JPWO2018012415A1 - Resin composition and use thereof - Google Patents

Resin composition and use thereof Download PDF

Info

Publication number
JPWO2018012415A1
JPWO2018012415A1 JP2018527570A JP2018527570A JPWO2018012415A1 JP WO2018012415 A1 JPWO2018012415 A1 JP WO2018012415A1 JP 2018527570 A JP2018527570 A JP 2018527570A JP 2018527570 A JP2018527570 A JP 2018527570A JP WO2018012415 A1 JPWO2018012415 A1 JP WO2018012415A1
Authority
JP
Japan
Prior art keywords
hollow particles
resin
weight
resin composition
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018527570A
Other languages
Japanese (ja)
Other versions
JP7189768B2 (en
Inventor
勝志 三木
勝志 三木
直哉 太野垣
直哉 太野垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsumoto Yushi Seiyaku Co Ltd
Original Assignee
Matsumoto Yushi Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsumoto Yushi Seiyaku Co Ltd filed Critical Matsumoto Yushi Seiyaku Co Ltd
Publication of JPWO2018012415A1 publication Critical patent/JPWO2018012415A1/en
Application granted granted Critical
Publication of JP7189768B2 publication Critical patent/JP7189768B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Paints Or Removers (AREA)

Abstract

本発明の目的は、生産安定性、軽量化効率に優れた樹脂成形物の製造が可能となる樹脂組成物およびその用途を提供することである。樹脂組成物は、中空粒子(A)と有機基剤樹脂(B)とを含有し、前記中空粒子(A)が、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。An object of the present invention is to provide a resin composition and its use which can produce a resin molded product excellent in production stability and lightening efficiency. The resin composition contains hollow particles (A) and an organic base resin (B), and the hollow particles (A) are contained in an outer shell made of a thermoplastic resin and are contained therein and are vaporized by heating. An expandable body of thermally expandable microspheres composed of a foaming agent, wherein the volume ratio (P) of the amount of air contained in the hollow particles (A) makes the total volume of the hollow particles (A) 100%. When it is over 30%.

Description

本発明は樹脂組成物およびその利用に関する。   The present invention relates to a resin composition and its use.

粘土、塗料、接着剤などの軽量化充填材として、プラスチックバルーンなどの中空粒子が使用されている。これらの軽量化充填材の配合目的は、環境対策や樹脂成分の節約によるコストダウン(特許文献1)である。
このようなプラスチックバルーンは熱可塑性樹脂を外殻とし、その内部に発泡剤が封入された構造を有する熱膨張性微小球を膨張して得られる。前記熱膨張性微小球は、一般に熱膨張性マイクロカプセルと呼ばれている。熱可塑性樹脂としては、通常、塩化ビニリデン系共重合体、アクリロニトリル系共重合体、アクリル酸エステル系共重合体等が用いられている。また、発泡剤としてはイソブタンやイソペンタン等の炭化水素が主に使用されている(特許文献2参照)。
Hollow particles such as plastic balloons have been used as lightening fillers for clays, paints, adhesives and the like. The purpose of blending these lightening fillers is cost reduction due to environmental measures and saving of resin components (Patent Document 1).
Such a plastic balloon has a thermoplastic resin as an outer shell and is obtained by expanding thermally expandable microspheres having a structure in which a foaming agent is enclosed. The thermally expandable microspheres are generally referred to as thermally expandable microcapsules. As the thermoplastic resin, a vinylidene chloride copolymer, an acrylonitrile copolymer, an acrylic ester copolymer and the like are usually used. Moreover, hydrocarbons, such as isobutane and isopentane, are mainly used as a foaming agent (refer patent document 2).

しかしながら、これらの軽量化充填材は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性の向上が不十分であった。
また、特許文献3には、特定モノマーおよび架橋剤から得られたポリマーによって形成された外殻を有し、発泡倍率が20〜100倍の熱膨張性マイクロカプセルを加熱発泡してなる中空微粒子を軽量セメント製品に配合することが記載されている。しかしながら、この中空微粒子でも外的圧力による負荷に対する中空粒子の耐性の向上は不十分であった。
However, these lightweight fillers have insufficient improvement in the resistance to the load due to external pressure at the time of mixing and filling in the production process of the resin composition.
In addition, Patent Document 3 has a hollow particle formed by heating and foaming a thermally expandable microcapsule having an outer shell formed of a polymer obtained from a specific monomer and a crosslinking agent and having an expansion ratio of 20 to 100 times. It is described to be formulated into lightweight cement products. However, even with this hollow particle, the improvement of the resistance of the hollow particle to the load by the external pressure is insufficient.

国際公開第97/05201号WO 97/05201 米国特許第3615972号明細書U.S. Pat. No. 3,615,972 日本国特開2004−131361号公報Japanese Patent Application Laid-Open No. 2004-131361

本発明の目的は、生産安定性、軽量化効率に優れた樹脂成形物の製造が可能となる樹脂組成物およびその用途を提供することである。   An object of the present invention is to provide a resin composition and its use which can produce a resin molded product excellent in production stability and lightening efficiency.

本発明者は鋭意検討した結果、空気量の体積割合が特定の値を有する中空粒子(A)を含む樹脂組成物は、外的圧力による負荷に対する中空粒子の耐性が向上し、混合及び充填工程における潰れが抑制され、その結果、生産安定性、軽量化効率に優れた樹脂成形体を製造できることを見出し、本発明に到達した。   As a result of intensive investigations conducted by the inventor, the resin composition containing hollow particles (A) having a specific volume ratio of air content improves the resistance of the hollow particles to external pressure load, and the mixing and filling process. The present invention has been found out that the resin molded product having excellent production stability and lightening efficiency can be produced.

すなわち、本発明の樹脂組成物は、中空粒子(A)と有機基剤樹脂(B)とを含有し、前記中空粒子(A)が、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。   That is, the resin composition of the present invention contains hollow particles (A) and an organic base resin (B), and the hollow particles (A) are contained in an outer shell made of a thermoplastic resin and contained therein and heated. And the expansion ratio of the amount of air contained in the hollow particles (A) is the expansion of the whole of the hollow particles (A). When the volume is 100%, it is 30% or more.

本発明の樹脂組成物は、次の1)〜2)から選ばれる少なくとも1つをさらに満足すると好ましい。
1)前記中空粒子(A)の体積基準の累積50%粒子径(D50)が1〜300μmである。
2)塗料組成物、接着剤組成物又は樹脂粘土である。
It is preferable that the resin composition of the present invention further satisfy at least one selected from the following 1) to 2).
1) The volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is 1 to 300 μm.
2) paint compositions, adhesive compositions or resin clays.

本発明の成形物は、上記の樹脂組成物を成型させてなるものである。
本発明の樹脂組成物の製造方法は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を得る工程(1)と、前記熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、前記中空粒子(a)を温度−10〜80℃の範囲で熟成して、中空粒子(A)を得る工程(3)と、得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)とを含み、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。
The molded product of the present invention is obtained by molding the above resin composition.
The method for producing a resin composition of the present invention comprises the step (1) of obtaining thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent which is contained therein and is vaporized by heating. The step of obtaining the hollow particles (a) by heating and expanding the thermally expandable microspheres (2), and ripening the hollow particles (a) at a temperature of -10 to 80 ° C to obtain the hollow particles (A) And the step (4) of mixing the obtained hollow particles (A) and the organic base resin (B), and the volume ratio of the amount of air contained in the hollow particles (A) ( P) is 30% or more when the volume of the whole hollow particle (A) is 100%.

本発明の樹脂組成物または本発明の製造方法によって得られる樹脂組成物を用いることによって、生産安定性、軽量化効率に優れた樹脂成形体の製造が可能となる。   By using the resin composition of the present invention or the resin composition obtained by the production method of the present invention, it is possible to produce a resin molded product excellent in production stability and weight reduction efficiency.

中空粒子(A)の模式図の一例である。It is an example of the schematic diagram of a hollow particle (A). 中空粒子を乾式加熱膨張法で製造するための製造装置の発泡工程部の概略図である。It is the schematic of the foaming process part of the manufacturing apparatus for manufacturing a hollow particle by the dry heating expansion method.

本発明の樹脂組成物は、中空粒子(A)と有機基剤樹脂(B)とを含有する。以下、詳細に説明する。   The resin composition of the present invention contains hollow particles (A) and an organic base resin (B). The details will be described below.

〔中空粒子(A)〕
中空粒子(A)は、本発明の樹脂組成物の必須成分である。中空粒子(A)は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。中空粒子(A)について、その製造方法を例に挙げて説明する。
[Hollow particles (A)]
Hollow particles (A) are an essential component of the resin composition of the present invention. The hollow particles (A) are expandable bodies of thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent which is contained therein and is vaporized by heating, and the hollow particles (A) When the volume ratio (P) of the amount of air contained in the hollow particle (A) is 100%, the volume ratio (P) is 30% or more. The hollow particle (A) will be described by way of an example of its production method.

中空粒子(A)の製造方法としては、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を製造する工程(1)と、工程(1)で得た熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、工程(2)で得た中空粒子(a)を温度−10〜80℃の範囲で熟成して、中空粒子(A)を得る工程(3)を含む製造方法を挙げることができる。なお、工程(1)を重合工程、工程(2)を膨張工程、工程(3)を熟成工程ということがある。   As a method of producing hollow particles (A), a step (1) of producing thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent contained therein and vaporized by heating C., the step of obtaining the hollow particles (a) by heating and expanding the thermally expandable microspheres obtained in the step (1), and the hollow particles (a) obtained in the step (2) at a temperature of -10.degree. The production method may include the step (3) of ripening in the range of to obtain hollow particles (A). In addition, a process (1) may be called a superposition | polymerization process, a process (2) may be called expansion | swelling process, and a process (3) may be called an aging process.

(重合工程)
重合工程は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を製造する工程(1)をいう。重合工程としては、水性分散媒中で、重合性成分および発泡剤を含有する油性混合物を分散させ、該重合性成分を重合させる工程が挙げられる。
発泡剤は、加熱することによって気化する物質であれば特に限定はないが、たとえば、プロパン、(イソ)ブタン、(イソ)ペンタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン、(イソ)ノナン、(イソ)デカン、(イソ)ウンデカン、(イソ)ドデカン、(イソ)トリデカン等の炭素数3〜13の炭化水素;(イソ)ヘキサデカン、(イソ)エイコサン等の炭素数13超で20以下の炭化水素等を挙げることができる。これらの発泡剤は、1種または2種以上を併用してもよい。
上記発泡剤は、沸点が60℃未満の炭化水素であることが好ましい。沸点が60℃を超える炭化水素を用いると、樹脂組成物の混合時に中空粒子(A)の潰れが発生し、十分な軽量化率が得られないことがある。
(Polymerization process)
The polymerization step refers to the step (1) of producing thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent contained therein and vaporized by heating. As the polymerization step, there is mentioned a step of dispersing an oily mixture containing a polymerizable component and a foaming agent in an aqueous dispersion medium, and polymerizing the polymerizable component.
The blowing agent is not particularly limited as long as it is a substance which is vaporized by heating, and for example, propane, (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane, ( Hydrocarbons having 3 to 13 carbon atoms such as iso) nonane, (iso) decane, (iso) undecane, (iso) dodecane, (iso) tridecane, and the like; and having more than 13 carbon atoms such as (iso) hexadecane and (iso) eicosane 20 or less hydrocarbons etc. can be mentioned. These foaming agents may be used alone or in combination of two or more.
The blowing agent is preferably a hydrocarbon having a boiling point of less than 60.degree. When a hydrocarbon having a boiling point of more than 60 ° C. is used, crushing of the hollow particles (A) may occur during mixing of the resin composition, and a sufficient weight reduction rate may not be obtained.

重合性成分は、重合することによって熱膨張性微小球の外殻を形成する熱可塑性樹脂となる成分である。重合性成分は、単量体成分を必須とし架橋剤を含むことがある成分である。
単量体成分は、一般には、重合性二重結合を1個有する(ラジカル)重合性単量体と呼ばれている成分を含む。
The polymerizable component is a component that becomes a thermoplastic resin that forms an outer shell of thermally expandable microspheres by polymerization. A polymerizable component is a component which makes a monomer component essential and may contain a crosslinking agent.
The monomer component generally includes a component called as a (radical) polymerizable monomer having one polymerizable double bond.

単量体成分がニトリル系単量体であり、重合性成分がニトリル系単量体を含有し、中空粒子がニトリル系単量体を含有する重合性成分を重合して得られる熱可塑性樹脂から構成されると、中空粒子(A)および(a)に内包されている発泡剤の保持性に優れていることから好ましい。
ニトリル系単量体としては、たとえば、アクリロニトリル(AN)、メタクリロニトリル(MAN)、フマロニトリル等を挙げることができる。
A thermoplastic resin obtained by polymerizing a polymerizable component in which the monomer component is a nitrile monomer, the polymerizable component contains a nitrile monomer, and the hollow particle contains a nitrile monomer The composition is preferable because it is excellent in the retention of the blowing agent contained in the hollow particles (A) and (a).
Examples of nitrile monomers include acrylonitrile (AN), methacrylonitrile (MAN), fumaronitrile and the like.

重合性成分に占めるニトリル系単量体の重量割合については、特に限定はないが、好ましくは20重量%以上、さらに好ましくは40重量%以上、特に好ましくは60重量%以上である。ニトリル系単量体の重量割合の上限は、好ましくは100重量%である。ニトリル系単量体の重量割合が20重量%未満であると、中空粒子(A)および(a)に内包されている発泡剤の保持性が悪く、発泡剤が徐放することがある。
ニトリル系単量体がアクリロニトリル(AN)およびメタクリロニトリル(MAN)を必須とすると、中空粒子(A)および(a)の原料である熱膨張マイクロカプセルや中空粒子(A)および(a)に内包する発泡剤の保持性に優れているために好ましい。
The weight ratio of the nitrile monomer in the polymerizable component is not particularly limited, but is preferably 20% by weight or more, more preferably 40% by weight or more, and particularly preferably 60% by weight or more. The upper limit of the weight ratio of the nitrile monomer is preferably 100% by weight. If the weight ratio of the nitrile monomer is less than 20% by weight, the retention of the foaming agent contained in the hollow particles (A) and (a) may be poor, and the foaming agent may be slowly released.
When the nitrile monomer essentially comprises acrylonitrile (AN) and methacrylonitrile (MAN), thermally expanded microcapsules and hollow particles (A) and (a), which are raw materials of hollow particles (A) and (a), can be used. It is preferable because it is excellent in the retention of the blowing agent contained therein.

重合性成分は、単量体成分として、ニトリル系単量体以外の単量体を含有していてもよい。
ニトリル系単量体以外の単量体としては、特に限定はないが、たとえば、塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;(メタ)アクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等のカルボキシル基含有単量体;マレイン酸、イタコン酸、フマル酸等の無水カルボン酸系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−ブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル系単量体;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等の(メタ)アクリルアミド系単量体;N−フェニルマレイミド、N−シクロヘキシルマレイミド等のマレイミド系単量体;スチレン、α−メチルスチレン等のスチレン系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフイン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N−ビニルカルバゾール、N−ビニルピロリドン等のN−ビニル系単量体;ビニルナフタリン塩等を挙げることができる。なお、(メタ)アクリルは、アクリルまたはメタクリルを意味する。
The polymerizable component may contain a monomer other than a nitrile monomer as a monomer component.
The monomer other than the nitrile monomer is not particularly limited. For example, a vinyl halide monomer such as vinyl chloride; a vinylidene halide monomer such as vinylidene chloride; vinyl acetate, propionic acid Vinyl ester monomers such as vinyl and vinyl butyrate; Carboxyl group-containing monomers such as (meth) acrylic acid, ethacrylic acid, crotonic acid and cinnamic acid; Carboxylic acid anhydrides such as maleic acid, itaconic acid and fumaric acid Monomer; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, phenyl (meth) ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzyl (Meth) acrylate monomers such as (meth) acrylate and 2-hydroxyethyl (meth) acrylate; (meth) acrylamide monomers such as acrylamide, substituted acrylamide, methacrylamide and substituted methacrylamide; N- Maleimide based monomers such as phenyl maleimide and N-cyclohexyl maleimide; Styrene based monomers such as styrene and α-methyl styrene; Ethylenically unsaturated monoolefin based monomers such as ethylene, propylene and isobutylene; Vinyl methyl ether, Vinyl ether monomers such as vinyl ethyl ether and vinyl isobutyl ether; vinyl ketone monomers such as vinyl methyl ketone; N-vinyl monomers such as N-vinylcarbazole and N-vinyl pyrrolidone; vinyl naphthalene salts etc. It can be mentioned. (Meth) acrylic means acrylic or methacrylic.

重合性成分は、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、ビニルエステル系単量体、アクリルアミド系単量体、マレイミド系単量体および塩化ビニリデンから選ばれる少なくとも1種をさらに含むと好ましい。
重合性成分がニトリル系単量体および(メタ)アクリル酸エステル系単量体を含むと、熱膨張性微小球内の発泡剤の保持性、耐熱性の観点から好ましい。
The polymerizable component includes (meth) acrylate monomers, carboxyl group-containing monomers, styrene monomers, vinyl ester monomers, acrylamide monomers, maleimide monomers, and vinylidene chloride It is preferable to further include at least one selected from
It is preferable that the polymerizable component contains a nitrile monomer and a (meth) acrylic acid ester monomer from the viewpoint of the retention of the foaming agent in the thermally expandable microspheres and the heat resistance.

重合性成分は、上記単量体成分以外に、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含んでいてもよい。架橋剤を用いて重合させることにより、熱膨張時の内包された発泡剤の保持率の経時的な低下が抑制され、効果的に熱膨張させることができる。   The polymerizable component may contain, in addition to the above-mentioned monomer components, a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds. By polymerization using a crosslinking agent, a temporal decrease in retention of the contained foaming agent at the time of thermal expansion can be suppressed, and thermal expansion can be performed effectively.

架橋剤としては、特に限定はないが、たとえば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物や、メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロール−トリシクロデカンジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート等を挙げることができる。これらの架橋剤は、1種または2種以上を併用してもよい。   The crosslinking agent is not particularly limited. For example, aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene, allyl methacrylate, triacrylic formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, trimethyl Triol propane tri (meth) acrylate, EO modified trimethylol propane tri (meth) acrylate, glycerin di (meth) acrylate, dimethylol tricyclodecane di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) ) Acrylate, dipentaerythritol hexa (meth) acrylate and the like can be mentioned. These crosslinking agents may be used alone or in combination of two or more.

架橋剤の量については、特に限定はないが、単量体成分100重量部に対して、好ましくは0.01〜5重量部、さらに好ましくは0.1〜1重量部、特に好ましくは0.3〜0.9重量部、最も好ましくは0.5〜0.8重量部である。
重合性成分の重合は、重合開始剤を用いて行うとよく、油溶性の重合開始剤が好ましい。
The amount of the crosslinking agent is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, particularly preferably 0.1 to 1 part by weight, per 100 parts by weight of the monomer component. 3 to 0.9 parts by weight, most preferably 0.5 to 0.8 parts by weight.
The polymerization of the polymerizable component may be carried out using a polymerization initiator, and an oil-soluble polymerization initiator is preferred.

重合工程では、油性混合物は連鎖移動剤等をさらに含有していてもよい。
水性分散媒は油性混合物を分散させるイオン交換水等の水を主成分とする媒体であり、メタノール、エタノール、プロパノール等のアルコールや、アセトン等の親水性有機性の溶媒をさらに含有してもよい。本発明における親水性とは、水に任意に混和できる状態であることを意味する。水性分散媒の使用量については、特に限定はないが、重合性成分100重量部に対して、100〜1000重量部の水性分散媒を使用するのが好ましい。
In the polymerization step, the oily mixture may further contain a chain transfer agent and the like.
The aqueous dispersion medium is a medium containing water as a main component, such as ion-exchanged water, for dispersing the oily mixture, and may further contain an alcohol such as methanol, ethanol or propanol, or a hydrophilic organic solvent such as acetone. . The hydrophilicity in the present invention means being in a state of being freely miscible with water. The amount of the aqueous dispersion medium used is not particularly limited, but it is preferable to use 100 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polymerizable component.

水性分散媒は、電解質をさらに含有してもよい。電解質としては、たとえば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、炭酸ナトリウム等を挙げることができる。これらの電解質は、1種または2種以上を併用してもよい。電解質の含有量については、特に限定はないが、水性分散媒100重量部に対して0.1〜50重量部含有するのが好ましい。   The aqueous dispersion medium may further contain an electrolyte. Examples of the electrolyte include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, sodium carbonate and the like. These electrolytes may be used alone or in combination of two or more. The content of the electrolyte is not particularly limited, but preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium.

