JPWO2018002049A5 - - Google Patents

Download PDF

Info

Publication number
JPWO2018002049A5
JPWO2018002049A5 JP2018567714A JP2018567714A JPWO2018002049A5 JP WO2018002049 A5 JPWO2018002049 A5 JP WO2018002049A5 JP 2018567714 A JP2018567714 A JP 2018567714A JP 2018567714 A JP2018567714 A JP 2018567714A JP WO2018002049 A5 JPWO2018002049 A5 JP WO2018002049A5
Authority
JP
Japan
Prior art keywords
container
inspection device
sound wave
vibration equipment
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018567714A
Other languages
Japanese (ja)
Other versions
JP2019521340A (en
JP7122261B2 (en
Publication date
Application filed filed Critical
Priority claimed from PCT/EP2017/065853 external-priority patent/WO2018002049A1/en
Publication of JP2019521340A publication Critical patent/JP2019521340A/en
Publication of JPWO2018002049A5 publication Critical patent/JPWO2018002049A5/ja
Application granted granted Critical
Publication of JP7122261B2 publication Critical patent/JP7122261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本検査装置によって、高周波で低振幅度の振とうを、容器に与えることができる。このように容器を振動させることにより、容器中に存在する粒子を、容器内にある液体中で効率的に流動化又は分散させることができ、その結果、これらの粒子を効率的に同定又はトレースすることができる。これによって特に、粒子を実質的に流動化できる一方、液体は比較的静かな状態に保つことができる。これによって比較的迅速かつ正確に検査することができ、また液体中に生じる気泡を防止又は少なくとも減少させることができ、浮かんでいる又は底部にある粒子の流動化を改善することができ、粒子が容器閉鎖系に移ることを防止することができ、化学的又は医薬的な製造工程(フリーズドライ含む)において比較的効率的に実施することができる。
With this inspection device, high frequency and low amplitude shaking can be applied to the container. By vibrating the container in this way, the particles present in the container can be efficiently fluidized or dispersed in the liquid inside the container, and as a result, these particles can be efficiently identified or traced. can do. This in particular allows the particles to be substantially fluidized while the liquid can be kept relatively quiet. This allows for relatively quick and accurate inspection, and can prevent or at least reduce air bubbles in the liquid, improve the fluidization of floating or bottom particles, and allow the particles to be inspected. Can be prevented from moving to a container closure system and can be carried out relatively efficiently in a chemical or pharmaceutical manufacturing process (including freeze-drying).

第一の周波数は好ましくは、約0.5MHz~約2MHzの範囲にある。このように比較的高い周波数は、繊維及び内在粒子を流動化するために特に適していることがある。第二の周波数は好ましくは、約20Hz~約50Hzの範囲にある。このように比較的低い周波数により、液体表面における反射が原因となって、液体中に定在波を形成することができる。定在波は、比較的重い粒子、例えばガラス又は金属などを動かすために効率的である。変換器により容器の側壁部で比較的高い周波数をかけること、及びさらなる変換器により容器の底部で比較的低い周波数をかけることが、特に効率的であり得る。これによって、液体中における様々な種類の粒子を効率的、迅速かつ十全に流動化させることが可能になり、その後、これらの粒子を同定できる。
The first frequency is preferably in the range of about 0.5 MHz to about 2 MHz. Such relatively high frequencies may be particularly suitable for fluidizing fibers and endogenous particles. The second frequency is preferably in the range of about 20 kHz to about 50 kHz . Such relatively low frequencies allow standing waves to form in the liquid due to reflections on the surface of the liquid. Standing waves are efficient for moving relatively heavy particles, such as glass or metal. It may be particularly efficient to apply a relatively high frequency at the side wall of the vessel with a transducer and a relatively low frequency at the bottom of the vessel with a further transducer. This makes it possible to efficiently, quickly and fully fluidize various types of particles in a liquid, and then identify these particles.

変換器22は、バイアル4の側壁41に横方向で隣接して位置付けられるよう、バイアルのそばに配置されている。さらなる変換器23は、バイアル4の底部43に隣接して真下に位置付けられるよう、バイアルの下方に配置されている。周波数発生器21は、第一のパルス状電気信号を、第一のケーブル222を介して変換器22にもたらす。第一の電気信号は、変換器22によって、約0.5MHz~約2MHzの範囲にある周波数を有する第一の超音波221に変換されるように、調整されている。同様に周波数発生器21は、第二のパルス状電気信号を、第二のケーブル232を介してさらなる変換器23にもたらす。第二の電気信号は、さらなる変換器23によって、約20Hz~約50Hzの範囲にある周波数を有するさらなる又は第二の超音波231に変換されるように、調整されている。
The transducer 22 is arranged near the vial 4 so as to be laterally adjacent to the side wall 41 of the vial 4. Further transducers 23 are located below the vial 4 so that they are located directly below the bottom 43 of the vial 4. The frequency generator 21 brings the first pulsed electrical signal to the transducer 22 via the first cable 222. The first electrical signal is tuned by the transducer 22 to be converted into a first ultrasonic 221 having a frequency in the range of about 0.5 MHz to about 2 MHz. Similarly, the frequency generator 21 brings a second pulsed electrical signal to the additional converter 23 via the second cable 232. The second electrical signal is tuned by a further transducer 23 to be converted into a further or second ultrasonic 231 having a frequency in the range of about 20 kHz to about 50 kHz .

