JPWO2017209130A1 - Conductive heating element and laminated glass - Google Patents

Conductive heating element and laminated glass Download PDF

Info

Publication number
JPWO2017209130A1
JPWO2017209130A1 JP2018520926A JP2018520926A JPWO2017209130A1 JP WO2017209130 A1 JPWO2017209130 A1 JP WO2017209130A1 JP 2018520926 A JP2018520926 A JP 2018520926A JP 2018520926 A JP2018520926 A JP 2018520926A JP WO2017209130 A1 JPWO2017209130 A1 JP WO2017209130A1
Authority
JP
Japan
Prior art keywords
heating element
curved
period
curve
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018520926A
Other languages
Japanese (ja)
Other versions
JP6888622B2 (en
Inventor
次 博 俊 末
次 博 俊 末
川 学 平
川 学 平
聡 後石原
聡 後石原
部 真 阿
部 真 阿
田 賢 郎 平
田 賢 郎 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Publication of JPWO2017209130A1 publication Critical patent/JPWO2017209130A1/en
Application granted granted Critical
Publication of JP6888622B2 publication Critical patent/JP6888622B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/20Heating elements having extended surface area substantially in a two-dimensional plane, e.g. plate-heater
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Surface Heating Bodies (AREA)

Abstract

【課題】光芒とチラツキを防止しつつ、熱ムラも抑制する。【解決手段】導電性発熱体(5)は、第1方向(x)に離間して配置され、第1方向に交差する第2方向(y)に延びる複数の曲線発熱体(32)を備え、複数の曲線発熱体のそれぞれは、半周期未満の複数の第1周期曲線(30)を繋げたものであり、複数の第1周期曲線のそれぞれの形状は、不規則である。An object of the present invention is to suppress heat unevenness while preventing light glare and flickering. A conductive heating element (5) includes a plurality of curved heating elements (32) that are spaced apart in a first direction (x) and extend in a second direction (y) that intersects the first direction. Each of the plurality of curve heating elements is formed by connecting a plurality of first period curves (30) of less than a half period, and the shape of each of the plurality of first period curves is irregular.

Description

本開示は、導電性発熱体および合わせガラスに関する。  The present disclosure relates to a conductive heating element and a laminated glass.

従来、車両のフロントウインドウやリアウインドウ等の窓ガラスに用いるデフロスタ装置として、窓ガラスに電熱線からなる導電性発熱体を組み込んだものが知られている。このようなデフロスタ装置では、窓ガラスに組み込まれた導電性発熱体に通電し、その抵抗加熱により窓ガラスを昇温させて、窓ガラスの曇りを取り除いたり、窓ガラスに付着した雪や氷を溶かして、乗員の視界を確保することができる。斯かる導電性発熱体は複数条の導電体の線条から成り、各線条は其の延在方向と直交する方向に、互に間隔を空けて、配列されてなる。  2. Description of the Related Art Conventionally, as a defroster device used for a window glass such as a front window and a rear window of a vehicle, an apparatus in which a conductive heating element made of a heating wire is incorporated in the window glass is known. In such a defroster device, a conductive heating element incorporated in the window glass is energized, and the window glass is heated by resistance heating to remove fogging of the window glass or remove snow and ice adhering to the window glass. It can be melted to ensure the sight of the occupant. Such a conductive heating element is composed of a plurality of strips of conductors, and each strip is arranged in a direction orthogonal to the extending direction with a space between each other.

導電性発熱体としては、従来から種々の材料が用いられているが、導電性発熱体が窓ガラスに規則的に配置されていると、導電性発熱体で反射した光が互いに干渉を起こし、光芒を生じさせるという問題がある。光芒とは、筋状の光が視認される現象である。  Various materials have been conventionally used as the conductive heating element, but when the conductive heating element is regularly arranged on the window glass, the light reflected by the conductive heating element causes interference with each other, There is a problem of causing glare. Light glaze is a phenomenon in which streak-like light is visually recognized.

また、導電性発熱体が直線状に延びていると、導電性発熱体に入射された外光がほぼ同じ方向に反射されてしまい、この方向に位置する人間の目に、強いチラツキ(ぎらつき)が感じられてしまう。  In addition, when the conductive heating element extends in a straight line, external light incident on the conductive heating element is reflected in almost the same direction, and strong flickering (glare) is observed in the human eye located in this direction. ) Is felt.

特許文献1には、チラツキを防止するために、導電性発熱体を波線路にして、各波線路を構成する複数の波線のそれぞれの曲線形状を、半周期ごとに不規則にすることが開示されている。  Patent Document 1 discloses that in order to prevent flickering, a conductive heating element is used as a wave line, and the curved shapes of a plurality of wave lines constituting each wave line are irregular for each half cycle. Has been.

特開2011−210487号公報JP 2011-210487A

特許文献1に開示された波線路を備えた導電性フィルムでは、確かにぎらつきは軽減できるかもしれないが、各波線路の形状を不規則にするため、温度が高くなる箇所と低くなる箇所が生じ、熱ムラが生じるおそれがある。よって、例えば、特許文献1の導電性フィルムを車両の窓ガラスに組み込むと、窓ガラス内で、曇りが取れる場所と取れない場所、あるいは雪や氷が溶ける場所と溶けない場所が生じ、乗員の視界を満足に確保できないおそれがある。  In the conductive film provided with the wave line disclosed in Patent Document 1, glare may certainly be reduced, but in order to make the shape of each wave line irregular, there are places where the temperature rises and where the temperature becomes low. And heat unevenness may occur. Therefore, for example, when the conductive film of Patent Document 1 is incorporated in a window glass of a vehicle, a place where fogging can be taken and a place where snow or ice can be melted and a place where the snow and ice are not melted are generated in the window glass. There is a possibility that the visibility cannot be secured satisfactorily.

特許文献1に示すように、光芒やチラツキを抑制するには、導電性発熱体の直線部分をできるだけ少なくするのが望ましい。ところが、導電性発熱体の直線部分を少なくするほど、導電性発熱体の全長が長くなってしまう。一般に、導電性発熱体の全長が長くなるほど導電性発熱体の電気抵抗が増加し、発熱効率が悪くなる。  As shown in Patent Document 1, it is desirable to reduce the linear portion of the conductive heating element as much as possible in order to suppress light glare and flicker. However, as the linear portion of the conductive heating element is reduced, the entire length of the conductive heating element becomes longer. In general, the longer the overall length of the conductive heating element, the greater the electrical resistance of the conductive heating element and the lower the heat generation efficiency.

また、特許文献1では、複数の波線の曲線形状を半周期ごとに不規則にしており、逆の言い方をすると、半周期の間は各波線の曲線形状は変化しない。よって、各波線の曲線形状が不規則であるとは言えず、ある程度の周期性を有するため、光芒やチラツキを完全になくすことはできない。また、各波線の曲線形状が半周期の間は変化しないため、例えば、半周期の長さが非常に長い周期曲線と非常に短い周期曲線とが隣接配置されている場合には、各波線の密度のばらつきが大きくなり、熱ムラや濃淡ムラを起こしやすくなる。ここで、熱ムラとは、場所によって温度が異なることを指し、濃淡ムラとは、場所による濃淡の違いが視認されることを指す。  Moreover, in patent document 1, the curve shape of several wavy lines is made irregular every half cycle, and when put the other way around, the curve shape of each wavy line will not change during a half cycle. Therefore, it cannot be said that the curved line shape of each wavy line is irregular and has a certain degree of periodicity, and thus it is not possible to completely eliminate light glare and flicker. In addition, since the curve shape of each wavy line does not change during a half cycle, for example, when a periodic curve having a very long half cycle and a very short periodic curve are arranged adjacent to each other, The variation in density becomes large, and heat unevenness and shading unevenness are likely to occur. Here, the heat unevenness means that the temperature varies depending on the place, and the lightness and darkness unevenness means that the difference in lightness and darkness depending on the place is visually recognized.

本開示は、上述した課題を解決するためになされたものであり、その目的は、光芒とチラツキを防止しつつ、熱ムラや濃淡ムラも抑制可能な導電性発熱体および合わせガラスを提供することにある。  The present disclosure has been made to solve the above-described problems, and an object of the present disclosure is to provide a conductive heating element and laminated glass capable of suppressing heat unevenness and shading unevenness while preventing glare and flickering. It is in.

上記の課題を解決するために、本開示の一態様では、第1方向に離間して配置され、前記第1方向に交差する第2方向に延びる複数の曲線発熱体を備え、
前記複数の曲線発熱体のそれぞれは、半周期未満の複数の第1周期曲線を繋げたものであり、
前記複数の第1周期曲線のそれぞれの形状は、不規則である導電性発熱体が提供される。
In order to solve the above-described problem, according to one aspect of the present disclosure, a plurality of curved heating elements that are spaced apart in a first direction and extend in a second direction intersecting the first direction are provided.
Each of the plurality of curve heating elements is formed by connecting a plurality of first period curves less than a half period,
A conductive heating element is provided in which each of the plurality of first periodic curves has an irregular shape.

前記複数の第1周期曲線のそれぞれは、周期および振幅の少なくとも一方が不規則であってもよい。  Each of the plurality of first periodic curves may be irregular in at least one of the period and the amplitude.

前記複数の第1周期曲線の周期および振幅の少なくとも一方は、一定でなくてもよい。  At least one of the period and the amplitude of the plurality of first periodic curves may not be constant.

前記複数の第1周期曲線のそれぞれは、前記第1周期曲線の1/4周期分の長さを有していてもよい。  Each of the plurality of first periodic curves may have a length corresponding to ¼ period of the first periodic curve.

前記第1周期曲線は、正弦波であってもよい。  The first periodic curve may be a sine wave.

前記複数の曲線発熱体のそれぞれの前記第2方向における端部位置は不規則であってもよい。  The end positions of the plurality of curved heating elements in the second direction may be irregular.

前記第2方向に隣接して配置される2つの前記第1周期曲線同士のつなぎ目から所定範囲内は、スムージング処理がなされた形状を有していてもよい。  Within a predetermined range from a joint between the two first periodic curves arranged adjacent to each other in the second direction, a smoothed shape may be formed.

前記スムージング処理がなされた形状は、屈曲点を持たない曲線形状であってもよい。  The shape subjected to the smoothing process may be a curved shape having no bending point.

前記第1方向に隣接する2本の前記曲線発熱体同士を接続するバイパス発熱体を備えてもよい。  You may provide the bypass heat generating body which connects two said curve heat generating bodies adjacent to the said 1st direction.

前記複数の曲線発熱体のそれぞれには、同じ数の前記バイパス発熱体が接続されていてもよい。  The same number of bypass heating elements may be connected to each of the plurality of curved heating elements.

前記バイパス発熱体の接続位置は、前記複数の曲線発熱体のそれぞれごとに不規則であってもよい。  The connection position of the bypass heating element may be irregular for each of the plurality of curved heating elements.

前記バイパス発熱体は、半周期未満の複数の第2周期曲線を繋げたものであり、
前記複数の第2周期曲線のそれぞれの形状は、不規則であってもよい。
The bypass heating element is formed by connecting a plurality of second periodic curves of less than a half cycle,
Each shape of the plurality of second periodic curves may be irregular.

前記第1方向および前記第2方向に複数個ずつ並べて配置される複数の発熱体列を備えてもよく、
前記複数の発熱体列のそれぞれは、前記複数の曲線発熱体を有してもよく、
前記第2方向に隣接配置される2つの前記発熱体列内の各曲線発熱体は、対応するもの同士が接続されていてもよい。
It may comprise a plurality of heating element rows arranged side by side in the first direction and the second direction,
Each of the plurality of heating element rows may include the plurality of curved heating elements,
Corresponding ones may be connected to each of the curved heating elements in the two heating element arrays arranged adjacent to each other in the second direction.

前記第2方向に離間して配置され、前記第1方向に延びる一対のバスバー電極と、
前記第1方向に離間して配置され、前記第2方向に延びて前記一対のバスバー電極に接続される複数の波線発熱体と、を備え、
前記複数の波線発熱体は、前記複数の発熱体列のそれぞれに含まれる前記複数の曲線発熱体を前記第2方向に接続したものであってもよい。
A pair of bus bar electrodes that are spaced apart in the second direction and extend in the first direction;
A plurality of wavy heating elements disposed apart from each other in the first direction and extending in the second direction and connected to the pair of bus bar electrodes,
The plurality of wavy line heating elements may be formed by connecting the plurality of curved heating elements included in each of the plurality of heating element rows in the second direction.

一主面上に前記複数の曲線発熱体を配置した透明基材層を備えてもよい。  You may provide the transparent base material layer which has arrange | positioned the said some curve heating element on one main surface.

上述した導電性発熱体を挟み込むように対向配置される一対のガラス基板を備える合わせガラスを備えてもよい。  You may provide the laminated glass provided with a pair of glass substrate opposingly arranged so that the electroconductive heat generating body mentioned above may be inserted | pinched.

本開示によれば、光芒とチラツキを防止しつつ、熱ムラと濃淡ムラも抑制可能な導電性発熱体および合わせガラスを提供できる。  According to the present disclosure, it is possible to provide a conductive heating element and a laminated glass capable of suppressing heat unevenness and shading unevenness while preventing glare and flickering.