水性分散媒は、水酸基、カルボン酸(塩)基およびホスホン酸(塩)基から選ばれる親水性官能基とヘテロ原子とが同一の炭素原子に結合した構造を有する水溶性1,1−置換化合物類、重クロム酸カリウム、亜硝酸アルカリ金属塩、金属(III)ハロゲン化物、ホウ酸、水溶性アスコルビン酸類、水溶性ポリフェノール類、水溶性ビタミンB類および水溶性ホスホン酸(塩)類から選ばれる少なくとも1種の水溶性化合物を含有してもよい。なお、本発明における水溶性とは、水100gあたり1g以上溶解する状態であることを意味する。   The aqueous dispersion medium is a water-soluble 1,1-substituted compound having a structure in which a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group and a phosphonic acid (salt) group and a hetero atom are bonded to the same carbon atom , Potassium dichromate, alkali metal nitrites, metal (III) halides, boric acid, water-soluble ascorbic acids, water-soluble polyphenols, water-soluble vitamin Bs and water-soluble phosphonic acids (salts) It may contain at least one water soluble compound. In the present invention, water solubility means that 1 g or more is dissolved in 100 g of water.

水性分散媒中に含まれる水溶性化合物の量については、特に限定はないが、重合性成分100重量部に対して、好ましくは0.0001〜1.0重量部、さらに好ましくは0.0003〜0.1重量部、特に好ましくは0.001〜0.05重量部である。水溶性化合物の量が少なすぎると、水溶性化合物による効果が十分に得られないことがある。また、水溶性化合物の量が多すぎると、重合速度が低下したり、原料である重合性成分の残存量が増加したりすることがある。   The amount of the water-soluble compound contained in the aqueous dispersion medium is not particularly limited, but preferably 0.0001 to 1.0 parts by weight, more preferably 0.0003 to 100 parts by weight with respect to 100 parts by weight of the polymerizable component. The amount is 0.1 parts by weight, particularly preferably 0.001 to 0.05 parts by weight. When the amount of the water soluble compound is too small, the effect of the water soluble compound may not be sufficiently obtained. In addition, when the amount of the water-soluble compound is too large, the polymerization rate may be decreased, or the residual amount of the polymerizable component as the raw material may be increased.

水性分散媒は、電解質や水溶性化合物以外に、分散安定剤や分散安定補助剤を含有していてもよい。
分散安定剤としては、特に限定はないが、たとえば、コロイダルシリカ、コロイダル炭酸カルシウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化第二鉄、硫酸カルシウム、硫酸バリウム、蓚酸カルシウム、メタケイ酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、アルミナゾル等の難水溶性無機化合物の分散安定剤を挙げることができる。これらの分散安定剤は、1種または2種以上を併用してもよい。
分散安定剤の配合量は、重合性成分100重量部に対して、好ましくは0.1〜20重量部、さらに好ましくは0.5〜10重量部である。
The aqueous dispersion medium may contain, in addition to the electrolyte and the water-soluble compound, a dispersion stabilizer and a dispersion stabilizer adjuvant.
The dispersion stabilizer is not particularly limited, but, for example, colloidal silica, colloidal calcium carbonate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, ferric hydroxide, calcium sulfate, barium sulfate, calcium borate, metasilicate Phosphate such as calcium, calcium carbonate, barium carbonate, magnesium carbonate, calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, calcium pyrophosphate, pyrophosphate such as aluminum pyrophosphate, zinc pyrophosphate, alumina sol etc Dispersion stabilizers of water-soluble inorganic compounds can be mentioned. These dispersion stabilizers may be used alone or in combination of two or more.
The compounding amount of the dispersion stabilizer is preferably 0.1 to 20 parts by weight, and more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable component.

分散安定補助剤としては、特に限定はないが、たとえば、高分子タイプの分散安定補助剤、カチオン性界面活性剤、アニオン性界面活性剤、両性イオン界面活性剤、ノニオン性界面活性剤等の界面活性剤を挙げることができる。これらの分散安定補助剤は、1種または2種以上を併用してもよい。
水性分散媒は、たとえば、水(イオン交換水)に、水溶性化合物とともに、必要に応じて分散安定剤および/または分散安定補助剤等を配合して調製される。重合時の水性分散媒のpHは、水溶性化合物、分散安定剤、分散安定補助剤の種類によって適宜決められる。
The dispersion stabilizing adjuvant is not particularly limited, and, for example, a polymer type dispersion stabilizing adjuvant, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, an interface such as a nonionic surfactant, etc. Activators can be mentioned. These dispersion stabilizing adjuvants may be used alone or in combination of two or more.
The aqueous dispersion medium is prepared, for example, by mixing a water-soluble compound and, if necessary, a dispersion stabilizer and / or a dispersion stabilizer adjuvant with water (ion-exchanged water). The pH of the aqueous dispersion medium at the time of polymerization is appropriately determined depending on the types of the water-soluble compound, the dispersion stabilizer, and the dispersion stabilizer adjuvant.

油性混合物を乳化分散させる方法としては、たとえば、ホモミキサー(たとえば、特殊機化工業株式会社製)等により攪拌する方法や、スタティックミキサー(たとえば、株式会社ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜乳化法、超音波分散法等の一般的な分散方法を挙げることができる。
次いで、油性混合物が球状油滴として水性分散媒に分散された分散液を加熱することにより、懸濁重合を開始する。重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、たとえば、単量体の浮上や重合後の熱膨張性微小球の沈降を防止できる程度に緩く行えばよい。
重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは30〜100℃、さらに好ましくは40〜90℃、特に好ましくは45〜80℃、最も好ましくは50〜75℃の範囲で制御される。反応温度を保持する時間は、0.1〜20時間程度が好ましい。重合初期圧力については特に限定はないが、ゲージ圧で0〜5.0MPa、さらに好ましくは0.1〜3.0MPaの範囲である。
As a method of emulsifying and dispersing the oily mixture, for example, a method of stirring with a homomixer (for example, manufactured by Tokushu Kika Kogyo Co., Ltd.) or a static dispersing device such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.) And dispersion methods such as a membrane emulsification method and an ultrasonic dispersion method.
Then, suspension polymerization is initiated by heating the dispersion in which the oily mixture is dispersed in the aqueous dispersion medium as spherical oil droplets. During the polymerization reaction, it is preferable to stir the dispersion, and the stirring may be carried out, for example, to such an extent that the floating of the monomer and the sedimentation of the thermally expandable microspheres after polymerization can be prevented.
The polymerization temperature is freely set according to the type of polymerization initiator, but is preferably in the range of 30 to 100 ° C., more preferably 40 to 90 ° C., particularly preferably 45 to 80 ° C., most preferably 50 to 75 ° C. It is controlled. The time for maintaining the reaction temperature is preferably about 0.1 to 20 hours. The initial pressure of polymerization is not particularly limited, but it is in the range of 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa in gauge pressure.

(膨張工程)
膨張工程は、工程(1)で得た熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)をいう。膨張工程としては、熱膨張性微小球を加熱膨張させる工程であれば、特に限定はないが、乾式加熱膨張法、湿式加熱膨張法のいずれでもよい。
乾式加熱膨張法としては、特開2006−213930号公報に記載されている方法、特に内部噴射方法を挙げることができる。また、別の乾式加熱膨張法としては、特開2006−96963号公報に記載の方法等がある。湿式加熱膨張法としては、特開昭62−201231号公報に記載の方法等がある。
熱膨張性微小球を加熱膨張させる温度は、好ましくは60〜350℃である。
(Inflating process)
The expansion step refers to the step (2) of heat-expanding the thermally expandable microspheres obtained in the step (1) to obtain hollow particles (a). The expansion step is not particularly limited as long as it is a step of thermally expanding thermally expandable microspheres, but any of a dry thermal expansion method and a wet thermal expansion method may be used.
As a dry-type heating expansion method, the method described in Unexamined-Japanese-Patent No. 2006-213930, especially the internal injection method can be mentioned. Moreover, as another dry-type thermal expansion method, there is a method described in JP-A-2006-96963. As a wet thermal expansion method, there is a method described in JP-A-62-201231 and the like.
The temperature at which the thermally expandable microspheres are heated and expanded is preferably 60 to 350 ° C.

中空粒子(a)は、その外殻が熱可塑性樹脂から構成される。中空粒子は、外殻およびそれに囲まれた中空部から構成される。中空粒子は、内部に大きな空洞に相当する中空部を有している。中空部は、外殻の内表面と接している。中空部は、基本的には気体で満たされており、液化した状態であってもよい。中空部は、通常は、大きな中空部1つであることが好ましいが、中空粒子中に複数あってもよい。   The hollow particle (a) has an outer shell made of a thermoplastic resin. The hollow particle is composed of an outer shell and a hollow portion surrounded by the outer shell. The hollow particle has a hollow portion corresponding to a large cavity inside. The hollow portion is in contact with the inner surface of the outer shell. The hollow portion is basically filled with a gas and may be in a liquefied state. The hollow portion is usually preferably one large hollow portion, but a plurality of hollow portions may be present.

中空粒子(a)は、上記の熱膨張性微小球の膨張体であって、熟成されていないもの又は熟成が不十分なものをいう。熟成に関しては、熟成工程で詳細に説明する。中空粒子(a)は、上記の熱膨性微小球を加熱膨張させ、その後常温に冷却して得ることができる。その冷却直後の中空粒子の中空部内外は空気濃度勾配が発生し、中空粒子の中空部内の空気含有量が低いことにより負圧状態となる。そのため、歪な形状であったり、外的圧力に弱かったりする。このような中空粒子(a)を樹脂組成物用軽量充填剤に用いた場合、中空粒子(a)が容易に変形したり、潰れたり、破裂したりして発泡剤が漏れることとなり、樹脂組成物およびその成形体の軽量化効率が低くなったりする。
中空粒子(a)に含まれる空気量の体積割合(P)は、中空粒子全体の体積を100%としたとき、30%未満である。体積割合(P)の測定方法は、熟成工程のところで説明する。
The hollow particles (a) are expansion bodies of the above-mentioned thermally expandable microspheres, which are not matured or those which are insufficiently matured. Aging will be described in detail in the aging step. The hollow particles (a) can be obtained by heating and expanding the above-mentioned thermally expandable microspheres and then cooling them to room temperature. An air concentration gradient is generated inside and outside the hollow portion of the hollow particle immediately after the cooling, and a negative pressure state occurs because the air content in the hollow portion of the hollow particle is low. Therefore, it has a distorted shape or is weak to external pressure. When such hollow particles (a) are used as a lightweight filler for a resin composition, the hollow particles (a) may be easily deformed, crushed, or ruptured to cause the foaming agent to leak, and the resin composition The weight reduction efficiency of the object and its molded body is lowered.
The volume ratio (P) of the amount of air contained in the hollow particles (a) is less than 30% when the volume of the whole hollow particles is 100%. The method of measuring the volume fraction (P) will be described in the ripening step.

(熟成工程)
熟成工程は、工程(2)で得た中空粒子(a)を温度−10〜60℃の範囲で熟成して、中空粒子(A)を得る工程(3)をいう。熟成期間については下記で説明する。一般的に熟成とは、物質に必要とする性質を得させるために物質を適当な条件下で一定期間保管することをいう。前述したように、工程(2)で得た中空粒子(a)は、中空部内が外部と比較して空気濃度が低く中空粒子の中空部が負圧状態となる。そのため、歪な形状であったり、外的圧力に弱かったりする。本発明でいう熟成とは、中空部内に徐々に大気中の空気を取り込むことで、中空部内外における空気濃度勾配がなくなり、粒子の内圧と外圧のバランスを整え、外的圧力への耐性を向上させることをいう。具体的には、工程(2)で得た中空粒子(a)を温度−10〜60℃の範囲で(以下、この温度を熟成温度という)、一定期間保管することをいう。
(Aging process)
The ripening step refers to the step (3) of ripening the hollow particles (a) obtained in the step (2) at a temperature of -10 to 60 ° C. to obtain hollow particles (A). The ripening period is described below. In general, ripening refers to storage of a substance under appropriate conditions for a certain period of time in order to obtain the property required of the substance. As described above, in the hollow particles (a) obtained in the step (2), the air concentration in the hollow portion is lower than that in the outside, and the hollow portion of the hollow particles is in a negative pressure state. Therefore, it has a distorted shape or is weak to external pressure. The term "aging" in the present invention means that air in the atmosphere is gradually taken into the hollow part, thereby eliminating the concentration gradient of air inside and outside the hollow part, balancing the internal pressure and external pressure of the particles, and improving the resistance to external pressure. It means to let it go. Specifically, the hollow particles (a) obtained in the step (2) are stored at a temperature of -10 to 60 ° C (hereinafter, this temperature is referred to as a ripening temperature) for a certain period of time.

中空粒子の中空部が負圧状態であるか否か(中空粒子が熟成されたか否か)について、例えば以下の方法で確認することができる。
一つの方法としては、中空粒子内部に取り込まれた空気量を算出することにより、熟成の程度を確認できる。例えば、空気を含む状態で中空粒子を密閉された容器内で保管し、密閉された容器の体積変化から、中空粒子内部に取り込まれた空気量を算出することができる。容器全体の体積が減少する場合、容器内の空気が中空粒子内部に取り込まれていることを意味する。熟成条件によっては、密閉された容器が膨張する場合もある。
他の方法としては、中空粒子に含まれる空気量又は酸素量を測定する方法が挙げられる。
It can be confirmed, for example, by the following method as to whether or not the hollow portion of the hollow particle is in a negative pressure state (whether or not the hollow particle is matured).
As one method, the degree of ripening can be confirmed by calculating the amount of air taken into the hollow particles. For example, hollow particles can be stored in a sealed container in a state containing air, and the amount of air taken into the hollow particles can be calculated from the volume change of the sealed container. When the volume of the whole container decreases, it means that the air in the container is taken inside the hollow particles. Depending on the aging conditions, the sealed container may expand.
Another method is a method of measuring the amount of air or the amount of oxygen contained in the hollow particles.

中空粒子(a)の熟成温度は、−10〜80℃の範囲であり、好ましくは−10〜60℃、より好ましくは−5〜50℃、さらに好ましくは0〜40℃℃、特に好ましくは5〜35℃、最も好ましくは10〜30℃である。熟成温度が−10℃未満の場合、中空粒子の復元が不十分であり、外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。一方、熟成温度が80℃超の場合、発泡剤の徐放が発生し、外的要因により変形したり、潰れたりする。   The aging temperature of the hollow particles (a) is in the range of -10 to 80 ° C, preferably -10 to 60 ° C, more preferably -5 to 50 ° C, still more preferably 0 to 40 ° C, particularly preferably 5 It is -35 ° C, most preferably 10-30 ° C. When the aging temperature is less than -10 ° C, the hollow particles are not sufficiently restored, and may deform, collapse or rupture due to an external factor to cause the foaming agent to leak. On the other hand, when the aging temperature is higher than 80 ° C., controlled release of the foaming agent occurs, and deformation or crushing occurs due to external factors.

中空粒子(a)の熟成期間は、中空粒子(a)に含まれる空気量の体積割合(P)が、中空粒子(a)全体の体積を100%としたとき、30%以上となる(つまり、上記中空粒子(A)となる)期間であれば、特に限定されない。熟成期間は、熟成温度(T)(℃)に応じて定めることができる。熟成温度(T)(℃)で熟成する場合、熟成期間(Q)(時間)は下記式(I)を充足することが好ましい。
Q≧62×e−0.03T (I)
熟成期間が上記の式(I)を満たさない場合、中空粒子の内圧と外圧のバランスが取れておらず、外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。熟成期間の上限としては、熟成の効果が発揮される期間であれば特に限定はないが、その期間としては8週間程度である。熟成後、中空粒子(A)の品質が維持できる期間、さらに保管することも可能である。
In the aging period of the hollow particles (a), the volume ratio (P) of the amount of air contained in the hollow particles (a) is 30% or more when the volume of the whole hollow particles (a) is 100% (that is, It will not be limited especially if it is a period which becomes the above-mentioned hollow particle (A). The aging period can be determined according to the aging temperature (T) (° C.). In the case of ripening at the ripening temperature (T) (° C.), the ripening period (Q) (hour) preferably satisfies the following formula (I).
Q ≧ 62 × e −0.03 T (I)
When the aging period does not satisfy the above-mentioned formula (I), the internal pressure and the external pressure of the hollow particles are not balanced, and the foaming agent may be deformed or crushed or ruptured due to an external factor. The upper limit of the ripening period is not particularly limited as long as the effect of ripening is exhibited, but the period is about 8 weeks. After aging, it is also possible to store for a period of time in which the quality of the hollow particles (A) can be maintained.

乾式加熱膨張法で得られた中空粒子(a)は粉体であり、粉体の状態で熟成される。後述する微粒子充填剤が付着した中空粒子(A1)の場合も同様に、粉体の状態で熟成される。一方湿式加熱膨張法で得られた中空粒子(a)は、水を含む中空粒子組成物となっており、水を含む中空粒子組成物の状態で熟成される。中空粒子組成物に占める水の重量割合については、特に限定はなく、好ましくは99重量%以下、より好ましくは84重量%以下、特に好ましくは49重量%以下、最も好ましくは30重量部以下である。なお、密封状態でかつ中空粒子以外の空隙があまりに少ない状態で熟成を行うと、所定温度、所定時間でも熟成がうまく進まないことがある。   The hollow particles (a) obtained by the dry thermal expansion method are powder, and are aged in the form of powder. Also in the case of the hollow particles (A1) to which the fine particle filler described later adheres, it is similarly aged in the form of powder. On the other hand, the hollow particles (a) obtained by the wet thermal expansion method become a hollow particle composition containing water, and are aged in the state of the hollow particle composition containing water. The weight ratio of water to the hollow particle composition is not particularly limited, and is preferably 99 wt% or less, more preferably 84 wt% or less, particularly preferably 49 wt% or less, most preferably 30 wt% or less . When aging is performed in a sealed state and in a state in which there are too few voids other than hollow particles, aging may not proceed well even at a predetermined temperature and for a predetermined time.

中空粒子(A)は、その外殻が熱可塑性樹脂から構成される。中空粒子(A)は、外殻およびそれに囲まれた中空部から構成されると好ましい。中空粒子(A)は、(ほぼ)球状で、内部に大きな空洞に相当する中空部を有している。中空粒子の形状を身近な物品で例示するならば、軟式テニスボールを挙げることができる。
中空部は、(ほぼ)球状であり、外殻の内表面と接している。中空部は、基本的には気体で満たされており、液化した状態であってもよい。中空部は、通常は、大きな中空部1つであることが好ましいが、中空粒子中に複数あってもよい。
The hollow particle (A) has an outer shell made of a thermoplastic resin. The hollow particles (A) are preferably composed of an outer shell and a hollow portion surrounded by the outer shell. The hollow particles (A) are (approximately) spherical and have hollows corresponding to large cavities inside. A soft tennis ball can be mentioned if the shape of a hollow particle is illustrated with a familiar article.
The hollow portion is (approximately) spherical and is in contact with the inner surface of the outer shell. The hollow portion is basically filled with a gas and may be in a liquefied state. The hollow portion is usually preferably one large hollow portion, but a plurality of hollow portions may be present.

本発明の樹脂組成物に用いる中空粒子(A)は、前述の熱膨張性微小球の膨張体であって、中空粒子(A)に含まれる空気量の体積割合(P)が、中空粒子(A)全体の体積を100%としたとき、30%以上のものをいう。このような中空粒子(A)を用いることにより、本願効果を発揮することができる。当該体積割合(P)が30%未満の場合、中空粒子が外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。当該体積割合(P)は、好ましくは35〜99%、より好ましくは40〜98%、さらに好ましくは45〜95%、特に好ましくは50〜90%である。
中空粒子に含まれる空気量の体積割合(P)の測定方法は、以下の実施例に示す。中空粒子に含まれる空気量は、捕集された気体量とその気体中の酸素濃度より、定量することができる。酸素濃度の測定方式は、ガルバニ電池式の他に、ジルコニア式、磁気式などがあるが、ガルバニ電池式は可燃性ガス中でも誤差無く測定が可能であるのに対し、ジルコニア式、磁気式は、可燃性ガスが含まれると測定誤差が大きくなるため、好ましくない。
The hollow particles (A) used in the resin composition of the present invention are the expansion bodies of the above-mentioned thermally expandable microspheres, and the volume ratio (P) of the amount of air contained in the hollow particles (A) A) When the total volume is 100%, it means 30% or more. By using such hollow particles (A), the effects of the present invention can be exhibited. When the volume ratio (P) is less than 30%, the hollow particles may be deformed, crushed or ruptured by an external factor to cause the foaming agent to leak. The volume fraction (P) is preferably 35 to 99%, more preferably 40 to 98%, still more preferably 45 to 95%, particularly preferably 50 to 90%.
The measuring method of the volume ratio (P) of the amount of air contained in a hollow particle is shown in the following Example. The amount of air contained in the hollow particles can be quantified from the amount of gas collected and the oxygen concentration in the gas. The measurement method of the oxygen concentration is not limited to the galvanic cell type, but there are the zirconia type and the magnetic type. However, while the galvanic cell type can be measured without any error even in the flammable gas, the zirconia type and the magnetic type are The inclusion of the flammable gas is not preferable because the measurement error becomes large.

