WO2018012415A1 - Resin composition and use thereof - Google Patents

Resin composition and use thereof Download PDF

Info

Publication number
WO2018012415A1
WO2018012415A1 PCT/JP2017/024888 JP2017024888W WO2018012415A1 WO 2018012415 A1 WO2018012415 A1 WO 2018012415A1 JP 2017024888 W JP2017024888 W JP 2017024888W WO 2018012415 A1 WO2018012415 A1 WO 2018012415A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow particles
resin
weight
resin composition
hollow
Prior art date
Application number
PCT/JP2017/024888
Other languages
French (fr)
Japanese (ja)
Inventor
勝志 三木
直哉 太野垣
Original Assignee
松本油脂製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松本油脂製薬株式会社 filed Critical 松本油脂製薬株式会社
Priority to JP2018527570A priority Critical patent/JP7189768B2/en
Publication of WO2018012415A1 publication Critical patent/WO2018012415A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • C09J201/02Adhesives based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups

Definitions

  • the present invention relates to a resin composition and use thereof.
  • Plastic balloons are used as lightweight fillers such as clay, paint, and adhesive.
  • the purpose of blending these lightweight fillers is to reduce costs by saving environmental measures and resin components (Patent Document 1).
  • a plastic balloon is obtained by inflating thermally expandable microspheres having a structure in which a thermoplastic resin is used as an outer shell and a foaming agent is enclosed therein.
  • the thermally expandable microsphere is generally called a thermally expandable microcapsule.
  • the thermoplastic resin a vinylidene chloride copolymer, an acrylonitrile copolymer, an acrylate copolymer, or the like is usually used.
  • hydrocarbons, such as isobutane and isopentane are mainly used as a foaming agent (refer patent document 2).
  • Patent Document 3 discloses hollow fine particles obtained by heating and foaming thermally expandable microcapsules having an outer shell formed of a polymer obtained from a specific monomer and a crosslinking agent and having an expansion ratio of 20 to 100 times. It is described that it is blended into lightweight cement products. However, even with these hollow fine particles, the improvement of the resistance of the hollow particles against the load caused by external pressure is insufficient.
  • An object of the present invention is to provide a resin composition capable of producing a resin molded product excellent in production stability and weight reduction efficiency and its use.
  • the resin composition containing the hollow particles (A) in which the volume ratio of the air amount has a specific value improves the resistance of the hollow particles to a load due to external pressure, and the mixing and filling steps
  • the present inventors have found that a resin molded body excellent in production stability and weight reduction efficiency can be produced.
  • the resin composition of the present invention contains hollow particles (A) and an organic base resin (B), and the hollow particles (A) are encased in a shell made of a thermoplastic resin and heated.
  • the expandable body of thermally expandable microspheres composed of a foaming agent that vaporizes when the volume ratio (P) of the amount of air contained in the hollow particles (A) is the total volume of the hollow particles (A). When the volume is 100%, it is 30% or more.
  • the resin composition of the present invention further satisfies at least one selected from the following 1) to 2).
  • the volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is 1 to 300 ⁇ m.
  • a paint composition, an adhesive composition or a resin clay is 1 to 300 ⁇ m.
  • the molded product of the present invention is obtained by molding the above resin composition.
  • the method for producing a resin composition of the present invention comprises a step (1) of obtaining thermally expandable microspheres comprising an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating; The step (2) of obtaining the hollow particles (a) by thermally expanding the thermally expandable microspheres, and aging the hollow particles (a) at a temperature in the range of ⁇ 10 to 80 ° C. to obtain the hollow particles (A).
  • the resin composition of the present invention contains hollow particles (A) and an organic base resin (B). Details will be described below.
  • the hollow particles (A) are an essential component of the resin composition of the present invention.
  • the hollow particle (A) is an expanded body of thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating.
  • the hollow particle (A) The volume ratio (P) of the amount of air contained in is 30% or more when the volume of the entire hollow particles (A) is 100%.
  • the hollow particles (A) will be described by taking the production method as an example.
  • a step (1) of producing thermally expandable microspheres comprising an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating.
  • a production method including the step (3) of aging in the range of obtaining hollow particles (A) can be mentioned.
  • Step (1) may be referred to as a polymerization step, step (2) as an expansion step, and step (3) as an aging step.
  • the polymerization step refers to a step (1) for producing thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating.
  • Examples of the polymerization step include a step of dispersing an oily mixture containing a polymerizable component and a foaming agent in an aqueous dispersion medium and polymerizing the polymerizable component.
  • the foaming agent is not particularly limited as long as it is a substance that is vaporized by heating.
  • propane for example, propane, (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane, ( Hydrocarbons having 3 to 13 carbon atoms such as (iso) nonane, (iso) decane, (iso) undecane, (iso) dodecane, (iso) tridecane; (iso) hexadecane, (iso) eicosane and the like having more than 13 carbon atoms
  • Examples of the hydrocarbon include 20 or less.
  • foaming agents may be used alone or in combination of two or more.
  • the blowing agent is preferably a hydrocarbon having a boiling point of less than 60 ° C. If a hydrocarbon having a boiling point exceeding 60 ° C. is used, the hollow particles (A) may be crushed during mixing of the resin composition, and a sufficient weight reduction rate may not be obtained.
  • the polymerizable component is a component that becomes a thermoplastic resin that forms the outer shell of the thermally expandable microsphere by polymerization.
  • the polymerizable component is a component which essentially includes a monomer component and may contain a crosslinking agent.
  • the monomer component generally includes a component called a (radical) polymerizable monomer having one polymerizable double bond.
  • thermoplastic resin obtained by polymerizing a polymerizable component in which the monomer component is a nitrile monomer
  • the polymerizable component contains a nitrile monomer
  • the hollow particles contain a nitrile monomer
  • nitrile monomers include acrylonitrile (AN), methacrylonitrile (MAN), and fumaronitrile.
  • the weight ratio of the nitrile monomer in the polymerizable component is not particularly limited, but is preferably 20% by weight or more, more preferably 40% by weight or more, and particularly preferably 60% by weight or more.
  • the upper limit of the weight ratio of the nitrile monomer is preferably 100% by weight.
  • the thermally expanded microcapsules and the hollow particles (A) and (a) that are the raw materials of the hollow particles (A) and (a) is preferable because of the excellent retention of the encapsulating foaming agent.
  • the polymerizable component may contain a monomer other than the nitrile monomer as the monomer component.
  • the monomer other than the nitrile monomer is not particularly limited.
  • vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; vinyl acetate, propionic acid Vinyl ester monomers such as vinyl and vinyl butyrate; carboxyl group-containing monomers such as (meth) acrylic acid, ethacrylic acid, crotonic acid and cinnamic acid; carboxylic anhydrides such as maleic acid, itaconic acid and fumaric acid Monomers: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, phenyl (meta ) Ac
  • Polymerizable components include (meth) acrylic acid ester monomers, carboxyl group-containing monomers, styrene monomers, vinyl ester monomers, acrylamide monomers, maleimide monomers, and vinylidene chloride. It is preferable that at least one selected from the group consisting of When the polymerizable component contains a nitrile monomer and a (meth) acrylic acid ester monomer, it is preferable from the viewpoints of retention of the foaming agent in the heat-expandable microsphere and heat resistance.
  • the polymerizable component may contain a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds in addition to the monomer component.
  • crosslinking agent polymerizable monomer having two or more polymerizable double bonds in addition to the monomer component.
  • the crosslinking agent is not particularly limited.
  • aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene, allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trime Roll propane tri (meth) acrylate, EO-modified trimethylolprop
  • the amount of the crosslinking agent is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, particularly preferably 0. 3 to 0.9 parts by weight, most preferably 0.5 to 0.8 parts by weight.
  • Polymerization of the polymerizable component may be performed using a polymerization initiator, and an oil-soluble polymerization initiator is preferable.
  • the oily mixture may further contain a chain transfer agent and the like.
  • the aqueous dispersion medium is a medium mainly composed of water such as ion-exchanged water in which the oily mixture is dispersed, and may further contain an alcohol such as methanol, ethanol or propanol, or a hydrophilic organic solvent such as acetone. .
  • the hydrophilicity in the present invention means that it can be arbitrarily mixed with water.
  • the amount of the aqueous dispersion medium to be used is not particularly limited, but it is preferable to use 100 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polymerizable component.
  • the aqueous dispersion medium may further contain an electrolyte.
  • the electrolyte include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, and sodium carbonate. These electrolytes may be used alone or in combination of two or more.
  • the content of the electrolyte is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium.
  • An aqueous dispersion medium is a water-soluble 1,1-substituted compound having a structure in which a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group, and a phosphonic acid (salt) group and a hetero atom are bonded to the same carbon atom , Potassium dichromate, alkali metal nitrite, metal (III) halide, boric acid, water-soluble ascorbic acids, water-soluble polyphenols, water-soluble vitamin Bs and water-soluble phosphonic acids (salts) It may contain at least one water-soluble compound.
  • the water solubility in this invention means the state which melt
  • the amount of the water-soluble compound contained in the aqueous dispersion medium is not particularly limited, but is preferably 0.0001 to 1.0 part by weight, more preferably 0.0003 to 100 parts by weight with respect to 100 parts by weight of the polymerizable component. 0.1 parts by weight, particularly preferably 0.001 to 0.05 parts by weight. If the amount of the water-soluble compound is too small, the effect of the water-soluble compound may not be sufficiently obtained. Moreover, when there is too much quantity of a water-soluble compound, a polymerization rate may fall or the residual amount of the polymeric component which is a raw material may increase.
  • the aqueous dispersion medium may contain a dispersion stabilizer and a dispersion stabilization auxiliary agent in addition to the electrolyte and the water-soluble compound.
  • the dispersion stabilizer is not particularly limited.
  • colloidal silica colloidal calcium carbonate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, ferric hydroxide, calcium sulfate, barium sulfate, calcium oxalate, metasilicic acid.
  • the dispersion stabilizer of a water-soluble inorganic compound can be mentioned. These dispersion stabilizers may be used alone or in combination of two or more.
  • the amount of the dispersion stabilizer is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable component.
  • the dispersion stabilizing aid is not particularly limited, and examples thereof include a polymer type dispersion stabilizing aid, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant. Mention may be made of activators. These dispersion stabilizing aids may be used alone or in combination of two or more.
  • the aqueous dispersion medium is prepared, for example, by blending water (ion-exchanged water) with a water-soluble compound and, if necessary, a dispersion stabilizer and / or a dispersion stabilizing aid.
  • the pH of the aqueous dispersion medium at the time of polymerization is appropriately determined depending on the type of the water-soluble compound, the dispersion stabilizer, and the dispersion stabilization aid.
  • Examples of the method for emulsifying and dispersing the oily mixture include, for example, a method of stirring with a homomixer (for example, manufactured by Tokushu Kika Kogyo Co., Ltd.) and the like, and a static dispersion device such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.). And general dispersion methods such as a method using a film, a membrane emulsification method, and an ultrasonic dispersion method.
  • suspension polymerization is started by heating the dispersion in which the oily mixture is dispersed as spherical oil droplets in the aqueous dispersion medium.
  • the polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably 30 to 100 ° C., more preferably 40 to 90 ° C., particularly preferably 45 to 80 ° C., and most preferably 50 to 75 ° C. Be controlled.
  • the time for maintaining the reaction temperature is preferably about 0.1 to 20 hours.
  • the initial polymerization pressure is not particularly limited, but is 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa in terms of gauge pressure.
  • the expansion step refers to a step (2) in which the thermally expandable microspheres obtained in the step (1) are heated and expanded to obtain hollow particles (a).
  • the expansion step is not particularly limited as long as it is a step in which the thermally expandable microspheres are heated and expanded, and may be either a dry heating expansion method or a wet heating expansion method.
  • Examples of the dry heating expansion method include the method described in JP-A-2006-213930, particularly the internal injection method.
  • As another dry heating expansion method there is a method described in JP-A-2006-96963.
  • Examples of the wet heating expansion method include the method described in JP-A-62-201231.
  • the temperature at which the thermally expandable microspheres are heated and expanded is preferably 60 to 350 ° C.
  • the hollow particle (a) has an outer shell made of a thermoplastic resin.
  • the hollow particles are composed of an outer shell and a hollow portion surrounded by the outer shell.
  • the hollow particles have a hollow portion corresponding to a large cavity inside.
  • the hollow portion is in contact with the inner surface of the outer shell.
  • the hollow portion is basically filled with gas and may be in a liquefied state.
  • the hollow part is preferably one large hollow part, but there may be a plurality of hollow parts.
  • a hollow particle (a) is an expanded body of the above-mentioned thermally expandable microsphere, which is not aged or insufficiently aged.
  • the aging will be described in detail in the aging process.
  • the hollow particles (a) can be obtained by heating and expanding the heat-expandable microspheres and then cooling to room temperature. An air concentration gradient is generated inside and outside the hollow portion of the hollow particles immediately after cooling, and a negative pressure state is caused by the low air content in the hollow portion of the hollow particles. Therefore, it has a distorted shape or is weak against external pressure.
  • the hollow particle (a) is easily deformed, crushed or ruptured, and the foaming agent leaks.
  • the efficiency of reducing the weight of the object and its molded body may be lowered.
  • the volume ratio (P) of the amount of air contained in the hollow particles (a) is less than 30% when the entire volume of the hollow particles is 100%.
  • the method for measuring the volume ratio (P) will be described in the aging step.
  • the aging step refers to a step (3) in which the hollow particles (a) obtained in the step (2) are aged at a temperature of ⁇ 10 to 60 ° C. to obtain the hollow particles (A).
  • the aging period is described below.
  • aging means storing a substance for a certain period of time under appropriate conditions in order to obtain the necessary properties of the substance.
  • the inside of the hollow portion has a lower air concentration than the outside, and the hollow portion of the hollow particles is in a negative pressure state. Therefore, it has a distorted shape or is weak against external pressure.
  • Aging in the present invention means gradually taking air in the air into the hollow part, eliminating the air concentration gradient inside and outside the hollow part, adjusting the balance between the internal pressure and the external pressure of the particles, and improving the resistance to external pressure. It means to make it.
  • the hollow particles (a) obtained in the step (2) are stored at a temperature in the range of ⁇ 10 to 60 ° C. (hereinafter, this temperature is referred to as aging temperature) for a certain period.
  • the degree of ripening can be confirmed by calculating the amount of air taken into the hollow particles.
  • the hollow particles can be stored in a sealed container containing air, and the amount of air taken into the hollow particles can be calculated from the volume change of the sealed container. When the volume of the entire container decreases, it means that the air in the container is taken into the hollow particles. Depending on the aging conditions, the sealed container may expand.
  • Another method includes a method of measuring the amount of air or oxygen contained in the hollow particles.
  • the aging temperature of the hollow particles (a) is in the range of ⁇ 10 to 80 ° C., preferably ⁇ 10 to 60 ° C., more preferably ⁇ 5 to 50 ° C., still more preferably 0 to 40 ° C., and particularly preferably 5 ⁇ 35 ° C., most preferably 10-30 ° C.
  • the aging temperature is less than ⁇ 10 ° C., the hollow particles are not sufficiently restored, and are deformed, crushed or ruptured due to external factors, and the foaming agent leaks.
  • the aging temperature is higher than 80 ° C., the foaming agent is gradually released, and it is deformed or crushed due to external factors.
  • the volume ratio (P) of the amount of air contained in the hollow particles (a) is 30% or more when the entire volume of the hollow particles (a) is 100% (that is, If it is a period which becomes said hollow particle (A)), it will not specifically limit.
  • the aging period can be determined according to the aging temperature (T) (° C.).
  • T aging temperature
  • the ripening period (Q) (time) preferably satisfies the following formula (I).
  • the aging period does not satisfy the above formula (I), the internal pressure and the external pressure of the hollow particles are not balanced, and the foaming agent leaks due to deformation, crushing, or rupture due to external factors.
  • the upper limit of the aging period is not particularly limited as long as the effect of aging is exhibited, but the period is about 8 weeks. After aging, it can be further stored for a period during which the quality of the hollow particles (A) can be maintained.
  • the hollow particles (a) obtained by the dry heat expansion method are powders and are aged in the powder state. Similarly, in the case of hollow particles (A1) to which a fine particle filler to be described later is attached, they are aged in a powder state.
  • the hollow particles (a) obtained by the wet heating expansion method have a hollow particle composition containing water and are aged in the state of a hollow particle composition containing water.
  • the weight ratio of water in the hollow particle composition is not particularly limited, and is preferably 99% by weight or less, more preferably 84% by weight or less, particularly preferably 49% by weight or less, and most preferably 30 parts by weight or less. . If ripening is carried out in a sealed state with too few voids other than hollow particles, ripening may not proceed well even at a predetermined temperature and for a predetermined time.
  • the hollow shell (A) has an outer shell made of a thermoplastic resin.
  • the hollow particles (A) are preferably composed of an outer shell and a hollow portion surrounded by the outer shell.
  • the hollow particles (A) are (almost) spherical and have a hollow portion corresponding to a large cavity inside. If the shape of the hollow particles is exemplified by familiar articles, a soft tennis ball can be mentioned.
  • the hollow part is (substantially) spherical and is in contact with the inner surface of the outer shell.
  • the hollow portion is basically filled with gas and may be in a liquefied state.
  • the hollow part is preferably one large hollow part, but there may be a plurality of hollow parts.
  • the hollow particles (A) used in the resin composition of the present invention are the above-mentioned expanded bodies of thermally expandable microspheres, and the volume ratio (P) of the amount of air contained in the hollow particles (A) is hollow particles ( A) When the total volume is 100%, it means 30% or more. By using such hollow particles (A), the effect of the present application can be exhibited. When the volume ratio (P) is less than 30%, the hollow particles are deformed by external factors, crushed, or ruptured and the foaming agent leaks.
  • the volume ratio (P) is preferably 35 to 99%, more preferably 40 to 98%, still more preferably 45 to 95%, and particularly preferably 50 to 90%.
  • the method for measuring the volume ratio (P) of the amount of air contained in the hollow particles is shown in the following examples.
  • the amount of air contained in the hollow particles can be determined from the amount of collected gas and the oxygen concentration in the gas.
  • the galvanic cell type there are zirconia type and magnetic type as the oxygen concentration measurement method, but the galvanic cell type can be measured without error even in flammable gas, while the zirconia type and magnetic type are If flammable gas is included, the measurement error increases, which is not preferable.
  • the hollow particles (A) are preferably those in which the volume ratio (Z) of the intake air amount with respect to the hollow particles is in a certain range from the viewpoint of further exerting the effect of the present application.
  • the volume ratio (Z) the volume of the container sealed in a state containing the hollow particles of volume (V) and air is defined as (Y1), and the volume of the container after standing under a certain condition is defined as (Y2).
  • Y1 the volume of the container after standing under a certain condition
  • Y2 the volume of the container after standing under a certain condition
  • the specific measurement method of the volume ratio (Z) of the intake air amount with respect to the hollow particles is shown in the following examples.
  • volume ratio of intake air amount to hollow particles (Z) (Y1-Y2) / V
  • the volume ratio (Z) is preferably ⁇ 0.05 ⁇ (Z) ⁇ 0.2, more preferably ⁇ 0.05 ⁇ (Z) ⁇ 0.05, and further preferably ⁇ 0.02 ⁇ (Z). ⁇ 0.02.
  • the foaming agent retention of the hollow particles (A) is preferably 85% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 97%.
  • the foaming agent retention is less than 85%, the mechanical strength of the hollow particles (A) is weak, and the hollow particles (A) are easily crushed during the production of the resin composition, so that the effect as a lightweight filler is reduced. There is.
  • the measuring method of the foaming agent retention of the hollow particles (A) is shown in the following examples. You may use a hollow particle (A) for a resin composition as a hollow particle composition containing water.
  • the weight ratio of water in the hollow particle composition is not particularly limited, and is preferably 99% by weight or less, more preferably 84% by weight or less, particularly preferably 49% by weight or less, and most preferably 30 parts by weight or less. . If the weight ratio of water in the hollow particle composition is too large, it may not be uniformly dispersed when mixed with other components constituting the resin composition.
  • the volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is not particularly limited, but is preferably 1 to 300 ⁇ m, more preferably 2 to 200 ⁇ m, still more preferably 3 to 150 ⁇ m, particularly preferably. Is from 5 to 130 ⁇ m, most preferably from 7 to 120 ⁇ m. When D50 is outside this range, the weight reduction efficiency may deteriorate when used in a resin composition.
  • the true specific gravity of the hollow particles (A) is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.012 to 0.49, still more preferably 0.04 to 0.49, particularly Preferably it is 0.1 to 0.48, most preferably 0.31 to 0.47. If the true specific gravity is less than 0.01, the strength of the hollow shell of the hollow particles (A) is reduced due to the thinness, and the hollow particles (A) are broken when the resin composition is mixed, resulting in a reduction in weight reduction efficiency. There are things to do. On the other hand, when the true specific gravity exceeds 0.5, the lightening effect corresponding to the amount to be blended is low, which is uneconomical.
  • the hollow particles (A) may be further composed of a fine particle filler adhered to the outer surface of the outer shell.
  • the hollow particles (A) to which the fine particle filler is attached may be referred to as “hollow particles (A1)” for the sake of simplicity.
  • adhered simply means that the fine particle fillers (6 and 7) are adsorbed on the outer surface of the outer shell 5 of the hollow particle (A1) 4, and the outer shell in the vicinity of the outer surface may be removed.
  • the thermoplastic resin constituting the resin may be softened or melted by heating, and the fine particle filler may sink into the outer surface of the outer shell of the hollow particles (A1) and be fixed.
  • the particle shape of the fine particle filler may be indefinite or spherical.
  • the true specific gravity of the hollow particles (A1) is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.03 to 0.4, still more preferably 0.05 to 0.35. Particularly preferred is 0.07 to 0.3, and most preferred is 0.1 to 0.25.
  • the true specific gravity of the hollow particles (A1) is smaller than 0.01, the durability may be lowered.
  • the true specific gravity of the hollow particles (A1) is greater than 0.5, the effect of lowering the specific gravity is reduced. Therefore, when the resin composition is prepared using the hollow particles (A1), the amount added is increased. May be uneconomical.
  • the ratio between the average particle diameter of the fine particle filler and the average particle diameter of the hollow particles (A1) is from the viewpoint of the adhesion of the fine particle filler. It is preferably 1 or less, more preferably 0.8 or less, more preferably 0.6 or less, particularly preferably 0.4 or less, and most preferably 0.2.
  • Various particles can be used as the fine particle filler, and any of inorganic and organic materials may be used. Examples of the shape of the fine particles include spherical shapes, needle shapes, plate shapes, and irregular shapes.
  • the average particle size of the fine particle filler is appropriately selected depending on the hollow particle body to be used, and is not particularly limited, but is preferably 0.001 to 30 ⁇ m, more preferably 0.005 to 25 ⁇ m, and particularly preferably 0.01 to 20 ⁇ m. It is. Within this range, as will be described later, the mixing property becomes good when the hollow particles (A1) are produced.
  • the average particle diameter of the fine particle filler here is the particle diameter of the fine particle filler measured by a laser diffraction method. If the particle size of the fine particle filler is in the micron order, it indicates primary particles. However, nano-order fine particles are often aggregated and act as an aggregate in the order of micron. The average particle size was calculated as a unit.
  • inorganic substances constituting the fine particle filler include limestone (heavy calcium carbonate), quartz, silica (silica), wollastonite, gypsum, asbestos, apatite, magnetite, zeolite, clay (montmorillonite, saponite, hectorite, beidellite, Minerals such as stevensite, nontronite, vermiculite, halloysite, talc, mica, mica, etc .; in the periodic table of elements, metals in groups 1 to 16 (zinc, aluminum, molybdenum, tungsten, zirconium, barium, Manganese, cobalt, calcium, gold, silver, chromium, titanium, iron, platinum, copper, lead, nickel, etc.) and alloys thereof; metal oxides of groups 1 to 16 in the periodic table of elements (titanium oxide, oxidation) Zinc, aluminum oxide, chromium oxide, manganese oxide Molybdenum oxide, tungsten oxide, vanadium oxide,
  • Inorganic substances constituting the fine particle filler are also synthetic calcium carbonate, ferrite, zeolite, silver ion supported zeolite, zirconia, alum, lead zirconate titanate, alumina fiber, cement, zonotlite, silicon oxide (silica, silicate, glass, (Including glass fiber), silicon nitride, silicon carbide, silicon sulfide, carbon black, carbon nanotube, graphite, activated carbon, bamboo charcoal, charcoal, fullerene, and the like.
  • organic substances constituting the fine particle filler include (meth) acrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, vinyl benzoic acid; esters thereof, amides, nitriles; styrene, methylstyrene, Emulsion polymerization, leap, using vinyl aromatics such as ethylstyrene and chlorostyrene, divinyl compounds having two or more vinyl groups such as divinylbenzene and trimethylolpropane, etc., using a crosslinking agent as necessary
  • examples thereof include organic resins obtained by polymerization using a free polymerization method, a dispersion polymerization method, a suspension polymerization method, a miniemulsion polymerization method, or the like.
  • Organic substances constituting the fine particle filler are sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, ethyl cellulose, nitrocellulose, hydroxypropyl cellulose, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide. It may be a resin, nylon resin, silicone resin, urethane resin, polyethylene resin, polypropylene resin, fluorine resin, or the like.
  • the softening temperature of the organic substance depends on the temperature at which the hollow particles (A1) are produced, but is preferably 80 to 300 ° C, more preferably 90 to 290 ° C, and further preferably 100 to 280 ° C.
  • the softening temperature of the organic substance is preferably 10 ° C. or more higher than the process temperature.
  • the inorganic substance or organic substance constituting the fine particle filler may be treated with a surface treatment agent such as a silane coupling agent, paraffin wax, fatty acid, resin acid, urethane compound, fatty acid ester, etc., or may be untreated.
  • a surface treatment agent such as a silane coupling agent, paraffin wax, fatty acid, resin acid, urethane compound, fatty acid ester, etc., or may be untreated.
  • the step (1) for producing thermally expandable microspheres and a step of mixing the obtained thermally expandable microspheres and a fine particle filler (simply referred to as a mixing step). And the mixture obtained in the mixing step is heated to a temperature above the softening point of the thermoplastic resin to expand the thermally expandable microspheres (corresponding to step (2) above), and the fine particle filling
  • a manufacturing method comprising: a step of attaching an agent to the outer surface of the outer shell (attachment step); and the step (3) of obtaining hollow particles (A1) by aging the hollow particles (a) to which the fine particle filler is attached. Can be mentioned.
  • the mixing step is a step of mixing the thermally expandable microspheres and the fine particle filler.
  • the weight ratio of the fine particle filler and the thermally expandable microsphere in the mixing step is not particularly limited, but is preferably 90/10 to 60/40, more preferably 85. / 15 to 65/35, particularly preferably 80/20 to 70/30.
  • the fine particle filler / heat-expandable microsphere (weight ratio) is larger than 90/10, the true specific gravity of the hollow particles (A1) is increased, and the effect of lowering the specific gravity may be reduced.
  • the fine particle filler / heat-expandable microsphere (weight ratio) is smaller than 60/40, the true specific gravity of the hollow particles (A1) is lowered, and handling such as dusting may be deteriorated.
  • the apparatus can carry out using the apparatus provided with the very simple mechanism, such as a container and a stirring blade.
  • the powder mixer include a powder mixer that can perform rocking stirring or stirring, such as a ribbon mixer and a vertical screw mixer.
  • the attaching step the mixture containing the thermally expandable microspheres and the fine particle filler obtained in the mixing step is heated to a temperature above the softening point of the thermoplastic resin constituting the outer shell of the thermally expandable microsphere. It is a process.
  • the thermally expandable microspheres are expanded and the fine particle filler is attached to the outer surface of the outer shell.
  • Heating may be performed using a general contact heat transfer type or direct heating type mixed drying apparatus.
  • the function of the mixing type drying apparatus is not particularly limited, but it is preferable to be able to adjust the temperature and disperse and mix the raw materials, and optionally equipped with a decompression device and a cooling device for speeding up drying.
  • a Ladige mixer made by Matsubo Co., Ltd.
  • solid air Hosokawa Micron Co., Ltd.
  • the heating temperature condition depends on the type of thermally expandable microsphere, it is preferable to set the optimum expansion temperature, preferably 60 to 250 ° C., more preferably 70 to 230 ° C., further preferably 80 to 220 ° C. Particularly preferred is 100 to 200 ° C, and most preferred is 120 to 180 ° C.
  • Organic base resin (B) The resin composition of the present invention essentially contains an organic base resin (B). It does not specifically limit as organic base resin (B), Resin used for a coating composition, an adhesive composition, and resin clay is mentioned. Examples thereof include acrylic resin, polyvinyl chloride resin (PVC), urethane resin, epoxy resin, polyvinyl alcohol, vinyl acetate resin, ethylene / vinyl acetate copolymer resin, and rubber. Among these, acrylic resin is preferable from the viewpoint of environment.
  • acrylic resin for example, a polymer of acrylic acid alkyl ester (alkyl as methyl, ethyl, butyl, 2-ethylhexyl, etc.) or methacrylic acid alkyl ester (alkyl as methyl, ethyl, butyl, lauryl, stearyl, etc.), or Examples include acrylic resins containing copolymers with other acrylic monomers.
  • polyvinyl chloride resin examples include a homopolymer of polyvinyl chloride, a copolymer (copolymer) made of vinyl chloride, vinyl acetate, and the like.
  • urethane resins include blocked urethane prepolymers and blocked polyisocyanate compounds.
  • the blocked urethane prepolymer can be produced, for example, according to the following procedure.
  • a polyol and an excess polyisocyanate compound are reacted to obtain a terminal NCO-containing urethane prepolymer.
  • the polyol include, for example, polyoxyalkylene polyol (PPG), polyether polyol modified, polyether polyol containing polytetramethylene ether glycol; condensed polyester polyol, lactone polyester polyol, polyester polyol containing polycarbonate diol; polybutadiene Polyol polyols; Polyolefin polyols: Polyether polyols: Acrylonitrile alone or a mixed monomer of acrylonitrile and at least one selected from the group of styrene, acrylamide, acrylate ester, methacrylate ester and vinyl acetate is polymerized or graft polymerized And polymer polyols.
  • PPG polyoxyalkylene polyol
  • polyisocyanate compound examples include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-cyclohexane.
  • the terminal NCO-containing urethane prepolymer is reacted with a suitable blocking agent (usually 0.9 to 1.5 equivalents of blocking agent per 1 mol of the former NCO), and free NCO To obtain a target blocked urethane prepolymer (in particular, at least a part of the polyol preferably contains the polymer polyol).
  • a suitable blocking agent usually 0.9 to 1.5 equivalents of blocking agent per 1 mol of the former NCO
  • the blocking agent examples include alcohols such as methanol, ethanol, propanol, butanol, and isobutanol; phenols such as phenol, cresol, xylenol, p-nitrophenol, and alkylphenol; methyl malonate, ethyl malonate, dimethyl malonate Active methylene compounds such as diethyl malonate, ethyl acetoacetate, methyl acetoacetate and acetylacetone; acid amides such as acetamide, acrylamide and acetanilide; acid imides such as succinimide and maleic imide; 2-ethylimidazole, 2- Imidazoles such as ethyl-4-methylimidazole; Lactams such as 2-pyrrolidone and ⁇ -caprolactam; Acetoxime, methylethylketoxime, cyclohexanone oxime, acetoaldoxy Ketones such as oximes
  • blocked urethane prepolymer examples include, for example, polypropylene glycol having an excess polyisocyanate compound reacted with TDI and / or HDI, and then reacted with methyl ethyl ketoxime as a blocking agent.
  • the blocked polyisocyanate compound can be obtained by blocking the free NCO of the polyisocyanate compound exemplified in the production of the terminal NCO-containing urethane prepolymer with the above-mentioned blocking agent.
  • Specific examples of the blocked isocyanate compound include a polyisocyanate compound obtained by reacting TDI and / or HDI with methylethylketoxime as a blocking agent.
  • the epoxy resin is not particularly limited, and examples thereof include glycidyl ether type, glycidyl ester type, glycidyl amine type, and alicyclic type.
  • the rubber type is not particularly limited, and examples thereof include chloroprene rubber type, styrene butadiene type, nitrile rubber type, natural rubber, and silicone rubber.
  • organic base resins (B) are usually secondary particles in which primary particles and / or primary particles are aggregated, and those having a particle size of 0.1 to 100 ⁇ m are preferable. Moreover, these organic base resin (B) may be used individually by 1 type, and may use 2 or more types together.
  • the resin composition of the present invention essentially contains hollow particles (A) and an organic base resin (B).
  • the true specific gravity of the resin composition is preferably 0.3 to 1.4, more preferably 0.4 to 1.3, still more preferably 0.5 to 1.2, and particularly preferably 0.6 to 1.1. Preferably, 0.7 to 0.95 is most preferable. If it is less than 0.3, the weight ratio of the hollow particles becomes high, so that the adhesion performance or the molding performance may be lowered. If it exceeds 1.4, the effect of weight reduction may be insufficient.
  • the weight ratio of the hollow particles (A) to the resin composition is preferably 0.1 to 30% by weight, more preferably 0.5 to 25% by weight, and still more preferably 1.0 to 15% with respect to the entire composition. % By weight, particularly preferably 1.4 to 10% by weight. If it is less than 0.1% by weight, the effect on weight reduction may be insufficient. If it exceeds 30% by weight, the weight ratio of the hollow particles is high, so that the adhesion performance or the molding performance may be deteriorated.
  • the weight ratio of the organic base resin (B) in the resin composition of the present invention is preferably 5 to 65% by weight, more preferably 10 to 55% by weight, and still more preferably 15 to 45% with respect to the entire composition. % By weight. If it is less than 5% by weight, excellent adhesion performance may not be obtained, and if it exceeds 65% by weight, the mechanical properties, thermal properties and other properties of the molded product may not be obtained.
  • the resin composition of the present invention contains a plasticizer (C), for example, the intermolecular force is weakened, and the glass transition temperature of the organic base resin (B) is lowered to give flexibility, elasticity, adhesiveness, and the like. It is preferable because both workability such as spray coating and physical performance are improved.
  • a plasticizer for example, the intermolecular force is weakened, and the glass transition temperature of the organic base resin (B) is lowered to give flexibility, elasticity, adhesiveness, and the like. It is preferable because both workability such as spray coating and physical performance are improved.
  • plasticizer (C) examples include di (2-ethylhexyl) phthalate, butyl benzyl phthalate (high polarity plasticizer), dinonyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate, diundecyl phthalate, diheptyl phthalate, butyl Phthalic acid esters such as phthalyl butyl glycolate and isononyl benzyl phthalate; Aliphatic dibasic acid esters such as dioctyl adipate, didecyl adipate and dioctyl sebacate; polyoxyethylene glycol dibenzoate, polyoxypropylene glycol dibenzoate, etc.
  • Polyglycol benzoate trimellitic acid ester; pyromellitic acid ester; phosphoric acid ester such as tributyl phosphate and tricresyl phosphate; Le, alkyl-substituted terphenyl, partially hydrogenated alkyl terphenyl, aromatic process oils, hydrocarbons such as pine oil, and the like. These may be used alone or in combination of two or more. Of these, phthalates are preferred from the viewpoint of cost and versatility.
  • the weight ratio of the plasticizer (C) in the resin composition of the present invention is preferably 15 to 60% by weight based on the entire composition, 25 More preferred is ⁇ 45% by weight. If it is less than 15% by weight, the coating film becomes too hard and the effect of the present application may not be obtained. If it exceeds 60% by weight, the fluidity of the coating film becomes too high, and the coating film formation may not be sufficient.
  • the resin composition of the present invention is not particularly limited, but is preferably a coating composition, an adhesive composition or a resin clay from the viewpoint of easily exerting the effect of the present application.
  • the paint is not particularly limited, and examples thereof include automotive paints such as underbody coating agents and vibration control paints; architectural paints such as heat insulating paints, exterior wall paints, and waterproof paints.
  • Adhesives include body sealers, hemming adhesives, structural adhesives, spot sealers, mastic adhesives, sheet metal reinforcements and other automotive adhesives; exterior wall sealants, tile adhesives, dirt adhesives, etc. And the like.
  • resin clay There exists a lightweight clay etc. which are used in education fields, such as a handicraft field, an art field, and a school teaching material.
  • the resin composition according to the present invention comprises a filler (calcium carbonate, silicic acid, silicate, carbon black, talc, kaolin, silica, water, depending on the application such as a coating composition, an adhesive composition, and a resin clay.
  • a filler calcium carbonate, silicic acid, silicate, carbon black, talc, kaolin, silica, water, depending on the application such as a coating composition, an adhesive composition, and a resin clay.
  • hygroscopic agent calcium oxide, mo
  • An adhesive composition is a composition containing the said hollow particle (A) and organic base resin (B) used as an adhesive component.
  • the adhesive component is not particularly limited as long as it is a component capable of adhering between an object, a one-component polyurethane adhesive component, a two-component polyurethane adhesive component, a one-component modified silicone adhesive component, Examples include a two-component modified silicone adhesive component, a one-component polysulfide adhesive component, a two-component polysulfide adhesive component, and an acrylic adhesive component.
  • the adhesive component is preferably at least one selected from a one-component polyurethane adhesive component, a two-component polyurethane adhesive component, a one-component modified silicone adhesive component, and a two-component modified silicone adhesive component.
  • the one-pack type polyurethane adhesive component contains an isocyanate group-containing urethane prepolymer as a curing component.
  • the isocyanate group-containing urethane prepolymer expresses adhesiveness when the isocyanate group reacts with moisture in the air and is crosslinked and cured.
  • a one-component type polyurethane adhesive component for example, Penguin Seal 999 (manufactured by Sunstar Giken) and the like are commercially available.
  • the two-component polyurethane adhesive component is composed of two combinations of a urethane prepolymer (hereinafter also referred to as A1) and a curing agent such as polyol (hereinafter also referred to as A2).
  • A1 and A2 are mixed to express adhesiveness by crosslinking and curing.
  • the two-component polyurethane adhesive component for example, penguin seal PU9000 typepeNB (manufactured by Sunstar Giken), Hamatite UH-30 (manufactured by Yokohama Rubber Co., Ltd.), bond PU seal (manufactured by Konishi Co., Ltd.) and the like are commercially available. .
  • the one-component type modified silicone adhesive component exhibits adhesiveness when the crosslinkable silyl group-containing resin reacts with moisture in the air and is crosslinked and cured.
  • the one-component type modified silicone adhesive component include sealant 45 (manufactured by Shin-Etsu Chemical Co., Ltd.), SH780 sealant (manufactured by Dow Corning Toray), penguin seal 2505 (manufactured by Sunstar Giken Co., Ltd.), hamatite SS-310 ( Yokohama Rubber Co., Ltd.) are commercially available.
  • the two-component type modified silicone adhesive component includes a siloxane polymer (hereinafter also referred to as B1) and a curing agent such as a curing agent such as an organic tin compound (hereinafter also referred to as B2). Adhesiveness is developed by mixing and reacting.
  • the two-component type modified silicone adhesive component include two-component sealant 74 (manufactured by Shin-Etsu Chemical Co., Ltd.), SE792 sealant (manufactured by Dow Corning Toray), penguin seal SR2520 (manufactured by Sunstar Giken Co., Ltd.), and hamatite silicone 70. (Manufactured by Yokohama Rubber Co., Ltd.), Bond MS seal (manufactured by Konishi Co., Ltd.) and the like are commercially available.
  • the one-component type polysulfide adhesive component contains a liquid polysulfide resin as a curing component, and is blended with a peroxide of an alkali or alkaline earth metal such as BaO 2 and CaO 2 as a latent curing agent. It reacts with moisture in the air and generates adhesiveness.
  • a peroxide of an alkali or alkaline earth metal such as BaO 2 and CaO 2
  • As the one-component type polysulfide adhesive component for example, Topcol SP (manufactured by Toray Fine Chemical Co., Ltd.), Hamatite PS-ONE (manufactured by Yokohama Rubber Co., Ltd.), etc. are commercially available.
  • the two-component type polysulfide adhesive component includes a base composed of a sulfide polymer (hereinafter sometimes referred to as C1) and a curing agent (hereinafter also referred to as C2) including a metal peroxide such as PdO 2 . Adhesiveness is generated by mixing.
  • a sulfide polymer hereinafter sometimes referred to as C1
  • a curing agent hereinafter also referred to as C2
  • PdO 2 a metal peroxide
  • Adhesiveness is generated by mixing.
  • the two-component type polysulfide adhesive component for example, Penguin Seal PS169N (manufactured by Sunstar Giken), Hamatite SC-M500 (manufactured by Yokohama Rubber) and the like are commercially available.
  • the acrylic adhesive component is made of an acrylate polymer emulsion, and adhesiveness is generated by evaporation of moisture.
  • Examples of the acrylic adhesive component are commercially available under a trade name such as Penguin Seal 1250 (manufactured by Sunstar Giken).
  • the weight ratio of the hollow particles (A) and the adhesive component (hollow particles (A) / adhesive component) blended in the resin composition is not particularly limited, but is preferably 0.0005 to 0.30, more preferably Is 0.001 to 0.20, particularly preferably 0.01 to 0.1. When the hollow particles (A) / adhesive component (weight ratio) is smaller than 0.0005, the amount of the hollow particles (A) added is too small, and the effect of improving the elongation of the cured product of the resin composition is diminished.
  • the adhesive component means the total amount of A1 and A2 in the case of a two-component polyurethane adhesive component, and means the total amount of B1 and B2 in the case of a two-component modified silicone adhesive component, In the case of a two-component type polysulfide adhesive component, it means the total amount of C1 and C2.
  • the degree of elongation of the cured product obtained from the adhesive composition is large, and the cured product is not easily destroyed when deformed by an external force or the like.
  • the resin composition of the present invention is a resin clay, it contains polyvinyl alcohol as the hollow particles (A) and the organic base resin (B).
  • the saponification degree of the polyvinyl alcohol used in the present invention is preferably from 70 to 99 mol%, more preferably from 80 to 90 mol%, still more preferably from 85 to 90 mol%. When the degree of saponification is within this range, workability during modeling is good.
  • the viscosity of the polyvinyl alcohol used in the present invention is preferably 2 to 60 mPa ⁇ s in a 4% aqueous solution at 20 ° C., more preferably 4 to 50 mPa ⁇ s, and even more preferably 10 to 45 mPa ⁇ s. When the viscosity of the polyvinyl alcohol is within this range, workability at the time of modeling becomes good.
  • the blending amount of polyvinyl alcohol in the resin clay is preferably in the range of 2 to 15% by weight, more preferably in the range of 5 to 12% by weight based on the entire resin clay.
  • the adhesiveness (plasticity, extensibility) at the time of molding deteriorates, and when it exceeds 15% by weight, the clay becomes hard, and workability and hand feeling when modeling with clay, etc.
  • the physical properties may deteriorate.
  • polyvinyl alcohol is blended in a gel state with a gelling agent, it is desirable in that a clay with “koshi” can be obtained.
  • the gelling agent examples include bow glass (sodium sulfate), potassium alum (alum), boric acid, borax and the like.
  • the blending amount is preferably 2 to 15 parts by weight, more preferably 8 to 15 parts by weight with respect to 100 parts by weight of polyvinyl alcohol.
  • the resin clay of the present invention may contain a vinyl acetate resin.
  • the vinyl acetate resin include polyvinyl acetate, polymodified vinyl acetate, ethylene vinyl acetate copolymer resin, vinyl acetate / versaic acid vinyl copolymer resin, vinyl acetate / acrylic acid copolymer, vinyl acetate / acrylic acid ester copolymer Examples thereof include a vinyl acetate / methacrylic acid copolymer, a vinyl acetate / methacrylic acid ester copolymer, a vinyl acetate / acrylamide copolymer, and a vinyl acetate / diene copolymer.
  • This vinyl acetate resin is used in the form of a powder or an emulsion, but usually is often used in the form of an emulsion. When used in the form of an emulsion, it is desirable to use one containing 50% or more of the vinyl acetate resin component.
  • the vinyl acetate resin used in the present invention preferably has a 59% aqueous solution viscosity at 30 ° C. of 1,000 to 150,000 mPa ⁇ s.
  • the vinyl acetate-based resin imparts plasticity to the resin clay and maintains the shape of the shaped article after shaping and drying.
  • a vinyl acetate resin to which a plasticizer is added is preferable.
  • the plasticizer include dibutyl phthalate.
  • the blending amount of the plasticizer is desirably 4 to 10% by weight based on the weight of the vinyl acetate resin emulsion.
  • the blending amount of the vinyl acetate resin containing the plasticizer is preferably 1.5 to 7% by weight (expressed in dry weight), particularly 2 to 5% by weight, based on the entire resin clay.
  • the mixing ratio of the polyvinyl acetate resin containing polyvinyl alcohol and the plasticizer is preferably 10: 7 to 10: 3 by weight. If the blending ratio of the vinyl acetate resin containing the plasticizer exceeds 7, the clay may become sticky and the formability may be impaired. If it is less than 3, the clay tends to be damaged by the external pressure after drying.
  • the resin clay of the present invention may contain polyethylene oxide.
  • Polyethylene oxide is a polymer obtained by ring-opening polymerization of ethylene oxide, and is a water-soluble highly polymerized polymer having an ether group in the middle and a hydroxyl group at the end.
  • the polyethylene oxide used in the present invention preferably has a viscosity average molecular weight of about 300,000 to 1,200,000, particularly 600,000 to 800,000.
  • the viscosity of a 2.0 wt% aqueous solution at 25 ° C. is preferably 100 to 2000 mPa ⁇ s, particularly 200 to 700 mPa ⁇ s (measured with a rotational viscometer).
  • the melting point is preferably 65 to 67 ° C.
  • polyethylene oxide improves the plasticity and extensibility of clay during modeling of the clay, and improves the adhesion of the clay to reduce adhesion to the hand and make the modeling work comfortable.
  • the blending amount is preferably 0.5 to 1.5% by weight (expressed in dry weight) with respect to the entire resin clay. When the blending amount of the polyethylene oxide is less than 0.5% by weight, the extensibility and surface smoothness of the resulting clay are preferable, and when it exceeds 1.5% by weight, the clay sticks to the hand during modeling. There is a fear.
  • carboxymethylcellulose salt, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, natural polymer guar gum, and guar gum derivatives can be added to the resin clay of the present invention. These improve clay extensibility, surface smoothness, and texture, and the blending amount thereof is preferably 0.5 to 1.5% by weight based on the entire resin clay.
  • fiber powder can be added to the resin clay of the present invention. The fiber powder enhances the shape retention after shaping and drying, and has an effect of preventing shrinkage. Examples of the fiber powder include powdered pulp, vinylon fiber, powdered cotton, and pulverized sheet pulp.
  • Natural fibers and synthetic fibers having a fiber powder length of 0.5 to 5.5 mm, particularly 1 to 3 mm are desirable.
  • the blending amount is preferably 0.5 to 4% by weight based on the total weight of the clay.
  • a moisturizing agent can be added to the clay of the present invention.
  • the humectant include liquid paraffin, sorbitol, polyethylene glycol, propylene glycol and the like.
  • the amount of the humectant is preferably 0.5 to 1.5% by weight based on the entire resin clay.
  • the blending amount of water is preferably 50 to 80% by weight, more preferably 60 to 75% by weight, based on the entire resin clay.
  • the method for producing the resin composition of the present invention comprises the above-mentioned step (1), step (2) and step (3), the hollow particles (A) obtained in step (3) and the organic base resin (B).
  • the process (4) of mixing is included.
  • a process (4) when hollow particles (A) and organic base resin (B) are mix
  • the molded product of the present invention is obtained by molding the above resin composition. More specifically, when the resin composition of the present invention is an adhesive composition or a coating composition, the molded product of the present invention is obtained by applying the resin composition to an object, drying and curing. . More specifically, the resin composition can be applied to various undercoating surfaces applied to various metal (particularly steel) surfaces, but can be advantageously applied particularly to cationic electrodeposition coating surfaces.
  • the coating amount of the resin composition on the painted surface is preferably 200 to 2,000 g / m 2, and the coating film thickness is preferably 0.2 to 20 mm from the viewpoint of physical properties of the coating film. Examples of the coating method include brush coating, roller coating, and airless spray coating.
  • the temperature is preferably 110 to 200 ° C., more preferably 120 to 180 ° C., from the viewpoint of curability of the resin composition.
  • the heat treatment time is preferably 8 to 60 minutes from the viewpoint of curability of the resin composition.
  • the molded article has a true specific gravity when the resin composition is treated at 120 ° C. for 10 minutes as D1, and a true specific gravity when the resin composition is treated at 140 ° C. for 20 minutes as D2.
  • the molded product of the present invention formed by molding the resin composition of the present invention is firmly bonded to the metal painted surface and is lightweight. Therefore, the molded product of the present invention has excellent underbody coating materials, sealing materials, and hemming adhesives for various industrial uses such as adhesives, sealants, paints, etc., especially for automobile bodies that have been subjected to cationic electrodeposition coating in the automotive industry.
  • structural adhesive, spot sealer, mastic adhesive, sheet metal reinforcement, and body sealer it can contribute to an automobile having excellent strength, light weight and excellent fuel efficiency.
  • a laser diffraction particle size distribution analyzer (HEROS & RODOS manufactured by SYMPATEC) was used.
  • the dispersion pressure of the dry dispersion unit was 5.0 bar and the degree of vacuum was 5.0 mbar, which was measured by a dry measurement method.
  • the volume-based cumulative particle diameter means the diameter of a particle with respect to a predetermined ratio of a distribution obtained by accumulating all particles from the smaller side in the volume order.
  • the laser diffraction particle size distribution measuring device measures the distribution of the volume-based cumulative particle size, and the measured value of the volume-based cumulative 50% particle size (D50) can be confirmed with the software of the measuring device.
  • the cumulative particle diameter based on the number means the diameter of particles having a predetermined number ratio in a distribution in which all particles are arranged in order of particles and accumulated from the smaller side.
  • the number-based cumulative particle size can be converted from the volume-based cumulative particle size by software of the measuring device.
  • the true specific gravity of thermally expandable microspheres and hollow particles was measured by the following measuring method.
  • the true specific gravity was measured by an immersion method (Archimedes method) using isopropyl alcohol in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50%. Specifically, the volumetric flask having a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WB 1 ) was weighed. After the weighed volumetric flask was accurately filled with isopropyl alcohol to the meniscus, the weight (WB 2 ) of the volumetric flask filled with 100 cc of isopropyl alcohol was weighed.
  • volumetric flask with a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WS 1 ) was weighed.
  • the weighed volumetric flask was filled with about 50 cc of particles, and the weight (WS 2 ) of the volumetric flask filled with the particles was weighed.
  • the filled volumetric flask particles were weighed weight after filling exactly the isopropyl alcohol to the meniscus to avoid air bubbles are (WS 3).
  • the obtained WB 1 , WB 2 , WS 1 , WS 2 and WS 3 were introduced into the following equation, and the true specific gravity (d) of the particles was calculated.
  • d (d b ) ⁇ (WS 2 ⁇ WS 1 ) ⁇ (WB 2 ⁇ WB 1 ) / 100 ⁇ / ⁇ (WB 2 ⁇ WB 1 ) ⁇ (WS 3 ⁇ WS 2 ) ⁇
  • the true specific gravity was calculated using hollow particles as particles.
  • Weight of hollow particles (W) (g) volume of hollow particles (V) (ml) ⁇ true specific gravity of hollow particles (d) (g / cc)
  • Aluminum container An aluminum container (maximum capacity 1.4 L, film thickness: 114 ⁇ m: Lamidip AL-18) having no gas permeability in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50% is used. The aluminum container does not expand or contract the aluminum film itself due to an increase or decrease in the internal volume, but the shape of the bag is deformed.
  • the opening is sealed by heat welding so that the volume of the aluminum container is about 900 ml.
  • the volume (Y1) (ml) of the sealed aluminum container is measured.
  • the sealed aluminum container is allowed to stand for 7 days in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50%.
  • the volume (Y2) (ml) of the sealed aluminum container is measured using the immersion method (Archimedes method).
  • the volume ratio (Z) of the intake air amount with respect to the hollow particles was calculated by the following formula.
  • the hollow particles W (g) are put in a 1 L container, filled with DMF (dimethylformamide), and sealed.
  • the container is heated at 90 ° C. for 12 hours, and the generated gas is collected by a modification of the water displacement method using DMF.
  • the amount of gas collected by the water displacement method is measured, and the oxygen concentration in the gas is measured with an oxygen gas sensor (model: PS-2126A, measurement method: galvanic cell type).
  • the amount of air contained in the hollow particles can be quantified from the amount of gas collected and the oxygen concentration in the gas.
  • the amount of air in the collected gas was calculated by the following formula.
  • the volume ratio (P) of the amount of air contained in the hollow particles was calculated by the following formula.
  • the volume ratio (P) is a ratio when the volume of the entire hollow particles (A) is 100%.
  • An oily mixture was prepared by mixing 3 g of carbonate. The aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer (Primix Co., TK homomixer) at a rotational speed of 12000 rpm for 2 minutes to prepare a suspension.
  • TK homomixer Primary Mix Co., TK homomixer
  • the suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen.
  • the initial reaction pressure was 0.5 MPa, and the polymerization reaction was carried out at a polymerization temperature of 55 ° C. for 20 hours while stirring at 80 rpm.
  • the polymerization product was filtered and dried to obtain thermally expandable microspheres. The physical properties were evaluated and are shown in Table 1.
  • CMPEI polyethyleneimines (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000). In addition, it is described as carboxymethylated polyethyleneimine / Na salt.
  • PVP polyvinylpyrrolidone
  • AN acrylonitrile
  • MAN methacrylonitrile
  • IBX isobornyl methacrylate
  • VCl 2 vinylidene chloride
  • MMA methyl methacrylate
  • TMP trimethylolpropane trimethacrylate
  • EDMA diethylene glycol dimethacrylate
  • OPP di-2-ethylhexyl peroxydicarbonate (Purity 70%)
  • Colloidal silica average particle diameter 11 nm, specific surface area 260 m 2 / g, colloidal silica effective concentration 20% by weight dispersion
  • the hollow particles (a) before aging are produced by a wet heating expansion method described in JP-A-62-201231, and the hollow particles (A) and the hollow particles (A) and the comparative examples 1 to 4 are used as in Examples 1 to 3 and Comparative Examples 1 to 4 below.
  • a resin composition was prepared and evaluated.
  • Example 1 An aqueous dispersion (slurry) containing 5% by weight of the thermally expandable microspheres obtained in Production Example 1 was prepared. According to the wet heating expansion method described in JP-A-62-201231, this slurry is fed from a slurry introduction tube to a foaming tube (diameter 16 mm, volume 120 ml, made of SUS304TP) at a flow rate of 5 L / min, and further steam ( (Temperature: 147 ° C., pressure: 0.3 MPa) was supplied from the steam introduction pipe, mixed with the slurry, and wet-heated and expanded. The slurry temperature (foaming temperature) after mixing was adjusted to 115 ° C.
  • the obtained slurry containing hollow particles was allowed to flow out from the protruding portion of the foamed tube, mixed with cooling water (water temperature 15 ° C.), and cooled to 50-60 ° C.
  • the cooled slurry was dehydrated with a centrifugal dehydrator to obtain a hollow particle composition containing 10% by weight of the wet hollow particles (a) (that is, containing 90% by weight of water).
  • the obtained hollow particles (a) were aged at 40 ° C. for 24 hours to obtain a hollow particle composition containing 10% by weight of the hollow particles (A).
  • the volume ratio (Z) of the intake air amount with respect to the hollow particles and the volume ratio (P) of the air amount contained in the hollow particles were measured. The evaluation results are shown in Table 2.
  • Example 2 and 3 and Comparative Examples 1 to 4 In Examples 2 and 3 and Comparative Examples 1 to 4, as shown in Table 2, in Example 1, except that the heat-expandable microspheres, composition, conditions, and the like were changed, respectively, as in Example 1, A lightweight resin clay was obtained. The physical properties are shown in Table 2.
  • the hollow particles (a) before aging are produced by the dry heating expansion method described in JP-A-2006-213930, and the hollow particles (A) and the resin are used as in Examples 4 to 6 and Comparative Examples 5 to 7 below.
  • a composition was prepared and evaluated.
  • Example 4 (Production of hollow particles (a) by a dry heating expansion method)
  • a dry heating expansion method an internal injection method described in JP-A-2006-213930 was adopted.
  • the hollow particles (a) were produced using the thermally expandable microspheres obtained in Production Example 4 by the following procedure using the production apparatus provided with the foaming process section shown in FIG. .
  • the foaming process section was installed in the downstream portion of the dispersion nozzle (11), with a gas introduction pipe (not shown) provided with a dispersion nozzle (11) at the outlet and disposed in the center.
  • a gas fluid (13) containing thermally expandable microspheres is caused to flow in the direction of the arrow in the gas introduction tube, and in the space formed between the gas introduction tube and the overheating prevention cylinder (10).
  • the gas flow (14) for improving the dispersibility of the thermally expandable microspheres and preventing the overheating of the gas introduction pipe and the collision plate is flowed in the direction of the arrow, and further, the overheating prevention cylinder (10) and the hot air nozzle
  • a hot air flow for thermal expansion flows in the direction of the arrow.
  • the hot air flow (15), the gas fluid (13), and the gas flow (14) are usually flows in the same direction.
  • a refrigerant flow (9) flows in the direction of the arrow inside the overheating prevention cylinder (10) for cooling.
  • the gaseous fluid (13) containing the thermally expandable microspheres is flowed through a gas introduction pipe provided with a dispersion nozzle (11) at the outlet and installed inside the hot air flow (15), and the gaseous fluid (13). From the dispersion nozzle (11).
  • the gas fluid (13) is caused to collide with the collision plate (12) installed downstream of the dispersion nozzle (11), so that the thermally expandable microspheres are uniformly dispersed in the hot air flow (15).
  • the gaseous fluid (13) exiting from the dispersion nozzle (11) is guided toward the collision plate (12) together with the gas flow (14) and collides with it.
  • the dispersed thermally expandable microspheres are heated and expanded above the expansion start temperature in the hot air flow (15). Thereafter, the obtained hollow particles are recovered by passing them through a cooling part.
  • Specific gravity increase rate (%) (resin specific gravity after pressurization / specific gravity of resin composition before pressurization-1) ⁇ 100
  • Example 5 and Comparative Examples 5 and 6 In Example 5 and Comparative Examples 5 and 6, as shown in Table 3, in Example 4, the same procedure as in Example 4 was performed except that the heat-expandable microspheres, foaming temperature, aging conditions, etc. were changed. A resin composition and a molded product were obtained. The physical properties are shown in Table 3.
  • Example 6 20 parts by weight of the heat-expandable microspheres obtained in Production Example 3 (softening point of the thermoplastic resin constituting the outer shell: 109 ° C.) and calcium carbonate (White White SB Red, manufactured by Bihoku Powdered Industries Co., Ltd.); Laser 80 parts by weight of an average particle diameter by a diffraction method of about 1.8 ⁇ m) was added to a separable flask and mixed. Next, the temperature was raised to 130 ° C. over 5 minutes with stirring to obtain a hollow particle (a) before ripening with a fine particle filler attached thereto. The resulting hollow particles (a) were aged at 10 ° C. for 60 hours to obtain hollow particles (A). The volume ratio (Z) of the intake air amount with respect to the hollow particles and the volume ratio (P) of the air amount contained in the hollow particles were measured. The evaluation results are shown in Table 4.
  • Adhesive composition 80 parts by weight of a two-component polyurethane adhesive component curing agent component (Bond UP Seal Gray, manufactured by Konishi Co., Ltd.), 3.8 parts by weight of hollow particles (A) as a modifier for the adhesive composition, After adding 2 parts by weight of hydrocarbon (Idemitsu Kosan Co., Ltd., IP-2835), the mixture was stirred and mixed at 50 ° C for 30 minutes using a planetary mixer (Inoue Seisakusho, PLM-50), then degassed under reduced pressure. A polyurethane adhesive curing agent composition was obtained.
  • a two-component polyurethane adhesive component curing agent component (Bond UP Seal Gray, manufactured by Konishi Co., Ltd.), 3.8 parts by weight of hollow particles (A) as a modifier for the adhesive composition.
  • hydrocarbon Idemitsu Kosan Co., Ltd., IP-2835
  • Example 7 and Comparative Examples 7 and 8 In Example 7 and Comparative Examples 7 and 8, as shown in Table 3, in Example 6, the same procedure as in Example 6 was performed except that the heat-expandable microspheres, foaming temperature, aging conditions, etc. were changed. A resin composition and a molded product were obtained. The physical properties are shown in Table 4.
  • the resin composition of the present invention can be suitably used for paints, adhesives, and resin clays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Paints Or Removers (AREA)

Abstract

The purpose of the present invention is to provide: a resin composition from which a resin molded article having excellent production stability and weight reduction efficiency can be produced; and a use of the resin composition. The resin composition comprises hollow particles (A) and an organic base resin (B), wherein each of the hollow particles (A) is an expanded body of a thermally expandable microsphere, the thermally expandable microsphere is composed of a shell part made from a thermoplastic resin and a foaming agent enclosed in the shell part and capable of being vaporized by heating, and the volume proportion (P) of air in the hollow particles (A) is 30% or more wherein the total volume of the hollow particle (A) is 100%.

