JP2012057842A - Ultrasonic drying equipment and substrate treatment method - Google Patents

Ultrasonic drying equipment and substrate treatment method Download PDF

Info

Publication number
JP2012057842A
JP2012057842A JP2010199923A JP2010199923A JP2012057842A JP 2012057842 A JP2012057842 A JP 2012057842A JP 2010199923 A JP2010199923 A JP 2010199923A JP 2010199923 A JP2010199923 A JP 2010199923A JP 2012057842 A JP2012057842 A JP 2012057842A
Authority
JP
Japan
Prior art keywords
ultrasonic
substrate
processed
wave
drying apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010199923A
Other languages
Japanese (ja)
Inventor
Masaya Takasaki
正也 高崎
Takanori Endo
崇訓 遠藤
Seiji Machida
成司 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyako Roller Industry Co Ltd
Saitama University NUC
Original Assignee
Miyako Roller Industry Co Ltd
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyako Roller Industry Co Ltd, Saitama University NUC filed Critical Miyako Roller Industry Co Ltd
Priority to JP2010199923A priority Critical patent/JP2012057842A/en
Publication of JP2012057842A publication Critical patent/JP2012057842A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide inexpensive ultrasonic drying equipment with a simple equipment constitution, which can remove impurities concurrently with removal of a liquid accumulated in a minute recess, by instantaneously scattering the liquid in a noncontact manner without heating a substrate to be treated or imparting an excessive impact on the substrate to be treated, and a substrate treatment method using the ultrasonic drying equipment.SOLUTION: The ultrasonic drying equipment includes an ultrasonic transducer 21 for generating ultrasonic waves Φ, a transducer drive control device 35 for controlling the drive of the ultrasonic transducer 21, a reflector 23 for reflecting the ultrasonic waves Φ and exciting the standing waves of the ultrasonic waves Φ in the air, and substrate position control mechanisms (25 and 32) for moving the substrate 22a to be treated to an optimum atomization position near a node position of the standing waves. The liquid accumulated in the recess of the substrate 22a to be treated is removed by being atomized in the optimum atomization position.

Description

本発明は、超音波を用いた乾燥装置及び基板処理方法に係り、特に、プリント基板等の種々の被処理基板の水等の液体による洗浄工程、洗浄後の乾燥工程において、被処理基板の微細な凹部に貯まった水等の液体を、効率よく乾燥する超音波乾燥装置及び基板処理方法に関する。   The present invention relates to a drying apparatus and a substrate processing method using ultrasonic waves, and in particular, in a cleaning process of various substrates to be processed such as a printed circuit board with a liquid such as water and a drying process after cleaning, The present invention relates to an ultrasonic drying apparatus and a substrate processing method for efficiently drying a liquid such as water stored in a concave portion.

近年、高密度配線が可能で、小型化及び軽量化が図れる多層配線構造を有するプリント基板の需要が急増し、種々の多様な電子機器等に使用されている。加工精度の向上に伴い、多層構造をなす絶縁基板の上面、裏面、及びその内部には導体配線が微細化されて設けられ、個々の導体配線は、ビアと呼ばれる金属製の導電側壁を有する孔によって層間接続がされている。ビアには様々な種類があり、絶縁基板の全層を貫通する貫通孔ビア(スルーホールビア)、絶縁基板の全層を貫通させずに特定の層間のみを接続する有底孔ビア(ブラインドビア)、内層の層間接続をし、基板表面には開口していない埋め込みビア(バリードビア)等の種々の構造が採用されている。貫通孔ビアのビア径は機器の小型化に伴って小径なものが求められることになるが、例えば、50μm〜2mmφ等のものが知られている。   In recent years, the demand for printed circuit boards having a multilayer wiring structure capable of high-density wiring, which can be reduced in size and weight, has been rapidly increased, and is used in various electronic devices. Along with the improvement of processing accuracy, conductor wiring is provided on the top surface, back surface, and inside of an insulating substrate having a multilayer structure, and each conductor wiring is a hole having a metal conductive side wall called a via. Interlayer connection is made. There are various types of vias: through-hole vias that penetrate all layers of the insulating substrate (through-hole vias), bottomed-hole vias that connect only specific layers without penetrating all layers of the insulating substrate (blind vias) ), And various structures such as buried vias (bare vias) that are connected to each other on the inner layer and are not opened on the substrate surface. The via diameter of the through-hole via is required to be smaller with the miniaturization of the device. For example, a diameter of 50 μm to 2 mmφ is known.

プリント基板が電子機器に利用されるにあたって、プリント基板の洗浄工程、洗浄後の乾燥工程が存在する。プリント基板に限らず、基板材料が製品となる過程で、種々の基板の洗浄は不可欠なものとなっており、各種プロセス処理や電子・光学部品の信頼性において悪影響を及ぼす汚れを除去すると共に、表面状況を均質にすることによって電子・光学部品の特性や生産性及び信頼性の向上を図っている。   When a printed circuit board is used in an electronic device, there are a printed circuit board cleaning process and a drying process after cleaning. In addition to printed circuit boards, cleaning of various boards is indispensable in the process of making board materials into products, removing dirt that adversely affects various process processes and the reliability of electronic and optical components, By making the surface condition uniform, the characteristics, productivity and reliability of electronic and optical parts are improved.

プリント基板を水洗い洗浄後に乾燥するには、従来は、熱風乾燥やスピン乾燥を行なうのが一般的であった。熱風乾燥はコンベアで搬送されるプリント基板に40〜100℃の乾燥した熱風を吹きかけて同基板に付着している水分を蒸発させるものであり、スピン乾燥はプリント基板を高速回転する回転板の上にセットして高速回転させ、遠心力でプリント基板に付着している水を吹き飛ばすものである。熱風乾燥においては、水が乾燥した跡に水のシミが残るという問題があり、更に、プリント基板に熱を加えることによって、プリント基板が反り、層間剥離が生じる可能性がある。   In order to dry the printed circuit board after washing with water, conventionally, hot air drying or spin drying has been generally performed. Hot air drying is a method in which 40 to 100 ° C. dry hot air is blown onto a printed circuit board conveyed by a conveyor to evaporate water adhering to the printed circuit board. Spin drying is performed on a rotating plate that rotates the printed circuit board at high speed. And is rotated at a high speed to blow away water adhering to the printed circuit board by centrifugal force. In hot air drying, there is a problem that water stains remain on the trace of the water being dried, and furthermore, when heat is applied to the printed board, the printed board may warp and delamination may occur.

スピン乾燥においては、プリント基板の孔内や凹凸部にある水が飛ばされにくく、完全な乾燥が難しい上に、そこに含まれる塵等の不純物がビアに残るという問題があった。更にプリント基板を回転板にセットしなければならないため、流れ作業の一環として乾燥を行なうことができなかった。   In the spin drying, there is a problem that water in the holes of the printed circuit board and the uneven portions is not easily blown off, and it is difficult to completely dry, and impurities such as dusts remain in the vias. Furthermore, since the printed circuit board has to be set on a rotating plate, drying cannot be performed as part of the flow operation.

斯かる事情を鑑み、従来、乾燥室と、プリント基板を搬送して乾燥室内を通過する搬送体と、搬送体により搬送されるプリント基板に20KHZ 〜100KHZ の音波を当てて、プリント基板の表面に付着している水(表面水)を振動させて除去するスピーカとを備え、搬送体は20KHZ 〜100KHZ の音波が通過可能であり、スピーカは乾燥室内における搬送体の上下に配置されて、スピーカから発生された20KHZ 〜100KHZ の音波をプリント基板の上下から当てる表面水除去装置が提案されている(特許文献1参照。)。特許文献1に記載の表面水除去装置では、上方のスピーカから出力される音波はプリント基板の上面側の水滴を活性化して除去し、下方のスピーカから出力される音波はプリント基板の下面側の水滴を活性化して除去し、プリント基板の表面の水を除去する。   In view of such circumstances, conventionally, a sound wave of 20 KHZ to 100 KHZ is applied to the surface of the printed circuit board by applying a sound wave of 20 KHZ to 100 KHZ to the drying chamber, the conveying body that conveys the printed circuit board and passes through the drying chamber, and the printed circuit board that is conveyed by the conveying body. And a speaker that vibrates and removes adhering water (surface water), the carrier can pass sound waves of 20 KHZ to 100 KHZ, and the speakers are arranged above and below the carrier in the drying chamber. There has been proposed a surface water removing device that applies generated sound waves of 20 KHZ to 100 KHZ from above and below the printed circuit board (see Patent Document 1). In the surface water removal apparatus described in Patent Document 1, sound waves output from the upper speaker activate and remove water droplets on the upper surface side of the printed circuit board, and sound waves output from the lower speaker are generated on the lower surface side of the printed circuit board. Water droplets are activated and removed, and water on the surface of the printed circuit board is removed.

特許第3163239号明細書Japanese Patent No. 3163239

しかしながら、特許文献1に記載の表面水除去装置では、搬送体の上下にスピーカを配置して、上方のスピーカから出力される音波で上面側の水滴を活性化して除去し、下方のスピーカで下面側の水滴を活性化して除去する必要があり、装置の構成が複雑であるのにも関わらず、20KHZ 〜100KHZ の音波を用いて、プリント基板に付着している水を振動させて、単に、吹き飛ばして(振るい落して)いるにすぎない(特許文献1の段落[0013],[0017],[0019]の欄参照。)。又、特許文献1に記載の発明では、超音波を集中して強力な超音波の場を発生させることの考慮もされていないので、凹部の寸法が微細化された場合は、微細化された凹部に貯まった水を完全に除去することが困難であった。更に、特許文献1に記載の表面水除去装置では、被処理基板に過大な音圧(衝撃)がかかり、被処理基板を損傷する恐れもあった。   However, in the surface water removing apparatus described in Patent Document 1, speakers are arranged above and below the carrier, water droplets on the upper surface side are activated and removed by sound waves output from the upper speaker, and the lower speaker is used to remove the lower surface. It is necessary to activate and remove the water droplets on the side, and despite the complicated configuration of the apparatus, the sound wave of 20 KHZ to 100 KHZ is used to vibrate the water adhering to the printed circuit board, It is merely blown away (see the paragraphs [0013], [0017], [0019] in Patent Document 1). In addition, in the invention described in Patent Document 1, since there is no consideration of generating a strong ultrasonic field by concentrating ultrasonic waves, when the size of the concave portion is reduced, the size is reduced. It was difficult to completely remove the water accumulated in the recess. Furthermore, in the surface water removing apparatus described in Patent Document 1, an excessive sound pressure (impact) is applied to the substrate to be processed, and the substrate to be processed may be damaged.

プリント基板の水洗い洗浄工程、洗浄後の乾燥工程以外でも、種々の基板の液体によるウェット洗浄工程、洗浄後の乾燥工程において、種々の基板の微細な凹部の中に水等の液体が溜まり、故障の原因となるといった問題が生じている。特に、ブラインドビア等の有底孔に溜まった液体は、空気が通過していかないことから、風圧での除去は難しく、大きな問題となっている。   In addition to the water washing and washing process for printed circuit boards and the drying process after washing, liquids such as water accumulate in the minute recesses of various boards in the wet washing process with various board liquids and the drying process after washing. The problem of causing In particular, the liquid accumulated in the bottomed hole such as a blind via is difficult to be removed by wind pressure because air does not pass therethrough, which is a big problem.

上記の問題点を鑑み、本発明は、微細な凹部を有する種々の被処理基板の液体によるウェット洗浄工程、洗浄後の乾燥工程に用いることが可能な超音波乾燥装置であって、装置の構成が簡単且つ安価であって、被処理基板に熱や過大な衝撃を与えることなく、非接触でかつ瞬間的に、微細な凹部に溜まった液体を飛散させ、液体と同時に不純物を除去できる超音波乾燥装置、及びこの超音波乾燥装置を用いた基板処理方法を提供することを目的とする。   In view of the above-described problems, the present invention is an ultrasonic drying apparatus that can be used in a wet cleaning process with a liquid of various substrates to be processed having fine recesses, and a drying process after cleaning. Ultrasonic that is simple and inexpensive, can disperse the liquid accumulated in minute recesses instantaneously and without contact with the liquid, without giving heat or excessive impact to the substrate to be processed, and removing impurities at the same time as the liquid It is an object to provide a drying apparatus and a substrate processing method using the ultrasonic drying apparatus.

上記目的を達成するために、本発明の態様は、超音波を発生する超音波振動子と、この超音波振動子を駆動制御する振動子駆動制御装置と、超音波を反射し、空気中に超音波の定在波を励振させる反射板と、定在波の節の位置の近傍の最適霧化位置に被処理基板を移動させる基板位置制御機構とを備え、最適霧化位置において被処理基板の凹部に溜まった液体を霧化して除去する超音波乾燥装置であることを要旨とする。   In order to achieve the above object, an aspect of the present invention includes an ultrasonic transducer that generates ultrasonic waves, a vibrator drive control device that drives and controls the ultrasonic transducers, and reflects ultrasonic waves into the air. A reflector for exciting an ultrasonic standing wave and a substrate position control mechanism for moving the substrate to be processed to an optimal atomization position in the vicinity of the position of the node of the standing wave. The gist of the present invention is that it is an ultrasonic drying device that atomizes and removes the liquid accumulated in the recesses.

本発明の他の態様は、(イ)凹部を有する被処理基板を、液体でウェット洗浄する洗浄工程と、(ロ)この洗浄工程の後、超音波を発生する超音波振動子、この超音波振動子を駆動制御する振動子駆動制御装置、超音波を反射し、空気中に超音波の定在波を励振させる反射板を有する超音波乾燥装置を用い、超音波振動子と反射板の間の定在波の節の位置の近傍の最適霧化位置に被処理基板を移動させる工程と、(ハ)最適霧化位置において、被処理基板の凹部に溜まった液体を超音波によって霧化して除去する工程とを含む基板処理方法であることを要旨とする。   In another aspect of the present invention, (a) a cleaning process for wet-cleaning a substrate to be processed having a recess, and (b) an ultrasonic transducer that generates ultrasonic waves after the cleaning process, the ultrasonic wave A transducer drive control device that drives and controls the transducer, and an ultrasonic drying device that includes a reflector that reflects ultrasonic waves and excites standing ultrasonic waves in the air. A step of moving the substrate to be processed to an optimal atomization position in the vicinity of the position of the wave node; and (c) at the optimal atomization position, the liquid accumulated in the concave portion of the substrate to be processed is atomized and removed by ultrasonic waves. The gist of the present invention is a substrate processing method including a process.

本発明によれば、微細な凹部を有する種々の被処理基板の液体によるウェット洗浄工程、洗浄後の乾燥工程に用いることが可能な超音波乾燥装置であって、装置の構成が簡単且つ安価であって、被処理基板に熱や過大な衝撃を与えることなく、非接触でかつ瞬間的に、微細な凹部に溜まった液体を飛散させ、液体と同時に不純物を除去できる超音波乾燥装置、及びこの超音波乾燥装置を用いた基板処理方法を提供することができる。   According to the present invention, there is provided an ultrasonic drying apparatus that can be used in a wet cleaning process using a liquid of various substrates to be processed having fine recesses and a drying process after cleaning, and the configuration of the apparatus is simple and inexpensive. In addition, an ultrasonic drying device capable of removing impurities simultaneously with the liquid by splashing the liquid accumulated in the minute recesses in a non-contact and instantaneous manner without applying heat or excessive impact to the substrate to be processed, and this A substrate processing method using an ultrasonic drying apparatus can be provided.