中空粒子(A)は、本願効果をより発揮させる点から、中空粒子に対する取り込み空気量の体積割合(Z)が一定の範囲にあるものが好ましい。当該体積割合(Z)は、体積(V)の中空粒子と空気とを含む状態で密閉した容器の体積を(Y1)とし、一定条件下静置した後の容器の体積を(Y2)としたとき、下記式で示されるものをいう。中空粒子に対する取り込み空気量の体積割合(Z)の具体的な測定方法は、以下の実施例に示す。
中空粒子に対する取り込み空気量の体積割合(Z)=(Y1−Y2)/V
当該体積割合(Z)は、好ましくは−0.05≦(Z)≦0.2、より好ましくは−0.05≦(Z)≦0.05、さらに好ましくは−0.02≦(Z)≦0.02である。
The hollow particles (A) preferably have a volume ratio (Z) of the amount of air taken in to the hollow particles within a certain range from the viewpoint of exerting the effect of the present invention. The volume ratio (Z) is the volume of the container sealed in a state containing hollow particles of volume (V) and air as (Y1) and the volume of the container after standing under certain conditions as (Y2) When, it says what is shown by the following formula. The specific measuring method of the volume ratio (Z) of the intake air quantity with respect to a hollow particle is shown in the following Example.
Volume ratio of the amount of air taken in to hollow particles (Z) = (Y1-Y2) / V
The volume ratio (Z) is preferably −0.05 ≦ (Z) ≦ 0.2, more preferably −0.05 ≦ (Z) ≦ 0.05, still more preferably −0.02 ≦ (Z) It is ≦ 0.02.

中空粒子(A)の発泡剤保持率は、85%以上が好ましく、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは97%がよい。発泡剤保持率が85%未満であると、中空粒子(A)の機械的強度が弱く、樹脂組成物の製造時に中空粒子(A)が潰れ易いため、軽量充填剤としての効果が低くなることがある。中空粒子(A)の発泡剤保持率の測定方法は、以下の実施例に示す。
中空粒子(A)は、水を含む中空粒子組成物として樹脂組成物に用いてもよい。中空粒子組成物に占める水の重量割合については、特に限定はなく、好ましくは99重量%以下、より好ましくは84重量%以下、特に好ましくは49重量%以下、最も好ましくは30重量部以下である。中空粒子組成物に占める水の重量割合が大きすぎると、樹脂組成物を構成する他の成分と混合する際に均一に分散しないことがある。
The retention of the foaming agent in the hollow particles (A) is preferably 85% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 97%. If the foaming agent retention is less than 85%, the mechanical strength of the hollow particles (A) is weak, and the hollow particles (A) are easily crushed at the time of production of the resin composition, so the effect as a lightweight filler is lowered. There is. The measuring method of the foaming agent retention of a hollow particle (A) is shown in the following Example.
The hollow particles (A) may be used in the resin composition as a hollow particle composition containing water. The weight ratio of water to the hollow particle composition is not particularly limited, and is preferably 99 wt% or less, more preferably 84 wt% or less, particularly preferably 49 wt% or less, most preferably 30 wt% or less . When the weight ratio of water to the hollow particle composition is too large, it may not be uniformly dispersed when mixed with other components constituting the resin composition.

中空粒子(A)の体積基準の累積50%粒子径(D50)については、特に限定はないが、好ましくは1〜300μmであり、より好ましくは2〜200μm、さらに好ましくは3〜150μm、特に好ましくは5〜130μm、最も好ましくは7〜120μmである。D50がこの範囲外であると、樹脂組成物に用いた場合に軽量化効率が悪化することがある。   The volume based cumulative 50% particle diameter (D50) of the hollow particles (A) is not particularly limited, but is preferably 1 to 300 μm, more preferably 2 to 200 μm, still more preferably 3 to 150 μm, particularly preferably Is 5 to 130 μm, most preferably 7 to 120 μm. When D50 is out of this range, the weight reduction efficiency may be deteriorated when it is used for the resin composition.

中空粒子(A)の真比重については、特に限定はないが、好ましくは0.01〜0.5、より好ましくは0.012〜0.49、さらに好ましくは0.04〜0.49、特に好ましくは0.1〜0.48、最も好ましくは0.31〜0.47である。該真比重が0.01未満であると、中空粒子(A)の外殻の厚みが薄いことにより強度低下し、中空粒子(A)が樹脂組成物の混合時に破壊され、軽量化効率が低下することがある。一方、該真比重が0.5を超えると、配合する量に見合う軽量化効果が低く、非経済的である。   The true specific gravity of the hollow particles (A) is not particularly limited, but preferably 0.01 to 0.5, more preferably 0.012 to 0.49, still more preferably 0.04 to 0.49, particularly It is preferably 0.1 to 0.48, and most preferably 0.31 to 0.47. When the true specific gravity is less than 0.01, the strength of the hollow particle (A) is reduced due to the thin thickness of the shell of the hollow particle (A), and the hollow particle (A) is broken when the resin composition is mixed, and the weight reduction efficiency is lowered. There is something to do. On the other hand, when the true specific gravity exceeds 0.5, the weight reduction effect commensurate with the amount to be blended is low and it is uneconomical.

中空粒子(A)は、図1に示すように、その外殻の外表面に付着した微粒子充填剤からさらに構成されていてもよい。以下では、微粒子充填剤が付着した中空粒子(A)を簡単のために、「中空粒子(A1)」ということがある。ここでいう付着とは、単に中空粒子(A1)4の外殻5の外表面に微粒子充填剤(6および7)が、吸着された状態6であってもよく、外表面近傍の外殻を構成する熱可塑性樹脂が加熱によって軟化や融解し、中空粒子(A1)の外殻の外表面に微粒子充填剤がめり込み、固定された状態7であってもよいという意味である。微粒子充填剤の粒子形状は不定形であっても球状であってもよい。
中空粒子(A1)の真比重については、特に限定はないが、好ましくは0.01〜0.5であり、より好ましくは0.03〜0.4、さらに好ましくは0.05〜0.35、特に好ましくは0.07〜0.3、最も好ましくは0.1〜0.25である。中空粒子(A1)の真比重が0.01より小さい場合は、耐久性が低くなることがある。一方、中空粒子(A1)の真比重が0.5より大きい場合は、低比重化効果が低くなるため、中空粒子(A1)を用いて樹脂組成物を調製する際、その添加量が大きくなり、非経済的であることがある。
The hollow particles (A) may further be composed of a fine particle filler attached to the outer surface of the outer shell, as shown in FIG. Hereinafter, the hollow particles (A) to which the particulate filler is attached may be referred to as "hollow particles (A1)" for the sake of simplicity. The adhesion referred to here may simply be a state 6 in which the particulate filler (6 and 7) is adsorbed on the outer surface of the outer shell 5 of the hollow particle (A1) 4, and the outer shell near the outer surface It means that the thermoplastic resin to be configured may be softened or melted by heating, and the fine particle filler may be embedded in the outer surface of the outer shell of the hollow particle (A1) and be fixed. The particle shape of the particulate filler may be amorphous or spherical.
The true specific gravity of the hollow particles (A1) is not particularly limited, but preferably 0.01 to 0.5, more preferably 0.03 to 0.4, and still more preferably 0.05 to 0.35. , Particularly preferably 0.07 to 0.3, most preferably 0.1 to 0.25. When the true specific gravity of the hollow particles (A1) is smaller than 0.01, the durability may be lowered. On the other hand, when the true specific gravity of the hollow particles (A1) is larger than 0.5, the effect of lowering the specific gravity becomes low, so when preparing the resin composition using the hollow particles (A1), the addition amount thereof becomes large. It may be uneconomical.

微粒子充填剤の平均粒子径と中空粒子(A1)の平均粒子径との比率(微粒子充填剤の平均粒子径/中空粒子(A1)の平均粒子径)は、微粒子充填剤の付着性の観点から好ましくは1以下、さらに好ましくは0.8以下、より好ましくは0.6以下、特に好ましくは0.4以下、最も好ましくは0.2である。
微粒子充填剤としては、種々のものを使用することができ、無機物、有機物のいずれの素材であってもよい。微粒子の形状としては、球状、針状、板状や不定形等が挙げられる。
The ratio of the average particle size of the particulate filler to the average particle size of the hollow particles (A1) (average particle size of the particulate filler / average particle size of the hollow particles (A1)) is from the viewpoint of adhesion of the particulate filler It is preferably 1 or less, more preferably 0.8 or less, more preferably 0.6 or less, particularly preferably 0.4 or less, most preferably 0.2.
As the fine particle filler, various ones can be used, and either inorganic or organic material may be used. The shape of the fine particles may, for example, be spherical, needle-like, plate-like or amorphous.

微粒子充填剤の平均粒子径については、用いる中空粒子本体によって適宜選択され、特に限定はないが、好ましくは0.001〜30μm、さらに好ましくは0.005〜25μm、特に好ましくは0.01〜20μmである。この範囲内であると、後述するように、中空粒子(A1)を製造する際に混合性が良好となる。
ここでいう微粒子充填剤の平均粒子径とは、レーザー回折法により測定された微粒子充填剤の粒子径である。微粒子充填剤の粒子径がミクロンオーダーであれば一次粒子を指すが、ナノオーダーの微粒子等は凝集している場合が多く、実質ミクロンオーダーの集合体として作用するため、凝集した二次粒子を1単位として平均粒子径を算出した。
The average particle size of the fine particle filler is appropriately selected depending on the hollow particle body to be used, and is not particularly limited, but preferably 0.001 to 30 μm, more preferably 0.005 to 25 μm, particularly preferably 0.01 to 20 μm It is. When it is in this range, as described later, the mixing property becomes good when the hollow particles (A1) are produced.
The average particle size of the particulate filler as referred to herein is the particle size of the particulate filler measured by a laser diffraction method. If the particle size of the fine particle filler is micron order, it refers to primary particles, but in many cases the nano order particles etc. are aggregated, and since they act as aggregates of substantially micron order, the aggregated secondary particles 1 The average particle size was calculated as a unit.

微粒子充填剤を構成する無機物としては、たとえば、石灰石(重質炭酸カルシウム)、石英、珪石(シリカ)、ウオラスナイト、石膏、アスベスト、アパタイト、マグネタイト、ゼオライト、クレイ(モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、タルク、雲母、マイカ等)等の鉱物;元素の周期率表において、1族〜16族の金属(亜鉛、アルミニウム、モリブデン、タングステン、ジルコニウム、バリウム、マンガン、コバルト、カルシウム、金、銀、クロム、チタン、鉄、白金、銅、鉛、ニッケル等)やその合金;元素の周期率表において、1族〜16族の金属酸化物(酸化チタン、酸化亜鉛、酸化アルミニウム、酸化クロム、酸化マンガン、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化スズ、酸化鉄(磁性酸化鉄を含む)、酸化インジウム等)、金属水酸化物(水酸化アルミニウム、水酸化金、水酸化マグネシウム等)、金属硫化物(硫化銅、硫化ナトリウム、硫化鉛、硫化ニッケル、硫化白金等)、金属ハロゲン化物(フッ化カルシウム、フッ化スズ、フッ化カリウム等)、金属炭化物(炭化カルシウム、炭化チタン、炭化鉄、炭化ナトリウム等)、金属窒化物(窒化アルミニウム、窒化クロム、窒化ゲルマニウム、窒化コバルト等)、炭酸金属塩(炭酸カルシウム(軽質炭酸カルシウム)、炭酸水素カルシウム、炭酸水素ナトリウム(重曹)、炭酸鉄等)、硫酸金属塩(硫酸アルミニウム、硫酸コバルト、硫酸水素ナトリウム、硫酸銅、硫酸ニッケル、硫酸バリウム等)、その他の金属塩(チタン酸塩(チタン酸バリウム、チタン酸マグネシウム、チタン酸カリウム等)、ホウ酸塩(ホウ酸アルミニウム、ホウ酸亜鉛等)、燐酸塩(リン酸カルシウム、燐酸ナトリウム、燐酸マグネシウム等)、アルミン酸塩(アルミン酸イットリウム等)、硝酸塩(硝酸ナトリウム、硝酸鉄、硝酸鉛等))等の金属化合物等が挙げられる。   Examples of the inorganic substance constituting the fine particle filler include limestone (heavy calcium carbonate), quartz, silica (silica), wollastonite, gypsum, asbestos, apatite, magnetite, zeolite, clay (montmorillonite, saponite, hectorite, beidellite, Minerals such as stevensite, nontronite, vermiculite, halloysite, talc, mica, mica, etc .; Group 1 to 16 metals (zinc, aluminum, molybdenum, tungsten, zirconium, barium, etc.) in the periodic table of the elements Manganese, cobalt, calcium, gold, silver, chromium, titanium, iron, platinum, copper, lead, nickel, etc.) and alloys thereof; metal oxides of groups 1 to 16 in the periodic table of the elements (titanium oxide, oxide Zinc, aluminum oxide, chromium oxide, manganese oxide, Molybdenum oxide, tungsten oxide, vanadium oxide, tin oxide, iron oxide (including magnetic iron oxide), indium oxide etc., metal hydroxides (aluminum hydroxide, gold hydroxide, magnesium hydroxide etc.), metal sulfides Copper sulfide, sodium sulfide, lead sulfide, nickel sulfide, platinum sulfide etc., metal halides (calcium fluoride, tin fluoride, potassium fluoride etc.), metal carbides (calcium carbide, titanium carbide, iron carbide, sodium carbide etc.) ), Metal nitrides (aluminum nitride, chromium nitride, germanium nitride, cobalt nitride etc.), metal carbonates (calcium carbonate (light calcium carbonate), calcium hydrogencarbonate, sodium hydrogencarbonate (sodium bicarbonate), iron carbonate etc.), metal sulfates Salts (aluminum sulfate, cobalt sulfate, sodium hydrogensulfate, copper sulfate, nickel sulfate, burrs sulfate And other metal salts (titanate (barium titanate, magnesium titanate, potassium titanate etc.), borates (aluminium borate, zinc borate etc.), phosphates (calcium phosphate, sodium phosphate, phosphate) Examples thereof include metal compounds such as magnesium), aluminates (yttrium aluminate etc.), and nitrates (sodium nitrate, iron nitrate, lead nitrate etc.) and the like.

微粒子充填剤を構成する無機物は、また、合成炭酸カルシウム、フェライト、ゼオライト、銀イオン担持ゼオライト、ジルコニア、ミョウバン、チタン酸ジルコン酸鉛、アルミナ繊維、セメント、ゾノトライト、酸化珪素(シリカ、シリケート、ガラス、ガラス繊維を含む)、窒化珪素、炭化珪素、硫化珪素、カーボンブラック、カーボンナノチューブ、グラファイト、活性炭、竹炭、木炭、フラーレン等であってもよい。   The inorganic substance constituting the fine particle filler may also be synthetic calcium carbonate, ferrite, zeolite, silver ion-loaded zeolite, zirconia, alum, lead zirconate titanate, alumina fiber, cement, sonotolite, silicon oxide (silica, silicate, glass, Glass fibers may be included, silicon nitride, silicon carbide, silicon sulfide, carbon black, carbon nanotubes, graphite, activated carbon, bamboo charcoal, charcoal, fullerene, and the like.

微粒子充填剤を構成する有機物としては、たとえば、(メタ)アクリル酸、イタコン酸、シトラコン酸、マレイン酸、フマル酸、ビニル安息香酸;それらのエステル類、アミド類、ニトリル類;スチレン、メチルスチレン、エチルスチレン、クロロスチレン等のビニル芳香族類、ジビニルベンゼン、トリメチロールプロパン等のビニル基を2つ以上有するジビニル化合物等を単量体として、必要に応じて架橋剤を用い、乳化重合法、リープフリー重合法、分散重合法、懸濁重合法、ミニエマルジョン重合法等により重合して得られた有機樹脂等が挙げられる。
微粒子充填剤を構成する有機物は、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、ニトロセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、ナイロン樹脂、シリコーン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素系樹脂等であってもよい。
Examples of the organic substance constituting the particulate filler include (meth) acrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, vinylbenzoic acid, esters thereof, amides, nitriles, styrene, methylstyrene, Emulsion polymerization method, leap using a crosslinking agent, if necessary, using vinyl aromatics such as ethylstyrene and chlorostyrene, and divinyl compounds having two or more vinyl groups such as divinylbenzene and trimethylolpropane as monomers. Organic resin etc. which were obtained by polymerizing by the free polymerization method, the dispersion polymerization method, the suspension polymerization method, the mini-emulsion polymerization method etc. are mentioned.
The organic substance constituting the particulate filler is sodium carboxymethylcellulose, hydroxyethylcellulose, methylcellulose, ethylcellulose, nitrocellulose, hydroxypropylcellulose, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide It may be resin, nylon resin, silicone resin, urethane resin, polyethylene resin, polypropylene resin, fluorine resin, or the like.

微粒子充填剤が有機物から構成される場合、軟化しないほうがよい。軟化した場合は、微粒子がさらに付着した中空粒子(A1)を製造する際に融着が発生して、歩留まりが悪化する等の問題が起こることがある。有機物の軟化温度は、中空粒子(A1)を製造する際の温度にも依存するが、好ましくは80〜300℃、より好ましくは90〜290℃、さらに好ましくは100〜280℃である。有機物の軟化温度は、また、工程温度より10℃以上高い温度であると好ましい。
微粒子充填剤を構成する無機物や有機物は、シランカップリング剤、パラフィンワックス、脂肪酸、樹脂酸、ウレタン化合物、脂肪酸エステル等の表面処理剤で処理されていてもよく、未処理のものでもよい。
If the particulate filler is composed of organic matter, it is better not to soften. When softened, fusion may occur during production of the hollow particles (A1) to which fine particles further adhere, which may cause problems such as deterioration in yield. The softening temperature of the organic matter depends on the temperature at the production of the hollow particles (A1), but is preferably 80 to 300 ° C., more preferably 90 to 290 ° C., and still more preferably 100 to 280 ° C. The softening temperature of the organic substance is also preferably 10 ° C. or more higher than the process temperature.
The inorganic substance and the organic substance constituting the fine particle filler may be treated with a surface treatment agent such as a silane coupling agent, paraffin wax, fatty acid, resin acid, urethane compound, fatty acid ester or the like, or may be untreated.

中空粒子(A1)の製造方法としては、たとえば、熱膨張性微小球を製造する上記工程(1)と、得られた熱膨張性微小球と微粒子充填剤とを混合する工程(単に混合工程という)と、前記混合工程で得られた混合物を前記熱可塑性樹脂の軟化点超の温度に加熱して、前記熱膨張性微小球を膨張させるとともに(上記工程(2)に相当)、前記微粒子充填剤を前記外殻の外表面に付着させる工程(付着工程)と、微粒子充填剤が付着した中空粒子(a)を熟成して中空粒子(A1)を得る上記工程(3)とを含む製造方法を挙げることができる。   As a method for producing hollow particles (A1), for example, the step (1) of producing thermally expandable microspheres, and the step of mixing the obtained thermally expandable microspheres with a fine particle filler (simply referred to as mixing step) And heating the mixture obtained in the mixing step to a temperature above the softening point of the thermoplastic resin to expand the thermally expandable microspheres (corresponding to the above step (2)) and filling the fine particles Manufacturing method including the step of attaching the agent to the outer surface of the outer shell (adhesion step) and the step (3) of ripening the hollow particles (a) to which the fine particle filler is attached to obtain the hollow particles (A1) Can be mentioned.

