NL2023523B1 - Method and system for using wave analysis for speed of sound measurement - Google Patents

Method and system for using wave analysis for speed of sound measurement Download PDF

Info

Publication number
NL2023523B1
NL2023523B1 NL2023523A NL2023523A NL2023523B1 NL 2023523 B1 NL2023523 B1 NL 2023523B1 NL 2023523 A NL2023523 A NL 2023523A NL 2023523 A NL2023523 A NL 2023523A NL 2023523 B1 NL2023523 B1 NL 2023523B1
Authority
NL
Netherlands
Prior art keywords
sound
transducer
speed
waves
lamb waves
Prior art date
Application number
NL2023523A
Other languages
Dutch (nl)
Inventor
Daeichin Verya
De Jong Nicolaas
Daniël Verweij Martin
Original Assignee
Univ Delft Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Delft Tech filed Critical Univ Delft Tech
Priority to NL2023523A priority Critical patent/NL2023523B1/en
Priority to PCT/NL2020/050470 priority patent/WO2021010836A1/en
Application granted granted Critical
Publication of NL2023523B1 publication Critical patent/NL2023523B1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/024Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0875Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of bone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0427Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Rheumatology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Method and system for measuring speed of sound in an object 1, with a transducer assembly 12 5 arranged for providing sound waves to the object 1 and for detecting acoustic energy from the object 1. A processing unit 11 is connected to the transducer assembly 12 and arranged for contro||ing the transducer assembly 12 for insonifying the object 1 by the sound waves; detecting a p|ura|ity of Lamb waves induced in the object 1; and determining the speed of sound in the object 1 from the detected p|ura|ity of Lamb waves. 10 [Fig. 2]

