JPWO2018002049A5 - - Google Patents
Download PDFInfo
- Publication number
- JPWO2018002049A5 JPWO2018002049A5 JP2018567714A JP2018567714A JPWO2018002049A5 JP WO2018002049 A5 JPWO2018002049 A5 JP WO2018002049A5 JP 2018567714 A JP2018567714 A JP 2018567714A JP 2018567714 A JP2018567714 A JP 2018567714A JP WO2018002049 A5 JPWO2018002049 A5 JP WO2018002049A5
- Authority
- JP
- Japan
- Prior art keywords
- container
- inspection device
- sound wave
- vibration equipment
- converter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007689 inspection Methods 0.000 claims description 16
- 239000002245 particle Substances 0.000 claims description 15
- 239000007788 liquid Substances 0.000 claims description 8
- 239000000835 fiber Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Description
本検査装置によって、高周波で低振幅度の振とうを、容器に与えることができる。このように容器を振動させることにより、容器中に存在する粒子を、容器内にある液体中で効率的に流動化又は分散させることができ、その結果、これらの粒子を効率的に同定又はトレースすることができる。これによって特に、粒子を実質的に流動化できる一方、液体は比較的静かな状態に保つことができる。これによって比較的迅速かつ正確に検査することができ、また液体中に生じる気泡を防止又は少なくとも減少させることができ、浮かんでいる又は底部にある粒子の流動化を改善することができ、粒子が容器閉鎖系に移ることを防止することができ、化学的又は医薬的な製造工程(フリーズドライ含む)において比較的効率的に実施することができる。
With this inspection device, high frequency and low amplitude shaking can be applied to the container. By vibrating the container in this way, the particles present in the container can be efficiently fluidized or dispersed in the liquid inside the container, and as a result, these particles can be efficiently identified or traced. can do. This in particular allows the particles to be substantially fluidized while the liquid can be kept relatively quiet. This allows for relatively quick and accurate inspection, and can prevent or at least reduce air bubbles in the liquid, improve the fluidization of floating or bottom particles, and allow the particles to be inspected. Can be prevented from moving to a container closure system and can be carried out relatively efficiently in a chemical or pharmaceutical manufacturing process (including freeze-drying).
第一の周波数は好ましくは、約0.5MHz~約2MHzの範囲にある。このように比較的高い周波数は、繊維及び内在粒子を流動化するために特に適していることがある。第二の周波数は好ましくは、約20kHz~約50kHzの範囲にある。このように比較的低い周波数により、液体表面における反射が原因となって、液体中に定在波を形成することができる。定在波は、比較的重い粒子、例えばガラス又は金属などを動かすために効率的である。変換器により容器の側壁部で比較的高い周波数をかけること、及びさらなる変換器により容器の底部で比較的低い周波数をかけることが、特に効率的であり得る。これによって、液体中における様々な種類の粒子を効率的、迅速かつ十全に流動化させることが可能になり、その後、これらの粒子を同定できる。
The first frequency is preferably in the range of about 0.5 MHz to about 2 MHz. Such relatively high frequencies may be particularly suitable for fluidizing fibers and endogenous particles. The second frequency is preferably in the range of about 20 kHz to about 50 kHz . Such relatively low frequencies allow standing waves to form in the liquid due to reflections on the surface of the liquid. Standing waves are efficient for moving relatively heavy particles, such as glass or metal. It may be particularly efficient to apply a relatively high frequency at the side wall of the vessel with a transducer and a relatively low frequency at the bottom of the vessel with a further transducer. This makes it possible to efficiently, quickly and fully fluidize various types of particles in a liquid, and then identify these particles.