Description

樹脂組成物およびその利用Resin composition and use thereof
 本発明は樹脂組成物およびその利用に関する。 The present invention relates to a resin composition and use thereof.
 粘土、塗料、接着剤などの軽量化充填材として、プラスチックバルーンなどの中空粒子が使用されている。これらの軽量化充填材の配合目的は、環境対策や樹脂成分の節約によるコストダウン(特許文献1)である。
 このようなプラスチックバルーンは熱可塑性樹脂を外殻とし、その内部に発泡剤が封入された構造を有する熱膨張性微小球を膨張して得られる。前記熱膨張性微小球は、一般に熱膨張性マイクロカプセルと呼ばれている。熱可塑性樹脂としては、通常、塩化ビニリデン系共重合体、アクリロニトリル系共重合体、アクリル酸エステル系共重合体等が用いられている。また、発泡剤としてはイソブタンやイソペンタン等の炭化水素が主に使用されている(特許文献2参照)。
Hollow particles such as plastic balloons are used as lightweight fillers such as clay, paint, and adhesive. The purpose of blending these lightweight fillers is to reduce costs by saving environmental measures and resin components (Patent Document 1).
Such a plastic balloon is obtained by inflating thermally expandable microspheres having a structure in which a thermoplastic resin is used as an outer shell and a foaming agent is enclosed therein. The thermally expandable microsphere is generally called a thermally expandable microcapsule. As the thermoplastic resin, a vinylidene chloride copolymer, an acrylonitrile copolymer, an acrylate copolymer, or the like is usually used. Moreover, hydrocarbons, such as isobutane and isopentane, are mainly used as a foaming agent (refer patent document 2).
 しかしながら、これらの軽量化充填材は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性の向上が不十分であった。
 また、特許文献3には、特定モノマーおよび架橋剤から得られたポリマーによって形成された外殻を有し、発泡倍率が20~100倍の熱膨張性マイクロカプセルを加熱発泡してなる中空微粒子を軽量セメント製品に配合することが記載されている。しかしながら、この中空微粒子でも外的圧力による負荷に対する中空粒子の耐性の向上は不十分であった。
However, these lightweight fillers have not been sufficiently improved in resistance to load due to external pressure during mixing and filling in the production process of the resin composition.
Patent Document 3 discloses hollow fine particles obtained by heating and foaming thermally expandable microcapsules having an outer shell formed of a polymer obtained from a specific monomer and a crosslinking agent and having an expansion ratio of 20 to 100 times. It is described that it is blended into lightweight cement products. However, even with these hollow fine particles, the improvement of the resistance of the hollow particles against the load caused by external pressure is insufficient.
国際公開第97/05201号International Publication No. 97/05201 米国特許第3615972号明細書US Pat. No. 3,615,972 日本国特開2004-131361号公報Japanese Unexamined Patent Publication No. 2004-131361
 本発明の目的は、生産安定性、軽量化効率に優れた樹脂成形物の製造が可能となる樹脂組成物およびその用途を提供することである。 An object of the present invention is to provide a resin composition capable of producing a resin molded product excellent in production stability and weight reduction efficiency and its use.
 本発明者は鋭意検討した結果、空気量の体積割合が特定の値を有する中空粒子(A)を含む樹脂組成物は、外的圧力による負荷に対する中空粒子の耐性が向上し、混合及び充填工程における潰れが抑制され、その結果、生産安定性、軽量化効率に優れた樹脂成形体を製造できることを見出し、本発明に到達した。 As a result of intensive studies by the inventors, the resin composition containing the hollow particles (A) in which the volume ratio of the air amount has a specific value improves the resistance of the hollow particles to a load due to external pressure, and the mixing and filling steps As a result, the present inventors have found that a resin molded body excellent in production stability and weight reduction efficiency can be produced.
 すなわち、本発明の樹脂組成物は、中空粒子(A)と有機基剤樹脂(B)とを含有し、前記中空粒子(A)が、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。 That is, the resin composition of the present invention contains hollow particles (A) and an organic base resin (B), and the hollow particles (A) are encased in a shell made of a thermoplastic resin and heated. The expandable body of thermally expandable microspheres composed of a foaming agent that vaporizes when the volume ratio (P) of the amount of air contained in the hollow particles (A) is the total volume of the hollow particles (A). When the volume is 100%, it is 30% or more.
 本発明の樹脂組成物は、次の1)~2)から選ばれる少なくとも1つをさらに満足すると好ましい。
1)前記中空粒子(A)の体積基準の累積50%粒子径(D50)が1~300μmである。
2)塗料組成物、接着剤組成物又は樹脂粘土である。
It is preferable that the resin composition of the present invention further satisfies at least one selected from the following 1) to 2).
1) The volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is 1 to 300 μm.
2) A paint composition, an adhesive composition or a resin clay.
 本発明の成形物は、上記の樹脂組成物を成型させてなるものである。
 本発明の樹脂組成物の製造方法は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を得る工程(1)と、前記熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、前記中空粒子(a)を温度-10~80℃の範囲で熟成して、中空粒子(A)を得る工程(3)と、得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)とを含み、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。
The molded product of the present invention is obtained by molding the above resin composition.
The method for producing a resin composition of the present invention comprises a step (1) of obtaining thermally expandable microspheres comprising an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating; The step (2) of obtaining the hollow particles (a) by thermally expanding the thermally expandable microspheres, and aging the hollow particles (a) at a temperature in the range of −10 to 80 ° C. to obtain the hollow particles (A). Including the step (3) of obtaining and the step (4) of mixing the obtained hollow particles (A) and the organic base resin (B), and the volume ratio of the amount of air contained in the hollow particles (A) ( P) is 30% or more when the volume of the entire hollow particles (A) is 100%.
 本発明の樹脂組成物または本発明の製造方法によって得られる樹脂組成物を用いることによって、生産安定性、軽量化効率に優れた樹脂成形体の製造が可能となる。 By using the resin composition of the present invention or the resin composition obtained by the production method of the present invention, it becomes possible to produce a resin molded article excellent in production stability and light weight reduction efficiency.
中空粒子(A)の模式図の一例である。It is an example of the schematic diagram of a hollow particle (A). 中空粒子を乾式加熱膨張法で製造するための製造装置の発泡工程部の概略図である。It is the schematic of the foaming process part of the manufacturing apparatus for manufacturing a hollow particle with a dry-type thermal expansion method.
 本発明の樹脂組成物は、中空粒子(A)と有機基剤樹脂(B)とを含有する。以下、詳細に説明する。 The resin composition of the present invention contains hollow particles (A) and an organic base resin (B). Details will be described below.
〔中空粒子(A)〕
 中空粒子(A)は、本発明の樹脂組成物の必須成分である。中空粒子(A)は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である。中空粒子(A)について、その製造方法を例に挙げて説明する。
[Hollow particles (A)]
The hollow particles (A) are an essential component of the resin composition of the present invention. The hollow particle (A) is an expanded body of thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating. The hollow particle (A) The volume ratio (P) of the amount of air contained in is 30% or more when the volume of the entire hollow particles (A) is 100%. The hollow particles (A) will be described by taking the production method as an example.
 中空粒子(A)の製造方法としては、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を製造する工程(1)と、工程(1)で得た熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、工程(2)で得た中空粒子(a)を温度-10~80℃の範囲で熟成して、中空粒子(A)を得る工程(3)を含む製造方法を挙げることができる。なお、工程(1)を重合工程、工程(2)を膨張工程、工程(3)を熟成工程ということがある。 As a method for producing the hollow particles (A), a step (1) of producing thermally expandable microspheres comprising an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating. The step (2) of obtaining the hollow particles (a) by thermally expanding the thermally expandable microspheres obtained in the step (1) and the hollow particles (a) obtained in the step (2) at a temperature of −10 to 80 ° C. A production method including the step (3) of aging in the range of obtaining hollow particles (A) can be mentioned. Step (1) may be referred to as a polymerization step, step (2) as an expansion step, and step (3) as an aging step.
(重合工程)
 重合工程は、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を製造する工程(1)をいう。重合工程としては、水性分散媒中で、重合性成分および発泡剤を含有する油性混合物を分散させ、該重合性成分を重合させる工程が挙げられる。
 発泡剤は、加熱することによって気化する物質であれば特に限定はないが、たとえば、プロパン、(イソ)ブタン、(イソ)ペンタン、(イソ)ヘキサン、(イソ)ヘプタン、(イソ)オクタン、(イソ)ノナン、(イソ)デカン、(イソ)ウンデカン、(イソ)ドデカン、(イソ)トリデカン等の炭素数3~13の炭化水素;(イソ)ヘキサデカン、(イソ)エイコサン等の炭素数13超で20以下の炭化水素等を挙げることができる。これらの発泡剤は、1種または2種以上を併用してもよい。
 上記発泡剤は、沸点が60℃未満の炭化水素であることが好ましい。沸点が60℃を超える炭化水素を用いると、樹脂組成物の混合時に中空粒子(A)の潰れが発生し、十分な軽量化率が得られないことがある。
(Polymerization process)
The polymerization step refers to a step (1) for producing thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating. Examples of the polymerization step include a step of dispersing an oily mixture containing a polymerizable component and a foaming agent in an aqueous dispersion medium and polymerizing the polymerizable component.
The foaming agent is not particularly limited as long as it is a substance that is vaporized by heating. For example, propane, (iso) butane, (iso) pentane, (iso) hexane, (iso) heptane, (iso) octane, ( Hydrocarbons having 3 to 13 carbon atoms such as (iso) nonane, (iso) decane, (iso) undecane, (iso) dodecane, (iso) tridecane; (iso) hexadecane, (iso) eicosane and the like having more than 13 carbon atoms Examples of the hydrocarbon include 20 or less. These foaming agents may be used alone or in combination of two or more.
The blowing agent is preferably a hydrocarbon having a boiling point of less than 60 ° C. If a hydrocarbon having a boiling point exceeding 60 ° C. is used, the hollow particles (A) may be crushed during mixing of the resin composition, and a sufficient weight reduction rate may not be obtained.
 重合性成分は、重合することによって熱膨張性微小球の外殻を形成する熱可塑性樹脂となる成分である。重合性成分は、単量体成分を必須とし架橋剤を含むことがある成分である。
 単量体成分は、一般には、重合性二重結合を1個有する(ラジカル)重合性単量体と呼ばれている成分を含む。
The polymerizable component is a component that becomes a thermoplastic resin that forms the outer shell of the thermally expandable microsphere by polymerization. The polymerizable component is a component which essentially includes a monomer component and may contain a crosslinking agent.
The monomer component generally includes a component called a (radical) polymerizable monomer having one polymerizable double bond.
 単量体成分がニトリル系単量体であり、重合性成分がニトリル系単量体を含有し、中空粒子がニトリル系単量体を含有する重合性成分を重合して得られる熱可塑性樹脂から構成されると、中空粒子(A)および(a)に内包されている発泡剤の保持性に優れていることから好ましい。
 ニトリル系単量体としては、たとえば、アクリロニトリル(AN)、メタクリロニトリル(MAN)、フマロニトリル等を挙げることができる。
From a thermoplastic resin obtained by polymerizing a polymerizable component in which the monomer component is a nitrile monomer, the polymerizable component contains a nitrile monomer, and the hollow particles contain a nitrile monomer When comprised, it is preferable from the outstanding holding | maintenance property of the foaming agent included in the hollow particle (A) and (a).
Examples of nitrile monomers include acrylonitrile (AN), methacrylonitrile (MAN), and fumaronitrile.
 重合性成分に占めるニトリル系単量体の重量割合については、特に限定はないが、好ましくは20重量%以上、さらに好ましくは40重量%以上、特に好ましくは60重量%以上である。ニトリル系単量体の重量割合の上限は、好ましくは100重量%である。ニトリル系単量体の重量割合が20重量%未満であると、中空粒子(A)および(a)に内包されている発泡剤の保持性が悪く、発泡剤が徐放することがある。
 ニトリル系単量体がアクリロニトリル(AN)およびメタクリロニトリル(MAN)を必須とすると、中空粒子(A)および(a)の原料である熱膨張マイクロカプセルや中空粒子(A)および(a)に内包する発泡剤の保持性に優れているために好ましい。
The weight ratio of the nitrile monomer in the polymerizable component is not particularly limited, but is preferably 20% by weight or more, more preferably 40% by weight or more, and particularly preferably 60% by weight or more. The upper limit of the weight ratio of the nitrile monomer is preferably 100% by weight. When the weight ratio of the nitrile monomer is less than 20% by weight, the retention of the foaming agent included in the hollow particles (A) and (a) is poor, and the foaming agent may be released gradually.
When the nitrile monomer is essentially acrylonitrile (AN) and methacrylonitrile (MAN), the thermally expanded microcapsules and the hollow particles (A) and (a) that are the raw materials of the hollow particles (A) and (a) This is preferable because of the excellent retention of the encapsulating foaming agent.
 重合性成分は、単量体成分として、ニトリル系単量体以外の単量体を含有していてもよい。
 ニトリル系単量体以外の単量体としては、特に限定はないが、たとえば、塩化ビニル等のハロゲン化ビニル系単量体;塩化ビニリデン等のハロゲン化ビニリデン系単量体;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等のビニルエステル系単量体;(メタ)アクリル酸、エタクリル酸、クロトン酸、ケイ皮酸等のカルボキシル基含有単量体;マレイン酸、イタコン酸、フマル酸等の無水カルボン酸系単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリル酸エステル系単量体;アクリルアミド、置換アクリルアミド、メタクリルアミド、置換メタクリルアミド等の(メタ)アクリルアミド系単量体;N-フェニルマレイミド、N-シクロヘキシルマレイミド等のマレイミド系単量体;スチレン、α-メチルスチレン等のスチレン系単量体;エチレン、プロピレン、イソブチレン等のエチレン不飽和モノオレフイン系単量体;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテル等のビニルエーテル系単量体;ビニルメチルケトン等のビニルケトン系単量体;N-ビニルカルバゾール、N-ビニルピロリドン等のN-ビニル系単量体;ビニルナフタリン塩等を挙げることができる。なお、(メタ)アクリルは、アクリルまたはメタクリルを意味する。
The polymerizable component may contain a monomer other than the nitrile monomer as the monomer component.
The monomer other than the nitrile monomer is not particularly limited. For example, vinyl halide monomers such as vinyl chloride; vinylidene halide monomers such as vinylidene chloride; vinyl acetate, propionic acid Vinyl ester monomers such as vinyl and vinyl butyrate; carboxyl group-containing monomers such as (meth) acrylic acid, ethacrylic acid, crotonic acid and cinnamic acid; carboxylic anhydrides such as maleic acid, itaconic acid and fumaric acid Monomers: methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate, phenyl (meta ) Acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, benzine (Meth) acrylate monomers such as (meth) acrylate and 2-hydroxyethyl (meth) acrylate; (meth) acrylamide monomers such as acrylamide, substituted acrylamide, methacrylamide and substituted methacrylamide; N— Maleimide monomers such as phenylmaleimide and N-cyclohexylmaleimide; styrene monomers such as styrene and α-methylstyrene; ethylenically unsaturated monoolefin monomers such as ethylene, propylene and isobutylene; vinyl methyl ether; Vinyl ether monomers such as vinyl ethyl ether and vinyl isobutyl ether; vinyl ketone monomers such as vinyl methyl ketone; N-vinyl monomers such as N-vinyl carbazole and N-vinyl pyrrolidone; vinyl naphthalene salts, etc. Can be mentioned. In addition, (meth) acryl means acryl or methacryl.
 重合性成分は、(メタ)アクリル酸エステル系単量体、カルボキシル基含有単量体、スチレン系単量体、ビニルエステル系単量体、アクリルアミド系単量体、マレイミド系単量体および塩化ビニリデンから選ばれる少なくとも1種をさらに含むと好ましい。
 重合性成分がニトリル系単量体および(メタ)アクリル酸エステル系単量体を含むと、熱膨張性微小球内の発泡剤の保持性、耐熱性の観点から好ましい。
Polymerizable components include (meth) acrylic acid ester monomers, carboxyl group-containing monomers, styrene monomers, vinyl ester monomers, acrylamide monomers, maleimide monomers, and vinylidene chloride. It is preferable that at least one selected from the group consisting of
When the polymerizable component contains a nitrile monomer and a (meth) acrylic acid ester monomer, it is preferable from the viewpoints of retention of the foaming agent in the heat-expandable microsphere and heat resistance.
 重合性成分は、上記単量体成分以外に、重合性二重結合を2個以上有する重合性単量体(架橋剤)を含んでいてもよい。架橋剤を用いて重合させることにより、熱膨張時の内包された発泡剤の保持率の経時的な低下が抑制され、効果的に熱膨張させることができる。 The polymerizable component may contain a polymerizable monomer (crosslinking agent) having two or more polymerizable double bonds in addition to the monomer component. By polymerizing using a cross-linking agent, a decrease in the retention rate of the encapsulated foaming agent at the time of thermal expansion is suppressed, and thermal expansion can be effectively performed.
 架橋剤としては、特に限定はないが、たとえば、ジビニルベンゼン、ジビニルナフタレン等の芳香族ジビニル化合物や、メタクリル酸アリル、トリアクリルホルマール、トリアリルイソシアネート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、PEG#200ジ(メタ)アクリレート、PEG#400ジ(メタ)アクリレート、PEG#600ジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ジメチロール-トリシクロデカンジ(メタ)アクリレート、ペンタエリスルトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート等を挙げることができる。これらの架橋剤は、1種または2種以上を併用してもよい。 The crosslinking agent is not particularly limited. For example, aromatic divinyl compounds such as divinylbenzene and divinylnaphthalene, allyl methacrylate, triacryl formal, triallyl isocyanate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) ) Acrylate, triethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, PEG # 200 di (meth) acrylate, PEG # 400 di (meth) acrylate, PEG # 600 di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trime Roll propane tri (meth) acrylate, EO-modified trimethylolpropane tri (meth) acrylate, glycerin di (meth) acrylate, dimethylol-tricyclodecane di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (Meth) acrylate, dipentaerythritol hexa (meth) acrylate, etc. can be mentioned. These crosslinking agents may be used alone or in combination of two or more.
 架橋剤の量については、特に限定はないが、単量体成分100重量部に対して、好ましくは0.01~5重量部、さらに好ましくは0.1~1重量部、特に好ましくは0.3~0.9重量部、最も好ましくは0.5~0.8重量部である。
 重合性成分の重合は、重合開始剤を用いて行うとよく、油溶性の重合開始剤が好ましい。
The amount of the crosslinking agent is not particularly limited, but is preferably 0.01 to 5 parts by weight, more preferably 0.1 to 1 part by weight, particularly preferably 0. 3 to 0.9 parts by weight, most preferably 0.5 to 0.8 parts by weight.
Polymerization of the polymerizable component may be performed using a polymerization initiator, and an oil-soluble polymerization initiator is preferable.
 重合工程では、油性混合物は連鎖移動剤等をさらに含有していてもよい。
 水性分散媒は油性混合物を分散させるイオン交換水等の水を主成分とする媒体であり、メタノール、エタノール、プロパノール等のアルコールや、アセトン等の親水性有機性の溶媒をさらに含有してもよい。本発明における親水性とは、水に任意に混和できる状態であることを意味する。水性分散媒の使用量については、特に限定はないが、重合性成分100重量部に対して、100~1000重量部の水性分散媒を使用するのが好ましい。
In the polymerization step, the oily mixture may further contain a chain transfer agent and the like.
The aqueous dispersion medium is a medium mainly composed of water such as ion-exchanged water in which the oily mixture is dispersed, and may further contain an alcohol such as methanol, ethanol or propanol, or a hydrophilic organic solvent such as acetone. . The hydrophilicity in the present invention means that it can be arbitrarily mixed with water. The amount of the aqueous dispersion medium to be used is not particularly limited, but it is preferable to use 100 to 1000 parts by weight of the aqueous dispersion medium with respect to 100 parts by weight of the polymerizable component.
 水性分散媒は、電解質をさらに含有してもよい。電解質としては、たとえば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、炭酸ナトリウム等を挙げることができる。これらの電解質は、1種または2種以上を併用してもよい。電解質の含有量については、特に限定はないが、水性分散媒100重量部に対して0.1~50重量部含有するのが好ましい。 The aqueous dispersion medium may further contain an electrolyte. Examples of the electrolyte include sodium chloride, magnesium chloride, calcium chloride, sodium sulfate, magnesium sulfate, ammonium sulfate, and sodium carbonate. These electrolytes may be used alone or in combination of two or more. The content of the electrolyte is not particularly limited, but is preferably 0.1 to 50 parts by weight with respect to 100 parts by weight of the aqueous dispersion medium.
 水性分散媒は、水酸基、カルボン酸(塩)基およびホスホン酸(塩)基から選ばれる親水性官能基とヘテロ原子とが同一の炭素原子に結合した構造を有する水溶性1,1-置換化合物類、重クロム酸カリウム、亜硝酸アルカリ金属塩、金属(III)ハロゲン化物、ホウ酸、水溶性アスコルビン酸類、水溶性ポリフェノール類、水溶性ビタミンB類および水溶性ホスホン酸(塩)類から選ばれる少なくとも1種の水溶性化合物を含有してもよい。なお、本発明における水溶性とは、水100gあたり1g以上溶解する状態であることを意味する。 An aqueous dispersion medium is a water-soluble 1,1-substituted compound having a structure in which a hydrophilic functional group selected from a hydroxyl group, a carboxylic acid (salt) group, and a phosphonic acid (salt) group and a hetero atom are bonded to the same carbon atom , Potassium dichromate, alkali metal nitrite, metal (III) halide, boric acid, water-soluble ascorbic acids, water-soluble polyphenols, water-soluble vitamin Bs and water-soluble phosphonic acids (salts) It may contain at least one water-soluble compound. In addition, the water solubility in this invention means the state which melt | dissolves 1g or more per 100g of water.
 水性分散媒中に含まれる水溶性化合物の量については、特に限定はないが、重合性成分100重量部に対して、好ましくは0.0001~1.0重量部、さらに好ましくは0.0003~0.1重量部、特に好ましくは0.001~0.05重量部である。水溶性化合物の量が少なすぎると、水溶性化合物による効果が十分に得られないことがある。また、水溶性化合物の量が多すぎると、重合速度が低下したり、原料である重合性成分の残存量が増加したりすることがある。 The amount of the water-soluble compound contained in the aqueous dispersion medium is not particularly limited, but is preferably 0.0001 to 1.0 part by weight, more preferably 0.0003 to 100 parts by weight with respect to 100 parts by weight of the polymerizable component. 0.1 parts by weight, particularly preferably 0.001 to 0.05 parts by weight. If the amount of the water-soluble compound is too small, the effect of the water-soluble compound may not be sufficiently obtained. Moreover, when there is too much quantity of a water-soluble compound, a polymerization rate may fall or the residual amount of the polymeric component which is a raw material may increase.
 水性分散媒は、電解質や水溶性化合物以外に、分散安定剤や分散安定補助剤を含有していてもよい。
 分散安定剤としては、特に限定はないが、たとえば、コロイダルシリカ、コロイダル炭酸カルシウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化第二鉄、硫酸カルシウム、硫酸バリウム、蓚酸カルシウム、メタケイ酸カルシウム、炭酸カルシウム、炭酸バリウム、炭酸マグネシウム、リン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、アルミナゾル等の難水溶性無機化合物の分散安定剤を挙げることができる。これらの分散安定剤は、1種または2種以上を併用してもよい。
 分散安定剤の配合量は、重合性成分100重量部に対して、好ましくは0.1~20重量部、さらに好ましくは0.5~10重量部である。
The aqueous dispersion medium may contain a dispersion stabilizer and a dispersion stabilization auxiliary agent in addition to the electrolyte and the water-soluble compound.
The dispersion stabilizer is not particularly limited. For example, colloidal silica, colloidal calcium carbonate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, ferric hydroxide, calcium sulfate, barium sulfate, calcium oxalate, metasilicic acid. Calcium, calcium carbonate, barium carbonate, magnesium carbonate, calcium phosphate, magnesium phosphate, aluminum phosphate, zinc phosphate, etc. phosphates, calcium pyrophosphate, aluminum pyrophosphate, pyrophosphates such as zinc pyrophosphate, difficulties such as alumina sol The dispersion stabilizer of a water-soluble inorganic compound can be mentioned. These dispersion stabilizers may be used alone or in combination of two or more.
The amount of the dispersion stabilizer is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight with respect to 100 parts by weight of the polymerizable component.
 分散安定補助剤としては、特に限定はないが、たとえば、高分子タイプの分散安定補助剤、カチオン性界面活性剤、アニオン性界面活性剤、両性イオン界面活性剤、ノニオン性界面活性剤等の界面活性剤を挙げることができる。これらの分散安定補助剤は、1種または2種以上を併用してもよい。
 水性分散媒は、たとえば、水(イオン交換水)に、水溶性化合物とともに、必要に応じて分散安定剤および/または分散安定補助剤等を配合して調製される。重合時の水性分散媒のpHは、水溶性化合物、分散安定剤、分散安定補助剤の種類によって適宜決められる。
The dispersion stabilizing aid is not particularly limited, and examples thereof include a polymer type dispersion stabilizing aid, a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant. Mention may be made of activators. These dispersion stabilizing aids may be used alone or in combination of two or more.
The aqueous dispersion medium is prepared, for example, by blending water (ion-exchanged water) with a water-soluble compound and, if necessary, a dispersion stabilizer and / or a dispersion stabilizing aid. The pH of the aqueous dispersion medium at the time of polymerization is appropriately determined depending on the type of the water-soluble compound, the dispersion stabilizer, and the dispersion stabilization aid.
 油性混合物を乳化分散させる方法としては、たとえば、ホモミキサー(たとえば、特殊機化工業株式会社製)等により攪拌する方法や、スタティックミキサー(たとえば、株式会社ノリタケエンジニアリング社製)等の静止型分散装置を用いる方法、膜乳化法、超音波分散法等の一般的な分散方法を挙げることができる。
 次いで、油性混合物が球状油滴として水性分散媒に分散された分散液を加熱することにより、懸濁重合を開始する。重合反応中は、分散液を攪拌するのが好ましく、その攪拌は、たとえば、単量体の浮上や重合後の熱膨張性微小球の沈降を防止できる程度に緩く行えばよい。
 重合温度は、重合開始剤の種類によって自由に設定されるが、好ましくは30~100℃、さらに好ましくは40~90℃、特に好ましくは45~80℃、最も好ましくは50~75℃の範囲で制御される。反応温度を保持する時間は、0.1~20時間程度が好ましい。重合初期圧力については特に限定はないが、ゲージ圧で0~5.0MPa、さらに好ましくは0.1~3.0MPaの範囲である。
Examples of the method for emulsifying and dispersing the oily mixture include, for example, a method of stirring with a homomixer (for example, manufactured by Tokushu Kika Kogyo Co., Ltd.) and the like, and a static dispersion device such as a static mixer (for example, manufactured by Noritake Engineering Co., Ltd.). And general dispersion methods such as a method using a film, a membrane emulsification method, and an ultrasonic dispersion method.
Next, suspension polymerization is started by heating the dispersion in which the oily mixture is dispersed as spherical oil droplets in the aqueous dispersion medium. During the polymerization reaction, it is preferable to stir the dispersion, and the stirring may be performed so gently as to prevent, for example, floating of the monomer and sedimentation of the thermally expandable microspheres after polymerization.
The polymerization temperature is freely set depending on the kind of the polymerization initiator, but is preferably 30 to 100 ° C., more preferably 40 to 90 ° C., particularly preferably 45 to 80 ° C., and most preferably 50 to 75 ° C. Be controlled. The time for maintaining the reaction temperature is preferably about 0.1 to 20 hours. The initial polymerization pressure is not particularly limited, but is 0 to 5.0 MPa, more preferably 0.1 to 3.0 MPa in terms of gauge pressure.
(膨張工程)
 膨張工程は、工程(1)で得た熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)をいう。膨張工程としては、熱膨張性微小球を加熱膨張させる工程であれば、特に限定はないが、乾式加熱膨張法、湿式加熱膨張法のいずれでもよい。
 乾式加熱膨張法としては、特開2006-213930号公報に記載されている方法、特に内部噴射方法を挙げることができる。また、別の乾式加熱膨張法としては、特開2006-96963号公報に記載の方法等がある。湿式加熱膨張法としては、特開昭62-201231号公報に記載の方法等がある。
 熱膨張性微小球を加熱膨張させる温度は、好ましくは60~350℃である。
(Expansion process)
The expansion step refers to a step (2) in which the thermally expandable microspheres obtained in the step (1) are heated and expanded to obtain hollow particles (a). The expansion step is not particularly limited as long as it is a step in which the thermally expandable microspheres are heated and expanded, and may be either a dry heating expansion method or a wet heating expansion method.
Examples of the dry heating expansion method include the method described in JP-A-2006-213930, particularly the internal injection method. As another dry heating expansion method, there is a method described in JP-A-2006-96963. Examples of the wet heating expansion method include the method described in JP-A-62-201231.
The temperature at which the thermally expandable microspheres are heated and expanded is preferably 60 to 350 ° C.
