JPWO2017159692A1 - Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship. - Google Patents

Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship. Download PDF

Info

Publication number
JPWO2017159692A1
JPWO2017159692A1 JP2018505957A JP2018505957A JPWO2017159692A1 JP WO2017159692 A1 JPWO2017159692 A1 JP WO2017159692A1 JP 2018505957 A JP2018505957 A JP 2018505957A JP 2018505957 A JP2018505957 A JP 2018505957A JP WO2017159692 A1 JPWO2017159692 A1 JP WO2017159692A1
Authority
JP
Japan
Prior art keywords
box
consolidation
tower
vacuum
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018505957A
Other languages
Japanese (ja)
Other versions
JP6582361B2 (en
Inventor
正佳 近藤
正佳 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONDO HIROKI
Original Assignee
KONDO HIROKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONDO HIROKI filed Critical KONDO HIROKI
Publication of JPWO2017159692A1 publication Critical patent/JPWO2017159692A1/en
Application granted granted Critical
Publication of JP6582361B2 publication Critical patent/JP6582361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/02Improving by compacting
    • E02D3/10Improving by compacting by watering, draining, de-aerating or blasting, e.g. by installing sand or wick drains

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Agronomy & Crop Science (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

大規模浚渫工事において、海底地盤の真空圧密工法を発展させて底面開口の箱型の気密載荷函体を使い真空圧密と浚渫を一連の工程で実施する。汚濁を出さずに圧密沈下で脱水減容化と所要の強度増加を図り、浚渫土を土木再生材として再使用する。浚渫工事に真空圧密工法を利用するときの課題は、底面開口の気密載荷函体での浚渫と圧密時間の短縮である。これの解決手段は当該函体の中詰海底土を浚渫可能な強度以上に圧密し、この中詰海底土の保持は、中詰海底土の上下面の真空圧力差(真空吸引)を利用する。これにより底面開口の当該函体で浚渫を可能とした。圧密時間の短縮は函体内空をドレーン機能の有する隔壁で区分して隔室を形成し函体の中詰海底土の排水距離の短縮、さらには圧密増荷重に振動荷重の併用で急速圧密を実現した。In large-scale dredging work, vacuum consolidation and dredging will be carried out in a series of processes using a box-shaped airtight loading box with a bottom opening. Reduce the volume of dehydration and increase the required strength by consolidation settlement without causing pollution, and re-use dredged soil as a civil engineering recycling material. The problem when using the vacuum consolidation method for dredging work is to reduce dredging and consolidation time in the airtight loading box at the bottom opening. The solution to this problem is to pack the padded seabed soil beyond the strength that can be dredged, and the retention of the padded seabed soil uses the vacuum pressure difference (vacuum suction) between the upper and lower surfaces of the padded seabed soil. . As a result, wrinkles were made possible with the box at the bottom opening. The compaction time is shortened by dividing the air in the box with a partition wall with a drain function to form a compartment, shortening the drainage distance of the padded submarine soil of the box, and further consolidating rapid consolidation by combining vibration load with increased consolidation load. It was realized.

Description

本発明は船舶の航路・泊地の増深・水深維持における海底,河底地盤の真空圧密,浚渫そして圧密した浚渫土を埋立,海底盛土等の材料に再使用に関する。   The present invention relates to the reuse of the seabed, riverbed ground vacuum consolidation, dredging, and compacted dredged material to materials such as landfill and seabed embankment in deepening and maintaining the depth of ships' routes and anchorages.