変換器22は、バイアル4の側壁41に横方向で隣接して位置付けられるよう、バイアル4のそばに配置されている。さらなる変換器23は、バイアル4の底部43に隣接して真下に位置付けられるよう、バイアル4の下方に配置されている。周波数発生器21は、第一のパルス状電気信号を、第一のケーブル222を介して変換器22にもたらす。第一の電気信号は、変換器22によって、約0.5MHz~約2MHzの範囲にある周波数を有する第一の超音波221に変換されるように、調整されている。同様に周波数発生器21は、第二のパルス状電気信号を、第二のケーブル232を介してさらなる変換器23にもたらす。第二の電気信号は、さらなる変換器23によって、約20kHz~約50kHzの範囲にある周波数を有するさらなる又は第二の超音波231に変換されるように、調整されている。
The transducer 22 is arranged near the vial 4 so as to be laterally adjacent to the side wall 41 of the vial 4. Further transducers 23 are located below the vial 4 so that they are located directly below the bottom 43 of the vial 4. The frequency generator 21 brings the first pulsed electrical signal to the transducer 22 via the first cable 222. The first electrical signal is tuned by the transducer 22 to be converted into a first ultrasonic 221 having a frequency in the range of about 0.5 MHz to about 2 MHz. Similarly, the frequency generator 21 brings a second pulsed electrical signal to the additional converter 23 via the second cable 232. The second electrical signal is tuned by a further transducer 23 to be converted into a further or second ultrasonic 231 having a frequency in the range of about 20 kHz to about 50 kHz .
Claims (13)
前記液体(7)内にある粒子(5)を検出するように適合された粒子検出器(3)、
前記容器(4)を、前記粒子検出器(3)の稼働領域(311)に位置付けるために配置されている座面(6)、及び
前記容器(4)を振動させるための振動設備(2)、
を備え、前記振動設備(2)が、
電気信号をもたらす周波数発生器(21)と、
前記周波数発生器(21)によってもたらされる前記電気信号を、音波(221)に変換するように適合された変換器(22)と、を備え、
前記座面(6)は、前記容器(4)を、前記変換器(22)に隣接して位置付けるように配置されており、
前記振動設備(2)が、さらなる電気信号をさらなる音波(231)に変換するように適合されたさらなる変換器(23)を備え、
前記座面(6)が、前記容器(4)を、前記さらなる変換器(23)に隣接して位置付けるように配置されており、
前記振動設備(2)の前記変換器(22)によって発生された前記音波(221)が、第一の周波数を有し、
前記振動設備(2)の前記さらなる変換器(23)によって発生された前記さらなる音波(231)が、前記第一の周波数とは異なる第二の周波数を有し、
前記容器(4)が側壁部(41)及び底部(43)を有し、前記容器(4)の前記側壁部(41)を前記振動設備(2)の前記変換器(22)に隣接して位置付けるように、かつ前記容器(4)の前記底部(43)を、前記振動設備(2)の前記さらなる変換器(23)に隣接して位置付けるように、前記座面(6)が配置されている、検査装置(1)。 An inspection device (1) for inspecting the liquid (7) in the container (4) with respect to the presence of the particles (5).
A particle detector (3) adapted to detect particles (5) in the liquid (7),
A seat surface (6) arranged to position the container (4) in the operating region (311) of the particle detector (3), and a vibration facility (2) for vibrating the container (4). ,
The vibration equipment (2)
A frequency generator (21) that produces an electrical signal,
A converter (22) adapted to convert the electrical signal produced by the frequency generator (21) into a sound wave (221).
The seat surface (6) is arranged so as to position the container (4) adjacent to the converter (22).
The vibration equipment (2) comprises an additional transducer (23) adapted to convert the additional electrical signal into an additional sound wave (231).
The bearing surface (6) is arranged such that the container (4) is positioned adjacent to the further transducer (23).
The sound wave (221) generated by the converter (22) of the vibration equipment (2) has a first frequency and has a first frequency.
The additional sound wave (231) generated by the additional transducer (23) of the vibration equipment (2) has a second frequency different from the first frequency.