本開示の一実施形態による導電性発熱体の平面図。The top view of the electroconductive heat generating body by one Embodiment of this indication. 発熱体列を示す平面図。The top view which shows a heat generating body row | line | column. 図1の1本の曲線発熱体の一部を拡大した図。The figure which expanded a part of one curve heating element of FIG. (a)と(b)は第1周期曲線30の周期と振幅を1/2周期、1/4周期ごとにランダムにした場合の光芒の撮影画像を示す図。(A) And (b) is a figure which shows the picked-up image of a light beam when the period and amplitude of the 1st period curve 30 are made random every 1/2 period and 1/4 period. 複数の曲線発熱体を自動生成する発熱体生成装置の概略構成を示すブロック図。The block diagram which shows schematic structure of the heat generating body production | generation apparatus which produces | generates a some curve heat generating body automatically. 図5の発熱体生成装置の処理手順の一例を示すフローチャート。The flowchart which shows an example of the process sequence of the heat generating body generator of FIG. 図6にスムージング処理を追加したフローチャート。The flowchart which added the smoothing process to FIG. (a)はスムージング処理を行う前のつなぎ目付近の様子を示す図、(b)はスムージング処理を行った後のつなぎ目付近の様子を示す図。(A) is a figure which shows the mode of the joint vicinity before performing a smoothing process, (b) is a figure which shows the mode of the joint vicinity after performing a smoothing process. バイパス発熱体を有する導電性発熱体の平面図。The top view of the electroconductive heat generating body which has a bypass heat generating body. 乗用車のフロントウィンドウに本実施形態の導電性発熱体を組み込んだ例を示す図。The figure which shows the example which incorporated the electroconductive heat generating body of this embodiment in the front window of a passenger car. フロントウィンドウの長手方向に沿って複数の波線発熱体を配置した導電性発熱体の平面図。The top view of the electroconductive heat generating body which has arrange | positioned several wavy line heat generating elements along the longitudinal direction of a front window. 乗物の斜視図。The perspective view of a vehicle. 複数の波線発熱体と2つのバスバー電極とが一体成形された導電性発熱体の断面図。Sectional drawing of the electroconductive heat generating body by which the some wavy line heat generating body and two bus-bar electrodes were integrally molded. (a)〜(e)は導電性発熱体の製造工程を示す断面図。(A)-(e) is sectional drawing which shows the manufacturing process of an electroconductive heat generating body. 発熱体シートの断面図。Sectional drawing of a heat generating body sheet | seat. 発熱体シートを用いた合わせガラスの製造工程の一例を示す断面図。Sectional drawing which shows an example of the manufacturing process of the laminated glass using a heat generating body sheet | seat. 図16に続く断面図。FIG. 17 is a cross-sectional view following FIG. 16. 図17に続く断面図。FIG. 18 is a cross-sectional view following FIG. 図18に続く断面図。Sectional drawing following FIG. 発熱体シート内の各曲線発熱体が、1/4周期ごとに周期と振幅が異なる複数の周期曲線を繋げたものか否かを判断する処理手順を示すフローチャート。The flowchart which shows the process sequence which judges whether each curve heating element in a heat generating body sheet | seat connected the some periodic curve from which a period and an amplitude differ for every 1/4 period.

以下、図面を参照して本開示の一実施の形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。  Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings. In the drawings attached to the present specification, for the sake of illustration and ease of understanding, the scale, the vertical / horizontal dimension ratio, and the like are appropriately changed and exaggerated from those of the actual product.

本明細書において、「板」、「シート」、「フィルム」の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「シート」は板やフィルムと呼ばれ得るような部材をも含む概念であり、したがって、「パターンシート」は、「パターン板(基板)」や「パターンフィルム」と呼ばれる部材と、呼称の違いのみにおいて区別され得ない。  In this specification, the terms “plate”, “sheet”, and “film” are not distinguished from each other only based on the difference in designation. For example, “sheet” is a concept that includes a member that can be called a plate or a film. Therefore, a “pattern sheet” is a member called “pattern plate (substrate)” or “pattern film”. It cannot be distinguished only by differences.

また、「シート面(板面、フィルム面)」とは、対象となるシート状(板状、フィルム状)の部材を全体的かつ大局的に見た場合において対象となるシート状部材(板状部材、フィルム状部材)の平面方向と一致する面のことを指す。  In addition, “sheet surface (plate surface, film surface)” means a target sheet-like member (plate-like) when the target sheet-like (plate-like, film-like) member is viewed as a whole and globally. It refers to the surface that coincides with the plane direction of the member or film-like member.

さらに、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」、「直交」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。さらに、本明細書において、「抵抗」の用語は電気抵抗のことを指す。  Furthermore, as used in this specification, the shape and geometric conditions and the degree thereof are specified. For example, terms such as “parallel”, “orthogonal”, “identical”, length and angle values, etc. Without being bound by meaning, it should be interpreted including the extent to which similar functions can be expected. Further, in this specification, the term “resistance” refers to electrical resistance.

図1は本開示の一実施形態による導電性発熱体5の平面図である。図1の導電性発熱体5は、例えば80mm角四方の範囲31に配置された複数の曲線発熱体32を有する発熱体列33を備えている。発熱体列33は、図2に示すように、平面内に於いて縦横に複数個ずつ配置することができる。80mmは一例であり、その数値は任意に変更可能である。後述するように、本実施形態では、一つの発熱体列33に含まれる複数の曲線発熱体32の形状を不規則にしているが、発熱体列33を縦横に配置すると、発熱体列33の単位で各曲線発熱体32が周期的な構造となる。  FIG. 1 is a plan view of a conductive heating element 5 according to an embodiment of the present disclosure. The conductive heating element 5 of FIG. 1 includes a heating element row 33 having a plurality of curved heating elements 32 arranged in a range 31 of, for example, an 80 mm square. As shown in FIG. 2, a plurality of the heating element rows 33 can be arranged vertically and horizontally in a plane. 80 mm is an example, and the numerical value can be arbitrarily changed. As will be described later, in the present embodiment, the shape of the plurality of curved heating elements 32 included in one heating element row 33 is irregular. However, when the heating element rows 33 are arranged vertically and horizontally, Each curved heating element 32 has a periodic structure in units.

各曲線発熱体32が周期的な構造となっても、光芒やチラツキが目立たないようにするには、発熱体列33のサイズをある程度以上に大きくすればよいことが知られている。具体的には、発熱体列33の1辺が50mmを超えると、複数の発熱体列33を縦横に配置しても、光芒やチラツキが目立たなくなる。以下では、一例として、発熱体列33の縦横サイズを80mmとした。  It is known that even if each curved heating element 32 has a periodic structure, the size of the heating element array 33 may be increased to a certain extent so that light glare and flickering are not noticeable. Specifically, when one side of the heating element row 33 exceeds 50 mm, light glare and flickering are not noticeable even if the plurality of heating element rows 33 are arranged vertically and horizontally. Hereinafter, as an example, the vertical and horizontal sizes of the heating element rows 33 are set to 80 mm.

発熱体列33に含まれる各曲線発熱体32は、タングステンや銅などの導電性材料からなる線状の電熱線である。各曲線発熱体32の線幅は、例えば5〜20μm、好ましくは7〜10μmである。透明基材上に配置された複数の曲線発熱体32が視認されにくくするには、曲線発熱体32の線幅を15μm以下にするのが望ましい。ただし、線幅が小さくなるほど断線しやすくなるため、断線防止の観点では10μm以上の線幅は確保した方がよい。  Each curved heating element 32 included in the heating element array 33 is a linear heating wire made of a conductive material such as tungsten or copper. The line width of each curved heating element 32 is, for example, 5 to 20 μm, preferably 7 to 10 μm. In order to make it difficult to visually recognize the plurality of curved heating elements 32 arranged on the transparent substrate, it is desirable to set the line width of the curved heating elements 32 to 15 μm or less. However, the smaller the line width is, the easier it is to disconnect, so it is better to secure a line width of 10 μm or more from the viewpoint of preventing disconnection.

図1の各曲線発熱体32は、第1方向xに互いに離間して配置されて、それぞれ第1方向xに交差する第2方向yに延びている。図1では、第1方向xと第2方向yが互いに直角である例を示しているが、必ずしも直角でなくてもよい。  1 are spaced apart from each other in the first direction x and extend in a second direction y that intersects the first direction x. Although FIG. 1 shows an example in which the first direction x and the second direction y are perpendicular to each other, they are not necessarily perpendicular.

図1の各曲線発熱体32は、1/4周期ごとに周期および振幅を不規則にした複数の第1周期曲線(例えば正弦波)を第2方向yに順に繋げたものである。図3は、図1の1本の曲線発熱体32の一部を拡大した図である。図3に示すように、曲線発熱体32を構成する各第1周期曲線30は、1/4周期の長さを有し、各第1周期曲線30の周期および振幅は不規則である。すなわち、各第1周期曲線30の周期および振幅は一定でない。各第1周期曲線30を1/4周期の長さとした理由は、曲線発熱体32の周期性をできるだけなくすためである。曲線発熱体32は、1/4周期で、周期および振幅がランダムに変化するため、曲線発熱体32で反射した光が無相関な方向に進行し、光芒とチラツキが視認されにくくなる。  Each curve heating element 32 in FIG. 1 is formed by sequentially connecting a plurality of first periodic curves (for example, sine waves) having irregular periods and amplitudes every ¼ period in the second direction y. FIG. 3 is an enlarged view of a part of one curved heating element 32 of FIG. As shown in FIG. 3, each 1st period curve 30 which comprises the curve heat generating body 32 has the length of 1/4 period, and the period and amplitude of each 1st period curve 30 are irregular. That is, the period and amplitude of each first periodic curve 30 are not constant. The reason why each first periodic curve 30 has a length of ¼ period is to eliminate the periodicity of the curved heating element 32 as much as possible. Since the curve heating element 32 has a quarter period and the period and amplitude change randomly, the light reflected by the curve heating element 32 travels in an uncorrelated direction, and the light and flicker are less likely to be visually recognized.

尚、此処で、「周期」とは、曲線を其の延在方向である第2方向yに沿って一方の向き(例えば、図1ではy軸の+方向)に向かって進んだときに、該延在方向と直交する第1方向xの一方の向き(図1ではx軸方向の+方向)について連続的に且つ交互に増加と減少を繰り返す場合に於いて、其の振幅が0の線(図1ではx=0のy軸)から先ず増加して次いで減少して再度増加に転ずる迄の該第2方向(図1ではy軸方向)の距離を言う。  Here, the “period” means that when the curve advances in one direction (for example, the + direction of the y axis in FIG. 1) along the second direction y that is the extending direction thereof, In the case where the increase and decrease are repeated continuously and alternately in one direction of the first direction x orthogonal to the extending direction (the + direction in the x-axis direction in FIG. 1), the line whose amplitude is 0 This is the distance in the second direction (in the y-axis direction in FIG. 1) from first increasing from (y axis of x = 0 in FIG. 1) to decreasing and then increasing again.

又、「不規則」とは、曲線の振幅及び周期のうちの少なくとも1つは、各曲線発熱体32を第2方向に向かって進むときに、上記定義による1周期毎に全て異なり繰り返しが無いことを言う。  In addition, “irregular” means that at least one of the amplitude and period of the curve is different every period according to the above definition and does not repeat when each curve heating element 32 travels in the second direction. Say that.

そして、「1/4周期ごとに周期および振幅を不規則にした複数の第1周期曲線(例えば正弦波)30を第2方向yに順に繋げた」とは、以下の(1)〜(4)により上記定義による曲線発熱体32の1周期分を構成した場合に、其の基となった各正弦波の周期T1、T2、T3、及びT4は互に全て異なり、且つ各正弦波の振幅A1、A2、A3、及びA4は互に全て異なることを意味する。  And, “a plurality of first periodic curves (for example, sine waves) 30 having irregular periods and amplitudes every ¼ period are sequentially connected in the second direction y” means the following (1) to (4 ), The period T1, T2, T3, and T4 of each sine wave used as the basis is different from each other, and the amplitude of each sine wave is defined. A1, A2, A3, and A4 all mean different from each other.

(1)元來、通常の定義に於いて第1周期曲線30である周期T1及び振幅A1を有する正弦波の「1/4周期分を切り取って、曲線発熱体32の本開示の定義に於ける第1番目の1/4周期分に相当する箇所に嵌め込み、
(2)次いで、通常の定義に於いて第1周期曲線30である周期T2及び振幅A2を有する正弦波の「1/4周期分を切り取って、曲線発熱体32の本開示の定義に於ける第2番目の1/4周期分に相当する箇所に嵌め込み、
(3)次いで、通常の定義に於いて第1周期曲線30である周期T3及び振幅A3を有する正弦波の「1/4周期分を切り取って、曲線発熱体32の本開示の定義に於ける第3番目の1/4周期分に相当する箇所に嵌め込み、
(4)次いで、通常の定義に於いて第1周期曲線30である周期T4及び振幅A4を有する正弦波の「1/4周期分を切り取って、曲線発熱体32の本開示の定義に於ける第4番目の1/4周期分に相当する箇所に嵌め込む。
(1) Marshal, in the definition of the present disclosure of the curved heating element 32 by cutting out a quarter period of the sine wave having the period T1 and the amplitude A1, which is the first period curve 30 in the normal definition. Fit in the part corresponding to the first quarter period,
(2) Next, in the definition of the present disclosure, the curve heating element 32 is cut out by “1/4 period of the sine wave having the period T2 and the amplitude A2 which are the first period curve 30 in the normal definition. It fits in the part corresponding to the second quarter period,
(3) Next, according to the definition of the present disclosure of the curved heating element 32, “1/4 period of the sine wave having the period T3 and the amplitude A3 which is the first period curve 30 in the normal definition is cut out. It fits in the part corresponding to the third quarter period,
(4) Next, according to the definition of the present disclosure of the curved heating element 32, “1/4 period of the sine wave having the period T4 and the amplitude A4 which are the first period curve 30 in the normal definition is cut out. It fits into a portion corresponding to the fourth quarter period.

なお、図3では、1/4周期ごとに周期および振幅を不規則にしているが、これは一例にすぎない。ただし、第1周期曲線30の半周期未満の長さを単位として第1周期曲線30の周期および振幅を不規則にするのが望ましい。半周期を超える長さを単位として第1周期曲線30の周期および振幅を不規則にすると、少なくとも半周期の間は、周期性のある曲線が継続してしまうため、光芒やチラツキが生じやすくなる。  In FIG. 3, the period and amplitude are irregular every quarter period, but this is only an example. However, it is desirable that the period and amplitude of the first periodic curve 30 be irregular with the length of the first periodic curve 30 being less than a half period as a unit. If the period and amplitude of the first periodic curve 30 are irregular with the length exceeding the half period as a unit, the periodic curve continues at least during the half period, and thus light glare and flickering are likely to occur. .

また、各曲線発熱体32は、正弦波以外の任意の第1周期曲線30を複数繋げたものでもよい。なお、第1周期曲線30の種類は任意だが、複数繋げる第1周期曲線30の種類は同じものであり、周期と振幅を1/4周期ごとに不規則にしている。図1の座標系XYに於いて一般式で表すと、X=Asin{(2π/λ)X+α}となる。ここで、Aは振幅、λは波長(或いは周期、αは位相である。又、正弦波以外の第1周期曲線30としては、楕円関数曲線、ベッセル関数曲線等を挙げることができる。また、第1周期曲線30は、振幅変調や周波数変調などの変調波の曲線でもよい。  Each curve heating element 32 may be formed by connecting a plurality of arbitrary first periodic curves 30 other than a sine wave. In addition, although the kind of the 1st period curve 30 is arbitrary, the kind of the 1st period curve 30 to connect two or more is the same, and makes a period and an amplitude irregular for every 1/4 period. In the coordinate system XY of FIG. 1, when expressed by a general formula, X = Asin {(2π / λ) X + α}. Here, A is the amplitude, λ is the wavelength (or period, α is the phase.) As the first periodic curve 30 other than the sine wave, an elliptic function curve, a Bessel function curve, and the like can be given. The first periodic curve 30 may be a curve of a modulated wave such as amplitude modulation or frequency modulation.

