JPWO2017221401A1 - Heat exchanger and refrigeration cycle apparatus provided with refrigerant branching distributor - Google Patents

Heat exchanger and refrigeration cycle apparatus provided with refrigerant branching distributor Download PDF

Info

Publication number
JPWO2017221401A1
JPWO2017221401A1 JP2018523251A JP2018523251A JPWO2017221401A1 JP WO2017221401 A1 JPWO2017221401 A1 JP WO2017221401A1 JP 2018523251 A JP2018523251 A JP 2018523251A JP 2018523251 A JP2018523251 A JP 2018523251A JP WO2017221401 A1 JPWO2017221401 A1 JP WO2017221401A1
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
pipe
heat exchanger
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018523251A
Other languages
Japanese (ja)
Other versions
JP6668469B2 (en
Inventor
良太 赤岩
良太 赤岩
真哉 東井上
真哉 東井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017221401A1 publication Critical patent/JPWO2017221401A1/en
Application granted granted Critical
Publication of JP6668469B2 publication Critical patent/JP6668469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions
    • F25B41/45Arrangements for diverging or converging flows, e.g. branch lines or junctions for flow control on the upstream side of the diverging point, e.g. with spiral structure for generating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02742Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using two four-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

冷凍サイクル装置(1)には、液冷媒とガス冷媒との二相状態の冷媒を液比率の異なる冷媒に分岐する分岐分配部(11)が設けられている。分岐分配部(11)は、曲がり配管(33)を含む配管(41)、分岐配管(31)、配管(43)および配管(44)を備えている。配管(41)を流れてきた冷媒は、曲がり配管(33)と分岐配管(31)を流れることで、液比率の高い冷媒と、液比率の低い冷媒とに分配される。液比率の高い冷媒は、配管(47)を流れて風量の多い熱交換器(7a)へ送られる。液比率の低い冷媒は、配管(48)を流れて風量の少ない熱交換器(7b)へ送られる。  The refrigeration cycle apparatus (1) is provided with a branch distribution unit (11) for branching a two-phase refrigerant of a liquid refrigerant and a gas refrigerant into refrigerants having different liquid ratios. The branch distributor (11) includes a pipe (41) including a bent pipe (33), a branch pipe (31), a pipe (43), and a pipe (44). The refrigerant that has flowed through the pipe (41) flows through the bent pipe (33) and the branch pipe (31), and is distributed to a refrigerant having a high liquid ratio and a refrigerant having a low liquid ratio. The refrigerant having a high liquid ratio flows through the pipe (47) and is sent to the heat exchanger (7a) having a large air volume. The refrigerant having a low liquid ratio flows through the pipe (48) and is sent to the heat exchanger (7b) having a small air volume.

Description

本発明は、冷媒分岐分配器およびそれを備えた熱交換器ならびに冷凍サイクル装置に関し、特に、液冷媒とガス冷媒との二相状態の冷媒を液比率の異なる冷媒に分岐しうる冷媒分岐分配器と、その冷媒分岐分配器を備えた熱交換器と、さらに、その熱交換器を備えた冷凍サイクル装置とに関するものである。   The present invention relates to a refrigerant branching distributor, a heat exchanger including the refrigerant, and a refrigeration cycle apparatus, and more particularly, a refrigerant branching distributor capable of branching a two-phase refrigerant of a liquid refrigerant and a gas refrigerant into refrigerants having different liquid ratios. And a heat exchanger including the refrigerant branching distributor and a refrigeration cycle apparatus including the heat exchanger.

近年、空気調和装置(冷凍サイクル装置)としてのヒートポンプ装置またはカーエアコン等においては、熱交換効率を向上させるために、また、冷媒の充てん量を削減するために、伝熱管の細径化、または、伝熱管の扁平化が進められている。伝熱管が細径化されたことによって、流路の圧力損失は大きくなる。その圧力損失を低減するために、冷媒の経路数を増やした熱交換器が多く製品化されてきている。   In recent years, in a heat pump device or a car air conditioner as an air conditioner (refrigeration cycle device), in order to improve heat exchange efficiency and to reduce the charging amount of refrigerant, The flattening of heat transfer tubes is being promoted. By reducing the diameter of the heat transfer tube, the pressure loss in the flow path increases. In order to reduce the pressure loss, many heat exchangers with an increased number of refrigerant paths have been commercialized.

一般に、空気の温度を下げるために熱交換器を用いる場合、その熱交換器は蒸発器(エバポレータ)として機能する。蒸発器としての熱交換器には、冷媒は、ガス冷媒と液冷媒とが混在した気液二相流の状態で流入する。ガス冷媒と液冷媒とでは、密度が数十倍程度異なる。   In general, when a heat exchanger is used to lower the temperature of air, the heat exchanger functions as an evaporator. The refrigerant flows into the heat exchanger as the evaporator in a gas-liquid two-phase flow state in which a gas refrigerant and a liquid refrigerant are mixed. The density of the gas refrigerant and the liquid refrigerant differ by several tens of times.

熱交換器に流入した二相状態の冷媒のうち、主に液冷媒が空気の熱を吸収して蒸発しガス冷媒となる。これにより、熱交換器からはガス冷媒(単相)が送り出されることになる。熱交換器を通過する空気は、液冷媒が相変化する際の潜熱(蒸発熱)が奪われることで冷気となる。   Of the two-phase refrigerant flowing into the heat exchanger, the liquid refrigerant mainly absorbs the heat of the air and evaporates to become a gas refrigerant. Thereby, a gas refrigerant (single phase) is sent out from the heat exchanger. The air passing through the heat exchanger becomes cold due to the loss of latent heat (heat of evaporation) when the liquid refrigerant undergoes a phase change.

熱交換器では、熱交換器を流れる空気の風量が多い部分と少ない部分とが存在している。風量が多い熱交換器の部分と風量が少ない熱交換器の部分とでは、それぞれ相応の熱交換が行われ、風量が多い熱交換器の部分ほど、効率よく熱交換が行われることになる。   In the heat exchanger, there are a portion where the amount of air flowing through the heat exchanger is large and a portion where the air volume is small. Corresponding heat exchange is performed between the portion of the heat exchanger with a large air volume and the portion of the heat exchanger with a small air volume, and the heat exchanger portion with a larger air volume performs heat exchange more efficiently.

ガス冷媒の密度と液冷媒の密度とでは密度差があり、密度のより大きい液冷媒が熱交換器におけるより下段のパスに流れ込みやすくなる。このため、空気の風量が少ない熱交換器の部分に、液冷媒がより多く流れることがある。そのような場合には、液冷媒が完全に蒸発しきれずに残ってしまい、冷媒が、液冷媒とガス冷媒との二相状態で熱交換器から送り出されることになる。その結果、熱交換器における熱交換率が低下してしまうという問題がある。   There is a density difference between the density of the gas refrigerant and the density of the liquid refrigerant, and the liquid refrigerant having a higher density is likely to flow into a lower path in the heat exchanger. For this reason, more liquid refrigerant may flow through the heat exchanger where the air volume is small. In such a case, the liquid refrigerant remains without being completely evaporated, and the refrigerant is sent out from the heat exchanger in a two-phase state of the liquid refrigerant and the gas refrigerant. As a result, there exists a problem that the heat exchange rate in a heat exchanger will fall.

このような問題を解消するために、さまざまな改善案が提案されている。たとえば、特許文献1では、熱交換器のパスに関する提案がなされている。特許文献2では、冷媒を分ける冷媒分配器に関する提案がなされている。   In order to solve such problems, various improvement proposals have been proposed. For example, in patent document 1, the proposal regarding the path | route of a heat exchanger is made | formed. In patent document 2, the proposal regarding the refrigerant distributor which divides a refrigerant | coolant is made | formed.

特開2015−87074号公報Japanese Patent Laying-Open No. 2015-87074 特開2014−25660号公報JP 2014-25660 A

従来、熱交換器を蒸発器として使用する場合に、液冷媒とガス冷媒との二相状態の冷媒を、空気等と効率よく熱交換させることが求められている。   Conventionally, when a heat exchanger is used as an evaporator, it is required to efficiently exchange heat between air and the like in a two-phase refrigerant consisting of a liquid refrigerant and a gas refrigerant.

本発明は、そのような開発の一環としてなされたものであり、一つの目的は、二相状態の冷媒を効率よく熱交換させる冷媒分岐分配器を提供することであり、他の目的は、そのような冷媒分岐分配器を備えた熱交換器を提供することであり、さらに他の目的は、そのような熱交換器を備えた冷凍サイクル装置を提供することである。   The present invention has been made as part of such development, and one object is to provide a refrigerant branch distributor that efficiently exchanges heat between two-phase refrigerants, and another object is to It is providing the heat exchanger provided with such a refrigerant | coolant branch distributor, and the other objective is to provide the refrigerating-cycle apparatus provided with such a heat exchanger.

本発明に係る冷媒分配器は、第1流路、第2流路および第3流路と、分岐部とを備えている。分岐部は、第1流路に接続されるとともに、第2流路と第3流路とに接続され、第1流路から流入する液冷媒とガス冷媒とを含む冷媒を、第2流路と第3流路とに分岐する。液冷媒とガス冷媒との重量比における液冷媒の比率を液比率とする。第2流路に分岐した第1冷媒の第1液比率は、第3流路に分岐した第2冷媒の第2液比率よりも高い。   The refrigerant distributor according to the present invention includes a first flow path, a second flow path, a third flow path, and a branch portion. The branch portion is connected to the first flow path, is connected to the second flow path and the third flow path, and the refrigerant including the liquid refrigerant and the gas refrigerant flowing in from the first flow path is supplied to the second flow path. And the third flow path. The ratio of the liquid refrigerant in the weight ratio between the liquid refrigerant and the gas refrigerant is defined as the liquid ratio. The first liquid ratio of the first refrigerant branched into the second flow path is higher than the second liquid ratio of the second refrigerant branched into the third flow path.

本発明に係る熱交換器は、上記冷媒分岐分配器を備えた熱交換器であり、第1熱交換器と第2熱交換器とを備えている。第1熱交換器では、冷媒と第1流体との間で熱交換行われる。第2熱交換器では、冷媒と第2流体との間で熱交換が行われる。第1流体の量は第2流体の量よりも多い。第2流路は第1熱交換器に接続されている。第3流路は第2熱交換器に接続されている。   The heat exchanger which concerns on this invention is a heat exchanger provided with the said refrigerant | coolant branch distributor, and is provided with the 1st heat exchanger and the 2nd heat exchanger. In the first heat exchanger, heat is exchanged between the refrigerant and the first fluid. In the second heat exchanger, heat exchange is performed between the refrigerant and the second fluid. The amount of the first fluid is greater than the amount of the second fluid. The second flow path is connected to the first heat exchanger. The third flow path is connected to the second heat exchanger.

本発明に係る冷凍サイクル装置は、上記熱交換器を備えた冷凍サイクル装置である。   The refrigeration cycle apparatus according to the present invention is a refrigeration cycle apparatus provided with the heat exchanger.

本発明に係る冷媒分岐分配器によれば、液比率の高い第1冷媒を第2流路に積極的に送り出し、液比率の低い第2冷媒第3流路を積極的に送り出して、効率的な熱交換を行わせることができる。   According to the refrigerant branching and distributing device according to the present invention, the first refrigerant having a high liquid ratio is positively sent to the second flow path, and the second refrigerant third flow path having a low liquid ratio is positively sent to efficiently. Heat exchange can be performed.

本発明に係る熱交換器によれば、上記冷媒分岐分配器の第2流路が第1熱交換器に接続され、第3流路が第2熱交換器に接続されている。これにより、第2熱交換器では、液比率の低い第2冷媒と第2流体との間で熱交換が行われる。第1熱交換器では、液比率の高い第1冷媒と、第2流体の量よりも多い第1流体との間で熱交換が行われる。その結果、液比率の高い第2冷媒を効率的に熱交換させることができる。   According to the heat exchanger according to the present invention, the second flow path of the refrigerant branching distributor is connected to the first heat exchanger, and the third flow path is connected to the second heat exchanger. Thereby, in a 2nd heat exchanger, heat exchange is performed between the 2nd refrigerant | coolant and 2nd fluid with a low liquid ratio. In the first heat exchanger, heat exchange is performed between the first refrigerant having a high liquid ratio and the first fluid larger than the amount of the second fluid. As a result, the second refrigerant having a high liquid ratio can be efficiently heat-exchanged.

本発明に係る冷凍サイクル装置によれば、上記熱交換器を備えていることで、冷媒の熱交換を効率的に行うことができる。   According to the refrigeration cycle apparatus according to the present invention, the heat exchange of the refrigerant can be efficiently performed by providing the heat exchanger.