The container (4) has a side wall portion (41) and a bottom portion (43), and the side wall portion (41) of the container (4) is adjacent to the converter (22) of the vibration equipment (2). The seat surface (6) is arranged so as to be positioned and to position the bottom portion (43) of the container (4) adjacent to the further transducer (23) of the vibration equipment (2). Inspection device (1).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16176600 | 2016-06-28 | ||
EP16176600.1 | 2016-06-28 | ||
PCT/EP2017/065853 WO2018002049A1 (en) | 2016-06-28 | 2017-06-27 | Inspection device |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019521340A JP2019521340A (en) | 2019-07-25 |
JPWO2018002049A5 true JPWO2018002049A5 (en) | 2022-05-30 |
JP7122261B2 JP7122261B2 (en) | 2022-08-19 |
Family
ID=56289356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018567714A Active JP7122261B2 (en) | 2016-06-28 | 2017-06-27 | inspection equipment |
Country Status (5)
Country | Link |
---|---|
US (2) | US11313808B2 (en) |
EP (1) | EP3475692A1 (en) |
JP (1) | JP7122261B2 (en) |
CN (1) | CN109313165A (en) |
WO (1) | WO2018002049A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11972555B2 (en) | 2019-03-19 | 2024-04-30 | Nec Corporation | Product-inspection apparatus, product-inspection method, and non-transitory computer readable medium |
CN110726678A (en) * | 2019-11-28 | 2020-01-24 | 浙江农林大学 | Turbidity detection device of city river water |
JP7516160B2 (en) * | 2020-08-12 | 2024-07-16 | 東芝テック株式会社 | Residue detection system, residue detection device, and residue detection method |
US11544343B1 (en) * | 2020-10-16 | 2023-01-03 | Splunk Inc. | Codeless anchor generation for detectable features in an environment |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01308942A (en) * | 1988-06-08 | 1989-12-13 | Mitsubishi Electric Corp | Apparatus for counting fine particles adhering to surface of solid |
DK17791D0 (en) * | 1991-02-01 | 1991-02-01 | Novo Nordisk As | CONTAINER INSPECTION |
JPH06160305A (en) | 1992-08-05 | 1994-06-07 | Kirin Techno Syst:Kk | Inspection apparatus for foreign matter in liquid |
JP3351910B2 (en) * | 1994-09-01 | 2002-12-03 | エーザイ株式会社 | Vial bottle inspection method and equipment |
JPH1090109A (en) * | 1996-07-26 | 1998-04-10 | Kirin Techno Syst:Kk | Apparatus for inspecting stoppering failure of container |
JP4021051B2 (en) * | 1998-05-14 | 2007-12-12 | 株式会社ベルデックス | Method and apparatus for inspecting liquid in container |
JP2001059822A (en) * | 1999-08-25 | 2001-03-06 | Fuji Electric Co Ltd | Apparatus and method for inspecting foreign matter in liquid within transparent container |
US6765675B2 (en) * | 2000-02-14 | 2004-07-20 | M. W. Technologies, Inc. | Fluid inspection apparatus with vibrator |
US7982868B2 (en) * | 2004-07-30 | 2011-07-19 | Eagle Vision Systems B.V. | Apparatus and method for checking of containers |
JP4508848B2 (en) | 2004-08-30 | 2010-07-21 | 勳 佐藤 | Foreign object detection method |
DE102004051961B4 (en) * | 2004-10-26 | 2008-06-26 | Krones Ag | container inspector |
US7484414B2 (en) * | 2005-11-30 | 2009-02-03 | Nanoalert Ltd. | Method and apparatus for determination of the concentration of particles in multi-component fluid systems |
NZ572060A (en) * | 2006-04-20 | 2011-11-25 | Scantech Int Pty Ltd | Particle monitor with means for purging analysis chamber with heated gas |
US20080029334A1 (en) * | 2006-05-22 | 2008-02-07 | Traceguard Technologies Inc. | Low-frequency acoustic waves for collecting and/or moving particles inside articles |
US20070267351A1 (en) * | 2006-05-22 | 2007-11-22 | Traceguard Technologies Inc. | Low-frequency acoustic waves for collecting and/or moving particles inside articles |
DE102009035585A1 (en) | 2009-07-31 | 2011-02-03 | Krones Ag | Inspection device and inspection method for detecting foreign bodies in a filled container |