ここで、不規則とは、第1周期曲線30の周期と振幅が1/4周期ごとにランダムであり、かつ80mm角四方の範囲31内では、複数の第1周期曲線30の周期と振幅が周期性を持たないことを意味する。また、第1方向xに離隔して配置される複数の曲線発熱体32の周期および振幅も互いに不規則である。  Here, the irregularity means that the period and amplitude of the first periodic curve 30 are random every ¼ period, and the period and amplitude of the plurality of first periodic curves 30 are within a range 31 of 80 mm square. It means that there is no periodicity. Further, the periods and amplitudes of the plurality of curved heating elements 32 that are spaced apart in the first direction x are also irregular.

このように、80mm各四方の複数の曲線発熱体32は、第1方向xと第2方向yのいずれにおいても、周期および振幅が1/4周期ごとに不規則な複数の第1周期曲線30を繋げたものである。  In this way, the plurality of curved heating elements 32 on each side of 80 mm has a plurality of first periodic curves 30 whose period and amplitude are irregular every ¼ period in both the first direction x and the second direction y. Are connected.

図1の左下隅を原点O(0,0)とし、複数の曲線発熱体32の開始点(先頭位置)を、第2方向yの最小座標位置とすると、第1方向xに沿って離隔して配置される複数の曲線発熱体32の第2方向yの開始位置は、不規則になっている。これは、複数の曲線発熱体32の位相が不規則にずれていることを示している。  If the lower left corner of FIG. 1 is the origin O (0, 0) and the start points (leading positions) of the plurality of curved heating elements 32 are the minimum coordinate positions in the second direction y, they are separated along the first direction x. The start positions of the plurality of curved heating elements 32 arranged in the second direction y are irregular. This indicates that the phases of the plurality of curved heating elements 32 are irregularly shifted.

複数の曲線発熱体32の位相を不規則にずらす理由は以下の通りである。例えば、複数の曲線発熱体32の開始点がいずれも第2方向yの座標位置y=0であったとすると、座標位置y=0においては、複数の曲線発熱体32の振幅がいずれもゼロになる。よって、80mm四方の発熱体列33を第1方向xおよび第2方向yに複数個ずつ並べて配置したとすると、各発熱体列33の単位で、複数の曲線発熱体32の振幅がいずれもゼロになる箇所が周期的に出現してしまい、この箇所が光芒やチラツキの要因になるおそれがある。そこで、本実施形態では、80mm角四方の発熱体列33に含まれる複数の曲線発熱体32の第2方向yの最小座標位置を不規則にずらして、複数の曲線発熱体32の位相をランダム化している。  The reason why the phases of the plurality of curved heating elements 32 are irregularly shifted is as follows. For example, if the start points of the plurality of curve heating elements 32 are all at the coordinate position y = 0 in the second direction y, the amplitudes of the plurality of curve heating elements 32 are all zero at the coordinate position y = 0. Become. Therefore, if a plurality of 80 mm square heating element rows 33 are arranged side by side in the first direction x and the second direction y, the amplitude of the plurality of curved heating elements 32 is zero for each heating element row 33. This part may appear periodically, and this part may cause light glare and flickering. Therefore, in the present embodiment, the minimum coordinate positions in the second direction y of the plurality of curved heating elements 32 included in the 80 mm square square heating element array 33 are irregularly shifted, and the phases of the plurality of curved heating elements 32 are randomly selected. It has become.

このように、本実施形態では、例えば80mm角四方の範囲31で、複数の曲線発熱体32の周期と振幅を第1方向xと第2方向yのいずれにおいても不規則にするため、各曲線発熱体32で反射された反射光同士が干渉を起こすおそれが少なくなり、光芒を抑制できる。また、各曲線発熱体32は蛇行しており、しかも蛇行の大きさが不規則であるため、各曲線発熱体32で反射された反射光の進行方向も不規則になり、特定方向に強いチラツキを感じさせるおそれが少なくなる。  As described above, in the present embodiment, for example, in the range 31 of 80 mm square, the period and amplitude of the plurality of curve heating elements 32 are irregular in both the first direction x and the second direction y. There is less possibility that the reflected lights reflected by the heating element 32 will interfere with each other, and the light haze can be suppressed. Further, since each curved heating element 32 meanders and the meandering size is irregular, the traveling direction of the reflected light reflected by each curved heating element 32 is irregular, and strong flickering in a specific direction. The risk of feeling is reduced.

本実施形態は、曲線発熱体32を構成する各第1周期曲線30の1/4周期ごとに周期および振幅を不規則にするため、複数の曲線発熱体32の全体では、各第1周期曲線30の密度を均一化できる。すなわち、各第1周期曲線30の1/4周期の範囲内では、第1周期曲線30の密度に大きな違いがあるが、1/4周期で第1周期曲線30の周期と振幅が変化するため、複数の曲線発熱体32の全体では、各第1周期曲線30の密度が平均化されて、熱ムラと濃淡ムラが低減する。  In the present embodiment, since the cycle and the amplitude are irregular every quarter cycle of each first periodic curve 30 constituting the curved heating element 32, each of the plurality of curved heating elements 32 has each first periodic curve. The density of 30 can be made uniform. That is, there is a great difference in the density of the first periodic curve 30 within the range of ¼ period of each first periodic curve 30, but the period and amplitude of the first periodic curve 30 change in ¼ period. In the whole of the plurality of curve heating elements 32, the density of each first periodic curve 30 is averaged, and heat unevenness and shading unevenness are reduced.

図4(a)および図4(b)はそれぞれ、第1周期曲線30の周期と振幅を1/2周期、1/4周期ごとにランダムにした場合の光芒の撮影画像である。これらの撮影画像は、LED(Light Emitting Device)光源からの光を、第1周期曲線30の形成されたサンプル面に垂直に入射させた状態で、カメラにてサンプル面を撮影した画像である。より具体的には、暗室内にLED光源、サンプル面、カメラを直線状に配置し、LED光源とサンプル面との距離を4m、サンプル面とカメラとの距離を1mとした。カメラは、LED光源に焦点が合うように撮影した。  4 (a) and 4 (b) are photographed images of light beams when the period and amplitude of the first periodic curve 30 are made random every ½ period and ¼ period, respectively. These photographed images are images obtained by photographing the sample surface with a camera in a state where light from an LED (Light Emitting Device) light source is vertically incident on the sample surface on which the first periodic curve 30 is formed. More specifically, the LED light source, the sample surface, and the camera are linearly arranged in the dark room, the distance between the LED light source and the sample surface is 4 m, and the distance between the sample surface and the camera is 1 m. The camera was photographed so that the LED light source was in focus.

第1周期曲線30の1/2周期ごとに周期と振幅をランダム化すると、図4(a)に示すように、特定方向に反射する光の成分が大きくなる。すなわち、反射光の指向性が強くなり、これが光芒として視認され易くなってしまう。これに対して、第1周期曲線30の1/4周期ごとに周期と振幅をランダム化すると、図4(b)に示すように、反射光が多方向に散乱し、各方向への光量が小さくなることから、光芒が視認されにくくなる。  If the period and amplitude are randomized every 1/2 period of the first periodic curve 30, the component of light reflected in a specific direction increases as shown in FIG. That is, the directivity of the reflected light becomes strong, and this is easily recognized as a light beam. On the other hand, when the period and the amplitude are randomized every quarter period of the first periodic curve 30, the reflected light is scattered in multiple directions as shown in FIG. Since it becomes small, it becomes difficult to visually recognize the light beam.

また、第1周期曲線30の1/2周期ごとに周期と振幅をランダム化する場合、1/2周期の間は、第1周期曲線30のつなぎ目がないため、第1周期曲線30の1/2周期の間に直線に近い形状が含まれていると、光芒が生じやすくなる。これに対して、第1周期曲線30の1/4周期ごとに周期と振幅をランダム化する場合、つなぎ目がない区間の長さが短くなり、この区間内に直線に近い形状が含まれていたとしても、その長さが短いことから、光芒が生じにくくなる。  In addition, when the period and amplitude are randomized every 1/2 period of the first periodic curve 30, there is no connection between the first periodic curve 30 during the 1/2 period, so If a shape close to a straight line is included in two cycles, light glare is likely to occur. On the other hand, when the period and amplitude are randomized every ¼ period of the first periodic curve 30, the length of the section without a joint is shortened, and a shape close to a straight line is included in this section. However, since its length is short, it is difficult for light glare to occur.

曲線発熱体32の線幅が細くなるほど、曲線発熱体32が視認されにくくなり、窓ガラス等に組み込む際には好ましいが、その一方で、断線しやすくなる。そこで、本実施形態では、後述する図6に示すように、第1方向xに隣接する2本の曲線発熱体32同士をバイパス発熱体34で接続してもよい。バイパス発熱体34は、各曲線発熱体32に同じ数ずつ接続されている。  As the line width of the curved heating element 32 becomes narrower, the curved heating element 32 becomes less visible and preferable when incorporated in a window glass or the like, but on the other hand, breakage easily occurs. Therefore, in the present embodiment, as shown in FIG. 6 to be described later, two curved heating elements 32 adjacent in the first direction x may be connected by a bypass heating element 34. The same number of bypass heating elements 34 are connected to each curve heating element 32.

また、バイパス発熱体34の配置場所が周期的であると、光芒やチラツキの要因になり得るため、バイパス発熱体34の配置場所は不規則に設定されている。さらに、バイパス発熱体34が熱ムラの要因にならないように、バイパス発熱体34は80mm各四方の範囲31内で発熱体列33に均等に配置されている。  In addition, if the location of the bypass heating element 34 is periodic, it may cause light glare and flickering. Therefore, the location of the bypass heating element 34 is set irregularly. Further, the bypass heat generator 34 is evenly arranged in the heat generator array 33 within a range 31 in each of 80 mm so that the bypass heat generator 34 does not cause heat unevenness.

発熱体列33に含まれる複数の曲線発熱体32の周期および振幅は、コンピュータを用いて自動的に生成することが可能である。図5は発熱体列33に含まれる複数の曲線発熱体32を自動生成する発熱体生成装置41の概略構成を示すブロック図である。図5の発熱体生成装置41は、パラメータ取得部42と、曲線発熱体生成部43と、正規化部44と、周期曲線判定部45と、曲線発熱体記憶部46と、発熱体群生成部47と、位相調整部48と、発熱体列記憶部49とを備えている。  The period and amplitude of the plurality of curved heating elements 32 included in the heating element array 33 can be automatically generated using a computer. FIG. 5 is a block diagram showing a schematic configuration of a heating element generating device 41 that automatically generates a plurality of curved heating elements 32 included in the heating element array 33. The heating element generation device 41 of FIG. 5 includes a parameter acquisition unit 42, a curved heating element generation unit 43, a normalization unit 44, a periodic curve determination unit 45, a curved heating element storage unit 46, and a heating element group generation unit. 47, a phase adjustment unit 48, and a heating element array storage unit 49.

図5の発熱体生成装置41は、コンピュータにより実行可能なソフトウェアとして実現可能である。あるいは、図5の発熱体生成装置41内の少なくとも一部の構成部分をハードウェアで実現してもよい。すなわち、図5の発熱体生成装置41は、必ずしも1台のコンピュータで実現されるとは限らない。  5 can be realized as software executable by a computer. Or you may implement | achieve at least one component in the heat generating body production | generation apparatus 41 of FIG. 5 with a hardware. That is, the heating element generator 41 of FIG. 5 is not necessarily realized by a single computer.

パラメータ取得部42は、複数の曲線発熱体32の形状の特徴を表す種々のパラメータからなるパラメータ群を取得する。パラメータ取得部42は、パラメータ群を予めデータベース等に記憶しておき、その中から必要なパラメータを取得してもよいし、操作者がキーボードやマウス等で入力または選択した各パラメータを取得してもよい。  The parameter acquisition unit 42 acquires a parameter group composed of various parameters representing the shape characteristics of the plurality of curved heating elements 32. The parameter acquisition unit 42 may store a parameter group in a database or the like in advance and acquire necessary parameters from the parameter group. Alternatively, the parameter acquisition unit 42 may acquire each parameter input or selected by the operator using a keyboard or a mouse. Also good.

パラメータ群に含まれるパラメータの一例として、例えば、下記の1)〜8)が考えられる。下記のうち、5)〜8)は必ずしも必須ではない。  As an example of parameters included in the parameter group, for example, the following 1) to 8) can be considered. Of the following, 5) to 8) are not necessarily essential.

1)第1方向xに隣接する2本の曲線発熱体32の最小距離と最大距離。
2)各曲線発熱体32の振幅の最小値と最大値。
3)各曲線発熱体32の周期の最小値と最大値。
4)各曲線発熱体32の位相の最小値と最大値。
5)各曲線発熱体32を構成する各第1周期曲線30の振幅の最小値と最大値。
6)各曲線発熱体32を構成する各第1周期曲線30の周期の最小値と最大値。
7)発熱体列33の第1方向xの長さと第2方向yの長さ。
8)発熱体列33に含まれる曲線発熱体32の数。
1) The minimum distance and the maximum distance between two curved heating elements 32 adjacent in the first direction x.
2) The minimum value and the maximum value of the amplitude of each curve heating element 32.
3) The minimum value and the maximum value of the period of each curve heating element 32.
4) The minimum value and the maximum value of the phase of each curve heating element 32.
5) The minimum value and the maximum value of the amplitude of each first periodic curve 30 constituting each curve heating element 32.
6) The minimum value and the maximum value of the period of each first periodic curve 30 constituting each curve heating element 32.
7) The length of the heating element row 33 in the first direction x and the length in the second direction y.
8) The number of curved heating elements 32 included in the heating element row 33.

曲線発熱体生成部43は、第2方向yに延びる一本の曲線発熱体32を生成する。より具体的には、曲線発熱体生成部43は、各1/4周期ごとに周期および振幅を不規則にした複数の第1周期曲線30を第2方向yに繋げて、一本の曲線発熱体32を生成する。  The curved heating element generator 43 generates one curved heating element 32 extending in the second direction y. More specifically, the curve heating element generation unit 43 connects a plurality of first period curves 30 with irregular periods and amplitudes every quarter period in the second direction y, thereby generating one curve heat generation. A body 32 is generated.

正規化部44は、曲線発熱体生成部43で生成した曲線発熱体32の第2方向yの両端部間の最短距離を80mmに合わせるべく、曲線発熱体32に含まれる複数の第1周期曲線30の周期を調整する。  The normalization unit 44 includes a plurality of first periodic curves included in the curve heating element 32 so that the shortest distance between both ends in the second direction y of the curve heating element 32 generated by the curve heating element generation unit 43 is set to 80 mm. Adjust 30 periods.