大きな河川の河口の水域に堆積する土砂は、含水比が大きい軟弱土であることが多い。特に背後に大都市を持つ港湾の水域の堆積土は,生活廃水や工業排水の流入で有機物を多く含んで堆積して超軟弱土となる。軟弱土の特徴は含水比が非常に大きいことであるが、有機物が含むとその含水比は200%と非常に大きくなり、表層部は400%にも及ぶ。表層部は浮泥と呼ばれ、密度が極めて小さい流動体の泥土である。一般に高塑性粘土であってもこれの液性限界の含水比は高くても100%程度である。液性限界を超える含水比の軟弱土は形を作らず流動的な泥土である。   The sediment deposited in the estuary of large rivers is often soft soil with a high water content. In particular, sediments in the waters of harbors with large cities behind them become super soft soils due to the accumulation of organic matter due to the inflow of domestic wastewater and industrial wastewater. The characteristic of soft soil is that the moisture content is very large. However, when organic matter is contained, the moisture content becomes as high as 200%, and the surface layer reaches 400%. The surface layer is called floating mud and is a fluid mud with a very low density. In general, even in the case of high plastic clay, the water content at the liquid limit is at most about 100%. A soft soil with a water content ratio exceeding the liquid limit is a fluid mud that does not form.

船舶の航行の可否は水深で決まる。そこを航行する最大の船舶の喫水の水深を常に維持しなければならない。このため、恒常的な維持浚渫が必要となる。
浚渫とは水底の土砂を浚って深くすることである。浚った土砂は他の場所へ移動させ埋立などに利用する。海洋,港湾の土木分野では、浚渫工事と埋立工事は一連の工事とすることが多い。浚渫の目的はさまざまである。新規に航路や泊地をつくるための浚渫もあれば、既存の航路の拡幅や増深のための浚渫、水深維持のための浚渫がある。さらには埋立のための土砂の採取、環境対策のための水底汚泥の除去の浚渫などである。
Whether or not a ship can navigate is determined by the water depth. The draft depth of the largest vessel navigating there must always be maintained. For this reason, a permanent maintenance rod is required.
Dredging is the deepening of the bottom sediment. Moved soil is moved to other places and used for landfill. In the civil engineering field of the ocean and harbor, dredging work and landfill work are often a series of works. The purpose of acupuncture varies. There are dredging for creating new routes and anchorages, dredging for widening and deepening existing routes, and dredging for maintaining water depth. In addition, the collection of earth and sand for land reclamation and dredging of removal of water bottom sludge for environmental measures.

浚渫は対象の土砂の種類,浚渫の規模,浚渫土をどこで処分するかによって浚渫船が選定される。浚渫船はポンプ浚渫船とグラブ浚渫船に大別され、前者は大規模浚渫に適している。ポンプ浚渫船はカッター付きポンプ浚渫船が一般的で、水底の土砂をカッターで切り崩して水と一緒にポンプで吸込み、排砂管を通じて埋立地や処分地に搬送する。1時間当たりの浚渫能力は2千mのものがある。浚渫船は一般に自分で航行しない非自航式が大半であるが、自航式浚渫船もある。
欧米の大型の浚渫,埋立工事にはトレーリングサクションホッパー浚渫船(日本ではドラグサクション浚渫船)と呼ばれている自航式の浚渫船が活躍している。この浚渫船は水底の土砂と水を浚渫ポンプで吸い上げ船倉に積み込んで運搬する。
Dredgers are selected according to the type of sediment, the scale of the dredger, and where the dredger is disposed. Dredgers are roughly divided into pump dredgers and grab dredgers, and the former is suitable for large-scale dredgers. Pump dredgers are generally pump dredgers with cutters. The bottom sediment is cut with a cutter, sucked with water with a pump, and transported to a landfill or disposal site through a sand pipe. Dredging capacity per hour there is a 2,000 m 3. Dredgers are generally non-self-propelled that do not sail by themselves, but there are also self-propelled dredgers.
Self-propelled dredgers called trailing suction hopper dredgers (drag suction dredgers in Japan) are active in large-scale dredging and landfill works in Europe and the United States. This dredger uses a dredge pump to suck up sediment and water from the bottom of the water and load them into the hold.