US20130292004A1 (en) * | 2010-08-10 | 2013-11-07 | F. Hoffmann-La Roche Ag | Devices and methods for automatically reconstituting a drug |
TWI708052B (en) * | 2011-08-29 | 2020-10-21 | 美商安美基公司 | Methods and apparati for nondestructive detection of undissolved particles in a fluid |
DE102013201798A1 (en) * | 2013-02-05 | 2014-08-07 | Krones Ag | Foreign object inspection in filled containers |
DE102014006835A1 (en) * | 2014-05-13 | 2015-11-19 | Kocher-Plastik Maschinenbau Gmbh | Testing device for checking container products |
US10081036B2 (en) * | 2016-09-19 | 2018-09-25 | Applied Materials, Inc. | Methods and systems for liquid particle prequalification |
-
2017
- 2017-06-27 JP JP2018567714A patent/JP7122261B2/en active Active
- 2017-06-27 US US16/312,964 patent/US11313808B2/en active Active
- 2017-06-27 EP EP17735445.3A patent/EP3475692A1/en not_active Withdrawn
- 2017-06-27 CN CN201780038882.2A patent/CN109313165A/en active Pending
- 2017-06-27 WO PCT/EP2017/065853 patent/WO2018002049A1/en unknown
-
2022
- 2022-03-30 US US17/708,578 patent/US20220221410A1/en not_active Abandoned
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6176132B1 (en) | Method for determining liquid level in a container using an electromagnetic acoustic transducer (EMAT) | |
US20070267351A1 (en) | Low-frequency acoustic waves for collecting and/or moving particles inside articles | |
WO2000073781A1 (en) | Apparatus and method for remote, noninvasive characterization of structures and fluids inside containers | |
JP7122261B2 (en) | inspection equipment | |
WO2001053821A1 (en) | Thermography flaw detection with ultrasound sample heating | |
JPWO2018002049A5 (en) | ||
Jhang et al. | Wavelet analysis based deconvolution to improve the resolution of scanning acoustic microscope images for the inspection of thin die layer in semiconductor | |
Bernhardt et al. | Listening for airborne sound of damage: A new mode of diagnostic imaging | |
JP6533458B2 (en) | Foreign matter inspection system for a concrete structure, foreign matter inspection apparatus and foreign matter inspection method | |
JP2012057842A (en) | Ultrasonic drying equipment and substrate treatment method | |
JPH04501916A (en) | Object detection device using acoustic signals and method for detecting objects using acoustic signals | |
RU2655985C1 (en) | Method of ultrasound non-destructive control of integrity of tanks and apparatus for its implementation | |
NL2023523B1 (en) | Method and system for using wave analysis for speed of sound measurement | |
AU2017351545B8 (en) | Method and device for analyzing a sample | |
Gao et al. | Mode selection of Lamb waves for the evaluation of solid plates with liquid loading | |
JP2003177117A (en) | Transmission method of dry contact high-frequency ultrasonic wave and apparatus therefor, and flaw detection method using dry contact high-frequency ultrasonic wave and apparatus therefor | |
RU2219538C2 (en) | Technique detecting cracks in solid body | |
JPH10277508A (en) | Ultrasonic cleaning device | |
Sugimoto et al. | 2E1-1 Fundamental study for long-distance noncontact shallow underground exploration technology by acoustic irradiation induced vibration | |
JP2001281167A (en) | Non-destructive evaluation device using microwave | |
JP2012042421A (en) | Detection method employing sonic wave, non-contact acoustic detection system, program used for system, and recording medium with program recorded thereon | |
Reindl et al. | Phased-Array Approach to Air-coupled Ultrasound with Resonant Defect Excitation | |
JP2004077341A (en) | Ultrasound image inspection method and apparatus | |
Osumi et al. | 2P2-1 Non-contact Imaging Defect in Flat Plate Using Surface Wave Generated by Focus Aerial Ultrasonic Wave | |
Osumi et al. | 1P2-15 Harmonic Imaging of Defect in Flat Plate Using Guided Wave generated by High-intensity Aerial Ultrasonic Wave |