本発明の第1の実施の形態に係る超音波乾燥装置の原理的な説明するための上面側からみた模式的な部分断面図である。It is the typical fragmentary sectional view seen from the upper surface side for describing the principle of the ultrasonic drying device concerning the 1st embodiment of the present invention. 第1の実施の形態に係る超音波乾燥装置の処理対象となる被処理基板の一例として示す、代表的なプリント基板の上面図(平面図)である。It is an upper surface figure (plan view) of a typical printed circuit board shown as an example of a processed substrate used as a candidate for processing of an ultrasonic drying device concerning a 1st embodiment. 図1と直交する角度からみた、第1の実施の形態に係る超音波乾燥装置の概略構成を具体的に説明する部分断面図を含むブロック図である。FIG. 2 is a block diagram including a partial cross-sectional view for specifically explaining a schematic configuration of the ultrasonic drying apparatus according to the first embodiment viewed from an angle orthogonal to FIG. 1. 被処理基板の貫通孔ビアに溜まった水を、第1の実施の形態に係る超音波乾燥装置を用いて、超音波の音響放射圧の作用で貫通孔ビアの外へ水滴として押し出す様子を説明する模式図である。Explains how water accumulated in the through hole via of the substrate to be processed is pushed out of the through hole via by the action of ultrasonic acoustic radiation pressure using the ultrasonic drying apparatus according to the first embodiment. It is a schematic diagram to do. 被処理基板の貫通孔ビアに溜まった水を、第1の実施の形態に係る超音波乾燥装置を用いて、キャピラリー波を発生させて超音波霧化し、貫通孔ビアの外へ飛散させる様子を説明する模式図である。Using the ultrasonic drying apparatus according to the first embodiment, the water accumulated in the through-hole via of the substrate to be processed is generated by ultrasonic wave atomization and scattered outside the through-hole via. It is a schematic diagram to explain. 第1の実施の形態に係る超音波乾燥装置において、超音波振動子と反射板の間に定在波が励起されて、音圧のピークが生じたことを示す測定データの一例である。In the ultrasonic drying apparatus according to the first embodiment, it is an example of measurement data indicating that a standing wave is excited between an ultrasonic transducer and a reflection plate, and a peak of sound pressure is generated. 第1の実施の形態に係る超音波乾燥装置の構成において、超音波振動子と被処理基板の間隔を変化させながら音圧測定を行なった結果を示し、被処理基板の位置を0.1mm変化させる毎に反射板の最適位置も被処理基板の位置と連動して0.1mmずつ変化し、音圧が極大値をとるのは被処理基板の位置が6.7mmのときであることを示す図である。In the configuration of the ultrasonic drying apparatus according to the first embodiment, the result of the sound pressure measurement while changing the distance between the ultrasonic transducer and the substrate to be processed is shown, and the position of the substrate to be processed is changed by 0.1 mm. Each time, the optimum position of the reflecting plate is changed by 0.1 mm in conjunction with the position of the substrate to be processed, and the sound pressure takes the maximum value when the position of the substrate to be processed is 6.7 mm. FIG. 第1の実施の形態に係る超音波乾燥装置の構成において、被処理基板の位置を6.7mmとした際の、反射板の位置と音圧との関係(黒丸)、印加電圧と超音波検出器の出力電圧の位相差と反射板の位置との関係(白抜きの四角)を示し、音圧が極大となる位置よりも手前側の反射板の位置では位相差がほぼ線形に変化し、位相差が−90°付近で音圧が極大となっていることを示す図である。In the configuration of the ultrasonic drying apparatus according to the first embodiment, when the position of the substrate to be processed is 6.7 mm, the relationship between the position of the reflector and the sound pressure (black circle), the applied voltage and the ultrasonic detection Shows the relationship between the phase difference of the output voltage of the device and the position of the reflector (white square), and the phase difference changes almost linearly at the position of the reflector on the near side of the position where the sound pressure becomes maximum, It is a figure which shows that the sound pressure becomes maximum when the phase difference is around -90 °. 第1の実施の形態に係る超音波乾燥装置の構成において、超音波振動子の振動面と被処理基板の左側の表面の間隔Lを変化したときの、貫通孔ビアに充填された水の脱水の容易さ(確率)を縦軸に、波長λ=12.1mmで規格化した間隔Lを横軸に、それぞれ表わした図である。In the configuration of the ultrasonic drying apparatus according to the first embodiment, dehydration of water filled in the through-hole via when the distance L between the vibration surface of the ultrasonic vibrator and the left surface of the substrate to be processed is changed. Is a graph in which the vertical axis represents the ease (probability) and the interval L normalized by the wavelength λ = 12.1 mm on the horizontal axis. 第1の実施の形態に係る超音波乾燥装置の構成において、被処理基板の表面を鉛直方向から角度θだけ傾けて超音波の入射角θを変化し、入射角θの変化が脱水効果に与える影響を調べる実験の測定系を説明する模式図である。In the configuration of the ultrasonic drying apparatus according to the first embodiment, the surface of the substrate to be processed is inclined from the vertical direction by the angle θ to change the ultrasonic incident angle θ, and the change in the incident angle θ gives the dehydration effect. It is a schematic diagram explaining the measurement system of the experiment which investigates an influence. 第1の実施の形態に係る超音波乾燥装置の構成において、貫通孔ビアの内部に水とイソプロピルアルコール(IPA)をそれぞれ充填し、超音波振動子の振動面と被処理基板の左側の表面の間隔Lを変化させた場合の、脱水の容易さ(確率)を縦軸に、波長λ=12.1mmで規格化した間隔Lを横軸に、それぞれ表わした図である。In the configuration of the ultrasonic drying apparatus according to the first embodiment, water and isopropyl alcohol (IPA) are respectively filled in the through-hole vias, and the vibration surface of the ultrasonic transducer and the left surface of the substrate to be processed are It is the figure which represented the ease (probability) of dehydration at the time of changing the space | interval L on the vertical axis | shaft, and the space | interval L normalized by wavelength (lambda) = 12.1mm on the horizontal axis, respectively. 本発明の第2の実施の形態に係る超音波乾燥装置の原理的な説明するための上面側からみた模式的な部分断面図である。It is the typical fragmentary sectional view seen from the upper surface side for the principle description of the ultrasonic drying apparatus which concerns on the 2nd Embodiment of this invention. 第2の実施の形態に係る超音波乾燥装置の概略構成を具体的に説明する上面図(平面図)である。It is a top view (plan view) for specifically explaining the schematic configuration of the ultrasonic drying apparatus according to the second embodiment. 貫通孔ビアと有底孔ビアでは、超音波霧化の発現領域が異なることを説明する図である。It is a figure explaining that the expression area | region of ultrasonic atomization differs between a through-hole via and a bottomed-hole via. 第2の実施の形態に係る超音波乾燥装置の構成において、超音波振動子の振動面と被処理基板の左側の表面の間隔Lを変化したときの、有底孔ビアに充填された水の脱水の容易さ(確率)を縦軸に、波長λ=12.1mmで規格化した間隔Lを横軸に、それぞれ表わした図である。In the configuration of the ultrasonic drying apparatus according to the second embodiment, water filled in the bottomed hole via when the distance L between the vibration surface of the ultrasonic vibrator and the left surface of the substrate to be processed is changed. It is the figure which represented on the horizontal axis the space | interval L which normalized the ease (probability) of dehydration on the vertical axis | shaft, and wavelength (lambda) = 12.1mm. 第2の実施の形態に係る超音波乾燥装置の構成において、超音波の振幅を大きくすればするほど、アスペクト比の高い(より深い)有底孔ビアの水が脱水できることを示す図である。In the structure of the ultrasonic drying apparatus which concerns on 2nd Embodiment, it is a figure which shows that the water of a bottomed via with a high aspect ratio (deeper) can be dehydrated, so that the amplitude of an ultrasonic wave is enlarged.

次に、図面を参照して、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。又、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Next, first and second embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the thickness of each layer, and the like are different from the actual ones. Therefore, specific thicknesses and dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

又、以下に示す第1及び第2の実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   The first and second embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is The material, shape, structure, arrangement, etc. are not specified below. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る超音波乾燥装置は、図1及び図3に示すように、超音波Φを発生する超音波振動子21と、この超音波振動子21を駆動制御する振動子駆動制御装置35と、超音波Φを反射し、空気中に超音波Φの定在波を励振させる反射板23と、定在波の節の位置の近傍の最適霧化位置に被処理基板22aを移動させる基板位置制御機構(25,32)とを備える(図1は上面側からみた部分断面図であり、図3は図1と直交する角度からみた部分断面図である。)。ここで、「定在波の節の位置の近傍」とは、図9等を用いて後述するように「定在波の節の位置から波長の5%以下の極く僅か離間した位置」を意味する(図9では、最適霧化位置Poptが、節の位置Pnodeから波長の2%程度離れた場合を例示している。)。
(First embodiment)
The ultrasonic drying apparatus according to the first embodiment of the present invention, as shown in FIGS. 1 and 3, drives and controls the ultrasonic vibrator 21 that generates the ultrasonic wave Φ and the ultrasonic vibrator 21. The vibrator drive control device 35, the reflector 23 that reflects the ultrasonic wave Φ and excites the standing wave of the ultrasonic wave Φ in the air, and the optimum atomization position in the vicinity of the node position of the standing wave And a substrate position control mechanism (25, 32) for moving the substrate 22a (FIG. 1 is a partial sectional view seen from the upper surface side, and FIG. 3 is a partial sectional view seen from an angle orthogonal to FIG. 1). Here, “the vicinity of the node position of the standing wave” means “a position slightly separated from the position of the node of the standing wave by 5% or less of the wavelength” as described later with reference to FIG. (In FIG. 9, the case where the optimal atomization position Popt is separated from the node position Pnode by about 2% of the wavelength is illustrated).

ここで、被処理基板22aとしてのプリント基板は、図1及び図3に示すように、多層構造をなす絶縁基板221の上面(第1主面)から裏面(第2主面)へ貫通する貫通孔ビア(スルーホールビア)222が開孔されている。紙フェノール基板やガラスエポキシ基板等の通常のプリント基板に用いられている種々の多層構造の絶縁基板が、絶縁基板221の材料として適用可能である。図2に示すように、絶縁基板221の上面(第1主面)には、微細化された所定のパターンをなして、導体配線が形成されている。詳細な図示を省略しているが、絶縁基板221の裏面(第2主面)、及びその内部の多層構造にも、同様な導体配線が微細化されて形成されている。貫通孔ビア222は、多層構造の絶縁基板221の全層を貫通して設けられ、金属製の円筒(カナル)によって貫通孔に導電性の側壁を形成し、上面(第1主面)の導体配線と裏面(第2主面)の導体配線とを接続している。そして、第1の実施の形態に係る超音波乾燥装置は、被処理基板22aを最適霧化位置に配置することにより、被処理基板22aの凹部である貫通孔ビア222に溜まった水223に超音波Φを集中させる。   Here, as shown in FIGS. 1 and 3, the printed circuit board as the substrate to be processed 22a penetrates from the upper surface (first main surface) to the back surface (second main surface) of the insulating substrate 221 having a multilayer structure. A hole via (through-hole via) 222 is opened. Insulating substrates having various multilayer structures used for ordinary printed boards such as paper phenol substrates and glass epoxy substrates can be used as the material of the insulating substrate 221. As shown in FIG. 2, conductor wiring is formed on the upper surface (first main surface) of the insulating substrate 221 in a predetermined fine pattern. Although detailed illustration is omitted, similar conductor wiring is formed on the back surface (second main surface) of the insulating substrate 221 and the multilayer structure inside thereof in a miniaturized manner. The through-hole via 222 is provided so as to penetrate all the layers of the insulating substrate 221 having a multilayer structure, and a conductive side wall is formed in the through-hole by a metal cylinder (canal), and the conductor on the upper surface (first main surface). The wiring and the conductor wiring on the back surface (second main surface) are connected. In the ultrasonic drying apparatus according to the first embodiment, the substrate 22a to be processed is disposed at the optimum atomization position, so that the water 223 accumulated in the through-hole via 222 that is the recess of the substrate to be processed 22a is superfluous. Concentrate the sound wave Φ.

図4に模式的に示すように、超音波Φが集中した強力な超音波Φの場では、被処理基板22aの貫通孔ビア222に溜まった液体(以下において「水」を例示する。)223は、超音波Φによる音響放射圧の作用により、貫通孔ビア222の外へ液滴(以下において「水滴」を例示する。)223Sとして押し出される。「音響放射圧」とは、図4(a)に示すように、超音波Φを水223等の物体で遮ったとき、超音波Φの伝播方向にその物体としての水223を押す力のことをいう。したがって、図4(b)に示すように水223が音響放射圧により押し上げられ、液柱を形成する。更に、図4(c)に示すように、高まった音響放射圧による力が水223の表面張力に勝り、水滴223Sを貫通孔ビア222から押し出す。   As schematically shown in FIG. 4, in the field of the powerful ultrasonic wave Φ where the ultrasonic wave Φ is concentrated, the liquid (hereinafter, “water” is illustrated) 223 accumulated in the through-hole via 222 of the substrate to be processed 22a. Is pushed out of the through hole via 222 as a droplet (hereinafter referred to as “water droplet”) 223S by the action of the acoustic radiation pressure by the ultrasonic wave Φ. As shown in FIG. 4A, “acoustic radiation pressure” is a force that pushes the water 223 as an object in the propagation direction of the ultrasonic wave Φ when the ultrasonic wave Φ is blocked by an object such as the water 223. Say. Accordingly, as shown in FIG. 4B, the water 223 is pushed up by the acoustic radiation pressure to form a liquid column. Further, as shown in FIG. 4C, the force due to the increased acoustic radiation pressure surpasses the surface tension of the water 223 and pushes the water droplet 223S out of the through-hole via 222.

もしくは、図5(a)に示すように、超音波Φが集中して強力な超音波Φの場が発生し、貫通孔ビア222に溜まった水223の表面に、音響放射圧Sの作用が強くなると、図5(b)に示すように、水223の表面にキャピラリー波(毛細表面波)が発生し、キャピラリー波の振幅が大きくなると表面張力に打ち勝ち、図5(c)に示すように微小な微粒子としての水滴223mが飛散する。「キャピラリー波」は表面張力波とも呼ばれ、表面張力を復元力とする水面を伝わる短波長の波で、「ささなみ波」とも呼ばれる。キャピラリー波の波長λcplは、液体を励振する励振周波数をf、液体の表面張力をT、液体の密度をρとすると、

λcpl=(8πT/ρf21/3 ……(1)

で与えられ、短波長で表面張力の影響を強く受ける。
Alternatively, as shown in FIG. 5A, the ultrasonic wave Φ is concentrated and a strong ultrasonic wave Φ field is generated, and the action of the acoustic radiation pressure S is applied to the surface of the water 223 accumulated in the through-hole via 222. When it becomes stronger, as shown in FIG. 5B, a capillary wave (capillary surface wave) is generated on the surface of the water 223, and when the amplitude of the capillary wave increases, the surface tension is overcome, as shown in FIG. 5C. Water droplets 223m as fine particles are scattered. A “capillary wave” is also called a surface tension wave, and is a short wavelength wave that travels along the water surface with the surface tension as a restoring force, and is also called a “Sasananami wave”. The wavelength λ cpl of the capillary wave is f where the excitation frequency for exciting the liquid is T, the surface tension of the liquid is T, and the density of the liquid is ρ.

λ cpl = (8πT / ρf 2 ) 1/3 (1)

And is strongly affected by surface tension at short wavelengths.

液体の表面にキャピラリー波が発生すると、液体の周辺を反射の境界として、液体の表面に干渉波が起こる。干渉波の発生により、液体の表面での液体の衝突、引きちぎり合うエネルギが表面張力Tに勝り、液体を微粒子化して空中に飛散させる。この現象は超音波霧化と言われ、超音波加湿器やネブライザ等に利用されているが、飛散する微粒子としての水滴223mの直径Dは、

D=0,34(8πT/ρf21/3 ……(2)

に相関することが、実験的な経験則として知られている。
When a capillary wave is generated on the surface of the liquid, an interference wave is generated on the surface of the liquid with the periphery of the liquid as a boundary of reflection. Due to the generation of the interference wave, the collision and tearing energy of the liquid on the surface of the liquid overcomes the surface tension T, and the liquid is atomized and scattered in the air. This phenomenon is called ultrasonic atomization and is used in ultrasonic humidifiers, nebulizers, etc., but the diameter D of water droplets 223m as scattered fine particles is:

D = 0, 34 (8πT / ρf 2 ) 1/3 (2)

Is known as an experimental rule of thumb.

現在、実用化されている超音波霧化の多くは超音波振動子21から液体に直接超音波Φを励振する方法がとられており、その励振周波数はMHzオーダのものが多い。第1の実施の形態に係る超音波乾燥装置では、空気中を伝わる超音波Φを利用した超音波霧化を目的としているので、空気中では高周波の超音波Φは音波の伝搬減衰が液体、固体に比べ、大きくなり、超音波ΦはkHzオーダの周波数帯が、好ましく、例えば、15kHz〜50kHz程度に選べばよい。励振周波数28kHzでは、飛散する微粒子としての水滴223mの直径Dは、(2)式より、約60μmとなる。このようにして、強力な超音波Φで貫通孔ビア222に溜まった水223が霧化して水滴223mとなることにより、水滴223mが貫通孔ビア222の外へ押し出され、除去され、脱水処理が行なわれる。   Currently, most of the ultrasonic atomizations in practical use employ a method in which the ultrasonic wave Φ is directly excited from the ultrasonic transducer 21 to the liquid, and the excitation frequency is often in the order of MHz. The ultrasonic drying apparatus according to the first embodiment aims at ultrasonic atomization using the ultrasonic wave Φ transmitted in the air. Therefore, in the air, the high-frequency ultrasonic wave Φ has a sound wave propagation attenuation that is liquid, Compared to solids, the ultrasonic wave Φ preferably has a frequency band of the order of kHz, and may be selected, for example, from about 15 kHz to 50 kHz. At an excitation frequency of 28 kHz, the diameter D of the water droplet 223m as the scattered fine particles is about 60 μm from the equation (2). In this way, the water 223 accumulated in the through-hole via 222 by the strong ultrasonic wave Φ is atomized into the water droplet 223m, whereby the water droplet 223m is pushed out of the through-hole via 222, removed, and the dehydration process is performed. Done.