実施の形態1に係る冷媒分配器を備えた室外ユニットを有する冷凍サイクル装置の構成を示す図である。It is a figure which shows the structure of the refrigerating-cycle apparatus which has an outdoor unit provided with the refrigerant distributor which concerns on Embodiment 1. FIG. 同実施の形態において、室外ユニットを示す斜視図である。In the embodiment, it is a perspective view which shows an outdoor unit. 同実施の形態において、室外熱交換器に送り込まれる風量と熱交換器との関係の一例を示す斜視図である。In the same embodiment, it is a perspective view which shows an example of the relationship between the air volume sent into an outdoor heat exchanger, and a heat exchanger. 同実施の形態において、一部の室外熱交換器における伝熱管の引き回し構造の一例と、一部の室外熱交換器と分岐分配部との接続関係の一例とを示す図である。In the embodiment, it is a figure which shows an example of the routing structure of the heat exchanger tube in a part of outdoor heat exchanger, and an example of the connection relation of a part of outdoor heat exchanger and a branch distribution part. 同実施の形態において、室外熱交換器と分岐分配部との接続関係の一例を示す図である。In the embodiment, it is a figure which shows an example of the connection relation of an outdoor heat exchanger and a branch distribution part. 同実施の形態において、室外ユニットに配置された分岐分配部を示す部分図である。In the same embodiment, it is a fragmentary figure which shows the branch distribution part arrange | positioned at the outdoor unit. 同実施の形態において、図6に示す断面線VII−VIIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a distribution of refrigerant in a pipe taken along a cross-sectional line VII-VII shown in FIG. 6 in the same embodiment. 実施の形態2に係る、室外ユニットに配置された分岐分配部を含む冷媒分配器を示す部分図である。FIG. 10 is a partial view showing a refrigerant distributor including a branch distribution unit arranged in an outdoor unit according to the second embodiment. 同実施の形態において、図8に示す断面線IX−IXにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line IX-IX shown in FIG. 8 in the same embodiment. 同実施の形態において、図8に示す断面線X−Xにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe at the cross-sectional line XX shown in FIG. 8 in the same embodiment. 同実施の形態において、図8に示す断面線XI−XIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of the distribution of refrigerant in the pipe taken along a cross-sectional line XI-XI shown in FIG. 8 in the same embodiment. 同実施の形態において、図8に示す断面線XII−XIIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of a distribution of refrigerant in a pipe taken along a cross-sectional line XII-XII shown in FIG. 8 in the same embodiment. 同実施の形態において、変形例に係る、室外ユニットに配置された分岐分配部を示す部分図である。In the same embodiment, it is a fragmentary figure which shows the branch distribution part arrange | positioned at the outdoor unit based on a modification. 同実施の形態において、図13に示す断面線XIV−XIVにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XIV-XIV shown in FIG. 13 in the same embodiment. 同実施の形態において、図13に示す断面線XV−XVにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XV-XV shown in FIG. 13 in the same embodiment. 同実施の形態において、図13に示す断面線XVI−XVIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XVI-XVI shown in FIG. 13 in the same embodiment. 同実施の形態において、図13に示す断面線XVII−XVIIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XVII-XVII shown in FIG. 13 in the same embodiment. 実施の形態3に係る、室外ユニットに配置された分岐分配部を示す部分図である。It is a fragmentary figure which shows the branch distribution part arrange | positioned at the outdoor unit based on Embodiment 3. FIG. 同実施の形態において、分岐分配部に使用される第1例に係るオリフィスの、図18に示される断面線XIX−XIXにおける断面図である。FIG. 19 is a cross-sectional view taken along a cross-sectional line XIX-XIX shown in FIG. 18, of the orifice according to the first example used for the branch distribution unit in the same embodiment. 同実施の形態において、分岐分配部に使用される第2例に係るオリフィスの、図18に示される断面線XIX−XIXにおける断面図である。FIG. 19 is a cross-sectional view taken along a cross-sectional line XIX-XIX shown in FIG. 18, of an orifice according to a second example used for the branch distribution unit in the same embodiment. 同実施の形態において、分岐分配部に使用される第3例に係るオリフィスの、図18に示される断面線XIX−XIXにおける断面図である。FIG. 19 is a cross-sectional view taken along a cross-sectional line XIX-XIX shown in FIG. 18, of an orifice according to a third example used for the branch distribution unit in the same embodiment. 同実施の形態において、図18に示す断面線XXII−XXIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XXII-XXII shown in FIG. 同実施の形態において、図18に示す断面線XXIII−XXIIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XXIII-XXIII shown in FIG. 同実施の形態において、図18に示す断面線XXIV−XXIVにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 19 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXIV-XXIV shown in FIG. 18 in the same embodiment. 実施の形態4に係る、室外ユニットに配置された分岐分配部を含む冷媒分配器を示す部分図である。FIG. 10 is a partial view showing a refrigerant distributor including a branch distribution unit arranged in an outdoor unit according to a fourth embodiment. 同実施の形態において、図25に示す断面線XXVI−XXVIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 26 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXVI-XXVI shown in FIG. 25 in the same embodiment. 同実施の形態において、図25に示す断面線XXVII−XXVIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XXVII-XXVII shown in FIG. 同実施の形態において、図25に示す断面線XXVIII−XXVIIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XXVIII-XXVIII shown in FIG. 同実施の形態において、図25に示す断面線XXIX−XXIXにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 26 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXIX-XXIX shown in FIG. 25 in the same embodiment. 同実施の形態において、図25に示す断面線XXX−XXXにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 26 is a cross-sectional view showing an example of a distribution of refrigerant in a pipe taken along a cross-sectional line XXX-XXX shown in FIG. 25 in the same embodiment. 同実施の形態において、図25に示す断面線XXXI−XXXIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 26 is a cross-sectional view showing an example of a refrigerant distribution in a pipe taken along a cross-sectional line XXXI-XXXI shown in FIG. 25 in the embodiment. 同実施の形態において、図25に示す断面線XXXII−XXXIIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 26 is a cross-sectional view showing an example of a refrigerant distribution in a pipe taken along a cross-sectional line XXXII-XXXII shown in FIG. 25 in the same embodiment. 同実施の形態において、変形例に係る、室外ユニットに配置された分岐分配部を示す部分図である。In the same embodiment, it is a fragmentary figure which shows the branch distribution part arrange | positioned at the outdoor unit based on a modification. 同実施の形態において、図33に示す断面線XXXIV−XXXIVにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of a distribution of refrigerant in the pipe taken along a cross-sectional line XXXIV-XXXIV shown in FIG. 33 in the same embodiment. 同実施の形態において、図33に示す断面線XXXV−XXXVにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of a distribution of refrigerant in the pipe taken along a cross-sectional line XXXV-XXXV shown in FIG. 33 in the same embodiment. 同実施の形態において、図33に示す断面線XXXVI−XXXVIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXXVI-XXXVI shown in FIG. 33 in the same embodiment. 同実施の形態において、図33に示す断面線XXXVII−XXXVIIにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXXVII-XXXVII shown in FIG. 33 in the same embodiment. 同実施の形態において、図33に示す断面線XXXVIII−XXXVIIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XXXVIII-XXXVIII shown in FIG. 同実施の形態において、図33に示す断面線XXXIX−XXXIXにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XXXIX-XXXIX shown in FIG. 33 in the same embodiment. 同実施の形態において、図33に示す断面線XL−XLにおける、配管内の冷媒の分布の一例を示す断面図である。FIG. 34 is a cross-sectional view showing an example of the distribution of the refrigerant in the pipe along the cross-sectional line XL-XL shown in FIG. 33 in the same embodiment. 実施の形態5に係る、室外ユニットに配置された分岐分配部を示す部分図である。It is a fragmentary figure which shows the branch distribution part arrange | positioned at the outdoor unit based on Embodiment 5. FIG. 同実施の形態において、図41に示す断面線XLII−XLIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLII-XLII shown in FIG. 同実施の形態において、図41に示す断面線XLIII−XLIIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLIII-XLIII shown in FIG. 同実施の形態において、図41に示す断面線XLIV−XLIVにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLIV-XLIV shown in FIG. 同実施の形態において、図41に示す断面線XLV−XLVにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLV-XLV shown in FIG. 同実施の形態において、図41に示す断面線XLVI−XLVIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLVI-XLVI shown in FIG. 同実施の形態において、図41に示す断面線XLVII−XLVIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLVII-XLVII shown in FIG. 同実施の形態において、図41に示す断面線XLVIII−XLVIIIにおける、配管内の冷媒の分布の一例を示す断面図である。In the embodiment, it is sectional drawing which shows an example of distribution of the refrigerant | coolant in piping in sectional line XLVIII-XLVIII shown in FIG.

実施の形態1.
実施の形態1に係る冷媒分配器を備えた冷凍サイクル装置について説明する。はじめに、冷凍サイクル装置の構成について説明する。ここでは、冷凍サイクル装置として、ビル用マルチエアコンを一例として挙げる。
Embodiment 1 FIG.
A refrigeration cycle apparatus including the refrigerant distributor according to Embodiment 1 will be described. First, the configuration of the refrigeration cycle apparatus will be described. Here, a building multi-air conditioner is taken as an example of the refrigeration cycle apparatus.

図1に示すように、冷凍サイクル装置1としてのビル用マルチエアコンでは、一つの室外熱交換器7に対して複数の室内熱交換器15a、15b、15c、15d(15)が接続されている。その室外熱交換器7および室内熱交換器15の他に、冷凍サイクル装置1は、圧縮機3、四方弁5a、5b、室内ファン19a、19b、19c、19d、膨張弁13a、13b、13c、13d、膨張弁9a、9b、冷媒分配器21a、21b、室外ファン17、アキュムレータ23を備えている。   As shown in FIG. 1, in the building multi-air conditioner as the refrigeration cycle apparatus 1, a plurality of indoor heat exchangers 15 a, 15 b, 15 c, 15 d (15) are connected to one outdoor heat exchanger 7. . In addition to the outdoor heat exchanger 7 and the indoor heat exchanger 15, the refrigeration cycle apparatus 1 includes a compressor 3, four-way valves 5a and 5b, indoor fans 19a, 19b, 19c and 19d, expansion valves 13a, 13b and 13c, 13d, expansion valves 9a and 9b, refrigerant distributors 21a and 21b, an outdoor fan 17 and an accumulator 23.

さらに、冷凍サイクル装置1では、冷媒分配器21a、21bと膨張弁13との間に、分岐分配部11が設けられている。分岐分配部11については後述する。なお、分岐分配部11と冷媒分配器21a、21bとの間に設けられている膨張弁9a、9bは、必須ではなく、必要に応じて設けられる。   Further, in the refrigeration cycle apparatus 1, the branch distribution unit 11 is provided between the refrigerant distributors 21 a and 21 b and the expansion valve 13. The branch distribution unit 11 will be described later. In addition, the expansion valves 9a and 9b provided between the branch distribution unit 11 and the refrigerant distributors 21a and 21b are not essential, and are provided as necessary.

次に、ビル用マルチエアコンの動作として、暖房運転について説明する。圧縮機3を駆動させることによって、圧縮機3から高温高圧のガス状態の冷媒が吐出する。吐出した高温高圧のガス冷媒(単相)は、四方弁5a、5bを通り、複数の室内熱交換器15a、15b、15c、15dのそれぞれに流れ込む。   Next, heating operation will be described as the operation of the building multi-air conditioner. By driving the compressor 3, high-temperature and high-pressure gaseous refrigerant is discharged from the compressor 3. The discharged high-temperature and high-pressure gas refrigerant (single phase) passes through the four-way valves 5a and 5b and flows into each of the plurality of indoor heat exchangers 15a, 15b, 15c and 15d.

室内熱交換器15a〜15dのそれぞれには、室内ファン19a、19b、19c、19dによって空気が送り込まれる。室内熱交換器15a〜15dのそれぞれでは、送り込まれた空気と流れ込んだガス冷媒との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して高圧の液冷媒(単相)になる。この熱交換によって、室内熱交換器15a〜15dが配置されている室内のそれぞれが暖房される。   Air is sent into each of the indoor heat exchangers 15a to 15d by indoor fans 19a, 19b, 19c, and 19d. In each of the indoor heat exchangers 15a to 15d, heat exchange is performed between the fed air and the flowing gas refrigerant, and the high-temperature and high-pressure gas refrigerant is condensed to a high-pressure liquid refrigerant (single phase). Become. By this heat exchange, each room in which the indoor heat exchangers 15a to 15d are arranged is heated.

