないデッドタイム補償を入れることによって、制御自身でチャタリングを引き起こしてしまう場合がある。フィードフォワードタイプではかかるチャタリングを抑制するため、種々工夫したり、厳密に補償符号を切り換えるなど、かなり緻密なチューニング作業が必要となっている。
本発明は上述のような事情よりなされたものであり、本発明の目的は、ベクトル制御方式の電動パワーステアリング装置において、インバータのデッドタイムを補償する複数のデッドタイム補償機能を有し、チューニング作業もなく、操舵状態に応じてデッドタイム補償機能を切り換えてフィードフォワードで補償し、操舵性能を向上すると共に、電流波形の歪み改善と電流制御の応答性の向上を図り、音や振動、リップルを抑制した電動パワーステアリング装置を提供することにある。
本発明は、少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、前記複数のデッドタイム補償機能1つから他のデッドタイム補償機能に所定条件で切り換えて前記デッドタイム補償を実施することにより達成される。
また、本発明は、少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置に関し、本発明の上記目的は、前記3相ブラシレスモータのモータ回転角に基づく前記インバータの前記dq軸に関する第1のdq軸補償値を演算するデッドタイム補償部Aと、前記dq軸電流指令値を入力し、電流指令値モデルに基づく前記インバータの前記dq軸に関する第2のdq軸補償値を演算するデッドタイム補償部Bと、前記dq軸電流指令値及び前記q軸の前記操舵補助指令値に基づいて前記第1のdq軸補償値と前記第2のdq軸補償値とを切り換えてdq軸デッドタイム補償値を出力する補償値切換部とを具備し、前記dq軸デッドタイム補償値により前記dq軸電流指令値を補正して前記インバータのデッドタイム補償を実施することにより達成される。
本発明の電動パワーステアリング装置によれば、複数のデッドタイム補償機能(例えばモータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能(A)と、電流指令値モデルに基づくデッドタイム補償機能(B))を所定条件で切り換えて、操舵状態に応じて最適な状態でデッドタイムの補償を行うようにしているので、操舵性能を一層向上することができる。モータ回転角(電気角)の関数に基づくインバータのデッドタイム補償機能(A)は、角度と相電流の位相が合う低速操舵領域及び中速操舵領域において補償精度が高く、3相の補償波形が矩形波でない場合においても補償可能であるといった特長がある。また、電流指令値モデルに基づくデッドタイム補償機能(B)は、高速操舵時においても位相ずれが小さく、単純にデッドタイム補償を実施することができる特長がある。本発明によれば、操舵状態に従って補償機能A及びBを切り換えているので、両者の特長を生かした最適な操舵を実現することができる。
dq軸電流指令値を3相の電流モデル指令値に変換すると共に、補償符号を推定し、インバータ印加電圧から演算されたインバータのデッドタイム補償量を演算し、デッドタイム補償量に基づき、推定された補償符号によるデッドタイム補償値を2相に変換してdq軸上の電圧指令値に加算(フィードフォワード)で、或いはモータ回転角、モータ回転数及びインバータ印加電圧から演算された補償値を、q軸の操舵補助指令値に基づく電流制御遅れモデルに基づく電流指令値感応ゲインで制限したよるデッドタイム補償値をdq軸上の電圧指令値に加算して補償している。これにより、チューニング作業もなく、インバータのデッドタイムを補償し、電流波形の歪み改善と電流制御の応答性の向上を図ることができる。
一般的な電動パワーステアリング装置の概要を示す構成図である。 電動パワーステアリング装置の制御系の構成例を示すブロック図である。 ベクトル制御方式の構成例を示すブロック図である。 一般的なインバータの構成例を示す結線図である。 本発明の構成例を示すブロック図である。 切換判定部の構成例を詳細に示すブロック図である。 デッドタイム補償部(A)の構成例を示すブロック図である。 デッドタイム補償部(A)の構成例を詳細に示すブロック図である。 電流指令値感応ゲイン部の構成例を示すブロック図である。 電流指令値感応ゲイン部内のゲイン部の特性図である。 電流指令値感応ゲイン部の特性例を示す特性図である。 補償符号推定部の動作例を示す波形図である。 インバータ印加電圧感応ゲイン部の構成例を示すブロック図である。 インバータ印加電圧感応ゲイン部の特性例を示す特性図である。 位相調整部の特性例を示す特性図である。 各相角度−デッドタイム補償値関数部の動作例を示す線図である。 デッドタイム補償部(B)の構成例を示すブロック図である。 インバータ印加電圧感応補償量演算部の特性例を示す特性図である。 3相電流指令値モデルの出力波形の一例を示す波形図である。 条件分岐部によるデッドタイム補償の切換の特性例を示す波形図である。 空間ベクトル変調部の構成例を示すブロック図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示す線図である。 空間ベクトル変調部の動作例を示すタイミングチャートである。 空間ベクトル変調の効果を示す波形図である。 本発明の効果を示す波形図である。 デッドタイム補償部(A)の他の構成例を示すブロック図である。 各相角度−デッドタイム補償値関数部の動作例を示す線図である。 dq軸角度−デッドタイム補償値基準テーブルの出力電圧特性を示す特性図である。
本発明は、ECUのデッドタイムの影響により電流歪みが発生し、トルクリップルの発生や操舵音の悪化などの問題を解消するために、インバータのデッドタイム補償値を、モータ回転角(電気角)に応じた関数に基づくデッドタイム補償機能(A)と電流指令値モデルに基づくデッドタイム補償機能(B)とを所定条件で切り換え、dq軸にフィードフォワードで補償するようにしている。
単一機能の単一アルゴリズムのデッドタイム補償機能では、低速操舵時は精度よく補償されるが、高速操舵時は補償精度が悪くなる場合があったり、或いは高負荷時において精度よく補償されるが、低負荷時に補償精度が悪くなる場合もある。そのため、単一機能の単一アルゴリズムのデッドタイム補償では、操舵領域全体を精度よく補償するのは困難である。しかしながら、本発明では操舵条件において補償精度の高いデッドタイム補償機能を複数用意し、操舵状態によって最適なデッドタイム補償機能に切り換えることにより、全操舵領域に対し、補償精度の高いデッドタイム補償を実施することが可能となる。