Claims (13)

粒子(5)の存在に関して、容器(4)内にある液体(7)を検査するための検査装置(1)であって、
前記液体(7)内にある粒子(5)を検出するように適合された粒子検出器(3)、
前記容器(4)を、前記粒子検出器(3)の稼働領域(311)に位置付けるために配置されている座面(6)、及び
前記容器(4)を振動させるための振動設備(2)、
を備え、前記振動設備(2)が、
電気信号をもたらす周波数発生器(21)と、
前記周波数発生器(21)によってもたらされる前記電気信号を、音波(221)に変換するように適合された変換器(22)と、を備え、
前記座面(6)は、前記容器(4)を、前記変換器(22)に隣接して位置付けるように配置されており、
前記振動設備(2)が、さらなる電気信号をさらなる音波(231)に変換するように適合されたさらなる変換器(23)を備え、
前記座面(6)が、前記容器(4)を、前記さらなる変換器(23)に隣接して位置付けるように配置されており、
前記振動設備(2)の前記変換器(22)によって発生された前記音波(221)が、第一の周波数を有し、
前記振動設備(2)の前記さらなる変換器(23)によって発生された前記さらなる音波(231)が、前記第一の周波数とは異なる第二の周波数を有
前記容器(4)が側壁部(41)及び底部(43)を有し、前記容器(4)の前記側壁部(41)を前記振動設備(2)の前記変換器(22)に隣接して位置付けるように、かつ前記容器(4)の前記底部(43)を、前記振動設備(2)の前記さらなる変換器(23)に隣接して位置付けるように、前記座面(6)が配置されている、検査装置(1)。
An inspection device (1) for inspecting the liquid (7) in the container (4) with respect to the presence of the particles (5).
A particle detector (3) adapted to detect particles (5) in the liquid (7),
A seat surface (6) arranged to position the container (4) in the operating region (311) of the particle detector (3), and a vibration facility (2) for vibrating the container (4). ,
The vibration equipment (2)
A frequency generator (21) that produces an electrical signal,
A converter (22) adapted to convert the electrical signal produced by the frequency generator (21) into a sound wave (221).
The seat surface (6) is arranged so as to position the container (4) adjacent to the converter (22).
The vibration equipment (2) comprises an additional transducer (23) adapted to convert the additional electrical signal into an additional sound wave (231).
The bearing surface (6) is arranged such that the container (4) is positioned adjacent to the further transducer (23).
The sound wave (221) generated by the converter (22) of the vibration equipment (2) has a first frequency and has a first frequency.
The additional sound wave (231) generated by the additional transducer (23) of the vibration equipment (2) has a second frequency different from the first frequency.
The container (4) has a side wall portion (41) and a bottom portion (43), and the side wall portion (41) of the container (4) is adjacent to the converter (22) of the vibration equipment (2). The seat surface (6) is arranged so as to be positioned and to position the bottom portion (43) of the container (4) adjacent to the further transducer (23) of the vibration equipment (2). Inspection device (1).
前記音波(221)が、超音波(221)である、請求項1に記載の検査装置(1)。 The inspection device (1) according to claim 1, wherein the sound wave (221) is an ultrasonic wave (221). 前記粒子検出器(3)が、カメラ(31)を備える、請求項1又は2に記載の検査装置(1)。 The inspection device (1) according to claim 1 or 2, wherein the particle detector (3) includes a camera (31). 前記振動設備(2)の前記変換器(22)が、圧電変換器(22)である、請求項1から3のいずれか一項に記載の検査装置(1)。 The inspection device (1) according to any one of claims 1 to 3, wherein the converter (22) of the vibration equipment (2) is a piezoelectric converter (22). 