次に、室内熱交換器15a〜15dから送り出された高圧の液冷媒は、膨張弁13a、13b、13c、13dを通過することで、低圧のガス冷媒と液冷媒との二相状態の冷媒になる。   Next, the high-pressure liquid refrigerant sent out from the indoor heat exchangers 15a to 15d passes through the expansion valves 13a, 13b, 13c, and 13d, so that it becomes a two-phase refrigerant of low-pressure gas refrigerant and liquid refrigerant. Become.

その二相状態の冷媒は、室外ユニット25に流れ込む。室外ユニット25に流れ込んだ二相状態の冷媒は、分岐分配部11において、2つに分岐される。2つに分岐された冷媒のうち、一方の冷媒(冷媒A)は、膨張弁9aおよび冷媒分配器21aを経て配管47を流れて室外熱交換器7aに流れ込む。2つに分岐された冷媒のうち、他方の冷媒(冷媒B)は、膨張弁9bおよび冷媒分配器21bを経て配管48を流れて室外熱交換器7bに流れ込む。   The refrigerant in the two-phase state flows into the outdoor unit 25. The refrigerant in the two-phase state that has flowed into the outdoor unit 25 is branched into two in the branch distribution unit 11. Of the two branched refrigerants, one refrigerant (refrigerant A) flows through the piping 47 through the expansion valve 9a and the refrigerant distributor 21a and into the outdoor heat exchanger 7a. Of the two branched refrigerants, the other refrigerant (refrigerant B) flows through the expansion valve 9b and the refrigerant distributor 21b through the pipe 48 and into the outdoor heat exchanger 7b.

室外熱交換器7a、7bでは、室外ファン17によって送り込まれた空気と流れ込んだ冷媒(冷媒A、冷媒B)との間で熱交換が行われて、二相状態の冷媒のうちの液冷媒が蒸発し、低圧のガス冷媒(単相)になる。室外ユニット25から送り出された低圧のガス冷媒は、四方弁5a、5bおよびアキュムレータ23を通って圧縮機3に流れ込む。圧縮機3に流れ込んだ低圧のガス冷媒は、圧縮されて高温高圧のガス冷媒となって、再び圧縮機3から吐出する。以下、このサイクルが繰り返される。   In the outdoor heat exchangers 7a and 7b, heat exchange is performed between the air sent by the outdoor fan 17 and the flowing refrigerant (refrigerant A and refrigerant B), and the liquid refrigerant of the two-phase refrigerant is Evaporates into a low-pressure gas refrigerant (single phase). The low-pressure gas refrigerant sent out from the outdoor unit 25 flows into the compressor 3 through the four-way valves 5a and 5b and the accumulator 23. The low-pressure gas refrigerant that has flowed into the compressor 3 is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor 3 again. Thereafter, this cycle is repeated.

次に、冷房運転について説明する。圧縮機3によって圧縮された高温高圧のガス冷媒は、四方弁5a、5bを通り、室外熱交換器7a、7bに流れ込む。室外熱交換器7a、7bでは、室外ファン17によって送り込まれた空気と流れ込んだガス冷媒との間で熱交換が行われて、高温高圧のガス冷媒は、凝縮して低温高圧の液冷媒(単相)になる。   Next, the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 3 passes through the four-way valves 5a and 5b and flows into the outdoor heat exchangers 7a and 7b. In the outdoor heat exchangers 7a and 7b, heat exchange is performed between the air sent by the outdoor fan 17 and the gas refrigerant flowing in, and the high-temperature and high-pressure gas refrigerant is condensed to a low-temperature and high-pressure liquid refrigerant (simple Phase).

低温高圧の液冷媒は、膨張弁13a〜13d等を通過することによって、低温低圧の液冷媒になる。低温低圧の液冷媒は、複数の室内熱交換器15a〜15dのそれぞれに流れ込む。室内熱交換器15a〜15dでは、室内ファン19a〜19dによって送り込まれた空気と流れ込んだ液冷媒との間で熱交換が行われて、低温低圧の液冷媒は、蒸発して低圧のガス冷媒(単相)になる。この熱交換によって、室内熱交換器15a〜15dが配置されている室内のそれぞれが冷房される。   The low-temperature and high-pressure liquid refrigerant becomes a low-temperature and low-pressure liquid refrigerant by passing through the expansion valves 13a to 13d and the like. The low-temperature and low-pressure liquid refrigerant flows into each of the plurality of indoor heat exchangers 15a to 15d. In the indoor heat exchangers 15a to 15d, heat exchange is performed between the air sent by the indoor fans 19a to 19d and the flowing liquid refrigerant, and the low-temperature and low-pressure liquid refrigerant evaporates to form a low-pressure gas refrigerant ( Single phase). By this heat exchange, each of the rooms where the indoor heat exchangers 15a to 15d are arranged is cooled.

室内熱交換器15a〜15dから送り出された低圧のガス冷媒は、四方弁5a、5bおよびアキュムレータ23を通って圧縮機3に流れ込む。圧縮機に流れ込んだ低圧のガス冷媒は、圧縮されて高温高圧のガス冷媒となって、再び圧縮機から吐出する。以下、このサイクルが繰り返される。   The low-pressure gas refrigerant sent out from the indoor heat exchangers 15a to 15d flows into the compressor 3 through the four-way valves 5a and 5b and the accumulator 23. The low-pressure gas refrigerant flowing into the compressor is compressed to become a high-temperature and high-pressure gas refrigerant, and is discharged from the compressor again. Thereafter, this cycle is repeated.

上述した冷凍サイクル装置1では、室外ユニット25の室外熱交換器7は、暖房運転では蒸発器として機能し、冷房運転では凝縮器として機能する。ビル用マルチエアコンの室外ユニットとして、トップフロー型のファンを備えた室外ユニットがある。図2に示すように、トップフロー型の室外ユニット25では、筐体26の上面部に室外ファン17が取り付けられている。   In the refrigeration cycle apparatus 1 described above, the outdoor heat exchanger 7 of the outdoor unit 25 functions as an evaporator in the heating operation and functions as a condenser in the cooling operation. As an outdoor unit of a building multi air conditioner, there is an outdoor unit having a top flow type fan. As shown in FIG. 2, in the top-flow type outdoor unit 25, the outdoor fan 17 is attached to the upper surface portion of the housing 26.

筐体の4つの側面部のうち、3つの側面部(三方)に、空気を取り入れる空気取り入れ口27が設けられている。図3に示すように、その筐体26内には、室外熱交換器7が配置されている。室外熱交換器7は、3つの空気の取り入れ口(筐体の側面部)に対向するように配置されている。また、筐体26内には、分岐分配部11をはじめ、圧縮機(図示せず)等が配置されている。   Of the four side surfaces of the housing, three side surfaces (three sides) are provided with air intakes 27 for taking in air. As shown in FIG. 3, the outdoor heat exchanger 7 is disposed in the casing 26. The outdoor heat exchanger 7 is disposed so as to face three air intake ports (side surfaces of the housing). In addition, in the casing 26, a branching / distributing unit 11, a compressor (not shown), and the like are arranged.

上述した室外ユニット25では、室外ファン17が筐体26の上面部に取り付けられている。このため、室外熱交換器7では、室外ファン17との距離が短いほど空気の圧力損失が低くなり、室外ファン17との距離が長いほど空気の圧力損失は高くなる。すなわち、室外熱交換器7の上部から下部に向かって圧力損失が徐々に高くなり、室外熱交換器7aを通過する空気の風量が相対的に多く、室外熱交換器7bを通過する空気の風量が相対的に少ない(図3の矢印参照)。   In the outdoor unit 25 described above, the outdoor fan 17 is attached to the upper surface portion of the housing 26. Therefore, in the outdoor heat exchanger 7, the air pressure loss decreases as the distance from the outdoor fan 17 decreases, and the air pressure loss increases as the distance from the outdoor fan 17 increases. That is, the pressure loss gradually increases from the upper part to the lower part of the outdoor heat exchanger 7, the air volume passing through the outdoor heat exchanger 7a is relatively large, and the air volume passing through the outdoor heat exchanger 7b. Is relatively small (see arrows in FIG. 3).

その室外熱交換器7aと配管との接続関係の一例を図4に示す。図4に示すように、室外熱交換器7aは、たとえば、3列の室外熱交換器7aa、7ab、7acから構成される。3列の室外熱交換器7aa、7ab、7acのそれぞれには、伝熱管(図示せず)が取り付けられている。冷媒分配器21aから分岐させた複数の配管47は、1列目の室外熱交換器7aの対応する伝熱管のそれぞれに接続されている。   An example of the connection relationship between the outdoor heat exchanger 7a and the piping is shown in FIG. As shown in FIG. 4, the outdoor heat exchanger 7a is composed of, for example, three rows of outdoor heat exchangers 7aa, 7ab, and 7ac. A heat transfer tube (not shown) is attached to each of the three rows of outdoor heat exchangers 7aa, 7ab, 7ac. The plurality of pipes 47 branched from the refrigerant distributor 21a are connected to the corresponding heat transfer tubes of the outdoor heat exchanger 7a in the first row.

一つの冷媒パスは、1列目の室外熱交換器7aaの伝熱管から2列目の室外熱交換器7abの伝熱管および3列目の室外熱交換器7acの伝熱管を経て冷媒分配器29に繋がっている。図1および図3に示すように、室外熱交換器7aの下方に配置される室外熱交換器7bについても、冷媒分配器21bから分岐させた複数の配管48が接続されている(図5参照)。   One refrigerant path passes from the heat transfer tube of the outdoor heat exchanger 7aa in the first row to the heat transfer tube of the outdoor heat exchanger 7ab in the second row and the heat transfer tube of the outdoor heat exchanger 7ac in the third row. It is connected to. As shown in FIGS. 1 and 3, a plurality of pipes 48 branched from the refrigerant distributor 21b are also connected to the outdoor heat exchanger 7b disposed below the outdoor heat exchanger 7a (see FIG. 5). ).

室外熱交換器7を蒸発器として機能させる場合には、二相状態の冷媒のうち、液冷媒を効率よく蒸発させてガス冷媒にするために、空気の風量がより多い室外熱交換器7aへ流すことが求められる。図5に示すように、そのため、室外ユニット25には、分岐分配部11が設けられている。   When the outdoor heat exchanger 7 is caused to function as an evaporator, in order to efficiently evaporate the liquid refrigerant out of the two-phase refrigerant into a gas refrigerant, the outdoor heat exchanger 7a having a larger air volume is sent to the outdoor heat exchanger 7a. It is required to flow. Therefore, as shown in FIG. 5, the branch distribution unit 11 is provided in the outdoor unit 25.

分岐分配部11では、暖房運転時において、室内熱交換器15から流れてきた二相状態の冷媒が、2系統の冷媒(冷媒A、冷媒B)に分岐される。液冷媒とガス冷媒との重量比において、液冷媒の比率を液比率とする。冷媒Aは、液比率の高い冷媒である。冷媒Bは、液比率の低い冷媒である。分岐分配部11では、液比率の高い冷媒Aと、液比率の低い冷媒Bとにマクロ的に分配される。冷媒Aが冷媒分配器21aによってミクロ的にさらに分配されて、風量の多い室外熱交換器7aへ送られる。冷媒Bが冷媒分配器21bによってさらにミクロ的に分配されて、風量の少ない室外熱交換器7bへ送られる。   In the branch distribution unit 11, during the heating operation, the two-phase refrigerant flowing from the indoor heat exchanger 15 is branched into two systems of refrigerant (refrigerant A and refrigerant B). In the weight ratio between the liquid refrigerant and the gas refrigerant, the ratio of the liquid refrigerant is the liquid ratio. The refrigerant A is a refrigerant with a high liquid ratio. The refrigerant B is a refrigerant with a low liquid ratio. In the branch distribution unit 11, the refrigerant is distributed macroscopically into the refrigerant A having a high liquid ratio and the refrigerant B having a low liquid ratio. The refrigerant A is further microscopically distributed by the refrigerant distributor 21a and sent to the outdoor heat exchanger 7a having a large air volume. The refrigerant B is further microscopically distributed by the refrigerant distributor 21b and sent to the outdoor heat exchanger 7b having a small air volume.

その分岐分配部11の具体的な構造の第1例について説明する。図6に示すように、分岐分配部11は、曲がり配管33を含む配管41(第1流路)、分岐配管31(分岐部)、配管43(第2流路)および配管44(第3流路)を備えている。配管41を流れてきた二相状態の冷媒は、曲がり配管33を流れることで、液冷媒の分布に偏りが生じる。すなわち、遠心力によって、曲がり配管33の外周側の内壁面に沿って流れる液冷媒の量が、内周側の内壁面に沿って流れる液冷媒の量よりも多くなる。   A first example of a specific structure of the branching / distributing unit 11 will be described. As shown in FIG. 6, the branch distributor 11 includes a pipe 41 (first flow path) including a bent pipe 33, a branch pipe 31 (branch section), a pipe 43 (second flow path), and a pipe 44 (third flow). Road). The refrigerant in the two-phase state that has flowed through the pipe 41 flows through the bent pipe 33, thereby causing an uneven distribution of the liquid refrigerant. That is, the amount of liquid refrigerant flowing along the inner wall surface on the outer peripheral side of the bent pipe 33 is larger than the amount of liquid refrigerant flowing along the inner wall surface on the inner peripheral side due to the centrifugal force.