Description

P6084918NL 1 Method and system for using wave analysis for speed of sound measurement Field of the invention The present invention relates to a method for non-invasive, non-destructive measurement of speed of sound in an object, comprising providing sound waves to the object, wherein the object is insonified by the sound waves.
Background art International patent publication WO01/71338 discloses a method of ultrasonic testing using insonification of a test piece.
A transducer is used having multiple independent elements, allowing to ‘steer’ the acoustic waves in the test piece.
International patent publication WO2014/147122 discloses an ultrasonic imaging system and method.
A test object is subjected to insonifying ultrasonic signals form one of two sub-arrays.
From the echo signals, images are produced of the test object.
American patent publication US 8,392,133 discloses a method for measuring shear wave speed in an isotropic plate.
The method calculations include transformations of signals into propagation wavenumbers for given Lamb waves from peaks within the spectra, and applying a Newton-Raphson gradient method using the propagation wavenumbers ot Raleigh-Lamb dispersion curve equations.
Summary of the invention The present invention seeks to provide a non-invasive and non-destructive method for measurement of both sound velocity and thickness of a (non-uniform) object.
According to the present invention, a method as defined above is provided, wherein the method further comprises detecting a plurality of Lamb waves induced in the object, and determining the speed of sound in the object from the detected plurality of Lamb waves.
Short description of drawings The present invention will be discussed in more detail below, with reference to the attached drawings, in which Fig. 1 shows a simplified diagram of a system set-up in accordance with the present invention embodiments; Fig. 2 shows a graph of Lamb wave dispersion curves in an object; Fig. 3 shows a graph of Lamb wave modes occurring in an object 1 when insonified, in the velocity — frequency (v-f) domain; Fig. 4 shows a graph of Lamb wave modes in the frequency — wavenumber (f-k) domain; Fig. 5 shows an intensity plot of a superposition of Lamb waves in an insonified object, with a slope determined in the high intensity area; and
P6084918NL 2 Fig. 8 shows the intensity plot of Fig. 5 after a thresholding operation. Description of embodiments The present invention in general terms relates to embodiments of a method and a system utilizing wave analysis for speed of sound measurement in an object. These embodiments have wide application possibilities, but are particularly suitable for determining speed of sound in the context of measurement to a uniform plate-like materials and/or a non-uniform object, such as the human skull or other bone material, in combination with ultrasound imaging applications. Further applications can relate to measurements in an industrial environment, e.g. non-destructive testing of materials, pipes, concretes, wafers, etc.
Fig. 1 shows a simplified diagram of a system set-up in accordance with the present invention embodiments. The system 10 comprises a transducer assembly 12 arranged for providing sound waves (e.g. ultrasound signals) to an object 1 and for detecting acoustic energy from the object 1. A processing unit 11 is provided which is connected to the transducer assembly 12, and in further embodiments to an optional display unit 13.
The availability of a non-invasive express method for in-vivo measurement of both sound velocity and thickness of the human skull bone would be of great benefit to various transcranial ultrasonic imaging and treatment applications. The existing methods of measuring the speed of sound in human skull bone are based on the prior knowledge of its thickness. On the other hand, the methods of thickness measurement are based on the knowledge of the sound velocity. The ability to measure both parameters non-invasively would open the possibility for applying automatic corrections to the ultrasonic signals and for real-time adaptive focusing and beamforming through the skull. To date, several methods have been proposed for simultaneously measuring the sound speed and the sample thickness, which however require solving two independent equations and/or two independent measurements.
One existing method uses a combination of four transducers mounted on a multifaceted wedge. Two of these probes are oriented obliquely to the sample to launch and receive a longitudinal creeping wave along its surface. These probes provide the measurement of the sound velocity. The other pair of probes sends and receives the waves through the sample, providing data for measuring its thickness. Although this method works well in uniform objects, its application to the skull bone is hardly possible due to inhomogeneity and layered structure of the bone. The velocity of the surface wave propagating in the thin top layer of the cortical bone may not be directly related to the average longitudinal sound speed across the skull, as the latter has intermediate layers with slightly different sound speed values. These layers include the outer and inner tables composed of cortical bone with little or no porosity, and the middle table composed of porous trabecular bone (diploë). The diploë layer may be absent in certain cases including newborn skulls or thin temporal bones, but it is usually present in the thickest sections of an adult skull.