 中空粒子(a)は、その外殻が熱可塑性樹脂から構成される。中空粒子は、外殻およびそれに囲まれた中空部から構成される。中空粒子は、内部に大きな空洞に相当する中空部を有している。中空部は、外殻の内表面と接している。中空部は、基本的には気体で満たされており、液化した状態であってもよい。中空部は、通常は、大きな中空部1つであることが好ましいが、中空粒子中に複数あってもよい。 The hollow particle (a) has an outer shell made of a thermoplastic resin. The hollow particles are composed of an outer shell and a hollow portion surrounded by the outer shell. The hollow particles have a hollow portion corresponding to a large cavity inside. The hollow portion is in contact with the inner surface of the outer shell. The hollow portion is basically filled with gas and may be in a liquefied state. Usually, the hollow part is preferably one large hollow part, but there may be a plurality of hollow parts.
 中空粒子(a)は、上記の熱膨張性微小球の膨張体であって、熟成されていないもの又は熟成が不十分なものをいう。熟成に関しては、熟成工程で詳細に説明する。中空粒子(a)は、上記の熱膨性微小球を加熱膨張させ、その後常温に冷却して得ることができる。その冷却直後の中空粒子の中空部内外は空気濃度勾配が発生し、中空粒子の中空部内の空気含有量が低いことにより負圧状態となる。そのため、歪な形状であったり、外的圧力に弱かったりする。このような中空粒子(a)を樹脂組成物用軽量充填剤に用いた場合、中空粒子(a)が容易に変形したり、潰れたり、破裂したりして発泡剤が漏れることとなり、樹脂組成物およびその成形体の軽量化効率が低くなったりする。
 中空粒子(a)に含まれる空気量の体積割合(P)は、中空粒子全体の体積を100%としたとき、30%未満である。体積割合(P)の測定方法は、熟成工程のところで説明する。
A hollow particle (a) is an expanded body of the above-mentioned thermally expandable microsphere, which is not aged or insufficiently aged. The aging will be described in detail in the aging process. The hollow particles (a) can be obtained by heating and expanding the heat-expandable microspheres and then cooling to room temperature. An air concentration gradient is generated inside and outside the hollow portion of the hollow particles immediately after cooling, and a negative pressure state is caused by the low air content in the hollow portion of the hollow particles. Therefore, it has a distorted shape or is weak against external pressure. When such a hollow particle (a) is used for a lightweight filler for a resin composition, the hollow particle (a) is easily deformed, crushed or ruptured, and the foaming agent leaks. The efficiency of reducing the weight of the object and its molded body may be lowered.
The volume ratio (P) of the amount of air contained in the hollow particles (a) is less than 30% when the entire volume of the hollow particles is 100%. The method for measuring the volume ratio (P) will be described in the aging step.
(熟成工程)
 熟成工程は、工程(2)で得た中空粒子(a)を温度-10~60℃の範囲で熟成して、中空粒子(A)を得る工程(3)をいう。熟成期間については下記で説明する。一般的に熟成とは、物質に必要とする性質を得させるために物質を適当な条件下で一定期間保管することをいう。前述したように、工程(2)で得た中空粒子(a)は、中空部内が外部と比較して空気濃度が低く中空粒子の中空部が負圧状態となる。そのため、歪な形状であったり、外的圧力に弱かったりする。本発明でいう熟成とは、中空部内に徐々に大気中の空気を取り込むことで、中空部内外における空気濃度勾配がなくなり、粒子の内圧と外圧のバランスを整え、外的圧力への耐性を向上させることをいう。具体的には、工程(2)で得た中空粒子(a)を温度-10~60℃の範囲で(以下、この温度を熟成温度という)、一定期間保管することをいう。
(Aging process)
The aging step refers to a step (3) in which the hollow particles (a) obtained in the step (2) are aged at a temperature of −10 to 60 ° C. to obtain the hollow particles (A). The aging period is described below. In general, aging means storing a substance for a certain period of time under appropriate conditions in order to obtain the necessary properties of the substance. As described above, in the hollow particles (a) obtained in the step (2), the inside of the hollow portion has a lower air concentration than the outside, and the hollow portion of the hollow particles is in a negative pressure state. Therefore, it has a distorted shape or is weak against external pressure. Aging in the present invention means gradually taking air in the air into the hollow part, eliminating the air concentration gradient inside and outside the hollow part, adjusting the balance between the internal pressure and the external pressure of the particles, and improving the resistance to external pressure. It means to make it. Specifically, the hollow particles (a) obtained in the step (2) are stored at a temperature in the range of −10 to 60 ° C. (hereinafter, this temperature is referred to as aging temperature) for a certain period.
 中空粒子の中空部が負圧状態であるか否か(中空粒子が熟成されたか否か)について、例えば以下の方法で確認することができる。
 一つの方法としては、中空粒子内部に取り込まれた空気量を算出することにより、熟成の程度を確認できる。例えば、空気を含む状態で中空粒子を密閉された容器内で保管し、密閉された容器の体積変化から、中空粒子内部に取り込まれた空気量を算出することができる。容器全体の体積が減少する場合、容器内の空気が中空粒子内部に取り込まれていることを意味する。熟成条件によっては、密閉された容器が膨張する場合もある。
 他の方法としては、中空粒子に含まれる空気量又は酸素量を測定する方法が挙げられる。
Whether or not the hollow part of the hollow particles is in a negative pressure state (whether or not the hollow particles are aged) can be confirmed, for example, by the following method.
As one method, the degree of ripening can be confirmed by calculating the amount of air taken into the hollow particles. For example, the hollow particles can be stored in a sealed container containing air, and the amount of air taken into the hollow particles can be calculated from the volume change of the sealed container. When the volume of the entire container decreases, it means that the air in the container is taken into the hollow particles. Depending on the aging conditions, the sealed container may expand.
Another method includes a method of measuring the amount of air or oxygen contained in the hollow particles.
 中空粒子(a)の熟成温度は、-10~80℃の範囲であり、好ましくは-10~60℃、より好ましくは-5~50℃、さらに好ましくは0~40℃℃、特に好ましくは5~35℃、最も好ましくは10~30℃である。熟成温度が-10℃未満の場合、中空粒子の復元が不十分であり、外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。一方、熟成温度が80℃超の場合、発泡剤の徐放が発生し、外的要因により変形したり、潰れたりする。 The aging temperature of the hollow particles (a) is in the range of −10 to 80 ° C., preferably −10 to 60 ° C., more preferably −5 to 50 ° C., still more preferably 0 to 40 ° C., and particularly preferably 5 ˜35 ° C., most preferably 10-30 ° C. When the aging temperature is less than −10 ° C., the hollow particles are not sufficiently restored, and are deformed, crushed or ruptured due to external factors, and the foaming agent leaks. On the other hand, when the aging temperature is higher than 80 ° C., the foaming agent is gradually released, and it is deformed or crushed due to external factors.
 中空粒子(a)の熟成期間は、中空粒子(a)に含まれる空気量の体積割合(P)が、中空粒子(a)全体の体積を100%としたとき、30%以上となる(つまり、上記中空粒子(A)となる)期間であれば、特に限定されない。熟成期間は、熟成温度(T)(℃)に応じて定めることができる。熟成温度(T)(℃)で熟成する場合、熟成期間(Q)(時間)は下記式(I)を充足することが好ましい。
 Q≧62×e-0.03T  (I)
 熟成期間が上記の式(I)を満たさない場合、中空粒子の内圧と外圧のバランスが取れておらず、外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。熟成期間の上限としては、熟成の効果が発揮される期間であれば特に限定はないが、その期間としては8週間程度である。熟成後、中空粒子(A)の品質が維持できる期間、さらに保管することも可能である。
During the aging period of the hollow particles (a), the volume ratio (P) of the amount of air contained in the hollow particles (a) is 30% or more when the entire volume of the hollow particles (a) is 100% (that is, If it is a period which becomes said hollow particle (A)), it will not specifically limit. The aging period can be determined according to the aging temperature (T) (° C.). When ripening at the ripening temperature (T) (° C.), the ripening period (Q) (time) preferably satisfies the following formula (I).
Q ≧ 62 × e −0.03T (I)
If the aging period does not satisfy the above formula (I), the internal pressure and the external pressure of the hollow particles are not balanced, and the foaming agent leaks due to deformation, crushing, or rupture due to external factors. The upper limit of the aging period is not particularly limited as long as the effect of aging is exhibited, but the period is about 8 weeks. After aging, it can be further stored for a period during which the quality of the hollow particles (A) can be maintained.
 乾式加熱膨張法で得られた中空粒子(a)は粉体であり、粉体の状態で熟成される。後述する微粒子充填剤が付着した中空粒子(A1)の場合も同様に、粉体の状態で熟成される。一方湿式加熱膨張法で得られた中空粒子(a)は、水を含む中空粒子組成物となっており、水を含む中空粒子組成物の状態で熟成される。中空粒子組成物に占める水の重量割合については、特に限定はなく、好ましくは99重量%以下、より好ましくは84重量%以下、特に好ましくは49重量%以下、最も好ましくは30重量部以下である。なお、密封状態でかつ中空粒子以外の空隙があまりに少ない状態で熟成を行うと、所定温度、所定時間でも熟成がうまく進まないことがある。 The hollow particles (a) obtained by the dry heat expansion method are powders and are aged in the powder state. Similarly, in the case of hollow particles (A1) to which a fine particle filler to be described later is attached, they are aged in a powder state. On the other hand, the hollow particles (a) obtained by the wet heating expansion method have a hollow particle composition containing water and are aged in the state of a hollow particle composition containing water. The weight ratio of water in the hollow particle composition is not particularly limited, and is preferably 99% by weight or less, more preferably 84% by weight or less, particularly preferably 49% by weight or less, and most preferably 30 parts by weight or less. . If ripening is carried out in a sealed state with too few voids other than hollow particles, ripening may not proceed well even at a predetermined temperature and for a predetermined time.
 中空粒子(A)は、その外殻が熱可塑性樹脂から構成される。中空粒子(A)は、外殻およびそれに囲まれた中空部から構成されると好ましい。中空粒子(A)は、(ほぼ)球状で、内部に大きな空洞に相当する中空部を有している。中空粒子の形状を身近な物品で例示するならば、軟式テニスボールを挙げることができる。
 中空部は、(ほぼ)球状であり、外殻の内表面と接している。中空部は、基本的には気体で満たされており、液化した状態であってもよい。中空部は、通常は、大きな中空部1つであることが好ましいが、中空粒子中に複数あってもよい。
The hollow shell (A) has an outer shell made of a thermoplastic resin. The hollow particles (A) are preferably composed of an outer shell and a hollow portion surrounded by the outer shell. The hollow particles (A) are (almost) spherical and have a hollow portion corresponding to a large cavity inside. If the shape of the hollow particles is exemplified by familiar articles, a soft tennis ball can be mentioned.
The hollow part is (substantially) spherical and is in contact with the inner surface of the outer shell. The hollow portion is basically filled with gas and may be in a liquefied state. Usually, the hollow part is preferably one large hollow part, but there may be a plurality of hollow parts.
 本発明の樹脂組成物に用いる中空粒子(A)は、前述の熱膨張性微小球の膨張体であって、中空粒子(A)に含まれる空気量の体積割合(P)が、中空粒子(A)全体の体積を100%としたとき、30%以上のものをいう。このような中空粒子(A)を用いることにより、本願効果を発揮することができる。当該体積割合(P)が30%未満の場合、中空粒子が外的要因により変形したり、潰れたり、破裂して発泡剤が漏れたりする。当該体積割合(P)は、好ましくは35~99%、より好ましくは40~98%、さらに好ましくは45~95%、特に好ましくは50~90%である。
 中空粒子に含まれる空気量の体積割合(P)の測定方法は、以下の実施例に示す。中空粒子に含まれる空気量は、捕集された気体量とその気体中の酸素濃度より、定量することができる。酸素濃度の測定方式は、ガルバニ電池式の他に、ジルコニア式、磁気式などがあるが、ガルバニ電池式は可燃性ガス中でも誤差無く測定が可能であるのに対し、ジルコニア式、磁気式は、可燃性ガスが含まれると測定誤差が大きくなるため、好ましくない。
The hollow particles (A) used in the resin composition of the present invention are the above-mentioned expanded bodies of thermally expandable microspheres, and the volume ratio (P) of the amount of air contained in the hollow particles (A) is hollow particles ( A) When the total volume is 100%, it means 30% or more. By using such hollow particles (A), the effect of the present application can be exhibited. When the volume ratio (P) is less than 30%, the hollow particles are deformed by external factors, crushed, or ruptured and the foaming agent leaks. The volume ratio (P) is preferably 35 to 99%, more preferably 40 to 98%, still more preferably 45 to 95%, and particularly preferably 50 to 90%.
The method for measuring the volume ratio (P) of the amount of air contained in the hollow particles is shown in the following examples. The amount of air contained in the hollow particles can be determined from the amount of collected gas and the oxygen concentration in the gas. In addition to the galvanic cell type, there are zirconia type and magnetic type as the oxygen concentration measurement method, but the galvanic cell type can be measured without error even in flammable gas, while the zirconia type and magnetic type are If flammable gas is included, the measurement error increases, which is not preferable.
 中空粒子(A)は、本願効果をより発揮させる点から、中空粒子に対する取り込み空気量の体積割合(Z)が一定の範囲にあるものが好ましい。当該体積割合(Z)は、体積(V)の中空粒子と空気とを含む状態で密閉した容器の体積を(Y1)とし、一定条件下静置した後の容器の体積を(Y2)としたとき、下記式で示されるものをいう。中空粒子に対する取り込み空気量の体積割合(Z)の具体的な測定方法は、以下の実施例に示す。
 中空粒子に対する取り込み空気量の体積割合(Z)=(Y1-Y2)/V
 当該体積割合(Z)は、好ましくは-0.05≦(Z)≦0.2、より好ましくは-0.05≦(Z)≦0.05、さらに好ましくは-0.02≦(Z)≦0.02である。
The hollow particles (A) are preferably those in which the volume ratio (Z) of the intake air amount with respect to the hollow particles is in a certain range from the viewpoint of further exerting the effect of the present application. In the volume ratio (Z), the volume of the container sealed in a state containing the hollow particles of volume (V) and air is defined as (Y1), and the volume of the container after standing under a certain condition is defined as (Y2). Sometimes, it is represented by the following formula. The specific measurement method of the volume ratio (Z) of the intake air amount with respect to the hollow particles is shown in the following examples.
Volume ratio of intake air amount to hollow particles (Z) = (Y1-Y2) / V
The volume ratio (Z) is preferably −0.05 ≦ (Z) ≦ 0.2, more preferably −0.05 ≦ (Z) ≦ 0.05, and further preferably −0.02 ≦ (Z). ≦ 0.02.
 中空粒子(A)の発泡剤保持率は、85%以上が好ましく、さらに好ましくは90%以上、特に好ましくは95%以上、最も好ましくは97%がよい。発泡剤保持率が85%未満であると、中空粒子(A)の機械的強度が弱く、樹脂組成物の製造時に中空粒子(A)が潰れ易いため、軽量充填剤としての効果が低くなることがある。中空粒子(A)の発泡剤保持率の測定方法は、以下の実施例に示す。
 中空粒子(A)は、水を含む中空粒子組成物として樹脂組成物に用いてもよい。中空粒子組成物に占める水の重量割合については、特に限定はなく、好ましくは99重量%以下、より好ましくは84重量%以下、特に好ましくは49重量%以下、最も好ましくは30重量部以下である。中空粒子組成物に占める水の重量割合が大きすぎると、樹脂組成物を構成する他の成分と混合する際に均一に分散しないことがある。
The foaming agent retention of the hollow particles (A) is preferably 85% or more, more preferably 90% or more, particularly preferably 95% or more, and most preferably 97%. When the foaming agent retention is less than 85%, the mechanical strength of the hollow particles (A) is weak, and the hollow particles (A) are easily crushed during the production of the resin composition, so that the effect as a lightweight filler is reduced. There is. The measuring method of the foaming agent retention of the hollow particles (A) is shown in the following examples.
You may use a hollow particle (A) for a resin composition as a hollow particle composition containing water. The weight ratio of water in the hollow particle composition is not particularly limited, and is preferably 99% by weight or less, more preferably 84% by weight or less, particularly preferably 49% by weight or less, and most preferably 30 parts by weight or less. . If the weight ratio of water in the hollow particle composition is too large, it may not be uniformly dispersed when mixed with other components constituting the resin composition.
 中空粒子(A)の体積基準の累積50%粒子径(D50)については、特に限定はないが、好ましくは1~300μmであり、より好ましくは2~200μm、さらに好ましくは3~150μm、特に好ましくは5~130μm、最も好ましくは7~120μmである。D50がこの範囲外であると、樹脂組成物に用いた場合に軽量化効率が悪化することがある。 The volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is not particularly limited, but is preferably 1 to 300 μm, more preferably 2 to 200 μm, still more preferably 3 to 150 μm, particularly preferably. Is from 5 to 130 μm, most preferably from 7 to 120 μm. When D50 is outside this range, the weight reduction efficiency may deteriorate when used in a resin composition.
 中空粒子(A)の真比重については、特に限定はないが、好ましくは0.01~0.5、より好ましくは0.012~0.49、さらに好ましくは0.04~0.49、特に好ましくは0.1~0.48、最も好ましくは0.31~0.47である。該真比重が0.01未満であると、中空粒子(A)の外殻の厚みが薄いことにより強度低下し、中空粒子(A)が樹脂組成物の混合時に破壊され、軽量化効率が低下することがある。一方、該真比重が0.5を超えると、配合する量に見合う軽量化効果が低く、非経済的である。 The true specific gravity of the hollow particles (A) is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.012 to 0.49, still more preferably 0.04 to 0.49, particularly Preferably it is 0.1 to 0.48, most preferably 0.31 to 0.47. If the true specific gravity is less than 0.01, the strength of the hollow shell of the hollow particles (A) is reduced due to the thinness, and the hollow particles (A) are broken when the resin composition is mixed, resulting in a reduction in weight reduction efficiency. There are things to do. On the other hand, when the true specific gravity exceeds 0.5, the lightening effect corresponding to the amount to be blended is low, which is uneconomical.
 中空粒子(A)は、図1に示すように、その外殻の外表面に付着した微粒子充填剤からさらに構成されていてもよい。以下では、微粒子充填剤が付着した中空粒子(A)を簡単のために、「中空粒子(A1)」ということがある。ここでいう付着とは、単に中空粒子(A1)4の外殻5の外表面に微粒子充填剤(6および7)が、吸着された状態6であってもよく、外表面近傍の外殻を構成する熱可塑性樹脂が加熱によって軟化や融解し、中空粒子(A1)の外殻の外表面に微粒子充填剤がめり込み、固定された状態7であってもよいという意味である。微粒子充填剤の粒子形状は不定形であっても球状であってもよい。
 中空粒子(A1)の真比重については、特に限定はないが、好ましくは0.01~0.5であり、より好ましくは0.03~0.4、さらに好ましくは0.05~0.35、特に好ましくは0.07~0.3、最も好ましくは0.1~0.25である。中空粒子(A1)の真比重が0.01より小さい場合は、耐久性が低くなることがある。一方、中空粒子(A1)の真比重が0.5より大きい場合は、低比重化効果が低くなるため、中空粒子(A1)を用いて樹脂組成物を調製する際、その添加量が大きくなり、非経済的であることがある。
As shown in FIG. 1, the hollow particles (A) may be further composed of a fine particle filler adhered to the outer surface of the outer shell. Hereinafter, the hollow particles (A) to which the fine particle filler is attached may be referred to as “hollow particles (A1)” for the sake of simplicity. Here, the term “adhesion” simply means that the fine particle fillers (6 and 7) are adsorbed on the outer surface of the outer shell 5 of the hollow particle (A1) 4, and the outer shell in the vicinity of the outer surface may be removed. This means that the thermoplastic resin constituting the resin may be softened or melted by heating, and the fine particle filler may sink into the outer surface of the outer shell of the hollow particles (A1) and be fixed. The particle shape of the fine particle filler may be indefinite or spherical.
The true specific gravity of the hollow particles (A1) is not particularly limited, but is preferably 0.01 to 0.5, more preferably 0.03 to 0.4, still more preferably 0.05 to 0.35. Particularly preferred is 0.07 to 0.3, and most preferred is 0.1 to 0.25. When the true specific gravity of the hollow particles (A1) is smaller than 0.01, the durability may be lowered. On the other hand, when the true specific gravity of the hollow particles (A1) is greater than 0.5, the effect of lowering the specific gravity is reduced. Therefore, when the resin composition is prepared using the hollow particles (A1), the amount added is increased. May be uneconomical.
 微粒子充填剤の平均粒子径と中空粒子(A1)の平均粒子径との比率(微粒子充填剤の平均粒子径/中空粒子(A1)の平均粒子径)は、微粒子充填剤の付着性の観点から好ましくは1以下、さらに好ましくは0.8以下、より好ましくは0.6以下、特に好ましくは0.4以下、最も好ましくは0.2である。
 微粒子充填剤としては、種々のものを使用することができ、無機物、有機物のいずれの素材であってもよい。微粒子の形状としては、球状、針状、板状や不定形等が挙げられる。
The ratio between the average particle diameter of the fine particle filler and the average particle diameter of the hollow particles (A1) (average particle diameter of the fine particle filler / average particle diameter of the hollow particles (A1)) is from the viewpoint of the adhesion of the fine particle filler. It is preferably 1 or less, more preferably 0.8 or less, more preferably 0.6 or less, particularly preferably 0.4 or less, and most preferably 0.2.
Various particles can be used as the fine particle filler, and any of inorganic and organic materials may be used. Examples of the shape of the fine particles include spherical shapes, needle shapes, plate shapes, and irregular shapes.
 微粒子充填剤の平均粒子径については、用いる中空粒子本体によって適宜選択され、特に限定はないが、好ましくは0.001~30μm、さらに好ましくは0.005~25μm、特に好ましくは0.01~20μmである。この範囲内であると、後述するように、中空粒子(A1)を製造する際に混合性が良好となる。
 ここでいう微粒子充填剤の平均粒子径とは、レーザー回折法により測定された微粒子充填剤の粒子径である。微粒子充填剤の粒子径がミクロンオーダーであれば一次粒子を指すが、ナノオーダーの微粒子等は凝集している場合が多く、実質ミクロンオーダーの集合体として作用するため、凝集した二次粒子を1単位として平均粒子径を算出した。
The average particle size of the fine particle filler is appropriately selected depending on the hollow particle body to be used, and is not particularly limited, but is preferably 0.001 to 30 μm, more preferably 0.005 to 25 μm, and particularly preferably 0.01 to 20 μm. It is. Within this range, as will be described later, the mixing property becomes good when the hollow particles (A1) are produced.
The average particle diameter of the fine particle filler here is the particle diameter of the fine particle filler measured by a laser diffraction method. If the particle size of the fine particle filler is in the micron order, it indicates primary particles. However, nano-order fine particles are often aggregated and act as an aggregate in the order of micron. The average particle size was calculated as a unit.
 微粒子充填剤を構成する無機物としては、たとえば、石灰石(重質炭酸カルシウム)、石英、珪石(シリカ)、ウオラスナイト、石膏、アスベスト、アパタイト、マグネタイト、ゼオライト、クレイ(モンモリロナイト、サポナイト、ヘクトライト、バイデライト、スティブンサイト、ノントロナイト、バーミキュライト、ハロイサイト、タルク、雲母、マイカ等)等の鉱物;元素の周期率表において、1族~16族の金属(亜鉛、アルミニウム、モリブデン、タングステン、ジルコニウム、バリウム、マンガン、コバルト、カルシウム、金、銀、クロム、チタン、鉄、白金、銅、鉛、ニッケル等)やその合金;元素の周期率表において、1族~16族の金属酸化物(酸化チタン、酸化亜鉛、酸化アルミニウム、酸化クロム、酸化マンガン、酸化モリブデン、酸化タングステン、酸化バナジウム、酸化スズ、酸化鉄(磁性酸化鉄を含む)、酸化インジウム等)、金属水酸化物(水酸化アルミニウム、水酸化金、水酸化マグネシウム等)、金属硫化物(硫化銅、硫化ナトリウム、硫化鉛、硫化ニッケル、硫化白金等)、金属ハロゲン化物(フッ化カルシウム、フッ化スズ、フッ化カリウム等)、金属炭化物(炭化カルシウム、炭化チタン、炭化鉄、炭化ナトリウム等)、金属窒化物(窒化アルミニウム、窒化クロム、窒化ゲルマニウム、窒化コバルト等)、炭酸金属塩(炭酸カルシウム(軽質炭酸カルシウム)、炭酸水素カルシウム、炭酸水素ナトリウム(重曹)、炭酸鉄等)、硫酸金属塩(硫酸アルミニウム、硫酸コバルト、硫酸水素ナトリウム、硫酸銅、硫酸ニッケル、硫酸バリウム等)、その他の金属塩(チタン酸塩(チタン酸バリウム、チタン酸マグネシウム、チタン酸カリウム等)、ホウ酸塩(ホウ酸アルミニウム、ホウ酸亜鉛等)、燐酸塩(リン酸カルシウム、燐酸ナトリウム、燐酸マグネシウム等)、アルミン酸塩(アルミン酸イットリウム等)、硝酸塩(硝酸ナトリウム、硝酸鉄、硝酸鉛等))等の金属化合物等が挙げられる。 Examples of inorganic substances constituting the fine particle filler include limestone (heavy calcium carbonate), quartz, silica (silica), wollastonite, gypsum, asbestos, apatite, magnetite, zeolite, clay (montmorillonite, saponite, hectorite, beidellite, Minerals such as stevensite, nontronite, vermiculite, halloysite, talc, mica, mica, etc .; in the periodic table of elements, metals in groups 1 to 16 (zinc, aluminum, molybdenum, tungsten, zirconium, barium, Manganese, cobalt, calcium, gold, silver, chromium, titanium, iron, platinum, copper, lead, nickel, etc.) and alloys thereof; metal oxides of groups 1 to 16 in the periodic table of elements (titanium oxide, oxidation) Zinc, aluminum oxide, chromium oxide, manganese oxide Molybdenum oxide, tungsten oxide, vanadium oxide, tin oxide, iron oxide (including magnetic iron oxide), indium oxide, etc.), metal hydroxide (aluminum hydroxide, gold hydroxide, magnesium hydroxide, etc.), metal sulfide ( Copper sulfide, sodium sulfide, lead sulfide, nickel sulfide, platinum sulfide, etc.), metal halide (calcium fluoride, tin fluoride, potassium fluoride, etc.), metal carbide (calcium carbide, titanium carbide, iron carbide, sodium carbide, etc.) ), Metal nitride (aluminum nitride, chromium nitride, germanium nitride, cobalt nitride, etc.), metal carbonate (calcium carbonate (light calcium carbonate), calcium bicarbonate, sodium bicarbonate (bicarbonate), iron carbonate, etc.), metal sulfate Salt (aluminum sulfate, cobalt sulfate, sodium hydrogen sulfate, copper sulfate, nickel sulfate, ), Other metal salts (titanates (barium titanate, magnesium titanate, potassium titanate, etc.), borates (aluminum borate, zinc borate, etc.), phosphates (calcium phosphate, sodium phosphate, phosphoric acid) Magnesium compounds, etc.), aluminates (yttrium aluminate, etc.), nitrates (sodium nitrate, iron nitrate, lead nitrate, etc.)) and the like.
 微粒子充填剤を構成する無機物は、また、合成炭酸カルシウム、フェライト、ゼオライト、銀イオン担持ゼオライト、ジルコニア、ミョウバン、チタン酸ジルコン酸鉛、アルミナ繊維、セメント、ゾノトライト、酸化珪素(シリカ、シリケート、ガラス、ガラス繊維を含む)、窒化珪素、炭化珪素、硫化珪素、カーボンブラック、カーボンナノチューブ、グラファイト、活性炭、竹炭、木炭、フラーレン等であってもよい。 Inorganic substances constituting the fine particle filler are also synthetic calcium carbonate, ferrite, zeolite, silver ion supported zeolite, zirconia, alum, lead zirconate titanate, alumina fiber, cement, zonotlite, silicon oxide (silica, silicate, glass, (Including glass fiber), silicon nitride, silicon carbide, silicon sulfide, carbon black, carbon nanotube, graphite, activated carbon, bamboo charcoal, charcoal, fullerene, and the like.
 微粒子充填剤を構成する有機物としては、たとえば、(メタ)アクリル酸、イタコン酸、シトラコン酸、マレイン酸、フマル酸、ビニル安息香酸;それらのエステル類、アミド類、ニトリル類;スチレン、メチルスチレン、エチルスチレン、クロロスチレン等のビニル芳香族類、ジビニルベンゼン、トリメチロールプロパン等のビニル基を2つ以上有するジビニル化合物等を単量体として、必要に応じて架橋剤を用い、乳化重合法、リープフリー重合法、分散重合法、懸濁重合法、ミニエマルジョン重合法等により重合して得られた有機樹脂等が挙げられる。
 微粒子充填剤を構成する有機物は、カルボキシメチルセルロースナトリウム、ヒドロキシエチルセルロース、メチルセルロース、エチルセルロース、ニトロセルロース、ヒドロキシプロピルセルロース、アルギン酸ナトリウム、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸ナトリウム、カルボキシビニルポリマー、ポリビニルメチルエーテル、ポリアミド樹脂、ナイロン樹脂、シリコーン樹脂、ウレタン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素系樹脂等であってもよい。
Examples of organic substances constituting the fine particle filler include (meth) acrylic acid, itaconic acid, citraconic acid, maleic acid, fumaric acid, vinyl benzoic acid; esters thereof, amides, nitriles; styrene, methylstyrene, Emulsion polymerization, leap, using vinyl aromatics such as ethylstyrene and chlorostyrene, divinyl compounds having two or more vinyl groups such as divinylbenzene and trimethylolpropane, etc., using a crosslinking agent as necessary Examples thereof include organic resins obtained by polymerization using a free polymerization method, a dispersion polymerization method, a suspension polymerization method, a miniemulsion polymerization method, or the like.
Organic substances constituting the fine particle filler are sodium carboxymethyl cellulose, hydroxyethyl cellulose, methyl cellulose, ethyl cellulose, nitrocellulose, hydroxypropyl cellulose, sodium alginate, polyvinyl alcohol, polyvinyl pyrrolidone, sodium polyacrylate, carboxyvinyl polymer, polyvinyl methyl ether, polyamide. It may be a resin, nylon resin, silicone resin, urethane resin, polyethylene resin, polypropylene resin, fluorine resin, or the like.
 微粒子充填剤が有機物から構成される場合、軟化しないほうがよい。軟化した場合は、微粒子がさらに付着した中空粒子(A1)を製造する際に融着が発生して、歩留まりが悪化する等の問題が起こることがある。有機物の軟化温度は、中空粒子(A1)を製造する際の温度にも依存するが、好ましくは80~300℃、より好ましくは90~290℃、さらに好ましくは100~280℃である。有機物の軟化温度は、また、工程温度より10℃以上高い温度であると好ましい。
 微粒子充填剤を構成する無機物や有機物は、シランカップリング剤、パラフィンワックス、脂肪酸、樹脂酸、ウレタン化合物、脂肪酸エステル等の表面処理剤で処理されていてもよく、未処理のものでもよい。
When the fine particle filler is composed of an organic material, it is better not to soften. In the case of softening, fusion may occur when producing the hollow particles (A1) to which fine particles further adhere, and problems such as deterioration in yield may occur. The softening temperature of the organic substance depends on the temperature at which the hollow particles (A1) are produced, but is preferably 80 to 300 ° C, more preferably 90 to 290 ° C, and further preferably 100 to 280 ° C. The softening temperature of the organic substance is preferably 10 ° C. or more higher than the process temperature.
The inorganic substance or organic substance constituting the fine particle filler may be treated with a surface treatment agent such as a silane coupling agent, paraffin wax, fatty acid, resin acid, urethane compound, fatty acid ester, etc., or may be untreated.