浚渫土を埋立の材料に使用する場合、浚渫土が砂質土であれば、従来の浚渫埋立方法でも問題は少ない。しかし、浚渫土が粘性土であれば、浚渫時に水が混合されて液性限界の数倍の高含水比となる。これは人工的に作られた超軟弱粘性土である。このような不必要な水が混合された不良土を運搬し,人工的不良土を埋立材として使っているのが現状である。   When dredged soil is used for landfill material, if dredged soil is sandy soil, there are few problems with conventional dredged landfill methods. However, if the dredged soil is a viscous soil, water is mixed during dredging, resulting in a high water content ratio several times the liquid limit. This is an artificially made ultra-soft clay soil. At present, such poor soil mixed with unnecessary water is transported, and artificially defective soil is used as landfill material.

現在の浚渫技術は確実に進歩している。大容量浚渫技術の開発,GPSを利用した船位計測技術,さらには環境保全型の浚渫工法である。この工法の例として、密閉型のグラブを使用して、余分な海水をグラブから排出して汚濁拡散が少なく、高含泥率な浚渫を実現しているものがある。しかしながら、この工法であっても浮泥対策としては課題が多い。余分な海水をグラブから排出する際に浮泥そのものが排出されてしまう。根本的に既存の浚渫技術には、浚渫土を土木再生材として原位置の河底,海底において脱水改良するという発想がないことにある。   Current acupuncture technology is definitely progressing. Development of large-capacity dredging technology, ship position measurement technology using GPS, and environmental conservation dredging methods. As an example of this construction method, there is one that uses a sealed grab and discharges excess seawater from the grab to reduce the pollution diffusion and achieve a high mud content dredging. However, even this method has many problems as measures against floating mud. When excess seawater is discharged from the grab, the floating mud itself is discharged. The fundamentally existing dredging technology is that there is no idea of dewatering and improving the dredged soil from the original riverbed and seabed using civil engineering as recycled materials.

日本の浚渫土の利用状況は、港湾,工業用地等の埋立地に利用されてきた。しかし、こうした浚渫土の埋立地の確保は年々難しい状況になっている。そこで、粘性土の浚渫土はプラントでの脱水減容化、あるいは固化材の混合で改良してから、埋立材への使用を積極的に進めている。しかし、コスト高でその利用率は小さい。   Japan's use of dredged soil has been used in landfills such as harbors and industrial sites. However, it is difficult to secure a landfill site for dredged soil. Therefore, the clay of clay soil has been improved by dehydration and volume reduction at the plant or by mixing solidification material, and then actively used for landfill. However, the cost is high and its utilization rate is small.

日本において、真空圧密工法は、従来、陸上の地盤改良工法として多く利用されてきたが、海底地盤等にも利用が進められている。海底地盤の真空圧密工法の特徴は何らかの方法で載荷地盤面の気密を保持して、載荷重には大気圧に加えて水圧をも利用する。この工法を環境面から見た特徴は、原位置で水質汚濁を発生することなく、圧密沈下により海底地盤の強度増加と減容化が図れることにある。もしも、圧密沈下だけで航路等の水深が確保されたならば浚渫土を一切発生させない水深維持工法となる。   In Japan, the vacuum consolidation method has been widely used as a land improvement method on land, but it is also being used for the submarine ground. The characteristics of the vacuum consolidation method for submarine ground are to maintain the airtightness of the loaded ground surface in some way, and to use the water pressure in addition to atmospheric pressure for the loaded load. The environmental aspect of this method is that it can increase the strength and volume of the submarine ground by consolidation settlement without causing water pollution in situ. If the water depth of the channel is secured only by consolidation settlement, the water depth maintenance method will not cause dredging.