In another simultaneous measurement method swept frequency signals are used capable of exciting several standing wave resonances in the sample. One equation relates sound velocity
P6084918NL 3 to the frequency interval between spectral peaks corresponding to adjacent resonances. The second equation is derived from the time of flight measurement in the temporal domain, which is obtained by inverting the spectral data. While this method works well in industrial applications (e.g.
pipeline monitoring), its adaptation to the highly attenuating skull may require increased power levels to excite standing waves. The necessary power level is too dangerous for a real biomedical application.
In the present invention embodiments, a compression wave velocity (speed of sound) is measured, benefiting from Rayleigh-Lamb Waves generated when the object is insonified with ultrasound. Whenever a plate is insonified, Lamb waves are generated. The higher the thickness of a plate and the higher the frequency, the more Lamb wave modes are generated. The amount of Lamb waves often limits a conventional approach when trying to fit one or a few Lamb waves modes to a baseline signal. Lamb waves are commonly used in non-destructive-testing. Generally, only one or very few Lamb wave modes are generated by tuning the excitation frequency to make the fitting possible. When insonifying human skull with a medical ultrasound frequency range (1-3 MHz) many modes are being generated and the fitting becomes very difficult if not impossible. In this context, the term ‘insonified’ is to be interpreted as ‘to flood an area or an object with carefully- controlled sound waves’.
In a first aspect, the present invention relates to a method for non-invasive, non-destructive measurement of speed of sound in an object 1, comprising providing sound waves to the object 1, wherein the object 1 is insonified by the sound waves, detecting a plurality of Lamb waves induced in the object 1, and determining the speed of sound in the object 1 from the detected plurality of Lamb waves. The same measurement data or a new set of pulse-echo measurements can be used for detecting a thickness of the object 1 by time measurement of reflection pulses originating from the sound waves, and using the determined speed of sound in the object 1. This allows to obtain a combined determination of the speed of sound and a thickness measurement.
Further exemplary embodiments of the present invention relate to applications having an automatic correction to ultrasonic signals, real-time adaptive focusing and beamforming through a non-uniform object 1, such as a (human or animal} bone, e.g. a human skull. The present invention embodiments have specific advantageous application when the object 1 is elongated (i.e. the thickness of the object 1 is its smallest dimension), and the speed of sound measured is a longitudinal wave velocity. In these embodiments, the sound waves are advantageously provided in a frequency range of e.g. between 1 and 3MHz which is a frequency range allowing insonification of a (human/animal) bone, and which is compatible with ultrasound analysis/imaging. For further clinical applications, the frequency range might depend on the specific application, for example for neonate babies with a thinner skull the frequency can be as high as 10 MHz. It is noted that the frequency range can be from KHz to GHz depending on the specific application. E.g. when making measurements in thin plates and (e.g. semiconductor wafers) the range is in the order of 100 MHz to 1 GHz, for measurements in pipes and concert the range will be in the order of several kHz, for geological applications it can even be lower. In a specific application the sound waves emitted are 40 such that multiple lamb waves are being generated in the medium of interest.
P6084918NL 4 As already indicated with reference to Fig. 1 above, the sound waves are provided and the plurality of induced Lamb waves are detected using a transducer assembly 12. Such a transducer assembly 12 allows to transform a control signal (from the processing unit 11) into mechanical vibrations in the object 1 and vice versa.
In a further embodiment, the method further comprises obtaining an ultrasound image (of the object 1 and/or of an area behind the object 1) using the determined speed of sound in (and thickness of) the object 1. As the thickness of the object 1 and the speed of sound in the object 1 can be obtained simultaneously using the same measurement set-up, this provides for a very efficient and reliable (ultrasound) imaging method.