第1の実施の形態に係る超音波乾燥装置の超音波振動子21としては、例えば、分極した圧電セラミックスと電極を金属ブロックではさみボルトで締め付けて一体化した、ボルト締めランジュバン型振動子が使用可能であるが、ランジュバン型振動子に限定されるものではない。一般にランジュバン型振動子は、機械的品質係数Qmが高いため、周波数のスパンの狭い共振ピークを持つ特徴を有する。 As the ultrasonic vibrator 21 of the ultrasonic drying apparatus according to the first embodiment, for example, a bolt-clamped Langevin type vibrator in which polarized piezoelectric ceramics and an electrode are integrated with a metal block with a scissor bolt is used. Although it is possible, it is not limited to the Langevin type vibrator. In general, a Langevin type vibrator has a characteristic of having a resonance peak with a narrow frequency span because of a high mechanical quality factor Q m .

第1の実施の形態に係る超音波乾燥装置の基板位置制御機構(25,32)は、被処理基板22aを懸架して図3の紙面に垂直方向(X軸方向)に搬送するX軸移動ステージと、超音波振動子21から反射板23に向かう方向(Z軸方向)に、被処理基板22aの位置を移動(微動)して、被処理基板22aを超音波Φの定在波の節の位置から僅かにずれた最適霧化位置に調整するZ軸移動ステージとを有する2軸移動ステージ25と、この2軸移動ステージ25を駆動制御する基板位置制御装置32とを備える(図3と直交する角度からみた図1には、X軸方向とZ軸方向が示されている。)。基板位置制御装置32には、プロセッサ34から2軸移動ステージ25の駆動制御用の信号が送られる。   The substrate position control mechanism (25, 32) of the ultrasonic drying apparatus according to the first embodiment suspends the substrate to be processed 22a and transports it in the direction perpendicular to the plane of FIG. 3 (X axis direction). The position of the substrate to be processed 22a is moved (finely moved) in the direction from the ultrasonic transducer 21 to the reflecting plate 23 (Z-axis direction), and the substrate to be processed 22a is moved by a node of the standing wave of the ultrasonic wave Φ. 2 axis moving stage 25 having a Z axis moving stage that adjusts to the optimal atomization position slightly shifted from the position of the position, and a substrate position control device 32 that drives and controls this 2 axis moving stage 25 (see FIG. 3). FIG. 1 viewed from an orthogonal angle shows the X-axis direction and the Z-axis direction. A signal for driving control of the biaxial movement stage 25 is sent from the processor 34 to the substrate position control device 32.

工業的な実用上の観点からは、X軸移動ステージは、コンベアと同様な逐次搬送機構を備えるように構成すればよい。超音波Φが伝搬する空気の温度・湿度が制御され、同一品種の被処理基板22aが順次搬送される場合であれば、被処理基板22aが所定の最適霧化位置を通過するように、予め、Z軸移動ステージを調整した後、複数枚(多数枚)の被処理基板22aを、順次、X軸移動ステージによって、コンベア搬送し、超音波振動子21と反射板23との間に励振された超音波Φの定在波中を、複数枚の被処理基板22aが通過して、脱水処理されるようにすればよい。   From an industrial practical point of view, the X-axis moving stage may be configured to include a sequential transfer mechanism similar to a conveyor. If the temperature / humidity of the air through which the ultrasonic wave Φ is propagated is controlled and the substrates 22a of the same type are sequentially transferred, the substrate 22a to be processed passes through a predetermined optimum atomization position in advance. After adjusting the Z-axis moving stage, a plurality of (multiple) substrates 22a to be processed are sequentially conveyed by the X-axis moving stage and excited between the ultrasonic transducer 21 and the reflecting plate 23. In addition, a plurality of substrates to be processed 22a may pass through the standing wave of the ultrasonic wave Φ so as to be dehydrated.

一方、温度・湿度が変動する場合や、多品種の被処理基板22aが順次搬送される場合は、それらの変化する条件を追尾して、被処理基板22aが、最適な最適霧化位置を通過するように、逐次、Z軸移動ステージを調整して、複数枚(多数枚)の被処理基板22aを、順次、X軸移動ステージによって、コンベア搬送する必要が生じる。2軸移動ステージ25のX軸のコンベア搬送方向に沿って、超音波振動子21と反射板23の組を平行に対峙して配列させることで、逐次搬送されてくる複数枚の被処理基板22aの、それぞれの全面を超音波でカバーすることができる。   On the other hand, when the temperature / humidity fluctuates or when various types of substrates 22a to be processed are sequentially conveyed, the substrate to be processed 22a passes through the optimum optimum atomization position by tracking those changing conditions. As described above, it is necessary to sequentially adjust the Z-axis movement stage and convey a plurality of (multiple) substrates to be processed 22a sequentially by the X-axis movement stage. A plurality of substrates to be processed 22a sequentially conveyed by arranging the pair of the ultrasonic transducer 21 and the reflecting plate 23 in parallel with each other along the X-axis conveyor conveyance direction of the biaxial moving stage 25. The entire surface of each can be covered with ultrasonic waves.

第1の実施の形態に係る超音波乾燥装置において、超音波Φにより貫通孔ビア222に溜まった水223の霧化を行なう際、貫通孔ビア222に溜まった水223だけでなく、被処理基板22aを構成する絶縁基板221が、超音波Φにより振動する。この超音波Φによる絶縁基板221の振動加速度が過大な値となる場合、層間剥離などにより、多層構造をなす絶縁基板221が損傷する可能性がある。   In the ultrasonic drying apparatus according to the first embodiment, when atomizing the water 223 accumulated in the through hole via 222 by the ultrasonic wave Φ, not only the water 223 accumulated in the through hole via 222 but also the substrate to be processed. The insulating substrate 221 constituting 22a is vibrated by the ultrasonic wave Φ. When the vibration acceleration of the insulating substrate 221 due to the ultrasonic wave Φ becomes an excessive value, the insulating substrate 221 having a multilayer structure may be damaged by delamination or the like.

そこで、最大加速度が衝撃と等価であるとみなし、絶縁基板221の振動加速度を計測した。即ち、図3に示す第1の実施の形態に係る超音波乾燥装置において、超音波振動子21により空気中に超音波Φを励振し、反射板23としてガラス板を用い、レーザードップラー振動速度計を用いて絶縁基板221の振動速度の計測を行なった。振動速度の計測は、図3に示した2軸移動ステージ25のZ軸移動ステージを用いて、被処理基板22aのZ軸方向の位置の制御を行ない、超音波Φによる、貫通孔ビア222に溜まった水223の霧化が生じるZ軸方向の位置を原点とし、そこから0.5mm毎にZ軸方向の±3mmまで移動させ、絶縁基板221の振動速度を測定した。測定された振動加速度は、Z軸方向の各測定点において、最大でも619m/sであった。例えば、多層プリント基板が使用されている携帯電話の一般的な許容衝撃強さは980m/sとされているが、この値よりも低い振動加速度であり、絶縁基板221への振動加速度の許容内である。よって、第1の実施の形態に係る超音波乾燥装置によれば、絶縁基板221への超音波Φの衝撃の影響は、無視して良いと判断できる。 Therefore, the maximum acceleration was regarded as equivalent to an impact, and the vibration acceleration of the insulating substrate 221 was measured. That is, in the ultrasonic drying apparatus according to the first embodiment shown in FIG. 3, the ultrasonic wave Φ is excited in the air by the ultrasonic vibrator 21, a glass plate is used as the reflecting plate 23, and a laser Doppler vibration velocimeter is used. Was used to measure the vibration speed of the insulating substrate 221. The vibration speed is measured by controlling the position of the substrate 22a in the Z-axis direction using the Z-axis movement stage of the biaxial movement stage 25 shown in FIG. The position in the Z-axis direction where atomization of the accumulated water 223 occurs was used as the origin, and the position was moved every 0.5 mm to ± 3 mm in the Z-axis direction, and the vibration speed of the insulating substrate 221 was measured. The measured vibration acceleration was 619 m / s 2 at the maximum at each measurement point in the Z-axis direction. For example, the general allowable impact strength of a mobile phone using a multilayer printed circuit board is 980 m / s 2 , but the vibration acceleration is lower than this value, and the allowable vibration acceleration to the insulating substrate 221 is allowed. Is within. Therefore, according to the ultrasonic drying apparatus according to the first embodiment, it can be determined that the influence of the impact of the ultrasonic wave Φ on the insulating substrate 221 can be ignored.

なお、図3では、基板位置制御機構(25,32)の2軸移動ステージ25が、被処理基板22aの上方に配置され、被処理基板22aを懸架しているが、例示であり、図3の懸架移動に限定されるものではない。例えば、2軸移動ステージ25を被処理基板22aの下方に配置し、2軸移動ステージ25が被処理基板22aを搭載するような構成でも構わない。この場合も、X軸移動ステージは、コンベアと同様な逐次搬送機構を備えて、X軸移動ステージに搭載された被処理基板22aが、順次、コンベア搬送され、超音波振動子21と反射板23との間に励振された超音波Φの定在波中を、複数枚の被処理基板22aが通過して、順次、複数枚の被処理基板22aが脱水処理されるようにすればよい。   In FIG. 3, the two-axis moving stage 25 of the substrate position control mechanism (25, 32) is disposed above the substrate to be processed 22a and suspends the substrate to be processed 22a. It is not limited to suspension movement. For example, the biaxial movement stage 25 may be arranged below the substrate 22a to be processed, and the biaxial movement stage 25 may be mounted with the substrate 22a to be processed. Also in this case, the X-axis moving stage includes a sequential transfer mechanism similar to the conveyor, and the substrate 22a to be processed mounted on the X-axis moving stage is sequentially transferred to the conveyor, and the ultrasonic transducer 21 and the reflecting plate 23 are transferred. The plurality of substrates to be processed 22a may pass through the standing wave of the ultrasonic wave Φ excited between and the substrate 22a to be sequentially dehydrated.

第1の実施の形態に係る超音波乾燥装置においては、超音波振動子21から空気中に放射された超音波Φを利用する際、反射板23を用いて定在波を形成することで、より音圧の高い音場を形成している。図1及び図3に示すような、超音波Φの垂直入射における反射板23による反射は、二つの媒質が接する境界面で起こり、その反射率Rpは二つの媒質の固有音響インピーダンスZ1,Z2に依存する。よって、反射板23による超音波Φの反射率Rpは、媒質1,2のそれぞれの固有音響インピーダンスをZ1,Z2として、

p=(Z2−Z1)/(Z2+Z1) ……(3)

で示される。(3)式により、媒質1を空気、媒質2を反射板23の材料として計算すると、媒質2の固有音響インピーダンスZ2が媒質1の固有音響インピーダンスZ1よりも十分に大きければ(Z1≪Z2)、反射率Rpは反射板23の材質によらず1に近似する。又、斜め入射を考えた場合においても、Z1≪Z2であることから入射波は全反射するといえる。そこで、第1の実施の形態に係る超音波乾燥装置において、反射板23として厚さ2,5,10mmのガラス板、厚さ2,5,10mmのアルミニウム(Al)板及び厚さ5,10mmの鉄(Fe)板を使用して反射率Rpを測定したが、反射率Rpは、反射板23の固有音響インピーダンスZ2が空気の固有音響インピーダンスZ1よりも十分に大きければ、反射板23の材質及び板厚の影響をほとんど受けないことが確認された。超音波Φの反射率Rpの測定値が1に近似しない理由としては、反射及び屈折時の超音波Φの減衰や反射板23による超音波Φの吸音といったことが考えられる。
In the ultrasonic drying apparatus according to the first embodiment, when using the ultrasonic wave Φ radiated from the ultrasonic vibrator 21 into the air, a standing wave is formed using the reflector 23. A sound field with higher sound pressure is formed. As shown in FIGS. 1 and 3, the reflection by the reflecting plate 23 at the normal incidence of the ultrasonic wave Φ occurs at the boundary surface where the two media are in contact, and the reflectance R p is the specific acoustic impedance Z 1 , It depends on the Z 2. Therefore, the reflectance R p of the ultrasonic wave Φ by the reflecting plate 23 is expressed by Z 1 and Z 2 as the specific acoustic impedances of the media 1 and 2, respectively.

R p = (Z 2 −Z 1 ) / (Z 2 + Z 1 ) (3)

Indicated by According to the equation (3), when the medium 1 is air and the medium 2 is a material of the reflector 23, if the specific acoustic impedance Z 2 of the medium 2 is sufficiently larger than the specific acoustic impedance Z 1 of the medium 1 (Z 1 << Z 2 ) and the reflectance R p approximate to 1 regardless of the material of the reflector 23. Even when oblique incidence is considered, it can be said that the incident wave is totally reflected because Z 1 << Z 2 . Therefore, in the ultrasonic drying apparatus according to the first embodiment, the reflecting plate 23 is a glass plate having a thickness of 2, 5, 10 mm, an aluminum (Al) plate having a thickness of 2, 5, 10 mm, and a thickness of 5, 10 mm. The reflectance R p was measured using an iron (Fe) plate, and the reflectance R p is reflected if the intrinsic acoustic impedance Z 2 of the reflector 23 is sufficiently larger than the intrinsic acoustic impedance Z 1 of air. It was confirmed that the material and the thickness of the plate 23 are hardly affected. The reason why the measured value of the reflectance R p of the ultrasonic wave Φ is not close to 1 is considered to be attenuation of the ultrasonic wave Φ at the time of reflection and refraction and sound absorption of the ultrasonic wave Φ by the reflection plate 23.

図3に示すように、第1の実施の形態に係る超音波乾燥装置は、更に、超音波Φを検出する超音波検出器24を反射板23の裏面に固定している。超音波検出器24は、反射板23中に設けられた貫通孔231を介して超音波Φを検出する。超音波検出器24の出力は、振動子駆動制御装置35に帰還され、超音波振動子21の出力が制御される。そして、更に、超音波検出器24の出力を帰還して、反射板23が定在波を励振するように、反射板23の位置を制御する反射板位置制御機構(26,33)を備えている。反射板位置制御機構(26,33)は、反射板23を搭載して、超音波振動子21から反射板23に向かう方向(Z軸方向)に、定在波が励振されるように反射板23の位置を移動(微動)して調整するZ軸移動ステージ(1軸移動ステージ)26と、この1軸移動ステージ26を駆動制御する反射板位置制御装置33とを備える、反射板位置制御装置33には、プロセッサ34から1軸移動ステージ26の駆動制御用の信号が送られる。このため、超音波検出器24には増幅器31が接続され、超音波検出器24の出力は、増幅器31を介して、プロセッサ34に入力し、プロセッサ34が必要な信号処理を行ない、1軸移動ステージ26の駆動制御用の信号を反射板位置制御装置33に出力する。超音波検出器24の出力を反射板位置制御装置33に帰還し、最適な条件で超音波Φの定在波を励振することで、被処理基板22aの貫通孔ビア222に溜まった水223の霧化に必要な強力な音場を効率よく作り出すことができる。   As shown in FIG. 3, the ultrasonic drying apparatus according to the first embodiment further fixes an ultrasonic detector 24 for detecting the ultrasonic wave Φ to the back surface of the reflecting plate 23. The ultrasonic detector 24 detects the ultrasonic wave Φ through a through hole 231 provided in the reflecting plate 23. The output of the ultrasonic detector 24 is fed back to the transducer drive control device 35, and the output of the ultrasonic transducer 21 is controlled. Further, a reflection plate position control mechanism (26, 33) is provided for controlling the position of the reflection plate 23 so that the output of the ultrasonic detector 24 is fed back and the reflection plate 23 excites the standing wave. Yes. The reflecting plate position control mechanism (26, 33) includes the reflecting plate 23 so that the standing wave is excited in the direction from the ultrasonic transducer 21 toward the reflecting plate 23 (Z-axis direction). Reflector position control device comprising a Z-axis movement stage (single-axis movement stage) 26 that moves and finely adjusts the position 23 and a reflection plate position control device 33 that drives and controls the one-axis movement stage 26. A signal for driving control of the uniaxial moving stage 26 is sent from the processor 34 to 33. For this reason, an amplifier 31 is connected to the ultrasonic detector 24, and the output of the ultrasonic detector 24 is input to the processor 34 via the amplifier 31, and the processor 34 performs the necessary signal processing and performs one-axis movement. A signal for controlling the drive of the stage 26 is output to the reflector position control device 33. The output of the ultrasonic detector 24 is fed back to the reflector position control device 33, and the standing wave of the ultrasonic wave Φ is excited under the optimum conditions, so that the water 223 accumulated in the through-hole via 222 of the substrate 22a to be processed. The powerful sound field required for atomization can be created efficiently.