 中空粒子(A1)の製造方法としては、たとえば、熱膨張性微小球を製造する上記工程(1)と、得られた熱膨張性微小球と微粒子充填剤とを混合する工程(単に混合工程という)と、前記混合工程で得られた混合物を前記熱可塑性樹脂の軟化点超の温度に加熱して、前記熱膨張性微小球を膨張させるとともに(上記工程(2)に相当)、前記微粒子充填剤を前記外殻の外表面に付着させる工程(付着工程)と、微粒子充填剤が付着した中空粒子(a)を熟成して中空粒子(A1)を得る上記工程(3)とを含む製造方法を挙げることができる。 As a method for producing the hollow particles (A1), for example, the step (1) for producing thermally expandable microspheres and a step of mixing the obtained thermally expandable microspheres and a fine particle filler (simply referred to as a mixing step). And the mixture obtained in the mixing step is heated to a temperature above the softening point of the thermoplastic resin to expand the thermally expandable microspheres (corresponding to step (2) above), and the fine particle filling A manufacturing method comprising: a step of attaching an agent to the outer surface of the outer shell (attachment step); and the step (3) of obtaining hollow particles (A1) by aging the hollow particles (a) to which the fine particle filler is attached. Can be mentioned.
 混合工程は、熱膨張性微小球と微粒子充填剤とを混合する工程である。
 混合工程における微粒子充填剤と熱膨張性微小球との重量比率(微粒子充填剤/熱膨張性微小球)については、特に限定はないが、好ましくは90/10~60/40、さらに好ましくは85/15~65/35、特に好ましくは80/20~70/30である。微粒子充填剤/熱膨張性微小球(重量比率)が90/10より大きい場合は、中空粒子(A1)の真比重が大きくなり、低比重化効果が小さくなることがある。一方、微粒子充填剤/熱膨張性微小球(重量比率)が60/40より小さい場合は、中空粒子(A1)の真比重が低くなり、粉立ち等のハンドリングが悪化することがある。
The mixing step is a step of mixing the thermally expandable microspheres and the fine particle filler.
The weight ratio of the fine particle filler and the thermally expandable microsphere in the mixing step (fine particle filler / thermally expandable microsphere) is not particularly limited, but is preferably 90/10 to 60/40, more preferably 85. / 15 to 65/35, particularly preferably 80/20 to 70/30. When the fine particle filler / heat-expandable microsphere (weight ratio) is larger than 90/10, the true specific gravity of the hollow particles (A1) is increased, and the effect of lowering the specific gravity may be reduced. On the other hand, when the fine particle filler / heat-expandable microsphere (weight ratio) is smaller than 60/40, the true specific gravity of the hollow particles (A1) is lowered, and handling such as dusting may be deteriorated.
 混合工程に用いられる装置としては、特に限定はなく、容器と攪拌羽根といった極めて簡単な機構を備えた装置を用いて行うことができる。また、一般的な揺動または攪拌を行える粉体混合機を用いてもよい。粉体混合機としては、たとえば、リボン型混合機、垂直スクリュー型混合機等の揺動攪拌または攪拌を行える粉体混合機を挙げることができる。また、近年、攪拌装置を組み合わせたことにより効率のよい多機能な粉体混合機であるスーパーミキサー(株式会社カワタ製)およびハイスピードミキサー(株式会社深江製)、ニューグラムマシン(株式会社セイシン企業製)、SVミキサー(株式会社神鋼環境ソリューション社製)等を用いてもよい。
 付着工程は、前記混合工程で得られた、熱膨張性微小球と微粒子充填剤とを含む混合物を、熱膨張性微小球の外殻を構成する熱可塑性樹脂の軟化点超の温度に加熱する工程である。付着工程では、熱膨張性微小球を膨張させるとともに、外殻の外表面に微粒子充填剤を付着させる。
There is no limitation in particular as an apparatus used for a mixing process, It can carry out using the apparatus provided with the very simple mechanism, such as a container and a stirring blade. Moreover, you may use the powder mixer which can perform a general rocking | swiveling or stirring. Examples of the powder mixer include a powder mixer that can perform rocking stirring or stirring, such as a ribbon mixer and a vertical screw mixer. In recent years, super mixers (manufactured by Kawata Co., Ltd.), high-speed mixers (manufactured by Fukae Co., Ltd.), and Newgram Machines (Seishin Co., Ltd.), which are efficient and multifunctional powder mixers by combining stirring devices Product), SV mixer (manufactured by Shinko Environmental Solution Co., Ltd.), and the like.
In the attaching step, the mixture containing the thermally expandable microspheres and the fine particle filler obtained in the mixing step is heated to a temperature above the softening point of the thermoplastic resin constituting the outer shell of the thermally expandable microsphere. It is a process. In the attaching step, the thermally expandable microspheres are expanded and the fine particle filler is attached to the outer surface of the outer shell.
 加熱は、一般的な接触伝熱型または直接加熱型の混合式乾燥装置を用いて行えばよい。混合式乾燥装置の機能については、特に限定はないが、温度調節可能で原料を分散混合する能力や、場合により乾燥を早めるための減圧装置や冷却装置を備えたものが好ましい。加熱に使用する装置としては、特に限定はないが、たとえば、レーディゲミキサー(株式会社マツボー製)、ソリッドエアー(株式会社ホソカワミクロン)等を挙げることができる。
 加熱の温度条件については、熱膨張性微小球の種類にもよるが最適膨張温度とするのが良く、好ましくは60~250℃、より好ましくは70~230℃、さらに好ましくは80~220℃、特に好ましくは100~200℃、最も好ましくは120~180℃である。
Heating may be performed using a general contact heat transfer type or direct heating type mixed drying apparatus. The function of the mixing type drying apparatus is not particularly limited, but it is preferable to be able to adjust the temperature and disperse and mix the raw materials, and optionally equipped with a decompression device and a cooling device for speeding up drying. Although there is no limitation in particular as an apparatus used for a heating, For example, a Ladige mixer (made by Matsubo Co., Ltd.), solid air (Hosokawa Micron Co., Ltd.), etc. can be mentioned.
Although the heating temperature condition depends on the type of thermally expandable microsphere, it is preferable to set the optimum expansion temperature, preferably 60 to 250 ° C., more preferably 70 to 230 ° C., further preferably 80 to 220 ° C. Particularly preferred is 100 to 200 ° C, and most preferred is 120 to 180 ° C.
〔有機基材樹脂(B)〕
 本発明の樹脂組成物は、有機基材樹脂(B)を必須に含む。有機基材樹脂(B)としては、特に限定されず、塗料組成物、接着剤組成物、樹脂粘土に用いられる樹脂が挙げられる。例えば、アクリル樹脂、ポリ塩化ビニル樹脂(PVC)、ウレタン系樹脂、エポキシ樹脂、ポリビニルアルコール、酢酸ビニル樹脂、エチレン/酢酸ビニル共重合体樹脂、ゴム系等が挙げられる。なかでも、環境上の点からアクリル樹脂が好ましい。
[Organic base resin (B)]
The resin composition of the present invention essentially contains an organic base resin (B). It does not specifically limit as organic base resin (B), Resin used for a coating composition, an adhesive composition, and resin clay is mentioned. Examples thereof include acrylic resin, polyvinyl chloride resin (PVC), urethane resin, epoxy resin, polyvinyl alcohol, vinyl acetate resin, ethylene / vinyl acetate copolymer resin, and rubber. Among these, acrylic resin is preferable from the viewpoint of environment.
 アクリル樹脂としては、例えば、アクリル酸アルキルエステル(アルキルとしてメチル、エチル、ブチル、2-エチルヘキシル等)、もしくはメタクリル酸アルキルエステル(アルキルとしてメチル、エチル、ブチル、ラウリル、ステアリル等)の重合体、又は他のアクリル系モノマーとの共重合体を含むアクリル樹脂等が挙げられる。 As the acrylic resin, for example, a polymer of acrylic acid alkyl ester (alkyl as methyl, ethyl, butyl, 2-ethylhexyl, etc.) or methacrylic acid alkyl ester (alkyl as methyl, ethyl, butyl, lauryl, stearyl, etc.), or Examples include acrylic resins containing copolymers with other acrylic monomers.
 ポリ塩化ビニル樹脂(PVC)としては、例えば、ポリ塩化ビニルのホモポリマーや、塩化ビニル、酢酸ビニル等よりなる共重合体(コポリマー)等が挙げられる。 Examples of the polyvinyl chloride resin (PVC) include a homopolymer of polyvinyl chloride, a copolymer (copolymer) made of vinyl chloride, vinyl acetate, and the like.
 ウレタン系樹脂としては、例えば、ブロック化ウレタンプレポリマー及びブロック化ポリイソシアネート化合物等が挙げられる。 Examples of urethane resins include blocked urethane prepolymers and blocked polyisocyanate compounds.
 上記ブロック化ウレタンプレポリマーは、例えば、以下の手順に従って製造することができるものである。
 (1)先ず、ポリオールと過剰のポリイソシアネート化合物を反応させて、末端NCO含有ウレタンプレポリマーを得る。
 上記ポリオールとしては、例えば、ポリオキシアルキレンポリオール(PPG)、ポリエーテルポリオール変性体、ポリテトラメチレンエーテルグリコールを含むポリエーテルポリオール;縮合系ポリエステルポリオール、ラクトン系ポリエステルポリオール、ポリカーボネートジオールを含むポリエステルポリオール;ポリブタジエン系ポリオール;ポリオレフィン系ポリオール;ポリエーテルポリオールの中でアクリロニトリル単独又はアクリロニトリルとスチレン、アクリルアミド、アクリル酸エステル、メタクリル酸エステル及び酢酸ビニルの群から選ばれる少なくとも1種との混合モノマーを重合乃至グラフト重合させたポリマーポリオール等が挙げられる。
The blocked urethane prepolymer can be produced, for example, according to the following procedure.
(1) First, a polyol and an excess polyisocyanate compound are reacted to obtain a terminal NCO-containing urethane prepolymer.
Examples of the polyol include, for example, polyoxyalkylene polyol (PPG), polyether polyol modified, polyether polyol containing polytetramethylene ether glycol; condensed polyester polyol, lactone polyester polyol, polyester polyol containing polycarbonate diol; polybutadiene Polyol polyols; Polyolefin polyols: Polyether polyols: Acrylonitrile alone or a mixed monomer of acrylonitrile and at least one selected from the group of styrene, acrylamide, acrylate ester, methacrylate ester and vinyl acetate is polymerized or graft polymerized And polymer polyols.
 上記ポリイソシアネート化合物としては、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、ペンタメチレンジイソシアネート、2,4,4-又は2,2,4-トリメチルヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、1,3-シクロペンタンジイソシアネート、1,6-ヘキサンジイソシアネート(HDI)、1,4-シクロヘキサンジイソシアネート、1,3-シクロヘキサンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、メチル2,4-シクロヘキサンジイソシアネート、メチル2,6-シクロヘキサンジイソシアネート、1,4-ビス(イソシアネートメチル)シクロヘキサン、1,3-ビス(イソシアネートメチル)シクロヘキサン、m-フェニレンジイソシアネート、p-フェニレンジイソシアネート、4,4’-ジフェニルジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート(MDI)、クルードMDI、2,4-又は2,6-トリレンジイソシアネート(TDI)、4,4’-トルイジンジイソシアネート、ジアニジンジイソシアネート、4,4’-ジフェニルエーテルジイソシアネート、1,3-又は1,4-キシリレンジイソシアネート、ω,ω’-ジイソシアネート-1,4-ジエチルベンゼン、イソホロンジイソシアネート(IPDI)等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。
 (2)次に、末端NCO含有ウレタンプレポリマーを適当なブロック剤と反応させて(通
常、前者のNCO1モル当り、0.9~1.5当量のブロック剤を反応)、遊離のNCO
をブロック化することにより、目的のブロック化ウレタンプレポリマー(特に、上記ポリ
オールの少なくとも一部に上記ポリマーポリオールを含ませたものが好ましい) を得る。
上記ブロック剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、イソブタノール等のアルコール; フェノール、クレゾール、キシレノール、p-ニトロフェノール、アルキルフェノール等のフェノール類; マロン酸メチル、マロン酸エチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトン等の活性メチレン化合物;アセトアミド、アクリルアミド、アセトアニリド等の酸アミド類;コハク酸イミド、マレイン酸イミド等の酸イミド;2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾール類;2-ピロリドン、ε-カプロラクタム等のラクタム類;アセトキシム、メチルエチルケトキシム、シクロヘキサノンオキシム、アセトアルドキシム等のケトン又はアルデヒドのオキシム類; その他エチレンイミン、重亜硫酸塩等が挙げられる。これらは、1 種単独で用いてもよく、2 種以上を併用してもよい。
Examples of the polyisocyanate compound include trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, pentamethylene diisocyanate, 2,4,4- or 2,2,4-trimethylhexamethylene diisocyanate, dodecamethylene diisocyanate, 1,3-cyclohexane. Pentane diisocyanate, 1,6-hexane diisocyanate (HDI), 1,4-cyclohexane diisocyanate, 1,3-cyclohexane diisocyanate, 4,4′-methylenebis (cyclohexyl isocyanate), methyl 2,4-cyclohexane diisocyanate, methyl 2,6 -Cyclohexane diisocyanate, 1,4-bis (isocyanate methyl) cyclohexane, 1,3-bis (isocyanate methyl) Chlohexane, m-phenylene diisocyanate, p-phenylene diisocyanate, 4,4'-diphenyl diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diphenylmethane diisocyanate (MDI), crude MDI, 2,4- or 2,6 -Tolylene diisocyanate (TDI), 4,4'-toluidine diisocyanate, dianidine diisocyanate, 4,4'-diphenyl ether diisocyanate, 1,3- or 1,4-xylylene diisocyanate, ω, ω'-diisocyanate-1, 4-diethylbenzene, isophorone diisocyanate (IPDI) and the like. These may be used alone or in combination of two or more.
(2) Next, the terminal NCO-containing urethane prepolymer is reacted with a suitable blocking agent (usually 0.9 to 1.5 equivalents of blocking agent per 1 mol of the former NCO), and free NCO
To obtain a target blocked urethane prepolymer (in particular, at least a part of the polyol preferably contains the polymer polyol).
Examples of the blocking agent include alcohols such as methanol, ethanol, propanol, butanol, and isobutanol; phenols such as phenol, cresol, xylenol, p-nitrophenol, and alkylphenol; methyl malonate, ethyl malonate, dimethyl malonate Active methylene compounds such as diethyl malonate, ethyl acetoacetate, methyl acetoacetate and acetylacetone; acid amides such as acetamide, acrylamide and acetanilide; acid imides such as succinimide and maleic imide; 2-ethylimidazole, 2- Imidazoles such as ethyl-4-methylimidazole; Lactams such as 2-pyrrolidone and ε-caprolactam; Acetoxime, methylethylketoxime, cyclohexanone oxime, acetoaldoxy Ketones such as oximes or oximes of aldehydes; other examples include ethyleneimine and bisulfite. These may be used alone or in combination of two or more.
 上記ブロック化ウレタンプレポリマーの具体例としては、例えば、ポリプロピレングリコールに過剰のポリイソシアネート化合物としTDI及び/又はHDIを反応させた後、ブロック化剤としてメチルエチルケトキシムを反応させたものが挙げられる。 Specific examples of the blocked urethane prepolymer include, for example, polypropylene glycol having an excess polyisocyanate compound reacted with TDI and / or HDI, and then reacted with methyl ethyl ketoxime as a blocking agent.
 上記ブロック化ポリイソシアネート化合物は、先の末端NCO含有ウレタンプレポリマーの製造で例示したポリイソシアネート化合物の遊離NCOを、上述のブロック剤でブロック化することによって得ることができる。該ブロック化イソシアネート化合物の具体例としては、例えば、ポリイソシアネート化合物としTDI及び/又はHDIに、ブロック化剤としてメチルエチルケトキシムを反応させたものが挙げられる。 The blocked polyisocyanate compound can be obtained by blocking the free NCO of the polyisocyanate compound exemplified in the production of the terminal NCO-containing urethane prepolymer with the above-mentioned blocking agent. Specific examples of the blocked isocyanate compound include a polyisocyanate compound obtained by reacting TDI and / or HDI with methylethylketoxime as a blocking agent.
 エポキシ樹脂としては、特に限定はないが、例えば、グリシジルエーテル型、グリシジルエステル型、グリシジルアミン型、脂環式型等が挙げられる。
 ゴム系としては、特に限定はないが、例えば、クロロプレンゴム系、スチレンブタジエン系、ニトリルゴム系、天然ゴム、シリコーンゴム等が挙げられる。
The epoxy resin is not particularly limited, and examples thereof include glycidyl ether type, glycidyl ester type, glycidyl amine type, and alicyclic type.
The rubber type is not particularly limited, and examples thereof include chloroprene rubber type, styrene butadiene type, nitrile rubber type, natural rubber, and silicone rubber.
 これらの有機基材樹脂(B)は、通常、一次粒子及び/又は一次粒子が凝集した二次粒子であり、その粒径は0.1~100μmであるものが好ましい。また、これらの有機基材樹脂(B)は、1種単独で用いてもよく、2種以上を併用してもよい。 These organic base resins (B) are usually secondary particles in which primary particles and / or primary particles are aggregated, and those having a particle size of 0.1 to 100 μm are preferable. Moreover, these organic base resin (B) may be used individually by 1 type, and may use 2 or more types together.
〔樹脂組成物及び樹脂組成物の製造方法〕
 本発明の樹脂組成物は、中空粒子(A)及び有機基材樹脂(B)を必須に含む。
[Resin composition and resin composition production method]
The resin composition of the present invention essentially contains hollow particles (A) and an organic base resin (B).
 上記樹脂組成物の真比重は、0.3~1.4が好ましく、0.4~1.3がより好ましく、0.5~1.2がさらに好ましく、0.6~1.1が特に好ましく、0.7~0.95が最も好ましい。0.3未満では、中空粒子の重量割合が高くなるため、接着性能または成形物性能が低下することがある。1.4超では軽量化の効果が不十分である可能性がある。 The true specific gravity of the resin composition is preferably 0.3 to 1.4, more preferably 0.4 to 1.3, still more preferably 0.5 to 1.2, and particularly preferably 0.6 to 1.1. Preferably, 0.7 to 0.95 is most preferable. If it is less than 0.3, the weight ratio of the hollow particles becomes high, so that the adhesion performance or the molding performance may be lowered. If it exceeds 1.4, the effect of weight reduction may be insufficient.
 樹脂組成物に対する中空粒子(A)の重量割合は、該組成物全体に対して好ましくは0.1~30重量%、より好ましくは0.5~25重量%、さらに好ましくは1.0~15重量%、特に好ましくは1.4~10重量%である。0.1重量%未満では軽量化への効果が不十分である可能性がある。30重量%を超えると、中空粒子重量割合が高いため、接着性能または成形物性能が低下することがある。 The weight ratio of the hollow particles (A) to the resin composition is preferably 0.1 to 30% by weight, more preferably 0.5 to 25% by weight, and still more preferably 1.0 to 15% with respect to the entire composition. % By weight, particularly preferably 1.4 to 10% by weight. If it is less than 0.1% by weight, the effect on weight reduction may be insufficient. If it exceeds 30% by weight, the weight ratio of the hollow particles is high, so that the adhesion performance or the molding performance may be deteriorated.
 本発明の樹脂組成物に占める有機基材樹脂(B)の重量割合は、該組成物全体に対して好ましくは5~65重量%、より好ましくは10~55重量%、さらに好ましくは15~45重量%である。5重量%未満では、優れた接着性能が得られない可能性があり、65重量%超では、成形物の機械的特性や熱的性質及びその他の特性が得られない可能性がある。 The weight ratio of the organic base resin (B) in the resin composition of the present invention is preferably 5 to 65% by weight, more preferably 10 to 55% by weight, and still more preferably 15 to 45% with respect to the entire composition. % By weight. If it is less than 5% by weight, excellent adhesion performance may not be obtained, and if it exceeds 65% by weight, the mechanical properties, thermal properties and other properties of the molded product may not be obtained.
 本発明の樹脂組成物は可塑剤(C)を含むと、例えば、分子間力を弱め、有機基材樹脂(B)のガラス転移温度を低下させることで柔軟性や弾性や接着性などを付与でき、スプレー塗布等の作業性や物理性能の両方を良好なものとするため好ましい。
 可塑剤(C)としては、例えば、ジ(2-エチルヘキシル)フタレート、ブチルベンジルフタレート(高極性可塑剤)、ジノニルフタレート、ジイソノニルフタレート(DINP)、ジイソデシルフタレート、ジウンデシルフタレート、ジヘプチルフタレート、ブチルフタリルブチルグリコレート、イソノニルベンジルフタレート等のフタル酸エステル;ジオクチルアジペート、ジデシルアジペート、ジオクチルセバケート等の脂肪族二塩基酸エステル;ポリオキシエチレングリコールジベンゾエート、ポリオキシプロピレングリコールジベンゾエート等のポリグリコール安息香酸エステル;トリメリット酸エステル;ピロメリット酸エステル;トリブチルホスフェート、トリクレジルホスフェート等のリン酸エステル;アルキル置換ジフェニル、アルキル置換ターフェニル、部分水添アルキルターフェニル、芳香族系プロセスオイル、パインオイル等の炭化水素類等が挙げられる。これらは、1種単独で用いてもよく、2種以上を併用してもよい。なかでも、コスト、汎用性の点からフタル酸エステルが好ましい。
When the resin composition of the present invention contains a plasticizer (C), for example, the intermolecular force is weakened, and the glass transition temperature of the organic base resin (B) is lowered to give flexibility, elasticity, adhesiveness, and the like. It is preferable because both workability such as spray coating and physical performance are improved.
Examples of the plasticizer (C) include di (2-ethylhexyl) phthalate, butyl benzyl phthalate (high polarity plasticizer), dinonyl phthalate, diisononyl phthalate (DINP), diisodecyl phthalate, diundecyl phthalate, diheptyl phthalate, butyl Phthalic acid esters such as phthalyl butyl glycolate and isononyl benzyl phthalate; Aliphatic dibasic acid esters such as dioctyl adipate, didecyl adipate and dioctyl sebacate; polyoxyethylene glycol dibenzoate, polyoxypropylene glycol dibenzoate, etc. Polyglycol benzoate; trimellitic acid ester; pyromellitic acid ester; phosphoric acid ester such as tributyl phosphate and tricresyl phosphate; Le, alkyl-substituted terphenyl, partially hydrogenated alkyl terphenyl, aromatic process oils, hydrocarbons such as pine oil, and the like. These may be used alone or in combination of two or more. Of these, phthalates are preferred from the viewpoint of cost and versatility.
 本発明の樹脂組成物が可塑剤(C)を含む場合、本発明の樹脂組成物に占める可塑剤(C)の重量割合は、該組成物全体に対して15~60重量%が好ましく、25~45重量%がより好ましい。15重量%未満では、塗膜が硬くなりすぎ、本願効果が得られないことがある。60重量%超では、塗膜の流動性が大きくなりすぎ、塗膜形成が十分でないことがある。 When the resin composition of the present invention contains a plasticizer (C), the weight ratio of the plasticizer (C) in the resin composition of the present invention is preferably 15 to 60% by weight based on the entire composition, 25 More preferred is ˜45% by weight. If it is less than 15% by weight, the coating film becomes too hard and the effect of the present application may not be obtained. If it exceeds 60% by weight, the fluidity of the coating film becomes too high, and the coating film formation may not be sufficient.
 本発明の樹脂組成物は、特に限定されないが、塗料組成物、接着剤組成物又は樹脂粘土であると、本願効果が発揮されやすい観点から好ましい。塗料としては、特に限定されず、アンダーボディーコート剤、制震塗料等の自動車用塗料;断熱塗料、外壁用塗料、防水塗料等の建築用塗料;等が挙げられる。接着剤としては、ボディーシーラー、ヘミング用接着剤、構造用接着剤、スポットシーラー、マスチック接着剤、板金補強剤等の自動車用接着剤;外壁用シーリング剤、タイル用接着剤、土間用接着剤等の建築用接着剤;等が挙げられる。
 樹脂粘土としては、特に限定されないが、手工芸分野、美術分野、学校教材用等の教育分野などで使用される軽量粘土等がある。
The resin composition of the present invention is not particularly limited, but is preferably a coating composition, an adhesive composition or a resin clay from the viewpoint of easily exerting the effect of the present application. The paint is not particularly limited, and examples thereof include automotive paints such as underbody coating agents and vibration control paints; architectural paints such as heat insulating paints, exterior wall paints, and waterproof paints. Adhesives include body sealers, hemming adhesives, structural adhesives, spot sealers, mastic adhesives, sheet metal reinforcements and other automotive adhesives; exterior wall sealants, tile adhesives, dirt adhesives, etc. And the like.
Although it does not specifically limit as resin clay, There exists a lightweight clay etc. which are used in education fields, such as a handicraft field, an art field, and a school teaching material.
 本発明に係る樹脂組成物は、塗料組成物、接着剤組成物、樹脂粘土等の用途に応じて、充填剤(炭酸カルシウム、ケイ酸、ケイ酸塩、カーボンブラック、タルク、カオリン、シリカ、水酸化アルミニウム、三酸化アンチモン、フェライト類、チタン酸バリウム、雲母、アルミナ、酸化鉄など)、吸湿剤(酸化カルシウム、モレキュラーシーブスなど)、揺変性賦与剤(有機ベントナイト、フュームドシリカ、ステアリン酸アルミニウム、金属石ケン類、ヒマシ油誘導体など)、安定剤[2,6-ジ-t-ブチル-4-メチルフェノール、2.2-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、ジブチルジチオカルバミン酸ニッケル、鉛系安定剤、バリウム・亜鉛系安定剤、カルシウム・亜鉛系安定剤、有機スズ化合物など]、硬化促進剤(ジブチル錫ジラウレート、オクチル酸鉛、オクチル酸ビスマスなど)、潜在性硬化剤を溶解しない溶剤(高沸点炭化水素系溶剤)、エポキシ樹脂等を適宜選択して添加してもよい。 The resin composition according to the present invention comprises a filler (calcium carbonate, silicic acid, silicate, carbon black, talc, kaolin, silica, water, depending on the application such as a coating composition, an adhesive composition, and a resin clay. Aluminum oxide, antimony trioxide, ferrites, barium titanate, mica, alumina, iron oxide, etc., hygroscopic agent (calcium oxide, molecular sieves, etc.), thixotropic agent (organic bentonite, fumed silica, aluminum stearate, Metal soaps, castor oil derivatives, etc.), stabilizers [2,6-di-t-butyl-4-methylphenol, 2.2-methylene-bis (4-methyl-6-t-butylphenol), dibutyldithiocarbamine Nickel acid, lead stabilizer, barium / zinc stabilizer, calcium / zinc stabilizer, organotin compound, etc.] Curing accelerator (dibutyltin dilaurate, lead octylate, etc. bismuth octylate), a solvent which does not dissolve the latent curing agent (high boiling hydrocarbon solvent) may be added by appropriately selecting the epoxy resin and the like.
 本発明の樹脂組成物が接着剤組成物の場合を説明する。接着剤組成物は、上記中空粒子(A)と、接着成分となる有機基剤樹脂(B)とを含む組成物である。
 接着成分は、物体と物体間を接着させることができる成分であれば、特に限定はないが、1液タイプのポリウレタン接着成分、2液タイプのポリウレタン接着成分、1液タイプの変性シリコーン接着成分、2液タイプの変性シリコーン接着成分、1液タイプのポリサルファイド接着成分、2液タイプのポリサルファイド接着成分、アクリル接着成分等が挙げられる。接着成分が、1液タイプのポリウレタン接着成分、2液タイプのポリウレタン接着成分、1液タイプの変性シリコーン接着成分、および、2液タイプの変性シリコーン接着成分から選ばれる少なくとも1種であると好ましい。
The case where the resin composition of the present invention is an adhesive composition will be described. An adhesive composition is a composition containing the said hollow particle (A) and organic base resin (B) used as an adhesive component.
The adhesive component is not particularly limited as long as it is a component capable of adhering between an object, a one-component polyurethane adhesive component, a two-component polyurethane adhesive component, a one-component modified silicone adhesive component, Examples include a two-component modified silicone adhesive component, a one-component polysulfide adhesive component, a two-component polysulfide adhesive component, and an acrylic adhesive component. The adhesive component is preferably at least one selected from a one-component polyurethane adhesive component, a two-component polyurethane adhesive component, a one-component modified silicone adhesive component, and a two-component modified silicone adhesive component.
 1液タイプのポリウレタン接着成分は、イソシアネート基含有ウレタンプレポリマーを硬化成分として含有している。イソシアネート基含有ウレタンプレポリマーは、イソシアネート基が空気中の水分と反応し、架橋・硬化することで接着性を発現するものである。
 1液タイプのポリウレタン接着成分としては、たとえば、ペンギンシール999(サンスター技研製)等が商業的に入手可能である。
The one-pack type polyurethane adhesive component contains an isocyanate group-containing urethane prepolymer as a curing component. The isocyanate group-containing urethane prepolymer expresses adhesiveness when the isocyanate group reacts with moisture in the air and is crosslinked and cured.
As a one-component type polyurethane adhesive component, for example, Penguin Seal 999 (manufactured by Sunstar Giken) and the like are commercially available.
 次に、2液タイプのポリウレタン接着成分は、ウレタンプレポリマー(以下、A1ということがある。)と、ポリオール等の硬化剤(以下、A2ということがある。)との2つの組合せからなる。2液タイプのポリウレタン接着成分では、A1およびA2を混合することによって、架橋・硬化することで接着性を発現するものである。
 2液タイプのポリウレタン接着成分としては、たとえば、ペンギンシールPU9000typeNB(サンスター技研製)、ハマタイトUH-30(横浜ゴム社製)、ボンドPUシール(コニシ社製)等が商業的に入手可能である。
Next, the two-component polyurethane adhesive component is composed of two combinations of a urethane prepolymer (hereinafter also referred to as A1) and a curing agent such as polyol (hereinafter also referred to as A2). In the two-component type polyurethane adhesive component, A1 and A2 are mixed to express adhesiveness by crosslinking and curing.
As the two-component polyurethane adhesive component, for example, penguin seal PU9000 typepeNB (manufactured by Sunstar Giken), Hamatite UH-30 (manufactured by Yokohama Rubber Co., Ltd.), bond PU seal (manufactured by Konishi Co., Ltd.) and the like are commercially available. .
 1液タイプの変性シリコーン接着成分は、架橋性シリル基含有樹脂が空気中の水分と反応し、架橋・硬化することで接着性を発現するものである。1液タイプの変性シリコーン接着成分としては、たとえば、シーラント45(信越化学工業社製)、SH780シーラント(東レ・ダウコーニング社製)、ペンギンシール2505(サンスター技研社製)、ハマタイトSS-310(横浜ゴム社製)等が商業的に入手可能である。
 次に、2液タイプの変性シリコーン接着成分は、シロキサンポリマー(以下、B1ということがある。)と、有機錫化合物等の硬化剤等の硬化剤(以下、B2ということがある。)とを混合・反応させることで接着性を発現するものである。2液タイプの変性シリコーン接着成分としては、たとえば、2成分形シーラント74(信越化学工業社製)、SE792シーラント(東レ・ダウコーニング製)、ペンギンシールSR2520(サンスター技研社製)、ハマタイトシリコーン70(横浜ゴム社製)、ボンドMSシール(コニシ社製)等が商業的に入手可能である。
The one-component type modified silicone adhesive component exhibits adhesiveness when the crosslinkable silyl group-containing resin reacts with moisture in the air and is crosslinked and cured. Examples of the one-component type modified silicone adhesive component include sealant 45 (manufactured by Shin-Etsu Chemical Co., Ltd.), SH780 sealant (manufactured by Dow Corning Toray), penguin seal 2505 (manufactured by Sunstar Giken Co., Ltd.), hamatite SS-310 ( Yokohama Rubber Co., Ltd.) are commercially available.
Next, the two-component type modified silicone adhesive component includes a siloxane polymer (hereinafter also referred to as B1) and a curing agent such as a curing agent such as an organic tin compound (hereinafter also referred to as B2). Adhesiveness is developed by mixing and reacting. Examples of the two-component type modified silicone adhesive component include two-component sealant 74 (manufactured by Shin-Etsu Chemical Co., Ltd.), SE792 sealant (manufactured by Dow Corning Toray), penguin seal SR2520 (manufactured by Sunstar Giken Co., Ltd.), and hamatite silicone 70. (Manufactured by Yokohama Rubber Co., Ltd.), Bond MS seal (manufactured by Konishi Co., Ltd.) and the like are commercially available.
 1液タイプのポリサルファイド接着成分は、液状ポリサルファイド樹脂を硬化成分として含有し、これに潜在性硬化剤としてBaO、CaO等のアルカリまたはアルカリ土類金属の過酸化物を配合したものであり、空気中の水分と反応し接着性を発生するものである。1液タイプのポリサルファイド接着成分としては、たとえば、トプコールSP(東レ・ファインケミカル社製)、ハマタイトPS-ONE(横浜ゴム社製)等が商業的に入手可能である。
 2液タイプのポリサルファイド接着成分は、サルファイドポリマーからなる基剤(以下、C1ということがある。)と、PdO等の金属過酸化物を含む硬化剤(以下、C2ということがある。)とを混合することで接着性を発生するものである。2液タイプのポリサルファイド接着成分は、たとえば、ペンギンシールPS169N(サンスター技研社製)、ハマタイトSC-M500(横浜ゴム製)等が商業的に入手可能である。
The one-component type polysulfide adhesive component contains a liquid polysulfide resin as a curing component, and is blended with a peroxide of an alkali or alkaline earth metal such as BaO 2 and CaO 2 as a latent curing agent. It reacts with moisture in the air and generates adhesiveness. As the one-component type polysulfide adhesive component, for example, Topcol SP (manufactured by Toray Fine Chemical Co., Ltd.), Hamatite PS-ONE (manufactured by Yokohama Rubber Co., Ltd.), etc. are commercially available.