混合工程は、熱膨張性微小球と微粒子充填剤とを混合する工程である。
混合工程における微粒子充填剤と熱膨張性微小球との重量比率(微粒子充填剤/熱膨張性微小球)については、特に限定はないが、好ましくは90/10〜60/40、さらに好ましくは85/15〜65/35、特に好ましくは80/20〜70/30である。微粒子充填剤/熱膨張性微小球(重量比率)が90/10より大きい場合は、中空粒子(A1)の真比重が大きくなり、低比重化効果が小さくなることがある。一方、微粒子充填剤/熱膨張性微小球(重量比率)が60/40より小さい場合は、中空粒子(A1)の真比重が低くなり、粉立ち等のハンドリングが悪化することがある。
The mixing step is a step of mixing the thermally expandable microspheres and the particulate filler.
The weight ratio of the fine particle filler to the thermally expandable microspheres (fine particle filler / thermally expandable microspheres) in the mixing step is not particularly limited, but preferably 90/10 to 60/40, more preferably 85. / 15 to 65/35, particularly preferably 80/20 to 70/30. When the ratio of fine particle filler to thermally expandable microspheres (weight ratio) is larger than 90/10, the true specific gravity of the hollow particles (A1) may be large, and the low specific gravity effect may be small. On the other hand, when the ratio of fine particle filler to thermally expandable microspheres (weight ratio) is smaller than 60/40, the true specific gravity of the hollow particles (A1) may be low, and handling such as dusting may be deteriorated.

混合工程に用いられる装置としては、特に限定はなく、容器と攪拌羽根といった極めて簡単な機構を備えた装置を用いて行うことができる。また、一般的な揺動または攪拌を行える粉体混合機を用いてもよい。粉体混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える粉体混合機を挙げることができる。また、近年、攪拌装置を組み合わせたことにより効率のよい多機能な粉体混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)等を用いてもよい。
付着工程は、前記混合工程で得られた、熱膨張性微小球と微粒子充填剤とを含む混合物を、熱膨張性微小球の外殻を構成する熱可塑性樹脂の軟化点超の温度に加熱する工程である。付着工程では、熱膨張性微小球を膨張させるとともに、外殻の外表面に微粒子充填剤を付着させる。
There is no limitation in particular as an apparatus used for a mixing process, It can carry out using the apparatus provided with the very simple mechanism of a container and a stirring blade. Moreover, you may use the powder mixer which can perform general rocking | fluctuation or stirring. As a powder mixer, the powder mixer which can perform rocking | stirring stirring or stirring, such as a ribbon type mixer and a vertical screw type mixer, can be mentioned, for example. In recent years, super mixers (manufactured by Kawata Co., Ltd.) and high speed mixers (manufactured by Fukae Co., Ltd.), which are efficient multi-functional powder mixers by combining stirring devices, Newgram Machine (Seishin Co., Ltd.) , SV mixer (manufactured by Shinko Environmental Solution Co., Ltd.) or the like may be used.
The adhesion step heats the mixture containing the thermally expandable microspheres and the particulate filler obtained in the mixing step to a temperature above the softening point of the thermoplastic resin constituting the shell of the thermally expandable microspheres. It is a process. In the attaching step, the thermally expandable microspheres are expanded and the particulate filler is attached to the outer surface of the outer shell.

加熱は、一般的な接触伝熱型または直接加熱型の混合式乾燥装置を用いて行えばよい。混合式乾燥装置の機能については、特に限定はないが、温度調節可能で原料を分散混合する能力や、場合により乾燥を早めるための減圧装置や冷却装置を備えたものが好ましい。加熱に使用する装置としては、特に限定はないが、たとえば、レーディゲミキサー(株式会社マツボー製)、ソリッドエアー(株式会社ホソカワミクロン)等を挙げることができる。
加熱の温度条件については、熱膨張性微小球の種類にもよるが最適膨張温度とするのが良く、好ましくは60〜250℃、より好ましくは70〜230℃、さらに好ましくは80〜220℃、特に好ましくは100〜200℃、最も好ましくは120〜180℃である。
Heating may be performed using a general contact heat transfer type or direct heating type mixing type drying apparatus. The function of the mixing-type drying device is not particularly limited, but it is preferable to have a temperature-controllable ability to disperse and mix the raw materials, and a decompression device and a cooling device to accelerate drying in some cases. The apparatus used for heating is not particularly limited, and examples thereof include a Loedige mixer (manufactured by Matsubo Co., Ltd.), Solid Air (Hosokawa Micron Co., Ltd.), and the like.
The temperature condition for heating depends on the type of thermally expandable microspheres, but the optimum expansion temperature is preferably 60 to 250 ° C., more preferably 70 to 230 ° C., still more preferably 80 to 220 ° C. The temperature is particularly preferably 100 to 200 ° C, most preferably 120 to 180 ° C.

〔有機基材樹脂(B)〕
本発明の樹脂組成物は、有機基材樹脂(B)を必須に含む。有機基材樹脂(B)としては、特に限定されず、塗料組成物、接着剤組成物、樹脂粘土に用いられる樹脂が挙げられる。例えば、アクリル樹脂、ポリ塩化ビニル樹脂(PVC)、ウレタン系樹脂、エポキシ樹脂、ポリビニルアルコール、酢酸ビニル樹脂、エチレン/酢酸ビニル共重合体樹脂、ゴム系等が挙げられる。なかでも、環境上の点からアクリル樹脂が好ましい。
[Organic base resin (B)]
The resin composition of the present invention essentially comprises the organic base resin (B). It does not specifically limit as organic base resin (B), Resin used for a coating composition, adhesive composition, and resin clay is mentioned. For example, acrylic resin, polyvinyl chloride resin (PVC), urethane resin, epoxy resin, polyvinyl alcohol, vinyl acetate resin, ethylene / vinyl acetate copolymer resin, rubber, etc. may be mentioned. Among them, acrylic resin is preferable from the environmental point of view.

アクリル樹脂としては、例えば、アクリル酸アルキルエステル(アルキルとしてメチル、エチル、ブチル、2−エチルヘキシル等)、もしくはメタクリル酸アルキルエステル(アルキルとしてメチル、エチル、ブチル、ラウリル、ステアリル等)の重合体、又は他のアクリル系モノマーとの共重合体を含むアクリル樹脂等が挙げられる。   As an acrylic resin, for example, a polymer of alkyl acrylate (alkyl as methyl, ethyl, butyl, 2-ethylhexyl etc.) or alkyl methacrylate (alkyl as methyl, ethyl butyl, lauryl, stearyl etc), or The acrylic resin etc. which contain a copolymer with other acrylic type monomers are mentioned.

ポリ塩化ビニル樹脂(PVC)としては、例えば、ポリ塩化ビニルのホモポリマーや、塩化ビニル、酢酸ビニル等よりなる共重合体(コポリマー)等が挙げられる。   Examples of polyvinyl chloride resin (PVC) include homopolymers of polyvinyl chloride and copolymers (copolymers) made of vinyl chloride, vinyl acetate and the like.

ウレタン系樹脂としては、例えば、ブロック化ウレタンプレポリマー及びブロック化ポリイソシアネート化合物等が挙げられる。   Examples of urethane resins include blocked urethane prepolymers and blocked polyisocyanate compounds.

上記ブロック化ウレタンプレポリマーは、例えば、以下の手順に従って製造することができるものである。
(1)先ず、ポリオールと過剰のポリイソシアネート化合物を反応させて、末端NCO含有ウレタンプレポリマーを得る。
上記ポリオールとしては、例えば、ポリオキシアルキレンポリオール(PPG)、ポリエーテルポリオール変性体、ポリテトラメチレンエーテルグリコールを含むポリエーテルポリオール;縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオール、ポリカーボネートジオールを含むポリエステルポリオール;ポリブタジエン系ポリオール;ポリオレフィン系ポリオール;ポリエーテルポリオールの中でアクリロニトリル単独又はアクリロニトリルとスチレン、アクリルアミド、アクリル酸エステル、メタクリル酸エステル及び酢酸ビニルの群から選ばれる少なくとも1種との混合モノマーを重合乃至グラフト重合させたポリマーポリオール等が挙げられる。
The above-mentioned blocked urethane prepolymer can be produced, for example, according to the following procedure.
(1) First, a polyol and an excess polyisocyanate compound are reacted to obtain a terminal NCO-containing urethane prepolymer.
Examples of the polyol include polyoxyalkylene polyol (PPG), polyether polyol modified product, polyether polyol including polytetramethylene ether glycol; condensation polyester polyol, lactone polyester polyol, polyester polyol including polycarbonate diol, polybutadiene Polyol; Polyolefin type polyol; Polymerization or graft polymerization of acrylonitrile alone or a mixed monomer of acrylonitrile and at least one selected from the group consisting of styrene, acrylamide, acrylic ester, methacrylic ester and vinyl acetate among polyether polyols Polymer polyols and the like.

上記ポリイソシアネート化合物としては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、2,4,4−又は2,2,4−トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3−シクロペンタンジイソシアネート、1,6−ヘキサンジイソシアネート(HDI)、1,4−シクロヘキサンジイソシアネート、1,3−シクロヘキサンジイソシアネート、4,4’−メチレンビス(シクロヘキシルイソシアネート)、メチル2,4−シクロヘキサンジイソシアネート、メチル2,6−シクロヘキサンジイソシアネート、1,4−ビス(イソシアネートメチル)シクロヘキサン、1,3−ビス(イソシアネートメチル)シクロヘキサン、m−フェニレンジイソシアネート、p−フェニレンジイソシアネート、4,4’−ジフェニルジイソシアネート、1,5−ナフタレンジイソシアネート、4,4’−ジフェニルメタンジイソシアネート(MDI)、クルードMDI、2,4−又は2,6−トリレンジイソシアネート(TDI)、4,4’−トルイジンジイソシアネート、ジアニジンジイソシアネート、4,4’−ジフェニルエーテルジイソシアネート、1,3−又は1,4−キシリレンジイソシアネート、ω,ω’−ジイソシアネート−1,4−ジエチルベンゼン、イソホロンジイソシアネート(IPDI)等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
(2)次に、末端NCO含有ウレタンプレポリマーを適当なブロック剤と反応させて(通
常、前者のNCO1モル当り、0.9〜1.5当量のブロック剤を反応)、遊離のNCO
をブロック化することにより、目的のブロック化ウレタンプレポリマー(特に、上記ポリ
オールの少なくとも一部に上記ポリマーポリオールを含ませたものが好ましい) を得る。
上記ブロック剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、イソブタノール等のアルコール; フェノール、クレゾール、キシレノール、p−ニトロフェノール、アルキルフェノール等のフェノール類; マロン酸メチル、マロン酸エチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン化合物;アセトアミド、アクリルアミド、アセトアニリド等の酸アミド類;コハク酸イミド、マレイン酸イミド等の酸イミド;2−エチルイミダゾール、2−エチル−4−メチルイミダゾール等のイミダゾール類;2−ピロリドン、ε−カプロラクタム等のラクタム類;アセトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム、アセトアルドキシム等のケトン又はアルデヒドのオキシム類; その他エチレンイミン、重亜硫酸塩等が挙げられる。これらは、1 種単独で用いてもよく、2 種以上を併用してもよい。
As the polyisocyanate compound, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-cyclo Pentane diisocyanate, 1,6-hexane diisocyanate (HDI), 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4'-methylenebis (cyclohexyl isocyanate), methyl 2,4-cyclohexane diisocyanate, methyl 2, 6 Cyclohexanediisocyanate, 1,4-bis (isocyanatomethyl) cyclohexane, 1,3-bis (isocyanatomethyl) silane Chlorohexane, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), crude MDI, 2,4- or 2,6 -Tolylene diisocyanate (TDI), 4,4 '-toluidine diisocyanate, dianidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 1,3- or 1, 4- xylylene diisocyanate, ω, ω'-diisocyanate-1, 4-diethylbenzene, isophorone diisocyanate (IPDI), etc. are mentioned. These may be used alone or in combination of two or more.
(2) Next, a terminal NCO-containing urethane prepolymer is reacted with a suitable blocking agent (usually, 0.9 to 1.5 equivalents of blocking agent are reacted per mole of the former NCO) to give free NCO
Are blocked to obtain the desired blocked urethane prepolymer (in particular, one in which the above-mentioned polymer polyol is contained in at least a part of the above-mentioned polyol).
Examples of the blocking agent include alcohols such as methanol, ethanol, propanol, butanol and isobutanol; phenols such as phenol, cresol, xylenol, p-nitrophenol and alkylphenol; methyl malonate, ethyl malonate and dimethyl malonate Active methylene compounds such as diethyl malonate, ethyl acetoacetate, methyl acetoacetate and acetylacetone; Acid amides such as acetamide, acrylamide and acetanilide; Acid imides such as succinimide and maleinimide; 2-ethyl imidazole, 2- Imidazoles such as ethyl-4-methylimidazole; Lactams such as 2-pyrrolidone and ε-caprolactam; Acetoxime, methyl ethyl ketoxime, cyclohexanone oxime, acetoaldoxy And oximes of ketones or aldehydes, and the like; and other ethyleneimines, bisulfites and the like. These may be used alone or in combination of two or more.

上記ブロック化ウレタンプレポリマーの具体例としては、例えば、ポリプロピレングリコールに過剰のポリイソシアネート化合物としTDI及び/又はHDIを反応させた後、ブロック化剤としてメチルエチルケトキシムを反応させたものが挙げられる。   As a specific example of the above-described blocked urethane prepolymer, for example, one obtained by reacting TDI and / or HDI as an excess polyisocyanate compound with polypropylene glycol and then reacting methyl ethyl ketoxime as a blocking agent can be mentioned.

上記ブロック化ポリイソシアネート化合物は、先の末端NCO含有ウレタンプレポリマーの製造で例示したポリイソシアネート化合物の遊離NCOを、上述のブロック剤でブロック化することによって得ることができる。該ブロック化イソシアネート化合物の具体例としては、例えば、ポリイソシアネート化合物としTDI及び/又はHDIに、ブロック化剤としてメチルエチルケトキシムを反応させたものが挙げられる。   The blocked polyisocyanate compound can be obtained by blocking the free NCO of the polyisocyanate compound exemplified in the preparation of the terminal NCO-containing urethane prepolymer described above with the above-mentioned blocking agent. Specific examples of the blocked isocyanate compound include, for example, those obtained by reacting TDI and / or HDI as a polyisocyanate compound with methyl ethyl ketoxime as a blocking agent.

エポキシ樹脂としては、特に限定はないが、例えば、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂環式型等が挙げられる。
ゴム系としては、特に限定はないが、例えば、クロロプレンゴム系、スチレンブタジエン系、ニトリルゴム系、天然ゴム、シリコーンゴム等が挙げられる。
The epoxy resin is not particularly limited, and examples thereof include glycidyl ether type, glycidyl ester type, glycidyl amine type and alicyclic type.
The rubber type is not particularly limited, and examples thereof include chloroprene rubber type, styrene butadiene type, nitrile rubber type, natural rubber, silicone rubber and the like.

これらの有機基材樹脂(B)は、通常、一次粒子及び/又は一次粒子が凝集した二次粒子であり、その粒径は0.1〜100μmであるものが好ましい。また、これらの有機基材樹脂(B)は、1種単独で用いてもよく、2種以上を併用してもよい。   These organic base resins (B) are usually secondary particles in which primary particles and / or primary particles are aggregated, and the particle size thereof is preferably 0.1 to 100 μm. Moreover, these organic base resins (B) may be used individually by 1 type, and may use 2 or more types together.

〔樹脂組成物及び樹脂組成物の製造方法〕
本発明の樹脂組成物は、中空粒子(A)及び有機基材樹脂(B)を必須に含む。
[Resin composition and method for producing resin composition]
The resin composition of the present invention essentially comprises hollow particles (A) and an organic base resin (B).

上記樹脂組成物の真比重は、0.3〜1.4が好ましく、0.4〜1.3がより好ましく、0.5〜1.2がさらに好ましく、0.6〜1.1が特に好ましく、0.7〜0.95が最も好ましい。0.3未満では、中空粒子の重量割合が高くなるため、接着性能または成形物性能が低下することがある。1.4超では軽量化の効果が不十分である可能性がある。   0.3-1.4 are preferable, as for the true specific gravity of the said resin composition, 0.4-1.3 are more preferable, 0.5-1.2 are more preferable, 0.6-1.1 are especially preferable. Preferably, 0.7 to 0.95 is most preferred. If it is less than 0.3, the weight proportion of the hollow particles will be high, and the adhesion performance or the molding performance may be lowered. If it exceeds 1.4, the weight reduction effect may be insufficient.

樹脂組成物に対する中空粒子(A)の重量割合は、該組成物全体に対して好ましくは0.1〜30重量%、より好ましくは0.5〜25重量%、さらに好ましくは1.0〜15重量%、特に好ましくは1.4〜10重量%である。0.1重量%未満では軽量化への効果が不十分である可能性がある。30重量%を超えると、中空粒子重量割合が高いため、接着性能または成形物性能が低下することがある。   The weight ratio of the hollow particles (A) to the resin composition is preferably 0.1 to 30% by weight, more preferably 0.5 to 25% by weight, still more preferably 1.0 to 15%, based on the whole composition. % By weight, particularly preferably 1.4 to 10% by weight. If it is less than 0.1% by weight, the effect on weight reduction may be insufficient. If it exceeds 30% by weight, adhesion performance or molding performance may be lowered due to the high proportion by weight of the hollow particles.

本発明の樹脂組成物に占める有機基材樹脂(B)の重量割合は、該組成物全体に対して好ましくは5〜65重量%、より好ましくは10〜55重量%、さらに好ましくは15〜45重量%である。5重量%未満では、優れた接着性能が得られない可能性があり、65重量%超では、成形物の機械的特性や熱的性質及びその他の特性が得られない可能性がある。   The weight ratio of the organic base resin (B) to the resin composition of the present invention is preferably 5 to 65% by weight, more preferably 10 to 55% by weight, still more preferably 15 to 45% with respect to the whole composition. It is weight%. If it is less than 5% by weight, excellent adhesion performance may not be obtained, and if it exceeds 65% by weight, mechanical properties, thermal properties and other properties of the molded article may not be obtained.

本発明の樹脂組成物は可塑剤(C)を含むと、例えば、分子間力を弱め、有機基材樹脂(B)のガラス転移温度を低下させることで柔軟性や弾性や接着性などを付与でき、スプレー塗布等の作業性や物理性能の両方を良好なものとするため好ましい。
可塑剤(C)としては、例えば、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート(高極性可塑剤)、ジノニルフタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート、ジウンデシルフタレート、ジヘプチルフタレート、ブチルフタリルブチルグリコレート、イソノニルベンジルフタレート等のフタル酸エステル;ジオクチルアジペート、ジデシルアジペート、ジオクチルセバケート等の脂肪族二塩基酸エステル;ポリオキシエチレングリコールジベンゾエート、ポリオキシプロピレングリコールジベンゾエート等のポリグリコール安息香酸エステル;トリメリット酸エステル;ピロメリット酸エステル;トリブチルホスフェート、トリクレジルホスフェート等のリン酸エステル;アルキル置換ジフェニル、アルキル置換ターフェニル、部分水添アルキルターフェニル、芳香族系プロセスオイル、パインオイル等の炭化水素類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。なかでも、コスト、汎用性の点からフタル酸エステルが好ましい。
When the resin composition of the present invention contains a plasticizer (C), for example, it reduces the intermolecular force and lowers the glass transition temperature of the organic base resin (B) to impart flexibility, elasticity, adhesiveness and the like. It is preferable in order to improve both the workability such as spray application and the physical performance.
As a plasticizer (C), for example, di (2-ethylhexyl) phthalate, butyl benzyl phthalate (high polar plasticizer), dinonyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate, diundecyl phthalate, diheptyl phthalate, butyl Phthalates such as phthalyl butyl glycolate and isononyl benzyl phthalate; Aliphatic dibasic esters such as dioctyl adipate, didecyl adipate and dioctyl sebacate; polyoxyethylene glycol dibenzoate, polyoxypropylene glycol dibenzoate and the like Polyglycol benzoic acid ester; trimellitic acid ester; pyromellitic acid ester; phosphoric acid esters such as tributyl phosphate and tricresyl phosphate; alkyl substituted diphe Le, alkyl-substituted terphenyl, partially hydrogenated alkyl terphenyl, aromatic process oils, hydrocarbons such as pine oil, and the like. These may be used alone or in combination of two or more. Among them, phthalic acid ester is preferable in terms of cost and versatility.

本発明の樹脂組成物が可塑剤(C)を含む場合、本発明の樹脂組成物に占める可塑剤(C)の重量割合は、該組成物全体に対して15〜60重量%が好ましく、25〜45重量%がより好ましい。15重量%未満では、塗膜が硬くなりすぎ、本願効果が得られないことがある。60重量%超では、塗膜の流動性が大きくなりすぎ、塗膜形成が十分でないことがある。   When the resin composition of the present invention contains a plasticizer (C), the weight ratio of the plasticizer (C) in the resin composition of the present invention is preferably 15 to 60% by weight with respect to the whole composition, 25 -45 wt% is more preferred. If the amount is less than 15% by weight, the coating film may be too hard, and the effect of the present invention may not be obtained. If it exceeds 60% by weight, the flowability of the coating film may be too high, and the film formation may not be sufficient.