特許文献1の工法は海底地盤の真空圧密による地盤改良工法関するもので、主に港湾施設の粘性土地盤の残留沈下対策として開発された。従って、この工法には浚渫の工程は無い。この工法の大きな特徴は、真空圧密の静荷重である大気圧及び水圧に、動荷重(静荷重の5%程度)である繰り返し荷重を併用する。これにより海底地盤に圧力変動を伝達させることで過剰間隙水圧の波動を発生させて急速圧密沈下を実現している。   The method of Patent Document 1 relates to the ground improvement method by vacuum consolidation of the seabed ground, and was developed mainly as a countermeasure for residual settlement of the viscous ground in port facilities. Therefore, there is no dredging process in this method. A major feature of this construction method is that a repeated load that is a dynamic load (about 5% of the static load) is used in combination with an atmospheric pressure and a water pressure that are static loads of vacuum consolidation. As a result, the pressure fluctuation is transmitted to the seabed ground, and the wave of excess pore water pressure is generated to realize the rapid consolidation settlement.

特許文献2の工法は、特許文献1の真空圧密による地盤改良工法と浚渫工法を一連の工法として発展させたものである。以降、この一連の工法は真空圧密浚渫工法と称する。真空圧密浚渫工法は、浚渫土を土木再生材として原位置の河底,海底において、脱水改良して浚渫することを意図した工法である。液性限界の含水比を大きく超える含水比の超軟弱土、さらには浮泥にこそ圧密による原位置での脱水改良が必要である。   The construction method of Patent Literature 2 is a development of the ground improvement construction method and the dredge construction method by vacuum consolidation of Patent Literature 1 as a series of construction methods. Hereinafter, this series of construction methods is referred to as a vacuum consolidation method. The vacuum consolidation dredging method is intended for dredging and dredging dredging on the original riverbed and seabed using dredged soil as a civil engineering reclaimed material. In-situ dewatering improvement is required by compaction for ultra-soft soils with a water content ratio that greatly exceeds the water content limit of the liquid limit.

特許文献2の大きな特徴は二つある。一つ目は浚渫を実現するタワー式気密載荷函体の底面を底板シャッターで開閉する機能である。当該函体は真空圧密の気密載荷函体と浚渫のグラブバケットを兼用するものである。二つ目は専用作業船の自行移動を実現する移動式スパッド機能である。   There are two major features of Patent Document 2. The first is a function that opens and closes the bottom of the tower-type airtight loading box that realizes dredging with a bottom plate shutter. The box is used both as a vacuum-consolidated air-tight loading box and a glove bucket. The second is a mobile spud function that allows a dedicated work ship to move by itself.

特許文献2の工法による海底土の積込みは、底板シャッターによって実現している。海底土の積み下ろしである中詰海底土の押し出しは、透水性蓋(剛性フィルター)を通過した圧縮空気で中詰海底土の上面を加圧して押し出すとしている。   The loading of submarine soil by the method of Patent Document 2 is realized by a bottom plate shutter. The extrusion of the middle-sealed soil, which is the loading and unloading of the seabed soil, is said to press the upper surface of the middle-sealed soil under pressure with compressed air that has passed through a water permeable lid (rigid filter).

特許文献2のタワー式気密載荷函体の基本構造は、底面開口の箱型構造で内部天井面に真空タンク層を、これの下面にドレーン機能のある函体隔壁で内部空間を分割して複数の隔室を形成する。ここで、隔室の上面には排水は通すが土粒子は通さない透水性蓋が設けられる。また、特許文献2は当該函体の底面には底板シャッターが設置されている。(特許文献2はタワー式載荷函体と称している。また、真空タンク層を微小厚の空間,透水性蓋を剛性フィルターと称している)   The basic structure of the tower-type airtight loading box of Patent Document 2 is a box-type structure with a bottom opening, a vacuum tank layer on the inner ceiling surface, and an inner space divided by a box partition with a drain function on the lower surface. Forming a compartment. Here, on the upper surface of the compartment, a water-permeable lid that allows drainage but not dirt particles is provided. In Patent Document 2, a bottom plate shutter is installed on the bottom surface of the box. (Patent Document 2 refers to a tower-type loading box. Also, the vacuum tank layer is referred to as a micro-thick space, and the water-permeable lid is referred to as a rigid filter.)