The Rayleigh-Lamb equations are described as follows: anh) apie ©) tan(a h kp wherein PRC @ Vp 2 pe 3) and h: thickness of object 1 0): angular frequency k: wave number Vp: compression wave velocity or longitudinal velocity Vs: shear wave velocity Note that a positive exponent in equation (1) represents a symmetric wave, a negative component an asymmetric wave. At high frequencies the AG and S0 modes approach the Rayleigh wave velocity, as shown in the Lamb wave dispersion curves in the graph of Fig. 2. In contrast, all higher modes approach the shear wave velocity of the object 1. At low frequencies, the S0 dispersion curve approaches the quasi-longitudinal wave velocity. The same applies for all the other S-modes at a certain frequency, where they form a plateau in the velocity — frequency (v-f) domain, as deducible from the graphs in Fig. 2 and Fig. 3. Fig. 3 shows a graph of Lamb wave modes occurring in the object 1 when insonified, with the frequency on the horizontal axis and the phase velocity / shear wave velocity on the vertical axis. The group velocity vg is defined as the slope of the dispersion curve in the frequency — wave number (f-k) domain: by = do (4)
P6084918NL Therefore, the quasi-longitudinal wave velocity which appears as a plateau in the graph of Fig, 3 will appear as constant slopes in the f-k domain as shown in the graph of Fig. 4.
The superimposition of the quasi-longitudinal wave velocity for different symmetric modes of the Lamb waves which appears as a plateau in the v-f domain (Fig. 2 and 3) and as a slope in 5 the f-k domain (Fig. 4) can be exploited to derive the speed of sound in the material of object 1.
In a first embodiment, determining the speed of sound in the object from the detected plurality of Lamb waves comprises determining a plateau level in the phase velocity — frequency domain for symmetric modes of the detected plurality of Lamb waves. At respective low frequency parts in the graphs, this results in a proper and reliable determination of the speed of sound in the object 1.
In a further embodiment, determining the speed of sound in the object from the detected plurality of Lamb waves comprises determining the slope of high amplitude overlapping areas of symmetric modes of the detected plurality of Lamb waves in a frequency-wavenumber {f-k) domain [claim 3], as is exemplified in the graph of Fig. 4.
A further simple way to derive the speed of sound in the material of object 1 is to apply a radon transform on the f-k domain data to derive the slope of the high intensity area as shown in Fig. 5. Note that after multiplying the determined slope by 21 the speed of sound in the medium of the object 1 is directly obtained. Thus, in a further embodiment, the method further comprises applying a radon transform on the frequency-wavenumber domain amplitude data of the symmetric modes of the detected plurality of Lamb waves. A radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line.
An even further way is to threshold the f-k domain data such that only the high intensity area corresponding to the overlap of the longitudinal wave velocity of the different symmetric modes is above the threshold limit. Subsequently a linear line can be fit to the remaining data to get the slope as depicted in in the graph of Fig. 6. So in this further embodiment, the method further comprises determining a threshold area in the frequency-wavenumber domain having an amplitude above a predetermined threshold, and fitting a linear line through the determined threshold area.
For all these exemplary embodiments, further validation has been done, which showed that the determined slope based on the overlapping areas of the symmetric modes of the Lamb waves in the insonified object 1 is independent from the thickness and the shear wave velocity of the material of the object 1.
As mentioned above, the present invention can also be implemented as a system, more in particular a system for measuring speed of sound in an object 1, comprising a transducer assembly 12 arranged for providing sound waves to the object 1 and for detecting acoustic energy from the object 1, and a processing unit 11 connected to the transducer assembly 12. The processing unit 11 is arranged for controlling the transducer assembly 12 for insonifying the object 1 by the sound waves, detecting a plurality of Lamb waves induced in the object 1, and determining the speed of 40 sound in the object 1 from the detected plurality of Lamb waves. The processing unit 11 can then
P6084918NL 6 further be arranged to execute the method according to any one of the exemplary embodiments described herein.
The transducer assembly 12 is arranged to provide the sound waves, and to detect the plurality of induced Lamb waves in a further embodiment.
Alternatively, the transducer assembly 12 may comprise separate transducers, e.g. one for providing and guiding the sound waves into the object 1, and a second for detecting the plurality of induced Lamb waves.
The transducer assembly 12 has a predetermined focus range in a further embodiment.
This is particularly advantageous when using the present invention embodiments wherein the speed of sound and the thickness of the object 1 is determined using the same measurement data.
For practical implementations, the transducer assembly 12 may comprise one or more of: a piezo transducer, a piezo-ceramic transducer, a micro-machined transducer, a capacitive micro- machined ultrasonic transducer, a mechanical transducer, an optical transducer.