The two-component type polysulfide adhesive component includes a base composed of a sulfide polymer (hereinafter sometimes referred to as C1) and a curing agent (hereinafter also referred to as C2) including a metal peroxide such as PdO 2 . Adhesiveness is generated by mixing. As the two-component type polysulfide adhesive component, for example, Penguin Seal PS169N (manufactured by Sunstar Giken), Hamatite SC-M500 (manufactured by Yokohama Rubber) and the like are commercially available.
 アクリル接着成分は、アクリル酸エステルポリマーエマルジョンからなり、水分の蒸発により接着性が発生するものである。アクリル接着成分としては、たとえば、ペンギンシール1250(サンスター技研社製)等の商品名で市販されている。
 樹脂組成物において配合される中空粒子(A)と接着成分との重量比率(中空粒子(A)/接着成分)については、特に限定はないが、好ましくは0.0005~0.30、さらに好ましくは0.001~0.20、特に好ましくは0.01~0.1である。中空粒子(A)/接着成分(重量比率)が、0.0005より小さい場合、中空粒子(A)の添加量が少なすぎて、樹脂組成物の硬化物の伸度の改善の効果が薄れてしまう可能性がある。一方、中空粒子(A)/接着成分(重量比率)が、0.30より大きい場合、接着成分の量が少なすぎて、接着剤組成物としての機能が著しく低下することがある。ここで、接着成分は、2液タイプのポリウレタン接着成分の場合はA1とA2との合計量を意味し、2液タイプの変性シリコーン接着成分の場合はB1とB2との合計量を意味し、2液タイプのポリサルファイド接着成分の場合はC1とC2との合計量を意味する。
 接着剤組成物から得られる硬化物の伸度は大きく、外力等を受けて変形した場合に硬化物は破壊されにくい。
The acrylic adhesive component is made of an acrylate polymer emulsion, and adhesiveness is generated by evaporation of moisture. Examples of the acrylic adhesive component are commercially available under a trade name such as Penguin Seal 1250 (manufactured by Sunstar Giken).
The weight ratio of the hollow particles (A) and the adhesive component (hollow particles (A) / adhesive component) blended in the resin composition is not particularly limited, but is preferably 0.0005 to 0.30, more preferably Is 0.001 to 0.20, particularly preferably 0.01 to 0.1. When the hollow particles (A) / adhesive component (weight ratio) is smaller than 0.0005, the amount of the hollow particles (A) added is too small, and the effect of improving the elongation of the cured product of the resin composition is diminished. There is a possibility. On the other hand, when the hollow particle (A) / adhesive component (weight ratio) is larger than 0.30, the amount of the adhesive component is too small, and the function as the adhesive composition may be remarkably deteriorated. Here, the adhesive component means the total amount of A1 and A2 in the case of a two-component polyurethane adhesive component, and means the total amount of B1 and B2 in the case of a two-component modified silicone adhesive component, In the case of a two-component type polysulfide adhesive component, it means the total amount of C1 and C2.
The degree of elongation of the cured product obtained from the adhesive composition is large, and the cured product is not easily destroyed when deformed by an external force or the like.
 本発明の樹脂組成物が樹脂粘土の場合は、中空粒子(A)、有機基材樹脂(B)としてポリビニルアルコールを含有する。
 本発明に用いるポリビニルアルコールのケン化度は、70~99mol%が好ましく、80~90mol%がより好ましく、85~90mol%がさらに好ましい。ケン化度がこの範囲以内であると、造形時の作業性が良好である。
 本発明に用いるポリビニルアルコールの粘度は、20℃、4%の水溶液において2~60mPa・sのものが好ましく、4~50mPa・sがより好ましく、10~45mPa・sがさらに好ましい。ポリビニルアルコールの粘度がこの範囲にあると造形時の作業性が良好となる。
When the resin composition of the present invention is a resin clay, it contains polyvinyl alcohol as the hollow particles (A) and the organic base resin (B).
The saponification degree of the polyvinyl alcohol used in the present invention is preferably from 70 to 99 mol%, more preferably from 80 to 90 mol%, still more preferably from 85 to 90 mol%. When the degree of saponification is within this range, workability during modeling is good.
The viscosity of the polyvinyl alcohol used in the present invention is preferably 2 to 60 mPa · s in a 4% aqueous solution at 20 ° C., more preferably 4 to 50 mPa · s, and even more preferably 10 to 45 mPa · s. When the viscosity of the polyvinyl alcohol is within this range, workability at the time of modeling becomes good.
 樹脂粘土におけるポリビニルアルコールの配合量は、樹脂粘土全体の2~15重量%の範囲内が好ましく、5~12重量%の範囲内がさらに好ましい。ポリビニルアルコールの配合量が2重量%未満では、造形時における粘着性(可塑性、伸展性)が悪化し、15重量%を越えると、粘土が硬くなり、粘土で造形する際の作業性、手触り等の物性が悪くなることがある。
 ポリビニルアルコールは、ゲル化剤によってゲル状にして配合すると、「コシ」のある粘土が得られる点で望ましい。このゲル化剤として、ボウ硝(硫酸ソーダ)、カリウムミョウバン(ミョウバン)、硼酸、硼砂などが挙げられる。配合量は、ポリビニルアルコール100重量部に対して、ゲル化剤を2~15重量部が好ましく、8~15重量部がさらに好ましい。
The blending amount of polyvinyl alcohol in the resin clay is preferably in the range of 2 to 15% by weight, more preferably in the range of 5 to 12% by weight based on the entire resin clay. When the blending amount of polyvinyl alcohol is less than 2% by weight, the adhesiveness (plasticity, extensibility) at the time of molding deteriorates, and when it exceeds 15% by weight, the clay becomes hard, and workability and hand feeling when modeling with clay, etc. The physical properties may deteriorate.
When polyvinyl alcohol is blended in a gel state with a gelling agent, it is desirable in that a clay with “koshi” can be obtained. Examples of the gelling agent include bow glass (sodium sulfate), potassium alum (alum), boric acid, borax and the like. The blending amount is preferably 2 to 15 parts by weight, more preferably 8 to 15 parts by weight with respect to 100 parts by weight of polyvinyl alcohol.
 本発明の樹脂粘土は、酢酸ビニル樹脂を含有してもよい。酢酸ビニル樹脂は、例えば、ポリ酢酸ビニル、ポリ変性酢酸ビニル、エチレン酢酸ビニル共重合樹脂、酢酸ビニル・バーサチック酸ビニル共重合樹脂、酢酸ビニル・アクリル酸共重合体、酢酸ビニル・アクリル酸エステル共重合体、酢酸ビニル・メタクリル酸共重合体、酢酸ビニル・メタクリル酸エステル共重合体、酢酸ビニル・アクリルアミド共重合体、酢酸ビニル・ジエン系共重合体等が挙げられる。この酢酸ビニル樹脂は、粉末状またはエマルジョン状で使用されるが、通常、エマルジョンの状態で使用されることが多い。エマルジョンの状態で使用する場合には、酢酸ビニル樹脂成分を50%以上含有するものを使用することが望ましい。
 本発明に使用する酢酸ビニル樹脂としては、30℃における59%水溶液粘度が1,000~150,000mPa・sのものが好ましい。酢酸ビニル系樹脂は、樹脂粘土に可塑性を付与するとともに、造形、乾燥後における造形物の形状を保持するものである。
The resin clay of the present invention may contain a vinyl acetate resin. Examples of the vinyl acetate resin include polyvinyl acetate, polymodified vinyl acetate, ethylene vinyl acetate copolymer resin, vinyl acetate / versaic acid vinyl copolymer resin, vinyl acetate / acrylic acid copolymer, vinyl acetate / acrylic acid ester copolymer Examples thereof include a vinyl acetate / methacrylic acid copolymer, a vinyl acetate / methacrylic acid ester copolymer, a vinyl acetate / acrylamide copolymer, and a vinyl acetate / diene copolymer. This vinyl acetate resin is used in the form of a powder or an emulsion, but usually is often used in the form of an emulsion. When used in the form of an emulsion, it is desirable to use one containing 50% or more of the vinyl acetate resin component.
The vinyl acetate resin used in the present invention preferably has a 59% aqueous solution viscosity at 30 ° C. of 1,000 to 150,000 mPa · s. The vinyl acetate-based resin imparts plasticity to the resin clay and maintains the shape of the shaped article after shaping and drying.
 酢酸ビニル樹脂には可塑剤が添加されたものが好ましい。可塑剤としては、フタル酸ジブチル等があげられる。可塑剤の配合量は、酢酸ビニル樹脂エマルジョン重量に対して4~10重量%が望ましい。可塑剤を含む酢酸ビニル系樹脂の配合量は、樹脂粘土全体に対して1.5~7重量%(乾燥重量で表現)、特に2~5重量%が好ましい。ポリビニルアルコールと可塑剤を含む酢酸ビニル樹脂の配合比率は、重量比で10:7~10:3であることが望ましい。可塑剤を含む酢酸ビニル樹脂の配合比率が7を越えると、粘土がべとつき、造形性が損なわれるおそれがあり、3未満では乾燥後の外的圧力に対して破損し易くなる傾向がある。 A vinyl acetate resin to which a plasticizer is added is preferable. Examples of the plasticizer include dibutyl phthalate. The blending amount of the plasticizer is desirably 4 to 10% by weight based on the weight of the vinyl acetate resin emulsion. The blending amount of the vinyl acetate resin containing the plasticizer is preferably 1.5 to 7% by weight (expressed in dry weight), particularly 2 to 5% by weight, based on the entire resin clay. The mixing ratio of the polyvinyl acetate resin containing polyvinyl alcohol and the plasticizer is preferably 10: 7 to 10: 3 by weight. If the blending ratio of the vinyl acetate resin containing the plasticizer exceeds 7, the clay may become sticky and the formability may be impaired. If it is less than 3, the clay tends to be damaged by the external pressure after drying.
 本発明の樹脂粘土は、ポリエチレンオキサイドを含有してもよい。ポリエチレンオキサイドはエチレンオキサイドを開環重合して得られるポリマーであって、中間にはエーテル基、末端にヒドロキシル基を有する水溶性の高重合ポリマーである。本発明で使用するポリエチレンオキサイドは、粘度平均分子量が約30万~120万、特に、60万~80万であることが好ましい。25℃における2.0重量%水溶液の粘度が100~2000mPa・s、特に200~700mPa・s(回転粘度計で測定)であることが好ましい。また、融点は65~67℃のものが望ましい。前記物性のポリエチレンオキサイドは中空粒子、ポリビニルアルコール、酢酸ビニル樹脂との相溶性に優れているものである。ポリエチレンオキサイドは、粘土の造形時における粘土の可塑性や伸展性を向上させるとともに、粘土の粘着性を改善して手への付着を少なくして造形作業を快適にするものである。この配合量は、樹脂粘土全体に対して0.5~1.5重量%(乾燥重量で表現)が好ましい。ポリエチレンオキサイドの配合量が0.5重量%未満では得られた粘土の造形時における粘土の伸展性、表面平滑性が好ましく、1.5重量%を越えると、造形時においてべたついて手に付着するおそれがある。 The resin clay of the present invention may contain polyethylene oxide. Polyethylene oxide is a polymer obtained by ring-opening polymerization of ethylene oxide, and is a water-soluble highly polymerized polymer having an ether group in the middle and a hydroxyl group at the end. The polyethylene oxide used in the present invention preferably has a viscosity average molecular weight of about 300,000 to 1,200,000, particularly 600,000 to 800,000. The viscosity of a 2.0 wt% aqueous solution at 25 ° C. is preferably 100 to 2000 mPa · s, particularly 200 to 700 mPa · s (measured with a rotational viscometer). The melting point is preferably 65 to 67 ° C. The physical properties of polyethylene oxide are excellent in compatibility with hollow particles, polyvinyl alcohol, and vinyl acetate resin. Polyethylene oxide improves the plasticity and extensibility of clay during modeling of the clay, and improves the adhesion of the clay to reduce adhesion to the hand and make the modeling work comfortable. The blending amount is preferably 0.5 to 1.5% by weight (expressed in dry weight) with respect to the entire resin clay. When the blending amount of the polyethylene oxide is less than 0.5% by weight, the extensibility and surface smoothness of the resulting clay are preferable, and when it exceeds 1.5% by weight, the clay sticks to the hand during modeling. There is a fear.
 本発明の樹脂粘土には、上記のもののほか、カルボキシメチルセルロース塩、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、天然高分子グアーガム、グアーガム誘導体を添加することができる。これらは、粘土の伸展性、表面平滑性の向上、手ざわりを改良するものであって、これらの配合量は、樹脂粘土全体に対して0.5~1.5重量%が好ましい。
 本発明の樹脂粘土には、上記のもののほか、繊維粉を添加することができる。繊維粉は、造形、乾燥後における保形性を高めるとともに、収縮防止効果を奏するものである。上記の繊維粉としては、粉末パルプ、ビニロン繊維、粉末コットン、シートパルプを解砕したものなどを例示することができる。繊維粉の長さ0.5~5.5mm、特に1~3mmの天然繊維、合成繊維などが望ましい。配合量としては、粘土全重量の0.5~4重量%が好ましい。
 本発明の粘土には、上記のもののほか、補湿剤を添加することができる。補湿剤としては、流動パラフィン、ソルビトール、ポリエチレングリコール、プロピレングリコール等が挙げられる。補湿剤の配合量は、樹脂粘土全体に対して0.5~1.5重量%が好ましい。水の配合量としては、樹脂粘土全体に対して50~80重量%が好ましく、60~75重量%がさらに好ましい。
In addition to the above, carboxymethylcellulose salt, methylcellulose, hydroxymethylcellulose, hydroxyethylcellulose, natural polymer guar gum, and guar gum derivatives can be added to the resin clay of the present invention. These improve clay extensibility, surface smoothness, and texture, and the blending amount thereof is preferably 0.5 to 1.5% by weight based on the entire resin clay.
In addition to the above, fiber powder can be added to the resin clay of the present invention. The fiber powder enhances the shape retention after shaping and drying, and has an effect of preventing shrinkage. Examples of the fiber powder include powdered pulp, vinylon fiber, powdered cotton, and pulverized sheet pulp. Natural fibers and synthetic fibers having a fiber powder length of 0.5 to 5.5 mm, particularly 1 to 3 mm are desirable. The blending amount is preferably 0.5 to 4% by weight based on the total weight of the clay.
In addition to the above, a moisturizing agent can be added to the clay of the present invention. Examples of the humectant include liquid paraffin, sorbitol, polyethylene glycol, propylene glycol and the like. The amount of the humectant is preferably 0.5 to 1.5% by weight based on the entire resin clay. The blending amount of water is preferably 50 to 80% by weight, more preferably 60 to 75% by weight, based on the entire resin clay.
 本発明の樹脂組成物の製造方法は、上記の工程(1)、工程(2)及び工程(3)と、工程(3)で得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)を含むものである。工程(4)としては、中空粒子(A)、有機基材樹脂(B)を配合して、可塑剤(C)等その他の成分をさらに含有する場合にはそれら成分を配合し、従来既知の手段(例えば、プラネタリアミキサ)を用いて一括混合する工程が挙げられる。 The method for producing the resin composition of the present invention comprises the above-mentioned step (1), step (2) and step (3), the hollow particles (A) obtained in step (3) and the organic base resin (B). The process (4) of mixing is included. As a process (4), when hollow particles (A) and organic base resin (B) are mix | blended and other components, such as a plasticizer (C), are further contained, these components are mix | blended, and it is conventionally well-known. A step of batch mixing using a means (for example, a planetary mixer) may be mentioned.
〔成形物〕
 本発明の成形物は、上記樹脂組成物を成形させてなるものである。より詳細には、本発明の樹脂組成物が接着剤組成物や塗料組成物の場合、本発明の成形物は、樹脂組成物を対象物に塗工して乾燥、硬化させてなるものである。
 更に詳細には、上記樹脂組成物は各種金属(特に鋼材)面に施された各種下塗り塗装面に適用できるが、特にカチオン型電着塗装面に有利に適用できる。該樹脂組成物の上記塗装面に対する塗布量は、好ましくは200~2,000g/m2であり、塗布膜厚は、塗膜物性の観点から、好ましくは0.2~20mmである。塗装方法としてはハケ塗り、ローラーコート、エアレススプレー塗装などが挙げられる。
 また、塗布後熱処理が行われるが、その場合の温度は樹脂組成物の硬化性の観点から、好ましくは110~200℃、さらに好ましくは120~180℃である。熱処理時間は、樹脂組成物の硬化性の観点から、好ましくは8~60分である。
(Molded product)
The molded product of the present invention is obtained by molding the above resin composition. More specifically, when the resin composition of the present invention is an adhesive composition or a coating composition, the molded product of the present invention is obtained by applying the resin composition to an object, drying and curing. .
More specifically, the resin composition can be applied to various undercoating surfaces applied to various metal (particularly steel) surfaces, but can be advantageously applied particularly to cationic electrodeposition coating surfaces. The coating amount of the resin composition on the painted surface is preferably 200 to 2,000 g / m 2, and the coating film thickness is preferably 0.2 to 20 mm from the viewpoint of physical properties of the coating film. Examples of the coating method include brush coating, roller coating, and airless spray coating.
Further, after the coating, a heat treatment is performed. In this case, the temperature is preferably 110 to 200 ° C., more preferably 120 to 180 ° C., from the viewpoint of curability of the resin composition. The heat treatment time is preferably 8 to 60 minutes from the viewpoint of curability of the resin composition.
 上記成形物は、樹脂組成物を120℃×10分で処理した場合の真比重をD1とし、前記樹脂組成物を140℃×20分で処理した場合の真比重をD2としたときに、
0.85<(D2/D1)<1.1を満足すると好ましく、
0.87<(D2/D1)<1.07を満足するとより好ましく、
0.89<(D2/D1)<1.04を満足するとさらに好ましく、
0.91<(D2/D1)≦1.0を満足すると特に好ましい。
 0.85以下では、表面平滑性が低下することがあり、接着性能が低下する可能性がある。1.1以上では、中空粒子により構成される独立気泡が減少することや、内包剤漏えいのため生じる微細な穴やボイドの影響により、接着性能の低下が生じる可能性又は非常に軽量な成形物が得られない可能性がある。
The molded article has a true specific gravity when the resin composition is treated at 120 ° C. for 10 minutes as D1, and a true specific gravity when the resin composition is treated at 140 ° C. for 20 minutes as D2.
Preferably 0.85 <(D2 / D1) <1.1 is satisfied,
More preferably, 0.87 <(D2 / D1) <1.07 is satisfied,
More preferably, 0.89 <(D2 / D1) <1.04 is satisfied,
It is particularly preferable that 0.91 <(D2 / D1) ≦ 1.0 is satisfied.
If it is 0.85 or less, the surface smoothness may be lowered, and the adhesion performance may be lowered. In 1.1 or more, there is a possibility that the adhesion performance may be deteriorated due to the reduction of closed cells constituted by hollow particles, the influence of fine holes and voids caused by the leakage of the inclusion agent, or a very lightweight molded product May not be obtained.
 本発明の樹脂組成物を成形させてなる本発明の成形物は、金属塗装面に強固に接着し、かつ、軽量である。そのため、本発明の成形物は、接着剤、シーラント、塗料等として各種工業用途、特に自動車工業におけるカチオン型電着塗装が施された自動車車体の優れたアンダーボディーコート材、シーリング材、ヘミング用接着剤、構造用接着剤、スポットシーラー、マスチック接着剤、板金補強材及びボディーシーラーとして用いられると、強度に優れ、かつ、軽量で燃費の優れた自動車に寄与することができる。 The molded product of the present invention formed by molding the resin composition of the present invention is firmly bonded to the metal painted surface and is lightweight. Therefore, the molded product of the present invention has excellent underbody coating materials, sealing materials, and hemming adhesives for various industrial uses such as adhesives, sealants, paints, etc., especially for automobile bodies that have been subjected to cationic electrodeposition coating in the automotive industry. When used as an agent, structural adhesive, spot sealer, mastic adhesive, sheet metal reinforcement, and body sealer, it can contribute to an automobile having excellent strength, light weight and excellent fuel efficiency.
 以下の実施例および比較例で本発明を詳細に説明するが、本発明はこれに限定されるものではない。以下において、断りのない限り、「%」とは「重量%」を意味し、「部」とは「重量部」を意味するものとする。
 以下では、まず、中空粒子の原料となる熱膨張性微小球の製造例および比較製造例を示し、次いで、中空粒子を含む樹脂組成物の実施例・比較例を示す。熱膨張性微小球や中空粒子の物性は、次に示す要領で測定し、さらに性能を評価した。
The present invention is described in detail in the following examples and comparative examples, but the present invention is not limited thereto. Hereinafter, unless otherwise specified, “%” means “% by weight”, and “parts” means “parts by weight”.
Below, the manufacture example and comparative manufacture example of the thermally expansible microsphere used as the raw material of a hollow particle are shown first, Then, the Example and comparative example of the resin composition containing a hollow particle are shown. The physical properties of thermally expandable microspheres and hollow particles were measured in the following manner, and the performance was further evaluated.
〔粒子径と粒度分布の測定〕
 レーザー回折式粒度分布測定装置(SYMPATEC社製 HEROS & RODOS)を使用した。乾式分散ユニットの分散圧は5.0bar、真空度は5.0mbarで乾式測定法により測定した。
 体積基準の累積粒子径とは、全粒子を体積順に小さい側から積算して累積した分布の所定の比率に対する粒子の直径を意味する。
 レーザー回折式粒度分布測定装置は、原理上、体積基準の累積粒子径の分布を測定しており、測定装置のソフトウェアで体積基準の累積50%粒子径(D50)の測定値を確認できる。
 個数基準の累積粒子径とは、全粒子を粒子順に並べ、小さい側から積算して累積した分布の所定の個数比率の粒子の直径を意味する。個数基準の累積粒子径は、測定装置のソフトウェアで、体積基準の累積粒子径から換算することができる。
[Measurement of particle size and particle size distribution]
A laser diffraction particle size distribution analyzer (HEROS & RODOS manufactured by SYMPATEC) was used. The dispersion pressure of the dry dispersion unit was 5.0 bar and the degree of vacuum was 5.0 mbar, which was measured by a dry measurement method.
The volume-based cumulative particle diameter means the diameter of a particle with respect to a predetermined ratio of a distribution obtained by accumulating all particles from the smaller side in the volume order.
The laser diffraction particle size distribution measuring device, in principle, measures the distribution of the volume-based cumulative particle size, and the measured value of the volume-based cumulative 50% particle size (D50) can be confirmed with the software of the measuring device.
The cumulative particle diameter based on the number means the diameter of particles having a predetermined number ratio in a distribution in which all particles are arranged in order of particles and accumulated from the smaller side. The number-based cumulative particle size can be converted from the volume-based cumulative particle size by software of the measuring device.
〔熱膨張性微小球の含水率の測定〕
 測定装置として、カールフィッシャー水分計(MKA-510N型、京都電子工業株式会社製)を用いて測定した。
[Measurement of moisture content of thermally expandable microspheres]
The measurement was performed using a Karl Fischer moisture meter (MKA-510N type, manufactured by Kyoto Electronics Industry Co., Ltd.).
〔熱膨張性微小球に封入された発泡剤の内包率の測定〕
 熱膨張性微小球1.0gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W)を測定した。アセトニトリル30ml加え均一に分散させ、30分間室温で放置した後に、120℃で2時間加熱し乾燥後の重量(W)を測定した。発泡剤の内包率は、下記の式により計算される。
 内包率(重量%)=(W-W)(g)/1.0(g)×100-(含水率)(重量%)
(式中、含水率は、上記方法で測定される。)
[Measurement of encapsulation rate of foaming agent enclosed in thermally expandable microspheres]
1.0 g of thermally expandable microspheres were placed in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 1 ) was measured. 30 ml of acetonitrile was added and dispersed uniformly, left at room temperature for 30 minutes, then heated at 120 ° C. for 2 hours, and the weight (W 2 ) after drying was measured. The encapsulation rate of the foaming agent is calculated by the following formula.
Inclusion rate (% by weight) = (W 1 -W 2 ) (g) /1.0 (g) × 100- (water content) (% by weight)
(In the formula, the moisture content is measured by the above method.)
〔中空粒子に封入された発泡剤の内包率の測定〕
 中空粒子0.20gを直径80mm、深さ15mmのステンレス製蒸発皿に入れ、その重量(W)を測定した。アセトニトリル30ml加え均一に分散させ、30分間室温で放置した後に、120℃で2時間加熱し乾燥後の重量(W)を測定した。発泡剤の内包率は、下記の式により計算される。
 内包率(G)=(W-W)(g)/0.20(g)×100-(含水率)(重量%)
(式中、含水率は、上記方法で測定される。)
[Measurement of encapsulation rate of foaming agent enclosed in hollow particles]
0.20 g of hollow particles were placed in a stainless steel evaporation dish having a diameter of 80 mm and a depth of 15 mm, and the weight (W 1 ) was measured. Acetonitrile 30ml added and dispersed uniformly, after standing at room temperature for 30 minutes and weighed (W 2) after heating was dried 2 hours at 120 ° C.. The encapsulation rate of the foaming agent is calculated by the following formula.
Inclusion rate (G) = (W 1 −W 2 ) (g) /0.20 (g) × 100− (water content) (% by weight)
(In the formula, the moisture content is measured by the above method.)
〔熱膨張性微小球および中空粒子の真比重の測定〕
 熱膨張性微小球および中空粒子の真比重は、以下の測定方法で測定した。
 真比重は環境温度25℃、相対湿度50%の雰囲気下においてイソプロピルアルコールを用いた液浸法(アルキメデス法)により測定した。
 具体的には、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WB)を秤量した。秤量したメスフラスコにイソプロピルアルコールをメニスカスまで正確に満たした後、イソプロピルアルコール100ccの充満されたメスフラスコの重量(WB)を秤量した。
(Measurement of true specific gravity of thermally expandable microspheres and hollow particles)
The true specific gravity of thermally expandable microspheres and hollow particles was measured by the following measuring method.
The true specific gravity was measured by an immersion method (Archimedes method) using isopropyl alcohol in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50%.
Specifically, the volumetric flask having a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WB 1 ) was weighed. After the weighed volumetric flask was accurately filled with isopropyl alcohol to the meniscus, the weight (WB 2 ) of the volumetric flask filled with 100 cc of isopropyl alcohol was weighed.
 また、容量100ccのメスフラスコを空にし、乾燥後、メスフラスコ重量(WS)を秤量した。秤量したメスフラスコに約50ccの粒子を充填し、粒子の充填されたメスフラスコの重量(WS)を秤量した。そして、粒子の充填されたメスフラスコに、イソプロピルアルコールを気泡が入らないようにメニスカスまで正確に満たした後の重量(WS)を秤量した。そして、得られたWB、WB、WS、WSおよびWSを下式に導入して、粒子の真比重(d)を計算した。
d(d)={(WS-WS)×(WB-WB)/100}/{(WB-WB)-(WS-WS)}
 上記で、粒子として中空粒子を用いて、真比重を計算した。
Further, the volumetric flask with a capacity of 100 cc was emptied and dried, and the weight of the volumetric flask (WS 1 ) was weighed. The weighed volumetric flask was filled with about 50 cc of particles, and the weight (WS 2 ) of the volumetric flask filled with the particles was weighed. Then, the filled volumetric flask particles were weighed weight after filling exactly the isopropyl alcohol to the meniscus to avoid air bubbles are (WS 3). Then, the obtained WB 1 , WB 2 , WS 1 , WS 2 and WS 3 were introduced into the following equation, and the true specific gravity (d) of the particles was calculated.
d (d b ) = {(WS 2 −WS 1 ) × (WB 2 −WB 1 ) / 100} / {(WB 2 −WB 1 ) − (WS 3 −WS 2 )}
Above, the true specific gravity was calculated using hollow particles as particles.
〔中空粒子に対する取り込み空気量の体積割合(Z)〕
 以下のアルミ容器に中空粒子を300ml入れる。規定量の中空粒子を体積分測りとるには、下記の計算式で得られた重量を測りとればよい。
中空粒子の重量(W)(g)=中空粒子の体積(V)(ml)×中空粒子の真比重(d)(g/cc)
アルミ容器:環境温度25℃、相対湿度50%の雰囲気下においてガス透過性の無いアルミ容器(最大容量1.4L、膜の厚み:114μm:ラミジップAL-18)を用いる。当該アルミ容器は、内部の体積の増減によりアルミのフィルム自体の伸縮はしないが、袋の形状は変形する。
 次にアルミ容器の体積が約900mlになるようにして開口部分を熱溶着で密閉する。液浸法(アルキメデス法)を用いて、密閉したアルミ容器の体積(Y1)(ml)測定する。密閉したアルミ容器を、環境温度25℃、相対湿度50%の雰囲気下で7日間静置させておく。当該期間経過後に、液浸法(アルキメデス法)を用いて、密閉したアルミ容器の体積(Y2)(ml)を測定する。中空粒子に対する取り込み空気量の体積割合(Z)を以下の式にて計算した。
中空粒子に対する取り込み空気量の体積割合(Z)=(Y1-Y2)/300
<熟成評価基準>
(Z)<-0.2:×
-0.2≦(Z)<-0.05:△
-0.05≦(Z)≦0.05:◎
0.05<(Z)≦0.2:○
0.2<(Z)≦1:△
1<(Z):×
[Volume ratio of intake air volume to hollow particles (Z)]
Place 300 ml of hollow particles in the following aluminum container. In order to measure the volume of a prescribed amount of hollow particles, the weight obtained by the following formula may be measured.
Weight of hollow particles (W) (g) = volume of hollow particles (V) (ml) × true specific gravity of hollow particles (d) (g / cc)
Aluminum container: An aluminum container (maximum capacity 1.4 L, film thickness: 114 μm: Lamidip AL-18) having no gas permeability in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50% is used. The aluminum container does not expand or contract the aluminum film itself due to an increase or decrease in the internal volume, but the shape of the bag is deformed.
Next, the opening is sealed by heat welding so that the volume of the aluminum container is about 900 ml. Using an immersion method (Archimedes method), the volume (Y1) (ml) of the sealed aluminum container is measured. The sealed aluminum container is allowed to stand for 7 days in an atmosphere having an environmental temperature of 25 ° C. and a relative humidity of 50%. After the period, the volume (Y2) (ml) of the sealed aluminum container is measured using the immersion method (Archimedes method). The volume ratio (Z) of the intake air amount with respect to the hollow particles was calculated by the following formula.
Volume ratio of intake air amount to hollow particles (Z) = (Y1-Y2) / 300
<Aging criteria>
(Z) <− 0.2: ×
−0.2 ≦ (Z) <− 0.05: Δ
−0.05 ≦ (Z) ≦ 0.05: ◎
0.05 <(Z) ≦ 0.2: ○
0.2 <(Z) ≦ 1: △
1 <(Z): ×
〔中空粒子に含まれる空気量の体積割合(P)〕
 中空粒子W(g)を1Lの容器に入れ、DMF(ジメチルホルムアミド)にて容器を満たした後、密閉する。上記の容器を90℃で12時間加温し、発生した気体を、DMFを用いた水上置換法の変法にて気体を捕集する。水上置換法にて捕集した気体の量を測定し、酸素ガスセンサ(機種:PS-2126A、測定方式:ガルバニ電池式)にて、その気体中の酸素濃度を測定する。捕集された気体量とその気体中の酸素濃度より、中空粒子内に内包されている空気の量を定量することができる。捕集した気体中の空気量は以下の式にて計算した。
捕集した気体中の空気量(V)=V1×C/20.9
 捕集した気体量(V1)(ml)
 気体中の酸素濃度(C)(体積%)
中空粒子に含まれる空気量の体積割合(P)は、以下の式にて計算した。当該体積割合(P)は、中空粒子(A)全体の体積を100%としたときの割合となる。
中空粒子に含まれる空気量の体積割合(P)(%)=V×d×100/W
 中空粒子の重量:W(g)
 中空粒子の真比重:d(g/cc)
<熟成評価基準>
(P)<10:×
10%≦(P)<30%:△
30%≦(P)<50%:○
50%≦(P):◎
〔樹脂組成物の真比重の測定〕
樹脂組成物の真比重(dpo)の測定は、Elcometer1800ステンレス製比重カップ(100ml)を使用し真比重を測定した。
空の比重カップの質量We(g)を測定し、比重カップに樹脂組成物を満たした質量Ws(g)を測定、算出した。
dpo=(Ws-We)/100(g/cc)
[Volume ratio of air content in hollow particles (P)]