周期曲線判定部45は、正規化部44で正規化した曲線発熱体32を構成する各第1周期曲線30の周期と振幅が1/4周期ごとに不規則であるか否かを判定する。  The periodic curve determination unit 45 determines whether or not the period and amplitude of each first periodic curve 30 constituting the curved heating element 32 normalized by the normalization unit 44 are irregular every ¼ period.

周期曲線判定部45にて、周期と振幅が不規則でないと判定されると、曲線発熱体生成部43にて、再度、曲線発熱体32を生成し直す。曲線発熱体記憶部46は、周期と振幅が不規則であると判定された曲線発熱体32を記憶する。  When the periodic curve determination unit 45 determines that the period and amplitude are not irregular, the curved heating element generation unit 43 generates the curved heating element 32 again. The curved heating element storage unit 46 stores the curved heating element 32 that has been determined to have irregular cycles and amplitudes.

発熱体群生成部47は、80mm角四方の範囲31内に含まれる複数の曲線発熱体32を生成する。より具体的には、発熱体群生成部47は、曲線発熱体生成部43、周期曲線判定部45および単位圧発熱体記憶部と連携して、80mm角四方の範囲31内で第1方向xに離間して配置される複数の曲線発熱体32を生成する。  The heating element group generation unit 47 generates a plurality of curved heating elements 32 included in an 80 mm square area 31. More specifically, the heating element group generation unit 47 cooperates with the curve heating element generation unit 43, the periodic curve determination unit 45, and the unit pressure heating element storage unit in the first direction x within the 80 mm square range 31. A plurality of curved heating elements 32 that are spaced apart from each other are generated.

位相調整部48は、発熱体群生成部47が生成した複数の曲線発熱体32の位相を不規則にする処理を行う。より具体的には、位相調整部48は、80mm角四方の範囲31内で、複数の曲線発熱体32の第2方向yの開始位置(先頭位置)を不規則にする。発熱体列記憶部49は、位相調整部48で位相を不規則にした複数の曲線発熱体32を記憶する。  The phase adjustment unit 48 performs processing for making the phases of the plurality of curved heating elements 32 generated by the heating element group generation unit 47 irregular. More specifically, the phase adjustment unit 48 makes the start positions (leading positions) of the plurality of curved heating elements 32 in the second direction y irregular within an 80 mm square range 31. The heating element array storage unit 49 stores a plurality of curved heating elements 32 whose phases are irregular by the phase adjustment unit 48.

図6は図5の発熱体生成装置41の処理手順の一例を示すフローチャートである。このフローチャートは、80mm角四方の範囲31内の発熱体列33に含まれる複数の曲線発熱体32を生成する処理手順を示している。以下では、曲線発熱体32に含まれる複数の第1周期曲線30が正弦波である例を説明する。  FIG. 6 is a flowchart showing an example of a processing procedure of the heating element generation device 41 of FIG. This flowchart shows a processing procedure for generating a plurality of curved heating elements 32 included in the heating element row 33 within a range 31 of 80 mm square. Hereinafter, an example in which the plurality of first periodic curves 30 included in the curved heating element 32 are sine waves will be described.

まず、パラメータ取得部42は、上述した1)〜8)のパラメータを取得する(ステップS1)。次に、曲線発熱体生成部43は、正弦波の第2方向yの開始点座標をゼロに設定する(ステップS2)。次に、曲線発熱体生成部43は、正弦波の第1方向xの開始点座標をゼロに設定する(ステップS3)。そして、曲線発熱体生成部43は、取得したパラメータに基づいて、正弦波の周期と振幅をランダムに設定して、第2方向yに沿って1/4周期分の正弦波を生成する(ステップS4)。  First, the parameter acquisition unit 42 acquires the parameters 1) to 8) described above (step S1). Next, the curve heating element generator 43 sets the start point coordinates of the sine wave in the second direction y to zero (step S2). Next, the curve heating element generator 43 sets the starting point coordinates of the sine wave in the first direction x to zero (step S3). Then, the curve heating element generator 43 randomly sets the period and amplitude of the sine wave based on the acquired parameters, and generates a sine wave for ¼ period along the second direction y (step). S4).

次に、曲線発熱体生成部43は、第2方向yの座標位置を、ステップS4で設定した1/4周期分足し合わせて更新する(ステップS5)。次に、曲線発熱体生成部43は、足し合わせた第2方向yの長さが80mmを超えたか否かを判定する(ステップS6)。まだ、80mmを超えていなければ、ステップS4〜S6の処理を繰り返す。  Next, the curve heating element generation unit 43 updates the coordinate position in the second direction y by adding the ¼ period set in step S4 (step S5). Next, the curve heating element generation unit 43 determines whether or not the length of the added second direction y exceeds 80 mm (step S6). If it does not exceed 80 mm, the processes in steps S4 to S6 are repeated.

ステップS6で80mmを超えたと判定されると、正規化部44にて、曲線発熱体32の第2方向yの両端部間の最短距離が80mmになるように、曲線発熱体32に含まれる各正弦波の周期を調整する(ステップS7)。この作業を正規化処理と呼ぶ。正規化処理では、曲線発熱体32に含まれる各正弦波の周期を同じ比率で縮小する。  If it is determined in step S6 that the distance exceeds 80 mm, each normalization unit 44 includes each curve heating element 32 so that the shortest distance between both ends in the second direction y of the curve heating element 32 is 80 mm. The period of the sine wave is adjusted (step S7). This operation is called normalization processing. In the normalization process, the period of each sine wave included in the curved heating element 32 is reduced at the same ratio.

次に、周期曲線判定部45は、正規化した曲線発熱体32を構成する各第1周期曲線30の周期と振幅が1/4周期ごとに不規則であるか否かを判定する(ステップS8)。ここでは、例えば、1本の曲線発熱体32を構成する複数の第1周期曲線30の周期同士に相関性がなく、かつ振幅同士にも相関性がない場合に、周期曲線判定部45は不規則であると判定する。  Next, the periodic curve determination unit 45 determines whether or not the period and amplitude of each first periodic curve 30 constituting the normalized curve heating element 32 are irregular every ¼ period (step S8). ). Here, for example, when there is no correlation between the periods of the plurality of first periodic curves 30 constituting one curve heating element 32 and there is no correlation between the amplitudes, the periodic curve determination unit 45 is ineffective. Judge as a rule.

不規則でなければ、ステップ2に戻って、曲線発熱体32を生成し直す。不規則でない場合に、曲線発熱体32を生成し直す理由は、複数の第1周期曲線30同士に相関性があると、光芒やチラツキが視認されやすくなり、また熱ムラや濃淡ムラも生じやすくなるためである。  If not irregular, the process returns to Step 2 to regenerate the curved heating element 32. If the irregular heating element 32 is not irregular, the reason for regenerating the curved heating element 32 is that if there is a correlation between the plurality of first periodic curves 30, light glare and flickering can be easily seen, and heat unevenness and shading unevenness are likely to occur. It is to become.

ステップS8で、不規則であると判定されると、正規化した曲線発熱体32を曲線発熱体記憶部46に記憶する(ステップS9)。  If it is determined in step S8 that it is irregular, the normalized curve heating element 32 is stored in the curve heating element storage unit 46 (step S9).

次に、発熱体群生成部47は、パラメータ取得部42が取得したパラメータに基づいて、第1方向xに1ピッチずらした座標位置を設定する(ステップS10)。1ピッチの大きさは、ステップS1で取得したパラメータにより設定される。  Next, the heating element group generation unit 47 sets a coordinate position shifted by one pitch in the first direction x based on the parameter acquired by the parameter acquisition unit 42 (step S10). The size of one pitch is set by the parameter acquired in step S1.

次に、発熱体群生成部47は、第1方向xの長さが80mmを超えたか否かを判定する(ステップS11)。80mmを超えていなければ、ステップS2以降の処理を繰り返して、新たな曲線発熱体32を生成する。  Next, the heating element group generation unit 47 determines whether or not the length in the first direction x exceeds 80 mm (step S11). If it does not exceed 80 mm, the process after step S2 is repeated and the new curve heating element 32 is produced | generated.

ステップS11で80mmを超えていると判定されると、位相調整部48は、発熱体列33に含まれる複数の曲線発熱体32の位相を不規則にする調整を行う(ステップS12)。次に、位相調整を行った複数の曲線発熱体32を発熱体列記憶部49に記憶する(ステップS13)。  If it is determined in step S11 that it exceeds 80 mm, the phase adjustment unit 48 performs adjustment to make the phases of the plurality of curved heating elements 32 included in the heating element row 33 irregular (step S12). Next, the plurality of curved heating elements 32 subjected to phase adjustment are stored in the heating element array storage unit 49 (step S13).

図3に示すように、1/4周期ごとに周期および振幅を不規則にした複数の第1周期曲線30を第2方向yに順に繋げると、つなぎ目が屈曲点となり、チラツキが生じるおそれがある。よって、望ましくは、隣接する2つの第1周期曲線30同士のつなぎ目付近で、屈曲点が目立たないようにスムージング処理を行うのがよい。ここで、屈曲点とは、互いに異なる曲率の2つの曲線のつなぎ目、すなわち曲線が不連続に繋がる点である。  As shown in FIG. 3, when a plurality of first periodic curves 30 having irregular periods and amplitudes every ¼ period are connected in order in the second direction y, the joint becomes a bending point, and flicker may occur. . Therefore, it is desirable to perform the smoothing process so that the bending point is not noticeable in the vicinity of the joint between the two adjacent first periodic curves 30. Here, the bending point is a joint between two curves having different curvatures, that is, a point where the curves are connected discontinuously.

図7は図6の発熱体生成装置41の処理手順にスムージング処理を追加した例を示すフローチャートである。図7では、図6のステップS4とS5の間に、スムージング処理(ステップS14)を追加しており、それ以外の処理手順は図6と同じである。  FIG. 7 is a flowchart showing an example in which a smoothing process is added to the processing procedure of the heating element generating apparatus 41 of FIG. In FIG. 7, a smoothing process (step S14) is added between steps S4 and S5 in FIG. 6, and the other processing procedures are the same as those in FIG.

ステップS14のスムージング処理では、隣接する2つの第1周期曲線30のつなぎ目付近で、屈曲点が目立たないように例えば多項式の曲線近似を行う。図8(a)はスムージング処理を行う前のつなぎ目付近の様子を示す図、図8(b)はスムージング処理を行った後のつなぎ目付近の様子を示す図である。第1周期曲線30のつなぎ目付近は直線に近い形状であり、しかも、各第1周期曲線30のつなぎ目付近の傾きが異なるため、図8(a)のように、二つの第1周期曲線30のつなぎ目p0に屈曲点が生じてしまう。そこで、二つの第1周期曲線30のつなぎ目付近のp1〜p2の範囲で多項式の曲線近似を行うことで、図8(b)のように、つなぎ目p0の屈曲点がほとんど目立たなくなる。  In the smoothing process in step S14, for example, a polynomial curve approximation is performed in the vicinity of the joint between the two adjacent first periodic curves 30 so that the bending point is not noticeable. FIG. 8A is a diagram showing a state near the joint before performing the smoothing process, and FIG. 8B is a diagram showing a state near the joint after performing the smoothing process. Since the vicinity of the joints of the first periodic curves 30 has a shape close to a straight line, and the slopes near the joints of the first periodic curves 30 are different, as shown in FIG. A bending point is generated at the joint p0. Therefore, by performing polynomial curve approximation in the range of p1 to p2 in the vicinity of the joint between the two first periodic curves 30, the bending point of the joint p0 becomes almost inconspicuous as shown in FIG.

なお、1/4周期内のどの程度の範囲について、多項式の曲線近似を行うかは任意であるが、曲線近似を行う範囲が長いと、スムージング処理に時間がかかるため、例えば、1周期を100%として、1/4周期(25%)内のつなぎ目p0の両側の±5%以内の範囲p1〜p2について曲線近似を行うのが望ましい。  It should be noted that the range of the curve approximation of the polynomial is arbitrary for the range in the 1/4 cycle. However, if the range of the curve approximation is long, the smoothing process takes time. As a percentage, it is desirable to perform curve approximation for a range p1 to p2 within ± 5% on both sides of the joint p0 within a quarter period (25%).

図6の処理手順で生成した80mm角四方の発熱体列33は、図2に示すように、縦横に任意の数分を並べて配置することで、任意のサイズおよび形状の導電性発熱体5を作製することができる。本実施形態による導電性発熱体5は、種々の目的および用途に利用できるが、以下では、乗物のフロントウィンドウ、リアウィンドウ、サイドウィンドウなどに本実施形態の導電性発熱体5を組み込んだ例を説明する。  As shown in FIG. 2, the 80 mm square square heating element array 33 generated by the processing procedure of FIG. 6 is arranged in an arbitrary number of rows and columns to arrange the conductive heating elements 5 of any size and shape. Can be produced. The conductive heating element 5 according to the present embodiment can be used for various purposes and applications. Hereinafter, an example in which the conductive heating element 5 of the present embodiment is incorporated in a front window, a rear window, a side window, etc. of a vehicle. explain.

図6のフローチャートでは省略しているが、導電性発熱体5には、図9に示すように、第1方向xに隣接する2本の曲線発熱体32同士を接続するバイパス発熱体34を設けるのが望ましい。バイパス発熱体34は、任意の曲線発熱体32が断線しても、その隣の曲線発熱体32を介して電流を流せるようにしたものである。バイパス発熱体34は、80mm各四方の範囲31内の複数の曲線発熱体32を生成した後に生成してもよいし、あるいは、第1方向xに隣接する2本の曲線発熱体32が生成された段階で、これら2本の曲線発熱体32を接続するバイパス発熱体34を生成してもよい。  Although omitted in the flowchart of FIG. 6, the conductive heating element 5 is provided with a bypass heating element 34 for connecting two curved heating elements 32 adjacent to each other in the first direction x, as shown in FIG. Is desirable. The bypass heating element 34 is configured to allow a current to flow through an adjacent curved heating element 32 even if an arbitrary curved heating element 32 is disconnected. The bypass heating element 34 may be generated after generating a plurality of curved heating elements 32 within a range 31 of 80 mm each, or two curved heating elements 32 adjacent in the first direction x are generated. At this stage, a bypass heating element 34 connecting these two curved heating elements 32 may be generated.