本発明では、dq軸ベクトル制御方式のd軸電圧指令値及びq軸電圧指令値に対し、複数の補償機能に基づくデッドタイム補償をそれぞれ別々に行うと共に、デッドタイム補償機能をd軸電流指令値、q軸電流指令値及びモータ回転数で定まる所定条件により切り換え、低速操舵領域、中速操舵領域及び高速操舵領域の全ての領域で最適なデッドタイム補償値が選択される。本発明の実施形態では2つのデッドタイム補償機能A及びBを有し、d軸電流指令値、q軸電流指令値及びモータ回転数を判定条件とした切換判定部により切換判定を行い、デットタイム補償機能をソフトウェアで切り換える構成(条件分岐部)となっている。デッドタイム補償機能A及びBの切換タイミングを早く行うために、切換に一定時間を要するミキシング部ではなく、瞬間的に切り換えられる条件分岐部を使用している。
なお、モータの種類やEPSの減速ギア3の減速比によっても相違するが、例えば低速操舵領域のモータ回転数は0〜300[rpm]であり、中速操舵領域のモータ回転数は300〜1800[rpm]、高速操舵領域のモータ回転数は1800〜4000[rpm]で、モータの定格回転数以上(弱め界磁制御が必要となる回転数領域)の回転数である。
以下に、本発明の実施の形態を図面を参照して説明する。
図5は本発明の全体構成を図3に対応させて示しており、dq軸上の補償値vdA及びvqAを演算するデッドタイム補償機能(A)部200と、dq軸上の補償値vdB及びvqBを演算するデッドタイム補償機能(B)部400と、補償値vdA及びvqAと補償値vdB及びvqBとを所定条件で切り換え、デッドタイム補償値vd *及びvq *を出力する補償値切換部500とが設けられている。デッドタイム補償機能(A)部200は、低速操舵領域及び中速操舵領域において補償精度が高く、デッドタイム補償機能(B)部400は、高速操舵領域において補償精度が高い特性となっている。
デッドタイム補償部200(詳細は後述)には、図2の操舵補助指令値Iref2に相当するq軸の操舵補助指令値iqrefが入力されると共に、インバータ161に印加されているインバータ印加電圧VR、モータ回転角θ及びモータ回転数ωが入力されている。デッドタイム補償部400(詳細は後述)には、d軸電流指令値id *及びq軸電流指令値iq *、モータ回転角θ、インバータ印加電圧VR及びモータ回転数ωが入力されている。また、補償値切換部500は補償値の切換を判定する切換判定部510と、切換判定部510からの切換判定フラグSFによって、デッドタイム補償機能(A)部200からの補償値vdA,vqAと、デッドタイム補償機能(B)部からの補償値vdB,vqBとを切り換えて出力するソフトウェアによる条件分岐部501及び502とで構成されている。
条件分岐部501及び502は機能的に接点a1及びb1を有し、接点a1には補償値vdAが入力され、接点b1には補償値vdBが入力されている。また、条件分岐部502は機能的に接点a2及びb2を有し、接点a2には補償値vqAが入力され、接点b2には補償値vqBが入力されている。条件分岐部501の接点a1及びb1、条件分岐部502の接点a2及びb2は同期して、切換判定部510からの切換判定フラグSFによって切り換えられる。即ち、切換判定フラグSFが入力されていないとき(例えば「L」)は接点a1及びa2であり、補償値vdA及びvqAがデッドタイム補償値vd *及びvq *として出力され、切換判定フラグSFが入力されているとき(例えば「H」)は接点b1及びb2であり、補償値vdB及びvqBがデッドタイム補償値vd *及びvq *として出力される。
切換判定部510は図6に示す構成であり、d軸電流指令値id *がゼロ近辺(例えば0.1[A]以下)となった時に判定フラグDF1を出力するゼロ判定部511を備えている。また、q軸電流指令値iq *の絶対値|iq *|を得る絶対値部512と、絶対値|iq *|が所定の閾値TH1以上となった時に判定フラグDF2を出力すると共に、ヒステリシス特性を有する閾値部513と、モータ回転数ωの絶対値|ω|を得る絶対値部514と、絶対値|ω|が所定の閾値TH2以上となった時に判定フラグDF3を出力すると共に、ヒステリシス特性を有する閾値部515とを備えている。判定フラグDF1〜DF3は切換条件判定部516に入力され、切換条件判定部516は判定フラグDF1〜DF3が全て入力された時に切換判定フラグSFを出力する。
切換判定フラグSFが出力されていない時(例えばSF=「L」)には、図5に示すように条件分岐部501及び502の接点はa1及びa2になっており、デッドタイム補償部(A)200からの補償値vdA及びvqAがそれぞれデッドタイム補償値vd *及びvq *として出力される。そして、切換判定フラグSFが出力されると(例えばSF=「H」)、条件分岐部501及び502の接点はa1及びa2からb1及びb2に切り換えられる。その結果、デッドタイム補償部(B)400からの補償値vdB及びvqBがそれぞれデッドタイム補償値vd *及びvq *として出力され、加算部121d及び121qに入力される。
ベクトル制御のd軸電流指令値id *及びq軸電流指令値iq *はそれぞれ減算部131d及び131qに入力され、減算部131d及び131qでフィードバック電流id及びiqとの電流偏差Δid *及びΔi *が演算される。演算された電流偏差Δid *はPI制御部120dに入力され、演算された電流偏差Δi *はPI制御部120qに入力される。PI制御されたd軸電圧指令値vd及びq軸電圧指令値vqはそれぞれ加算部121d及び121qに入力され、後述するデッドタイム補償部200からのデッドタイム補償値vd *びvq *を加算されて補償される。デッドタイムを補償されたdq軸の電圧指令値は、減算部141d及び加算部141qに入力される。減算部141dにはd−q非干渉制御部140からの電圧vd1 *が入力され、その差である電圧指令値vd **が得られ、加算部141qにはd−q非干渉制御部140からの電圧vq1 *が入力され、その加算結果で電圧指令値vq **が得られる。デッドタイムを補償された電圧指令値vd **及びvq **は、dq軸の2相からU相,V相,W相の3相 に変換し、3次高調波を重畳する空間ベクトル変調部300に入力される。空間ベクトル変調部300でベクトル変調された3相の電圧指令値Vu*,Vv*,Vw*はPWM制御部160に入力され、モータ100は前述と同様にPWM制御部160からのPWM信号(UPWM、VPWM、WPWM)により、インバータ161を介して駆動制御される。