The hollow particles W (g) are put in a 1 L container, filled with DMF (dimethylformamide), and sealed. The container is heated at 90 ° C. for 12 hours, and the generated gas is collected by a modification of the water displacement method using DMF. The amount of gas collected by the water displacement method is measured, and the oxygen concentration in the gas is measured with an oxygen gas sensor (model: PS-2126A, measurement method: galvanic cell type). The amount of air contained in the hollow particles can be quantified from the amount of gas collected and the oxygen concentration in the gas. The amount of air in the collected gas was calculated by the following formula.
Air volume in collected gas (V) = V1 × C / 20.9
Collected gas volume (V1) (ml)
Oxygen concentration in gas (C) (volume%)
The volume ratio (P) of the amount of air contained in the hollow particles was calculated by the following formula. The volume ratio (P) is a ratio when the volume of the entire hollow particles (A) is 100%.
Volume ratio (P) (%) of the amount of air contained in the hollow particles = V × d × 100 / W
Weight of hollow particles: W (g)
True specific gravity of hollow particles: d (g / cc)
<Aging criteria>
(P) <10: ×
10% ≦ (P) <30%: Δ
30% ≦ (P) <50%: ○
50% ≦ (P): ◎
(Measurement of true specific gravity of resin composition)
The true specific gravity (dpo) of the resin composition was measured using an Elcometer 1800 stainless steel specific gravity cup (100 ml).
The mass We (g) of the empty specific gravity cup was measured, and the mass Ws (g) in which the specific gravity cup was filled with the resin composition was measured and calculated.
dpo = (Ws−We) / 100 (g / cc)
〔成形物の真比重の測定〕
成形物の真比重は、島津上皿電子分析天秤AX200(島津製作所社製)を使用し固体比重測定モードで測定した。
[Measurement of true specific gravity of molded product]
The true specific gravity of the molded product was measured in a solid specific gravity measurement mode using a Shimadzu top plate electronic analysis balance AX200 (manufactured by Shimadzu Corporation).
〔製造例1〕
 イオン交換水600gに、塩化ナトリウム100g、シリカ有効成分量が20重量%であるコロイダルシリカ40g、ポリビニルピロリドン2gおよびカルボキシメチル化されたポリエチレンイミン類(CMPEI;置換アルキル基:-CHCOONa、置換率:80%、重量平均分子量:5万)を0.1g加えた後、得られた混合物のpHを2.8~3.2に調整し、水性分散媒を調製した。なお、CMPEIについては、国際公開第2008/142849号パンフレットの第0140段落記載のものと同じ。
 これとは別に、アクリロニトリル150g、メタクリロニトリル100g、イソボルニルメタクリレート15g、ジエチレングリコールジメタクリレート0.5g、発泡剤としてのイソブタン30g、イソペンタン50g、および、純度70%のジ-2-エチルヘキシルパーオキシジカーボネート3gを混合して油性混合物を調製した。水性分散媒と油性混合物を混合し、得られた混合液をホモミキサー(プライミクス社製、TKホモミキサー)により、回転数12000rpmで2分間分散して、懸濁液を調製した。この懸濁液を容量1.5リットルの加圧反応器に移して窒素置換をしてから反応初期圧0.5MPaにし、80rpmで攪拌しつつ重合温度55℃で20時間重合反応した。重合後、重合生成物を濾過、乾燥して、熱膨張性微小球を得て、その物性を評価し、表1に示した。
[Production Example 1]
In 600 g of ion-exchanged water, 100 g of sodium chloride, 40 g of colloidal silica having an active silica content of 20% by weight, 2 g of polyvinylpyrrolidone and carboxymethylated polyethyleneimines (CMPEI; substituted alkyl group: —CH 2 COONa, substitution rate) : 80%, weight average molecular weight: 50,000) was added, and then the pH of the resulting mixture was adjusted to 2.8 to 3.2 to prepare an aqueous dispersion medium. Note that CMPEI is the same as that described in paragraph 0140 of the pamphlet of International Publication No. 2008/142849.
Separately, 150 g of acrylonitrile, 100 g of methacrylonitrile, 15 g of isobornyl methacrylate, 0.5 g of diethylene glycol dimethacrylate, 30 g of isobutane as a blowing agent, 50 g of isopentane, and 70% pure di-2-ethylhexylperoxydi An oily mixture was prepared by mixing 3 g of carbonate. The aqueous dispersion medium and the oily mixture were mixed, and the resulting mixture was dispersed with a homomixer (Primix Co., TK homomixer) at a rotational speed of 12000 rpm for 2 minutes to prepare a suspension. The suspension was transferred to a 1.5 liter pressurized reactor and purged with nitrogen. The initial reaction pressure was 0.5 MPa, and the polymerization reaction was carried out at a polymerization temperature of 55 ° C. for 20 hours while stirring at 80 rpm. After polymerization, the polymerization product was filtered and dried to obtain thermally expandable microspheres. The physical properties were evaluated and are shown in Table 1.
〔製造例2~5〕
 製造例2~5では、実施例1において、表1に示すように反応条件をそれぞれ変更する以外は、実施例1と同様に重合して、熱膨張性微小球を得た。さらに、その物性を評価し、表1に示した。
[Production Examples 2 to 5]
In Production Examples 2 to 5, thermal expansion microspheres were obtained by polymerization in the same manner as in Example 1 except that the reaction conditions in Example 1 were changed as shown in Table 1. Furthermore, the physical properties were evaluated and are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1において、以下の略号が使用されている。
CMPEI:ポリエチレンイミン類(置換アルキル基:-CHCOONa、置換アルキル基の置換率:80%、重量平均分子量:5万)。なお、カルボキシメチル化ポリエチレンイミン・Na塩とも表記される。
PVP:ポリビニルピロリドン
AN:アクリロニトリル
MAN:メタクリロニトリル
IBX:イソボルニルメタクリレート
VCl:塩化ビニリデン
MMA:メチルメタクリレート
TMP:トリメチロールプロパントリメタクリレート
EDMA:ジエチレングリコールジメタクリレート
OPP:ジ-2-エチルヘキシルパーオキシジカーボネート(純度70%)
コロイダルシリカ(平均粒子径11nm、比表面積260m/g、コロイダルシリカ有効濃度20重量%分散液)
In Table 1 above, the following abbreviations are used.
CMPEI: polyethyleneimines (substituted alkyl group: —CH 2 COONa, substituted alkyl group substitution rate: 80%, weight average molecular weight: 50,000). In addition, it is described as carboxymethylated polyethyleneimine / Na salt.
PVP: polyvinylpyrrolidone AN: acrylonitrile MAN: methacrylonitrile IBX: isobornyl methacrylate VCl 2 : vinylidene chloride MMA: methyl methacrylate TMP: trimethylolpropane trimethacrylate EDMA: diethylene glycol dimethacrylate OPP: di-2-ethylhexyl peroxydicarbonate (Purity 70%)
Colloidal silica (average particle diameter 11 nm, specific surface area 260 m 2 / g, colloidal silica effective concentration 20% by weight dispersion)
 熟成前の中空粒子(a)は、特開昭62-201231号公報記載の湿式加熱膨張法によって製造し、以下の実施例1~3、比較例1~4のように中空粒子(A)および樹脂組成物を作成し評価を行った。 The hollow particles (a) before aging are produced by a wet heating expansion method described in JP-A-62-201231, and the hollow particles (A) and the hollow particles (A) and the comparative examples 1 to 4 are used as in Examples 1 to 3 and Comparative Examples 1 to 4 below. A resin composition was prepared and evaluated.
〔実施例1〕
 製造例1で得られた熱膨張性微小球を5重量%含有する水分散液(スラリー)を調製した。特開昭62-201231号公報記載の湿式加熱膨張法に従い、このスラリーをスラリー導入管から発泡管(直径16mm、容積120ml、SUS304TP製)に5L/minの流量を示すように送り込み、さらに水蒸気(温度:147℃、圧力:0.3MPa)を蒸気導入管より供給し、スラリーと混合して、湿式加熱膨張した。なお、混合後のスラリー温度(発泡温度)を115℃に調節した。
 得られた中空粒子を含むスラリーを発泡管突出部から流出させ、冷却水(水温15℃)と混合して、50~60℃に冷却した。冷却したスラリー液を遠心脱水機で脱水して、湿化した中空粒子(a)を10重量%含有する中空粒子組成物(すなわち、水90重量%含有)を得た。
 得られた中空粒子(a)を40℃で24時間熟成を行い、中空粒子(A)を10重量%含有する中空粒子組成物を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表2に示す。
[Example 1]
An aqueous dispersion (slurry) containing 5% by weight of the thermally expandable microspheres obtained in Production Example 1 was prepared. According to the wet heating expansion method described in JP-A-62-201231, this slurry is fed from a slurry introduction tube to a foaming tube (diameter 16 mm, volume 120 ml, made of SUS304TP) at a flow rate of 5 L / min, and further steam ( (Temperature: 147 ° C., pressure: 0.3 MPa) was supplied from the steam introduction pipe, mixed with the slurry, and wet-heated and expanded. The slurry temperature (foaming temperature) after mixing was adjusted to 115 ° C.
The obtained slurry containing hollow particles was allowed to flow out from the protruding portion of the foamed tube, mixed with cooling water (water temperature 15 ° C.), and cooled to 50-60 ° C. The cooled slurry was dehydrated with a centrifugal dehydrator to obtain a hollow particle composition containing 10% by weight of the wet hollow particles (a) (that is, containing 90% by weight of water).
The obtained hollow particles (a) were aged at 40 ° C. for 24 hours to obtain a hollow particle composition containing 10% by weight of the hollow particles (A). The volume ratio (Z) of the intake air amount with respect to the hollow particles and the volume ratio (P) of the air amount contained in the hollow particles were measured. The evaluation results are shown in Table 2.
 上記の中空粒子(A)を含有する中空粒子組成物840重量部と、ポリビニルアルコール200重量部、酢酸ビニル840重量部、ホウ酸20重量部、水1000重量部を混ぜ合わせ万能混合器を用いて5分間混合し、軽量樹脂粘土を得た。熟成が十分であると中空粒子がつぶれず、十分に軽量化されており、べたつきのない軽量樹脂粘土が得られる。得られた中空粒子(A)および軽量樹脂粘土の物性評価の結果については表2に示す。
 理論比重に対する実際に得られた樹脂粘土比重の比重増加率については、下式により算出した。
 比重増加率(%)=(樹脂粘土比重/理論比重-1)×100
Using a universal mixer, 840 parts by weight of the hollow particle composition containing the above hollow particles (A), 200 parts by weight of polyvinyl alcohol, 840 parts by weight of vinyl acetate, 20 parts by weight of boric acid, and 1000 parts by weight of water are mixed. Mixing for 5 minutes gave a lightweight resin clay. When the aging is sufficient, the hollow particles are not crushed and are sufficiently lightened, and a light-weight resin clay without stickiness can be obtained. The results of physical property evaluation of the obtained hollow particles (A) and lightweight resin clay are shown in Table 2.
About the specific gravity increase rate of the resin clay specific gravity actually obtained with respect to theoretical specific gravity, it computed with the following formula.
Specific gravity increase rate (%) = (resin clay specific gravity / theoretical specific gravity−1) × 100
 樹脂粘土のべたつき評価については、得られた粘土を用いて塑像を作成した際に、手に付着することなく、かつ、粘土同士が良好に付着して、良好な造形性を示すか否かを評価した。
○:手に付着せず、粘土同士が良好に付着する。
△:手に付着するが、粘土同士も付着する。
×:手に付着して、粘土同士がほとんどくっつかない。
For stickiness evaluation of resin clay, when creating a plastic image using the obtained clay, whether or not the clay adheres well and exhibits good formability without sticking to the hand evaluated.
○: The clay does not adhere to the hand and the clay adheres well.
Δ: adheres to the hand, but clay also adheres.
X: It adheres to a hand and clay hardly sticks.
〔実施例2、3及び比較例1~4〕
 実施例2、3及び比較例1~4では、実施例1において、表2に示すように、熱膨張性微小球、組成、条件等をそれぞれ変更する以外は、実施例1と同様にして、軽量樹脂粘土を得た。なお、物性については表2に示す。
[Examples 2 and 3 and Comparative Examples 1 to 4]
In Examples 2 and 3 and Comparative Examples 1 to 4, as shown in Table 2, in Example 1, except that the heat-expandable microspheres, composition, conditions, and the like were changed, respectively, as in Example 1, A lightweight resin clay was obtained. The physical properties are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例1~3では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
 一方、熟成期間が不十分な場合(比較例1~4)においては、樹脂組成物の軽量化充填剤として使用した際、生産工程における混合や充填時の外的圧力による負荷により中空粒子が破壊され、樹脂組成物の設計時における理論比重から大きくずれが生じ軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 2, in Examples 1 to 3, since sufficient aging treatment was performed until the resin composition was used as a lightweight filler, the inside and outside of the hollow particles (A) There is no air concentration gradient, and there is almost no air intake into the hollow particles (A). Thereby, it is confirmed that the hollow particles have sufficient resistance to the load due to external pressure during mixing and filling in the production process of the resin composition, and the effects of the present application are obtained.
On the other hand, when the aging period is inadequate (Comparative Examples 1 to 4), when used as a lighter filler for the resin composition, the hollow particles are broken due to mixing or loading due to external pressure during filling in the production process. Therefore, the resin composition greatly deviates from the theoretical specific gravity at the time of designing the resin composition, and the lightening effect becomes insufficient, and the effect of the present application is not obtained.
 熟成前の中空粒子(a)は、特開2006-213930号公報記載の乾式加熱膨張法によって製造し、以下の実施例4~6、比較例5~7のように中空粒子(A)および樹脂組成物を作成し評価を行った。 The hollow particles (a) before aging are produced by the dry heating expansion method described in JP-A-2006-213930, and the hollow particles (A) and the resin are used as in Examples 4 to 6 and Comparative Examples 5 to 7 below. A composition was prepared and evaluated.
〔実施例4〕
(乾式加熱膨張法による中空粒子(a)の製造)
 乾式加熱膨張法として特開2006-213930号公報に記載されている内部噴射方法を採用した。具体的には、図2に示す発泡工程部を備えた製造装置を用いて、以下の手順で、製造例4で得られた熱膨張性微小球を用いて、中空粒子(a)を製造した。
Example 4
(Production of hollow particles (a) by a dry heating expansion method)
As the dry heating expansion method, an internal injection method described in JP-A-2006-213930 was adopted. Specifically, the hollow particles (a) were produced using the thermally expandable microspheres obtained in Production Example 4 by the following procedure using the production apparatus provided with the foaming process section shown in FIG. .
(発泡工程部の説明)
 図2に示すとおり、発泡工程部は、出口に分散ノズル(11)を備え且つ中央部に配置された気体導入管(番号表記せず)と、分散ノズル(11)の下流部に設置された衝突板(12)と、気体導入管の周囲に間隔を空けて配置された過熱防止筒(10)と、過熱防止筒(10)の周囲に間隔を空けて配置された熱風ノズル(8)とを備える。この発泡工程部において、気体導入管内の矢印方向に熱膨張性微小球を含む気体流体(13)が流されており、気体導入管と過熱防止筒(10)との間に形成された空間には、熱膨張性微小球の分散性の向上および気体導入管と衝突板の過熱防止のための気体流(14)が矢印方向に流されており、さらに、過熱防止筒(10)と熱風ノズル(8)との間に形成された空間には、熱膨張のための熱風流が矢印方向に流されている。ここで、熱風流(15)と気体流体(13)と気体流(14)とは、通常、同一方向の流れである。過熱防止筒(10)の内部には、冷却のために、冷媒流(9)が矢印方向に流されている。
(Explanation of foaming process part)
As shown in FIG. 2, the foaming process section was installed in the downstream portion of the dispersion nozzle (11), with a gas introduction pipe (not shown) provided with a dispersion nozzle (11) at the outlet and disposed in the center. An impingement plate (12), an overheating prevention cylinder (10) arranged around the gas introduction pipe with a gap, and a hot air nozzle (8) arranged around the overheating prevention cylinder (10) with an interval Is provided. In this foaming process section, a gas fluid (13) containing thermally expandable microspheres is caused to flow in the direction of the arrow in the gas introduction tube, and in the space formed between the gas introduction tube and the overheating prevention cylinder (10). The gas flow (14) for improving the dispersibility of the thermally expandable microspheres and preventing the overheating of the gas introduction pipe and the collision plate is flowed in the direction of the arrow, and further, the overheating prevention cylinder (10) and the hot air nozzle In the space formed between (8), a hot air flow for thermal expansion flows in the direction of the arrow. Here, the hot air flow (15), the gas fluid (13), and the gas flow (14) are usually flows in the same direction. A refrigerant flow (9) flows in the direction of the arrow inside the overheating prevention cylinder (10) for cooling.
(製造装置の操作)
 噴射工程では、熱膨張性微小球を含む気体流体(13)を、出口に分散ノズル(11)を備え且つ熱風流(15)の内側に設置された気体導入管に流し、気体流体(13)を前記分散ノズル(11)から噴射させる。
 分散工程では、気体流体(13)を分散ノズル(11)の下流部に設置された衝突板(12)に衝突させ、熱膨張性微小球が熱風流(15)中に万遍なく分散するように操作される。ここで、分散ノズル(11)から出た気体流体(13)は、気体流(14)とともに衝突板(12)に向かって誘導され、これと衝突する。
 膨張工程では、分散した熱膨張性微小球を熱風流(15)中で膨張開始温度以上に加熱して膨張させる。その後、得られた中空粒子を冷却部分に通過させる等して回収する。
(Manufacturing equipment operation)
In the jetting process, the gaseous fluid (13) containing the thermally expandable microspheres is flowed through a gas introduction pipe provided with a dispersion nozzle (11) at the outlet and installed inside the hot air flow (15), and the gaseous fluid (13). From the dispersion nozzle (11).
In the dispersion step, the gas fluid (13) is caused to collide with the collision plate (12) installed downstream of the dispersion nozzle (11), so that the thermally expandable microspheres are uniformly dispersed in the hot air flow (15). To be operated. Here, the gaseous fluid (13) exiting from the dispersion nozzle (11) is guided toward the collision plate (12) together with the gas flow (14) and collides with it.
In the expansion step, the dispersed thermally expandable microspheres are heated and expanded above the expansion start temperature in the hot air flow (15). Thereafter, the obtained hollow particles are recovered by passing them through a cooling part.
(膨張条件および結果)
 図2に示す製造装置を用い、膨張条件として、原料供給量0.8kg/min、原料分散気体量0.35m3/min、熱風流量8.0m3/min、熱風温度290℃に設定し、熟成前の中空粒子(a)を得た。
 得られた中空粒子(a)を30℃で36時間熟成を行い、中空粒子(A)を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表3に示す。
(樹脂組成物の製造)
得られた中空粒子(A)(14重量部)1.4重量%、有機基材樹脂としてPVC樹脂(376重量部)37.6重量%、可塑剤(C)としてジイソノニルフタレート(220重量部)22重量%、充填剤として炭酸カルシウム(370重量部)37.0重量%、安定剤としてバリウム・亜鉛系安定剤(AC-290:アデカ社製)(20重量部)2重量%をよく混練し、樹脂組成物(比重0.75)を得た。
 得られた樹脂組成物を加圧シリンダー内で圧力5MPaの30分間加圧処理した後の樹脂組成物の比重を測定したところ0.76であった。このとき、加圧処理による比重増加率は
 加圧処理による樹脂組成物の比重増加率については、下式により算出した。
 比重増加率(%)=(加圧後樹脂組成物比重/加圧前樹脂組成物比重-1)×100
(Expansion conditions and results)
Using the production apparatus shown in FIG. 2, the expansion conditions are set as raw material supply rate 0.8 kg / min, raw material dispersion gas amount 0.35 m 3 / min, hot air flow rate 8.0 m 3 / min, hot air temperature 290 ° C. Of hollow particles (a) were obtained.
The resulting hollow particles (a) were aged at 30 ° C. for 36 hours to obtain hollow particles (A). The volume ratio (Z) of the intake air amount with respect to the hollow particles and the volume ratio (P) of the air amount contained in the hollow particles were measured. The evaluation results are shown in Table 3.
(Manufacture of resin composition)
The obtained hollow particles (A) (14 parts by weight) 1.4% by weight, PVC resin (376 parts by weight) 37.6% by weight as an organic base resin, diisononyl phthalate (220 parts by weight) as a plasticizer (C) 22% by weight, calcium carbonate (370 parts by weight) as a filler, 37.0% by weight, and barium / zinc stabilizer (AC-290: manufactured by Adeka) (20 parts by weight) as a stabilizer are well kneaded. A resin composition (specific gravity 0.75) was obtained.
It was 0.76 when the specific gravity of the resin composition after pressurizing the obtained resin composition for 30 minutes with a pressure of 5 MPa in a pressure cylinder was measured. At this time, the specific gravity increase rate by the pressure treatment was calculated by the following formula for the specific gravity increase rate of the resin composition by the pressure treatment.
Specific gravity increase rate (%) = (resin specific gravity after pressurization / specific gravity of resin composition before pressurization-1) × 100
(成形物の製造)
 上記で得られた樹脂組成物を、電着塗装板に塗布(厚さ2mm)し、140℃、20minでの加熱処理により、成形物を得た。なお、物性については表3に示す。
(Manufacture of molded products)
The resin composition obtained above was applied to an electrodeposition coating plate (thickness 2 mm), and a molded product was obtained by heat treatment at 140 ° C. for 20 minutes. The physical properties are shown in Table 3.
〔実施例5及び比較例5、6〕
 実施例5及び比較例5、6では、実施例4において、表3に示すように、熱膨張性微小球、発泡温度、熟成に関する条件等をそれぞれ変更する以外は、実施例4と同様にして、樹脂組成物、成形物を得た。なお、物性については表3に示す。
[Example 5 and Comparative Examples 5 and 6]
In Example 5 and Comparative Examples 5 and 6, as shown in Table 3, in Example 4, the same procedure as in Example 4 was performed except that the heat-expandable microspheres, foaming temperature, aging conditions, etc. were changed. A resin composition and a molded product were obtained. The physical properties are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から分かるように、実施例4、5では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の使用時に想定される外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
 一方、熟成期間が不十分な場合(比較例5、6)においては、樹脂組成物の軽量化充填剤として使用した際、樹脂組成物使用時に想定される外的圧力による負荷により中空粒子が破壊され、樹脂組成物の軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 3, in Examples 4 and 5, sufficient aging treatment was performed until the resin composition was used as a lighter filler for the resin composition. There is no air concentration gradient, and there is almost no air intake into the hollow particles (A). Thereby, it is confirmed that the hollow particles have sufficient resistance to a load due to an external pressure assumed when the resin composition is used, and the effect of the present application is obtained.
On the other hand, when the aging period is insufficient (Comparative Examples 5 and 6), when used as a lighter filler for the resin composition, the hollow particles are broken by a load due to external pressure assumed when the resin composition is used. Thus, the effect of reducing the weight of the resin composition is insufficient, and the effect of the present application is not obtained.
〔実施例6〕
 製造例3で得られた熱膨張性微小球(外殻を構成する熱可塑性樹脂の軟化点:109℃)20重量部と、炭酸カルシウム(備北粉化工業株式会社製のホワイトンSB赤;レーザー回折法による平均粒子径約1.8μm)80重量部とをセパラブルフラスコに添加混合した。次いで、攪拌しながら5分間かけて加熱温度130℃まで昇温して、微粒子充填剤が付着した熟成前の中空粒子(a)を得た。
 得られた中空粒子(a)を10℃で60時間熟成を行い、中空粒子(A)を得た。中空粒子に対する取り込み空気量の体積割合(Z)、中空粒子に含まれる空気量の体積割合(P)について測定を行った。評価結果については表4に示す。
Example 6
20 parts by weight of the heat-expandable microspheres obtained in Production Example 3 (softening point of the thermoplastic resin constituting the outer shell: 109 ° C.) and calcium carbonate (White White SB Red, manufactured by Bihoku Powdered Industries Co., Ltd.); Laser 80 parts by weight of an average particle diameter by a diffraction method of about 1.8 μm) was added to a separable flask and mixed. Next, the temperature was raised to 130 ° C. over 5 minutes with stirring to obtain a hollow particle (a) before ripening with a fine particle filler attached thereto.
The resulting hollow particles (a) were aged at 10 ° C. for 60 hours to obtain hollow particles (A). The volume ratio (Z) of the intake air amount with respect to the hollow particles and the volume ratio (P) of the air amount contained in the hollow particles were measured. The evaluation results are shown in Table 4.
〔接着剤組成物〕
 80重量部の2液タイプのポリウレタン接着成分の硬化剤成分(ボンドUPシールグレー、コニシ社製)に、3.8重量部の接着剤組成物用改質材としての中空粒子(A)と、2重量部の炭化水素(出光興産社製、IP-2835)とを加えて、プラネタリーミキサー(井上製作所製、PLM-50)を用いて50℃で30分間撹拌混合した後、減圧脱泡しポリウレタン接着剤硬化剤組成物を得た。得られたポリウレタン接着剤硬化剤組成物(硬化剤組成物)の比重を測定し、理論比重に対する実際に得られた硬化剤組成物の比重増加率について、下式により算出した。結果については表4に示す。
 比重増加率(%)=(硬化剤組成物比重/理論比重-1)×100
[Adhesive composition]
80 parts by weight of a two-component polyurethane adhesive component curing agent component (Bond UP Seal Gray, manufactured by Konishi Co., Ltd.), 3.8 parts by weight of hollow particles (A) as a modifier for the adhesive composition, After adding 2 parts by weight of hydrocarbon (Idemitsu Kosan Co., Ltd., IP-2835), the mixture was stirred and mixed at 50 ° C for 30 minutes using a planetary mixer (Inoue Seisakusho, PLM-50), then degassed under reduced pressure. A polyurethane adhesive curing agent composition was obtained. The specific gravity of the obtained polyurethane adhesive curing agent composition (curing agent composition) was measured, and the specific gravity increase rate of the actually obtained curing agent composition relative to the theoretical specific gravity was calculated by the following equation. The results are shown in Table 4.
Specific gravity increase rate (%) = (curing agent composition specific gravity / theoretical specific gravity−1) × 100
 つづいて、前記硬化剤組成物85.8重量部と20重量部のポリウレタン接着剤成分の基材成分(ボンドUPシールグレー、コニシ社製)を加えて予備混合したものをコンディショニングミキサー(シンキー社製、AR-360)を用いて、自転500rpm、公転2000rpm、150秒間攪拌し脱泡して、接着剤組成物を得た。得られた接着剤組成物を23℃、50%RHの条件下で3日間、さらに50℃、50%RHの条件下で3日間養生硬化させた後に、硬化成形物の比重を測定した。その結果を表4に示す。 Subsequently, 85.8 parts by weight of the curing agent composition and 20 parts by weight of a polyurethane adhesive component base material (Bond UP Seal Gray, manufactured by Konishi Co., Ltd.) and a premixed mixture were added to a conditioning mixer (Sinky Co., Ltd.). , AR-360), the mixture was stirred and defoamed at 500 rpm rotation and 2000 rpm revolution for 150 seconds to obtain an adhesive composition. The obtained adhesive composition was cured and cured under conditions of 23 ° C. and 50% RH for 3 days, and further under conditions of 50 ° C. and 50% RH for 3 days, and then the specific gravity of the cured molded article was measured. The results are shown in Table 4.
〔実施例7及び比較例7、8〕
 実施例7及び比較例7、8では、実施例6において、表3に示すように、熱膨張性微小球、発泡温度、熟成に関する条件等をそれぞれ変更する以外は、実施例6と同様にして、樹脂組成物、成形物を得た。なお、物性については表4に示す。
[Example 7 and Comparative Examples 7 and 8]
In Example 7 and Comparative Examples 7 and 8, as shown in Table 3, in Example 6, the same procedure as in Example 6 was performed except that the heat-expandable microspheres, foaming temperature, aging conditions, etc. were changed. A resin composition and a molded product were obtained. The physical properties are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4から分かるように、実施例6、7では、樹脂組成物の軽量化充填剤として使用されるまでに十分な熟成処置が施されているため、中空粒子(A)の内部と外部とで空気の濃度勾配が無くなり、中空粒子(A)内部への空気取り込み量がほとんどない状態となっている。それにより中空粒子は、樹脂組成物の生産工程における混合や充填時の外的圧力による負荷に対する耐性を十分有していることが確認され、本願の効果が得られている。
 一方、熟成期間が不十分な場合(比較例7、8)においては、樹脂組成物の軽量化充填剤として使用した際、生産工程における混合や充填時の外的圧力による負荷により中空粒子が破壊され、樹脂組成物の設計時における理論比重から大きくずれが生じ軽量化効果が不十分となり、本願の効果が得られていない。
As can be seen from Table 4, in Examples 6 and 7, sufficient aging treatment was performed until the resin composition was used as a lighter filler for the resin composition. There is no air concentration gradient, and there is almost no air intake into the hollow particles (A). Thereby, it is confirmed that the hollow particles have sufficient resistance to the load due to external pressure during mixing and filling in the production process of the resin composition, and the effects of the present application are obtained.
On the other hand, when the aging period is insufficient (Comparative Examples 7 and 8), when used as a lighter filler for the resin composition, the hollow particles are broken by a load due to external pressure during mixing or filling in the production process. Therefore, the resin composition greatly deviates from the theoretical specific gravity at the time of designing the resin composition, and the lightening effect becomes insufficient, and the effect of the present application is not obtained.
 本発明の樹脂組成物は、塗料、接着剤、樹脂粘土に好適に用いることができる。 The resin composition of the present invention can be suitably used for paints, adhesives, and resin clays.
 4  中空粒子(A1)
 5  外殻
 6  微粒子充填剤(吸着された状態)
 7  微粒子充填剤(めり込み、固定された状態)
 8  熱風ノズル
 9  冷媒流
 10 過熱防止筒
 11 分散ノズル
 12 衝突板
 13 熱膨張性微小球を含む気体流体
 14 気体流
 15 熱風流
4 Hollow particles (A1)
5 Outer shell 6 Fine particle filler (adsorbed state)
7 Fine particle filler (indented and fixed state)
8 Hot Air Nozzle 9 Refrigerant Flow 10 Overheating Prevention Tube 11 Dispersion Nozzle 12 Colliding Plate 13 Gas Fluid Containing Thermally Expandable Microspheres 14 Gas Flow 15 Hot Air Flow