バイパス発熱体34は、曲線発熱体32と同じ線幅(例えば5〜20μm、好ましくは7〜10μm)であり、80mm角四方の発熱体列33において均一な密度で配置される。均一な密度でバイパス発熱体34を配置することで、発熱体列33における熱ムラを防止できる。各曲線発熱体32に接続されるバイパス発熱体34の数は同数であり、かつ第1方向xおよび第2方向yにおいて、バイパス発熱体34の配置場所が不規則になるように配置される。また、バイパス発熱体34の形状は特に問わない。曲線状でもよいし、直線状でもよいし、折れ線形状でもよい。各バイパス発熱体34の形状を変えてもよい。また、少なくとも一部のバイパス発熱体34の延在方向は、任意の方向に揃っていてもよいし、ランダム(不規則)に相違していてもよい。すなわち、各バイパス発熱体4の延在方向は、任意に傾斜していてもよい。  The bypass heating element 34 has the same line width as that of the curved heating element 32 (for example, 5 to 20 μm, preferably 7 to 10 μm), and is arranged at a uniform density in the 80 mm square heating element array 33. By disposing the bypass heating elements 34 with a uniform density, it is possible to prevent heat unevenness in the heating element array 33. The number of bypass heating elements 34 connected to each curved heating element 32 is the same, and the bypass heating elements 34 are arranged irregularly in the first direction x and the second direction y. The shape of the bypass heating element 34 is not particularly limited. It may be a curved line, a straight line, or a polygonal line. The shape of each bypass heating element 34 may be changed. In addition, the extending direction of at least some of the bypass heating elements 34 may be aligned in an arbitrary direction or may be randomly (irregularly) different. That is, the extending direction of each bypass heating element 4 may be arbitrarily inclined.

バイパス発熱体34が場合によっては、光芒やチラツキの要因になることも考えられる。そこで、曲線発熱体32と同様に、少なくとも一部のバイパス発熱体34は、1/4周期ごとに周期および振幅を不規則にした複数の第2周期曲線(例えば正弦波)を延在方向(例えば、第1方向x)に順に繋げたものであってもよい。  In some cases, the bypass heating element 34 may be a cause of glare and flickering. Therefore, as with the curved heating element 32, at least some of the bypass heating elements 34 extend a plurality of second periodic curves (for example, sine waves) with irregular periods and amplitudes every quarter period in the extending direction (for example, sine waves). For example, it may be connected in order in the first direction x).

図10は乗用車のフロントウィンドウ2に本実施形態の導電性発熱体5を組み込んだ例を示している。このフロントウィンドウ2は、導電性発熱体5を組み込んだ合わせガラスである。  FIG. 10 shows an example in which the conductive heating element 5 of this embodiment is incorporated in the front window 2 of a passenger car. The front window 2 is a laminated glass incorporating a conductive heating element 5.

図10のフロントウィンドウ2は、一対のガラス板3,4と、一対のガラス板3,4の間に配置される導電性発熱体5とを備えている。導電性発熱体5は、2つのバスバー電極(一対の電極)6,7と、これらバスバー電極に接続される複数の波線発熱体8とを有する。図10では、各波線発熱体8を直線で描いているが、実際には、図1に示すように、各波線発熱体8は、周期および振幅が不規則な第3周期曲線を繋げて構成されている。  The front window 2 of FIG. 10 includes a pair of glass plates 3 and 4 and a conductive heating element 5 disposed between the pair of glass plates 3 and 4. The conductive heating element 5 includes two bus bar electrodes (a pair of electrodes) 6 and 7 and a plurality of wave line heating elements 8 connected to the bus bar electrodes. In FIG. 10, each wavy line heating element 8 is drawn with a straight line, but actually, as shown in FIG. 1, each wavy line heating element 8 is formed by connecting third periodic curves having irregular periods and amplitudes. Has been.

より具体的には、複数の波線発熱体8は、上述した発熱体列33を複数個組み合わせて形成されている。すなわち、各波線発熱体8の両端は2つのバスバー電極6,7に接続されており、各波線発熱体8は、図1に示したように、第1方向xに配置された複数の発熱体列33内の各1本の曲線発熱体32を繋げたものである。  More specifically, the plurality of wavy line heating elements 8 are formed by combining a plurality of the heating element rows 33 described above. That is, both ends of each wavy line heating element 8 are connected to two bus bar electrodes 6 and 7, and each wavy line heating element 8 includes a plurality of heating elements arranged in the first direction x as shown in FIG. Each curved heating element 32 in the row 33 is connected.

図10の例では、2つのバスバー電極6,7は、フロントウィンドウ2の長手方向の両端辺に沿って配置されているが、図11に示すように、フロントウィンドウ2の短手方向の両端辺に沿って2つのバスバー電極6,7を配置し、フロントウィンドウ2の長手方向に沿って複数の波線発熱体8を配置してもよい。  In the example of FIG. 10, the two bus bar electrodes 6 and 7 are arranged along both longitudinal sides of the front window 2, but as shown in FIG. 11, both lateral sides of the front window 2. Two bus bar electrodes 6 and 7 may be arranged along the longitudinal direction of the front window 2, and a plurality of wave line heating elements 8 may be arranged along the longitudinal direction of the front window 2.

図10と図11における各波線発熱体8の形状は、不規則であるが、各波線発熱体8の基準線(図1の破線32a)の間隔(ピッチ)は略一定であり、基準線同士は略平行である。例えば、各波線発熱体8は、フロントウィンドウ2の長手方向の1cm当たり8本以内の本数で配置される。すなわち、波線発熱体8のピッチは、0.125cm以上が望ましい。  The shape of each wavy heating element 8 in FIGS. 10 and 11 is irregular, but the interval (pitch) between the reference lines (broken lines 32a in FIG. 1) of each wavy heating element 8 is substantially constant, Are substantially parallel. For example, the wavy heating elements 8 are arranged in a number of 8 or less per 1 cm in the longitudinal direction of the front window 2. That is, the pitch of the wavy heating element 8 is desirably 0.125 cm or more.

複数の波線発熱体8と2つのバスバー電極6,7とは、共通の導電材料により一体成形されている。導電材料としては、例えば、導電性に優れてエッチング処理が容易な銅が用いられる。後述するように、本実施形態では、フォトリソグラフィにて、複数の波線発熱体8と2つのバスバー電極6,7とを一体的に形成する。導電性に優れて、かつフォトリソグラフィのエッチングで容易に加工可能な材料であれば、銅以外の導電性材料を用いてもよい。  The plurality of wavy line heating elements 8 and the two bus bar electrodes 6 and 7 are integrally formed of a common conductive material. As the conductive material, for example, copper that is excellent in conductivity and can be easily etched is used. As will be described later, in the present embodiment, the plurality of wavy line heating elements 8 and the two bus bar electrodes 6 and 7 are integrally formed by photolithography. A conductive material other than copper may be used as long as it has excellent conductivity and can be easily processed by photolithography etching.

2つのバスバー電極6,7間に所定の電圧を印加することにより、これらバスバー電極6,7間の複数の波線発熱体8に電流が流れ、各波線発熱体8の抵抗成分によって、各波線発熱体8が加熱される。これにより、一対のガラス板3,4が温められて、これらガラス板に付着した結露による曇りを除去することができる。また、外側のガラス板に付着した雪や氷を溶かすこともできる。よって、乗物内の乗員の視界を良好に確保可能となる。このように、導電性発熱体5は、デフロスタ電極として機能する。  By applying a predetermined voltage between the two bus bar electrodes 6, 7, a current flows through the plurality of wave line heating elements 8 between the bus bar electrodes 6, 7, and each wave line heat generation is caused by the resistance component of each wave line heating element 8. The body 8 is heated. Thereby, a pair of glass plates 3 and 4 are warmed, and the cloudiness by the dew condensation adhering to these glass plates can be removed. It is also possible to melt snow and ice adhering to the outer glass plate. Therefore, it becomes possible to ensure a good view of the occupant in the vehicle. Thus, the conductive heating element 5 functions as a defroster electrode.

バスバー電極6,7には、電力損失なく各波線発熱体8に電圧を印加する必要があるため、各バスバー電極6,7の短手方向の幅を、各波線発熱体8の短手方向の幅よりも大きくしている。本実施形態は、銅の薄膜をエッチング処理してバスバー電極6,7と波線発熱体8のパターンを形成するため、バスバー電極6,7用のパターン幅は、波線発熱体8用のパターン幅よりも広く形成されている。  Since it is necessary to apply a voltage to each wave line heating element 8 to the bus bar electrodes 6 and 7 without power loss, the width in the short direction of each bus bar electrode 6 and 7 is set to the width direction of each wave line heating element 8. It is larger than the width. In this embodiment, the copper thin film is etched to form the pattern of the bus bar electrodes 6 and 7 and the wavy heating element 8. Therefore, the pattern width for the bus bar electrodes 6 and 7 is larger than the pattern width for the wavy heating element 8. Is also widely formed.

2つのバスバー電極6,7に印加される電圧は、例えば図12に示すように、乗物に搭載されるバッテリ9や電池などから供給される。  The voltage applied to the two bus bar electrodes 6 and 7 is supplied from a battery 9 or a battery mounted on the vehicle, for example, as shown in FIG.

複数の波線発熱体8と2つのバスバー電極6,7とが一体成形された導電性発熱体5は、図13に示すように、透明基材11の上に形成されている。この透明基材11は、剥離されずにそのまま、一対のガラス板3,4の間に挟み込まれてもよいし、透明基材11を剥離した導電性発熱体5のみを一対のガラス板3,4の間に挟み込んでもよい。本明細書では、導電性発熱体5が形成された透明基材11を発熱体シート12と呼ぶ。  A conductive heating element 5 in which a plurality of wavy line heating elements 8 and two bus bar electrodes 6 and 7 are integrally formed is formed on a transparent substrate 11 as shown in FIG. The transparent base material 11 may be sandwiched between the pair of glass plates 3 and 4 as it is without being peeled off, or only the conductive heating element 5 from which the transparent base material 11 has been peeled off is paired with the pair of glass plates 3 and 3. It may be sandwiched between four. In the present specification, the transparent substrate 11 on which the conductive heating element 5 is formed is referred to as a heating element sheet 12.

波線発熱体8は、周期および振幅が不規則の複数の正弦波を第2方向yに繋げたものであり、銅箔をエッチング処理して形成されたり、あるいは、導電インキの塗布により形成される。例えば、エッチング処理により波線発熱体8を形成すると、波線発熱体8の側面は、上面や底面に対して直角に近い角度方向に配置される。このため、側面が平面状であると、側面からの反射光は特定方向に進行することになり、この方向にいる人間に強いチラツキを感じさせることになる。ところが、本実施形態では、波線発熱体8を不規則な曲線形状にしているため、その側面も不規則な形状となり、特定方向に強いチラツキを感じさせるおそれがなくなる。  The wavy heating element 8 is formed by connecting a plurality of sine waves with irregular periods and amplitudes in the second direction y, and is formed by etching a copper foil or by applying conductive ink. . For example, when the wavy line heating element 8 is formed by etching, the side surface of the wavy line heating element 8 is arranged in an angular direction near a right angle with respect to the upper surface and the bottom surface. For this reason, when the side surface is flat, the reflected light from the side surface travels in a specific direction, and a person in this direction feels a strong flicker. However, in the present embodiment, since the wavy heating element 8 has an irregular curved shape, its side surface also has an irregular shape, and there is no possibility of feeling a strong flicker in a specific direction.

図13は透明基材11上に導電性発熱体5が形成された発熱体シート12を一対のガラス板3,4の間に挟み込んだフロントウィンドウ2の図10のA−A線断面図である。図13の場合、湾曲した一方のガラス板3の上に、接合層(第1の接合層)13を介して、発熱体シート12の透明基材11が接合されている。発熱体シート12の導電性発熱体5の上には、接合層(第2の接合層)14を介して、他方のガラス板4が接合されている。  13 is a cross-sectional view taken along line AA of FIG. 10 of the front window 2 in which the heating element sheet 12 having the conductive heating element 5 formed on the transparent substrate 11 is sandwiched between the pair of glass plates 3 and 4. . In the case of FIG. 13, the transparent base material 11 of the heating element sheet 12 is bonded onto one curved glass plate 3 via a bonding layer (first bonding layer) 13. On the conductive heating element 5 of the heating element sheet 12, the other glass plate 4 is bonded via a bonding layer (second bonding layer) 14.

発熱体シート12の透明基材11と導電性発熱体5はともに十分に薄いため、発熱体シート12自体が柔軟性を備えており、湾曲したガラス板3,4の湾曲形状に沿って発熱体シート12を湾曲させた状態で、ガラス板3,4に安定的に接合することができる。  Since both the transparent base material 11 and the conductive heating element 5 of the heating element sheet 12 are sufficiently thin, the heating element sheet 12 itself has flexibility, and the heating element follows the curved shape of the curved glass plates 3 and 4. The sheet 12 can be stably bonded to the glass plates 3 and 4 in a curved state.

ガラス板3,4は、特に乗物のフロントウィンドウ2に用いる場合、乗員の視界を妨げないよう可視光透過率が高いものを用いることが好ましい。このようなガラス板3,4の材質としては、ソーダライムガラスや青板ガラス等が例示できる。ガラス板3,4は、可視光領域における透過率が90%以上であることが好ましい。ここで、ガラス板3,4の可視光透過率は、分光光度計(例えば、(株)島津製作所製「UV−3100PC」、JISK0115準拠品)を用いて測定波長380nm〜780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される。なお、ガラス板3,4の一部または全体に着色するなどして、可視光透過率を低くしてもよい。この場合、太陽光の直射を遮ったり、車外から車内を視認しにくくしたりすることができる。  In particular, when the glass plates 3 and 4 are used for the front window 2 of a vehicle, it is preferable to use a glass plate having a high visible light transmittance so as not to disturb the sight of the passenger. Examples of the material of the glass plates 3 and 4 include soda lime glass and blue plate glass. The glass plates 3 and 4 preferably have a transmittance of 90% or more in the visible light region. Here, the visible light transmittance of the glass plates 3 and 4 is measured within a measurement wavelength range of 380 nm to 780 nm using a spectrophotometer (for example, “UV-3100PC” manufactured by Shimadzu Corporation, JISK0115 compliant product). Is specified as an average value of transmittance at each wavelength. The visible light transmittance may be lowered by coloring a part or the whole of the glass plates 3 and 4. In this case, it is possible to block direct sunlight and to make it difficult to visually recognize the inside of the vehicle from outside the vehicle.

また、ガラス板3,4は、1mm以上5mm以下の厚みを有していることが好ましい。このような厚みであると、強度及び光学特性に優れたガラス板を得ることができる。  Moreover, it is preferable that the glass plates 3 and 4 have thickness of 1 mm or more and 5 mm or less. With such a thickness, a glass plate excellent in strength and optical characteristics can be obtained.