In even further embodiments, the present invention relates to an ultrasound imaging system comprising a system 10 according to any one of the embodiments described herein, and a display unit 13 connected to the processing unit 11. The processing unit 11 and/or the display unit 13 may be further arranged to obtain an ultrasound image using the determined speed of sound in (and the thickness of) the object 1. The ultrasound image can cover an area of/in the object 1, but also an area behind the object 1. The above described exemplary embodiments can also be summarized as the following set of interdependent embodiments: Embodiment 1. Method for non-invasive measurement of speed of sound in an object, comprising providing sound waves to the object, wherein the object is insonified by the sound waves; detecting a plurality of Lamb waves induced in the object; and determining the speed of sound in the object from the detected plurality of Lamb waves.
Embodiment 2. Method according to embodiment 1, wherein determining the speed of sound in the object from the detected plurality of Lamb waves comprises: determining a plateau level in the phase velocity — frequency domain for symmetric modes of the detected plurality of Lamb waves.
Embodiment 3. Method according to embodiment 1, wherein determining the speed of sound in the object from the detected plurality of Lamb waves comprises: determining a slope of high amplitude overlapping areas of symmetric modes of the detected plurality of Lamb waves in a frequency-wavenumber domain.
Embodiment 4. Method according to embodiment 3, further comprising applying a radon transform on the frequency-wavenumber domain amplitude data of the symmetric modes of the detected plurality of Lamb waves.
Embodiment 5. Method according to embodiment 3, further comprising determining a threshold area in the frequency-wavenumber domain having an amplitude above a predetermined threshold, and fitting a linear line through the determined threshold area.
P6084918NL 7 Embodiment 8. Method according to any one of embodiments 1-5, further comprising detecting a thickness of the object by time measurement of reflection pulses originating from the sound waves and using the determined speed of sound in the object. Embodiment 7. Method according to any one of embodiments 1-8, wherein the object is elongated, and the speed of sound measured is a longitudinal wave velocity.
Embodiment 8. Method according to any one of embodiments 1-7, wherein the object is a bone. Embodiment 9. Method according to any one of embodiments 1-8, wherein the sound waves are provided in a frequency range between 1 and 3MHz. Embodiment 10. Method according to any one of embodiments 1-9, wherein the sound waves are provided and the plurality of induced Lamb waves are detected using a transducer assembly.
Embodiment 11. Method according to embodiment 10, wherein the transducer assembly has a predetermined focus range. Embodiment 12. Method according to embodiment 10 or 11, wherein the transducer assembly comprises one or more of: a piezo transducer, a piezo-ceramic transducer, a micro- machined transducer, a capacitive micro-machined ultrasonic transducer, a mechanical transducer, an optical transducer.
Embodiment 13. Method according to any one of embodiments 1-12, further comprising obtaining an ultrasound image using the determined speed of sound in the object.
Embodiment 14. System for measuring speed of sound in an object (1), comprising a transducer assembly (12) arranged for providing sound waves to the object (1) and for detecting acoustic energy from the object (1), and a processing unit (11) connected to the transducer assembly (12) wherein the processing unit (11) is arranged for: - controlling the transducer assembly (12) for insonifying the object (1) by the sound waves; - detecting a plurality of Lamb waves induced in the object (1}; and - determining the speed of sound in the object (1) from the detected plurality of Lamb waves. Embodiment 15. System according to embodiment 14, wherein the processing unit (11) is further arranged to execute the method according to any one of embodiments 2-9.
Embodiment 16. System according to embodiment 14 or 15, wherein the transducer assembly (12) is arranged to provide the sound waves, and to detect the plurality of induced Lamb waves.
Embodiment 17. System according to any one of embodiments 14-16, wherein the transducer assembly (12) has a predetermined focus range.
Embodiment 18. System according to any one of embodiments 14-17, wherein the transducer assembly (12) comprises one or more of: a piezo transducer, a piezo-ceramic transducer, a mechanical transducer, an optical transducer.
Embodiment 19. Ultrasound imaging system comprising a system (10) according to any one of embodiments 14-18 and a display unit (13) connected to the processing unit (11).
P6084918NL 8 Embodiment 20. Ultrasound imaging system according to embodiment 198, wherein the processing unit (11) and the display unit (13) are further arranged to obtain an ultrasound image using the determined speed of sound in the object (1).
The present invention has been described above with reference to a number of exemplary embodiments as shown in the drawings. Modifications and alternative implementations of some parts or elements are possible, and are included in the scope of protection as defined in the appended claims.