Claims (5)

  1.  中空粒子(A)と有機基剤樹脂(B)とを含有する樹脂組成物であって、
     前記中空粒子(A)が、熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球の膨張体であり、
     前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である、
     樹脂組成物。
    A resin composition containing hollow particles (A) and an organic base resin (B),
    The hollow particle (A) is an expanded body of thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating,
    The volume ratio (P) of the amount of air contained in the hollow particles (A) is 30% or more when the volume of the entire hollow particles (A) is 100%.
    Resin composition.
  2.  前記中空粒子(A)の体積基準の累積50%粒子径(D50)が1~300μmである、請求項1に記載の樹脂組成物。 The resin composition according to claim 1, wherein the volume-based cumulative 50% particle diameter (D50) of the hollow particles (A) is 1 to 300 µm.
  3.  塗料組成物、接着剤組成物又は樹脂粘土である、請求項1又は2に記載の樹脂組成物。 The resin composition according to claim 1 or 2, which is a coating composition, an adhesive composition or a resin clay.
  4.  請求項1~3のいずれかに記載の樹脂組成物を成型させてなる、成形物。 A molded product obtained by molding the resin composition according to any one of claims 1 to 3.
  5.  熱可塑性樹脂からなる外殻と、それに内包され且つ加熱することによって気化する発泡剤とから構成される熱膨張性微小球を得る工程(1)と、
     前記熱膨張性微小球を加熱膨張させて中空粒子(a)を得る工程(2)と、
     前記中空粒子(a)を温度-10~80℃の範囲で熟成して、中空粒子(A)を得る工程(3)と、
     得られた中空粒子(A)と有機基材樹脂(B)とを混合する工程(4)とを含み、
     前記中空粒子(A)に含まれる空気量の体積割合(P)が、前記中空粒子(A)全体の体積を100%としたとき、30%以上である、
     樹脂組成物の製造方法。
    A step (1) of obtaining thermally expandable microspheres composed of an outer shell made of a thermoplastic resin and a foaming agent encapsulated therein and vaporized by heating;
    (2) obtaining the hollow particles (a) by thermally expanding the thermally expandable microspheres;
    Aging the hollow particles (a) at a temperature in the range of −10 to 80 ° C. to obtain hollow particles (A) (3);
    Including the step (4) of mixing the obtained hollow particles (A) and the organic base resin (B),
    The volume ratio (P) of the amount of air contained in the hollow particles (A) is 30% or more when the volume of the entire hollow particles (A) is 100%.
    A method for producing a resin composition.
PCT/JP2017/024888 2016-07-15 2017-07-07 Resin composition and use thereof WO2018012415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018527570A JP7189768B2 (en) 2016-07-15 2017-07-07 Resin composition and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016140033 2016-07-15
JP2016-140033 2016-07-15