更に、増幅器31を介して、プロセッサ34に入力した超音波検出器24の出力は、2軸移動ステージ25の駆動制御用の信号の生成にも利用することも可能で、超音波検出器24の出力を、2軸移動ステージ25を駆動制御する基板位置制御装置32に帰還することにより、被処理基板22aの位置をも最適化することができる。このように、超音波検出器24の出力を、振動子駆動制御装置35、反射板位置制御装置33及び基板位置制御装置32に帰還することにより、超音波Φを集中させ、霧化現象が効率よく発現する条件を自動的に制御し、追尾することが可能になる。   Further, the output of the ultrasonic detector 24 input to the processor 34 via the amplifier 31 can also be used to generate a signal for driving control of the biaxial moving stage 25. By returning the output to the substrate position control device 32 that drives and controls the biaxial movement stage 25, the position of the substrate 22a to be processed can be optimized. In this way, by returning the output of the ultrasonic detector 24 to the transducer drive control device 35, the reflector position control device 33, and the substrate position control device 32, the ultrasonic wave Φ is concentrated, and the atomization phenomenon is efficient. It is possible to automatically control and track conditions that often develop.

第1の実施の形態に係る超音波乾燥装置において、被処理基板22aの貫通孔ビア222に溜まった水223の霧化現象を瞬時に発現させるためには、霧化条件がそろっている必要がある。具体的には、超音波Φの定在波の振幅が大きくなっていること、貫通孔ビア222が定在波の節の近傍の最適霧化位置に一致していることが必要である。定在波となっている超音波Φが強力になるためには、超音波振動子21と反射板23の距離が最適化されており、反射波と超音波振動子21からの放射波のそれぞれの位相が完全に一致する必要がある。この条件は音速で決定されるが、音速は温度・湿度によって変動し、更に、搬送されてくる被処理基板22aの材質・厚み・ビアの構造で見かけ上の音速は変化する。   In the ultrasonic drying apparatus according to the first embodiment, in order to instantly cause the atomization phenomenon of the water 223 accumulated in the through-hole via 222 of the substrate 22a to be processed, it is necessary that the atomization conditions are aligned. is there. Specifically, it is necessary that the amplitude of the standing wave of the ultrasonic wave Φ is increased, and that the through-hole via 222 matches the optimum atomization position in the vicinity of the node of the standing wave. In order for the ultrasonic wave Φ that is a standing wave to become strong, the distance between the ultrasonic transducer 21 and the reflecting plate 23 is optimized, and the reflected wave and the radiated wave from the ultrasonic transducer 21 respectively. Must be completely in phase. This condition is determined by the speed of sound. The speed of sound varies depending on the temperature and humidity, and the apparent speed of sound changes depending on the material, thickness, and via structure of the substrate 22a being transferred.

2軸移動ステージ25によって、材質・厚み・構造等の異なる多品種の被処理基板22aがコンベア搬送される場合は、時事刻々と変化する霧化条件にリアルタイムで対応して、逐次、常に反射板23と超音波振動子21の距離を適正な値に保つ必要がある。又、反射板23と超音波振動子21の距離の変化に応じて、超音波Φの定在波の節の位置も変化するため、定在波の節の位置の変化に応じて、被処理基板22aの相対位置を調整する必要がある。第1の実施の形態に係る超音波乾燥装置によれば、超音波検出器24の出力を、振動子駆動制御装置35、反射板位置制御装置33及び基板位置制御装置32に帰還し、反射板23における音圧の位相と超音波振動子21の印加電圧の位相の関係より、超音波振動子21と反射板23の最適距離を逐次推定し自動調整し、且つ多品種の被処理基板22aの位置を逐次推定し自動調整して、常に、最適条件において霧化現象が効率よく発現するように、自動的に制御し、追尾することができる。最適条件において霧化させるように、帰還制御することにより、超音波Φを照射し始めてから霧化が終了するまでの時間を短くできるので、製造ラインのスループットを低下させることはない。   When various types of substrates to be processed 22a of different materials, thicknesses, structures, etc. are transported by the biaxial moving stage 25, the reflectors are always sequentially and sequentially corresponding to the atomization conditions that change every moment. It is necessary to keep the distance between the ultrasonic transducer 21 and the ultrasonic transducer 21 at an appropriate value. Further, since the position of the node of the standing wave of the ultrasonic wave Φ also changes according to the change in the distance between the reflector 23 and the ultrasonic transducer 21, the object to be processed is changed according to the change in the position of the node of the standing wave. It is necessary to adjust the relative position of the substrate 22a. According to the ultrasonic drying apparatus according to the first embodiment, the output of the ultrasonic detector 24 is fed back to the transducer drive control device 35, the reflection plate position control device 33, and the substrate position control device 32, and the reflection plate. 23, the optimum distance between the ultrasonic transducer 21 and the reflector 23 is sequentially estimated and automatically adjusted based on the relationship between the phase of the sound pressure at 23 and the phase of the applied voltage of the ultrasonic transducer 21, and the various types of substrates 22a to be processed are adjusted. By sequentially estimating and automatically adjusting the position, it is always possible to automatically control and track so that the atomization phenomenon is efficiently developed under the optimum conditions. By performing feedback control so that atomization is performed under the optimum conditions, the time from the start of irradiation of the ultrasonic wave Φ to the end of atomization can be shortened, so that the throughput of the production line is not reduced.

なお、図3では、反射板位置制御機構(26、33)の1軸移動ステージ26が、反射板23の下方に配置され、反射板23を搭載しているが、例示であり、例えば、1軸移動ステージ26を反射板23の上方に配置し、1軸移動ステージ26が反射板23を懸架するような構成でも構わない。   In FIG. 3, the uniaxial moving stage 26 of the reflector position control mechanism (26, 33) is arranged below the reflector plate 23 and has the reflector plate 23 mounted thereon. A configuration in which the axial movement stage 26 is disposed above the reflecting plate 23 and the uniaxial moving stage 26 suspends the reflecting plate 23 may be employed.

図6は、超音波振動子21と反射板23の間隔の変化に対する音圧変化を測定することで、超音波Φが被処理基板22aを透過し、超音波Φの定在波が形成されるときの超音波振動子21と反射板23の間隔を調べた結果である。具体的には、超音波振動子21の振動面と反射板23の表面の間隔を1軸移動ステージ26を用いて0.1mmずつ変化させながら、超音波振動子21の振動面から1mmの距離に固定した超音波検出器(コンデンサマイク)により、音圧の変化を測定した結果である。図6の測定では、反射板23には5mm厚のアルミニウム板を使用した。超音波Φの波長は超音波振動子21の共振周波数と空気の音速から求まり、空気の温度によって変化するので、温度20.0℃、湿度27%の条件で測定している。超音波振動子21の共振周波数28kHzでは、波長λ=12.1mmであるので、理論的には、波長の1/2の奇数倍の距離となる節の位置は、その最初の位置が、超音波振動子21の振動面から約6.05mmの位置となる。超音波Φの音圧のピーク時に、超音波Φが被処理基板22aを透過し、超音波Φの定在波が形成されると考えられるが、図6の測定では、ピーク時の音圧は超音波振動子21と反射板23の間隔が狭いほど大きくなる傾向がみられた。   In FIG. 6, by measuring the change in sound pressure with respect to the change in the distance between the ultrasonic transducer 21 and the reflecting plate 23, the ultrasonic wave Φ passes through the substrate 22a to be processed, and a standing wave of the ultrasonic wave Φ is formed. It is the result of investigating the space | interval of the ultrasonic transducer | vibrator 21 and the reflecting plate 23 at the time. Specifically, the distance between the vibration surface of the ultrasonic transducer 21 and the surface of the reflecting plate 23 is changed by 0.1 mm using the uniaxial moving stage 26, and the distance of 1 mm from the vibration surface of the ultrasonic transducer 21 is changed. It is the result of having measured the change of the sound pressure with the ultrasonic detector (condenser microphone) fixed to. In the measurement of FIG. 6, an aluminum plate having a thickness of 5 mm was used as the reflecting plate 23. The wavelength of the ultrasonic wave Φ is obtained from the resonance frequency of the ultrasonic vibrator 21 and the sound velocity of the air, and changes depending on the temperature of the air. Therefore, the measurement is performed under conditions of a temperature of 20.0 ° C. and a humidity of 27%. Since the wavelength λ = 12.1 mm at the resonance frequency 28 kHz of the ultrasonic transducer 21, theoretically, the position of the node that is a distance that is an odd multiple of ½ of the wavelength is the first position, The position is about 6.05 mm from the vibration surface of the sound wave vibrator 21. At the peak of the sound pressure of the ultrasonic wave Φ, it is considered that the ultrasonic wave Φ passes through the substrate to be processed 22a, and a standing wave of the ultrasonic wave Φ is formed. In the measurement of FIG. There was a tendency that the smaller the distance between the ultrasonic transducer 21 and the reflecting plate 23, the larger the distance.

理論的には、超音波Φの定在波は音源と反射板23の間隔が音波の波長の1/2の整数倍の値のとき形成されるはずである。よって、図3に示す第1の実施の形態に係る超音波乾燥装置のように被処理基板22aを定在波の節の近傍に挿入する構成においては、nを2以上の正の整数として、音源の超音波振動子21と反射板23の間隔が音波の波長λの(n/2)倍の値のとき定在波が形成され、半波長の奇数倍の位置に節がそれぞれ形成されるはずである。しかし、図6に示される測定結果によれば、音圧のピークの位置として与えられる節の最初の位置(図6で一番左側のピークの位置)は、超音波振動子21の振動面から距離6.4mmの位置に形成され、波長の約1/2より極く僅か大きな値となっている。このことから、被処理基板22aがない場合の一様な空気中に励起される理想的な定在波に比し、被処理基板22aを挿入することにより、定在波の波形に、極く僅かの歪み(擾乱)が発生した複雑な定在波になっていると考えられる。   Theoretically, the standing wave of the ultrasonic wave Φ should be formed when the distance between the sound source and the reflection plate 23 is an integral multiple of 1/2 of the wavelength of the sound wave. Therefore, in the configuration in which the substrate 22a to be processed is inserted in the vicinity of the standing wave node as in the ultrasonic drying apparatus according to the first embodiment shown in FIG. 3, n is a positive integer of 2 or more. When the distance between the ultrasonic transducer 21 of the sound source and the reflection plate 23 is a value (n / 2) times the wavelength λ of the sound wave, a standing wave is formed, and a node is formed at a position that is an odd multiple of the half wavelength. It should be. However, according to the measurement result shown in FIG. 6, the first position of the node given as the position of the sound pressure peak (the position of the leftmost peak in FIG. 6) is from the vibration surface of the ultrasonic transducer 21. It is formed at a distance of 6.4 mm and is a value slightly larger than about ½ of the wavelength. Therefore, compared to the ideal standing wave excited in the uniform air when there is no substrate to be processed 22a, inserting the substrate to be processed 22a makes the waveform of the standing wave extremely low. It is thought that it is a complex standing wave with slight distortion (disturbance).

図3に示す第1の実施の形態に係る超音波乾燥装置の構成において、超音波振動子21と被処理基板22aの間隔を変化させながら音圧測定を行なった。反射板23として2mm厚のアルミニウム板を用いた。その反射板23にd=0.8mmφの貫通孔231を開け、超音波振動子21と向き合うようにコンデンサマイクを超音波検出器24として取り付けた。超音波振動子21への印加電圧は150Vp-pとし、被処理基板22a位置は超音波霧化の発現領域の前後である6.5mmから7.5mmまで変化させた。超音波Φが被処理基板22aを透過し、超音波Φの定在波が形成されると音圧が極大となると考えられるため、音圧が極大値となったときの音圧とそのときの反射板23位置を測定した結果を図7に示す。図7に示す結果から、被処理基板22aの位置を0.1mm変化させる毎に反射板23の最適位置も被処理基板22aの位置と連動して0.1mmずつ変化していることが確認できる。又、音圧が極大値をとるのは被処理基板22aの位置が6.7mmのときであり、貫通孔ビア222の霧化現象においては音圧が大きく関係していることが確認できる。実際に貫通孔ビア222に水を充填させ、音圧が極大値をとる位置を最適霧化位置として被処理基板22aを配置すると、超音波霧化が発現させることが確認できた。 In the configuration of the ultrasonic drying apparatus according to the first embodiment shown in FIG. 3, sound pressure measurement was performed while changing the distance between the ultrasonic transducer 21 and the substrate to be processed 22a. A 2 mm thick aluminum plate was used as the reflecting plate 23. A through-hole 231 having d = 0.8 mmφ was formed in the reflecting plate 23, and a condenser microphone was attached as the ultrasonic detector 24 so as to face the ultrasonic transducer 21. The applied voltage to the ultrasonic transducer 21 was 150 V pp, and the position of the substrate 22a to be processed was changed from 6.5 mm to 7.5 mm before and after the ultrasonic atomization expression region. When the ultrasonic wave Φ is transmitted through the substrate to be processed 22a and the standing wave of the ultrasonic wave Φ is formed, the sound pressure is considered to be maximum. Therefore, the sound pressure when the sound pressure reaches the maximum value and the sound pressure at that time The result of measuring the position of the reflector 23 is shown in FIG. From the results shown in FIG. 7, it can be confirmed that the optimum position of the reflector 23 is also changed by 0.1 mm in conjunction with the position of the substrate to be processed 22 whenever the position of the substrate to be processed 22a is changed by 0.1 mm. . The sound pressure takes the maximum value when the position of the substrate 22a to be processed is 6.7 mm, and it can be confirmed that the sound pressure is greatly related to the atomization phenomenon of the through-hole via 222. It was confirmed that ultrasonic atomization was caused by actually filling the through-hole via 222 with water and placing the substrate 22a to be treated with the position where the sound pressure reached the maximum value as the optimum atomization position.

超音波Φも波長λよりも小さな内径dを有する貫通孔ビア222中を、超音波Φは減衰波(エバネッセント波)の形で、減衰しながら透過する。よって、被処理基板22aの厚さが、超音波Φの波長λよりも十分薄ければ、超音波Φは、ある程度、被処理基板22aを透過する。減衰波として、貫通孔ビア222を有する被処理基板22aを透過した超音波Φは、超音波振動子21と被処理基板22aとの間の超音波Φとともに定在波を形成する。測定によれば、被処理基板22aを設置せずに測定した音圧と比較して、透過した超音波Φの音圧はその約10%である。よって、被処理基板22aを透過後の音圧の被処理基板22aに与える影響は、被処理基板22aを透過する前の音圧が被処理基板22aに与える影響よりも小さい。又、被処理基板22aを構成するが紙フェノール基板とガラスエポキシ基板では、僅かに紙フェノール基板の方が超音波Φを透過しやすい傾向がみられることから、被処理基板22aを透過する超音波Φには、貫通孔ビア222の内部を伝搬する成分と、被処理基板22aの絶縁基板221を透過する成分の両方が寄与していることが分かる。実際には、超音波振動子21と被処理基板22aとの間には、被処理基板22aを反射板とする第1の定在波と、被処理基板22aを透過して反射板23で反射した第2の定在波の合成波が、互いに相関しながら形成されていると推定される。   The ultrasonic wave Φ passes through the through-hole via 222 having an inner diameter d smaller than the wavelength λ while being attenuated in the form of an attenuation wave (evanescent wave). Therefore, if the thickness of the substrate to be processed 22a is sufficiently thinner than the wavelength λ of the ultrasonic wave Φ, the ultrasonic wave Φ passes through the substrate to be processed 22a to some extent. As the attenuation wave, the ultrasonic wave Φ transmitted through the substrate to be processed 22a having the through-hole via 222 forms a standing wave together with the ultrasonic wave Φ between the ultrasonic transducer 21 and the substrate to be processed 22a. According to the measurement, the sound pressure of the transmitted ultrasonic wave Φ is about 10% compared to the sound pressure measured without installing the substrate 22a to be processed. Therefore, the influence of the sound pressure after passing through the target substrate 22a on the target substrate 22a is smaller than the influence of the sound pressure before passing through the target substrate 22a on the target substrate 22a. Further, the substrate 22a to be processed is composed of a paper phenol substrate and a glass epoxy substrate, but the paper phenol substrate tends to transmit the ultrasonic wave Φ slightly. Therefore, the ultrasonic wave transmitted through the substrate 22a is processed. It can be seen that both the component propagating through the through-hole via 222 and the component transmitting through the insulating substrate 221 of the substrate to be processed 22a contribute to Φ. Actually, between the ultrasonic transducer 21 and the substrate to be processed 22a, a first standing wave having the substrate to be processed 22a as a reflection plate and the substrate to be processed 22a and reflected by the reflection plate 23 are reflected. The synthesized wave of the second standing wave is estimated to be formed while being correlated with each other.