Claims (20)

P6084918NL 9 ConclusiesP6084918EN 9 Conclusions 1. Werkwijze voor niet-invasieve meting van geluidssnelheid in een object, omvattend verschaffen van geluidsgolven van het object, waarbij het object aan geluidsgolfenergie is blootgesteld door de geluidsgolven; detecteren van een veelvoud van Lamb-golven die zijn opgewekt in het object; en bepalen van de geluidssnelheid in het object uit het gedetecteerde veelvoud van Lamb-golven.A method for non-invasive measurement of sound speed in an object, comprising providing sound waves from the object, the object being exposed to sound wave energy by the sound waves; detecting a plurality of Lamb waves generated in the object; and determining the speed of sound in the object from the detected plurality of Lamb waves. 2. Werkwijze volgens conclusie 1, waarbij het bepalen van de geluidssnelheid in het object uit het gedetecteerde veelvoud van Lamb-golven omvat: bepalen van een plateauniveau in het fasesnelheid — frequentiedomein voor symmetrische modi van het gedetecteerde veelvoud van Lamb-golven.The method of claim 1, wherein determining the speed of sound in the object from the detected plurality of Lamb waves comprises: determining a plateau level in the phase velocity - frequency domain for symmetrical modes of the detected plurality of Lamb waves. 3. Werkwijze volgens conclusie 1, waarbij het bepalen van de geluidssnelheid in het object uit het gedetecteerde veelvoud van Lamb-golven omvat: bepalen van een helling van hoog-amplitude overlappende gebieden van voor symmetrische modi van het gedetecteerde veelvoud van Lamb-golven in een frequentie-golfgetaldomein.The method of claim 1, wherein determining the speed of sound in the object from the detected plurality of Lamb waves comprises: determining a slope of high amplitude overlapping regions of for symmetrical modes of the detected plurality of Lamb waves in a frequency wavenumber domain. 4. Werkwijze volgens conclusie 3, verder omvattend toepassen van een radon-transformatie op de amplitudegegevens in het frequentie-golfgetaldomein van de symmetrische modi van het gedetecteerde veelvoud van Lamb-golven.The method of claim 3, further comprising applying a radon transform to the amplitude data in the frequency wavenumber domain of the symmetric modes of the detected plurality of Lamb waves. 5. Werkwijze volgens conclusie 3, verder omvattend bepalen van een drempelwaardegebied in het frequentie-golfgetaldomein met een amplitude boven een vooraf bepaalde drempelwaarde, en passen van een lineaire lijn door het bepaalde drempelwaardegebied.The method of claim 3, further comprising determining a threshold value range in the frequency wavenumber domain having an amplitude above a predetermined threshold value, and fitting a linear line through the determined threshold value range. 6. Werkwijze volgens één van de conclusies 1-5, verder omvattend het detecteren van een dikte van het object door tijdsmeting van reflectiepulsen die afkomstig zijn van de geluidsgolven en het gebruiken van de bepaalde geluidssnelheid in het object.The method of any of claims 1 to 5, further comprising detecting a thickness of the object by timing reflection pulses from the sound waves and using the determined speed of sound in the object. 7. Werkwijze volgens één van de conclusies 1-6, waarbij het object langgerekt is, en de gemeten geluidssnelheid een longitudinale-golfsnelheid is.A method according to any of claims 1-6, wherein the object is elongated, and the measured speed of sound is a longitudinal wave speed. 8. Werkwijze volgens één van de conclusies 1-7, waarbij het object een bot is.The method of any of claims 1-7, wherein the object is a bone. 9. Werkwijze volgens één van de conclusies 1-8, waarbij de geluidsgolven verschaft zijn in een frequentiegebied tussen 1 en 3MHz.A method according to any one of claims 1-8, wherein the sound waves are provided in a frequency range between 1 and 3MHz. P6084918NL 10P6084918EN 10 10. Werkwijze volgens één van de conclusies 1-9, waarbij de geluidsgolven verschaft zijn in en het veelvoud van opgewekte Lamb-golven gedetecteerd worden met gebruik van een transducersamenstel.The method of any of claims 1 to 9, wherein the sound waves are provided in and the plurality of generated Lamb waves are detected using a transducer assembly. 11. Werkwijze volgens conclusie 10, waarbij het transducersamenstel een vooraf bepaald scherpstelgebied heeft.The method of claim 10, wherein the transducer assembly has a predetermined focus area. 12. Werkwijze volgens conclusie 10 of 11, waarbij het transducersamenstel één of meer omvat van: een piëzo-transducer, een piëzo-keramische transducer, een micro-vervaardigde transducer, een capacitieve micro-vervaardigde ultrasonische transducer, een mechanische transducer, een optische transducer.The method of claim 10 or 11, wherein the transducer assembly comprises one or more of: a piezo transducer, a piezo ceramic transducer, a micro-engineered transducer, a capacitive micro-engineered ultrasonic transducer, a mechanical transducer, an optical transducer. . 