次に、デッドタイム補償部(A)200について説明する。
デッドタイム補償部200は、図7に示すように電流制御遅れモデル201、補償符号推定部202、乗算部203、204d及び204q、加算部221、位相調整部210、インバータ印加電圧感応ゲイン部220、角度−デッドタイム補償値関数部230U、230V及び230W、乗算部231U、231V及び231W、3相交流/dq軸変換部240、電流指令値感応ゲイン部250で構成されている。
なお、乗算部231U、231V及び231Wと3相交流/dq軸変換部240とでデッドタイム補償値出力部を構成している。また、電流制御遅れモデル201、補償符号推定部202、電流指令値感応ゲイン部250、乗算部203で電流指令値感応ゲイン演算部を構成している。
デッドタイム補償部200の詳細構成は図8であり、以下では図8を参照して説明する。
q軸操舵補助指令値iqrefは、電流制御遅れモデル201に入力される。dq軸の電流指令値id *及びiq *が実電流に反映されるまでに、ECUのノイズフィルタ等により遅れが生じる。このため、直接電流指令値iq *から符号を判定しようとすると、タイミングずれが生じる場合がある。この問題を解決するため、電流制御全体の遅れを1次のフィルタモデルとして近似し、位相差を改善する。電流制御遅れモデル201は、Tをフィルタ時定数として、数1の1次フィルタとしている。電流制御遅れモデル201は、2次以上のフィルタをモデルとした構成でもよい。
Figure 2018037981
電流制御遅れモデル201から出力される電流指令値Icmは、電流指令値感応ゲイン部250及び補償符号推定部202に入力される。低電流領域においてデッドタイム補償量が過補償になる場合があり、電流指令値感応ゲイン部250は、電流指令値Icm(操舵補助指令値iqref)の大きさにより補償量を下げるゲインを算出する機能を持つ。また、電流指令値Icm(操舵補助指令値iqref)からのノイズなどで、補償量を下げるゲインが振動しないように加重平均フィルタを使用し、ノイズの低減処理を行っている。
電流指令値感応ゲイン部250は図9に示すような構成であり、電流指令値Icmは絶対値部251で絶対値となる。絶対値は入力制限部252で最大値を制限され、最大値を制限された絶対値の電流指令値が加重平均フィルタ254に入力される。加重平均フィルタ254でノイズを低減された電流指令値Iamは減算部255に加算入力され、減算部255で所定のオフセットOSを減算する。オフセットOSを減算する理由は、微小電流指令値によるチャタリング防止のためであり、オフセットOS以下の入力値を最小のゲインに固定する。オフセットOSは一定値である。減算部255でオフセットOSを減算された電流指令値Iasはゲイン部256に入力され、図10に示すようなゲイン特性に従って電流指令値感応ゲインGcを出力する。
電流指令値感応ゲイン部250から出力される電流指令値感応ゲインGcは、入力される電流指令値Icmに対して例えば図11に示すような特性である。即ち、所定電流Icm1まで一定ゲインGcc1であり、所定電流Icm1から所定電流Icm2(>Icm1)まで線形(若しくは非線形)に増加し、所定電流Icm2以上で一定ゲインGcc2を保持する特性である。なお、所定電流Icm1は0であっても良い。
補償符号推定部202は入力される電流指令値Icmに対して、図12(A)及び(B)に示すヒステリシス特性で正(+1)又は負(−1)の補償符号SNを出力する。電流指令値Icmがゼロクロスするポイントを基準として補償符号SNを推定するが、チャタリング抑制のためにヒステリシス特性となっている。推定された補償符号SNは乗算部203に入力される。なお、ヒステリシス特性の正負閾値(図12の例では±0.25[A])は、適宜変更可能である。
電流指令値感応ゲイン部250からの電流指令値感応ゲインGcは乗算部203に入力され、乗算部203は補償符号SNを乗算した電流指令値感応ゲインGcs(=Gc×SN)を出力する。電流指令値感応ゲインGcsは、乗算部204d及び204qに入力される。
最適なデッドタイム補償量はインバータ印加電圧VRに応じて変化するので、インバータ印加電圧VRに応じたデッドタイム補償量を演算し、可変するようにしている。インバータ印加電圧VRを入力して電圧感応ゲインGvを出力するインバータ印加電圧感応ゲイン部220は図13に示す構成であり、インバータ印加電圧VRは入力制限部221で正負最大値を制限され、最大値を制限されたインバータ印加電圧VRはインバータ印加電圧/デッドタイム補償ゲイン変換テーブル222に入力される。インバータ印加電圧/デッドタイム補償ゲイン変換テーブル222の特性は、例えば図14のようになっている。変曲点のインバータ印加電圧9.0V及び15.0Vと、電圧感応ゲイン“0.7”及び“1.2”は一例であり、適宜変更可能である。電圧感応ゲインGvは乗算部231U,231V,231Wに入力される。
モータ回転数ωによりデッドタイム補償タイミングを早めたり、遅くしたい場合、モータ回転数ωに応じて調整角度を算出する機能のために位相調整部210を有している。位相調整部210は、進角制御の場合は図15に示すような特性であり、算出された位相調整角Δθは加算部221に入力され、検出されたモータ回転角θと加算される。加算部221の加算結果であるモータ回転角θ(=θ+Δθ)は、角度−デッドタイム補償値関数部230U,230V,230Wに入力されると共に、3相交流/dq軸変換部240に入力される。
角度−デッドタイム補償値関数部230U,230V,230Wは図16に詳細を示すように、位相調整されたモータ回転角θに対して、電気角0〜359[deg]の範囲で120[deg]ずつ位相のずれた矩形波の各相デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム補償値角度関数部230U,230V,230Wは、3相で必要とされるデッドタイム補償値を角度による関数とし、ECUの実時間上で計算し、デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム基準補償値の角度関数は、ECUのデッドタイムの特性により異なる。