又、被処理基板22aの位置を、音圧が最大であった6.7mmとした際の、反射板23の位置と音圧との関係(黒丸)、印加電圧と超音波検出器24の出力電圧(マイク出力)の位相差と反射板23の位置との関係(白抜きの四角)を測定した測定結果を図8に示す。図8に示す結果から、黒丸で示した音圧が極大となる位置よりも手前側の反射板23の位置では、白抜きの四角で示した位相差がほぼ線形に変化し、位相差が−90°付近で音圧が極大となっていることが確認できる。黒丸で示した超音波検出器24の出力電圧(マイク出力)が極大になっているときに系が共振系となり、強力な超音波Φが励振される。図8に示す変化の様子より、距離の最適値を推定することができる。推定をもとに超音波振動子21と反射板23のそれぞれの位置を調整し、定在波の節の近傍の最適霧化位置に被処理基板22aをコンベア搬送して、超音波Φの励振効率を最大にして、順次、脱水処理を行なうことができる。   In addition, when the position of the substrate 22a to be processed is 6.7 mm where the sound pressure is maximum, the relationship between the position of the reflector 23 and the sound pressure (black circle), the applied voltage and the output of the ultrasonic detector 24. FIG. 8 shows measurement results obtained by measuring the relationship between the phase difference of the voltage (microphone output) and the position of the reflecting plate 23 (open squares). From the results shown in FIG. 8, at the position of the reflector 23 on the near side of the position where the sound pressure indicated by the black circle is maximum, the phase difference indicated by the white square changes substantially linearly, and the phase difference is − It can be confirmed that the sound pressure reaches a maximum near 90 °. When the output voltage (microphone output) of the ultrasonic detector 24 indicated by the black circle is maximized, the system becomes a resonance system, and a powerful ultrasonic wave Φ is excited. From the state of change shown in FIG. 8, the optimum value of the distance can be estimated. Based on the estimation, the positions of the ultrasonic transducer 21 and the reflecting plate 23 are adjusted, and the substrate 22a to be processed is conveyed to the optimum atomization position near the node of the standing wave, thereby exciting the ultrasonic wave Φ. Sequential dehydration can be performed with maximum efficiency.

図3に示す第1の実施の形態に係る超音波乾燥装置の構成において、厚さt=1.6mmの3枚の被処理基板22aに、それぞれ内径d=0.8mm、1.5mm、3.0mmの貫通孔ビア222を設けて、3種の被処理基板22aを用意した。そして、これらの内径dの異なる貫通孔ビア222をそれぞれを介して、温度20.0℃、湿度27%の条件で、それぞれ28kHzの超音波Φを検出するように、3種の被処理基板22aのそれぞれに超音波検出器を貼り付けた。   In the configuration of the ultrasonic drying apparatus according to the first embodiment shown in FIG. 3, three substrates 22a having a thickness t = 1.6 mm have inner diameters d = 0.8 mm, 1.5 mm, 3 mm, respectively. A through hole via 222 having a thickness of 0.0 mm was provided to prepare three types of substrates to be processed 22a. Then, three kinds of substrates 22a to be processed are detected so as to detect an ultrasonic wave Φ of 28 kHz under the conditions of a temperature of 20.0 ° C. and a humidity of 27% through the through-hole vias 222 having different inner diameters d. An ultrasonic detector was attached to each of the above.

前述したとおり、温度20.0℃、湿度27%の条件での28kHzの超音波Φの定在波の節の位置Pnodeは6.4mmと測定されたが、被処理基板22aがない場合の一様な空気中の定在波に対し、被処理基板22aの挿入が、波形の歪み(擾乱)を発生させていると考えられるので、超音波Φの定在波の節の位置Pnodeは、厳密には、貫通孔ビア222の内径dの値に依存し、0.2mm程度変化する。しかし、図9は、貫通孔ビア222の内径dの値の変化に対する節の位置Pnodeの依存性は無視できると近似して、図3に示した2軸移動ステージ25のZ軸移動ステージを用いて、超音波振動子21の振動面と被処理基板22aの左側の表面の間隔Lを変化させながら、貫通孔ビア222に充填された水223の脱水の可否(容易さ)を確率として縦軸に、波長λ=12.1mmで規格化して間隔Lを横軸に表現している。 As described above, the position P node of the standing wave node of the ultrasonic wave Φ of 28 kHz under the conditions of the temperature of 20.0 ° C. and the humidity of 27% was measured to be 6.4 mm. Since it is considered that the insertion of the substrate to be processed 22a generates a waveform distortion (disturbance) with respect to a uniform standing wave in the air, the position P node of the standing wave node of the ultrasonic wave Φ is Strictly speaking, it depends on the value of the inner diameter d of the through-hole via 222 and changes by about 0.2 mm. However, FIG. 9 approximates that the dependence of the node position Pnode on the change in the value of the inner diameter d of the through-hole via 222 is negligible, and the Z-axis movement stage of the biaxial movement stage 25 shown in FIG. By using the probability of the possibility (easyness) of dehydration of the water 223 filled in the through-hole via 222 while changing the distance L between the vibration surface of the ultrasonic vibrator 21 and the left surface of the substrate 22a to be processed. The axis is normalized with the wavelength λ = 12.1 mm, and the interval L is expressed on the horizontal axis.

貫通孔ビア222の内径dの値の変化に対する節の位置Pnodeの依存性が無視できると近似した条件では、3種の被処理基板22aのいずれも、節の位置Pnodeから0.02波長ほど離れた最適霧化位置Poptを中心に霧化現象が分布し、貫通孔ビア222の内径dの値に対する最適霧化位置Poptの依存性は無視できると近似できるが、分布の幅(半値幅)に差異が認められる。貫通孔ビア222の内径dが小さいほど、毛細管力が大きくなるため、脱水に必要な超音波Φの音圧が高くなり、超音波Φの音圧が高い最適霧化位置Poptの近傍のみに局在して霧化現象が発生し、分布の幅が狭いが、貫通孔ビア222の内径dが次第に大きくなると、次第に毛細管力が小さくなり、次第に脱水に必要な超音波Φの音圧も低くなり、最適霧化位置Poptから離れた位置でも霧化現象が発生可能となり、分布の幅が次第に広がると考えられる。 Under the condition that the dependence of the node position P node on the change in the value of the inner diameter d of the through hole via 222 is negligible, all of the three types of substrates to be processed 22a have 0.02 wavelength from the node position P node. Although the atomization phenomenon is distributed around the optimal atomization position P opt that is far away and the dependence of the optimal atomization position P opt on the value of the inner diameter d of the through hole via 222 can be ignored, the distribution width ( There is a difference in the half width. Since the capillary force increases as the inner diameter d of the through-hole via 222 decreases, the sound pressure of the ultrasonic wave Φ necessary for dehydration increases, and only in the vicinity of the optimal atomization position P opt where the sound pressure of the ultrasonic wave Φ is high. The atomization phenomenon occurs locally and the distribution width is narrow. However, as the inner diameter d of the through-hole via 222 gradually increases, the capillary force gradually decreases, and the sound pressure of the ultrasonic wave Φ necessary for dehydration gradually decreases. Thus, it is considered that the atomization phenomenon can occur even at a position away from the optimal atomization position Popt , and the width of the distribution gradually increases.

更に、表1に示すとおり、厚さt=1.6mmの3枚の被処理基板22aに、それぞれ、内径d=0.3mm、0.5mm、0.8mm、1.0mm、1.2mm、1.5mm、2.0mm、3.0mmの8種の貫通孔ビア222を設けて、それぞれの貫通孔ビア222に水223を充填し、充填された水223の脱水の可否を測定したが、内径d=0.3mm〜3.0mmのすべての貫通孔ビア222で脱水可能であった。
Further, as shown in Table 1, three substrates 22a having a thickness t = 1.6 mm were respectively provided with an inner diameter d = 0.3 mm, 0.5 mm, 0.8 mm, 1.0 mm, 1.2 mm, Eight kinds of through-hole vias 222 of 1.5 mm, 2.0 mm, and 3.0 mm were provided, each of the through-hole vias 222 was filled with water 223, and whether or not the filled water 223 could be dehydrated was measured. Dehydration was possible with all through-hole vias 222 having an inner diameter d = 0.3 mm to 3.0 mm.

表1には、28kHzの超音波Φの波長λ=12.1mmに対する貫通孔ビア222の内径dの比(d/λ)も示しているが、d/λ=2.5%〜24.8%の範囲内では、脱水の可否における、貫通孔ビア222の内径dの超音波Φの波長λに対する依存性はないと判断できる。   Table 1 also shows the ratio (d / λ) of the inner diameter d of the through-hole via 222 to the wavelength λ = 12.1 mm of the ultrasonic wave Φ of 28 kHz, and d / λ = 2.5% to 24.8. Within the range of%, it can be determined that there is no dependency of the inner diameter d of the through-hole via 222 on the wavelength λ of the ultrasonic wave Φ in whether dehydration is possible.

又、表1には、被処理基板22aの厚さt=1.6mmと、貫通孔ビア222の内径dとの比で貫通孔ビア222のアスペクト比t/dを示しているが、アスペクト比t/d=5.3〜0.5の範囲内では、脱水の可否における、貫通孔ビア222のアスペクト比t/dに対する依存性はないと判断できる。表1に示した結果から、第1の実施の形態に係る超音波乾燥装置は、内径d=3mm以下、特に内径d=1mm以下、更には内径d=0.8mm以下の微細な口径を有する貫通孔ビア222を備えた被処理基板22aのウェット洗浄及びその後の乾燥工程に有効であることが分かる。なお、第1の実施の形態に係る超音波乾燥装置は、内径d=3mm以上の口径の貫通孔ビア222を備えた被処理基板22aのウェット洗浄及びその後の乾燥工程にも適用可能ではあるが、内径d=3mm以上の場合、他の方法でも脱水や乾燥が可能であるため、第1の実施の形態に係る超音波乾燥装置としての特徴は、相対的に薄いものとなる。   Table 1 shows the aspect ratio t / d of the through hole via 222 as a ratio of the thickness t = 1.6 mm of the substrate 22a to be processed and the inner diameter d of the through hole via 222. Within the range of t / d = 5.3 to 0.5, it can be determined that there is no dependency on the aspect ratio t / d of the through-hole via 222 in whether dehydration is possible. From the results shown in Table 1, the ultrasonic drying apparatus according to the first embodiment has a fine aperture with an inner diameter d = 3 mm or less, particularly an inner diameter d = 1 mm or less, and further an inner diameter d = 0.8 mm or less. It turns out that it is effective for the wet cleaning of the to-be-processed substrate 22a provided with the through-hole via 222 and the subsequent drying process. Note that the ultrasonic drying apparatus according to the first embodiment is applicable to wet cleaning of the substrate 22a to be processed having the through-hole via 222 having an inner diameter d = 3 mm or more and a subsequent drying step. When the inner diameter d is 3 mm or more, dehydration and drying can be performed by other methods. Therefore, the characteristics of the ultrasonic drying apparatus according to the first embodiment are relatively thin.

図10に示すように、被処理基板22aの表面を鉛直方向から角度θだけ傾けて、超音波Φの入射角θを変化して、入射角θの変化が脱水効果に与える影響を調べた結果を表2に示す。
As shown in FIG. 10, the surface of the substrate to be processed 22 a is tilted from the vertical direction by an angle θ, the incident angle θ of the ultrasonic wave Φ is changed, and the influence of the change in the incident angle θ on the dehydration effect is examined. Is shown in Table 2.

表2において、○は脱水できた場合、△は脱水できた場合とできなかった場合が混在した状態、×は脱水できなかた場合を意味する。表2の結果から、許容できる被処理基板22aの傾斜角度θ(=超音波入射角θ)は、1.4°までとなる。よって、図3に示す第1の実施の形態に係る超音波乾燥装置の2軸移動ステージ25のX軸移動ステージを用いて、複数枚(多数枚)の被処理基板22aを、順次、コンベア搬送する際、被処理基板22aが搬送方向のX軸方向から傾斜する角度θは、1.4°程度まで許容できると判断される。 In Table 2, “◯” indicates a case where dehydration is possible, “Δ” indicates a case where the case where dehydration is not possible and “a case where no dehydration is possible” and x indicates a case where dehydration cannot be performed. From the results in Table 2, the allowable inclination angle θ (= ultrasonic incident angle θ) of the substrate to be processed 22a is up to 1.4 °. Therefore, using the X-axis moving stage of the 2-axis moving stage 25 of the ultrasonic drying apparatus according to the first embodiment shown in FIG. In this case, it is determined that the angle θ at which the substrate 22a to be processed is tilted from the X-axis direction in the transport direction is allowable up to about 1.4 °.

第1の実施の形態に係る超音波乾燥装置は、水洗い洗浄工程後の脱水工程のみに限定的に用いられるのではなく、種々の液体によるウェット洗浄工程後の、乾燥工程に適用可能である。図3に示す第1の実施の形態に係る超音波乾燥装置の構成において、被処理基板22aの厚みt=1.6mm、貫通孔ビア222の内径d=0.5mmの場合において、貫通孔ビア222の内部に液体の種類として、水とイソプロピルアルコール(IPA)を充填した。そして、2軸移動ステージ25のZ軸移動ステージを用いて、超音波振動子21の振動面と被処理基板22aの左側の表面の間隔Lを変化させた場合の、乾燥の可否(容易さ)を確率として縦軸に、波長λ=12.1mmで規格化して間隔Lを横軸に表現したのが、図11である。   The ultrasonic drying apparatus according to the first embodiment is not limited to the dehydration process after the water washing cleaning process, but can be applied to the drying process after the wet cleaning process using various liquids. In the configuration of the ultrasonic drying apparatus according to the first embodiment shown in FIG. 3, when the thickness t = 1.6 mm of the substrate 22a to be processed and the inner diameter d = 0.5 mm of the through-hole via 222, the through-hole via The interior of 222 was filled with water and isopropyl alcohol (IPA) as liquid types. Whether or not drying is possible (easy) when the distance L between the vibration surface of the ultrasonic transducer 21 and the left surface of the substrate 22a to be processed is changed using the Z-axis movement stage of the biaxial movement stage 25. FIG. 11 shows the distance L on the vertical axis and the interval L expressed on the horizontal axis with the wavelength λ = 12.1 mm as a probability.

IPAは水と比べて表面張力が小さいため、乾燥に必要な超音波Φの音圧が水の場合よりも低く、最適霧化位置Poptから離れた位置でも霧化現象が発生可能となるので、分布の幅が広がり、広い範囲で霧化現象が観測できることが分かる。 Since IPA has a smaller surface tension than water, the sound pressure of the ultrasonic wave Φ required for drying is lower than that of water, and an atomization phenomenon can occur even at a position away from the optimal atomization position Popt . It can be seen that the distribution is wide and the atomization phenomenon can be observed in a wide range.

以上のように、第1の実施の形態に係る超音波乾燥装置及びこの超音波乾燥装置を用いた基板処理方法によれば、図1や図3に示した簡単且つ安価な構造で、種々の貫通孔ビア222に溜まった液体を効率よく霧化できる。特に、被処理基板を、超音波Φの定在波の節の位置から僅かにずれた最適霧化位置に配置しているので、被処理基板に過大な衝撃を与えることなく、非接触でかつ瞬間的に、微細な貫通孔ビア222に溜まった液体を飛散させ、液体と同時に不純物を除去できる超音波乾燥装置、及びこの超音波乾燥装置を用いた基板処理方法を提供することができる。   As described above, according to the ultrasonic drying apparatus and the substrate processing method using the ultrasonic drying apparatus according to the first embodiment, the simple and inexpensive structure shown in FIG. 1 and FIG. The liquid accumulated in the through-hole via 222 can be efficiently atomized. In particular, since the substrate to be processed is arranged at the optimal atomization position slightly shifted from the position of the standing wave node of the ultrasonic wave Φ, the substrate to be processed is not contacted without excessively impacting. It is possible to provide an ultrasonic drying apparatus capable of instantaneously dispersing the liquid accumulated in the fine through-hole via 222 and removing impurities simultaneously with the liquid, and a substrate processing method using the ultrasonic drying apparatus.