13. Werkwijze volgens één van de conclusies 1-12, verder omvattend het verkrijgen van een ultrageluidsafbeelding met gebruik van de bepaalde geluidssnelheid in het object.The method of any of claims 1-12, further comprising obtaining an ultrasound image using the determined speed of sound in the object. 14. Systeem voor het meten van geluidssnelheid in een object (1), omvattend een transducersamenstel (12) dat is ingericht voor het verschaffen van geluidsgolven naar het object (1) en voor het detecteren van akoestische energie vanuit het object (1), en een verwerkingseenheid (11) die verbonden is met het transducersamenstel (12) waarbij de verwerkingseenheid (11) is ingericht voor: - besturen van het transducersamenstel (12) voor het aan geluidsgolfenergie blootstellen van het object (1) door de geluidsgolven; - detecteren van een veelvoud van Lamb-golven die zijn opgewekt in het object (1); en - bepalen van de geluidssnelheid in het object (1) uit het gedetecteerde veelvoud van Lamb-golven.A system for measuring the speed of sound in an object (1), comprising a transducer assembly (12) arranged to provide sound waves to the object (1) and to detect acoustic energy from the object (1), and a processing unit (11) connected to the transducer assembly (12), the processing unit (11) being arranged to: - control the transducer assembly (12) to expose the object (1) to sound wave energy by the sound waves; - detecting a plurality of Lamb waves generated in the object (1); and - determining the speed of sound in the object (1) from the detected plurality of Lamb waves. 15. Systeem volgens conclusie 14, waarbij de verwerkingseenheid (11) verder is ingericht voor het uitvoeren van de werkwijze volgens één van de conclusies 2-9.The system of claim 14, wherein the processing unit (11) is further configured to perform the method of any of claims 2-9. 16. Systeem volgens conclusie 14 of 15, waarbij het transducersamenstel (12) is ingericht om de geluidsgolven te verschaffen en om het veelvoud van opgewekte Lamb-golven te detecteren.The system of claim 14 or 15, wherein the transducer assembly (12) is arranged to provide the sound waves and to detect the plurality of Lamb waves generated. 17. Systeem volgens één van de conclusies 14-16, waarbij het transducersamenstel (12) een vooraf bepaald scherpstelgebied heeft.The system of any of claims 14-16, wherein the transducer assembly (12) has a predetermined focus area. 18. Systeem volgens één van de conclusies 14-17, waarbij het transducersamenstel (12) één of meer omvat van: een piëzo-transducer, een piëzo-keramische transducer, een micro- vervaardigde transducer, een capacitieve micro-vervaardigde ultrasonische transducer, een mechanische transducer, een optische transducer.The system of any of claims 14-17, wherein the transducer assembly (12) comprises one or more of: a piezo transducer, a piezo ceramic transducer, a microfabricated transducer, a capacitive microfabricated ultrasonic transducer, a mechanical transducer, an optical transducer. 4040 P6084918NL 11P6084918EN 11 19. Ultrageluidafbeeldingssysteem omvattend een systeem (10) volgens één van de conclusies 14-18 en een weergave-eenheid (13) die verbonden is met de verwerkingseenheid (11).An ultrasound imaging system comprising a system (10) according to any one of claims 14-18 and a display unit (13) connected to the processing unit (11). 20. Ultrageluidafbeeldingssysteem volgens conclusie 19, waarbij de verwerkingseenheid (11) en de weergave-eenheid (13) verder zijn ingericht voor het verkrijgen van een ultrageluidafbeelding met gebruik van de bepaalde geluidssnelheid in het object (1).The ultrasound imaging system of claim 19, wherein the processing unit (11) and the display unit (13) are further arranged to obtain an ultrasound image using the determined speed of sound in the object (1).
NL2023523A 2019-07-18 2019-07-18 Method and system for using wave analysis for speed of sound measurement NL2023523B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
NL2023523A NL2023523B1 (en) 2019-07-18 2019-07-18 Method and system for using wave analysis for speed of sound measurement
PCT/NL2020/050470 WO2021010836A1 (en) 2019-07-18 2020-07-17 Method and system for using wave analysis for speed of sound measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL2023523A NL2023523B1 (en) 2019-07-18 2019-07-18 Method and system for using wave analysis for speed of sound measurement