ガラス板3,4と、透明基材11上に形成された導電性発熱体5とは、それぞれ接合層13,14を介して接合されている。このような接合層13,14としては、種々の接着性または粘着性を有した材料からなる層を用いることができる。また、接合層13,14は、可視光透過率が高いものを用いることが好ましい。典型的な接合層13,14としては、ポリビニルブチラール(PVB)からなる層を例示することができる。接合層13,14の厚みは、それぞれ0.15mm以上0.7mm以下であることが好ましい。  The glass plates 3 and 4 and the conductive heating element 5 formed on the transparent substrate 11 are bonded via bonding layers 13 and 14, respectively. As the bonding layers 13 and 14, layers made of materials having various adhesiveness or tackiness can be used. The bonding layers 13 and 14 preferably have a high visible light transmittance. As typical joining layers 13 and 14, the layer which consists of polyvinyl butyral (PVB) can be illustrated. The thickness of the bonding layers 13 and 14 is preferably 0.15 mm or more and 0.7 mm or less, respectively.

なお、フロントウィンドウ2等の合わせガラスには、図示された例に限られず、特定の機能を発揮することを期待されたその他の機能層が設けられても良い。また、一つの機能層が二以上の機能を発揮するようにしてもよいし、例えば、合わせガラス1のガラス板3,4、接合層13,14や、透明基材11の少なくとも1つに種々の機能を付与してもよい。例えば、反射防止(AR)機能、耐擦傷性を有したハードコート(HC)機能、赤外線遮蔽(反射)機能、紫外線遮蔽(反射)機能、偏光機能、防汚機能等が一例として挙げられる。  The laminated glass such as the front window 2 is not limited to the illustrated example, and may be provided with other functional layers expected to exhibit a specific function. Further, one functional layer may exhibit two or more functions. For example, various functions may be applied to at least one of the glass plates 3 and 4 of the laminated glass 1, the bonding layers 13 and 14, and the transparent substrate 11. You may give the function of. Examples thereof include an antireflection (AR) function, a hard coat (HC) function having scratch resistance, an infrared shielding (reflection) function, an ultraviolet shielding (reflection) function, a polarization function, and an antifouling function.

透明基材11は、導電性発熱体5を支持する基材として機能する。透明基材11は、可視光線波長帯域の波長(380nm〜780nm)を透過する一般に言うところの透明である電気絶縁性の基板であって、熱可塑性樹脂を含んでいる。  The transparent substrate 11 functions as a substrate that supports the conductive heating element 5. The transparent substrate 11 is an electrically insulating substrate that is transparent in general and transmits a wavelength in the visible light wavelength band (380 nm to 780 nm), and includes a thermoplastic resin.

透明基材11に主成分として含まれる熱可塑性樹脂としては、可視光を透過する熱可塑性樹脂であればいかなる樹脂でもよいが、例えば、ポリメチルメタクリレート等のアクリル樹脂、ポリプロピレン等のポリオレフィン樹脂、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル樹脂、トリアセチルセルロース(三酢酸セルロース)等のセルロース系樹脂、ポリ塩化ビニル、ポリスチレン、ポリカーボネート樹脂、AS樹脂等を挙げることができる。とりわけ、アクリル樹脂やポリエチレンテレフタレートは、光学特性に優れ、成形性が良いので好ましい。  The thermoplastic resin contained as a main component in the transparent substrate 11 may be any resin as long as it is a thermoplastic resin that transmits visible light. For example, an acrylic resin such as polymethyl methacrylate, a polyolefin resin such as polypropylene, and polyethylene Examples thereof include polyester resins such as terephthalate and polyethylene naphthalate, cellulose resins such as triacetyl cellulose (cellulose triacetate), polyvinyl chloride, polystyrene, polycarbonate resin, AS resin, and the like. In particular, acrylic resin and polyethylene terephthalate are preferable because they are excellent in optical properties and good in moldability.

また、透明基材11は、製造中の導電性発熱体5の保持性や、光透過性等を考慮すると、0.02mm以上0.20mm以下の厚みを有していることが好ましい。  The transparent substrate 11 preferably has a thickness of 0.02 mm or more and 0.20 mm or less in consideration of retention of the conductive heating element 5 being manufactured, light transmittance, and the like.

図14は導電性発熱体5の製造工程を示す断面図であり、図10のA−A線方向の断面構造を示している。まず、図14(a)に示すように、透明基材11上に銅の薄膜21を形成する。この薄膜21は、電界銅箔や圧延銅箔、スパッタリング、真空蒸着などにより形成可能である。  FIG. 14 is a cross-sectional view showing a manufacturing process of the conductive heating element 5, and shows a cross-sectional structure in the direction of the AA line of FIG. First, as shown in FIG. 14A, a copper thin film 21 is formed on a transparent substrate 11. The thin film 21 can be formed by electrolytic copper foil, rolled copper foil, sputtering, vacuum deposition, or the like.

次に、図14(b)に示すように、銅の薄膜21の上面をフォトレジスト22で覆う。フォトレジスト22は、例えば特定波長域の光、例えば紫外線に対する感光性を有する樹脂層である。この樹脂層は、樹脂フィルムを貼着して形成してもよいし、流動性の樹脂をコーティングすることにより形成してもよい。また、フォトレジスト22の具体的な感光特性は特に限られない。例えば、フォトレジスト22として、光硬化型の感光材が用いられてもよく、若しくは、光溶解型の感光材が用いられてもよい。  Next, as shown in FIG. 14B, the upper surface of the copper thin film 21 is covered with a photoresist 22. The photoresist 22 is a resin layer having photosensitivity to, for example, light in a specific wavelength range, for example, ultraviolet rays. This resin layer may be formed by sticking a resin film, or may be formed by coating a fluid resin. Further, the specific photosensitive characteristics of the photoresist 22 are not particularly limited. For example, a photocurable photosensitive material may be used as the photoresist 22, or a photodissolvable photosensitive material may be used.

続いて、図14(c)に示すように、フォトレジスト22をパターニングして、レジストパターン23を形成する。フォトレジスト22をパターニングする方法としては、公知の種々の方法を採用することができるが、この例では、フォトレジスト22として、特定波長域の光、例えば紫外線に対する感光性を有する樹脂層を用い、公知のフォトリソグラフィー技術を用いてパターニングしている。まず、フォトレジスト22上に、パターン化したい部分を開口したマスク、又は、パターン化したい部分を遮蔽したマスクを配置する。上述したように、マスクには、波線発熱体8の長手方向に延びる両端面が蛇行するようなパターンが描かれている。また、場合によっては、波線発熱体8の長手方向が全体として蛇行しているようなパターンがマスクに描かれていてもよい。  Subsequently, as illustrated in FIG. 14C, the photoresist 22 is patterned to form a resist pattern 23. As a method for patterning the photoresist 22, various known methods can be adopted. In this example, a resin layer having photosensitivity to light in a specific wavelength region, for example, ultraviolet rays, is used as the photoresist 22. Patterning is performed using a known photolithography technique. First, on the photoresist 22, a mask in which a portion to be patterned is opened or a mask in which a portion to be patterned is shielded is disposed. As described above, the mask has a pattern in which both end surfaces extending in the longitudinal direction of the wavy heating element 8 meander. In some cases, a pattern in which the longitudinal direction of the wavy heating element 8 snakes as a whole may be drawn on the mask.

次に、このマスクを介してフォトレジスト22に紫外線を照射する。その後、紫外線がマスクにより遮蔽された部分、又は、紫外線が照射された部分を現像等の手段により除去する。これにより、パターニングされたレジストパターン23を形成することができる。なお、マスクを用いないレーザーパターニング法を用いることもできる。  Next, the photoresist 22 is irradiated with ultraviolet rays through this mask. Thereafter, the portion where the ultraviolet rays are shielded by the mask or the portion irradiated with the ultraviolet rays is removed by means such as development. Thereby, the patterned resist pattern 23 can be formed. A laser patterning method that does not use a mask can also be used.

次に、図14(d)に示すように、レジストパターン23の上方からウェットエッチング用のエッチング液を噴射して、レジストパターン23で覆われていない銅の薄膜21をエッチング除去し、レジストパターン23で覆われた領域のみ、銅の薄膜21を残す。次に、図14(e)に示すように、レジストパターン23を剥離することで、複数の波線発熱体8と2つのバスバー電極6,7とが作製される。その後、透明基材11上に形成された複数の波線発熱体8と2つのバスバー電極6,7は、一対のガラス板3,4に挟み込まれて封止される。  Next, as shown in FIG. 14 (d), an etching solution for wet etching is sprayed from above the resist pattern 23 to etch away the copper thin film 21 not covered with the resist pattern 23. The copper thin film 21 is left only in the region covered with. Next, as shown in FIG. 14E, the resist pattern 23 is peeled off, whereby a plurality of wavy line heating elements 8 and two bus bar electrodes 6 and 7 are produced. Thereafter, the plurality of wavy heating elements 8 and the two bus bar electrodes 6, 7 formed on the transparent substrate 11 are sandwiched and sealed between the pair of glass plates 3, 4.

なお、パターニングした銅の薄膜21の表面や、あるいは銅の薄膜21の下面側に、導電性発熱体5の反射率を抑制するための暗色層を形成してもよい。暗色層を形成することで、外光が波線発熱体8やバスバー電極6,7の表面に照射された場合の反射光を抑制でき、チラツキの発生をより抑制できる。  A dark color layer for suppressing the reflectance of the conductive heating element 5 may be formed on the surface of the patterned copper thin film 21 or on the lower surface side of the copper thin film 21. By forming the dark color layer, it is possible to suppress the reflected light when external light is applied to the surface of the wavy heating element 8 or the bus bar electrodes 6 and 7, and to further suppress the occurrence of flicker.

バスバー電極6,7を一体成形せずに、複数の波線発熱体8のみをフォトリソグラフィにより形成する場合、フォトリソグラフィのエッチング工程で、エッチング液を噴射した際に、波線発熱体8の長手方向両端部側が長手方向中央部よりもエッチングがより進行し、波線発熱体8の長手方向両端部の幅が細くなりすぎて、バスバー電極6,7と導通しなくなったり、波線発熱体8の長手方向両端部の抵抗が異常に高くなったりする。これに対して、本実施形態のように、複数の波線発熱体8と2つのバスバー電極6,7とを一体成形する場合には、複数の波線発熱体8の長手方向中央部側から両端部側に流れたエッチング液がバスバー電極6,7でせき止められるため、波線発熱体8が全体として均一にエッチング液に浸漬され、波線発熱体8の長手方向両端部がより多くエッチング除去される等の不具合が起きなくなる。  When only the plurality of wave line heating elements 8 are formed by photolithography without integrally forming the bus bar electrodes 6, 7, both ends in the longitudinal direction of the wave line heating element 8 when the etching solution is injected in the photolithography etching process. Etching progresses more in the longitudinal direction than in the central portion in the longitudinal direction, the widths of both ends in the longitudinal direction of the wavy heating element 8 become too narrow, and the bus bar electrodes 6 and 7 are not electrically connected. The resistance of the part becomes abnormally high. On the other hand, when integrally forming the plurality of wave line heating elements 8 and the two bus bar electrodes 6 and 7 as in the present embodiment, both end portions from the longitudinal center part side of the plurality of wave line heating elements 8 are provided. Since the etching solution that has flowed to the side is dammed by the bus bar electrodes 6, 7, the wavy heating element 8 is uniformly immersed in the etching solution as a whole, and the longitudinal ends of the wavy heating element 8 are more etched away. Trouble will not occur.

また、本実施形態では、複数の波線発熱体8と2つのバスバー電極6,7とをフォトリソグラフィにより一体成形するため、先にフォトリソグラフィで複数の波線発熱体8を形成し、その後、別体のバスバー電極6,7を波線発熱体8に接合する場合と比べて、波線発熱体8とバスバー電極6,7との接触性が向上し、波線発熱体8とバスバー電極6,7との接合部での電力損失が少なくなり、発熱効率が向上する。  In the present embodiment, since the plurality of wave line heating elements 8 and the two bus bar electrodes 6 and 7 are integrally formed by photolithography, the plurality of wave line heating elements 8 are first formed by photolithography, and then separated. Compared with the case where the bus bar electrodes 6, 7 are joined to the wave line heating element 8, the contact property between the wave line heating element 8 and the bus bar electrodes 6, 7 is improved, and the bonding between the wave line heating element 8 and the bus bar electrodes 6, 7 is achieved. The power loss in the part is reduced and the heat generation efficiency is improved.

図14の製造工程により作製された発熱体シート12は、湾曲した一対のガラス板3,4の間に配置される。より詳細には、一方のガラス板3、接合層13、発熱体シート12、接合層14、ガラス板4の順に重ね合わせて、加圧しながら加熱することで、合わせガラスが作製される。  The heating element sheet 12 produced by the manufacturing process of FIG. 14 is disposed between a pair of curved glass plates 3 and 4. In more detail, a laminated glass is produced by superposing one glass plate 3, the bonding layer 13, the heating element sheet 12, the bonding layer 14, and the glass plate 4 in this order and heating while pressing.

上述した図14の製造工程は、透明基材11上にエッチング等により波線発熱体8等を形成した後に一対のガラス板3,4で封止して合わせガラスを形成する例を示したが、一対のガラス板3,4間に透明基材11も含まれることになり、一対のガラス板3,4間の層数が増えてしまい、厚みが増えて重量が増すとともに、各層の光学特性の相違により視認性が低下するおそれもある。さらには、透明基材11を含むことで、熱の伝達特性も低下する。また、一対のガラス板3,4は、図13のように湾曲しているため、透明基材11にしわが生じるおそれもある。  Although the manufacturing process of FIG. 14 mentioned above showed the example which forms the laminated glass by sealing with a pair of glass plates 3 and 4 after forming the wavy heat generating body 8 etc. by the etching etc. on the transparent base material 11, The transparent substrate 11 is also included between the pair of glass plates 3 and 4, and the number of layers between the pair of glass plates 3 and 4 increases, the thickness increases and the weight increases, and the optical characteristics of each layer increase. There is also a risk that visibility may be reduced due to the difference. Furthermore, by including the transparent base material 11, heat transfer characteristics also deteriorate. Further, since the pair of glass plates 3 and 4 are curved as shown in FIG. 13, wrinkles may occur in the transparent substrate 11.

そこで、図15に示すように、透明基材11上に剥離層15を介してバスバー電極6,7と波線発熱体8を含む導電性発熱体5を形成した発熱体シート12を作製し、この発熱体シート12を一方のガラス板に貼り付けた後に、透明基材を剥離し、その後に他方のガラス板を張り付けてもよい。図16〜図19は図15の発熱体シート12を用いた合わせガラスの製造工程の一例を示す断面図である。  Therefore, as shown in FIG. 15, a heating element sheet 12 in which the conductive heating element 5 including the bus bar electrodes 6 and 7 and the wavy heating element 8 is formed on the transparent substrate 11 via the release layer 15 is manufactured. After the heating element sheet 12 is attached to one glass plate, the transparent base material may be peeled off, and then the other glass plate may be attached. 16-19 is sectional drawing which shows an example of the manufacturing process of the laminated glass using the heat generating body sheet | seat 12 of FIG.