デッドタイム基準補償値Udt,Vdt,Wdtはそれぞれ乗算部231U,231V,231Wに入力され、電圧感応ゲインGvと乗算される。電圧感応ゲインG v を乗算された3相のデッドタイム補償値Udtc(=Gv・Udt),Vdtc(=Gv・Vdt),Wdtc(=Gv・Wdt)は3相交流/dq軸変換部240に入力される。3相交流/dq軸変換部240は、モータ回転角θに同期して、3相のデッドタイム補償値Udtc,Vdtc,Wdtcを2相のdq軸のデッドタイム補償値vda *及びvqa *に変換する。デッドタイム補償値vda *及びvqq *はそれぞれ乗算部204d及び204qに入力され、電流指令値感応ゲインGcsと乗算される。乗算部204d及び204qにおける乗算結果がデッドタイム補償値vd *及びvq *であり、デッドタイム補償値vd *及びvq *はそれぞれ加算部121d及び121qで電圧指令値vd及びvqと加算され、電圧指令値vd **及びvq **として空間ベクトル変調部300に入力される。
次に、デッドタイム補償部(B)400について図17を参照して説明する。
デッドタイム補償部400は、加算部401、乗算部402、インバータ印加電圧感応補償量演算部410、3相電流指令値モデル420、相電流補償符号推定部421、位相調整部430、3相交流/dq軸変換部440で構成されている。なお、乗算部402及び3相交流/dq軸変換部440でデッドタイム補償値出力部を構成している。モータ回転角θは加算部401に入力され、モータ回転数ωは位相調整部430に入力されている。また、インバータ印加電圧VRはインバータ印加電圧感応補償量演算部410に入力され、加算部401で算出された位相調整後のモータ回転角θが3相電流指令値モデル420に入力されている。
モータ回転数ωによりデッドタイム補償タイミングを早めたり、遅くしたい場合、モータ回転数ωに応じて調整角度を算出する機能のために位相調整部430を有している。位相調整部430は、進角制御の場合は図15に示すような特性であり、算出された位相調整角Δθは加算部401に入力され、検出されたモータ回転角θと加算される。加算部401の加算結果である位相調整後のモータ回転角θ(=θ+Δθ)は、3相電流指令値モデル420に入力されると共に、3相交流/dq軸変換部440に入力される。
モータ電気角を検出してDuty指令値を演算してから、実際にPWM信号に反映されるまで数十〜百[μs]の時間遅れがある。この間、モータが回転しているので、演算時のモータ電気角と反映時のモータ電気角とで位相ずれが発生する。この位相ずれを補償するため、モータ回転数ωに応じて進角を行い、位相を調整している。
最適なデッドタイム補償量はインバータ印加電圧VRに応じて変化するので、インバータ印加電圧VRに応じたデッドタイム補償量DTCを演算し、可変するようにしている。インバータ印加電圧VRを入力してデッドタイム補償量DTCを出力するインバータ印加電圧感応補償量演算部410は図13と同様な構成であり、インバータ印加電圧VRは入力制限部(221に相当)で正負最大値を制限され、最大値を制限されたインバータ印加電圧(VRに相当)はインバータ印加電圧/デッドタイム補償量変換テーブル(222に相当)に入力される。インバータ印加電圧/デッドタイム補償量変換テーブル222の特性は、例えば図18のようになっている。即ち、所定インバータ印加電圧VR1まで一定のデッドタイム補償量DTC1であり、所定インバータ印加電圧VR1から所定インバータ印加電圧VR2(>VR1)まで線形(若しくは非線形)に増加し、所定インバータ印加電圧VR2以上で一定のデッドタイム補償量DTC2を出力する特性である。
d軸電流指令値id *及びq軸電流指令値iq *はモータ回転角θと共に、3相電流指令値モデル420に入力される。3相電流指令値モデル420は、dq軸電流指令値id *及びiq *、モータ回転角θから、図19に示すような120[deg]ずつ位相のずれた正弦波の3相電流モデル指令値Icmを演算若しくはテーブルにより算出する(下記数2〜数3参照)。3相電流モデル指令値Icmは、モータタイプによって相違している。d軸電流指令値iref_dとq軸電流指令値iref_qをモータ電気角θから3相の電流指令値(U・V・W相)に変換すると、下記数2となる。
Figure 2018037981

上記数2から3相電流指令値を求めると、U相電流指令値モデルiref_u、V相電流指令値モデルiref_v及びW相電流指令値モデルiref_wは、それぞれ下記数3で表わされる。
Figure 2018037981

テーブルは、EEPROM(Electrically Erasable and Programmable Read-Only Memory)に格納されているタイプでも、RAM(Random Access Memory)上に展開されているタイプでも良い。数3の使用において、sinθのみをテーブル化しておき、入力θを90°オフセットさせて使用することによりcosθを演算したり、120°オフセットさせるなどして、その他のsin関数項を演算しても良い。ROM容量に問題がなかったり、複雑な指令値モデル(例えば擬似矩形波モータなど)の場合は、数式全体をテーブル化しておく。
3相電流モデル指令値Icmは相電流補償符号推定部421に入力される。相電流補償符号推定部421は入力される3相電流モデル指令値Icmに対して、図12(A)及び(B)に示すヒステリシス特性で正(+1)又は負(−1)の補償符号SNを出力する。3相電流モデル指令値Icmがゼロクロスするポイントを基準として補償符号SNを推定するが、チャタリング抑制のためにヒステリシス特性となっている。推定された補償符号SNは乗算部402に入力される。なお、ヒステリシス特性の正負閾値は適宜変更可能である。
単純に相電流指令値モデルの電流符号からデッドタイム補償値の符号を決めた場合、低負荷においてチャタリングが発生する。例えば、オンセンターで軽く左右にハンドルを切った時に、トルクリップルが発生する。この問題を改善するために符号判定にヒステリシスを設け(図12では±0.25[A])、設定した電流値を超えて符号が変化した場合以外、現在の符号を保持してチャタリングを抑制する。