本発明の樹脂組成物は、特に限定されないが、塗料組成物、接着剤組成物又は樹脂粘土であると、本願効果が発揮されやすい観点から好ましい。塗料としては、特に限定されず、アンダーボディーコート剤、制震塗料等の自動車用塗料;断熱塗料、外壁用塗料、防水塗料等の建築用塗料;等が挙げられる。接着剤としては、ボディーシーラー、ヘミング用接着剤、構造用接着剤、スポットシーラー、マスチック接着剤、板金補強剤等の自動車用接着剤;外壁用シーリング剤、タイル用接着剤、土間用接着剤等の建築用接着剤;等が挙げられる。
樹脂粘土としては、特に限定されないが、手工芸分野、美術分野、学校教材用等の教育分野などで使用される軽量粘土等がある。
The resin composition of the present invention is not particularly limited, but is preferably a paint composition, an adhesive composition or a resin clay from the viewpoint that the effect of the present invention is easily exhibited. The paint is not particularly limited, and examples thereof include automotive paints such as underbody coat agents and antivibration paints; architectural paints such as heat insulating paints, paints for outer walls, waterproof paints and the like; Adhesives include automotive seal adhesives such as body sealers, hemming adhesives, structural adhesives, spot sealers, mastic adhesives, sheet metal reinforcing agents, etc .; sealing agents for outer walls, adhesives for tiles, adhesives for soil, etc. Adhesives for construction; and the like.
The resin clay is not particularly limited, and examples thereof include lightweight clays used in the field of handicrafts, art, and education such as school teaching materials.

本発明に係る樹脂組成物は、塗料組成物、接着剤組成物、樹脂粘土等の用途に応じて、充填剤(炭酸カルシウム、ケイ酸、ケイ酸塩、カーボンブラック、タルク、カオリン、シリカ、水酸化アルミニウム、三酸化アンチモン、フェライト類、チタン酸バリウム、雲母、アルミナ、酸化鉄など)、吸湿剤(酸化カルシウム、モレキュラーシーブスなど)、揺変性賦与剤(有機ベントナイト、フュームドシリカ、ステアリン酸アルミニウム、金属石ケン類、ヒマシ油誘導体など)、安定剤[2,6−ジ−t−ブチル−4−メチルフェノール、2.2−メチレン−ビス(4−メチル−6−t−ブチルフェノール)、ジブチルジチオカルバミン酸ニッケル、鉛系安定剤、バリウム・亜鉛系安定剤、カルシウム・亜鉛系安定剤、有機スズ化合物など]、硬化促進剤(ジブチル錫ジラウレート、オクチル酸鉛、オクチル酸ビスマスなど)、潜在性硬化剤を溶解しない溶剤(高沸点炭化水素系溶剤)、エポキシ樹脂等を適宜選択して添加してもよい。   The resin composition according to the present invention can be used as a filler (calcium carbonate, silicic acid, silicate, carbon black, talc, kaolin, silica, water, etc. depending on the application such as a paint composition, adhesive composition, resin clay, etc. Aluminum oxide, antimony trioxide, ferrites, barium titanate, mica, alumina, iron oxide etc., hygroscopic agent (calcium oxide, molecular sieves etc.), thixotropic agent (organic bentonite, fumed silica, aluminum stearate), Metal soaps, castor oil derivatives, etc., Stabilizer [2,6-di-t-butyl-4-methylphenol, 2.2-methylene-bis (4-methyl-6-t-butylphenol), dibutyldithiocarbamine Acid nickel, lead-based stabilizers, barium and zinc-based stabilizers, calcium and zinc-based stabilizers, organotin compounds, etc.], Accelerator (dibutyltin dilaurate, lead octylate, etc. bismuth octylate), a solvent which does not dissolve the latent curing agent (high boiling hydrocarbon solvent) may be added by appropriately selecting the epoxy resin and the like.

本発明の樹脂組成物が接着剤組成物の場合を説明する。接着剤組成物は、上記中空粒子(A)と、接着成分となる有機基剤樹脂(B)とを含む組成物である。
接着成分は、物体と物体間を接着させることができる成分であれば、特に限定はないが、1液タイプのポリウレタン接着成分、2液タイプのポリウレタン接着成分、1液タイプの変性シリコーン接着成分、2液タイプの変性シリコーン接着成分、1液タイプのポリサルファイド接着成分、2液タイプのポリサルファイド接着成分、アクリル接着成分等が挙げられる。接着成分が、1液タイプのポリウレタン接着成分、2液タイプのポリウレタン接着成分、1液タイプの変性シリコーン接着成分、および、2液タイプの変性シリコーン接着成分から選ばれる少なくとも1種であると好ましい。
The case where the resin composition of the present invention is an adhesive composition will be described. An adhesive composition is a composition containing the said hollow particle (A) and organic base resin (B) used as an adhesion component.
The adhesive component is not particularly limited as long as it is an component capable of adhering between objects, but there is no limitation on one-component polyurethane adhesive component, two-component polyurethane adhesive component, one-component type modified silicone adhesive component, A two-component type modified silicone adhesive component, a one-component type polysulfide adhesive component, a two-component type polysulfide adhesive component, an acrylic adhesive component, etc. may be mentioned. The adhesive component is preferably at least one selected from a one-component polyurethane adhesive component, a two-component polyurethane adhesive component, a one-component type modified silicone adhesive component, and a two-component type modified silicone adhesive component.

1液タイプのポリウレタン接着成分は、イソシアネート基含有ウレタンプレポリマーを硬化成分として含有している。イソシアネート基含有ウレタンプレポリマーは、イソシアネート基が空気中の水分と反応し、架橋・硬化することで接着性を発現するものである。
1液タイプのポリウレタン接着成分としては、たとえば、ペンギンシール999(サンスター技研製)等が商業的に入手可能である。
The polyurethane adhesive component of the one-pack type contains an isocyanate group-containing urethane prepolymer as a curing component. The isocyanate group-containing urethane prepolymer reacts with water in the air to exhibit adhesiveness by crosslinking and curing.
As a one-component polyurethane adhesive component, for example, Penguin Seal 999 (manufactured by Sun Star Giken Co., Ltd.) is commercially available.

次に、2液タイプのポリウレタン接着成分は、ウレタンプレポリマー(以下、A1ということがある。)と、ポリオール等の硬化剤(以下、A2ということがある。)との2つの組合せからなる。2液タイプのポリウレタン接着成分では、A1およびA2を混合することによって、架橋・硬化することで接着性を発現するものである。
2液タイプのポリウレタン接着成分としては、たとえば、ペンギンシールPU9000typeNB(サンスター技研製)、ハマタイトUH−30(横浜ゴム社製)、ボンドPUシール(コニシ社製)等が商業的に入手可能である。
Next, a two-component type polyurethane adhesive component consists of two combinations of a urethane prepolymer (hereinafter sometimes referred to as A1) and a curing agent such as a polyol (hereinafter referred to as A2). In the two-component polyurethane adhesive component, adhesion is exhibited by crosslinking and curing by mixing A1 and A2.
As a two-component polyurethane adhesive component, for example, Penguin Seal PU 9000 type NB (manufactured by Sun Star Giken), Hamatight UH-30 (manufactured by Yokohama Rubber Co., Ltd.), Bond PU seal (manufactured by Konishi Co., Ltd.), etc. are commercially available. .

1液タイプの変性シリコーン接着成分は、架橋性シリル基含有樹脂が空気中の水分と反応し、架橋・硬化することで接着性を発現するものである。1液タイプの変性シリコーン接着成分としては、たとえば、シーラント45(信越化学工業社製)、SH780シーラント(東レ・ダウコーニング社製)、ペンギンシール2505(サンスター技研社製)、ハマタイトSS−310(横浜ゴム社製)等が商業的に入手可能である。
次に、2液タイプの変性シリコーン接着成分は、シロキサンポリマー(以下、B1ということがある。)と、有機錫化合物等の硬化剤等の硬化剤(以下、B2ということがある。)とを混合・反応させることで接着性を発現するものである。2液タイプの変性シリコーン接着成分としては、たとえば、2成分形シーラント74(信越化学工業社製)、SE792シーラント(東レ・ダウコーニング製)、ペンギンシールSR2520(サンスター技研社製)、ハマタイトシリコーン70(横浜ゴム社製)、ボンドMSシール(コニシ社製)等が商業的に入手可能である。
The one-pack type modified silicone adhesive component is one that exhibits adhesiveness by the crosslinkable silyl group-containing resin reacting with moisture in the air to crosslink and cure. As a modified silicone adhesive component of one-component type, for example, sealant 45 (manufactured by Shin-Etsu Chemical Co., Ltd.), SH 780 sealant (manufactured by Toray Dow Corning), penguin seal 2505 (manufactured by Sunstar Giken Co., Ltd.), Hamatight SS-310 Yokohama Rubber Co., Ltd.) are commercially available.
Next, the two-component type modified silicone adhesive component comprises a siloxane polymer (hereinafter sometimes referred to as B1) and a curing agent such as a curing agent such as an organic tin compound (hereinafter sometimes referred to as B2). Adhesion is expressed by mixing and reacting. As a modified silicone adhesive component of two-pack type, for example, two-component sealant 74 (manufactured by Shin-Etsu Chemical Co., Ltd.), SE 792 sealant (manufactured by Toray Dow Corning), Penguin Seal SR 2520 (manufactured by Sunstar Giken Co., Ltd.), Hamatite silicone 70 (Yokohama rubber company make), Bond MS seal (Konishi company make) etc. are commercially available.

1液タイプのポリサルファイド接着成分は、液状ポリサルファイド樹脂を硬化成分として含有し、これに潜在性硬化剤としてBaO、CaO等のアルカリまたはアルカリ土類金属の過酸化物を配合したものであり、空気中の水分と反応し接着性を発生するものである。1液タイプのポリサルファイド接着成分としては、たとえば、トプコールSP(東レ・ファインケミカル社製)、ハマタイトPS−ONE(横浜ゴム社製)等が商業的に入手可能である。
2液タイプのポリサルファイド接着成分は、サルファイドポリマーからなる基剤(以下、C1ということがある。)と、PdO等の金属過酸化物を含む硬化剤(以下、C2ということがある。)とを混合することで接着性を発生するものである。2液タイプのポリサルファイド接着成分は、たとえば、ペンギンシールPS169N(サンスター技研社製)、ハマタイトSC−M500(横浜ゴム製)等が商業的に入手可能である。
The one-component polysulfide adhesive component contains a liquid polysulfide resin as a curing component, to which a peroxide of an alkali or alkaline earth metal such as BaO 2 or CaO 2 is blended as a latent curing agent, It reacts with moisture in the air to generate adhesion. As a one-component type polysulfide adhesive component, for example, Topcor SP (manufactured by Toray Fine Chemical Co., Ltd.), Hamatight PS-ONE (manufactured by Yokohama Rubber Co., Ltd.), etc. are commercially available.
The two-component type polysulfide adhesive component is a base (hereinafter sometimes referred to as C1) made of a sulfide polymer, and a curing agent containing a metal peroxide such as PdO 2 (hereinafter sometimes referred to as C2). The adhesion is generated by mixing the For example, Penguin Seal PS169N (manufactured by Sun Star Giken Co., Ltd.), Hamatight SC-M500 (manufactured by Yokohama Rubber), etc. are commercially available as the two-component type polysulfide adhesive component.

アクリル接着成分は、アクリル酸エステルポリマーエマルジョンからなり、水分の蒸発により接着性が発生するものである。アクリル接着成分としては、たとえば、ペンギンシール1250(サンスター技研社製)等の商品名で市販されている。
樹脂組成物において配合される中空粒子(A)と接着成分との重量比率(中空粒子(A)/接着成分)については、特に限定はないが、好ましくは0.0005〜0.30、さらに好ましくは0.001〜0.20、特に好ましくは0.01〜0.1である。中空粒子(A)/接着成分(重量比率)が、0.0005より小さい場合、中空粒子(A)の添加量が少なすぎて、樹脂組成物の硬化物の伸度の改善の効果が薄れてしまう可能性がある。一方、中空粒子(A)/接着成分(重量比率)が、0.30より大きい場合、接着成分の量が少なすぎて、接着剤組成物としての機能が著しく低下することがある。ここで、接着成分は、2液タイプのポリウレタン接着成分の場合はA1とA2との合計量を意味し、2液タイプの変性シリコーン接着成分の場合はB1とB2との合計量を意味し、2液タイプのポリサルファイド接着成分の場合はC1とC2との合計量を意味する。
接着剤組成物から得られる硬化物の伸度は大きく、外力等を受けて変形した場合に硬化物は破壊されにくい。
The acrylic adhesive component is composed of an acrylic ester polymer emulsion, and adhesion is generated by evaporation of water. The acrylic adhesive component is commercially available, for example, under the trade name of Penguin Seal 1250 (manufactured by Sun Star Giken Co., Ltd.).
The weight ratio of the hollow particles (A) to the adhesive component (hollow particles (A) / adhesive component) blended in the resin composition is not particularly limited, but preferably 0.0005 to 0.30, more preferably Is from 0.001 to 0.20, particularly preferably from 0.01 to 0.1. When hollow particles (A) / adhesion component (weight ratio) is smaller than 0.0005, the amount of hollow particles (A) added is too small, and the effect of improving the elongation of the cured product of the resin composition is diminished There is a possibility of On the other hand, when the hollow particle (A) / adhesion component (weight ratio) is larger than 0.30, the amount as the adhesive component is too small, and the function as the adhesive composition may be significantly reduced. Here, the adhesive component means the total amount of A1 and A2 in the case of the two-component type polyurethane adhesive component, and means the total amount of B1 and B2 in the case of the two-component type modified silicone adhesive component, In the case of a two-component type polysulfide adhesive component, the total amount of C1 and C2 is meant.
The elongation of the cured product obtained from the adhesive composition is large, and the cured product is unlikely to be broken when it is deformed by an external force or the like.

本発明の樹脂組成物が樹脂粘土の場合は、中空粒子(A)、有機基材樹脂(B)としてポリビニルアルコールを含有する。
本発明に用いるポリビニルアルコールのケン化度は、70〜99mol%が好ましく、80〜90mol%がより好ましく、85〜90mol%がさらに好ましい。ケン化度がこの範囲以内であると、造形時の作業性が良好である。
本発明に用いるポリビニルアルコールの粘度は、20℃、4%の水溶液において2〜60mPa・sのものが好ましく、4〜50mPa・sがより好ましく、10〜45mPa・sがさらに好ましい。ポリビニルアルコールの粘度がこの範囲にあると造形時の作業性が良好となる。
When the resin composition of the present invention is resin clay, it contains hollow particles (A) and polyvinyl alcohol as the organic base resin (B).
70-99 mol% is preferable, as for the saponification degree of the polyvinyl alcohol used for this invention, 80-90 mol% is more preferable, and 85-90 mol% is further more preferable. When the degree of saponification is within this range, the workability at the time of shaping is good.
The viscosity of the polyvinyl alcohol used in the present invention is preferably 2 to 60 mPa · s in a 4% aqueous solution at 20 ° C., more preferably 4 to 50 mPa · s, and still more preferably 10 to 45 mPa · s. When the viscosity of polyvinyl alcohol is in this range, the workability at the time of shaping becomes good.

樹脂粘土におけるポリビニルアルコールの配合量は、樹脂粘土全体の2〜15重量%の範囲内が好ましく、5〜12重量%の範囲内がさらに好ましい。ポリビニルアルコールの配合量が2重量%未満では、造形時における粘着性(可塑性、伸展性)が悪化し、15重量%を越えると、粘土が硬くなり、粘土で造形する際の作業性、手触り等の物性が悪くなることがある。
ポリビニルアルコールは、ゲル化剤によってゲル状にして配合すると、「コシ」のある粘土が得られる点で望ましい。このゲル化剤として、ボウ硝(硫酸ソーダ)、カリウムミョウバン(ミョウバン)、硼酸、硼砂などが挙げられる。配合量は、ポリビニルアルコール100重量部に対して、ゲル化剤を2〜15重量部が好ましく、8〜15重量部がさらに好ましい。
The content of polyvinyl alcohol in the resin clay is preferably in the range of 2 to 15% by weight of the entire resin clay, and more preferably in the range of 5 to 12% by weight. If the blending amount of polyvinyl alcohol is less than 2% by weight, the adhesiveness (plasticity, extensibility) at the time of shaping is deteriorated, and if it exceeds 15% by weight, the clay becomes hard and the workability at the time of shaping with clay, touch etc. Physical properties of may deteriorate.
Polyvinyl alcohol is desirable in that it can be incorporated into a gel by means of a gelling agent and a clay having a "stiffness" can be obtained. Examples of the gelling agent include sodium sulfate (sodium sulfate), potassium alum (alum), oxalic acid, borax and the like. The compounding amount is preferably 2 to 15 parts by weight, and more preferably 8 to 15 parts by weight with respect to 100 parts by weight of polyvinyl alcohol.

本発明の樹脂粘土は、酢酸ビニル樹脂を含有してもよい。酢酸ビニル樹脂は、例えば、ポリ酢酸ビニル、ポリ変性酢酸ビニル、エチレン酢酸ビニル共重合樹脂、酢酸ビニル・バーサチック酸ビニル共重合樹脂、酢酸ビニル・アクリル酸共重合体、酢酸ビニル・アクリル酸エステル共重合体、酢酸ビニル・メタクリル酸共重合体、酢酸ビニル・メタクリル酸エステル共重合体、酢酸ビニル・アクリルアミド共重合体、酢酸ビニル・ジエン系共重合体等が挙げられる。この酢酸ビニル樹脂は、粉末状またはエマルジョン状で使用されるが、通常、エマルジョンの状態で使用されることが多い。エマルジョンの状態で使用する場合には、酢酸ビニル樹脂成分を50%以上含有するものを使用することが望ましい。
本発明に使用する酢酸ビニル樹脂としては、30℃における59%水溶液粘度が1,000〜150,000mPa・sのものが好ましい。酢酸ビニル系樹脂は、樹脂粘土に可塑性を付与するとともに、造形、乾燥後における造形物の形状を保持するものである。
The resin clay of the present invention may contain a vinyl acetate resin. The vinyl acetate resin is, for example, polyvinyl acetate, poly-modified vinyl acetate, ethylene vinyl acetate copolymer resin, vinyl acetate / vinyl versatate copolymer, vinyl acetate / acrylic acid copolymer, vinyl acetate / acrylic ester copolymer Examples include coalescence, vinyl acetate / methacrylic acid copolymer, vinyl acetate / methacrylic acid ester copolymer, vinyl acetate / acrylamide copolymer, vinyl acetate / diene copolymer, and the like. The vinyl acetate resin is used in the form of powder or emulsion, but usually it is often used in the form of emulsion. When used in the form of an emulsion, it is desirable to use one containing 50% or more of a vinyl acetate resin component.
As a vinyl acetate resin used for this invention, that whose 59-% aqueous solution viscosity in 30 degreeC is 1,000-150,000 mPa * s is preferable. The vinyl acetate resin imparts plasticity to the resin clay and retains the shape of the shaped article after shaping and drying.

酢酸ビニル樹脂には可塑剤が添加されたものが好ましい。可塑剤としては、フタル酸ジブチル等があげられる。可塑剤の配合量は、酢酸ビニル樹脂エマルジョン重量に対して4〜10重量%が望ましい。可塑剤を含む酢酸ビニル系樹脂の配合量は、樹脂粘土全体に対して1.5〜7重量%(乾燥重量で表現)、特に2〜5重量%が好ましい。ポリビニルアルコールと可塑剤を含む酢酸ビニル樹脂の配合比率は、重量比で10:7〜10:3であることが望ましい。可塑剤を含む酢酸ビニル樹脂の配合比率が7を越えると、粘土がべとつき、造形性が損なわれるおそれがあり、3未満では乾燥後の外的圧力に対して破損し易くなる傾向がある。   It is preferable that a plasticizer be added to the vinyl acetate resin. Examples of the plasticizer include dibutyl phthalate and the like. The blending amount of the plasticizer is desirably 4 to 10% by weight based on the weight of the vinyl acetate resin emulsion. The blending amount of the vinyl acetate resin containing a plasticizer is preferably 1.5 to 7% by weight (expressed as dry weight), particularly preferably 2 to 5% by weight, based on the whole resin clay. The blending ratio of polyvinyl alcohol and vinyl acetate resin containing a plasticizer is preferably 10: 7 to 10: 3 by weight. If the compounding ratio of the vinyl acetate resin containing a plasticizer exceeds 7, the clay may become sticky and the formability may be impaired, and if it is less than 3, it tends to be easily broken due to external pressure after drying.