まず、発熱体シート12に、発熱体形成面側(図16の上側)から、接合層14及びガラス板4を積層し、その後、発熱体シート12、接合層14及びガラス板4を接合して第1中間部材17を作製する。例えば、発熱体シート12に接合層14及びガラス板4を積層したものをオートクレーブ装置へ搬入し、発熱体シート12、接合層14及びガラス板4を加熱・加圧し、オートクレーブ装置から取り出すようにすることができる。この場合、発熱体シート12、接合層14及びガラス板4を加熱・加圧する前に、オートクレーブ装置内を減圧するようにすると、接合層14内や、接合層14と発熱体シート12との界面、接合層14とガラス板3との界面に、気泡が残留することを抑制することができる。  First, the bonding layer 14 and the glass plate 4 are laminated on the heating element sheet 12 from the heating element forming surface side (the upper side in FIG. 16), and then the heating element sheet 12, the bonding layer 14 and the glass plate 4 are bonded. The first intermediate member 17 is produced. For example, the heating element sheet 12 laminated with the bonding layer 14 and the glass plate 4 is carried into an autoclave apparatus, and the heating element sheet 12, the bonding layer 14 and the glass sheet 4 are heated and pressurized and taken out from the autoclave apparatus. be able to. In this case, if the inside of the autoclave apparatus is depressurized before heating and pressurizing the heating element sheet 12, the bonding layer 14, and the glass plate 4, the bonding layer 14 and the interface between the bonding layer 14 and the heating element sheet 12 can be used. It is possible to suppress bubbles from remaining at the interface between the bonding layer 14 and the glass plate 3.

これにより、図16に示されているように、透明基材11、剥離層15、導電性発熱体5、接合層14及びガラス板4が積層された第1中間部材17が得られる。この第1中間部材17の接合層14は、第1の面14a及び第2の面14bを有しており、導電性発熱体5が、接合層14の第1の面14aに少なくとも部分的に埋め込まれている。図示された例では、導電性発熱体5は、接合層14の第1の面14aの側から接合層14内に完全に埋まり込んでいる。結果として、導電性発熱体5間の隙間を介して、接合層14が剥離層15に面接触している。さらには、接合層14は、発熱体の33内に露出している剥離層15の全域に面接触している。  Thereby, as shown in FIG. 16, the first intermediate member 17 in which the transparent substrate 11, the release layer 15, the conductive heating element 5, the bonding layer 14, and the glass plate 4 are laminated is obtained. The bonding layer 14 of the first intermediate member 17 has a first surface 14 a and a second surface 14 b, and the conductive heating element 5 is at least partially on the first surface 14 a of the bonding layer 14. Embedded. In the illustrated example, the conductive heating element 5 is completely embedded in the bonding layer 14 from the first surface 14 a side of the bonding layer 14. As a result, the bonding layer 14 is in surface contact with the release layer 15 through the gap between the conductive heating elements 5. Further, the bonding layer 14 is in surface contact with the entire area of the release layer 15 exposed in the heating element 33.

なお、図16〜図19に示した例では、図示の簡略化のためにガラス板3、4を平らなもので示しているが、実際には、図13と同様に湾曲している。第1中間部材17はガラス板4に接合されるため、第1中間部材17もガラス板4の形状に合わせて湾曲した形状となる。  In the examples shown in FIGS. 16 to 19, the glass plates 3 and 4 are shown as flat for simplification of illustration, but actually, the glass plates 3 and 4 are curved as in FIG. 13. Since the first intermediate member 17 is bonded to the glass plate 4, the first intermediate member 17 also has a curved shape according to the shape of the glass plate 4.

次に、図17に示されているように、第1中間部材17の発熱体シート12の透明基材11を除去して、第2中間部材18(合わせガラス用中間部材)を作製する。図17に示された例において、発熱体シート12の透明基材11を、剥離層15を用いて第1中間部材17から剥離し、第1中間部材17から除去する。剥離層15として、透明基材11との密着性と比べて、接合層14及び導電性発熱体5との密着性が相対的に低い層を有する界面剥離型の剥離層15を用いた場合、剥離層15と接合層14及び導電性発熱体5との間で剥離される。この場合、剥離層15が、接合層14と導電性発熱体5側に残らないようにすることができる。すなわち、透明基材11は、剥離層15とともに、第1中間部材17から除去される。このようにして透明基材11及び剥離層15が除去された第1中間部材17において、導電性発熱体5間の隙間内に、接合層14が露出するようになる。  Next, as shown in FIG. 17, the transparent base material 11 of the heating element sheet 12 of the first intermediate member 17 is removed, and the second intermediate member 18 (intermediate member for laminated glass) is produced. In the example shown in FIG. 17, the transparent substrate 11 of the heating element sheet 12 is peeled off from the first intermediate member 17 using the release layer 15 and removed from the first intermediate member 17. When using an interfacial release type release layer 15 having a layer having relatively low adhesion to the bonding layer 14 and the conductive heating element 5 as compared to the adhesion to the transparent substrate 11 as the release layer 15, The peeling layer 15 is peeled between the bonding layer 14 and the conductive heating element 5. In this case, it is possible to prevent the release layer 15 from remaining on the bonding layer 14 and the conductive heating element 5 side. That is, the transparent substrate 11 is removed from the first intermediate member 17 together with the release layer 15. In the first intermediate member 17 from which the transparent substrate 11 and the release layer 15 have been removed in this way, the bonding layer 14 is exposed in the gaps between the conductive heating elements 5.

その一方で、剥離層15として、接合層14及び導電性発熱体5との密着性と比べて、透明基材11との密着性が相対的に低い界面剥離型の剥離層15を用いた場合には、剥離層15と透明基材11との間で剥離が生じるようになる。剥離層15として、複数層のフィルムを有し、接合層14及び導電性発熱体5や、透明基材11との密着性と比べて、当該複数層間相互の密着性が相対的に低い層間剥離型の剥離層15を用いた場合には、当該複数層間で剥離が生じるようになる。一方、剥離層15として、連続相としてのベース樹脂中に分散相としてのフィラーを分散させた凝集剥離型の剥離層15を用いた場合には、剥離層15内での凝集破壊による剥離が生じる。  On the other hand, when the peeling layer 15 is an interfacial peeling type peeling layer 15 that has relatively low adhesion to the transparent substrate 11 compared to the adhesion between the bonding layer 14 and the conductive heating element 5. In this case, peeling occurs between the peeling layer 15 and the transparent substrate 11. The release layer 15 has a plurality of layers of films, and has a relatively low adhesion between the plurality of layers compared to the adhesion with the bonding layer 14, the conductive heating element 5, and the transparent substrate 11. When the mold release layer 15 is used, peeling occurs between the plurality of layers. On the other hand, when the release layer 15 is a cohesive release type release layer 15 in which a filler as a dispersed phase is dispersed in a base resin as a continuous phase, release occurs due to cohesive failure in the release layer 15. .

第2中間部材18においても、接合層14は、第1の面14a及び第2の面14bを有しており、導電性発熱体5が、接合層14の第1の面14aに少なくとも部分的に埋め込まれている。  Also in the second intermediate member 18, the bonding layer 14 has a first surface 14 a and a second surface 14 b, and the conductive heating element 5 is at least partially on the first surface 14 a of the bonding layer 14. Embedded in.

以上のようにして製造された合わせガラス10を図18に示す。合わせガラス10は、一対のガラス板3,4と、一対のガラス板3,4の間に配置され、一対のガラス板3,4を接合する接合層14と、接合層14と一対のガラス板3,4の一方との間に配置された導電性発熱体5と、を有している。この合わせガラス10は、上述したように、発熱体シート12を用いて製造することができる。発熱体シート12の導電性発熱体5は、種々の材料および種々の方法を用いて、透明基材11上に作製することができ、さらに、所望のパターンを高精度に付与することもできる。したがって、導電性発熱体5を構成する波線発熱体8での光の拡散や回折による視認性への悪影響を低減させることが可能となる。また、導電性発熱体5と一対のガラス板3,4の一方とが接触しているので、導電性発熱体5によるガラス板3,4の加熱効率を上げることができる。さらに、合わせガラス10内の界面数を低減することができ、且つ、合わせガラス10全体の厚みを小さくすることができる。したがって、光学特性の低下すなわち視認性の低下を抑制することができる。加えて、合わせガラス10全体の重量を軽くすることができ、車両の燃費改善に寄与する。  The laminated glass 10 manufactured as described above is shown in FIG. Laminated glass 10 is disposed between a pair of glass plates 3 and 4, a pair of glass plates 3 and 4, a bonding layer 14 that bonds the pair of glass plates 3 and 4, a bonding layer 14, and a pair of glass plates 3 and 4 and a conductive heating element 5 arranged between one of the three and the fourth. As described above, the laminated glass 10 can be manufactured using the heating element sheet 12. The conductive heating element 5 of the heating element sheet 12 can be produced on the transparent substrate 11 by using various materials and various methods, and a desired pattern can be given with high accuracy. Therefore, it is possible to reduce adverse effects on visibility due to light diffusion and diffraction in the wavy heating element 8 constituting the conductive heating element 5. Further, since the conductive heating element 5 and one of the pair of glass plates 3 and 4 are in contact, the heating efficiency of the glass plates 3 and 4 by the conductive heating element 5 can be increased. Furthermore, the number of interfaces in the laminated glass 10 can be reduced, and the thickness of the entire laminated glass 10 can be reduced. Accordingly, it is possible to suppress a decrease in optical characteristics, that is, a decrease in visibility. In addition, the weight of the laminated glass 10 as a whole can be reduced, which contributes to an improvement in the fuel consumption of the vehicle.

また、図示した発熱体シート12は、ガラス板3,4と面接触している。このような合わせガラス10では、発熱体シート12によるガラス板11の加熱効率を一層上げることができる。  The illustrated heating element sheet 12 is in surface contact with the glass plates 3 and 4. In such a laminated glass 10, the heating efficiency of the glass plate 11 by the heat generating sheet 12 can be further increased.

また、図18の合わせガラス10では、湾曲したガラス板3,4と発熱体シート12との間に透明基材11が存在しないので、一対のガラス板3,4が湾曲していても、接合層14及び導電性発熱体5がガラス板3,4の湾曲に追従しやすくなる。すなわち、透明基材11が,一対のガラス板3,4間でしわを発生させてしまうといった不具合を解消することができる。  Moreover, in the laminated glass 10 of FIG. 18, since the transparent base material 11 does not exist between the curved glass plates 3 and 4 and the heat generating sheet | seat 12, even if a pair of glass plates 3 and 4 are curving, it is joining The layer 14 and the conductive heating element 5 can easily follow the curvature of the glass plates 3 and 4. That is, the problem that the transparent substrate 11 causes wrinkles between the pair of glass plates 3 and 4 can be solved.

また、図16〜図18に示した製造方法は、透明基材11と、透明基材11上に設けられた剥離層15と、剥離層15上に設けられた導電性発熱体5と、を有する発熱体シート12に、導電性発熱体5の側から、接合層14を介してガラス板4を接合する工程と、透明基材11を除去する工程と、接合層14に、ガラス板4に対面する側とは反対の側から、他のガラス板3を接合する工程と、を有する。この例では、透明基材11を第1中間部材17から剥離する際に、接合層14及び導電性発熱体5がガラス板4に保持されているので、透明基材11の剥離が容易となる。また、発熱体シート12への接合層14及びガラス板4の接合を一度に行うので、工程数を削減できる利点がある。  Moreover, the manufacturing method shown in FIGS. 16 to 18 includes the transparent base material 11, the release layer 15 provided on the transparent base material 11, and the conductive heating element 5 provided on the release layer 15. The step of bonding the glass plate 4 to the heating element sheet 12 having the bonding layer 14 from the conductive heating element 5 side, the step of removing the transparent substrate 11, the bonding layer 14, and the glass plate 4 A step of joining another glass plate 3 from the side opposite to the facing side. In this example, when the transparent base material 11 is peeled from the first intermediate member 17, since the bonding layer 14 and the conductive heating element 5 are held by the glass plate 4, the transparent base material 11 can be easily peeled off. . Moreover, since the joining layer 14 and the glass plate 4 are joined to the heating element sheet 12 at once, there is an advantage that the number of processes can be reduced.

なお、上述のように、剥離層15として、接合層14及び発熱体シート12との密着性と比べて、透明基材11との密着性が相対的に低い界面剥離型の剥離層を用いた場合には、剥離層15と透明基材11との間で剥離が生じるようになる。剥離層15として、複数層のフィルムを有し、接合層14及び発熱体シート12や、透明基材11との密着性と比べて、当該複数層間相互の密着性が相対的に低い層間剥離型の剥離層を用いた場合には、当該複数層間で剥離が生じるようになる。剥離層15として、連続相としてのベース樹脂中に分散相としてのフィラーを分散させた凝集剥離型の剥離層を用いた場合には、剥離層15内での凝集破壊による剥離が生じる。これらの剥離層15を用いた場合、剥離層15を用いて透明基材11が除去された第2中間部材18において、剥離層15の少なくとも一部が接合層14及び発熱体シート12側に残る。したがって、波線発熱体8間の隙間内に、接合層14が露出していない状態が生じる。この場合、第2中間部材18にガラス板4を積層する際、第2中間部材18とガラス板4との間に更なる接合層13を設けることが、ガラス板11の確実な接合を確保する上で、好ましい。この場合、接合層14及び発熱体シート12側に残った剥離層15は、発熱体シート12を支持する支持層19となる。その結果得られる合わせガラス10は、図19に示すように、一対のガラス板3,4と、一対のガラス板3,4の間に配置された一対の接合層14,13と、一対の接合層14,13の間に配置された支持層19と、一対の接合層14,13の一方と支持層19との間に配置され、支持層19に支持された発熱体シート12と、を有するようになる。  As described above, as the release layer 15, an interfacial release type release layer having relatively low adhesion to the transparent substrate 11 compared to the adhesion to the bonding layer 14 and the heating element sheet 12 was used. In some cases, peeling occurs between the peeling layer 15 and the transparent substrate 11. As the release layer 15, an interlayer release type having a plurality of layers and having relatively low adhesiveness between the plurality of layers as compared with the adhesiveness with the bonding layer 14, the heating element sheet 12, and the transparent substrate 11. When the peeling layer is used, peeling occurs between the plurality of layers. When a cohesive peeling type release layer in which a filler as a dispersed phase is dispersed in a base resin as a continuous phase is used as the peeling layer 15, peeling due to cohesive failure occurs in the peeling layer 15. When these peeling layers 15 are used, in the 2nd intermediate member 18 from which the transparent base material 11 was removed using the peeling layer 15, at least one part of the peeling layer 15 remains in the joining layer 14 and the heat generating sheet 12 side. . Therefore, the bonding layer 14 is not exposed in the gap between the wavy heating elements 8. In this case, when the glass plate 4 is laminated on the second intermediate member 18, the further bonding layer 13 is provided between the second intermediate member 18 and the glass plate 4 to ensure the reliable bonding of the glass plate 11. Preferred above. In this case, the release layer 15 remaining on the bonding layer 14 and the heating element sheet 12 side becomes a support layer 19 that supports the heating element sheet 12. As shown in FIG. 19, the laminated glass 10 obtained as a result is a pair of glass plates 3 and 4, a pair of bonding layers 14 and 13 disposed between the pair of glass plates 3 and 4, and a pair of bondings. A support layer 19 disposed between the layers 14 and 13, and a heating element sheet 12 disposed between one of the pair of bonding layers 14 and 13 and the support layer 19 and supported by the support layer 19. It becomes like this.