インバータ印加電圧感応補償量演算部410からのデッドタイム補償量DTCは乗算部402に入力され、乗算部402は補償符号SNを乗算したデッドタイム補償量DTCa(=DTC×SN)を出力する。デッドタイム補償量DTCaは3相交流/dq軸変換部440に入力され、3相交流/dq軸変換部440は、モータ回転角θに同期して2相のデッドタイム補償値vd *及びvq *を出力する。デッドタイム補償値vd *及びvq *は、それぞれ加算部121d及び121qにおいて電圧指令値vd及びvqと加算され、インバータ161のデッドタイム補償が実施される。
このように本発明では、インバータのデッドタイム補償値を、モータ回転角(電気角)に応じた関数に基づくデッドタイム補償機能(A)と電流指令値モデルに基づくデッドタイム補償機能(B)とを所定条件で切り換え、dq軸にフィードフォワードで補償するようにしている。デッドタイム補償値をモータ回転角(電気角)に応じた3相の関数とし、3相/dq軸変換することにより、dq軸上の電圧指令値にフィードフォワードで補償する構成となっている。このため、図20に示すように、異なる補償機能A及びBを瞬時に切り換えて最適なデッドタイム補償を実施することができる。
次に、空間ベクトル変調について説明する。空間ベクトル変調部300は図21に示すように、dq軸空間の2相電圧(vd **、vq **)を3相電圧(Vua,Vva,Vwa)に変換し、3相電圧(Vua,Vva,Vwa)に3次高調波を重畳する機能を有していれば良く、例えば本出願人による特開2017−70066、特願2015−239898等で提案している空間ベクトル変調の手法を用いても良い。
即ち、空間ベクトル変調は、dq軸空間の電圧指令値vd **及びvq **、モータ回転角θ及びセクター番号n(#1〜#6)に基づいて、以下に示すような座標変換を行い、ブリッジ構成のインバータのFET(上側アームQ1、Q3、Q5、下側アームQ2、Q4、Q6)のON/OFFを制御する、セクター#1〜#6に対応したスイッチングパターンS1〜S6をモータに供給することによって、モータの回転を制御する機能を有する。座標変換については、空間ベクトル変調において、電圧指令値v **及びv **は、数4に基づいて、α−β座標系における電圧ベクトルVα及びVβに座標変換が行われる。この座標変換に用いる座標軸及びモータ回転角θの関係については、図22に示す。
Figure 2018037981

そして、d−q座標系における目標電圧ベクトルとα−β座標系における目標電圧ベクトルとの間には、数5のような関係が存在し、目標電圧ベクトルVの絶対値は保存される。
Figure 2018037981

空間ベクトル制御におけるスイッチングパターンでは、インバータの出力電圧をFET(Q1〜Q6)のスイッチングパターンS1〜S6に応じて、図23の空間ベクトル図に示す8種類の離散的な基準電圧ベクトルV0〜V7(π/3[rad]ずつ位相の異なる非零電圧ベクトルV1〜V6と零電圧ベクトルV0,V7)で定義する。そして、それら基準出力電圧ベクトルV0〜V7の選択とその発生時間を制御するようにしている。また、隣接する基準出力電圧ベクトルによって挟まれた6つの領域を用いて、空間ベクトルを6つのセクター#1〜#6に分割することができ、目標電圧ベクトルVは、セクター#1〜#6のいずれか1つに属し、セクター番号を割り当てることができる。Vα及びVβの合成ベクトルである目標電圧ベクトルVが、α−β空間において正6角形に区切られた図23に示されたようなセクター内のいずれに存在するかは、目標電圧ベクトルVのα−β座標系における回転角γに基づいて求めることができる。また、回転角γはモータの回転角θとd−q座標系における電圧指令値v **及びv **の関係から得られる位相δの和として、γ=θ+δで決定される。
図24は、空間ベクトル制御におけるインバータのスイッチングパターンS1、S3,S5によるディジタル制御で、インバータから目標電圧ベクトルVを出力させるために、FETに対するON/OFF信号S1〜S6(スイッチングパターン)におけるスイッチングパルス幅とそのタイミングを決定する基本的なタイミングチャートを示す。空間ベクトル変調は、規定されたサンプリング期間Ts毎に演算などをサンプリング期間Ts内で行い、その演算結果を次のサンプリング期間Tsにて、スイッチングパターンS1〜S6における各スイッチングパルス幅とそのタイミングに変換して出力する。
空間ベクトル変調は、目標電圧ベクトルVに基づいて求められたセクター番号に応じたスイッチングパターンS1〜S6を生成する。図24には、セクター番号#1(n=1)の場合における、インバータのFETのスイッチングパターンS1〜S6の一例が示されている。信号S1、S3及びS5は、上側アームに対応するFETQ1、Q3、Q5のゲート信号を示している。横軸は時間を示しており、Tsはスイッチング周期に対応し、8期間に分割され、T0/4、T1/2、T2/2、T0/4、T0/4、T2/2、T1/2及びT0/4で構成される期間である。また、期間T1及びT2は、それぞれセクター番号n及び回転角γに依存する時間である。
空間ベクトル変調がない場合、本発明のデッドタイム補償をdq軸上に適用し、デッドタイム補償値のみdq軸/3相変換したデッドタイム補償値波形(U相波形)は、図25の破線のような3次成分が除去された波形となってしまう。V相及びW相についても同様である。dq軸/3相変換の代わりに空間ベクトル変調を適用することにより、3相信号に3次高調波を重畳させることが可能となり、3相変換によって欠損してしまう3次成分を補うことができ、図25の実線のような理想的なデッドタイム補償波形を生成することが可能となる。
図26は、本発明の効果を示すステアリング実験装置による実験結果であり、ステアリングを中速から高速に切増しをしている操舵状態において、補償機能Aから補償機能Bに切り換えられたときのd軸電流及びq軸電流と、q軸デッドタイム補償値及びq軸デッドタイム補償値の波形を示している。図26に示すように本発明のデッドタイム補償を適応しデッドタイム補償値がAからBに切り換わることにより、d軸電流が流れる始めるときなど、電流制御特性が変化してもデッドタイムの影響によるdq軸電流の波形歪みが無いことが確認できる。