Publications (1)

Publication Number Publication Date
WO2018012415A1 true WO2018012415A1 (en) 2018-01-18

Family

ID=60951743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024888 WO2018012415A1 (en) 2016-07-15 2017-07-07 Resin composition and use thereof

Country Status (2)

Country Link
JP (1) JP7189768B2 (en)
WO (1) WO2018012415A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066704A1 (en) 2018-09-28 2020-04-02 日本ゼオン株式会社 Resin composition and molded body of same
WO2023013682A1 (en) 2021-08-06 2023-02-09 積水化学工業株式会社 Thermally expandable microcapsules, expandable master batch and foam molded body
WO2023162901A1 (en) * 2022-02-24 2023-08-31 松本油脂製薬株式会社 Heat-expandable microspheres and use thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049616A1 (en) * 2005-10-27 2007-05-03 Bridgestone Corporation Thermal expansion microspheres and hollow fine particles, process for producing them, and assembly of tire and rim
US20100047550A1 (en) * 2007-01-16 2010-02-25 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
JP2011510113A (en) * 2008-01-14 2011-03-31 テーザ・ソシエタス・ヨーロピア Foamed, particularly pressure sensitive adhesive, its production method and use
JP2012017453A (en) * 2010-05-27 2012-01-26 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere and application thereof
JP2013173945A (en) * 2012-01-25 2013-09-05 Matsumoto Yushi Seiyaku Co Ltd Heat-expandable microspheres, and use
JP2013237815A (en) * 2012-05-17 2013-11-28 Kaneka Corp Curable composition and cured product thereof
JP2014065893A (en) * 2012-09-06 2014-04-17 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2014214311A (en) * 2013-04-24 2014-11-17 テーザ・ソシエタス・ヨーロピア Dual-foamed polymer material (polymermasse)
JP2015003951A (en) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 Thermally expansive microspheres, and production method and use of the same
JP2015137332A (en) * 2014-01-23 2015-07-30 横浜ゴム株式会社 Vulcanized rubber composition for tire
JP2015143331A (en) * 2013-12-26 2015-08-06 松本油脂製薬株式会社 Modifier for adhesive composition and adhesive composition comprising the same
JP2016130308A (en) * 2015-01-09 2016-07-21 松本油脂製薬株式会社 Pore-forming material for ceramic composition and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5759194B2 (en) 2010-02-25 2015-08-05 松本油脂製薬株式会社 Thermally expandable microspheres, hollow microparticles, production method and use thereof
WO2015005363A1 (en) 2013-07-12 2015-01-15 松本油脂製薬株式会社 Pore-forming material for ceramic composition and application for same
JP6534856B2 (en) 2014-05-30 2019-06-26 松本油脂製薬株式会社 Resin composition and use thereof
JP6196592B2 (en) 2014-09-02 2017-09-13 松本油脂製薬株式会社 Resin composition and use thereof

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049616A1 (en) * 2005-10-27 2007-05-03 Bridgestone Corporation Thermal expansion microspheres and hollow fine particles, process for producing them, and assembly of tire and rim
US20100047550A1 (en) * 2007-01-16 2010-02-25 Basf Se Hybrid systems consisting of foamed thermoplastic elastomers and polyurethanes
JP2011510113A (en) * 2008-01-14 2011-03-31 テーザ・ソシエタス・ヨーロピア Foamed, particularly pressure sensitive adhesive, its production method and use
JP2012017453A (en) * 2010-05-27 2012-01-26 Matsumoto Yushi Seiyaku Co Ltd Thermally expandable microsphere and application thereof
JP2013173945A (en) * 2012-01-25 2013-09-05 Matsumoto Yushi Seiyaku Co Ltd Heat-expandable microspheres, and use
JP2013237815A (en) * 2012-05-17 2013-11-28 Kaneka Corp Curable composition and cured product thereof
JP2014065893A (en) * 2012-09-06 2014-04-17 Matsumoto Yushi Seiyaku Co Ltd Hollow particle and adhesive composition containing the same
JP2014214311A (en) * 2013-04-24 2014-11-17 テーザ・ソシエタス・ヨーロピア Dual-foamed polymer material (polymermasse)
JP2015003951A (en) * 2013-06-19 2015-01-08 松本油脂製薬株式会社 Thermally expansive microspheres, and production method and use of the same
JP2015143331A (en) * 2013-12-26 2015-08-06 松本油脂製薬株式会社 Modifier for adhesive composition and adhesive composition comprising the same
JP2015137332A (en) * 2014-01-23 2015-07-30 横浜ゴム株式会社 Vulcanized rubber composition for tire
JP2016130308A (en) * 2015-01-09 2016-07-21 松本油脂製薬株式会社 Pore-forming material for ceramic composition and use thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020066704A1 (en) 2018-09-28 2020-04-02 日本ゼオン株式会社 Resin composition and molded body of same
WO2023013682A1 (en) 2021-08-06 2023-02-09 積水化学工業株式会社 Thermally expandable microcapsules, expandable master batch and foam molded body
KR20240042579A (en) 2021-08-06 2024-04-02 세키스이가가쿠 고교가부시키가이샤 Heat-expandable microcapsules, foamable masterbatches and foam molded bodies
WO2023162901A1 (en) * 2022-02-24 2023-08-31 松本油脂製薬株式会社 Heat-expandable microspheres and use thereof
JP7369329B1 (en) 2022-02-24 2023-10-25 松本油脂製薬株式会社 Thermally expandable microspheres and their uses

Also Published As

Publication number Publication date
JPWO2018012415A1 (en) 2019-05-09
JP7189768B2 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
KR102528970B1 (en) Rubber composition for vulcanization molding, manufacturing method and use thereof
JP6283456B1 (en) Resin hollow particles and use thereof
JP5438246B2 (en) Thermally expansible microspheres, production method and use thereof
JP5759194B2 (en) Thermally expandable microspheres, hollow microparticles, production method and use thereof
KR101406022B1 (en) Process for production of thermally expandable beads and application thereof
WO2016084612A1 (en) Thermally expandable microspheres and use of same
JP6218998B1 (en) Thermally expandable microspheres and their applications
JP6735936B2 (en) Thermally expandable microspheres and their uses
WO2019150951A1 (en) Heat-expandable microspheres and use thereof
WO2005049698A1 (en) Thermally expanded microsphere, process for producing the same, thermally expandable microsphere and use thereof
JP5943555B2 (en) Thermally expandable microspheres and their applications
WO2018012415A1 (en) Resin composition and use thereof
JP6534834B2 (en) Thermally expandable microspheres, method for producing the same and use thereof
JP6196592B2 (en) Resin composition and use thereof
JP6151983B2 (en) Thermally expansible microspheres, production method and use thereof
CN107428857B (en) Thermally expandable microspheres and use thereof
WO2016190178A1 (en) Thermally expandable microspheres and use thereof
JP7369329B1 (en) Thermally expandable microspheres and their uses
JP7412653B2 (en) Thermally expandable microspheres, hollow particles and their uses
JP7259140B1 (en) THERMALLY EXPANDABLE MICROSPHERES, COMPOSITION, AND MOLDED PRODUCT
JP6026072B1 (en) Thermally expandable microspheres and their uses
WO2023281867A1 (en) Hollow particles and use thereof
JP2010202805A (en) Thermally expandable microcapsule, and method for producing thermally expandable microcapsule

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018527570

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17827543

Country of ref document: EP

Kind code of ref document: A1