上述したように、本実施形態による曲線発熱体32は、1/4周期ごとに周期と振幅が異なる複数の第1周期曲線30を繋げたものである。発熱体シート12内の各曲線発熱体32が、1/4周期ごとに周期と振幅が異なる複数の第1周期曲線30を繋げたものか否かは、例えば、図20の処理手順にて判断できる。  As described above, the curved heating element 32 according to the present embodiment is formed by connecting a plurality of first periodic curves 30 having different periods and amplitudes every ¼ period. Whether or not each curve heating element 32 in the heating element sheet 12 is connected to a plurality of first period curves 30 having different periods and amplitudes every ¼ period is determined by, for example, the processing procedure of FIG. it can.

まず、対象となる発熱体シート(以下、対象物)内の発熱体の外観を2次元スキャナで撮像する(ステップS21)。次に、撮像した画像データの中から個々の発熱体を抽出し、抽出した発熱体の線幅を最小化(細線化)する(ステップS22)。次に、細線化した発熱体を構成する複数の第1周期曲線30を抽出する(ステップS23)。次に、各第1周期曲線30の1/4周期の長さと振幅を検出する(ステップS24)。次に、ステップS23で検出した各第1周期曲線30の1/4周期の長さと振幅が不規則であるか否かを判定する(ステップS25)。ステップS24の判定処理は、簡単には、連続した複数の第1周期曲線30の振幅が一致せず、かつ1/4周期の長さも一致しなければ、不規則であると判断すればよい。  First, an external appearance of a heating element in a heating element sheet (hereinafter referred to as an object) is captured with a two-dimensional scanner (step S21). Next, individual heating elements are extracted from the captured image data, and the line width of the extracted heating elements is minimized (thinned) (step S22). Next, a plurality of first periodic curves 30 constituting the thinned heating element are extracted (step S23). Next, the length and amplitude of the quarter period of each first periodic curve 30 are detected (step S24). Next, it is determined whether or not the length and amplitude of the quarter period of each first periodic curve 30 detected in step S23 is irregular (step S25). The determination process in step S24 may be simply determined to be irregular if the amplitudes of a plurality of continuous first periodic curves 30 do not match and the length of a quarter cycle does not match.

このように、本実施形態では、半周期未満の複数の第1周期曲線30を繋げて各曲線発熱体を形成し、各第1周期曲線30の形状を不規則にするため、各曲線発熱体の周期性が弱くなり、光芒やチラツキを抑制できるとともに、熱ムラや濃淡ムラも抑制できる。  Thus, in this embodiment, in order to form each curve heating element by connecting a plurality of first period curves 30 of less than a half cycle, and to make the shape of each first period curve 30 irregular, each curve heating element The periodicity of the light becomes weak, so that light glare and flickering can be suppressed, and heat unevenness and shading unevenness can also be suppressed.

2 フロントウィンドウ、3,4 ガラス板、5 導電性発熱体、6,7 バスバー電極、8 波線発熱体、11 透明基材、12 発熱体シート、13,14 接合層、13
薄膜、22 フォトレジスト、23 レジストパターン、32 曲線発熱体、33 発熱体列、34 バイパス発熱体、41 発熱体生成装置、42 パラメータ取得部、43
曲線発熱体生成部、44 正規化部、45 周期曲線判定部、46 曲線発熱体記憶部、47 発熱体生成部、48 位相調整部、49 発熱体記憶部
2 front window, 3, 4 glass plate, 5 conductive heating element, 6, 7 bus bar electrode, 8 wavy heating element, 11 transparent substrate, 12 heating element sheet, 13, 14 bonding layer, 13
Thin film, 22 photoresist, 23 resist pattern, 32 curved heating element, 33 heating element array, 34 bypass heating element, 41 heating element generator, 42 parameter acquisition unit, 43
Curve heating element generation unit, 44 normalization unit, 45 periodic curve determination unit, 46 curve heating element storage unit, 47 heating element generation unit, 48 phase adjustment unit, 49 heating element storage unit

Claims (16)

第1方向に離間して配置され、前記第1方向に交差する第2方向に延びる複数の曲線発熱体を備え、
前記複数の曲線発熱体のそれぞれは、半周期未満の複数の第1周期曲線を繋げたものであり、
前記複数の第1周期曲線のそれぞれの形状は、不規則である導電性発熱体。
A plurality of curved heating elements that are spaced apart in the first direction and extend in a second direction intersecting the first direction;
Each of the plurality of curve heating elements is formed by connecting a plurality of first period curves less than a half period,
Each of the plurality of first periodic curves has an irregular shape and is a conductive heating element.
前記複数の第1周期曲線のそれぞれは、周期および振幅の少なくとも一方が不規則である請求項1に記載の導電性発熱体。  2. The conductive heating element according to claim 1, wherein each of the plurality of first periodic curves is irregular in at least one of a period and an amplitude. 前記複数の第1周期曲線の周期および振幅の少なくとも一方は、一定でない請求項2に記載の導電性発熱体。  The conductive heating element according to claim 2, wherein at least one of a period and an amplitude of the plurality of first periodic curves is not constant. 前記複数の第1周期曲線のそれぞれは、前記第1周期曲線の1/4周期分の長さを有する請求項1乃至3のいずれか1項に記載の導電性発熱体。  4. The conductive heating element according to claim 1, wherein each of the plurality of first periodic curves has a length corresponding to ¼ period of the first periodic curve. 5. 前記第1周期曲線は、正弦波である請求項4に記載の導電性発熱体。  The conductive heating element according to claim 4, wherein the first periodic curve is a sine wave. 前記複数の曲線発熱体のそれぞれの前記第2方向における端部位置は不規則である請求項1乃至5のいずれか1項に記載の導電性発熱体。  The conductive heating element according to any one of claims 1 to 5, wherein end positions of the plurality of curved heating elements in the second direction are irregular. 前記第2方向に隣接して配置される2つの前記第1周期曲線同士のつなぎ目から所定範囲内は、スムージング処理がなされた形状を有する、請求項1乃至5のいずれか1項に記載の導電性発熱体。  The conductive according to any one of claims 1 to 5, wherein a smoothing process is performed within a predetermined range from a joint between the two first periodic curves arranged adjacent to each other in the second direction. Sex heating element. 前記スムージング処理がなされた形状は、屈曲点を持たない曲線形状である、請求項7に記載の導電性発熱体。  The conductive heating element according to claim 7, wherein the shape subjected to the smoothing process is a curved shape having no bending point. 前記第1方向に隣接する2本の前記曲線発熱体同士を接続するバイパス発熱体を備える請求項1乃至8のいずれか1項に記載の導電性発熱体。  The conductive heating element according to any one of claims 1 to 8, further comprising a bypass heating element that connects the two curved heating elements adjacent to each other in the first direction. 前記複数の曲線発熱体のそれぞれには、同じ数の前記バイパス発熱体が接続されている請求項9に記載の導電性発熱体。  The conductive heating element according to claim 9, wherein the same number of bypass heating elements are connected to each of the plurality of curved heating elements. 前記バイパス発熱体の接続位置は、前記複数の曲線発熱体のそれぞれごとに不規則である請求項9または10に記載の導電性発熱体。  The conductive heating element according to claim 9 or 10, wherein a connection position of the bypass heating element is irregular for each of the plurality of curved heating elements. 前記バイパス発熱体は、半周期未満の複数の第2周期曲線を繋げたものであり、
前記複数の第2周期曲線のそれぞれの形状は、不規則である請求項9乃至11のいずれか1項に記載の導電性発熱体。
The bypass heating element is formed by connecting a plurality of second periodic curves of less than a half cycle,
The conductive heating element according to any one of claims 9 to 11, wherein each of the plurality of second periodic curves has an irregular shape.
前記第1方向および前記第2方向に複数個ずつ並べて配置される複数の発熱体列を備え、
前記複数の発熱体列のそれぞれは、前記複数の曲線発熱体を有し、
前記第2方向に隣接配置される2つの前記発熱体列内の各曲線発熱体は、対応するもの同士が接続されている請求項1乃至12のいずれか1項に記載の導電性発熱体。
A plurality of heating element rows arranged side by side in the first direction and the second direction,
Each of the plurality of heating element rows has the plurality of curved heating elements,
13. The conductive heating element according to claim 1, wherein corresponding ones of the curved heating elements in the two heating element arrays arranged adjacent to each other in the second direction are connected to each other.
前記第2方向に離間して配置され、前記第1方向に延びる一対のバスバー電極と、
前記第1方向に離間して配置され、前記第2方向に延びて前記一対のバスバー電極に接続される複数の波線発熱体と、を備え、
前記複数の波線発熱体は、前記複数の発熱体列のそれぞれに含まれる前記複数の曲線発熱体を前記第2方向に接続したものである請求項13に記載の導電性発熱体。
A pair of bus bar electrodes that are spaced apart in the second direction and extend in the first direction;
A plurality of wavy heating elements disposed apart from each other in the first direction and extending in the second direction and connected to the pair of bus bar electrodes,
The conductive heating element according to claim 13, wherein the plurality of wavy line heating elements are obtained by connecting the plurality of curved heating elements included in each of the plurality of heating element rows in the second direction.
一主面上に前記複数の曲線発熱体を配置した透明基材層を備える請求項1乃至14のいずれか1項に記載の導電性発熱体。  The electroconductive heat generating body of any one of Claims 1 thru | or 14 provided with the transparent base material layer which has arrange | positioned these curve heat generating bodies on one main surface. 請求項1乃至14のいずれか1項に記載の導電性発熱体を挟み込むように対向配置される一対のガラス基板を備える合わせガラス。  A laminated glass provided with a pair of glass substrate opposingly arranged so that the electroconductive heat generating body of any one of Claims 1 thru | or 14 may be pinched | interposed.
JP2018520926A 2016-05-31 2017-05-30 Conductive heating element and laminated glass Active JP6888622B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016108598 2016-05-31
JP2016108598 2016-05-31
PCT/JP2017/020114 WO2017209130A1 (en) 2016-05-31 2017-05-30 Conductive heating element and glass laminate

Publications (2)

Publication Number Publication Date
JPWO2017209130A1 true JPWO2017209130A1 (en) 2019-03-28
JP6888622B2 JP6888622B2 (en) 2021-06-16

Family

ID=60477543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018520926A Active JP6888622B2 (en) 2016-05-31 2017-05-30 Conductive heating element and laminated glass

Country Status (2)

Country Link
JP (1) JP6888622B2 (en)
WO (1) WO2017209130A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3943290A4 (en) * 2019-03-20 2023-06-21 Lintec Corporation Sheet-shaped conductive member and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165591A (en) * 1988-12-20 1990-06-26 Nippon Sheet Glass Co Ltd Conductor printing pattern plotter for automobile window heater line
US20070187383A1 (en) * 2006-01-19 2007-08-16 Wipfler Richard T Patterned conductive elements for resistively heated glazing
JP2011210487A (en) * 2010-03-29 2011-10-20 Fujifilm Corp Conductive film, and transparent heating element
WO2015132611A1 (en) * 2014-03-07 2015-09-11 Pilkington Group Limited Glazing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165591A (en) * 1988-12-20 1990-06-26 Nippon Sheet Glass Co Ltd Conductor printing pattern plotter for automobile window heater line
US20070187383A1 (en) * 2006-01-19 2007-08-16 Wipfler Richard T Patterned conductive elements for resistively heated glazing
JP2011210487A (en) * 2010-03-29 2011-10-20 Fujifilm Corp Conductive film, and transparent heating element
WO2015132611A1 (en) * 2014-03-07 2015-09-11 Pilkington Group Limited Glazing

Also Published As

Publication number Publication date
JP6888622B2 (en) 2021-06-16
WO2017209130A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
US11338774B2 (en) Heating plate, conductive pattern sheet, vehicle, and method of manufacturing heating plate
US20210307122A1 (en) Heating electrode device, electrical heating glass, heat-generating plate, vehicle, window for building, sheet with conductor, conductive pattern sheet, conductive heat-generating body, laminated glass, and manufacturing method for conductive heat-generating body
JP6911341B2 (en) Conductive heating element, laminated glass and its manufacturing method
US10912155B2 (en) Heating plate, conductive pattern sheet, vehicle, and method of manufacturing heating plate
JP6673253B2 (en) Laminated glass and pattern sheet for laminated glass
JP6747045B2 (en) Conductive heating element and laminated glass
JP6858480B2 (en) Laminated glass and conductive heating element
JP6492644B2 (en) Heating plate and vehicle
JP2017204388A (en) Conductive heating element and laminated glass
JP2016143511A (en) Laminated glass, and conductive heating element
JP6808975B2 (en) Conductive heating element and laminated glass
WO2017209130A1 (en) Conductive heating element and glass laminate
JP2016146334A (en) Heating plate, conductive pattern sheet and vehicle with heating plate
JP2016141210A (en) Heating plate, conductive pattern sheet, and vehicle equipped with the heating plate
JP6930583B2 (en) Laminated glass and conductive heating element
JP6897706B2 (en) Heat plate and vehicle
JP6631667B2 (en) Manufacturing method of laminated glass
JP6540037B2 (en) Heater plate and vehicle
JP6731193B2 (en) Vehicle with heating plate, conductive pattern sheet and heating plate
JP6447053B2 (en) Conductive mesh, mesh sheet and heating plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210503

R150 Certificate of patent or registration of utility model

Ref document number: 6888622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150