本発明の樹脂粘土は、ポリエチレンオキサイドを含有してもよい。ポリエチレンオキサイドはエチレンオキサイドを開環重合して得られるポリマーであって、中間にはエーテル基、末端にヒドロキシル基を有する水溶性の高重合ポリマーである。本発明で使用するポリエチレンオキサイドは、粘度平均分子量が約30万〜120万、特に、60万〜80万であることが好ましい。25℃における2.0重量%水溶液の粘度が100〜2000mPa・s、特に200〜700mPa・s(回転粘度計で測定)であることが好ましい。また、融点は65〜67℃のものが望ましい。前記物性のポリエチレンオキサイドは中空粒子、ポリビニルアルコール、酢酸ビニル樹脂との相溶性に優れているものである。ポリエチレンオキサイドは、粘土の造形時における粘土の可塑性や伸展性を向上させるとともに、粘土の粘着性を改善して手への付着を少なくして造形作業を快適にするものである。この配合量は、樹脂粘土全体に対して0.5〜1.5重量%(乾燥重量で表現)が好ましい。ポリエチレンオキサイドの配合量が0.5重量%未満では得られた粘土の造形時における粘土の伸展性、表面平滑性が好ましく、1.5重量%を越えると、造形時においてべたついて手に付着するおそれがある。   The resin clay of the present invention may contain polyethylene oxide. Polyethylene oxide is a polymer obtained by ring-opening polymerization of ethylene oxide, and is a water-soluble high-polymer having an ether group at the middle and a hydroxyl group at an end. The polyethylene oxide used in the present invention preferably has a viscosity average molecular weight of about 300,000 to 1,200,000, particularly 600,000 to 800,000. It is preferable that the viscosity of a 2.0 wt% aqueous solution at 25 ° C. is 100 to 2000 mPa · s, particularly 200 to 700 mPa · s (measured by a rotational viscometer). Moreover, as for melting | fusing point, the thing of 65-67 degreeC is desirable. Polyethylene oxide having the above-mentioned physical properties is excellent in compatibility with hollow particles, polyvinyl alcohol and vinyl acetate resin. Polyethylene oxide improves the plasticity and extensibility of clay at the time of shaping of clay, and also improves the tackiness of clay to reduce adhesion to the hand and makes shaping work comfortable. The compounding amount is preferably 0.5 to 1.5% by weight (represented by dry weight) with respect to the entire resin clay. If the blending amount of polyethylene oxide is less than 0.5% by weight, the extensibility and surface smoothness of the clay at the time of shaping of the obtained clay are preferable, and if it exceeds 1.5% by weight, sticky hand clings at the time of shaping There is a fear.

本発明の樹脂粘土には、上記のもののほか、カルボキシメチルセルロース塩、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、天然高分子グアーガム、グアーガム誘導体を添加することができる。これらは、粘土の伸展性、表面平滑性の向上、手ざわりを改良するものであって、これらの配合量は、樹脂粘土全体に対して0.5〜1.5重量%が好ましい。
本発明の樹脂粘土には、上記のもののほか、繊維粉を添加することができる。繊維粉は、造形、乾燥後における保形性を高めるとともに、収縮防止効果を奏するものである。上記の繊維粉としては、粉末パルプ、ビニロン繊維、粉末コットン、シートパルプを解砕したものなどを例示することができる。繊維粉の長さ0.5〜5.5mm、特に1〜3mmの天然繊維、合成繊維などが望ましい。配合量としては、粘土全重量の0.5〜4重量%が好ましい。
本発明の粘土には、上記のもののほか、補湿剤を添加することができる。補湿剤としては、流動パラフィン、ソルビトール、ポリエチレングリコール、プロピレングリコール等が挙げられる。補湿剤の配合量は、樹脂粘土全体に対して0.5〜1.5重量%が好ましい。水の配合量としては、樹脂粘土全体に対して50〜80重量%が好ましく、60〜75重量%がさらに好ましい。
To the resin clay of the present invention, in addition to those described above, carboxymethylcellulose salts, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, natural high molecular guar gum, guar gum derivatives can be added. These improve the extensibility of the clay, improve the surface smoothness, and improve the texture, and the blending amount thereof is preferably 0.5 to 1.5% by weight with respect to the entire resin clay.
Besides the above, fiber powder can be added to the resin clay of the present invention. The fiber powder enhances the shape retention after shaping and drying, and exhibits a shrinkage preventing effect. As the above-mentioned fiber powder, powder pulp, vinylon fiber, powder cotton, those obtained by crushing sheet pulp and the like can be exemplified. It is preferable to use natural fibers or synthetic fibers having a fiber powder length of 0.5 to 5.5 mm, particularly 1 to 3 mm. As a compounding quantity, 0.5 to 4 weight% of the clay total weight is preferable.
In addition to the above, a humectant can be added to the clay of the present invention. As the moisturizer, liquid paraffin, sorbitol, polyethylene glycol, propylene glycol and the like can be mentioned. As for the compounding quantity of a moisturizer, 0.5-1.5 weight% is preferable with respect to the whole resin clay. As a compounding quantity of water, 50-80 weight% is preferable with respect to the whole resin clay, and 60-75 weight% is more preferable.

本発明の樹脂組成物の製造方法は、上記の工程(1)、工程(2)及び工程(3)と、工程(3)で得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)を含むものである。工程(4)としては、中空粒子(A)、有機基材樹脂(B)を配合して、可塑剤(C)等その他の成分をさらに含有する場合にはそれら成分を配合し、従来既知の手段(例えば、プラネタリアミキサ)を用いて一括混合する工程が挙げられる。   The method for producing a resin composition of the present invention comprises the steps (1), (2) and (3), and the hollow particles (A) and the organic base resin (B) obtained in the step (3). And a step of mixing (4). In the step (4), the hollow particles (A) and the organic base resin (B) are blended, and when the plasticizer (C) and other components are further contained, these components are blended, and conventionally known The process of carrying out package mixing using a means (for example, planetarium mixer) is mentioned.

〔成形物〕
本発明の成形物は、上記樹脂組成物を成形させてなるものである。より詳細には、本発明の樹脂組成物が接着剤組成物や塗料組成物の場合、本発明の成形物は、樹脂組成物を対象物に塗工して乾燥、硬化させてなるものである。
更に詳細には、上記樹脂組成物は各種金属(特に鋼材)面に施された各種下塗り塗装面に適用できるが、特にカチオン型電着塗装面に有利に適用できる。該樹脂組成物の上記塗装面に対する塗布量は、好ましくは200〜2,000g/m2であり、塗布膜厚は、塗膜物性の観点から、好ましくは0.2〜20mmである。塗装方法としてはハケ塗り、ローラーコート、エアレススプレー塗装などが挙げられる。
また、塗布後熱処理が行われるが、その場合の温度は樹脂組成物の硬化性の観点から、好ましくは110〜200℃、さらに好ましくは120〜180℃である。熱処理時間は、樹脂組成物の硬化性の観点から、好ましくは8〜60分である。
[Molded article]
The molded product of the present invention is obtained by molding the above-mentioned resin composition. More specifically, when the resin composition of the present invention is an adhesive composition or a paint composition, the molded article of the present invention is obtained by applying the resin composition to an object, drying and curing it. .
More specifically, although the above resin composition can be applied to various undercoating surfaces applied to various metal (particularly steel materials) surfaces, it can be advantageously applied particularly to a cationic electrodeposition coating surface. The application amount of the resin composition to the coated surface is preferably 200 to 2,000 g / m 2, and the applied film thickness is preferably 0.2 to 20 mm from the viewpoint of coating film physical properties. Coating methods include brush coating, roller coating, airless spray coating, and the like.
Moreover, although heat treatment is performed after application, the temperature in that case is preferably 110 to 200 ° C., more preferably 120 to 180 ° C. from the viewpoint of the curability of the resin composition. The heat treatment time is preferably 8 to 60 minutes from the viewpoint of the curability of the resin composition.

上記成形物は、樹脂組成物を120℃×10分で処理した場合の真比重をD1とし、前記樹脂組成物を140℃×20分で処理した場合の真比重をD2としたときに、
0.85<(D2/D1)<1.1を満足すると好ましく、
0.87<(D2/D1)<1.07を満足するとより好ましく、
0.89<(D2/D1)<1.04を満足するとさらに好ましく、
0.91<(D2/D1)≦1.0を満足すると特に好ましい。
0.85以下では、表面平滑性が低下することがあり、接着性能が低下する可能性がある。1.1以上では、中空粒子により構成される独立気泡が減少することや、内包剤漏えいのため生じる微細な穴やボイドの影響により、接着性能の低下が生じる可能性又は非常に軽量な成形物が得られない可能性がある。
The molded product has a true specific gravity D1 when the resin composition is treated at 120 ° C. for 10 minutes, and a true specific gravity D2 when the resin composition is treated at 140 ° C. for 20 minutes.
It is preferable to satisfy 0.85 <(D2 / D1) <1.1,
It is more preferable to satisfy 0.87 <(D2 / D1) <1.07,
It is further preferable to satisfy 0.89 <(D2 / D1) <1.04,
It is particularly preferable to satisfy 0.91 <(D2 / D1) ≦ 1.0.
If it is 0.85 or less, the surface smoothness may be reduced, and the adhesion performance may be reduced. In 1.1 or more, the decrease in the number of closed cells constituted by hollow particles and the influence of fine holes and voids generated due to the inclusion agent leakage may cause a decrease in adhesion performance or a very lightweight molded product May not be obtained.

本発明の樹脂組成物を成形させてなる本発明の成形物は、金属塗装面に強固に接着し、かつ、軽量である。そのため、本発明の成形物は、接着剤、シーラント、塗料等として各種工業用途、特に自動車工業におけるカチオン型電着塗装が施された自動車車体の優れたアンダーボディーコート材、シーリング材、ヘミング用接着剤、構造用接着剤、スポットシーラー、マスチック接着剤、板金補強材及びボディーシーラーとして用いられると、強度に優れ、かつ、軽量で燃費の優れた自動車に寄与することができる。   The molded article of the present invention obtained by molding the resin composition of the present invention adheres firmly to a metal-coated surface and is lightweight. Therefore, the molding of the present invention is an adhesive, a sealant, a paint, etc. An excellent underbody coating material, sealing material and adhesion for hemming of automobile bodies subjected to cationic electrodeposition coating in various industrial applications, particularly in the automobile industry. When used as an agent, a structural adhesive, a spot sealer, a mastic adhesive, a sheet metal reinforcing material and a body sealer, it can contribute to an automobile which is excellent in strength, light in weight and excellent in fuel consumption.

以下の実施例および比較例で本発明を詳細に説明するが、本発明はこれに限定されるものではない。以下において、断りのない限り、「%」とは「重量%」を意味し、「部」とは「重量部」を意味するものとする。
以下では、まず、中空粒子の原料となる熱膨張性微小球の製造例および比較製造例を示し、次いで、中空粒子を含む樹脂組成物の実施例・比較例を示す。熱膨張性微小球や中空粒子の物性は、次に示す要領で測定し、さらに性能を評価した。
The present invention will be described in detail by the following examples and comparative examples, but the present invention is not limited thereto. In the following, “%” means “% by weight” and “part” means “part by weight” unless otherwise noted.
In the following, first, production examples and comparative production examples of thermally expandable microspheres as a raw material of hollow particles are shown, and then examples and comparative examples of resin compositions containing hollow particles are shown. The physical properties of the thermally expandable microspheres and hollow particles were measured in the following manner to further evaluate the performance.

〔粒子径と粒度分布の測定〕
レーザー回折式粒度分布測定装置(SYMPATEC社製 HEROS & RODOS)を使用した。乾式分散ユニットの分散圧は5.0bar、真空度は5.0mbarで乾式測定法により測定した。
体積基準の累積粒子径とは、全粒子を体積順に小さい側から積算して累積した分布の所定の比率に対する粒子の直径を意味する。
レーザー回折式粒度分布測定装置は、原理上、体積基準の累積粒子径の分布を測定しており、測定装置のソフトウェアで体積基準の累積50%粒子径(D50)の測定値を確認できる。
個数基準の累積粒子径とは、全粒子を粒子順に並べ、小さい側から積算して累積した分布の所定の個数比率の粒子の直径を意味する。個数基準の累積粒子径は、測定装置のソフトウェアで、体積基準の累積粒子径から換算することができる。
[Measurement of particle size and particle size distribution]
A laser diffraction type particle size distribution analyzer (manufactured by SYMPATEC, HEROS & RODOS) was used. The dispersion pressure of the dry dispersion unit was 5.0 bar, and the degree of vacuum was measured by dry measurement at 5.0 mbar.
The volume-based cumulative particle diameter means the diameter of particles to a predetermined ratio of the cumulative distribution of all particles accumulated from the smaller side in volume order.
The laser diffraction type particle size distribution measuring device measures the distribution of cumulative particle diameter on a volume basis in principle, and the measurement value of the cumulative 50% particle diameter (D50) on a volume basis can be confirmed by software of the measuring device.
The cumulative particle diameter based on the number means the diameter of particles of a predetermined number ratio of distribution accumulated by arranging all particles in order of particles and integrating from the smaller side. The cumulative particle diameter on a number basis can be converted from the cumulative particle diameter on a volume basis by software of the measuring apparatus.

〔熱膨張性微小球の含水率の測定〕
測定装置として、カールフィッシャー水分計(MKA−510N型、京都電子工業株式会社製)を用いて測定した。
[Measurement of moisture content of thermally expandable microspheres]
As a measuring apparatus, it measured using a Karl-Fisher moisture meter (MKA-510N type | mold, the Kyoto Electronic Industry Co., Ltd. make).

〔熱膨張性微小球に封入された発泡剤の内包率の測定〕
熱膨張性微小球1.0gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W)を測定した。アセトニトリル30ml加え均一に分散させ、30分間室温で放置した後に、120℃で2時間加熱し乾燥後の重量(W)を測定した。発泡剤の内包率は、下記の式により計算される。
内包率(重量%)=(W−W)(g)/1.0(g)×100−(含水率)(重量%)
(式中、含水率は、上記方法で測定される。)
[Measurement of inclusion rate of foaming agent enclosed in thermally expandable microspheres]
1.0 g of thermally expandable microspheres were placed in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 1 ) was measured. After 30 ml of acetonitrile was uniformly dispersed and allowed to stand at room temperature for 30 minutes, it was heated at 120 ° C. for 2 hours and the weight after drying (W 2 ) was measured. The inclusion rate of the blowing agent is calculated by the following equation.
Inclusion rate (% by weight) = (W 1 −W 2 ) (g) /1.0 (g) × 100 − (water content) (% by weight)
(In the formula, the moisture content is measured by the above method.)

〔中空粒子に封入された発泡剤の内包率の測定〕
中空粒子0.20gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W)を測定した。アセトニトリル30ml加え均一に分散させ、30分間室温で放置した後に、120℃で2時間加熱し乾燥後の重量(W)を測定した。発泡剤の内包率は、下記の式により計算される。
内包率(G)=(W−W)(g)/0.20(g)×100−(含水率)(重量%)
(式中、含水率は、上記方法で測定される。)
[Measurement of inclusion rate of blowing agent enclosed in hollow particles]
0.20 g of hollow particles were placed in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 1 ) was measured. After 30 ml of acetonitrile was uniformly dispersed and allowed to stand at room temperature for 30 minutes, it was heated at 120 ° C. for 2 hours and the weight after drying (W 2 ) was measured. The inclusion rate of the blowing agent is calculated by the following equation.
Inclusion rate (G) = (W 1- W 2 ) (g) / 0.20 (g) x 100-(water content) (wt%)
(In the formula, the moisture content is measured by the above method.)

〔熱膨張性微小球および中空粒子の真比重の測定〕
熱膨張性微小球および中空粒子の真比重は、以下の測定方法で測定した。
真比重は環境温度25℃、相対湿度50%の雰囲気下においてイソプロピルアルコールを用いた液浸法(アルキメデス法)により測定した。
具体的には、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WB)を秤量した。秤量したメスフラスコにイソプロピルアルコールをメニスカスまで正確に満たした後、イソプロピルアルコール100ccの充満されたメスフラスコの重量(WB)を秤量した。
[Measurement of true specific gravity of thermally expandable microspheres and hollow particles]
The true specific gravity of the thermally expandable microspheres and hollow particles was measured by the following measurement method.
The true specific gravity was measured by an immersion method (Archimedes method) using isopropyl alcohol in an atmosphere at an environmental temperature of 25 ° C. and a relative humidity of 50%.
Specifically, a 100 cc volumetric flask was emptied, and after drying, the volumetric flask weight (WB 1 ) was weighed. After exactly filling the weighed measuring flask with isopropyl alcohol to the meniscus, the weight (WB 2 ) of the filled measuring flask with 100 cc of isopropyl alcohol was weighed.

また、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WS)を秤量した。秤量したメスフラスコに約50ccの粒子を充填し、粒子の充填されたメスフラスコの重量(WS)を秤量した。そして、粒子の充填されたメスフラスコに、イソプロピルアルコールを気泡が入らないようにメニスカスまで正確に満たした後の重量(WS)を秤量した。そして、得られたWB、WB、WS、WSおよびWSを下式に導入して、粒子の真比重(d)を計算した。
d(d)={(WS−WS)×(WB−WB)/100}/{(WB−WB)−(WS−WS)}
上記で、粒子として中空粒子を用いて、真比重を計算した。
In addition, a 100 cc volumetric flask was emptied and dried, and then the weight of the volumetric flask (WS 1 ) was weighed. The weighed measuring flask was filled with about 50 cc of particles, and the weight (WS 2 ) of the filled measuring flask was weighed. Then, in the particle-filled measuring flask, the weight (WS 3 ) after exactly filling the isopropyl alcohol into the meniscus without bubbles was weighed. Then, the obtained WB 1 , WB 2 , WS 1 , WS 2 and WS 3 were introduced into the following equation to calculate the true specific gravity (d) of the particles.
d (d b ) = {(WS 2 −WS 1 ) × (WB 2 −WB 1 ) / 100} / {(WB 2 −WB 1 ) − (WS 3 −WS 2 )}
Above, the true specific gravity was calculated using hollow particles as the particles.