前記振動設備(2)の前記周波数発生器(21)が、前記さらなる変換器(23)に前記さらなる電気信号をもたらすように適合されている、請求項1から4のいずれか一項に記載の検査装置(1)。 The invention according to any one of claims 1 to 4, wherein the frequency generator (21) of the vibration equipment (2) is adapted to bring the additional electrical signal to the further transducer (23). Inspection device (1). 前記第一の周波数が、約0.5MHz~約2MHzの範囲にある、請求項1から5のいずれか一項に記載の検査装置(1)。 The inspection device (1) according to any one of claims 1 to 5, wherein the first frequency is in the range of about 0.5 MHz to about 2 MHz. 前記第二の周波数が、約20Hz~約50Hzの範囲にある、請求項1から6のいずれか一項に記載の検査装置(1)。 The inspection device (1) according to any one of claims 1 to 6, wherein the second frequency is in the range of about 20 kHz to about 50 kHz . 前記電気信号が、パルス状電気信号であり、前記振動設備(2)の前記変換器(22)によって変換される前記音波(221)が、パルス状音波である、請求項1からのいずれか一項に記載の検査装置(1)。 Any of claims 1 to 7 , wherein the electrical signal is a pulsed electrical signal, and the sound wave (221) converted by the converter (22) of the vibration equipment (2) is a pulsed sound wave. The inspection device (1) according to item 1. 前記さらなる電気信号が、パルス状電気信号であり、前記振動設備(2)の前記さらなる変換器(23)によって変換される前記さらなる音波(231)が、パルス状音波である、請求項1からのいずれか一項に記載の検査装置(1)。 Claims 1 to 8 wherein the additional electrical signal is a pulsed electrical signal and the additional sound wave (231) converted by the further transducer (23) of the vibration facility (2) is a pulsed sound wave. The inspection device (1) according to any one of the above items. 前記振動設備(2)の前記変換器(22)、及び前記振動設備(2)の前記さらなる変換器(23)が、前記容器(4)に、前記音波(221)及び前記さらなる音波(231)を間欠的にもたらすように配置されている、請求項1からのいずれか一項に記載の検査装置(1)。 The converter (22) of the vibration equipment (2) and the further converter (23) of the vibration equipment (2) put the sound wave (221) and the further sound wave (231) in the container (4). The inspection apparatus (1) according to any one of claims 1 to 9 , which is arranged so as to intermittently bring about. 前記粒子検出器(3)が、前記容器(4)を横方向から観察するように配置されている、請求項1から10のいずれか一項に記載の検査装置(1)。 The inspection device (1) according to any one of claims 1 to 10 , wherein the particle detector (3) is arranged so as to observe the container (4) from the lateral direction. 前記容器(4)がバイアル(4)である、請求項1から11のいずれか一項に記載の検査装置(1)。 The inspection device (1) according to any one of claims 1 to 11 , wherein the container (4) is a vial (4). 前記容器(4)を、前記振動設備(2)の前記変換器(22)に沿って動かすように適合された搬送ユニットを備える、請求項1から12のいずれか一項に記載の検査装置(1)。 The inspection device according to any one of claims 1 to 12 , comprising a transport unit adapted to move the container (4) along the transducer (22) of the vibration equipment (2). 1).
JP2018567714A 2016-06-28 2017-06-27 inspection equipment Active JP7122261B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16176600 2016-06-28
EP16176600.1 2016-06-28
PCT/EP2017/065853 WO2018002049A1 (en) 2016-06-28 2017-06-27 Inspection device