(第2の実施の形態)
高密度配線されたなプリント基板の場合、特に、小さな内径を有する有底孔ビアの場合は、洗浄工程の際に有底孔ビアに溜まった水の除去が困難である。
(Second Embodiment)
In the case of a printed circuit board with high-density wiring, particularly in the case of a bottomed hole via having a small inner diameter, it is difficult to remove water accumulated in the bottomed hole via during the cleaning process.

本発明の第2の実施の形態に係る超音波乾燥装置は、図12に示すように、超音波Φを発生する超音波振動子21と、この超音波振動子21を駆動制御する振動子駆動制御装置35と、超音波Φを反射し、空気中に超音波Φの定在波を励振させる反射板23と、定在波の節の位置の近傍の最適霧化位置に被処理基板22bを移動させる基板位置制御機構とを備える。第2の実施の形態に係る超音波乾燥装置においても、「定在波の節の位置の近傍」とは、「定在波の節の位置から波長の5%以下の極く僅か離間した位置」を意味することは、第1の実施の形態に係る超音波乾燥装置と同様である。   As shown in FIG. 12, the ultrasonic drying apparatus according to the second embodiment of the present invention includes an ultrasonic vibrator 21 that generates ultrasonic waves Φ, and a vibrator drive that drives and controls the ultrasonic vibrator 21. The control device 35, the reflection plate 23 that reflects the ultrasonic wave Φ and excites the standing wave of the ultrasonic wave Φ in the air, and the substrate 22b to be processed at the optimum atomization position near the position of the node of the standing wave. And a substrate position control mechanism to be moved. Also in the ultrasonic drying apparatus according to the second embodiment, “the vicinity of the position of the node of the standing wave” means “a position slightly separated from the position of the node of the standing wave by 5% or less of the wavelength. "Means the same as in the ultrasonic drying apparatus according to the first embodiment.

ここで、被処理基板22bとしてのプリント基板は、図12に示すように、多層構造をなす絶縁基板221の上面(第1主面)側から裏面(第2主面)に向かって、有底孔ビア(ブラインドビア)225が開孔されている。図示を省略しているが、図2に示したのと同様に、絶縁基板221の上面(第1主面)、裏面(第2主面)、及びその内部の多層構造にも、導体配線が微細化されて形成され、有底孔ビア225は、多層構造の絶縁基板221の全層を貫通せず、上面(第1主面)側のみ設けられているが、貫通孔ビア222の場合と同様に、金属製の円筒(カナル)によって有底孔に導電性の側壁が形成され、導電性の側壁は有底孔の底面の導電性の底面に連続して電気的に接続されている。有底孔の底面は、被処理基板22bの内部の多層構造配線のいずれかと電気的に接続されている。そして、第2の実施の形態に係る超音波乾燥装置は、被処理基板22bを最適霧化位置に配置することにより、被処理基板22bの凹部である有底孔ビア225に溜まった液体(水)223に超音波Φを集中させる。   Here, as shown in FIG. 12, the printed circuit board as the substrate to be processed 22b is bottomed from the upper surface (first main surface) side of the insulating substrate 221 having a multilayer structure toward the back surface (second main surface). A hole via (blind via) 225 is opened. Although not shown, conductor wiring is also provided on the upper surface (first main surface), the back surface (second main surface), and the multilayer structure inside the insulating substrate 221 in the same manner as shown in FIG. The bottomed hole via 225 is formed to be miniaturized, and does not penetrate through all the layers of the insulating substrate 221 having a multilayer structure, and is provided only on the upper surface (first main surface) side. Similarly, a conductive side wall is formed in the bottomed hole by a metal cylinder (canal), and the conductive side wall is continuously electrically connected to the conductive bottom surface of the bottomed hole. The bottom surface of the bottomed hole is electrically connected to one of the multilayer structure wirings inside the substrate to be processed 22b. The ultrasonic drying apparatus according to the second embodiment disposes the liquid (water) accumulated in the bottomed hole via 225 that is the recess of the substrate to be processed 22b by arranging the substrate to be processed 22b at the optimum atomization position. ) Concentrate the ultrasonic wave Φ on 223.

有底孔ビア225の場合は、図4に模式的に示したように、超音波Φが集中しても、高まった音響放射圧による力で水滴223Sを有底孔ビア225から押し出すことができない。そこで、第2の実施の形態に係る超音波乾燥装置においては、有底孔ビア225の開口側を超音波振動子21の方向に向け、有底孔ビア225の内部に超音波Φを集中させて強力な超音波Φの場を発生させる。強力な超音波Φによって、有底孔ビア225に溜まった水223の表面に、音響放射圧Sの作用を強くすると、水223の表面にキャピラリー波が発生する。そこで、キャピラリー波の振幅が大きくなり表面張力に打ち勝つように超音波Φを照射すれば、図12に示すように、微小な微粒子としての水滴223mが飛散し、脱水処理が行なわれる。   In the case of the bottomed hole via 225, as schematically shown in FIG. 4, even if the ultrasonic wave Φ is concentrated, the water droplet 223S cannot be pushed out from the bottomed hole via 225 by the force due to the increased acoustic radiation pressure. . Therefore, in the ultrasonic drying apparatus according to the second embodiment, the opening side of the bottomed hole via 225 is directed toward the ultrasonic vibrator 21, and the ultrasonic wave Φ is concentrated inside the bottomed hole via 225. And powerful ultrasonic Φ field is generated. When the action of the acoustic radiation pressure S is increased on the surface of the water 223 accumulated in the bottomed hole via 225 by the powerful ultrasonic wave Φ, a capillary wave is generated on the surface of the water 223. Therefore, when the ultrasonic wave Φ is applied so that the amplitude of the capillary wave is increased and the surface tension is overcome, as shown in FIG. 12, the water droplets 223m as fine particles are scattered and the dehydration process is performed.

一方、有底孔ビア225の開口側を反射板23側に向けた場合、霧化は観測されなかった。その理由として、有底孔ビア225の場合は、十分な超音波Φの強度が被処理基板22b内を透過しないため、被処理基板22bがない場合の、超音波振動子21と反射板23の間の一様な空気中に励起される理想的な定在波に対し、被処理基板22bを挿入することにより、被処理基板22bと反射板23の間の定在波の振幅が非常に小さくなり、定在波の波形が大きく歪んでいると考えられる。実際には、超音波振動子21と被処理基板22bとの間には、被処理基板22bを反射板とする第1の定在波と、被処理基板22b中を減衰波として透過して反射板23で反射した第2の定在波の合成波が、互いに相関しながら形成されていると推定されるが、第2の定在波の振幅は非常に小さい。したがって、有底孔ビア225に溜まった水等の液体の霧化を行なう際は、有底孔ビア225の開口側を超音波振動子21側に向け、第1の定在波を利用する必要がある(なお、図12では左側の主面を上面(第1主面)、右側の主面を裏面(第2主面)と、便宜上定義しているが、単なる定義であり、この定義に限定されるものではない。要は、超音波振動子21の方向を向く主面に、有底孔ビア225の開口側が向いていればよい。)。   On the other hand, when the opening side of the bottomed hole via 225 was directed to the reflecting plate 23 side, atomization was not observed. The reason is that in the case of the bottomed hole via 225, the intensity of the ultrasonic wave Φ sufficient does not pass through the substrate 22b to be processed, and therefore the ultrasonic transducer 21 and the reflector 23 in the case where the substrate 22b is not present. By inserting the substrate to be processed 22b with respect to an ideal standing wave excited in the uniform air, the amplitude of the standing wave between the substrate to be processed 22b and the reflecting plate 23 is very small. Therefore, it is considered that the waveform of the standing wave is greatly distorted. Actually, between the ultrasonic transducer 21 and the substrate to be processed 22b, the first standing wave having the substrate to be processed 22b as a reflection plate and the substrate 22b as a damped wave are transmitted and reflected. Although it is estimated that the synthesized wave of the second standing wave reflected by the plate 23 is formed while being correlated with each other, the amplitude of the second standing wave is very small. Therefore, when atomizing a liquid such as water accumulated in the bottomed hole via 225, it is necessary to use the first standing wave with the opening side of the bottomed hole via 225 facing the ultrasonic transducer 21 side. (In FIG. 12, the left main surface is defined as the upper surface (first main surface) and the right main surface is defined as the back surface (second main surface) for convenience. The point is that the opening side of the bottomed hole via 225 should be oriented to the main surface facing the direction of the ultrasonic transducer 21.

第2の実施の形態に係る超音波乾燥装置の基板位置制御機構は、被処理基板22bを懸架して図13のX軸方向に搬送するX軸移動ステージと、超音波振動子21から反射板23に向かう方向(Z軸方向)に、被処理基板22bの位置を移動(微動)して、被処理基板22bを超音波Φの定在波の節の位置から僅かにずれた最適霧化位置に調整するZ軸移動ステージとを有する2軸移動ステージ27と、この2軸移動ステージ27を駆動制御する基板位置制御装置(図3と同様であるので図示を省略する。)とを備える。基板位置制御装置には、プロセッサ(図示省略。)から2軸移動ステージ27の駆動制御用の信号が送られる。第1の実施の形態に係る超音波乾燥装置と同様に、X軸移動ステージは、コンベアと同様な逐次搬送機構を備えるように構成し、Z軸移動ステージを調整して、被処理基板22bが最適な最適霧化位置を通過するようにして、複数枚(多数枚)の被処理基板22bを、順次、搬送する。2軸移動ステージ27のX軸のコンベア搬送方向に沿って、超音波振動子21と反射板23の組を平行に対峙して配列させることで、逐次搬送されてくる複数枚の被処理基板22bの、それぞれの全面を超音波でカバーすることができる。   The substrate position control mechanism of the ultrasonic drying apparatus according to the second embodiment includes an X-axis moving stage that suspends the substrate 22b to be processed and conveys it in the X-axis direction of FIG. The position of the substrate to be processed 22b is moved (finely moved) in the direction toward the direction 23 (Z-axis direction) so that the substrate 22b is slightly shifted from the position of the standing wave node of the ultrasonic wave Φ. A two-axis movement stage 27 having a Z-axis movement stage to be adjusted, and a substrate position control device (not shown because it is similar to FIG. 3) for driving and controlling the two-axis movement stage 27. A signal for driving control of the biaxial moving stage 27 is sent from the processor (not shown) to the substrate position control device. Similar to the ultrasonic drying apparatus according to the first embodiment, the X-axis moving stage is configured to include a sequential transfer mechanism similar to the conveyor, and the substrate 22b to be processed is adjusted by adjusting the Z-axis moving stage. A plurality of (multiple) substrates to be processed 22b are sequentially transported so as to pass through the optimal optimum atomization position. A plurality of substrates to be processed 22b sequentially conveyed by arranging the pair of the ultrasonic vibrator 21 and the reflecting plate 23 in parallel along the X-axis conveyor conveyance direction of the biaxial moving stage 27. The entire surface of each can be covered with ultrasonic waves.

図3に示したのと同様に、第2の実施の形態に係る超音波乾燥装置は、更に、超音波Φを検出する超音波検出器(図示省略。)を反射板23の裏面に固定している。超音波検出器は、反射板23中に設けられた有底孔を介して超音波Φを検出する。超音波検出器の出力は、振動子駆動制御装置(図示省略。)に帰還され、超音波振動子21の出力が制御される。そして、更に、超音波検出器の出力を帰還して、反射板23が定在波を励振するように、反射板23の位置を制御する反射板位置制御機構(図示省略。)を備えている。反射板位置制御機構は、反射板23を搭載して、超音波振動子21から反射板23に向かう方向(Z軸方向)に、定在波が励振されるように反射板23の位置を移動(微動)して調整するZ軸移動ステージである1軸移動ステージ(図示省略。)と、この1軸移動ステージを駆動制御する反射板位置制御装置(図示省略。)とを備える、反射板位置制御装置には、プロセッサから1軸移動ステージの駆動制御用の信号が送られる。このため、超音波検出器には増幅器(図示省略。)が接続され、超音波検出器の出力は、増幅器を介して、プロセッサに入力し、プロセッサが必要な折り信号処理を行ない、1軸移動ステージの駆動制御用の信号を反射板位置制御装置に出力する。超音波検出器の出力を反射板位置制御装置に帰還し、最適な条件で超音波Φの定在波を励振することで、被処理基板22bの有底孔ビア225に溜まった水223の霧化に必要な強力な音場を効率よく作り出すことができる。   3, the ultrasonic drying apparatus according to the second embodiment further fixes an ultrasonic detector (not shown) for detecting the ultrasonic wave Φ to the back surface of the reflecting plate 23. ing. The ultrasonic detector detects the ultrasonic wave Φ through a bottomed hole provided in the reflecting plate 23. The output of the ultrasonic detector is fed back to a transducer drive control device (not shown), and the output of the ultrasonic transducer 21 is controlled. Further, a reflection plate position control mechanism (not shown) is provided for controlling the position of the reflection plate 23 so that the output of the ultrasonic detector is fed back and the reflection plate 23 excites the standing wave. . The reflector position control mechanism is equipped with the reflector 23 and moves the position of the reflector 23 in the direction (Z-axis direction) from the ultrasonic transducer 21 toward the reflector 23 so that the standing wave is excited. Reflector position provided with a uniaxial movement stage (not shown) that is a Z-axis movement stage that is adjusted by (fine movement) and a reflector position control device (not shown) that drives and controls the uniaxial movement stage. A signal for driving control of the single-axis moving stage is sent from the processor to the control device. For this reason, an amplifier (not shown) is connected to the ultrasonic detector, and the output of the ultrasonic detector is input to the processor via the amplifier, the processor performs the necessary folding signal processing, and one-axis movement A stage drive control signal is output to the reflector position control device. The output of the ultrasonic detector is fed back to the reflector position control device, and the standing wave of the ultrasonic wave Φ is excited under the optimum conditions, so that the mist of the water 223 accumulated in the bottomed hole via 225 of the substrate to be processed 22b. It is possible to efficiently create a powerful sound field necessary for the conversion.

更に、増幅器を介して、プロセッサに入力した超音波検出器の出力は、2軸移動ステージ27の駆動制御用の信号の生成にも利用することも可能で、超音波検出器の出力を、2軸移動ステージ27を駆動制御する基板位置制御装置に帰還することにより、被処理基板22bの位置をも最適化することができる。このように、超音波検出器の出力を、振動子駆動制御装置、反射板位置制御装置及び基板位置制御装置に帰還することにより、超音波Φを集中させ、有底孔ビア225における霧化現象が効率よく発現する条件を自動的に制御し、追尾することが可能になる。   Furthermore, the output of the ultrasonic detector input to the processor via the amplifier can also be used to generate a signal for driving control of the biaxial moving stage 27. The output of the ultrasonic detector is 2 By returning to the substrate position control device that drives and controls the axial movement stage 27, the position of the substrate 22b to be processed can also be optimized. As described above, the output of the ultrasonic detector is fed back to the transducer drive control device, the reflector position control device, and the substrate position control device, so that the ultrasonic wave Φ is concentrated, and the atomization phenomenon in the bottomed hole via 225. It is possible to automatically control and track the conditions for efficiently expressing.