図27は、デッドタイム補償部(A)200の他の例を図7に対応させて示しており、本実施形態では直接dq軸のデッドタイム補償値vda及びvqaを基準テーブル260d及び260qで算出している。dq軸角度−デッドタイム補償値基準テーブル260d及び260qは図28に詳細を示すように、オフライン上で、3相で必要とされる角度の関数であるデッドタイム補償値を計算し、dq軸上のデッドタイム補償値に変換する。即ち、各相角度−デッドタイム補償値関数部260U,260V,260Wで位相調整されたモータ回転角θに対して、電気角0〜359[deg]の範囲で120[deg]ずつ位相のずれた矩形波の各相デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム補償値角度関数部260U,260V,260Wは、3相で必要とされるデッドタイム補償値を角度による関数としてオフラインで計算し、デッドタイム基準補償値Udt,Vdt,Wdtを出力する。デッドタイム基準補償値Udt,Vdt,Wdtの角度関数は、ECUのデッドタイムの特性により異なる。
デッドタイム基準補償値Udt,Vdt,Wdtは3相交流/dq軸変換部261に入力され、図28に示されるような出力波形のdq軸デッドタイム補償値DT、DTに変換される。図28のdq軸出力波形を元に、角度(θ)入力による角度−デッドタイム補償値基準テーブル240d及び240qを生成する。デッドタイム補償値基準テーブル240dは図29(A)に示すように、モータ回転角θに対して鋸歯波状の出力電圧特性(d軸デッドタイム基準補償値)を有し、デッドタイム補償値基準テーブル240qは図29(B)に示すように、オフセット電圧を上乗せした波状波形の出力電圧特性(q軸デッドタイム基準補償値)を有している。
角度−デッドタイム補償値基準テーブル260d及び260qからのデッドタイム基準補償値を示す出力電圧vda及びvqaはそれぞれ乗算部205d及び205qに入力され、電圧感応ゲインGvと乗算される。電圧感応ゲインGvを乗算されたdq軸のデッドタイム補償値vda *及びvqa *はそれぞれ乗算部204d及び204qに入力され、電流指令値感応ゲインGcsと乗算される。乗算部204d及び204qにおける乗算結果がデッドタイム補償値vd *及びvq *であり、デッドタイム補償値vd *及びvq *はそれぞれ加算部121d及び121qで電圧指令値vd及びvqと加算される。
1 ハンドル
2 コラム軸(ステアリングシャフト、ハンドル軸)
10 トルクセンサ
12 車速センサ
20、100 モータ
30 コントロールユニット(ECU)
31 操舵補助指令値演算部
35、203、204 PI制御部
36、160 PWM制御部
37,161 インバータ
110 角度検出部
130 3相交流/dq軸変換部
140 d−q非干渉制御部
200 デッドタイム補償部(A)
201 電流制御遅れモデル
202 補償符号推定部
210、430 位相調整部
220 インバータ印加電圧感応ゲイン部
230U、230V、230W 角度−デッドタイム補償値関数部
240、440 3相交流/dq軸変換部
250 電流指令値感応ゲイン部
300 空間ベクトル変調部
301 2相/3相変換部
302 3次高調波重畳部
400 デッドタイム補償部(B)
420 3相電流指令値モデル
421 相電流補償符号推定部
500 補償値切換部
501、502 条件分岐部
510 切換判定部

Claims (10)

  1. 少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相のDuty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    前記インバータのデッドタイム補償を行う性能が異なる複数のデッドタイム補償機能を有し、前記複数のデッドタイム補償機能1つから他のデッドタイム補償機能に所定条件で切り換えて前記デッドタイム補償を実施することを特徴とする電動パワーステアリング装置。
  2. 前記複数のデッドタイム補償機能が2つであり、低速・中速操舵状態において効果のある、モータ回転角の関数に基づく前記インバータのデッドタイム補償機能Aと、高速操舵状態において効果のある、電流指令値モデルに基づく前記インバータのデッドタイム補償機能Bとである請求項1に記載の電動パワーステアリング装置。
  3. 前記所定条件が、前記dq軸電流指令値及びモータ回転数で定まる切換条件である請求項1又は2に記載の電動パワーステアリング装置。
  4. 前記デッドタイム補償機能Aと前記デッドタイム補償機能Bの切り換えを、前記切換条件に基づくソフトウェアの条件分岐によって行う請求項3に記載の電動パワーステアリング装置。
  5. 少なくとも操舵トルクに基づいてdq軸の操舵補助指令値を演算し、前記操舵補助指令値からdq軸電流指令値を演算し、前記dq軸電流指令値を3相Duty指令値に変換し、PWM制御のインバータにより3相ブラシレスモータを駆動制御し、車両の操舵機構にアシストトルクを付与するベクトル制御方式の電動パワーステアリング装置において、
    前記3相ブラシレスモータのモータ回転角に基づく前記インバータの前記dq軸に関する第1のdq軸補償値を演算するデッドタイム補償部Aと、
    前記dq軸電流指令値を入力し、電流指令値モデルに基づく前記インバータの前記dq軸に関する第2のdq軸補償値を演算するデッドタイム補償部Bと、
    前記dq軸電流指令値及び前記q軸の前記操舵補助指令値に基づいて前記第1のdq軸補償値と前記第2のdq軸補償値とを切り換えてdq軸デッドタイム補償値を出力する補償値切換部と、
    を具備し、前記dq軸デッドタイム補償値により前記dq軸電流指令値を補正して前記インバータのデッドタイム補償を実施することを特徴とする電動パワーステアリング装置。
  6. 前記補償値切換部が、
    前記dq軸電流指令値及び前記q軸の前記操舵補助指令値に基づいて補償値切換の判定を行う切換判定部と、
    前記切換判定部からの切換判定フラグによって、前記第1のdq軸補償値又は前記第2のdq軸補償値を前記dq軸デッドタイム補償値として出力する条件分岐部と、
    で構成されている請求項5に記載の電動パワーステアリング装置。
  7. 前記切換判定部が、
    前記d軸電流指令値がゼロ近辺となった時に判定フラグ1を出力するゼロ判定部と、
    前記q軸電流指令値の絶対値を得る第1の絶対値部と、
    前記第1の絶対値部の出力が第1の閾値以上となった時に第2の判定フラグを出力すると共に、ヒステリシス特性を有する第1の閾値部と、
    モータ回転数の絶対値を得る第2の絶対値部と、