真空圧密浚渫工法の共通な作業工程は、気密載荷函体を海底地盤に押し込んで海底土を当該函体の中詰め状態とする据付け工程、(以降、中詰状態の海底土を中詰海底土と称す)次に圧密工程,浚渫工程,浚渫土の運搬工程に分けられる。浚渫工程は当該函体の中詰海底土を海底からの切り離し,水中または気中での保持する海底土の積み込み、そして押し出しによる積み下ろしの工程に細分される。 The common work process of the vacuum consolidation method is to install an airtight loading box into the seabed ground so that the seabed soil is filled in the box. Next, it is divided into the consolidation process, dredging process, and dredging process. The dredging process is subdivided into a process of separating the padded submarine soil from the box, loading the submarine soil held in water or in the air, and unloading it by extrusion.

気密載荷函体による中詰海底土の積み込み,積み下ろし、すなわち中詰海底土の気中吊り上げ,押し出しについて、模型隔室による検証実験を行った。実際の隔室の大きさは1.0m×1.0m×1.0mの立方体を想定する。模型の縮尺は1/5である。なお、模型隔室には底板シャッターは無い。模型隔室は内空上部を透水性蓋で区切られた気密タンク層がある。実験の試料土は高塑性の再生粘土で初期含水比Woは100〜110%、限界Wlは85%である。土層箱の試料土に模型隔室を据え付けて、試料土を模型隔室の中詰状態とした。据え付けられた模型隔室の内部は気密状態である。気密タンク層を真空ポンプで真空状態にして、中詰試料土を大気圧で載荷して圧密を進めた。圧密進行状態は中詰試料土の含水比Wを液性限界Wlで区分する。 A verification experiment using a model compartment was conducted on the loading and unloading of subsea soil with an airtight loading box, that is, lifting and extruding the subsea soil in the air. The actual size of the compartment is assumed to be a cube of 1.0m x 1.0m x 1.0m. The scale of the model is 1/5. There is no bottom shutter in the model compartment. The model compartment has an airtight tank layer with the upper part of the inner space separated by a permeable lid. The sample soil of the experiment is a highly plastic reclaimed clay with an initial water content Wo of 100 to 110% and a limit Wl of 85%. The model compartment was installed on the sample soil in the soil layer box, and the sample soil was filled in the model compartment. The interior of the installed model compartment is airtight. The airtight tank layer was evacuated with a vacuum pump, and the packed sample soil was loaded at atmospheric pressure to proceed with consolidation. In the consolidation progress state, the water content W of the filling sample soil is classified by the liquid limit Wl.

模型隔室の中詰試料土の気中吊り上げは、気密タンク層を真空ポンプで真空状態にして中詰試料土の上面を真空吸引する。結果は次の通りである。
W>Wl:吊り上げ不可。中詰試料土の大部分が抜け落ちた。
W=Wl:吊り上げ可。ただし、中詰試料土の底面は一部がえぐられた状態である。
W<Wl:吊り上げ可。ただし、中詰試料土の底面は平らな状態ではない。
中詰試料土の底面が平らではないのは、模型隔室を土層箱から気中に吊り上げるとき、気密状態の中詰試料土の底面に負圧が発生したからと考えた。そこで模型隔室の側面に8本の弁の付いた通気パイプを取り付けた。模型隔室の吊り上げ時に底面の気密を解除した実験の結果は、底面がほぼ平らとなった。
For lifting the sample soil in the model compartment in the air, the airtight tank layer is evacuated by a vacuum pump and the upper surface of the sample soil is vacuumed. The results are as follows.
W> Wl: Cannot be lifted. Most of the padded sample soil fell out.
W = Wl: Can be lifted. However, the bottom surface of the filling sample soil is partially removed.
W <Wl: Can be lifted. However, the bottom surface of the filling sample soil is not flat.
The reason why the bottom surface of the filled sample soil was not flat was thought to be that a negative pressure was generated on the bottom surface of the sealed sample soil when the model compartment was lifted from the soil layer box. Therefore, a vent pipe with 8 valves was attached to the side of the model compartment. As a result of the experiment of releasing the airtightness of the bottom surface when lifting the model compartment, the bottom surface was almost flat.