これにより、曲がり配管33を流れた直後の配管41内では、曲がり配管33の外周側に対応する領域に、液比率の高い冷媒(冷媒A)が流れ、曲がり配管33の内周側に対応する領域に、液比率の低い冷媒(冷媒B)が流れる。その状態で配管41を流れた冷媒は、分岐配管31によって冷媒Aと冷媒Bとに分配される。分配された冷媒Aは、配管43、冷媒分配器21aおよび配管47を流れて室外熱交換器7aへ送られる。一方、冷媒Bは配管45、冷媒分配器21bおよび配管48を流れて室外熱交換器7bへ送られる。   Thereby, in the pipe 41 immediately after flowing through the bent pipe 33, the refrigerant (refrigerant A) having a high liquid ratio flows in a region corresponding to the outer peripheral side of the bent pipe 33, and corresponds to the inner peripheral side of the bent pipe 33. A refrigerant having a low liquid ratio (refrigerant B) flows in the region. The refrigerant that has flowed through the pipe 41 in this state is distributed to the refrigerant A and the refrigerant B by the branch pipe 31. The distributed refrigerant A flows through the pipe 43, the refrigerant distributor 21a and the pipe 47 and is sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant B flows through the pipe 45, the refrigerant distributor 21b, and the pipe 48 and is sent to the outdoor heat exchanger 7b.

こうして、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒Aが流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒Bが流れ込むことになる。これにより、二相状態の冷媒と空気との熱交換を効率よく行うことができる。   Thus, in the outdoor unit 25, the refrigerant A having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant B having a low liquid ratio flows into the outdoor heat exchanger 7b having a smaller air volume. Thereby, heat exchange between the two-phase refrigerant and the air can be performed efficiently.

従来、風量のより多い室外熱交換器7aへ、液比率の高い冷媒を流す手法として、室外熱交換器7a、7bに繋がる配管の長さまたは配管の内径等に変えることによって圧力損失を調整する手法がある。つまり、ミクロ的に冷媒を分配する手法がある。ところが、この手法では、配管の本数が増えると、配管の長さを調整することが困難になってくる。また、配管を引き回すための領域も必要になる。さらに、配管の引き回しも複雑になる。   Conventionally, pressure loss is adjusted by changing the length of piping connected to the outdoor heat exchangers 7a and 7b, the inner diameter of the piping, or the like as a method of flowing a refrigerant having a high liquid ratio to the outdoor heat exchanger 7a having a larger air volume. There is a technique. That is, there is a technique for distributing the refrigerant microscopically. However, with this method, as the number of pipes increases, it becomes difficult to adjust the length of the pipes. Moreover, the area | region for routing piping is also needed. Furthermore, the routing of the piping is complicated.

このような手法に対して、上述した分岐分配部11を用いた手法では、曲がり配管33と分岐配管31だけで、簡単な構造をもって、風量のより多い室外熱交換器7aへ液比率の高い冷媒を送り込むことができる。   In contrast to such a method, in the method using the branch distribution unit 11 described above, a refrigerant having a high liquid ratio to the outdoor heat exchanger 7a having a simple structure and a larger air volume is formed by only the bent pipe 33 and the branch pipe 31. Can be sent in.

なお、配管41のうち、曲がり配管33から分岐配管31までの直線部分の長さLは、配管41内の液冷媒が偏った不均一な分布(図7参照)をもって、分岐配管31に流れ込む長さに設定しておく必要がある。ここで、曲がり配管の内径φをDとすると、直線部分の長さLは、L<10×Dという関係を満たす必要がある。直線部分の長さLが、L≧10×Dの場合には、液冷媒が偏った不均一な分布から、液冷媒が、配管41の内壁にほぼ均一に環状に分布する状態に戻ってしまう。このため、室外熱交換器7aへより多くの液冷媒を送り込むことができなくなる。   Of the pipe 41, the length L of the straight portion from the bent pipe 33 to the branch pipe 31 is a length that flows into the branch pipe 31 with an uneven distribution (see FIG. 7) in which the liquid refrigerant in the pipe 41 is biased. It is necessary to set it. Here, when the inner diameter φ of the bent pipe is D, the length L of the straight portion needs to satisfy the relationship L <10 × D. When the length L of the straight line portion is L ≧ 10 × D, the liquid refrigerant returns to a state in which the liquid refrigerant is distributed almost uniformly and annularly on the inner wall of the pipe 41 from the uneven distribution of the liquid refrigerant. . For this reason, it becomes impossible to send more liquid refrigerant into the outdoor heat exchanger 7a.

また、冷媒分配器21a、21bと分岐分配部11との間に、図1に示すように、膨張弁9a、9bを設けてもよい。特に、膨張弁9aの開度を調整することによって、過度の液冷媒が配管43に流れるのを阻止することができる。   Further, expansion valves 9a and 9b may be provided between the refrigerant distributors 21a and 21b and the branch distributor 11 as shown in FIG. In particular, it is possible to prevent excessive liquid refrigerant from flowing into the pipe 43 by adjusting the opening degree of the expansion valve 9a.

実施の形態2.
ここでは、冷媒分岐分配器を成す分岐分配部の第2例について説明する。図8に示すように、分岐分配部11は、アルファベットの「T」の形状に似たT字型分岐配管35a(35)(分岐部)を備えている。T字型分岐配管35aには、一方向に延在する部分(配管部分A)と、その配管部分Aから、一方向とほぼ直交する方向に分岐する部分(配管部分B)とが設けられている。
Embodiment 2. FIG.
Here, the 2nd example of the branch distribution part which comprises a refrigerant | coolant branch distributor is demonstrated. As shown in FIG. 8, the branch distribution unit 11 includes a T-shaped branch pipe 35 a (35) (branch portion) similar to the shape of the alphabet “T”. The T-shaped branch pipe 35a is provided with a part extending in one direction (pipe part A) and a part (pipe part B) branching from the pipe part A in a direction substantially perpendicular to the one direction. Yes.

配管部分Aには、曲がり配管33を含む配管43(第2流路)が接続されている。その配管43に冷媒分配器21aが接続され、さらに、その冷媒分配器21aに複数の配管47が接続されている。一方、配管部分Bには、配管44(第3流路)が接続されている。その配管44に冷媒分配器21bが接続され、さらに、その冷媒分配器21bに複数の配管48が接続されている。複数の配管47は、室外熱交換器7aに接続され、複数の配管48は、室外熱交換器7bに接続されている(図3参照)。   A pipe 43 (second flow path) including a bent pipe 33 is connected to the pipe portion A. The refrigerant distributor 21a is connected to the pipe 43, and a plurality of pipes 47 are connected to the refrigerant distributor 21a. On the other hand, a pipe 44 (third flow path) is connected to the pipe part B. The refrigerant distributor 21b is connected to the pipe 44, and a plurality of pipes 48 are connected to the refrigerant distributor 21b. The plurality of pipes 47 are connected to the outdoor heat exchanger 7a, and the plurality of pipes 48 are connected to the outdoor heat exchanger 7b (see FIG. 3).

なお、これ以外の室外ユニットの構成および冷凍サイクル装置の構成については、図1および図3に示す構成と同様なので、必要である場合を除き、その説明を繰り返さないこととする。   Since the configuration of the outdoor unit and the configuration of the refrigeration cycle apparatus other than the above are the same as those shown in FIGS. 1 and 3, the description thereof will not be repeated unless necessary.

上述した分岐分配部11では、配管41(第1流路)を流れてきた二相状態の冷媒が、T字型分岐配管35aに流れ込むと、慣性によって、一方向に延在する配管部分Aには、より多くの液冷媒が流れることになる。これにより、図9に示すように、配管部分Aに接続されている配管43には、液比率の高い冷媒(冷媒A)が流れ込む。   In the branch distribution unit 11 described above, when the two-phase refrigerant flowing through the pipe 41 (first flow path) flows into the T-shaped branch pipe 35a, the pipe part A extending in one direction due to inertia. Will cause more liquid refrigerant to flow. As a result, as shown in FIG. 9, the refrigerant (refrigerant A) having a high liquid ratio flows into the pipe 43 connected to the pipe portion A.

一方、配管部分Aから分岐する配管部分Bには、より多くのガス冷媒が流れることになる。これにより、図10に示すように、配管部分Bに接続されている配管44には、液比率の低い冷媒(冷媒B)が流れ込む。   On the other hand, more gas refrigerant flows through the pipe part B branched from the pipe part A. Thereby, as shown in FIG. 10, the refrigerant (refrigerant B) having a low liquid ratio flows into the pipe 44 connected to the pipe portion B.

配管43を流れる、液比率の高い二相状態の冷媒(冷媒A)は、曲がり配管33を流れる。このとき、冷媒Aに含まれる液冷媒の分布に偏りが生じる。すなわち、前述したように、遠心力によって、曲がり配管33の外周側の内壁面に沿って流れる液冷媒の量が、内周側の内壁面に沿って流れる液冷媒の量よりも多くなる。   The two-phase refrigerant (refrigerant A) having a high liquid ratio flowing through the pipe 43 flows through the bent pipe 33. At this time, the distribution of the liquid refrigerant contained in the refrigerant A is biased. In other words, as described above, the amount of liquid refrigerant flowing along the inner wall surface on the outer peripheral side of the bent pipe 33 becomes larger than the amount of liquid refrigerant flowing along the inner wall surface on the inner peripheral side due to the centrifugal force.

これにより、図11に示すように、曲がり配管33を流れた直後の配管43内では、外周側に対応する領域に、液比率の高い冷媒(冷媒AA)が流れ、内周側に対応する領域に、液比率の低い冷媒(冷媒AB)が流れる。   Accordingly, as shown in FIG. 11, in the pipe 43 immediately after flowing through the bent pipe 33, the refrigerant (refrigerant AA) having a high liquid ratio flows in the area corresponding to the outer peripheral side, and the area corresponding to the inner peripheral side. In addition, a refrigerant having a low liquid ratio (refrigerant AB) flows.

配管43を流れる冷媒(冷媒AA、冷媒AB)は、その状態で冷媒分配器21aに流れ込む。冷媒分配器21aでは、流れ込んだ冷媒が、複数の配管47に分配される。このとき、図12に示すように、複数の配管47のうち、曲がり配管の外周側に対応する位置に配置されている配管47には、液比率の高い冷媒AAが流れ込む。一方、曲がり配管の内周側に対応する位置に配置されている配管47には、液比率の低い冷媒ABが流れ込む。   The refrigerant (refrigerant AA, refrigerant AB) flowing through the pipe 43 flows into the refrigerant distributor 21a in that state. In the refrigerant distributor 21 a, the refrigerant that has flowed is distributed to the plurality of pipes 47. At this time, as shown in FIG. 12, among the plurality of pipes 47, the refrigerant AA having a high liquid ratio flows into the pipes 47 arranged at positions corresponding to the outer peripheral side of the bent pipes. On the other hand, the refrigerant AB having a low liquid ratio flows into the pipe 47 arranged at a position corresponding to the inner peripheral side of the bent pipe.

分配された冷媒AAおよび冷媒ABは、配管47を流れて室外熱交換器7aへ送られる。一方、冷媒Bは配管48を流れて室外熱交換器7bへ送られる。こうして、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒A(冷媒AA、冷媒AB)が流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒Bが流れ込むことになる。   The distributed refrigerant AA and refrigerant AB flow through the pipe 47 and are sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant B flows through the pipe 48 and is sent to the outdoor heat exchanger 7b. Thus, in the outdoor unit 25, the refrigerant A (refrigerant AA, refrigerant AB) having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant having a low liquid ratio flows to the outdoor heat exchanger 7b having a smaller air volume. B will flow in.

特に、室外熱交換器7aでは、液比率の高い冷媒AAが、室外熱交換器7aにおける、風量の相対的に多い上部のパスに流され、液比率の低い冷媒ABが、室外熱交換器7aにおける、風量の相対的に少ない下部のパスに流される(図5参照)。これにより、冷媒と空気との熱交換をより効率的に行うことができる。   In particular, in the outdoor heat exchanger 7a, the refrigerant AA having a high liquid ratio is caused to flow through an upper path having a relatively large air volume in the outdoor heat exchanger 7a, and the refrigerant AB having a low liquid ratio is supplied to the outdoor heat exchanger 7a. In the lower path having a relatively small air volume (see FIG. 5). Thereby, heat exchange with a refrigerant | coolant and air can be performed more efficiently.