    前記第2の絶対値部の出力が第2の閾値以上となった時に第3の判定フラグを出力すると共に、ヒステリシス特性を有する第2の閾値部と、
    前記第1の判定フラグ、前記第2の判定フラグ及び前記第3の判定フラグが入力された時に前記切換判定フラグを出力する切換条件判定部と、
    で構成されている請求項6に記載の電動パワーステアリング装置。
  8. 前記ゼロ近辺が0.0〜0.1[A]である請求項7に記載の電動パワーステアリング装置。
  9. 前記条件分岐部が、前記切換判定フラグに基づくソフトウェアの条件分岐によって行う請求項6乃至8のいずれかに記載の電動パワーステアリング装置。
  10. 前記補正が、前記dq軸デッドタイム補償値と前記dq軸電流指令値の加算演算である請求項5乃至9のいずれかに記載の電動パワーステアリング装置。
JP2018535623A 2016-08-24 2017-08-16 電動パワーステアリング装置 Active JP6512372B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016163715 2016-08-24
JP2016163715 2016-08-24
PCT/JP2017/029445 WO2018037981A1 (ja) 2016-08-24 2017-08-16 電動パワーステアリング装置

Publications (2)

Publication Number Publication Date
JP6512372B2 JP6512372B2 (ja) 2019-05-15
JPWO2018037981A1 true JPWO2018037981A1 (ja) 2019-06-20

Family

ID=61245843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018535623A Active JP6512372B2 (ja) 2016-08-24 2017-08-16 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10597071B2 (ja)
EP (1) EP3476695B1 (ja)
JP (1) JP6512372B2 (ja)
CN (1) CN109562780B (ja)
WO (1) WO2018037981A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3301806A1 (en) * 2016-09-28 2018-04-04 NXP USA, Inc. Electric motor drive apparatus and method therefor
JP6644172B2 (ja) * 2017-01-11 2020-02-12 三菱電機株式会社 モータ制御装置
DE102019006935B4 (de) * 2019-10-04 2021-07-22 Man Truck & Bus Se Technik zur Totzeitkompensation bei Quer- und Längsführung eines Kraftfahrzeugs
CN113039696A (zh) * 2019-10-09 2021-06-25 东芝三菱电机产业系统株式会社 电力变换装置
DE112020005076T5 (de) * 2019-11-18 2022-07-21 Hitachi Astemo, Ltd. Leistungsumsetzungsvorrichtung und verfahren zum diagnostizieren einer störung der leistungsumsetzungsvorrichtung
CN111525782B (zh) * 2020-05-19 2021-08-13 深圳南云微电子有限公司 一种功率管的驱动控制方法及电路
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs
CN113824365B (zh) * 2021-09-25 2024-04-05 中车永济电机有限公司 一种基于电流预测的适用于异步电机控制的死区补偿方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201414A (ja) * 2002-12-18 2004-07-15 Toyoda Mach Works Ltd モータ制御装置、モータ制御方法および電気式動力舵取装置
JP2006081260A (ja) * 2004-09-08 2006-03-23 Favess Co Ltd モータ制御装置及び電動パワーステアリング装置
JP2006111062A (ja) * 2004-10-12 2006-04-27 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2006199140A (ja) * 2005-01-20 2006-08-03 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007045394A (ja) * 2005-07-12 2007-02-22 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007091182A (ja) * 2005-09-30 2007-04-12 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007216698A (ja) * 2006-02-14 2007-08-30 Nsk Ltd 電動パワーステアリング装置及びその制御装置
JP2007253670A (ja) * 2006-03-22 2007-10-04 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2010228701A (ja) * 2009-03-30 2010-10-14 Jtekt Corp デッドタイム設定方法、モータ制御装置および電動パワーステアリング装置
JP2012011965A (ja) * 2010-07-05 2012-01-19 Jtekt Corp 電動パワーステアリング装置
WO2012169311A1 (ja) * 2011-06-08 2012-12-13 日本精工株式会社 電動パワーステアリング装置の制御装置