第2の実施の形態に係る超音波乾燥装置において、被処理基板22bの有底孔ビア225に溜まった水223の霧化現象を瞬時に発現させるためには、霧化条件がそろっている必要がある。具体的には、超音波Φの定在波の振幅が大きくなっていること、有底孔ビア225が定在波の節の近傍の最適霧化位置に一致していることが必要であることは第1の実施の形態に係る超音波乾燥装置と同様である。定在波となっている超音波Φが強力になるためには、超音波振動子21と反射板23の距離が最適化されており、反射波と超音波振動子21からの放射波のそれぞれの位相が完全に一致する必要がある。この条件は音速で決定されるが、音速は温度・湿度によって変動し、更に、搬送されてくる被処理基板22bの材質・厚み・ビアの構造で見かけ上の音速は変化するので、第2の実施の形態に係る超音波乾燥装置によれば、超音波検出器の出力を、振動子駆動制御装置、反射板位置制御装置及び基板位置制御装置に帰還し、反射板23における音圧の位相と超音波振動子21の印加電圧の位相の関係より、超音波振動子21と反射板23の最適距離を逐次推定し自動調整し、且つ多品種の被処理基板22bの位置を逐次推定し自動調整して、常に、最適条件において霧化現象が効率よく発現するように、自動的に制御し、追尾することができる。最適条件において霧化させるように、帰還制御することにより、超音波Φを照射し始めてから霧化が終了するまでの時間を短くできるので、製造ラインのスループットを低下させることはない。   In the ultrasonic drying apparatus according to the second embodiment, in order to instantly develop the atomization phenomenon of the water 223 accumulated in the bottomed hole via 225 of the substrate 22b to be processed, the atomization conditions must be aligned. There is. Specifically, the amplitude of the standing wave of the ultrasonic wave Φ must be large, and the bottomed hole via 225 must match the optimal atomization position in the vicinity of the node of the standing wave. Is the same as that of the ultrasonic drying apparatus according to the first embodiment. In order for the ultrasonic wave Φ that is a standing wave to become strong, the distance between the ultrasonic transducer 21 and the reflecting plate 23 is optimized, and the reflected wave and the radiated wave from the ultrasonic transducer 21 respectively. Must be completely in phase. This condition is determined by the speed of sound. The speed of sound fluctuates depending on the temperature and humidity, and the apparent speed of sound changes depending on the material, thickness, and via structure of the substrate 22b to be conveyed. According to the ultrasonic drying apparatus according to the embodiment, the output of the ultrasonic detector is fed back to the transducer drive control device, the reflection plate position control device, and the substrate position control device, and the phase of the sound pressure in the reflection plate 23 is calculated. Based on the phase relationship of the applied voltage of the ultrasonic transducer 21, the optimum distance between the ultrasonic transducer 21 and the reflector 23 is sequentially estimated and automatically adjusted, and the positions of various types of substrates 22b are sequentially estimated and automatically adjusted. Thus, it can always be automatically controlled and tracked so that the atomization phenomenon is efficiently developed under the optimum conditions. By performing feedback control so that atomization is performed under the optimum conditions, the time from the start of irradiation of the ultrasonic wave Φ to the end of atomization can be shortened, so that the throughput of the production line is not reduced.

図12及び図13に示す第2の実施の形態に係る超音波乾燥装置において、反射板23として5mm厚のアルミニウム板を使用し、超音波振動子21の振動面と内径d=0.8mmの有底孔ビア225を設けた被処理基板22bの表面との間隔Lを、2軸移動ステージ27を用いて、X軸方向に0.5mm、Z軸方向に0.1mmずつ変化させながら実験した結果を図14に示す。図14では、比較のために内径d=0.8mmの貫通孔ビアを有する被処理基板のデータもプロットしている。超音波振動子21への印加電圧を150Vp-pとし、被処理基板22bは厚さt=1.6mmのガラスエポキシ基板である。超音波振動子21と反射板23の間隔は32.0mmで固定している。図14に示すように、有底孔ビア225は貫通孔ビアと比較して霧化が起こりにくい傾向がみられる。 In the ultrasonic drying apparatus according to the second embodiment shown in FIGS. 12 and 13, an aluminum plate having a thickness of 5 mm is used as the reflecting plate 23, and the vibration surface of the ultrasonic transducer 21 and the inner diameter d = 0.8 mm are used. The experiment was performed by changing the distance L from the surface of the substrate 22b provided with the bottomed hole via 225 by 0.5 mm in the X-axis direction and 0.1 mm in the Z-axis direction using the biaxial moving stage 27. The results are shown in FIG. In FIG. 14, data of a substrate to be processed having a through-hole via having an inner diameter d = 0.8 mm is also plotted for comparison. The applied voltage to the ultrasonic transducer 21 is 150 V pp, and the substrate 22b to be processed is a glass epoxy substrate having a thickness t = 1.6 mm. The interval between the ultrasonic transducer 21 and the reflecting plate 23 is fixed at 32.0 mm. As shown in FIG. 14, the bottomed hole via 225 tends to be less susceptible to atomization than the through-hole via.

第1の実施の形態で説明した貫通孔ビア222を有する被処理基板22aにおいては、超音波Φがある程度、被処理基板22aを透過し、定在波が形成されていることが確認できた。但し、第1の実施の形態に係る超音波乾燥装置においても、被処理基板22aを設置せずに測定した音圧と比較して、透過した超音波Φはその約10%であるため、被処理基板22aを透過後の音圧の影響は、被処理基板22aを透過前の音圧の影響よりも小さいことがいえる。一方、有底孔ビア225を有する被処理基板22bでは、超音波Φは被処理基板22bを十分には透過せず、その音圧は貫通孔ビア222を有する被処理基板22aでの音圧の約15〜30%である。つまり、被処理基板22bを設置せずに測定した音圧の約1.5〜3%しか得ていないことが分かる。第1の実施の形態に係る超音波乾燥装置において、被処理基板22aを構成する材質が紙フェノール基板とガラスエポキシ基板では、僅かに紙フェノール基板の方が超音波Φを透過しやすい傾向がみられることから、被処理基板22aを透過する超音波Φには、貫通孔ビア222の内部を伝搬する成分と、被処理基板22aの絶縁基板221を透過する成分の両方があることを述べたが、第2の実施の形態に係る超音波乾燥装置の被処理基板22bの場合は、被処理基板22bを透過する超音波Φには、有底孔ビア225を経由して有底孔ビア225の底に位置する絶縁基板221の薄い部分を伝搬する成分と、被処理基板22bの絶縁基板221の全体の厚み部分を透過する成分の両方が存在すると推定できるが、有底孔ビア225を経由する成分は非常に小さい。したがって、有底孔ビア225を有する被処理基板22bでは、被処理基板22bと反射板23の間の定在波の振幅が非常に小さくなっており、超音波振動子21と反射板23の間に、極度に非対称な定在波の励起を仮想できる。このため、被処理基板22bは、超音波振動子21と反射板23の間の音圧の影響をほとんど受けないため、有底孔ビア225の開口側を反射板23側に向けても、有底孔ビア225に溜まった水223の霧化は困難である。   In the substrate to be processed 22a having the through-hole via 222 described in the first embodiment, it was confirmed that the ultrasonic wave Φ transmitted through the substrate to be processed 22a to some extent and a standing wave was formed. However, even in the ultrasonic drying apparatus according to the first embodiment, the transmitted ultrasonic wave Φ is approximately 10% of the sound pressure measured without installing the substrate 22a to be processed. It can be said that the influence of the sound pressure after passing through the processing substrate 22a is smaller than the influence of the sound pressure before passing through the processing target substrate 22a. On the other hand, in the substrate to be processed 22b having the bottomed hole via 225, the ultrasonic wave Φ does not sufficiently pass through the substrate to be processed 22b, and the sound pressure is the sound pressure of the substrate to be processed 22a having the through-hole via 222. About 15-30%. That is, it can be seen that only about 1.5 to 3% of the sound pressure measured without installing the substrate 22b to be processed is obtained. In the ultrasonic drying apparatus according to the first embodiment, when the material constituting the substrate 22a to be processed is a paper phenol substrate and a glass epoxy substrate, the paper phenol substrate tends to transmit the ultrasonic wave Φ slightly. Therefore, it has been described that the ultrasonic wave Φ transmitted through the substrate to be processed 22a has both a component that propagates through the through-hole via 222 and a component that transmits through the insulating substrate 221 of the substrate to be processed 22a. In the case of the substrate to be processed 22b of the ultrasonic drying apparatus according to the second embodiment, the ultrasonic wave φ transmitted through the substrate to be processed 22b is transmitted to the bottomed hole via 225 via the bottomed hole via 225. Although it can be estimated that there are both a component that propagates through the thin portion of the insulating substrate 221 located at the bottom and a component that transmits through the entire thickness portion of the insulating substrate 221 of the substrate 22b to be processed, it passes through the bottomed hole via 225. Component is very small. Therefore, in the substrate to be processed 22b having the bottomed hole via 225, the amplitude of the standing wave between the substrate to be processed 22b and the reflection plate 23 is very small, and between the ultrasonic vibrator 21 and the reflection plate 23. In addition, extremely asymmetric standing wave excitation can be hypothesized. For this reason, the substrate to be processed 22b is hardly affected by the sound pressure between the ultrasonic transducer 21 and the reflecting plate 23. Therefore, even if the opening side of the bottomed hole via 225 faces the reflecting plate 23 side, It is difficult to atomize the water 223 accumulated in the bottom hole via 225.

又、図13に示す第2の実施の形態に係る超音波乾燥装置の構成を用い、被処理基板22bの厚みt=1.6mm、有底孔ビア225の内径d=0.5mmの場合において、有底孔ビア225の内部に、水を充填し、2軸移動ステージ25のZ軸移動ステージを用いて、超音波振動子21の振動面と被処理基板22bの左側の表面の間隔Lを変化させた場合の、脱水の可否(容易さ)を確率として縦軸に、波長λ=12.1mmで規格化して間隔Lを横軸に表現したのが、図15である。図15からも、有底孔ビア225の場合は、図9に示した貫通孔ビアの場合に比べて霧化現象がみられる範囲が狭い。   Further, in the case where the thickness t = 1.6 mm of the substrate 22b to be processed and the inner diameter d = 0.5 mm of the bottomed hole via 225, using the configuration of the ultrasonic drying apparatus according to the second embodiment shown in FIG. The inside of the bottomed hole via 225 is filled with water, and the distance L between the vibration surface of the ultrasonic transducer 21 and the left surface of the substrate to be processed 22b is set using the Z-axis movement stage of the biaxial movement stage 25. FIG. 15 is a graph in which the interval (L) is expressed on the horizontal axis by normalizing with the wavelength λ = 12.1 mm as the probability on the possibility (easyness) of dehydration when changed. Also in FIG. 15, in the case of the bottomed hole via 225, the range in which the atomization phenomenon is observed is narrower than in the case of the through hole via shown in FIG.

図14(及び図15)に示すように、貫通孔ビア222と有底孔ビア225では、被処理基板22a,22bを透過する超音波Φの強度や、定在波の状況(波形)が異なり、超音波霧化の発現領域が異なるため、同一の条件で、同時に脱水することは不可能である。そのため、第1の実施の形態に係る超音波乾燥装置と第2の実施の形態に係る超音波乾燥装置とは、それぞれの発現領域に対応できるように、条件設定を変更する必要があり、有底孔ビア225に溜まった水の霧化には、第1の実施の形態に係る超音波乾燥装置よりも高い音圧を被処理基板22bに与える必要があり、振動振幅の高い超音波振動子21を使用することが効率のよい霧化に好ましい。   As shown in FIG. 14 (and FIG. 15), the through-hole via 222 and the bottomed-hole via 225 differ in the intensity of the ultrasonic wave Φ that passes through the substrates 22a and 22b and the status (waveform) of the standing wave. Since the ultrasonic atomization areas are different, it is impossible to dehydrate at the same time under the same conditions. Therefore, the ultrasonic drying apparatus according to the first embodiment and the ultrasonic drying apparatus according to the second embodiment need to change the condition settings so that they can correspond to the respective expression areas. In order to atomize the water accumulated in the bottom hole via 225, it is necessary to apply a higher sound pressure to the substrate to be processed 22b than in the ultrasonic drying apparatus according to the first embodiment. 21 is preferred for efficient atomization.

有底孔の深さの影響を調べるために、t=1.6mm厚の被処理基板22bに深さの異なる内径d=0.3mmφの有底孔ビア225を開け、超音波振動子21への印加電圧を100Vp-p,125Vp-p,150Vp-pと変化させて、超音波Φの強さの霧化に与える効果について調べた結果を図16に示す。有底孔ビア225の深さを有底孔ビア225の内径dで規格化し、アスペクト比とし、図16の横軸とした。超音波振動子21への印加電圧を100Vp-p→125Vp-p→150Vp-pと変化させて、超音波Φの振幅を大きくすればするほど、アスペクト比の高い(より深い)有底孔ビア225の液体を霧化して乾燥できることが分かる。このことは、被処理基板22bを透過する超音波Φとしては、有底孔ビア225を経由して有底孔ビア225の底に位置する絶縁基板221の薄い部分を伝搬する超音波Φの成分が非常に小さいことを確認させるものである。 In order to investigate the influence of the depth of the bottomed hole, a bottomed hole via 225 having an inner diameter d = 0.3 mmφ of different depth is opened in the substrate 22b to be processed having a thickness of t = 1.6 mm, and the ultrasonic transducer 21 is formed. FIG. 16 shows the result of examining the effect of the intensity of the ultrasonic wave Φ on the atomization by changing the applied voltage of 100 V pp , 125 V pp , and 150 V pp . The depth of the bottomed hole via 225 is normalized by the inner diameter d of the bottomed hole via 225 to obtain an aspect ratio, which is the horizontal axis of FIG. As the amplitude of the ultrasonic wave Φ is increased by changing the applied voltage to the ultrasonic transducer 21 from 100 V pp → 125 V pp → 150 V pp , the liquid of the bottomed hole via 225 having a higher aspect ratio (deeper). It turns out that can be atomized and dried. This is because the ultrasonic wave Φ transmitted through the substrate to be processed 22 b is a component of the ultrasonic wave Φ that propagates through the bottomed hole via 225 and the thin part of the insulating substrate 221 located at the bottom of the bottomed hole via 225. Is confirmed to be very small.

図16に示した結果から、第2の実施の形態に係る超音波乾燥装置は、内径d=0.3mmφの有底孔ビア225の場合、超音波Φの振幅を大きくすれば、アスペクト比が2.5以上であっても、有効に霧化して乾燥することが可能であり、内径d=0.3mmφ以下の微細な口径を有する有底孔ビア225を備えた被処理基板22bのウェット洗浄及びその後の乾燥工程に有効であることが分かる。   From the results shown in FIG. 16, in the ultrasonic drying apparatus according to the second embodiment, in the case of the bottomed via 225 having an inner diameter d = 0.3 mmφ, the aspect ratio is increased if the amplitude of the ultrasonic wave Φ is increased. Even if it is 2.5 or more, it is possible to effectively atomize and dry, and wet cleaning of the substrate 22b to be processed provided with the bottomed hole via 225 having a fine diameter of an inner diameter d = 0.3 mmφ or less. And it turns out that it is effective for the subsequent drying process.

以上のように、第2の実施の形態に係る超音波乾燥装置及びこの超音波乾燥装置を用いた基板処理方法によれば、図12や図13に示した簡単且つ安価な構造で、種々の有底孔ビア225に溜まった液体を効率よく霧化できる。特に、被処理基板を、超音波Φの定在波の節の位置から僅かにずれた最適霧化位置に配置しているので、被処理基板に過大な衝撃を与えることなく、非接触でかつ瞬間的に、微細な有底孔ビア225に溜まった液体を飛散させ、液体と同時に不純物を除去できる超音波乾燥装置、及びこの超音波乾燥装置を用いた基板処理方法を提供することができる。   As described above, according to the ultrasonic drying apparatus and the substrate processing method using the ultrasonic drying apparatus according to the second embodiment, the simple and inexpensive structure shown in FIGS. The liquid accumulated in the bottomed hole via 225 can be efficiently atomized. In particular, since the substrate to be processed is arranged at the optimal atomization position slightly shifted from the position of the standing wave node of the ultrasonic wave Φ, the substrate to be processed is not contacted without excessively impacting. It is possible to provide an ultrasonic drying apparatus that can instantaneously disperse the liquid accumulated in the fine bottomed hole via 225 and remove impurities simultaneously with the liquid, and a substrate processing method using the ultrasonic drying apparatus.

(その他の実施の形態)
上記のように、本発明は第1及び第2の実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the present invention has been described according to the first and second embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

例えば、第1及び第2の実施の形態での説明は、図1に例示したように、X−Z平面を水平面とし、被処理基板22aの主面方向が垂直、即ちY−方向に沿った場合を前提として議論しているが、X軸、Y軸、Z軸の定義は図1に例示した方位に限定されるものでなく、互いに直交する座標系であれば任意に座標軸を選択可能である。例えば、定在波の方向が鉛直方向となり、被処理基板22aの主面方向が水平方向になるような、他の直交座標系を選定しても構わない。   For example, in the description of the first and second embodiments, as illustrated in FIG. 1, the XZ plane is a horizontal plane, and the main surface direction of the substrate 22a to be processed is vertical, that is, along the Y-direction. Although the discussion is based on the case, the definition of the X axis, the Y axis, and the Z axis is not limited to the orientation illustrated in FIG. 1, and any coordinate axis can be selected as long as the coordinate systems are orthogonal to each other. is there. For example, another orthogonal coordinate system in which the direction of the standing wave is the vertical direction and the principal surface direction of the substrate 22a to be processed is the horizontal direction may be selected.