〔中空粒子に対する取り込み空気量の体積割合(Z)〕
以下のアルミ容器に中空粒子を300ml入れる。規定量の中空粒子を体積分測りとるには、下記の計算式で得られた重量を測りとればよい。
中空粒子の重量(W)(g)=中空粒子の体積(V)(ml)×中空粒子の真比重(d)(g/cc)
アルミ容器:環境温度25℃、相対湿度50%の雰囲気下においてガス透過性の無いアルミ容器(最大容量1.4L、膜の厚み:114μm:ラミジップAL−18)を用いる。当該アルミ容器は、内部の体積の増減によりアルミのフィルム自体の伸縮はしないが、袋の形状は変形する。
次にアルミ容器の体積が約900mlになるようにして開口部分を熱溶着で密閉する。液浸法(アルキメデス法)を用いて、密閉したアルミ容器の体積(Y1)(ml)測定する。密閉したアルミ容器を、環境温度25℃、相対湿度50%の雰囲気下で7日間静置させておく。当該期間経過後に、液浸法(アルキメデス法)を用いて、密閉したアルミ容器の体積(Y2)(ml)を測定する。中空粒子に対する取り込み空気量の体積割合(Z)を以下の式にて計算した。
中空粒子に対する取り込み空気量の体積割合(Z)=(Y1−Y2)/300
<熟成評価基準>
(Z)<−0.2:×
−0.2≦(Z)<−0.05:△
−0.05≦(Z)≦0.05:◎
0.05<(Z)≦0.2:○
0.2<(Z)≦1:△
1<(Z):×
[Volume ratio of intake air amount to hollow particles (Z)]
300 ml of hollow particles are put into the following aluminum container. In order to determine the volume of hollow particles of a specified amount, it is sufficient to measure the weight obtained by the following formula.
Weight of hollow particles (W) (g) = volume of hollow particles (V) (ml) × true specific gravity of hollow particles (d) (g / cc)
Aluminum container: An aluminum container (maximum capacity 1.4 L, film thickness: 114 μm: Ramizip AL-18) which does not have gas permeability under an atmosphere of environmental temperature 25 ° C. and relative humidity 50% is used. Although the said aluminum container does not expand-contract the film itself of aluminum by the increase or decrease in internal volume, the shape of a bag deform | transforms.
Next, the opening is sealed by heat welding so that the volume of the aluminum container is about 900 ml. Using a liquid immersion method (Archimedes method), measure the volume (Y1) (ml) of the sealed aluminum container. The sealed aluminum container is allowed to stand for 7 days under an atmosphere of environmental temperature 25 ° C. and relative humidity 50%. After the period has elapsed, the volume (Y2) (ml) of the sealed aluminum container is measured using the immersion method (Archimedes method). The volume ratio (Z) of the intake air amount to the hollow particles was calculated by the following equation.
Volume ratio of the amount of air taken in to hollow particles (Z) = (Y1-Y2) / 300
<Maturity evaluation criteria>
(Z) <-0.2: x
−0.2 ≦ (Z) <− 0.05: Δ
−0.05 ≦ (Z) ≦ 0.05: ◎
0.05 <(Z) ≦ 0.2: ○
0.2 <(Z) ≦ 1: Δ
1 <(Z): x

〔中空粒子に含まれる空気量の体積割合(P)〕
中空粒子W(g)を1Lの容器に入れ、DMF(ジメチルホルムアミド)にて容器を満たした後、密閉する。上記の容器を90℃で12時間加温し、発生した気体を、DMFを用いた水上置換法の変法にて気体を捕集する。水上置換法にて捕集した気体の量を測定し、酸素ガスセンサ(機種:PS−2126A、測定方式:ガルバニ電池式)にて、その気体中の酸素濃度を測定する。捕集された気体量とその気体中の酸素濃度より、中空粒子内に内包されている空気の量を定量することができる。捕集した気体中の空気量は以下の式にて計算した。
捕集した気体中の空気量(V)=V1×C/20.9
捕集した気体量(V1)(ml)
気体中の酸素濃度(C)(体積%)
中空粒子に含まれる空気量の体積割合(P)は、以下の式にて計算した。当該体積割合(P)は、中空粒子(A)全体の体積を100%としたときの割合となる。
中空粒子に含まれる空気量の体積割合(P)(%)=V×d×100/W
中空粒子の重量:W(g)
中空粒子の真比重:d(g/cc)
<熟成評価基準>
(P)<10:×
10%≦(P)<30%:△
30%≦(P)<50%:○
50%≦(P):◎
〔樹脂組成物の真比重の測定〕
樹脂組成物の真比重(dpo)の測定は、Elcometer1800ステンレス製比重カップ(100ml)を使用し真比重を測定した。
空の比重カップの質量We(g)を測定し、比重カップに樹脂組成物を満たした質量Ws(g)を測定、算出した。
dpo=(Ws−We)/100(g/cc)
[Volume ratio of air contained in hollow particles (P)]
The hollow particles W (g) are placed in a 1 L container, and the container is filled with DMF (dimethylformamide) and sealed. The above-mentioned vessel is heated at 90 ° C. for 12 hours, and the generated gas is collected by a modification of the water displacement method using DMF. The amount of gas collected by the water displacement method is measured, and the oxygen concentration in the gas is measured with an oxygen gas sensor (model: PS-2126A, measurement method: galvanic cell type). The amount of air contained in the hollow particles can be quantified from the amount of gas collected and the concentration of oxygen in the gas. The amount of air in the collected gas was calculated by the following equation.
Amount of air in collected gas (V) = V1 × C / 20.9
Amount of collected gas (V1) (ml)
Oxygen concentration in gas (C) (vol%)
The volume ratio (P) of the amount of air contained in the hollow particles was calculated by the following equation. The said volume ratio (P) turns into a ratio when the volume of the whole hollow particle (A) is made into 100%.
Volume fraction (P) (%) of the amount of air contained in the hollow particles = V x d x 100 / W
Weight of hollow particles: W (g)
True specific gravity of hollow particles: d (g / cc)
<Maturity evaluation criteria>
(P) <10: x
10% ≦ (P) <30%: Δ
30% ≦ (P) <50%: ○
50% ≦ (P): ◎
[Measurement of true specific gravity of resin composition]
The true specific gravity (dpo) of the resin composition was measured using an Elcometer 1800 stainless steel specific gravity cup (100 ml).
The mass We (g) of the empty specific gravity cup was measured, and the mass Ws (g) of the specific gravity cup filled with the resin composition was measured and calculated.
dpo = (Ws-We) / 100 (g / cc)

〔成形物の真比重の測定〕
成形物の真比重は、島津上皿電子分析天秤AX200(島津製作所社製)を使用し固体比重測定モードで測定した。
[Measurement of true specific gravity of molding]
The true specific gravity of the molded product was measured in a solid specific gravity measurement mode using Shimadzu Ushido Electronic Analysis Balance AX200 (manufactured by Shimadzu Corporation).

〔製造例1〕
イオン交換水600gに、塩化ナトリウム100g、シリカ有効成分量が20重量%であるコロイダルシリカ40g、ポリビニルピロリドン2gおよびカルボキシメチル化されたポリエチレンイミン類(CMPEI;置換アルキル基:−CHCOONa、置換率:80%、重量平均分子量:5万)を0.1g加えた後、得られた混合物のpHを2.8〜3.2に調整し、水性分散媒を調製した。なお、CMPEIについては、国際公開第2008/142849号パンフレットの第0140段落記載のものと同じ。
これとは別に、アクリロニトリル150g、メタクリロニトリル100g、イソボルニルメタクリレート15g、ジエチレングリコールジメタクリレート0.5g、発泡剤としてのイソブタン30g、イソペンタン50g、および、純度70%のジ−2−エチルヘキシルパーオキシジカーボネート3gを混合して油性混合物を調製した。水性分散媒と油性混合物を混合し、得られた混合液をホモミキサー(プライミクス社製、TKホモミキサー)により、回転数12000rpmで2分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.5MPaにし、80rpmで攪拌しつつ重合温度55℃で20時間重合反応した。重合後、重合生成物を濾過、乾燥して、熱膨張性微小球を得て、その物性を評価し、表1に示した。
Production Example 1
100 g of sodium chloride, 40 g of colloidal silica having an active ingredient content of 20% by weight, 600 g of ion-exchanged water, 2 g of polyvinyl pyrrolidone and carboxymethylated polyethyleneimines (CMPEI; substituted alkyl group: -CH 2 COONa, substitution ratio After adding 0.1 g of 80%, weight average molecular weight: 50,000, the pH of the obtained mixture was adjusted to 2.8 to 3.2 to prepare an aqueous dispersion medium. The CMPEI is the same as that described in paragraph 0140 of WO 2008/142849.
Apart from this, 150 g of acrylonitrile, 100 g of methacrylonitrile, 15 g of isobornyl methacrylate, 0.5 g of diethylene glycol dimethacrylate, 30 g of isobutane as a foaming agent, 50 g of isopentane, and 70% purity of di-2-ethylhexylperoxydi An oily mixture was prepared by mixing 3 g of carbonate. The aqueous dispersion medium and the oily mixture were mixed, and the obtained mixed solution was dispersed at a rotation number of 12000 rpm for 2 minutes with a homomixer (manufactured by Primix, TK homomixer) to prepare a suspension. The suspension was transferred to a pressure reactor of 1.5 liter capacity and purged with nitrogen, and then the reaction initial pressure was adjusted to 0.5 MPa, and the polymerization reaction was carried out at a polymerization temperature of 55 ° C. for 20 hours while stirring at 80 rpm. After polymerization, the polymerization product was filtered and dried to obtain thermally expandable microspheres, the physical properties of which were evaluated, and are shown in Table 1.

〔製造例2〜5〕
製造例2〜5では、実施例1において、表1に示すように反応条件をそれぞれ変更する以外は、実施例1と同様に重合して、熱膨張性微小球を得た。さらに、その物性を評価し、表1に示した。
[Production Examples 2 to 5]
In Production Examples 2 to 5, polymerization was carried out in the same manner as in Example 1 except that the reaction conditions were changed as shown in Table 1 in Example 1, to obtain thermally expandable microspheres. Furthermore, the physical properties were evaluated and are shown in Table 1.

Figure 2018012415
Figure 2018012415

上記表1において、以下の略号が使用されている。
CMPEI:ポリエチレンイミン類(置換アルキル基:−CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)。なお、カルボキシメチル化ポリエチレンイミン・Na塩とも表記される。
PVP:ポリビニルピロリドン
AN:アクリロニトリル
MAN:メタクリロニトリル
IBX:イソボルニルメタクリレート
VCl:塩化ビニリデン
MMA:メチルメタクリレート
TMP:トリメチロールプロパントリメタクリレート
EDMA:ジエチレングリコールジメタクリレート
OPP:ジ−2−エチルヘキシルパーオキシジカーボネート(純度70%)
コロイダルシリカ(平均粒子径11nm、比表面積260m/g、コロイダルシリカ有効濃度20重量%分散液)
In Table 1 above, the following abbreviations are used:
CMPEI: polyethyleneimines (substituted alkyl group: -CH 2 COONa, substitution rate of substituted alkyl group: 80%, weight average molecular weight: 50,000). In addition, it is described also as carboxymethylated polyethylene imine and Na salt.
PVP: polyvinyl pyrrolidone AN: acrylonitrile MAN: methacrylonitrile IBX: isobornyl methacrylate VCl 2 : vinylidene chloride MMA: methyl methacrylate TMP: trimethylolpropane trimethacrylate EDMA: diethylene glycol dimethacrylate OPP: di-2-ethylhexylperoxydicarbonate (Purity 70%)
Colloidal silica (average particle diameter 11 nm, specific surface area 260 m 2 / g, effective concentration of colloidal silica 20% by weight dispersion)

熟成前の中空粒子(a)は、特開昭62−201231号公報記載の湿式加熱膨張法によって製造し、以下の実施例1〜3、比較例1〜4のように中空粒子(A)および樹脂組成物を作成し評価を行った。   The hollow particles (a) before ripening are produced by a wet heating expansion method described in JP-A-62-201231, and hollow particles (A) and hollow particles (A) and comparative examples 1 to 4 as in Examples 1 to 3 and Comparative Examples 1 to 4 below. A resin composition was prepared and evaluated.

〔実施例1〕
製造例1で得られた熱膨張性微小球を5重量%含有する水分散液(スラリー)を調製した。特開昭62−201231号公報記載の湿式加熱膨張法に従い、このスラリーをスラリー導入管から発泡管(直径16mm、容積120ml、SUS304TP製)に5L/minの流量を示すように送り込み、さらに水蒸気(温度:147℃、圧力:0.3MPa)を蒸気導入管より供給し、スラリーと混合して、湿式加熱膨張した。なお、混合後のスラリー温度(発泡温度)を115℃に調節した。
得られた中空粒子を含むスラリーを発泡管突出部から流出させ、冷却水(水温15℃)と混合して、50〜60℃に冷却した。冷却したスラリー液を遠心脱水機で脱水して、湿化した中空粒子(a)を10重量%含有する中空粒子組成物(すなわち、水90重量%含有)を得た。
得られた中空粒子(a)を40℃で24時間熟成を行い、中空粒子(A)を10重量%含有する中空粒子組成物を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表2に示す。
Example 1
An aqueous dispersion (slurry) containing 5% by weight of the thermally expandable microspheres obtained in Production Example 1 was prepared. According to the wet thermal expansion method described in JP-A-62-201231, this slurry is fed from a slurry introduction pipe into a foam pipe (diameter 16 mm, volume 120 ml, made of SUS304TP) so as to exhibit a flow rate of 5 L / min. Temperature: 147 ° C., pressure: 0.3 MPa) was supplied from the steam introduction pipe, mixed with the slurry, and wet heated and expanded. The slurry temperature (foaming temperature) after mixing was adjusted to 115 ° C.
The obtained slurry containing hollow particles was allowed to flow out of the foam tube protrusion, mixed with cooling water (water temperature 15 ° C.), and cooled to 50 to 60 ° C. The cooled slurry liquid was dewatered by a centrifugal dehydrator to obtain a hollow particle composition (that is, containing 90% by weight of water) containing 10% by weight of the moistened hollow particles (a).
The obtained hollow particles (a) were aged at 40 ° C. for 24 hours to obtain a hollow particle composition containing 10% by weight of hollow particles (A). The volume ratio (Z) of the amount of air taken in to the hollow particles and the volume ratio (P) of the amount of air contained in the hollow particles were measured. The evaluation results are shown in Table 2.

上記の中空粒子(A)を含有する中空粒子組成物840重量部と、ポリビニルアルコール200重量部、酢酸ビニル840重量部、ホウ酸20重量部、水1000重量部を混ぜ合わせ万能混合器を用いて5分間混合し、軽量樹脂粘土を得た。熟成が十分であると中空粒子がつぶれず、十分に軽量化されており、べたつきのない軽量樹脂粘土が得られる。得られた中空粒子(A)および軽量樹脂粘土の物性評価の結果については表2に示す。
理論比重に対する実際に得られた樹脂粘土比重の比重増加率については、下式により算出した。
比重増加率(%)=(樹脂粘土比重/理論比重−1)×100
Using a universal mixer, mixing 840 parts by weight of the hollow particle composition containing the above hollow particles (A), 200 parts by weight of polyvinyl alcohol, 840 parts by weight of vinyl acetate, 20 parts by weight of boric acid, and 1000 parts by weight of water Mix for 5 minutes to obtain a lightweight resin clay. When the aging is sufficient, the hollow particles are not crushed and the weight is sufficiently reduced, and a lightweight resin clay free from stickiness is obtained. The results of the physical property evaluation of the obtained hollow particles (A) and lightweight resin clay are shown in Table 2.
About the specific gravity increase rate of resin clay specific gravity actually obtained with respect to theoretical specific gravity, it computed by the following Formula.
Specific gravity increase rate (%) = (Resin clay specific gravity / theoretical specific gravity-1) × 100

樹脂粘土のべたつき評価については、得られた粘土を用いて塑像を作成した際に、手に付着することなく、かつ、粘土同士が良好に付着して、良好な造形性を示すか否かを評価した。
○:手に付着せず、粘土同士が良好に付着する。
△:手に付着するが、粘土同士も付着する。
×:手に付着して、粘土同士がほとんどくっつかない。
As for tackiness evaluation of resin clay, when a figure is made using the obtained clay, whether or not the clay adheres well to each other without adhering to the hand and exhibits good formability or not evaluated.
○: Not adhering to hand, clay adheres well.
Δ: Hand adheres, but clays adhere to each other.
X: It adheres to the hand and clays hardly stick together.

〔実施例2、3及び比較例1〜4〕
実施例2、3及び比較例1〜4では、実施例1において、表2に示すように、熱膨張性微小球、組成、条件等をそれぞれ変更する以外は、実施例1と同様にして、軽量樹脂粘土を得た。なお、物性については表2に示す。
[Examples 2 and 3 and Comparative Examples 1 to 4]
Examples 2 and 3 and Comparative Examples 1 to 4 are the same as Example 1 except that the thermally expandable microspheres, the composition, the conditions, and the like are changed as shown in Table 2 in Example 1. I got a lightweight resin clay. Physical properties are shown in Table 2.

Figure 2018012415
Figure 2018012415

表2から分かるように、実施例1〜3では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
一方、熟成期間が不十分な場合(比較例1〜4)においては、樹脂組成物の軽量化充填剤として使用した際、生産工程における混合や充填時の外的圧力による負荷により中空粒子が破壊され、樹脂組成物の設計時における理論比重から大きくずれが生じ軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 2, in Examples 1 to 3, sufficient aging treatment was applied before it was used as a lightweight filler for the resin composition, so the hollow particles (A) inside and outside The concentration gradient of air disappears, and the amount of air taken into the hollow particles (A) is almost zero. Thereby, it is confirmed that the hollow particles have sufficient resistance to the load due to the external pressure at the time of mixing and filling in the production process of the resin composition, and the effect of the present invention is obtained.
On the other hand, when the aging period is insufficient (Comparative Examples 1 to 4), when used as a lightweight filler for the resin composition, the hollow particles are broken due to the load due to external pressure during mixing or filling in the production process. As a result, a large deviation from the theoretical specific gravity at the time of design of the resin composition occurs, and the weight reduction effect becomes insufficient, and the effect of the present application is not obtained.

熟成前の中空粒子(a)は、特開2006−213930号公報記載の乾式加熱膨張法によって製造し、以下の実施例4〜6、比較例5〜7のように中空粒子(A)および樹脂組成物を作成し評価を行った。   The hollow particles (a) before ripening are produced by a dry heating expansion method described in JP-A-2006-213930, and hollow particles (A) and a resin as in Examples 4 to 6 and Comparative Examples 5 to 7 below. The composition was prepared and evaluated.

〔実施例4〕
(乾式加熱膨張法による中空粒子(a)の製造)
乾式加熱膨張法として特開2006−213930号公報に記載されている内部噴射方法を採用した。具体的には、図2に示す発泡工程部を備えた製造装置を用いて、以下の手順で、製造例4で得られた熱膨張性微小球を用いて、中空粒子(a)を製造した。
Example 4
(Production of hollow particles (a) by dry thermal expansion method)
The internal injection method described in JP-A-2006-213930 was adopted as the dry heating expansion method. Specifically, hollow particles (a) were produced using the thermally expandable microspheres obtained in Production Example 4 according to the following procedure using the production apparatus provided with the foaming step shown in FIG. .

(発泡工程部の説明)
図2に示すとおり、発泡工程部は、出口に分散ノズル(11)を備え且つ中央部に配置された気体導入管(番号表記せず)と、分散ノズル(11)の下流部に設置された衝突板(12)と、気体導入管の周囲に間隔を空けて配置された過熱防止筒(10)と、過熱防止筒(10)の周囲に間隔を空けて配置された熱風ノズル(8)とを備える。この発泡工程部において、気体導入管内の矢印方向に熱膨張性微小球を含む気体流体(13)が流されており、気体導入管と過熱防止筒(10)との間に形成された空間には、熱膨張性微小球の分散性の向上および気体導入管と衝突板の過熱防止のための気体流(14)が矢印方向に流されており、さらに、過熱防止筒(10)と熱風ノズル(8)との間に形成された空間には、熱膨張のための熱風流が矢印方向に流されている。ここで、熱風流(15)と気体流体(13)と気体流(14)とは、通常、同一方向の流れである。過熱防止筒(10)の内部には、冷却のために、冷媒流(9)が矢印方向に流されている。
(Description of the foaming process part)
As shown in FIG. 2, the foaming process part is provided with a gas introduction pipe (not numbered) provided at the outlet with a dispersion nozzle (11) at the outlet and disposed at the downstream part of the dispersion nozzle (11) A collision plate (12), an overheat prevention cylinder (10) arranged at intervals around the gas introduction pipe, and a hot air nozzle (8) arranged at intervals around the overheat prevention cylinder (10) Equipped with In this foaming step, a gas fluid (13) containing thermally expandable microspheres is flowed in the direction of the arrow in the gas introduction tube, and in the space formed between the gas introduction tube and the overheat prevention cylinder (10) The gas flow (14) for improving the dispersibility of the thermally expandable microspheres and for preventing the overheating of the gas introduction pipe and the collision plate is made to flow in the arrow direction, and further, the overheating prevention cylinder (10) and the hot air nozzle In the space formed between (8), a hot air flow for thermal expansion is flowed in the arrow direction. Here, the hot air flow (15), the gas fluid (13) and the gas flow (14) are usually flows in the same direction. In the inside of the overheat prevention cylinder (10), a refrigerant flow (9) is flowed in the arrow direction for cooling.

(製造装置の操作)
噴射工程では、熱膨張性微小球を含む気体流体(13)を、出口に分散ノズル(11)を備え且つ熱風流(15)の内側に設置された気体導入管に流し、気体流体(13)を前記分散ノズル(11)から噴射させる。
分散工程では、気体流体(13)を分散ノズル(11)の下流部に設置された衝突板(12)に衝突させ、熱膨張性微小球が熱風流(15)中に万遍なく分散するように操作される。ここで、分散ノズル(11)から出た気体流体(13)は、気体流(14)とともに衝突板(12)に向かって誘導され、これと衝突する。
膨張工程では、分散した熱膨張性微小球を熱風流(15)中で膨張開始温度以上に加熱して膨張させる。その後、得られた中空粒子を冷却部分に通過させる等して回収する。
(Operation of manufacturing equipment)
In the injection step, a gaseous fluid (13) containing thermally expandable microspheres is allowed to flow through a gas introduction pipe provided with a dispersion nozzle (11) at the outlet and installed inside a hot air flow (15), Is jetted from the dispersion nozzle (11).
In the dispersing step, the gaseous fluid (13) is caused to collide with the collision plate (12) installed at the downstream portion of the dispersing nozzle (11) so that the thermally expandable microspheres are uniformly dispersed in the hot air flow (15). Operated by Here, the gaseous fluid (13) exiting from the dispersing nozzle (11) is guided with the gas flow (14) towards the collision plate (12) and collides with it.
In the expansion step, the dispersed thermally expandable microspheres are heated and expanded in the hot air stream (15) above the expansion start temperature. Thereafter, the obtained hollow particles are collected by, for example, passing through the cooling portion.