US20150185095A1 (en) * 2013-12-27 2015-07-02 Deere & Company Methods of torque estimation and compensation and systems thereof
WO2018016476A1 (ja) * 2016-07-20 2018-01-25 日本精工株式会社 電動パワーステアリング装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854190B2 (ja) * 2002-04-26 2006-12-06 株式会社ジェイテクト モータ制御装置
US6914399B2 (en) * 2002-07-09 2005-07-05 Delphi Technologies Active deadtime control for improved torque ripple performance in electric machines
EP1661792A1 (en) 2003-09-02 2006-05-31 NSK Ltd. Device for controlling electric-motor power steering device
JP4760118B2 (ja) 2005-05-13 2011-08-31 日産自動車株式会社 電動機の制御装置
JP6361178B2 (ja) * 2014-03-07 2018-07-25 株式会社ジェイテクト モータ制御装置及び電動パワーステアリング装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004201414A (ja) * 2002-12-18 2004-07-15 Toyoda Mach Works Ltd モータ制御装置、モータ制御方法および電気式動力舵取装置
JP2006081260A (ja) * 2004-09-08 2006-03-23 Favess Co Ltd モータ制御装置及び電動パワーステアリング装置
JP2006111062A (ja) * 2004-10-12 2006-04-27 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2006199140A (ja) * 2005-01-20 2006-08-03 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007045394A (ja) * 2005-07-12 2007-02-22 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007091182A (ja) * 2005-09-30 2007-04-12 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2007216698A (ja) * 2006-02-14 2007-08-30 Nsk Ltd 電動パワーステアリング装置及びその制御装置
JP2007253670A (ja) * 2006-03-22 2007-10-04 Nsk Ltd 電動パワーステアリング装置の制御装置
JP2010228701A (ja) * 2009-03-30 2010-10-14 Jtekt Corp デッドタイム設定方法、モータ制御装置および電動パワーステアリング装置
JP2012011965A (ja) * 2010-07-05 2012-01-19 Jtekt Corp 電動パワーステアリング装置
WO2012169311A1 (ja) * 2011-06-08 2012-12-13 日本精工株式会社 電動パワーステアリング装置の制御装置
US20150185095A1 (en) * 2013-12-27 2015-07-02 Deere & Company Methods of torque estimation and compensation and systems thereof
WO2018016476A1 (ja) * 2016-07-20 2018-01-25 日本精工株式会社 電動パワーステアリング装置

Also Published As

Publication number Publication date
US20190344824A1 (en) 2019-11-14
EP3476695A1 (en) 2019-05-01
CN109562780B (zh) 2020-07-14
CN109562780A (zh) 2019-04-02
BR112019001637A2 (pt) 2019-05-07
US10597071B2 (en) 2020-03-24
WO2018037981A1 (ja) 2018-03-01
EP3476695A4 (en) 2019-07-10
EP3476695B1 (en) 2020-11-18
JP6512372B2 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6579220B2 (ja) 電動パワーステアリング装置
JP6512372B2 (ja) 電動パワーステアリング装置
JP6658995B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6601595B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6521132B2 (ja) 電動パワーステアリング装置
JP6658928B2 (ja) 電動パワーステアリング装置
JP6521185B2 (ja) 電動パワーステアリング装置
JP6658972B2 (ja) モータ制御装置及びそれを搭載した電動パワーステアリング装置
JP6690798B2 (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R150 Certificate of patent or registration of utility model

Ref document number: 6512372

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250