(変形例)
ここでは、T字型分岐配管の変形例について説明する。図13に示すように、変形例に係るT字型分岐配管35b(分岐部)では、一方向に延在する部分(配管部分A)から、2つの分岐する部分(配管部分B、配管部分C)が設けられている。配管部分Cには配管45(第4流路)が接続されている。その配管45に冷媒分配器21cが接続され、さらに、その冷媒分配器21cに複数の配管49が接続されている。複数の配管49は、たとえば、配管48とともに、室外熱交換器7bに接続されている。
(Modification)
Here, a modified example of the T-shaped branch pipe will be described. As shown in FIG. 13, in the T-shaped branch pipe 35b (branch part) according to the modification, two parts (pipe part B, pipe part C) are divided from a part extending in one direction (pipe part A). ) Is provided. A pipe 45 (fourth flow path) is connected to the pipe portion C. The refrigerant distributor 21c is connected to the pipe 45, and a plurality of pipes 49 are connected to the refrigerant distributor 21c. A plurality of piping 49 is connected to outdoor heat exchanger 7b with piping 48, for example.

なお、これ以外のT字型分岐配管35b等の構成については、図8に示す構成と同様であり、また、室外ユニットの構成および冷凍サイクル装置の構成については、図1および図3に示す構成と同様である。このため、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。   In addition, about the structure of T-shaped branch piping 35b etc. other than this, it is the same as that of the structure shown in FIG. 8, and about the structure of an outdoor unit and the structure of a refrigeration cycle apparatus, the structure shown in FIG. 1 and FIG. It is the same. For this reason, the same code | symbol is attached | subjected to the same member and the description will not be repeated unless it is required.

上述した分岐分配部11では、配管41(第1流路)を流れてきた二相状態の冷媒が、T字型分岐配管35bに流れ込むと、配管部分Aに接続されている配管43(第2流路)には、前述したように、慣性によって液冷媒51が流れやすく、液比率の高い冷媒(冷媒A)が流れ込む。   In the branch distribution section 11 described above, when the two-phase refrigerant that has flowed through the pipe 41 (first flow path) flows into the T-shaped branch pipe 35b, the pipe 43 (second pipe) connected to the pipe portion A. As described above, the liquid refrigerant 51 easily flows into the flow path) due to inertia, and the refrigerant (refrigerant A) having a high liquid ratio flows.

一方、配管部分Aから分岐する配管部分Bおよび配管部分Cには、液冷媒が流れにくく、液比率の低い冷媒(冷媒B)が流れることになる。配管部分Bと配管部分Cとでは、冷媒の流れの上流側に位置する配管部分Cへガス冷媒が流れ込みやすく、配管部分Cへは、液比率の低い冷媒が流れ込み、冷媒の流れの下流側に位置する配管部分Bへは、液比率の高い冷媒が流れ込むことになる。   On the other hand, the liquid refrigerant hardly flows through the pipe part B and the pipe part C branched from the pipe part A, and the refrigerant (refrigerant B) having a low liquid ratio flows. In the pipe part B and the pipe part C, the gas refrigerant easily flows into the pipe part C located on the upstream side of the refrigerant flow, and the refrigerant having a low liquid ratio flows into the pipe part C, and downstream of the refrigerant flow. A refrigerant with a high liquid ratio flows into the piping part B located.

これにより、図14に示すように、配管部分Cに接続されている配管45には、液比率の低い冷媒(冷媒BB)が流れ込む。図15に示すように、配管部分Bに接続されている配管44(第3流路)には、液比率の高い冷媒(冷媒BA)が流れ込む。   Thereby, as shown in FIG. 14, the refrigerant (refrigerant BB) having a low liquid ratio flows into the pipe 45 connected to the pipe portion C. As shown in FIG. 15, the refrigerant (refrigerant BA) having a high liquid ratio flows into the pipe 44 (third flow path) connected to the pipe part B.

配管45を流れる冷媒(冷媒BB)は、冷媒分配器21cに流れ込む。冷媒分配器21cでは、流れ込んだ冷媒が複数の配管49に分配される。配管44を流れる冷媒(冷媒BA)は、冷媒分配器21bに流れ込む。冷媒分配器21bでは、流れ込んだ冷媒が複数の配管48に分配される。   The refrigerant (refrigerant BB) flowing through the pipe 45 flows into the refrigerant distributor 21c. In the refrigerant distributor 21 c, the flowing refrigerant is distributed to the plurality of pipes 49. The refrigerant (refrigerant BA) flowing through the pipe 44 flows into the refrigerant distributor 21b. In the refrigerant distributor 21b, the flowing refrigerant is distributed to the plurality of pipes 48.

なお、前述したように、配管43を流れる冷媒Aは、冷媒分配器21aによって複数の配管47に分配される。図16に示すように、曲がり配管33を流れた直後の配管43内では、外周側に対応する領域に、液比率の高い冷媒(冷媒AA)が流れ、内周側に対応する領域に、液比率の低い冷媒(冷媒AB)が流れる。   As described above, the refrigerant A flowing through the pipe 43 is distributed to the plurality of pipes 47 by the refrigerant distributor 21a. As shown in FIG. 16, in the pipe 43 immediately after flowing through the bent pipe 33, the refrigerant (refrigerant AA) having a high liquid ratio flows in the area corresponding to the outer peripheral side, and the liquid corresponding to the area corresponding to the inner peripheral side. A refrigerant with a low ratio (refrigerant AB) flows.

また、図17に示すように、複数の配管47のうち、曲がり配管の外周側に対応する位置に配置されている配管47には、液比率の高い冷媒AAが流れ込む。曲がり配管の内周側に対応する位置に配置されている配管47には、液比率の低い冷媒ABが流れ込む。冷媒AAおよび冷媒ABは、配管47を流れて室外熱交換器7aへ送られる。   As shown in FIG. 17, the refrigerant AA having a high liquid ratio flows into a pipe 47 arranged at a position corresponding to the outer peripheral side of the bent pipe among the plurality of pipes 47. The refrigerant AB having a low liquid ratio flows into the pipe 47 arranged at a position corresponding to the inner peripheral side of the bent pipe. The refrigerant AA and the refrigerant AB flow through the pipe 47 and are sent to the outdoor heat exchanger 7a.

一方、分配された冷媒B(冷媒BB、冷媒BA)は、配管48、49を流れて室外熱交換器7bへ送られる。こうして、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒Aが流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒B(冷媒BB、冷媒BA)が流れ込むことになる。   On the other hand, the distributed refrigerant B (refrigerant BB, refrigerant BA) flows through the pipes 48 and 49 and is sent to the outdoor heat exchanger 7b. Thus, in the outdoor unit 25, the refrigerant A having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant B having a low liquid ratio (refrigerant BB, refrigerant BA) is supplied to the outdoor heat exchanger 7b having a smaller air volume. ) Will flow.

特に、室外熱交換器7bでは、液比率の高い冷媒BAが、室外熱交換器7bにおける、風量の相対的に多い上部のパスに流され、液比率の低い冷媒BBが、室外熱交換器7bにおける、風量の相対的に少ない下部のパスに流される(図5参照)。これにより、冷媒と空気との熱交換をより効率的に行うことができる。   In particular, in the outdoor heat exchanger 7b, the refrigerant BA having a high liquid ratio is caused to flow through the upper path having a relatively large air volume in the outdoor heat exchanger 7b, and the refrigerant BB having a low liquid ratio is supplied to the outdoor heat exchanger 7b. In the lower path having a relatively small air volume (see FIG. 5). Thereby, heat exchange with a refrigerant | coolant and air can be performed more efficiently.

実施の形態3.
ここでは、冷媒分岐分配器を成す分岐分配部の第3例について説明する。図18に示すように、分岐分配部11は、T字型分岐配管35a(35)(分岐部)の手前(上流側)の配管41(第1流路)にオリフィス39を備えている。オリフィス39では、冷媒の流れを遮る遮蔽部に、冷媒を流す開口部が設けられている。そのオリフィス39の開口部の面積(流路断面積)は、配管41の流路断面積よりも狭い。
Embodiment 3 FIG.
Here, the 3rd example of the branch distribution part which comprises a refrigerant | coolant branch distributor is demonstrated. As shown in FIG. 18, the branch distribution unit 11 includes an orifice 39 in the pipe 41 (first flow path) before (upstream side) the T-shaped branch pipe 35 a (35) (branch part). In the orifice 39, an opening through which the refrigerant flows is provided in a shielding part that blocks the flow of the refrigerant. The area of the opening of the orifice 39 (channel cross-sectional area) is narrower than the channel cross-sectional area of the pipe 41.

オリフィス39の第1例を図19に示す。このオリフィス39では、冷媒の流れを遮る遮蔽部39aに、同心円状に略円形状の開口部39bが形成されている。オリフィス39の第2例を図20に示す。このオリフィス39では、冷媒の流れを遮る遮蔽部39aに、略半円形状の開口部39bが形成されている。このオリフィス39では、遮蔽部39aは、T字型分岐配管35aに配管44(第3流路)が接続されている周方向位置に配置されている。   A first example of the orifice 39 is shown in FIG. In the orifice 39, a substantially circular opening 39b is concentrically formed in a shielding part 39a that blocks the flow of the refrigerant. A second example of the orifice 39 is shown in FIG. In the orifice 39, a substantially semicircular opening 39b is formed in a shielding part 39a that blocks the flow of the refrigerant. In the orifice 39, the shielding part 39a is disposed at a circumferential position where the pipe 44 (third flow path) is connected to the T-shaped branch pipe 35a.

オリフィス39の第3例を図21に示す。このオリフィス39では、冷媒の流れを遮る遮蔽部39aに、略円形状の開口部39bが形成されている。略円形状の開口部39bは、開口部39bの中心がオリフィス39の中心から外れるように、遮蔽部39aに形成されている。このオリフィス39では、遮蔽部39aは、T字型分岐配管35aに配管44が接続されている周方向位置に配置されている。   A third example of the orifice 39 is shown in FIG. In the orifice 39, a substantially circular opening 39b is formed in a shielding part 39a that blocks the flow of the refrigerant. The substantially circular opening 39b is formed in the shielding part 39a so that the center of the opening 39b deviates from the center of the orifice 39. In the orifice 39, the shielding part 39a is disposed at a circumferential position where the pipe 44 is connected to the T-shaped branch pipe 35a.

なお、これ以外のT字型分岐配管35a等の構成については、図8に示す構成と同様であり、また、室外ユニットの構成および冷凍サイクル装置の構成については、図1および図3に示す構成と同様である。このため、同一部材には同一符号を付し、必要である場合を除きその説明を繰り返さないこととする。   The other configurations of the T-shaped branch pipe 35a and the like are the same as those shown in FIG. 8, and the configurations of the outdoor unit and the refrigeration cycle apparatus are the configurations shown in FIGS. It is the same. For this reason, the same code | symbol is attached | subjected to the same member and the description will not be repeated unless it is required.

上述した分岐分配部11では、配管41を流れる二相状態の冷媒は、T字型分岐配管35aに流れ込む前に、オリフィス39の遮蔽部39aによって、液冷媒が配管41の内壁から剥がされる。また、流路断面積の狭い開口部39bを冷媒が通過することで、冷媒の流速が増加する。これにより、T字型分岐配管35aの一方向に延在する配管部分Aには、より多くの液冷媒が流れやすくなる。特に、二相状態の冷媒の流量が少ないような場合に、配管部分Aに流れ込む液冷媒の量を増やすことができる。   In the branch distribution section 11 described above, the refrigerant in the two-phase state flowing through the pipe 41 is peeled off from the inner wall of the pipe 41 by the shielding section 39a of the orifice 39 before flowing into the T-shaped branch pipe 35a. Moreover, the flow rate of the refrigerant increases as the refrigerant passes through the opening 39b having a narrow channel cross-sectional area. This makes it easier for more liquid refrigerant to flow through the pipe portion A extending in one direction of the T-shaped branch pipe 35a. In particular, when the flow rate of the refrigerant in the two-phase state is small, the amount of liquid refrigerant flowing into the pipe portion A can be increased.