Publications (3)

Publication Number Publication Date
JP2019521340A JP2019521340A (en) 2019-07-25
JPWO2018002049A5 true JPWO2018002049A5 (en) 2022-05-30
JP7122261B2 JP7122261B2 (en) 2022-08-19

Family

ID=56289356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018567714A Active JP7122261B2 (en) 2016-06-28 2017-06-27 inspection equipment

Country Status (5)

Country Link
US (2) US11313808B2 (en)
EP (1) EP3475692A1 (en)
JP (1) JP7122261B2 (en)
CN (1) CN109313165A (en)
WO (1) WO2018002049A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11972555B2 (en) 2019-03-19 2024-04-30 Nec Corporation Product-inspection apparatus, product-inspection method, and non-transitory computer readable medium
CN110726678A (en) * 2019-11-28 2020-01-24 浙江农林大学 Turbidity detection device of city river water
JP7516160B2 (en) * 2020-08-12 2024-07-16 東芝テック株式会社 Residue detection system, residue detection device, and residue detection method
US11544343B1 (en) * 2020-10-16 2023-01-03 Splunk Inc. Codeless anchor generation for detectable features in an environment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01308942A (en) * 1988-06-08 1989-12-13 Mitsubishi Electric Corp Apparatus for counting fine particles adhering to surface of solid
DK17791D0 (en) * 1991-02-01 1991-02-01 Novo Nordisk As CONTAINER INSPECTION
JPH06160305A (en) 1992-08-05 1994-06-07 Kirin Techno Syst:Kk Inspection apparatus for foreign matter in liquid
JP3351910B2 (en) * 1994-09-01 2002-12-03 エーザイ株式会社 Vial bottle inspection method and equipment
JPH1090109A (en) * 1996-07-26 1998-04-10 Kirin Techno Syst:Kk Apparatus for inspecting stoppering failure of container
JP4021051B2 (en) * 1998-05-14 2007-12-12 株式会社ベルデックス Method and apparatus for inspecting liquid in container
JP2001059822A (en) * 1999-08-25 2001-03-06 Fuji Electric Co Ltd Apparatus and method for inspecting foreign matter in liquid within transparent container
US6765675B2 (en) * 2000-02-14 2004-07-20 M. W. Technologies, Inc. Fluid inspection apparatus with vibrator
US7982868B2 (en) * 2004-07-30 2011-07-19 Eagle Vision Systems B.V. Apparatus and method for checking of containers
JP4508848B2 (en) 2004-08-30 2010-07-21 勳 佐藤 Foreign object detection method
DE102004051961B4 (en) * 2004-10-26 2008-06-26 Krones Ag container inspector
US7484414B2 (en) * 2005-11-30 2009-02-03 Nanoalert Ltd. Method and apparatus for determination of the concentration of particles in multi-component fluid systems
NZ572060A (en) * 2006-04-20 2011-11-25 Scantech Int Pty Ltd Particle monitor with means for purging analysis chamber with heated gas
US20080029334A1 (en) * 2006-05-22 2008-02-07 Traceguard Technologies Inc. Low-frequency acoustic waves for collecting and/or moving particles inside articles
US20070267351A1 (en) * 2006-05-22 2007-11-22 Traceguard Technologies Inc. Low-frequency acoustic waves for collecting and/or moving particles inside articles
DE102009035585A1 (en) 2009-07-31 2011-02-03 Krones Ag Inspection device and inspection method for detecting foreign bodies in a filled container
US20130292004A1 (en) * 2010-08-10 2013-11-07 F. Hoffmann-La Roche Ag Devices and methods for automatically reconstituting a drug
TWI708052B (en) * 2011-08-29 2020-10-21 美商安美基公司 Methods and apparati for nondestructive detection of undissolved particles in a fluid
DE102013201798A1 (en) * 2013-02-05 2014-08-07 Krones Ag Foreign object inspection in filled containers
DE102014006835A1 (en) * 2014-05-13 2015-11-19 Kocher-Plastik Maschinenbau Gmbh Testing device for checking container products
US10081036B2 (en) * 2016-09-19 2018-09-25 Applied Materials, Inc. Methods and systems for liquid particle prequalification

Similar Documents

Publication Publication Date Title
US6176132B1 (en) Method for determining liquid level in a container using an electromagnetic acoustic transducer (EMAT)
US20070267351A1 (en) Low-frequency acoustic waves for collecting and/or moving particles inside articles
WO2000073781A1 (en) Apparatus and method for remote, noninvasive characterization of structures and fluids inside containers
JP7122261B2 (en) inspection equipment
WO2001053821A1 (en) Thermography flaw detection with ultrasound sample heating
JPWO2018002049A5 (en)
Jhang et al. Wavelet analysis based deconvolution to improve the resolution of scanning acoustic microscope images for the inspection of thin die layer in semiconductor
Bernhardt et al. Listening for airborne sound of damage: A new mode of diagnostic imaging
JP6533458B2 (en) Foreign matter inspection system for a concrete structure, foreign matter inspection apparatus and foreign matter inspection method
JP2012057842A (en) Ultrasonic drying equipment and substrate treatment method
JPH04501916A (en) Object detection device using acoustic signals and method for detecting objects using acoustic signals
RU2655985C1 (en) Method of ultrasound non-destructive control of integrity of tanks and apparatus for its implementation
NL2023523B1 (en) Method and system for using wave analysis for speed of sound measurement
AU2017351545B8 (en) Method and device for analyzing a sample
Gao et al. Mode selection of Lamb waves for the evaluation of solid plates with liquid loading
JP2003177117A (en) Transmission method of dry contact high-frequency ultrasonic wave and apparatus therefor, and flaw detection method using dry contact high-frequency ultrasonic wave and apparatus therefor
RU2219538C2 (en) Technique detecting cracks in solid body
JPH10277508A (en) Ultrasonic cleaning device
Sugimoto et al. 2E1-1 Fundamental study for long-distance noncontact shallow underground exploration technology by acoustic irradiation induced vibration
JP2001281167A (en) Non-destructive evaluation device using microwave
JP2012042421A (en) Detection method employing sonic wave, non-contact acoustic detection system, program used for system, and recording medium with program recorded thereon
Reindl et al. Phased-Array Approach to Air-coupled Ultrasound with Resonant Defect Excitation
JP2004077341A (en) Ultrasound image inspection method and apparatus
Osumi et al. 2P2-1 Non-contact Imaging Defect in Flat Plate Using Surface Wave Generated by Focus Aerial Ultrasonic Wave
Osumi et al. 1P2-15 Harmonic Imaging of Defect in Flat Plate Using Guided Wave generated by High-intensity Aerial Ultrasonic Wave