なお、定在波の方向を鉛直方向とし、被処理基板22aの主面方向を水平方向とする直交座標系を選定した場合、図1,図3,図12,図13等に例示した構成において、超音波振動子21をステージに搭載して、超音波振動子21をZ軸方向に移動して、超音波振動子21と被処理基板22a,22bとの相対的距離、超音波振動子21と反射板23との相対的距離を調整する態様をも、含んで構わない。よって、より一般的には、本発明の「基板位置制御機構」は、超音波振動子21と被処理基板22a,22bとの相対的距離及び被処理基板22a,22bと反射板23との相対的距離を制御可能な機構であり、本発明の「反射板位置制御機構」は、超音波振動子21と反射板23との相対的距離、及び被処理基板22a,22bと反射板23との相対的距離を制御可能な機構であると理解すべきである。   When an orthogonal coordinate system is selected in which the direction of the standing wave is the vertical direction and the main surface direction of the substrate to be processed 22a is the horizontal direction, the configuration illustrated in FIGS. The ultrasonic transducer 21 is mounted on the stage, the ultrasonic transducer 21 is moved in the Z-axis direction, and the relative distance between the ultrasonic transducer 21 and the substrates to be processed 22a and 22b is determined. An aspect of adjusting the relative distance between the reflector 23 and the reflecting plate 23 may also be included. Therefore, more generally, the “substrate position control mechanism” of the present invention is the relative distance between the ultrasonic transducer 21 and the substrates 22a and 22b and the relative distance between the substrates 22a and 22b and the reflector 23. The “reflector position control mechanism” of the present invention is a mechanism that can control the relative distance between the ultrasonic transducer 21 and the reflector 23, and between the substrates to be processed 22a and 22b and the reflector 23. It should be understood that the mechanism can control the relative distance.

又、第1の実施の形態で説明した2軸移動ステージ25、第2の実施の形態で説明した2軸移動ステージ27の動作方法(運用)には、種々の変形等の態様が可能である。例えば、被処理基板22a,22bの品種が予め決まっているルーチンの洗浄工程及び乾燥工程であれば、予め、貫通孔ビア222の内径・絶縁基板221の材質・厚み・構造等の異なる種々の被処理基板22a、有底孔ビア225の内径・絶縁基板221の材質・厚み・構造等の異なる種々の被処理基板22aのそれぞれについて、最適霧化位置Poptのデータを逐次測定しておき、最適霧化位置データベースにレシピとして蓄積しておくような運用も可能であり、こうすることにより、プロセッサ34が最適霧化位置データベースの情報を参照しながら、2軸移動ステージ25,27の動作をプログラム制御できる。この場合、乾燥工程に先立ち、貫通孔ビア222の内径、有底孔ビア225の内径、絶縁基板221の材質・厚み・構造等の種々の被処理基板22a,22bの製品情報を、被処理基板情報データベースに格納しておき、プロセッサ34が最適霧化位置データベースと被処理基板情報データベースとに格納された情報をそれぞれ読み出しながら、2軸移動ステージ25,27をプログラム制御するような運用にしても良い。 The operation method (operation) of the biaxial moving stage 25 described in the first embodiment and the biaxial moving stage 27 described in the second embodiment can be variously modified. . For example, if the types of substrates to be processed 22a and 22b are routine cleaning steps and drying steps, the inner diameter of the through-hole via 222, the material, thickness, and structure of the insulating substrate 221 are different. The optimum atomization position P opt is sequentially measured for each of the various substrates to be processed 22a, the inner diameter of the bottomed hole via 225, the material / thickness / structure of the insulating substrate 221, etc. It is also possible to store the recipe in the atomization position database as a recipe. By doing so, the processor 34 programs the operations of the two-axis movement stages 25 and 27 while referring to the information in the optimum atomization position database. Can be controlled. In this case, prior to the drying process, the product information of the various substrates 22a and 22b such as the inner diameter of the through hole via 222, the inner diameter of the bottomed hole via 225, and the material / thickness / structure of the insulating substrate 221 The information is stored in the information database, and the processor 34 is programmed to control the two-axis moving stages 25 and 27 while reading the information stored in the optimum atomization position database and the processed substrate information database, respectively. good.

更に、2軸移動ステージ25,27の移動の粗調整を、最適霧化位置データベースと被処理基板情報データベースとに格納された情報を用いてプログラム制御で行い、最終的な微調整は、超音波検出器24の出力を、振動子駆動制御装置35、反射板位置制御装置33及び基板位置制御装置32に帰還し、反射板23における音圧の位相と超音波振動子21の印加電圧の位相の関係より、超音波振動子21と反射板23の最適距離を微調整し、且つ被処理基板22a,22bの位置を微調整するような運用とし、常に、最適条件において霧化現象が効率よく発現するように、自動的に制御し、追尾するようにしてもよい。このように、プログラム制御を併用しながら、帰還制御することにより、製造ラインのスループットを向上させることも可能である。   Further, coarse adjustment of the movement of the two-axis moving stages 25 and 27 is performed by program control using information stored in the optimum atomization position database and the substrate information database to be processed, and the final fine adjustment is performed using ultrasonic waves. The output of the detector 24 is fed back to the transducer drive control device 35, the reflector position control device 33, and the substrate position control device 32, and the phase of the sound pressure on the reflector 23 and the phase of the applied voltage of the ultrasonic transducer 21 are compared. From the relationship, the operation of finely adjusting the optimum distance between the ultrasonic transducer 21 and the reflecting plate 23 and finely adjusting the positions of the substrates 22a and 22b to be processed is always performed efficiently under the optimum conditions. As such, it may be automatically controlled and tracked. Thus, the throughput of the production line can be improved by performing feedback control while using program control together.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な、特許請求の範囲の記載に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is determined only by the invention specific matters according to the description of the scope of claims, which is appropriate from the above description.

21…超音波振動子
22a,22b…被処理基板
23…反射板
24…超音波検出器
25,27…2軸移動ステージ
26…1軸移動ステージ
31…増幅器
32…基板位置制御装置
33…反射板位置制御装置
34…プロセッサ
35…振動子駆動制御装置
221…絶縁基板
222…貫通孔ビア
223…水
223S…水滴
223m…水滴
225…有底孔ビア
231…貫通孔
DESCRIPTION OF SYMBOLS 21 ... Ultrasonic vibrator 22a, 22b ... Substrate to be processed 23 ... Reflector 24 ... Ultrasonic detector 25, 27 ... Two-axis movement stage 26 ... One-axis movement stage 31 ... Amplifier 32 ... Substrate position control device 33 ... Reflector Position control device 34 ... Processor 35 ... Transducer drive control device 221 ... Insulating substrate 222 ... Through hole via 223 ... Water 223S ... Water droplet 223m ... Water droplet 225 ... Bottom hole via 231 ... Through hole

Claims (11)

超音波を発生する超音波振動子と、
該超音波振動子を駆動制御する振動子駆動制御装置と、
前記超音波を反射し、空気中に前記超音波の定在波を励振させる反射板と、
前記定在波の節の位置の近傍の最適霧化位置に被処理基板を移動させる基板位置制御機構
とを備え、前記最適霧化位置において前記被処理基板の凹部に溜まった液体を霧化して除去することを特徴とする超音波乾燥装置。
An ultrasonic transducer that generates ultrasonic waves;
A vibrator drive control device for driving and controlling the ultrasonic vibrator;
A reflector that reflects the ultrasonic waves and excites the standing waves of the ultrasonic waves in the air;
A substrate position control mechanism for moving the substrate to be processed to an optimum atomization position in the vicinity of the position of the node of the standing wave, and atomizing the liquid accumulated in the recess of the substrate to be processed at the optimum atomization position. An ultrasonic drying apparatus characterized by removing.
前記反射板に設けられ、前記超音波を検出する超音波検出器を更に備えることを特徴とする請求項1に記載の超音波乾燥装置。   The ultrasonic drying apparatus according to claim 1, further comprising an ultrasonic detector that is provided on the reflection plate and detects the ultrasonic wave. 前記超音波検出器の出力が、前記振動子駆動制御装置に帰還され、前記超音波振動子の出力が制御されることを特徴とする請求項2に記載の超音波乾燥装置。   The ultrasonic drying apparatus according to claim 2, wherein an output of the ultrasonic detector is fed back to the vibrator drive control device, and an output of the ultrasonic vibrator is controlled. 前記超音波検出器の出力により、前記反射板が前記定在波を励振するように、前記反射板の位置を制御する反射板位置制御機構を更に備えることを特徴とする請求項2又は3に記載の超音波乾燥装置。   4. The reflection plate position control mechanism for controlling the position of the reflection plate so that the reflection plate excites the standing wave by the output of the ultrasonic detector. The ultrasonic drying apparatus as described. 前記超音波検出器の出力を、更に、前記反射板位置制御機構に帰還して、前記最適霧化位置に前記被処理基板を移動させることを特徴とする請求項4に記載の超音波乾燥装置。   The ultrasonic drying apparatus according to claim 4, wherein the output of the ultrasonic detector is further fed back to the reflector position control mechanism to move the substrate to be processed to the optimum atomization position. . 前記超音波検出器の出力を、前記反射板位置制御機構及び前記反射板位置制御機構にそれぞれ帰還して、前記被処理基板と前記反射板を同時に移動させることを特徴とする請求項2又は3に記載の超音波乾燥装置。   4. The output of the ultrasonic detector is fed back to the reflecting plate position control mechanism and the reflecting plate position control mechanism, respectively, and the substrate to be processed and the reflecting plate are moved simultaneously. The ultrasonic drying apparatus described in 1. 凹部を有する被処理基板を、液体でウェット洗浄する洗浄工程と、
該洗浄工程の後、超音波を発生する超音波振動子、該超音波振動子を駆動制御する振動子駆動制御装置、前記超音波を反射し、空気中に前記超音波の定在波を励振させる反射板を有する超音波乾燥装置を用い、前記超音波振動子と前記反射板の間の前記定在波の節の位置の近傍の最適霧化位置に前記被処理基板を移動させる工程と、
前記最適霧化位置において、前記被処理基板の凹部に溜まった液体を前記超音波によって霧化して除去する工程
とを含むことを特徴とする基板処理方法。
A cleaning step of wet-cleaning the substrate to be processed having a recess with a liquid;
After the cleaning step, an ultrasonic vibrator that generates ultrasonic waves, a vibrator drive control device that drives and controls the ultrasonic vibrators, reflects the ultrasonic waves, and excites the standing waves of the ultrasonic waves in the air Using an ultrasonic drying apparatus having a reflecting plate to move the substrate to be processed to an optimal atomization position in the vicinity of the position of the standing wave node between the ultrasonic transducer and the reflecting plate;
And a step of atomizing and removing the liquid accumulated in the concave portion of the substrate to be processed by the ultrasonic wave at the optimum atomization position.
前記霧化して除去する工程において、前記反射板に設けられた超音波検出器によって、前記超音波を検出し、前記超音波検出器の出力を前記振動子駆動制御装置に帰還することにより、前記超音波振動子の出力を制御することを特徴とする請求項7に記載の基板処理方法。   In the step of atomizing and removing, the ultrasonic detector provided on the reflector detects the ultrasonic wave and returns the output of the ultrasonic detector to the transducer drive control device, thereby The substrate processing method according to claim 7, wherein an output of the ultrasonic vibrator is controlled. 前記霧化して除去する工程において、前記超音波検出器の出力を帰還制御して、前記反射板が前記定在波を励振するように、前記反射板の位置を調整することを特徴とする請求項8に記載の基板処理方法。   In the step of removing by atomization, feedback control is performed on the output of the ultrasonic detector, and the position of the reflecting plate is adjusted so that the reflecting plate excites the standing wave. Item 9. The substrate processing method according to Item 8. 前記霧化して除去する工程において、更に、前記超音波検出器の出力を帰還制御して、前記最適霧化位置に前記被処理基板を移動させることを特徴とする請求項9に記載の基板処理方法。   The substrate processing according to claim 9, wherein in the step of removing by atomization, the output of the ultrasonic detector is further feedback-controlled to move the substrate to be processed to the optimum atomization position. Method. 前記霧化して除去する工程において、前記超音波検出器の出力を帰還制御して、前記被処理基板と前記反射板を同時に移動させることを特徴とする請求項8に記載の基板処理方法。   9. The substrate processing method according to claim 8, wherein in the step of atomizing and removing, the output of the ultrasonic detector is feedback-controlled to move the substrate to be processed and the reflecting plate at the same time.
JP2010199923A 2010-09-07 2010-09-07 Ultrasonic drying equipment and substrate treatment method Withdrawn JP2012057842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010199923A JP2012057842A (en) 2010-09-07 2010-09-07 Ultrasonic drying equipment and substrate treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010199923A JP2012057842A (en) 2010-09-07 2010-09-07 Ultrasonic drying equipment and substrate treatment method

Publications (1)

Publication Number Publication Date
JP2012057842A true JP2012057842A (en) 2012-03-22

Family

ID=46055163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010199923A Withdrawn JP2012057842A (en) 2010-09-07 2010-09-07 Ultrasonic drying equipment and substrate treatment method

Country Status (1)

Country Link
JP (1) JP2012057842A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182042A (en) * 2014-03-25 2015-10-22 日本バイリーン株式会社 Method and device for marking desired portion of sheet-like member
WO2018214714A1 (en) * 2017-05-24 2018-11-29 Oppo广东移动通信有限公司 Electro-acoustic transducer, and electronic device
JP2020139637A (en) * 2019-02-26 2020-09-03 Toa株式会社 Device of dropping and removing liquid by sound, and method of dropping and removing liquid by sound
KR102220767B1 (en) * 2020-05-12 2021-02-26 신동혁 Moisture removal device using ultrasound and hand dryer having the same
CN112762701A (en) * 2019-10-21 2021-05-07 荣耀终端有限公司 Water removal method and device, terminal and non-transitory computer readable storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015182042A (en) * 2014-03-25 2015-10-22 日本バイリーン株式会社 Method and device for marking desired portion of sheet-like member
WO2018214714A1 (en) * 2017-05-24 2018-11-29 Oppo广东移动通信有限公司 Electro-acoustic transducer, and electronic device
US10863293B2 (en) 2017-05-24 2020-12-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electro-acoustic conversion device and terminal
JP2020139637A (en) * 2019-02-26 2020-09-03 Toa株式会社 Device of dropping and removing liquid by sound, and method of dropping and removing liquid by sound
JP7177974B2 (en) 2019-02-26 2022-11-25 Toa株式会社 Acoustic drip removal device and acoustic drip removal method
CN112762701A (en) * 2019-10-21 2021-05-07 荣耀终端有限公司 Water removal method and device, terminal and non-transitory computer readable storage medium
CN112762701B (en) * 2019-10-21 2022-07-01 荣耀终端有限公司 Water removal method and device, terminal and non-transitory computer readable storage medium
KR102220767B1 (en) * 2020-05-12 2021-02-26 신동혁 Moisture removal device using ultrasound and hand dryer having the same
WO2021230529A1 (en) * 2020-05-12 2021-11-18 신동혁 Moisture removal device using ultrasound and hand dryer comprising same

Similar Documents

Publication Publication Date Title
JP2012057842A (en) Ultrasonic drying equipment and substrate treatment method
KR101437301B1 (en) Ultrasonic cleaning device and ultrasonic cleaning method
KR101507185B1 (en) Device for transporting and holding objects or material in a contact free manner
WO2017154937A1 (en) Mist generating device, film forming device, mist generating method, film forming method, and device manufacturing method
JP7249924B2 (en) Sensors and inspection equipment
CN106989701B (en) Method and system for measuring gap and thickness
JPH03222419A (en) Supersonic cleaning device
US20140109934A1 (en) Apparatus for removing particles from printed circuit board and method for removing particles from printed circuit board
JP2012217876A (en) Noncontact cleaning method using ultrasonic wave
US20090303840A1 (en) Method for removing micro-debris and device of the same
JP4533406B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP3322163B2 (en) Ultrasonic cleaning method and apparatus
JP2000107710A (en) Ultrasonic substrate treatment apparatus
WO2019124135A1 (en) Film-forming method
JP2013051356A (en) Ultrasonic cleaning method and its device
EP1743715B1 (en) An ultrasonic edge washing apparatus for washing an edge of a material
JP5813296B2 (en) Method and apparatus for controlling optimal operation of acoustic cleaning
JP2007309901A (en) Water level detection device and facility equipment
JP4123746B2 (en) Fluid processing equipment
JP3783174B2 (en) Flowing water type ultrasonic cleaning equipment
JP4561336B2 (en) Bubble detection device and coating device using the same
JP3367336B2 (en) Apparatus and method for drying a washed product
JP7373848B2 (en) Acoustic foreign object removal device
KR101662287B1 (en) Ultrasonic cleaning apparatus
JP5264820B2 (en) Crack detection apparatus and crack detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20131203