模型隔室の中詰試料土の気中での押し出しは、模型隔室の真空状態を解除して行う。結果は次の通りである。
W=Wl:押し出しは真空状態を解除しただけで可。
W<Wl:押し出しは真空状態を解除したけれども不可。
模型気密隔室の中詰試料土の押し出しは、中詰試料土の含水比が液性限界の含水比付近では、気密タンク層の真空状態を解除しただけで抜け落ちた。しかし、含水比が明らかに小さい場合は、特許文献2の圧縮空気で中詰試料土を押し出し方法は機能しなかった。また、振動,打撃を加えても抜け落ちることはなかった。隔室の壁面付着強度が大きな妨げになっている。
結局、特許文献2の工法は、軟弱な中詰海底土を液性限界の含水比までしか圧密することができない。逆に言うと、液性限界の含水比よりも明らかに小さい含水比の海底粘性土は、特許文献2の工法では浚渫できないことになる。
Extruding the sample soil in the model compartment in the air is performed by releasing the vacuum state of the model compartment. The results are as follows.
W = Wl: Extrusion is possible only by releasing the vacuum state.
W <Wl: Extrusion is not possible although the vacuum state is released.
In the model airtight compartment, the solid sample soil was pushed out just by releasing the vacuum state of the airtight tank layer when the water content of the medium sampled soil was near the liquid content limit. However, when the moisture content was clearly small, the method of extruding the padded sample soil with compressed air in Patent Document 2 did not work. Moreover, even if vibration and impact were applied, it did not fall out. The wall adhesion strength of the compartment is a major obstacle.
After all, the construction method of Patent Document 2 can consolidate a soft padded seabed soil only up to the water content ratio of the liquid limit. In other words, the submarine viscous soil having a water content that is clearly smaller than the water content of the liquid limit cannot be dredged by the method of Patent Document 2.

特願2007−309073号公報Japanese Patent Application No. 2007-309073 特願2015−87107号公報Japanese Patent Application No. 2015-87107

課題1は、特許文献2の工法の浚渫は、気密載荷函体の底面を底板シャッターで開閉する機能で実現している。しかしながら、その機能の仕組みは土中の稼動装置としては複雑で故障のリスクが大きい。施工中に故障した場合は、現場では対応できず工事が中断される。 Problem 1 is realized by the function of opening and closing the bottom surface of the airtight loading box with a bottom plate shutter. However, the mechanism of the function is complicated as a working device in the ground, and the risk of failure is high. If a failure occurs during construction, it cannot be handled on site and the construction is interrupted.

課題2は、特許文献2の工法における浚渫土の積み下ろし、すなわち中詰海底土の押し出しは圧縮空気で中詰海底土の上面を加圧して押し出すとしている。しかしながら、中詰海底土の含水比が液性限界の含水比よりも明らかに小さい場合は機能しない。従って,浚渫土の積み下ろしができない。 The problem 2 is that the loading and unloading of the clay in the construction method of Patent Document 2, that is, the extrusion of the padded seabed soil, is performed by pressing the upper surface of the padded seabed soil with compressed air. However, it does not work when the water content of the middle-sealed soil is clearly smaller than the water content of the liquid limit. Therefore, it is not possible to load and unload dredged soil.

課題3は、真空圧密浚渫工法は圧密により原位置で脱水改良、引き続き浚渫を行うことを意図した工法である。特許文献1の圧密工法は過剰間隙水圧の波動を発生させて急速圧密を実現している。高塑性粘性土の場合、圧密速度は2〜3倍高くなるとしている。しかしながら、液性限界の含水比を大きく超える超軟弱土となると、特許文献1の急速圧密を取り入れた特許文献2の圧密工法でも長時間の圧密時間が必要になる。これでは真空圧密浚渫工法の利点を大きく損なう。 Problem 3 is a method in which the vacuum consolidation dredging method is intended to improve dehydration in situ by the consolidation and to continue dredging. The consolidation method of Patent Document 1 realizes rapid consolidation by generating a wave of excess pore water pressure. In the case of highly plastic clay, the consolidation speed is said to be 2-3 times higher. However, if it becomes super soft soil that greatly exceeds the water content ratio of the liquid limit, a long consolidation time is required even in the consolidation method of Patent Document 2 incorporating the rapid consolidation of Patent Document 1. This greatly impairs the advantages of the vacuum consolidation method.