一方、配管部分Aから分岐する配管部分Bには、手前で液冷媒が配管41の内壁から剥がされることで、オリフィスがない場合と比べて、液冷媒が流れ込みにくくなり、その分、より多くのガス冷媒が流れ込みやすくなる。これにより、図22に示すように、配管部分Bに接続されている配管44には、液比率の低い冷媒(冷媒B)が流れ込む。   On the other hand, the liquid refrigerant is peeled off from the inner wall of the pipe 41 in front of the pipe part B branching from the pipe part A, so that the liquid refrigerant is less likely to flow as compared with the case where there is no orifice. Gas refrigerant can easily flow. Thereby, as shown in FIG. 22, the refrigerant (refrigerant B) having a low liquid ratio flows into the pipe 44 connected to the pipe part B.

特に、図20または図21に示されるオリフィス39の遮蔽部39aを、T字型分岐配管35aに配管44が接続されている周方向位置に配置することで、配管44に流れ込む液冷媒の量を効果的に減らすことができ、その分、配管43(第2流路)に流れ込む液冷媒の量を増やすことができる。   In particular, by arranging the shielding portion 39a of the orifice 39 shown in FIG. 20 or FIG. 21 at the circumferential position where the pipe 44 is connected to the T-shaped branch pipe 35a, the amount of liquid refrigerant flowing into the pipe 44 can be reduced. The amount of liquid refrigerant flowing into the pipe 43 (second flow path) can be increased accordingly.

前述したように、配管43に流れ込んだ液比率の高い冷媒は、曲がり配管33を流れることで、図23に示すように、液比率の高い冷媒(冷媒AA)と、液比率の低い冷媒(冷媒AB)とに分配される。分配された冷媒AAおよび冷媒ABは、冷媒分配器21aによってさらに分配される。図24に示すように、分配された冷媒AAおよび冷媒ABは、配管47を流れて室外熱交換器7aへ送られる。一方、冷媒Bは配管48を流れて室外熱交換器7bへ送られる。こうして、室外ユニット25では、冷媒と空気との熱交換をより効率的に行うことができる。   As described above, the refrigerant having a high liquid ratio that has flowed into the pipe 43 flows through the bent pipe 33, so that a refrigerant having a high liquid ratio (refrigerant AA) and a refrigerant having a low liquid ratio (refrigerant) as shown in FIG. AB). The distributed refrigerant AA and refrigerant AB are further distributed by the refrigerant distributor 21a. As shown in FIG. 24, the distributed refrigerant AA and refrigerant AB flow through the pipe 47 and are sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant B flows through the pipe 48 and is sent to the outdoor heat exchanger 7b. Thus, in the outdoor unit 25, heat exchange between the refrigerant and the air can be performed more efficiently.

実施の形態4.
ここでは、冷媒分岐分配器を成す分岐分配部の第4例について説明する。図25に示すように、分岐分配部11は、アルファベット「Y」の形状に似たY字型分岐配管37a(37)(分岐部)を備えている。Y字型分岐配管37aでは、一の配管が二股に分岐している。二股に分岐した一方の分岐配管部分に配管43が接続され、他方の分岐配管部分に配管44が接続されている。Y字型分岐配管37aは、配管43が下方に、配管44が上方に位置するように配置されている。配管43、44は、曲がり配管33を含む。
Embodiment 4 FIG.
Here, the 4th example of the branch distribution part which comprises a refrigerant | coolant branch distributor is demonstrated. As shown in FIG. 25, the branch distribution unit 11 includes a Y-shaped branch pipe 37a (37) (branch unit) similar to the shape of the alphabet “Y”. In the Y-shaped branch pipe 37a, one pipe is bifurcated. A pipe 43 is connected to one branch pipe portion branched into two branches, and a pipe 44 is connected to the other branch pipe portion. The Y-shaped branch pipe 37a is arranged so that the pipe 43 is located below and the pipe 44 is located above. The pipes 43 and 44 include a bent pipe 33.

なお、これ以外の室外ユニットの構成および冷凍サイクル装置の構成については、図1および図3に示す構成と同様なので、必要である場合を除き、その説明を繰り返さないこととする。   Since the configuration of the outdoor unit and the configuration of the refrigeration cycle apparatus other than the above are the same as those shown in FIGS. 1 and 3, the description thereof will not be repeated unless necessary.

上述した分岐分配部11では、配管41(第1流路)を流れてきた二相状態の冷媒(図26参照)が、Y字型分岐配管37aに流れ込む。Y字型分岐配管37aに流れ込んだ冷媒は、配管43(第2流路)と配管44(第3流路)とに分配される。このとき、図27に示すように、下方に配置されている配管43には、重力によって、液冷媒が流れやすく、液比率の高い冷媒(冷媒A)が流れ込む。一方、図28に示すように、上方に配置されている配管44には、液冷媒は流れにくく、液比率の低い冷媒(冷媒B)が流れ込む。   In the branch distribution unit 11 described above, the two-phase refrigerant (see FIG. 26) that has flowed through the pipe 41 (first flow path) flows into the Y-shaped branch pipe 37a. The refrigerant flowing into the Y-shaped branch pipe 37a is distributed to the pipe 43 (second flow path) and the pipe 44 (third flow path). At this time, as shown in FIG. 27, the liquid refrigerant easily flows into the pipe 43 disposed below due to gravity, and the refrigerant (refrigerant A) having a high liquid ratio flows. On the other hand, as shown in FIG. 28, the liquid refrigerant is difficult to flow into the pipe 44 disposed above, and the refrigerant (refrigerant B) having a low liquid ratio flows.

配管43を流れる冷媒は、曲がり配管33を流れ、冷媒分配器21aによってさらに分配される。分配された冷媒は、配管47を流れて室外熱交換器7aへ送られる。一方、配管44を流れる冷媒は、曲がり配管33を流れ、冷媒分配器21bによってさらに分配される。分配された冷媒は、配管48を流れて室外熱交換器7bへ送られる。   The refrigerant flowing through the pipe 43 flows through the bent pipe 33 and is further distributed by the refrigerant distributor 21a. The distributed refrigerant flows through the pipe 47 and is sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant flowing through the pipe 44 flows through the bent pipe 33 and is further distributed by the refrigerant distributor 21b. The distributed refrigerant flows through the pipe 48 and is sent to the outdoor heat exchanger 7b.

配管43の曲がり配管33を流れた直後の配管43内の冷媒の分布を図29に示し、配管44の曲がり配管33を流れた直後の配管44内の冷媒の分布を図30に示す。配管47内の冷媒の分布を図31に示し、配管48内の冷媒の分布を図32に示す。   The distribution of the refrigerant in the pipe 43 immediately after flowing through the bent pipe 33 of the pipe 43 is shown in FIG. 29, and the distribution of the refrigerant in the pipe 44 immediately after flowing through the bent pipe 33 of the pipe 44 is shown in FIG. The distribution of the refrigerant in the pipe 47 is shown in FIG. 31, and the distribution of the refrigerant in the pipe 48 is shown in FIG.

図27〜図32に示されるように、Y字型分岐配管37aに流れ込んだ冷媒は、分岐分配部11によって、液比率の高い冷媒と液比率の低い冷媒とに分配される。液比率の高い冷媒は室外熱交換器7aに流れ込み、液比率の低い冷媒は室外熱交換器7bに流れ込む。   As shown in FIGS. 27 to 32, the refrigerant flowing into the Y-shaped branch pipe 37 a is distributed by the branch distributor 11 into a refrigerant with a high liquid ratio and a refrigerant with a low liquid ratio. A refrigerant with a high liquid ratio flows into the outdoor heat exchanger 7a, and a refrigerant with a low liquid ratio flows into the outdoor heat exchanger 7b.

こうして、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒Aが流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒Bが流れ込むことになる。その結果、冷媒と空気との熱交換をより効率的に行うことができる。   Thus, in the outdoor unit 25, the refrigerant A having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant B having a low liquid ratio flows into the outdoor heat exchanger 7b having a smaller air volume. As a result, heat exchange between the refrigerant and the air can be performed more efficiently.

(変形例)
ここでは、Y字型分岐配管の変形例について説明する。図33に示すように、変形例に係るY字型分岐配管37b(37)(分岐部)では、冷媒の流れる方向(たとえばX方向)に対して、その方向成分(X方向成分)を有する態様で冷媒を分岐させる部分(配管部分A)と、その方向成分とは逆向きの方向成分(−X方向成分)を有する態様で冷媒を分岐させる部分(配管部分B)とが設けられている(図33に示されたベクトル参照)。
(Modification)
Here, a modified example of the Y-shaped branch pipe will be described. As shown in FIG. 33, the Y-shaped branch pipe 37b (37) (branch part) according to the modification has an aspect component (X direction component) with respect to the direction of refrigerant flow (for example, the X direction). And a portion (piping portion B) for branching the refrigerant in a mode having a directional component (-X direction component) opposite to the direction component thereof (piping portion A). (See vector shown in FIG. 33).

Y字型分岐配管37bは、構造的には、冷媒が流れ込んでくる一方向に延在する部分(配管部分A)と、その一方向と交差する他の方向に延在する部分(配管部分B)と、その他の方向と反対方向に延在する部分(配管部分C)とを含む。   Structurally, the Y-shaped branch pipe 37b has a part extending in one direction (pipe part A) into which the refrigerant flows and a part extending in another direction (pipe part B) intersecting with the one direction. ) And a portion (pipe portion C) extending in a direction opposite to the other direction.

上述した分岐分配部11では、配管41(第1流路)を流れてきた二相状態の冷媒(図34参照)が、Y字型分岐配管37bに流れ込む。Y字型分岐配管37bに流れ込んだ冷媒は、配管43(第2流路)と配管44(第3流路)とに分配される。このとき、図35に示すように、配管43には、慣性力によって液冷媒が流れやすく、配管43には、液比率の高い冷媒(冷媒A)が流れ込む。一方、図36に示すように、配管44には、液冷媒は流れにくく、液比率の低い冷媒(冷媒B)が流れ込む。   In the branch distribution section 11 described above, the two-phase refrigerant (see FIG. 34) that has flowed through the pipe 41 (first flow path) flows into the Y-shaped branch pipe 37b. The refrigerant flowing into the Y-shaped branch pipe 37b is distributed to the pipe 43 (second flow path) and the pipe 44 (third flow path). At this time, as shown in FIG. 35, the liquid refrigerant easily flows into the pipe 43 due to the inertial force, and the refrigerant (refrigerant A) having a high liquid ratio flows into the pipe 43. On the other hand, as shown in FIG. 36, the liquid refrigerant hardly flows and the refrigerant (refrigerant B) having a low liquid ratio flows into the pipe 44.

配管43を流れる冷媒は、曲がり配管33を流れ、冷媒分配器21aによってさらに分配される。分配された冷媒は、配管47を流れて室外熱交換器7aへ送られる。一方、配管44を流れる冷媒は、曲がり配管33を流れ、冷媒分配器21bによってさらに分配される。分配された冷媒は、配管48を流れて室外熱交換器7bへ送られる。   The refrigerant flowing through the pipe 43 flows through the bent pipe 33 and is further distributed by the refrigerant distributor 21a. The distributed refrigerant flows through the pipe 47 and is sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant flowing through the pipe 44 flows through the bent pipe 33 and is further distributed by the refrigerant distributor 21b. The distributed refrigerant flows through the pipe 48 and is sent to the outdoor heat exchanger 7b.

配管43の曲がり配管33を流れた直後の配管43内の冷媒の分布を図37に示し、配管44の曲がり配管33を流れた直後の配管44内の冷媒の分布を図38に示す。配管47内の冷媒の分布を図39に示し、配管48内の冷媒の分布を図40に示す。   The distribution of the refrigerant in the pipe 43 immediately after flowing through the bent pipe 33 of the pipe 43 is shown in FIG. 37, and the distribution of the refrigerant in the pipe 44 immediately after flowing through the bent pipe 33 of the pipe 44 is shown in FIG. The distribution of the refrigerant in the pipe 47 is shown in FIG. 39, and the distribution of the refrigerant in the pipe 48 is shown in FIG.

特に、Y字型分岐配管37bには、冷媒の流れる方向(X方向)に対して、その方向成分(X方向成分)を有する態様で冷媒を分岐させる部分(配管部分A)を有していることで、冷媒の流量が少ない場合であっても、慣性力によって、液冷媒が流れやすく、液比率の高い冷媒を配管部分Aから配管43へ流すことができる。   In particular, the Y-shaped branch pipe 37b has a portion (pipe portion A) for branching the refrigerant in a manner having a direction component (X direction component) with respect to the direction (X direction) in which the refrigerant flows. Thus, even if the flow rate of the refrigerant is small, the liquid refrigerant can easily flow due to the inertial force, and the refrigerant having a high liquid ratio can be flowed from the pipe portion A to the pipe 43.