(膨張条件および結果)
図2に示す製造装置を用い、膨張条件として、原料供給量0.8kg/min、原料分散気体量0.35m3/min、熱風流量8.0m3/min、熱風温度290℃に設定し、熟成前の中空粒子(a)を得た。
得られた中空粒子(a)を30℃で36時間熟成を行い、中空粒子(A)を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表3に示す。
(樹脂組成物の製造)
得られた中空粒子(A)(14重量部)1.4重量%、有機基材樹脂としてPVC樹脂(376重量部)37.6重量%、可塑剤(C)としてジイソノニルフタレート(220重量部)22重量%、充填剤として炭酸カルシウム(370重量部)37.0重量%、安定剤としてバリウム・亜鉛系安定剤(AC−290:アデカ社製)(20重量部)2重量%をよく混練し、樹脂組成物(比重0.75)を得た。
得られた樹脂組成物を加圧シリンダー内で圧力5MPaの30分間加圧処理した後の樹脂組成物の比重を測定したところ0.76であった。このとき、加圧処理による比重増加率は
加圧処理による樹脂組成物の比重増加率については、下式により算出した。
比重増加率(%)=(加圧後樹脂組成物比重/加圧前樹脂組成物比重−1)×100
(Inflated conditions and results)
Using the manufacturing apparatus shown in FIG. 2, as expansion conditions, the raw material supply amount 0.8 kg / min, the raw material dispersed gas amount 0.35 m3 / min, the hot air flow rate 8.0 m3 / min, the hot air temperature 290 ° C., and before ripening Hollow particles (a) were obtained.
The obtained hollow particles (a) were aged at 30 ° C. for 36 hours to obtain hollow particles (A). The volume ratio (Z) of the amount of air taken in to the hollow particles and the volume ratio (P) of the amount of air contained in the hollow particles were measured. The evaluation results are shown in Table 3.
(Production of resin composition)
1.4% by weight of the obtained hollow particles (A) (14 parts by weight), 37.6% by weight of a PVC resin (376 parts by weight) as an organic base resin, diisononyl phthalate (220 parts by weight) as a plasticizer (C) 22% by weight, 37.0% by weight of calcium carbonate (370 parts by weight) as a filler, and 2% by weight of a barium / zinc stabilizer (AC-290: manufactured by Adeka) (20 parts by weight) as a stabilizer The resin composition (specific gravity 0.75) was obtained.
It was 0.76 when specific gravity of the resin composition after pressure-processing the obtained resin composition for 30 minutes of pressure 5MPa in a pressure cylinder was measured. At this time, the specific gravity increase rate by pressure treatment was calculated by the following formula about the specific gravity increase rate of the resin composition by pressure treatment.
Specific gravity increase rate (%) = (Specific gravity of resin composition after pressure / Specific gravity of resin composition before pressure-1) × 100

(成形物の製造)
上記で得られた樹脂組成物を、電着塗装板に塗布(厚さ2mm)し、140℃、20minでの加熱処理により、成形物を得た。なお、物性については表3に示す。
(Manufacturing of moldings)
The resin composition obtained above was applied to an electrodeposition coated plate (thickness: 2 mm), and a heat treatment was performed at 140 ° C. for 20 minutes to obtain a molded product. Physical properties are shown in Table 3.

〔実施例5及び比較例5、6〕
実施例5及び比較例5、6では、実施例4において、表3に示すように、熱膨張性微小球、発泡温度、熟成に関する条件等をそれぞれ変更する以外は、実施例4と同様にして、樹脂組成物、成形物を得た。なお、物性については表3に示す。
[Example 5 and Comparative Examples 5 and 6]
In Example 5 and Comparative Examples 5 and 6, as shown in Table 3, the same procedure as in Example 4 is carried out except that the thermally expandable microspheres, the foaming temperature, the condition relating to aging, etc. are respectively changed. The resin composition and the molded product were obtained. Physical properties are shown in Table 3.

Figure 2018012415
Figure 2018012415

表3から分かるように、実施例4、5では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の使用時に想定される外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
一方、熟成期間が不十分な場合(比較例5、6)においては、樹脂組成物の軽量化充填剤として使用した際、樹脂組成物使用時に想定される外的圧力による負荷により中空粒子が破壊され、樹脂組成物の軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 3, in Examples 4 and 5, sufficient aging treatment was applied before being used as a weight saving filler of the resin composition, so the hollow particles (A) were treated at the inside and the outside. The concentration gradient of air disappears, and the amount of air taken into the hollow particles (A) is almost zero. Thereby, it is confirmed that the hollow particles have sufficient resistance to the load due to the external pressure assumed when using the resin composition, and the effect of the present invention is obtained.
On the other hand, when the aging period is insufficient (Comparative Examples 5 and 6), when used as a lightweight filler for the resin composition, the hollow particles are broken due to the load caused by the external pressure assumed when using the resin composition. As a result, the weight reduction effect of the resin composition is insufficient, and the effect of the present invention is not obtained.

〔実施例6〕
製造例3で得られた熱膨張性微小球(外殻を構成する熱可塑性樹脂の軟化点:109℃)20重量部と、炭酸カルシウム(備北粉化工業株式会社製のホワイトンSB赤;レーザー回折法による平均粒子径約1.8μm)80重量部とをセパラブルフラスコに添加混合した。次いで、攪拌しながら5分間かけて加熱温度130℃まで昇温して、微粒子充填剤が付着した熟成前の中空粒子(a)を得た。
得られた中空粒子(a)を10℃で60時間熟成を行い、中空粒子(A)を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表4に示す。
[Example 6]
20 parts by weight of the thermally expandable microspheres (the softening point of the thermoplastic resin constituting the outer shell: 109 ° C.) obtained in Production Example 3 and calcium carbonate (Whiten SB red manufactured by Bihoku Powder Co., Ltd .; laser; 80 parts by weight of an average particle diameter of about 1.8 μm according to a diffraction method was added to and mixed with a separable flask. Next, the temperature was raised to a heating temperature of 130 ° C. over 5 minutes while stirring to obtain hollow particles (a) before aging to which the fine particle filler was attached.
The obtained hollow particles (a) were aged at 10 ° C. for 60 hours to obtain hollow particles (A). The volume ratio (Z) of the amount of air taken in to the hollow particles and the volume ratio (P) of the amount of air contained in the hollow particles were measured. The evaluation results are shown in Table 4.

〔接着剤組成物〕
80重量部の2液タイプのポリウレタン接着成分の硬化剤成分(ボンドUPシールグレー、コニシ社製)に、3.8重量部の接着剤組成物用改質材としての中空粒子(A)と、2重量部の炭化水素(出光興産社製、IP−2835)とを加えて、プラネタリーミキサー(井上製作所製、PLM−50)を用いて50℃で30分間撹拌混合した後、減圧脱泡しポリウレタン接着剤硬化剤組成物を得た。得られたポリウレタン接着剤硬化剤組成物(硬化剤組成物)の比重を測定し、理論比重に対する実際に得られた硬化剤組成物の比重増加率について、下式により算出した。結果については表4に示す。
比重増加率(%)=(硬化剤組成物比重/理論比重−1)×100
[Adhesive composition]
To 80 parts by weight of a curing agent component of a two-component polyurethane adhesive component (bond UP seal gray, manufactured by Konishi), 3.8 parts by weight of hollow particles (A) as a modifier for an adhesive composition, After adding 2 parts by weight of a hydrocarbon (manufactured by Idemitsu Kosan Co., Ltd., IP-2835) and stirring and mixing for 30 minutes at 50 ° C. using a planetary mixer (manufactured by Inoue Seisakusho Co., Ltd., PLM-50) A polyurethane adhesive curing agent composition was obtained. The specific gravity of the obtained polyurethane adhesive curing agent composition (curing agent composition) was measured, and the specific gravity increase rate of the actually obtained curing agent composition relative to the theoretical specific gravity was calculated by the following equation. The results are shown in Table 4.
Specific gravity increase rate (%) = (hardener composition specific gravity / theoretical specific gravity-1) × 100

つづいて、前記硬化剤組成物85.8重量部と20重量部のポリウレタン接着剤成分の基材成分(ボンドUPシールグレー、コニシ社製)を加えて予備混合したものをコンディショニングミキサー(シンキー社製、AR−360)を用いて、自転500rpm、公転2000rpm、150秒間攪拌し脱泡して、接着剤組成物を得た。得られた接着剤組成物を23℃、50%RHの条件下で3日間、さらに50℃、50%RHの条件下で3日間養生硬化させた後に、硬化成形物の比重を測定した。その結果を表4に示す。   Subsequently, 85.8 parts by weight of the curing agent composition and 20 parts by weight of a base component (bond UP seal gray, made by Konishi) of polyurethane adhesive component are added and premixed into a conditioning mixer (made by Shinky Co., Ltd.) , AR-360), and degassing by stirring for 150 seconds at 500 rpm and 2000 rpm for revolution, to obtain an adhesive composition. The resulting adhesive composition was cured by curing for 3 days under conditions of 23 ° C. and 50% RH, and further for 3 days under conditions of 50 ° C. and 50% RH, and then the specific gravity of the cured molded article was measured. The results are shown in Table 4.

〔実施例7及び比較例7、8〕
実施例7及び比較例7、8では、実施例6において、表3に示すように、熱膨張性微小球、発泡温度、熟成に関する条件等をそれぞれ変更する以外は、実施例6と同様にして、樹脂組成物、成形物を得た。なお、物性については表4に示す。
[Example 7 and Comparative Examples 7 and 8]
In Example 7 and Comparative Examples 7 and 8, as shown in Table 3, the same procedure as in Example 6 is carried out except that the thermally expandable microspheres, the foaming temperature, the condition concerning ripening, etc. are respectively changed. The resin composition and the molded product were obtained. Physical properties are shown in Table 4.

Figure 2018012415
Figure 2018012415

表4から分かるように、実施例6、7では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
一方、熟成期間が不十分な場合(比較例7、8)においては、樹脂組成物の軽量化充填剤として使用した際、生産工程における混合や充填時の外的圧力による負荷により中空粒子が破壊され、樹脂組成物の設計時における理論比重から大きくずれが生じ軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 4, in Examples 6 and 7, sufficient aging treatment was applied before being used as a weight saving filler of the resin composition, so the hollow particles (A) were treated at the inside and the outside. The concentration gradient of air disappears, and the amount of air taken into the hollow particles (A) is almost zero. Thereby, it is confirmed that the hollow particles have sufficient resistance to the load due to the external pressure at the time of mixing and filling in the production process of the resin composition, and the effect of the present invention is obtained.
On the other hand, when the aging period is insufficient (Comparative Examples 7 and 8), when used as a lightweight filler for the resin composition, the hollow particles are broken due to the load due to external pressure during mixing or filling in the production process. As a result, a large deviation from the theoretical specific gravity at the time of design of the resin composition occurs, and the weight reduction effect becomes insufficient, and the effect of the present application is not obtained.

本発明の樹脂組成物は、塗料、接着剤、樹脂粘土に好適に用いることができる。   The resin composition of the present invention can be suitably used for paints, adhesives, and resin clays.

4 中空粒子(A1)
5 外殻
6 微粒子充填剤(吸着された状態)
7 微粒子充填剤(めり込み、固定された状態)
8 熱風ノズル
9 冷媒流
10 過熱防止筒
11 分散ノズル
12 衝突板
13 熱膨張性微小球を含む気体流体
14 気体流
15 熱風流
4 Hollow particles (A1)
5 Outer shell 6 Particulate filler (in the adsorbed state)
7 Particulate filler (inset and fixed)
Reference Signs List 8 hot air nozzle 9 refrigerant flow 10 overheat preventing cylinder 11 dispersion nozzle 12 collision plate 13 gas fluid containing thermally expandable microspheres 14 gas flow 15 hot air flow

Claims (5)

中空粒子(A)と有機基剤樹脂(B)とを含有する樹脂組成物であって、
前記中空粒子(A)が、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、
前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である、
樹脂組成物。
A resin composition comprising hollow particles (A) and an organic base resin (B),
The hollow particle (A) is an expandable body of thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent which is contained therein and is vaporized by heating.
The volume ratio (P) of the amount of air contained in the hollow particles (A) is 30% or more when the volume of the whole hollow particles (A) is 100%.
Resin composition.
前記中空粒子(A)の体積基準の累積50%粒子径(D50)が1〜300μmである、請求項1に記載の樹脂組成物。   The resin composition according to claim 1, wherein the volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is 1 to 300 μm. 塗料組成物、接着剤組成物又は樹脂粘土である、請求項1又は2に記載の樹脂組成物。   The resin composition according to claim 1 or 2, which is a paint composition, an adhesive composition or a resin clay. 請求項1〜3のいずれかに記載の樹脂組成物を成型させてなる、成形物。   A molded article obtained by molding the resin composition according to any one of claims 1 to 3. 熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を得る工程(1)と、
前記熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、
前記中空粒子(a)を温度−10〜80℃の範囲で熟成して、中空粒子(A)を得る工程(3)と、
得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)とを含み、
前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である、
樹脂組成物の製造方法。
Obtaining thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent contained therein and vaporized by heating, (1)
A step (2) of thermally expanding the thermally expandable microspheres to obtain hollow particles (a);
Ripening the hollow particles (a) at a temperature in the range of −10 to 80 ° C. to obtain hollow particles (A);
Mixing the obtained hollow particles (A) with the organic base resin (B), and (4)
The volume ratio (P) of the amount of air contained in the hollow particles (A) is 30% or more when the volume of the whole hollow particles (A) is 100%.
Method for producing a resin composition.
JP2018527570A 2016-07-15 2017-07-07 Resin composition and its use Active JP7189768B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016140033 2016-07-15
JP2016140033 2016-07-15
PCT/JP2017/024888 WO2018012415A1 (en) 2016-07-15 2017-07-07 Resin composition and use thereof

Publications (2)

Publication Number Publication Date
JPWO2018012415A1 true JPWO2018012415A1 (en) 2019-05-09
JP7189768B2 JP7189768B2 (en) 2022-12-14

Family

ID=60951743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018527570A Active JP7189768B2 (en) 2016-07-15 2017-07-07 Resin composition and its use

Country Status (2)

Country Link
JP (1) JP7189768B2 (en)
WO (1) WO2018012415A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3858921B1 (en) 2018-09-28 2023-07-05 Zeon Corporation Resin composition and molded body of same
JP7128371B1 (en) 2021-08-06 2022-08-30 積水化学工業株式会社 Thermally expandable microcapsules, expandable masterbatch and foamed molded product
JP7369329B1 (en) * 2022-02-24 2023-10-25 松本油脂製薬株式会社 Thermally expandable microspheres and their uses

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049616A1 (en) * 2005-10-27 2007-05-03 Bridgestone Corporation Thermal expansion microspheres and hollow fine particles, process for producing them, and assembly of tire and rim
US20100047550A1 (en) * 2007-01-16 2010-02-25 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
JP2011510113A (en) * 2008-01-14 2011-03-31 テーザ・ソシエタス・ヨーロピア Foamed, particularly pressure sensitive adhesive, its production method and use
JP2011195813A (en) * 2010-02-25 2011-10-06 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere, hollow microparticle, method of manufacturing the same and application
JP2012017453A (en) * 2010-05-27 2012-01-26 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere and application thereof
JP2013173945A (en) * 2012-01-25 2013-09-05 Matsumoto Yushi Seiyaku Co Ltd Heat-expandable microspheres, and use
JP2014065893A (en) * 2012-09-06 2014-04-17 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2014214311A (en) * 2013-04-24 2014-11-17 テーザ・ソシエタス・ヨーロピア Dual-foamed polymer material (polymermasse)
JP2015003951A (en) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 Thermally expansive microspheres, and production method and use of the same
WO2015005363A1 (en) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 Pore-forming material for ceramic composition and application for same
JP2015143331A (en) * 2013-12-26 2015-08-06 松本油脂製薬株式会社 Modifier for adhesive composition and adhesive composition comprising the same
JP2016006165A (en) * 2014-05-30 2016-01-14 松本油脂製薬株式会社 Resin composition and use of the same
JP2016050295A (en) * 2014-09-02 2016-04-11 松本油脂製薬株式会社 Resin composition and use of the same
JP2016130308A (en) * 2015-01-09 2016-07-21 松本油脂製薬株式会社 Pore-forming material for ceramic composition and use thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5986423B2 (en) * 2012-05-17 2016-09-06 株式会社カネカ Curable composition and cured product thereof
JP6180948B2 (en) * 2014-01-23 2017-08-16 横浜ゴム株式会社 Vulcanized rubber composition for tires

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049616A1 (en) * 2005-10-27 2007-05-03 Bridgestone Corporation Thermal expansion microspheres and hollow fine particles, process for producing them, and assembly of tire and rim
US20100047550A1 (en) * 2007-01-16 2010-02-25 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
JP2011510113A (en) * 2008-01-14 2011-03-31 テーザ・ソシエタス・ヨーロピア Foamed, particularly pressure sensitive adhesive, its production method and use
JP2011195813A (en) * 2010-02-25 2011-10-06 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere, hollow microparticle, method of manufacturing the same and application
JP2012017453A (en) * 2010-05-27 2012-01-26 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere and application thereof
JP2013173945A (en) * 2012-01-25 2013-09-05 Matsumoto Yushi Seiyaku Co Ltd Heat-expandable microspheres, and use
JP2014065893A (en) * 2012-09-06 2014-04-17 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2014214311A (en) * 2013-04-24 2014-11-17 テーザ・ソシエタス・ヨーロピア Dual-foamed polymer material (polymermasse)
JP2015003951A (en) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 Thermally expansive microspheres, and production method and use of the same
WO2015005363A1 (en) * 2013-07-12 2015-01-15 松本油脂製薬株式会社 Pore-forming material for ceramic composition and application for same
JP2015143331A (en) * 2013-12-26 2015-08-06 松本油脂製薬株式会社 Modifier for adhesive composition and adhesive composition comprising the same
JP2016006165A (en) * 2014-05-30 2016-01-14 松本油脂製薬株式会社 Resin composition and use of the same
JP2016050295A (en) * 2014-09-02 2016-04-11 松本油脂製薬株式会社 Resin composition and use of the same
JP2016130308A (en) * 2015-01-09 2016-07-21 松本油脂製薬株式会社 Pore-forming material for ceramic composition and use thereof

Also Published As

Publication number Publication date
WO2018012415A1 (en) 2018-01-18
JP7189768B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP6116787B1 (en) Rubber composition for vulcanization molding, production method and use thereof
US20190194415A1 (en) Hollow resin particles and application thereof
JP5438246B2 (en) Thermally expansible microspheres, production method and use thereof
JP7189768B2 (en) Resin composition and its use
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
JP6034992B2 (en) Thermally expandable microspheres and their uses
JP6735936B2 (en) Thermally expandable microspheres and their uses
JP6587782B1 (en) Thermally expandable microspheres and their applications
JP5943555B2 (en) Thermally expandable microspheres and their applications
JP6534834B2 (en) Thermally expandable microspheres, method for producing the same and use thereof
WO2005049698A1 (en) Thermally expanded microsphere, process for producing the same, thermally expandable microsphere and use thereof
JP2006348224A (en) Resin-coated heat-storing particle, hardenable heat-storing composition, heat-storing hardened product and manufacturing method of resin-coated heat-storing particle
JP6196592B2 (en) Resin composition and use thereof
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
JP2010090299A (en) Resin composition containing resin balloon
WO2016190178A1 (en) Thermally expandable microspheres and use thereof
JP5272327B2 (en) Two-component curable polyurethane sealant composition
CN112437798B (en) Adhesive composition
JP6638201B2 (en) Two-part cold-setting urethane coating waterproofing composition
JP6569254B2 (en) Two-component room temperature curable urethane film waterproofing material composition
CN108727554B (en) High-water-resistance waterborne polyurethane modified montmorillonite nano composite emulsion
WO2024185497A1 (en) Heat-expandable microspheres and use thereof
JP7369329B1 (en) Thermally expandable microspheres and their uses
JP7024417B2 (en) Fine particle consolidation method
JP6026072B1 (en) Thermally expandable microspheres and their uses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150