Publications (1)

Publication Number Publication Date
NL2023523B1 true NL2023523B1 (en) 2021-02-08

Family

ID=67809621

Family Applications (1)

Application Number Title Priority Date Filing Date
NL2023523A NL2023523B1 (en) 2019-07-18 2019-07-18 Method and system for using wave analysis for speed of sound measurement

Country Status (2)

Country Link
NL (1) NL2023523B1 (en)
WO (1) WO2021010836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428119B (en) * 2022-01-20 2023-11-21 重庆大学 Method for inverting elastic constant of composite material with anisotropic characteristic

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071338A1 (en) 2000-03-24 2001-09-27 Shaw Industries Ltd. Ultrasonic testing
US20050004457A1 (en) * 2001-11-30 2005-01-06 Petro Moilanen Method and device for the non-invasive assessement of bones
US8392133B1 (en) 2010-06-28 2013-03-05 The United States Of America As Represented By The Secretary Of The Navy Method for measuring shear wavespeed in an isotropic plate
WO2014147122A1 (en) 2013-03-22 2014-09-25 Ge Sensing & Inspection Technologies Gmbh Imaging system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071338A1 (en) 2000-03-24 2001-09-27 Shaw Industries Ltd. Ultrasonic testing
US20050004457A1 (en) * 2001-11-30 2005-01-06 Petro Moilanen Method and device for the non-invasive assessement of bones
US8392133B1 (en) 2010-06-28 2013-03-05 The United States Of America As Represented By The Secretary Of The Navy Method for measuring shear wavespeed in an isotropic plate
WO2014147122A1 (en) 2013-03-22 2014-09-25 Ge Sensing & Inspection Technologies Gmbh Imaging system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RAUM K ET AL: "Bone microstructure and elastic tissue properties are reflected in QUS axial transmission measurements", ULTRASOUND IN MEDICINE AND BIOLOGY, NEW YORK, NY, US, vol. 31, no. 9, 1 September 2005 (2005-09-01), pages 1225 - 1235, XP027605628, ISSN: 0301-5629, [retrieved on 20050901] *

Also Published As

Publication number Publication date
WO2021010836A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
Wang et al. A synthetic time-reversal imaging method for structural health monitoring
JP4338026B2 (en) Method and apparatus for non-invasive examination of bone
US7713201B2 (en) Method and apparatus for shear property characterization from resonance induced by oscillatory radiation force
Lefebvre et al. Development of a new ultrasonic technique for bone and biomaterials in vitro characterization
US7785259B2 (en) Detection of motion in vibro-acoustography
US20170311929A1 (en) Method and device for elasticity detection
Renaud et al. Exploration of trabecular bone nonlinear elasticity using time-of-flight modulation
Wear et al. Pressure pulse distortion by needle and fiber-optic hydrophones due to nonuniform sensitivity
Tabaru et al. Measurement of elastic properties of tissue by shear wave propagation generated by acoustic radiation force
NL2023523B1 (en) Method and system for using wave analysis for speed of sound measurement
JP2007212408A (en) System and method for measuring film thickness and ultrasound probe mounting structure used in same
US20110247419A1 (en) Time reversal acoustic noncontact source
Yun et al. Imaging of contact acoustic nonlinearity using synthetic aperture technique
Pal Fourier transform ultrasound spectroscopy for the determination of wave propagation parameters
Mitri et al. Comparison of continuous-wave (CW) and tone-burst (TB) excitation modes in vibro-acoustography: Application for the non-destructive imaging of flaws
IMANO Barker-coded ultrasonic imaging using optical surface vibration measurement
Vanhille et al. Ultrasounds in bubbly liquids: unidirectional propagation and switch
Lasaygues et al. Use of a chirp-coded excitation method in order to improve geometrical and acoustical measurements in wood specimen
Byra et al. Ultrasound nonlinearity parameter assessment using plane wave imaging
Ammann et al. Sound velocity determination in gel-based emulsions
Na et al. Interaction of rayleigh waves induced by interdigital transducer with fatigue crack
Gan et al. Nonlinear Time-Reversal Acoustics
Joshi et al. Recent Trends and Diversity in Ultrasonics
RU2005126996A (en) METHOD FOR DETERMINING THE ATTENUATION FACTOR OF THE ULTRASONIC OSCILLATIONS IN THE MATERIAL
Leydier et al. The two coupling fluids method for ultrasonic velocity measurement. Application to biological tissues

Legal Events

Date Code Title Description
MM Lapsed because of non-payment of the annual fee

Effective date: 20220801