これにより、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒Aが流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒Bが流れ込むことになる。その結果、冷媒と空気との熱交換をより効率的に行うことができる。   Thereby, in the outdoor unit 25, the refrigerant A having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant B having a low liquid ratio flows into the outdoor heat exchanger 7b having a smaller air volume. . As a result, heat exchange between the refrigerant and the air can be performed more efficiently.

実施の形態5.
ここでは、冷媒分岐分配器を成す分岐分配部の第5例について説明する。図41に示すように、分岐分配部11は、筒状体36(分岐部)を備えている。筒状体36の側面に配管41(第1流路)が接続されている。筒状体36の下面部に配管43(第2流路)が接続されている。筒状体36の上面部に配管44(第3流路)が接続されている。配管43、44は、曲がり配管33を含む。
Embodiment 5. FIG.
Here, the 5th example of the branch distribution part which comprises a refrigerant | coolant branch distributor is demonstrated. As shown in FIG. 41, the branch distribution unit 11 includes a cylindrical body 36 (branch portion). A pipe 41 (first flow path) is connected to the side surface of the cylindrical body 36. A pipe 43 (second flow path) is connected to the lower surface portion of the cylindrical body 36. A pipe 44 (third flow path) is connected to the upper surface portion of the cylindrical body 36. The pipes 43 and 44 include a bent pipe 33.

なお、これ以外の室外ユニットの構成および冷凍サイクル装置の構成については、図1および図3に示す構成と同様なので、必要である場合を除き、その説明を繰り返さないこととする。   Since the configuration of the outdoor unit and the configuration of the refrigeration cycle apparatus other than the above are the same as those shown in FIGS. 1 and 3, the description thereof will not be repeated unless necessary.

上述した分岐分配部11では、配管41を流れてきた二相状態の冷媒(図42参照)が、筒状体36に流れ込む。流れ込んだ冷媒のうち、密度の高い液冷媒は、重力によって筒状体36内の下部に集まり、密度の低いガス冷媒は、筒状体36内の上部に集まる。   In the branch distribution unit 11 described above, the two-phase refrigerant (see FIG. 42) that has flowed through the pipe 41 flows into the cylindrical body 36. Of the refrigerant that has flowed in, the high-density liquid refrigerant gathers in the lower part of the cylindrical body 36 due to gravity, and the low-density gas refrigerant gathers in the upper part of the cylindrical body 36.

筒状体36の下部に集まった、液冷媒を多く含む冷媒は、曲がり配管33を含む配管43を流れ、冷媒分配器21aによってさらに分配される。分配された冷媒は、配管47を流れて室外熱交換器7aへ送られる。一方、筒状体36の上部に集まった、ガス冷媒を多く含む冷媒は、曲がり配管33を含む配管44を流れ、冷媒分配器21bによってさらに分配される。分配された冷媒は、配管48を流れて室外熱交換器7bへ送られる。   The refrigerant containing a large amount of liquid refrigerant collected at the lower part of the cylindrical body 36 flows through the pipe 43 including the bent pipe 33 and is further distributed by the refrigerant distributor 21a. The distributed refrigerant flows through the pipe 47 and is sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant containing a large amount of gas refrigerant collected at the upper part of the cylindrical body 36 flows through the pipe 44 including the bent pipe 33 and is further distributed by the refrigerant distributor 21b. The distributed refrigerant flows through the pipe 48 and is sent to the outdoor heat exchanger 7b.

筒状体36を流れ出た直後の配管43内の冷媒の分布を図43に示し、筒状体36を流れ出た直後の配管44内の冷媒の分布を図44に示す。配管43の曲がり配管33を流れた直後の配管43内の冷媒の分布を図45に示し、配管44の曲がり配管33を流れた直後の配管44内の冷媒の分布を図46に示す。配管47内の冷媒の分布を図47に示し、配管48内の冷媒の分布を図48に示す。   The distribution of the refrigerant in the pipe 43 immediately after flowing out of the cylindrical body 36 is shown in FIG. 43, and the distribution of the refrigerant in the pipe 44 immediately after flowing out of the cylindrical body 36 is shown in FIG. The distribution of the refrigerant in the pipe 43 immediately after flowing through the bent pipe 33 of the pipe 43 is shown in FIG. 45, and the distribution of the refrigerant in the pipe 44 immediately after flowing through the bent pipe 33 of the pipe 44 is shown in FIG. The distribution of the refrigerant in the pipe 47 is shown in FIG. 47, and the distribution of the refrigerant in the pipe 48 is shown in FIG.

図43〜図48に示されるように、配管41を流れる冷媒は、筒状体36および曲がり配管33等によって、液比率の高い冷媒と液比率の低い冷媒とに分配される。液比率の高い冷媒は室外熱交換器7aに流れ込み、液比率の低い冷媒は室外熱交換器7bに流れ込む。   As shown in FIGS. 43 to 48, the refrigerant flowing through the pipe 41 is distributed into a refrigerant with a high liquid ratio and a refrigerant with a low liquid ratio by the cylindrical body 36 and the bent pipe 33. A refrigerant with a high liquid ratio flows into the outdoor heat exchanger 7a, and a refrigerant with a low liquid ratio flows into the outdoor heat exchanger 7b.

こうして、室外ユニット25では、風量のより多い室外熱交換器7aへ、液比率の高い冷媒Aが流れ込み、風量のより少ない室外熱交換器7bへ、液比率の低い冷媒Bが流れ込むことになる。これにより、冷媒と空気との熱交換をより効率的に行うことができる。   Thus, in the outdoor unit 25, the refrigerant A having a high liquid ratio flows into the outdoor heat exchanger 7a having a larger air volume, and the refrigerant B having a low liquid ratio flows into the outdoor heat exchanger 7b having a smaller air volume. Thereby, heat exchange with a refrigerant | coolant and air can be performed more efficiently.

なお、各実施の形態において説明した分岐分配部については、必要に応じて種々組み合わせることが可能である。たとえば、実施の形態3において説明したオリフィスを、他の実施の形態の分岐分配部に適用してもよい。また、冷凍サイクル装置として、ビル用マルチエアコンを例に挙げて説明したが、これ以外に、たとえば、ヒートポンプ装置またはカーエアコン等の冷凍サイクル装置にも適用することが可能である。   It should be noted that the branching / distributing units described in the embodiments can be variously combined as necessary. For example, the orifice described in the third embodiment may be applied to the branch / distribution unit of another embodiment. Moreover, although the building multi-air conditioner has been described as an example of the refrigeration cycle apparatus, it can be applied to a refrigeration cycle apparatus such as a heat pump apparatus or a car air conditioner.

今回開示された実施の形態は例示であってこれに制限されるものではない。本発明は上記で説明した範囲ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲でのすべての変更が含まれることが意図される。   The embodiment disclosed this time is an example, and the present invention is not limited to this. The present invention is defined by the terms of the claims, rather than the scope described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明は、熱交換器を備えた冷凍サイクル装置に有効に利用される。   The present invention is effectively used in a refrigeration cycle apparatus including a heat exchanger.

1 冷凍サイクル装置、3 圧縮機、5a、5b 四方弁、7、7a、7b、7aa、7ab、7ac 室外熱交換器、9a、9b 膨張弁、11 分岐分配部、13a、13b、13c、13d 膨張弁、15、15a、15b、15c、15d 室内熱交換器、17 室外ファン、19a、19b 室内ファン、21a、21b 冷媒分配器、23 アキュムレータ、25 室外ユニット、26 筐体、27 空気取り入れ口、31 分岐配管、33 曲がり配管、35、35a、35b、35c T字型分岐配管、36 筒状体、37、37a、37b Y字型分岐配管、39 オリフィス、39a 遮蔽部、39b 開口部、41、43、44、45、47、48、49 配管、51 液冷媒、53 ガス冷媒。   DESCRIPTION OF SYMBOLS 1 Refrigeration cycle apparatus, 3 Compressor, 5a, 5b Four-way valve, 7, 7a, 7b, 7aa, 7ab, 7ac Outdoor heat exchanger, 9a, 9b Expansion valve, 11 Branch distribution part, 13a, 13b, 13c, 13d Expansion Valve, 15, 15a, 15b, 15c, 15d Indoor heat exchanger, 17 Outdoor fan, 19a, 19b Indoor fan, 21a, 21b Refrigerant distributor, 23 Accumulator, 25 Outdoor unit, 26 Housing, 27 Air intake port, 31 Branch piping, 33 Curved piping, 35, 35a, 35b, 35c T-shaped branch piping, 36 Tubular body, 37, 37a, 37b Y-shaped branch piping, 39 Orifice, 39a Shielding portion, 39b Opening portion, 41, 43 44, 45, 47, 48, 49 Piping, 51 Liquid refrigerant, 53 Gas refrigerant.

本発明は、冷媒分岐分配器を備えた熱交換器および冷凍サイクル装置に関し、特に、液冷媒とガス冷媒との二相状態の冷媒を液比率の異なる冷媒に分岐しうる冷媒分岐分配器を備えた熱交換器と、さらに、その熱交換器を備えた冷凍サイクル装置とに関するものである。 The present invention relates to a heat exchanger and a refrigeration cycle apparatus provided with a refrigerant branch distributor, in particular, provided with a refrigerant branch distributor capable of branching the refrigerant in two-phase state of liquid refrigerant and gas refrigerant in the different refrigerants liquid ratio In addition, the present invention relates to a heat exchanger and a refrigeration cycle apparatus including the heat exchanger.

本発明は、そのような開発の一環としてなされたものであり、一つの目的は、二相状態の冷媒を効率よく熱交換させる冷媒分岐分配器を備えた熱交換器を提供することであり、他の目的は、そのような熱交換器を備えた冷凍サイクル装置を提供することである。 The present invention has been made as part of such development, and one object thereof is to provide a heat exchanger provided with a refrigerant branching distributor that efficiently exchanges heat between two-phase refrigerants . Another object is to provide a refrigeration cycle apparatus equipped with such a heat exchanger.

これにより、曲がり配管33を流れた直後の配管41内では、曲がり配管33の外周側に対応する領域に、液比率の高い冷媒(冷媒A)が流れ、曲がり配管33の内周側に対応する領域に、液比率の低い冷媒(冷媒B)が流れる。その状態で配管41を流れた冷媒は、分岐配管31によって冷媒Aと冷媒Bとに分配される。分配された冷媒Aは、配管43、冷媒分配器21aおよび配管47を流れて室外熱交換器7aへ送られる。一方、冷媒Bは配管44、冷媒分配器21bおよび配管48を流れて室外熱交換器7bへ送られる。 Thereby, in the pipe 41 immediately after flowing through the bent pipe 33, the refrigerant (refrigerant A) having a high liquid ratio flows in a region corresponding to the outer peripheral side of the bent pipe 33, and corresponds to the inner peripheral side of the bent pipe 33. A refrigerant having a low liquid ratio (refrigerant B) flows in the region. The refrigerant that has flowed through the pipe 41 in this state is distributed to the refrigerant A and the refrigerant B by the branch pipe 31. The distributed refrigerant A flows through the pipe 43, the refrigerant distributor 21a and the pipe 47 and is sent to the outdoor heat exchanger 7a. On the other hand, the refrigerant B flows through the pipe 44 , the refrigerant distributor 21b and the pipe 48 and is sent to the outdoor heat exchanger 7b.

Claims (16)

第1流路、第2流路および第3流路と、
前記第1流路に接続されるとともに、前記第2流路と前記第3流路とに接続され、前記第1流路から流入する液冷媒とガス冷媒とを含む冷媒を、前記第2流路と前記第3流路とに分岐する分岐部と
を備え、
前記液冷媒と前記ガス冷媒との重量比における前記液冷媒の比率を液比率とすると、
前記第2流路に分岐した第1冷媒の第1液比率は、前記第3流路に分岐した第2冷媒の第2液比率よりも高い、冷媒分岐分配器。
A first flow path, a second flow path, and a third flow path;
A refrigerant connected to the first flow path, connected to the second flow path and the third flow path, and including liquid refrigerant and gas refrigerant flowing from the first flow path is supplied to the second flow path. A branch part that branches into a path and the third flow path,
When the ratio of the liquid refrigerant in the weight ratio of the liquid refrigerant and the gas refrigerant is a liquid ratio,
The refrigerant branching / distributing device, wherein a first liquid ratio of the first refrigerant branched into the second flow path is higher than a second liquid ratio of the second refrigerant branched into the third flow path.
前記第1流路は、湾曲している第1曲がり部を含み、
前記第2流路は、前記分岐部における、前記第1曲がり部の外周側に対応する第1位置に接続され、
前記第3流路は、前記分岐部における、前記第1曲がり部の内周側に対応する第2位置に接続された、請求項1記載の冷媒分岐分配器。
The first flow path includes a curved first bent portion,
The second flow path is connected to a first position corresponding to an outer peripheral side of the first bent portion in the branch portion,
2. The refrigerant branch distributor according to claim 1, wherein the third flow path is connected to a second position of the branch portion corresponding to an inner peripheral side of the first bent portion.
前記第1流路は、前記第1曲がり部と前記分岐部との間に直線部を備え、
前記直線部の長さLは、前記第1流路の内径をDとすると、L<10×Dに設定された、請求項2記載の冷媒分岐分配器。
The first flow path includes a straight part between the first bent part and the branch part,
The refrigerant branch distributor according to claim 2, wherein the length L of the straight portion is set to L <10 × D, where D is the inner diameter of the first flow path.
前記分岐部は、
前記第1流路が接続されている前記分岐部の部分から、前記第1流路が延在する第1方向に延在する第1延在部と、
前記第1延在部から、前記第1方向と交差する第2方向に分岐して延在する第2延在部と
を含み、
前記第2流路は、前記第1延在部に接続され、
前記第3流路は、前記第2延在部に接続された、請求項1記載の冷媒分岐分配器。
The branch portion is
A first extending portion extending in a first direction in which the first flow path extends from a portion of the branch portion to which the first flow path is connected;
A second extension part extending from the first extension part in a second direction that intersects the first direction;
The second flow path is connected to the first extension part,
The refrigerant branching distributor according to claim 1, wherein the third flow path is connected to the second extending portion.
前記第2流路は、第2曲がり部を含む、請求項4記載の冷媒分岐分配器。   The refrigerant branch distributor according to claim 4, wherein the second flow path includes a second bent portion. 前記第1流路内にはオリフィスが配置された、請求項4記載の冷媒分岐分配器。   The refrigerant branching distributor according to claim 4, wherein an orifice is disposed in the first flow path. 前記分岐部は、
前記第1流路が接続されている前記分岐部の部分から、前記第1流路が延在する第1方向と交差する第3方向に分岐して延在する第3延在部と、
前記第1流路が接続されている前記分岐部の部分から、前記第1方向および前記第3方向と交差する第4方向に分岐して延在する第4延在部と
を少なくとも含み、
前記分岐部は、前記第3延在部を上にし、前記第4延在部を下にした状態で配置され、
前記第2流路は、前記第4延在部に接続され、
前記第3流路は、前記第3延在部に接続された、請求項1記載の冷媒分岐分配器。
The branch portion is
A third extending portion extending from a portion of the branching portion to which the first flow channel is connected, branching and extending in a third direction intersecting a first direction in which the first flow channel extends;
Including at least a fourth extending portion that branches and extends in a fourth direction intersecting the first direction and the third direction from a portion of the branch portion to which the first flow path is connected;
The branch portion is arranged with the third extension portion up and the fourth extension portion down,
The second flow path is connected to the fourth extension part,
The refrigerant branching distributor according to claim 1, wherein the third flow path is connected to the third extending portion.
前記第2流路は、第3曲がり部を含む、請求項7記載の冷媒分岐分配器。   The refrigerant branch distributor according to claim 7, wherein the second flow path includes a third bent portion. 前記第1流路内にオリフィスが配置された、請求項7記載の冷媒分岐分配器。   The refrigerant branch distributor according to claim 7, wherein an orifice is disposed in the first flow path. 前記分岐部は、
前記第1流路が接続されている前記分岐部の部分から、前記第1流路が延在する第1方向と交差する第3方向に分岐して延在する第3延在部と、
前記第1流路が接続されている前記分岐部の部分から、前記第3方向とは反対の第4方向に分岐して延在する第4延在部と
を少なくとも含み、
前記第2流路は、前記第3延在部に接続され、
前記第3流路は、前記第4延在部に接続された、請求項1記載の冷媒分岐分配器。
The branch portion is
A third extending portion extending from a portion of the branching portion to which the first flow channel is connected, branching and extending in a third direction intersecting a first direction in which the first flow channel extends;
Including at least a fourth extending portion extending from a portion of the branching portion to which the first flow path is connected and branching in a fourth direction opposite to the third direction;
The second flow path is connected to the third extension part,
The refrigerant branching distributor according to claim 1, wherein the third flow path is connected to the fourth extending portion.
前記第2流路は第4曲がり部を含む、請求項10記載の冷媒分岐分配器。   The refrigerant branching / distributing device according to claim 10, wherein the second flow path includes a fourth bent portion. 前記第1流路内にオリフィスが配置された、請求項10記載の冷媒分岐分配器。   The refrigerant branching distributor according to claim 10, wherein an orifice is disposed in the first flow path. 前記分岐部は、筒状体を含み、
前記筒状体は、上面部、下面部および側面部を含み、
前記側面部に前記第1流路が接続され、
前記下面部に前記第2流路が接続され、
前記上面部に前記第3流路が接続された、請求項1記載の冷媒分岐分配器。
The branch portion includes a cylindrical body,
The cylindrical body includes an upper surface portion, a lower surface portion and a side surface portion,
The first flow path is connected to the side surface;
The second flow path is connected to the lower surface portion;
The refrigerant branching distributor according to claim 1, wherein the third flow path is connected to the upper surface portion.
前記第2流路は、第5曲がり部を含む、請求項13記載の冷媒分岐分配器。   The refrigerant branching distributor according to claim 13, wherein the second flow path includes a fifth bent portion. 請求項1〜14のいずれか1項に記載の冷媒分岐分配器を備えた熱交換器であって、
前記冷媒と第1流体との間で熱交換行われる第1熱交換器と、
前記冷媒と第2流体との間で熱交換が行われる第2熱交換器と
を含み、
前記第1流体の量は前記第2流体の量よりも多く、
前記第2流路は前記第1熱交換器に接続され、
前記第3流路は前記第2熱交換器に接続された、熱交換器。
A heat exchanger comprising the refrigerant branch distributor according to any one of claims 1 to 14,
A first heat exchanger for performing heat exchange between the refrigerant and the first fluid;
A second heat exchanger that exchanges heat between the refrigerant and the second fluid,
The amount of the first fluid is greater than the amount of the second fluid;
The second flow path is connected to the first heat exchanger;
The third flow path is a heat exchanger connected to the second heat exchanger.
請求項15に記載の熱交換器を備えた、冷凍サイクル装置。   A refrigeration cycle apparatus comprising the heat exchanger according to claim 15.
JP2018523251A 2016-06-24 2016-06-24 Heat exchanger and refrigeration cycle device with refrigerant branch distributor Active JP6668469B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/068811 WO2017221401A1 (en) 2016-06-24 2016-06-24 Refrigerant branching distributor, heat exchanger comprising same, and refrigeration cycle device

Publications (2)

Publication Number Publication Date
JPWO2017221401A1 true JPWO2017221401A1 (en) 2019-02-28
JP6668469B2 JP6668469B2 (en) 2020-03-18

Family

ID=60783300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018523251A Active JP6668469B2 (en) 2016-06-24 2016-06-24 Heat exchanger and refrigeration cycle device with refrigerant branch distributor

Country Status (4)

Country Link
US (1) US20190113244A1 (en)
JP (1) JP6668469B2 (en)
GB (1) GB2566165B (en)
WO (1) WO2017221401A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6721546B2 (en) * 2017-07-21 2020-07-15 ダイキン工業株式会社 Refrigeration equipment
JP6547884B2 (en) * 2017-09-29 2019-07-24 ダイキン工業株式会社 Air conditioning system
JP2019124415A (en) * 2018-01-18 2019-07-25 株式会社富士通ゼネラル Air conditioner
CN108870633B (en) * 2018-06-28 2019-10-25 珠海格力电器股份有限公司 Control method and device of air conditioning system
JP2020115045A (en) * 2019-01-17 2020-07-30 株式会社富士通ゼネラル Air conditioner
US12000633B2 (en) * 2019-01-21 2024-06-04 Mitsubishi Electric Corporation Outdoor unit and air-conditioning apparatus
JP6878511B2 (en) * 2019-07-17 2021-05-26 日立ジョンソンコントロールズ空調株式会社 Heat exchanger, air conditioner, indoor unit and outdoor unit
CN113932488A (en) * 2021-09-19 2022-01-14 青岛海尔空调器有限总公司 Heat exchanger, refrigeration cycle system and air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941747A (en) * 1982-08-31 1984-03-08 三菱重工業株式会社 Refrigerator
JP2000199658A (en) * 1999-01-05 2000-07-18 Kobe Steel Ltd Gas/liquid separator for cooling device
WO2004025207A1 (en) * 2002-09-10 2004-03-25 Gac Corporation Heat exchanger and method of producing the same
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008209066A (en) * 2007-02-27 2008-09-11 Denso Corp Ejector and unit for ejector type refrigerating cycle
JP2011144968A (en) * 2010-01-13 2011-07-28 Toshiba Carrier Corp Refrigerating cycle device
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
JP2013015258A (en) * 2011-07-04 2013-01-24 Panasonic Corp Refrigerating cycle device
JP2014025660A (en) * 2012-07-27 2014-02-06 Daikin Ind Ltd Air conditioner
JP2014102009A (en) * 2012-11-16 2014-06-05 Daikin Ind Ltd Air conditioner outdoor unit
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0814443B2 (en) * 1989-09-28 1996-02-14 三菱電機株式会社 Gas-liquid two-phase fluid distributor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941747A (en) * 1982-08-31 1984-03-08 三菱重工業株式会社 Refrigerator
JP2000199658A (en) * 1999-01-05 2000-07-18 Kobe Steel Ltd Gas/liquid separator for cooling device
WO2004025207A1 (en) * 2002-09-10 2004-03-25 Gac Corporation Heat exchanger and method of producing the same
JP2008196762A (en) * 2007-02-13 2008-08-28 Daikin Ind Ltd Flow divider, heat exchanger unit and refrigerating device
JP2008209066A (en) * 2007-02-27 2008-09-11 Denso Corp Ejector and unit for ejector type refrigerating cycle
JP2011144968A (en) * 2010-01-13 2011-07-28 Toshiba Carrier Corp Refrigerating cycle device
JP2011247522A (en) * 2010-05-28 2011-12-08 Mitsubishi Electric Corp Refrigerating cycle device, refrigerator using refrigerating cycle device, low temperature device and air conditioner
JP2013015258A (en) * 2011-07-04 2013-01-24 Panasonic Corp Refrigerating cycle device
JP2014025660A (en) * 2012-07-27 2014-02-06 Daikin Ind Ltd Air conditioner
JP2014102009A (en) * 2012-11-16 2014-06-05 Daikin Ind Ltd Air conditioner outdoor unit
WO2015162689A1 (en) * 2014-04-22 2015-10-29 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP6668469B2 (en) 2020-03-18
GB2566165B (en) 2020-11-11
GB2566165A (en) 2019-03-06
US20190113244A1 (en) 2019-04-18
GB201816567D0 (en) 2018-11-28
WO2017221401A1 (en) 2017-12-28

Similar Documents

Publication Publication Date Title
WO2017221401A1 (en) Refrigerant branching distributor, heat exchanger comprising same, and refrigeration cycle device
JP6595125B1 (en) Air conditioner outdoor unit and air conditioner
JP6352401B2 (en) Air conditioner
JP6045695B2 (en) Air conditioner
CN107949762B (en) Distributor, laminated type collector, heat exchanger and conditioner
CN105683639B (en) Pipe joint, heat exchanger and air-conditioning device
CN105593630B (en) Cascade type collector, heat exchanger and air-conditioning device
CN112240654B (en) Heat exchanger, air conditioner, indoor unit, and outdoor unit
CN113167512B (en) Heat exchanger and refrigeration cycle device
WO2021234956A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP6644194B1 (en) Outdoor units and air conditioners
KR20180087775A (en) Heat exchanger for refrigerator
JP5962045B2 (en) Heat exchanger
JP6925393B2 (en) Outdoor unit of air conditioner and air conditioner
CN212006013U (en) Multi-split air conditioning system
JP6952797B2 (en) Heat exchanger and refrigeration cycle equipment
WO2022085113A1 (en) Distributor, heat exchanger, and air conditioning device
WO2021234961A1 (en) Heat exchanger, outdoor unit for air conditioning device, and air conditioning device
CN211552123U (en) Heat exchange assembly and air conditioning system
JP7414845B2 (en) Refrigeration cycle equipment
KR20190055614A (en) Plate heat exchanger and Air conditioner having the same
CN110476036A (en) Heat exchanger and the refrigerating circulatory device for having the heat exchanger
WO2021245877A1 (en) Heat exchanger and refrigeration cycle device
JPH03271659A (en) Multi-room air conditioner
EP3971507B1 (en) Heat exchanger and refrigeration cycle device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200226

R150 Certificate of patent or registration of utility model

Ref document number: 6668469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250