本発明は真空圧密工法と浚渫工法を一連の工法としたもので、上述した課題を解決する手段が全て組み込まれたシステムが必要となる。つまり、底面開口のタワー式気密載荷函体で圧密に加えて浚渫である海底土の積み込みと積み下ろしを可能にした工法である。
本発明のタワー式気密載荷函体の基本構造は次のとおりである。
海底地盤の真空圧密浚渫工法において、底面開口の気密載荷函体の内部天井面に真空タンク層を、これの直下にドレーン機能のある函体隔壁で分割して複数の隔室を形成し、隔室上面には透水性蓋を設け、前記函体の外部上面の中央部分には水深を超える高さの函体タワーを取付けたタワー式気密載荷函体を使用する。
The present invention is a series of vacuum consolidation method and dredging method, and requires a system in which all means for solving the above-described problems are incorporated. In other words, it is a construction method that enables loading and unloading of seabed soil, which is dredging, in addition to compaction with a tower-type airtight loading box with a bottom opening.
The basic structure of the tower type airtight loading box of the present invention is as follows.
In the vacuum consolidation method for seabed ground, a vacuum tank layer is divided on the inner ceiling surface of the airtight loading box at the bottom opening, and a plurality of compartments are formed by dividing it by a box bulkhead with a drain function directly below it. A tower type airtight loading box having a water permeable lid on the upper surface of the chamber and a box tower having a height exceeding the water depth is used at the center of the outer upper surface of the box.

本発明のタワー式気密載荷函体の作業工程は次のとおりである。
前記函体の据付け工程は前記函体を海底地盤に押し込むことで海底土を函体の中詰状態とする。圧密工程は前記真空タンク層を真空状態にすることで中詰海底土及び海底地盤に大気圧及び水圧を載荷して圧密沈下を進行させ、圧密沈下は海底土を底面開口の前記函体で浚渫可能な強度以上に強度増加を図る。浚渫工程における海底土の積み込みは、前記函体の真空状態を保ちながら前記函体の底面の気密状態を解除して前記函体を引き上げることで中詰海底土を海底から切り離し、中詰海底土の積み下ろしは前記函体の真空状態を停止し、必要に応じて圧縮空気あるいは振動の併用により押し出す。
本発明の真空圧密浚渫工法は、圧密工程では海底土を底面開口の前記函体で浚渫可能な強度以上に圧密進行を図り、浚渫工程では前記函体の空圧,水圧を制御することで海底土を浚渫することが大きな特徴である。
The working process of the tower type airtight loading box of the present invention is as follows.
In the box installation step, the box body is pushed into the seabed ground so that the seabed soil is filled with the box. In the consolidation process, the vacuum tank layer is evacuated to load atmospheric pressure and water pressure on the padded seabed soil and the seabed ground to advance the consolidation settlement. Increase strength beyond possible strength. The loading of the seabed soil in the dredging process is to release the airtight state of the bottom surface of the box while keeping the box in a vacuum state, and to lift the box to separate the padded seabed soil from the seabed. The loading and unloading of the box stops the vacuum state of the box and pushes it out by using compressed air or vibration as necessary.
In the consolidation process of the present invention, in the consolidation process, the seabed soil is consolidated more than the strength that can be dredged by the box at the bottom opening, and in the dredging process, the air pressure and water pressure of the box are controlled to control the seabed. A major feature is dredging the soil.

タワー式気密載荷函体の主要装置の構成は次のとおりである。
当該函体の中央部分の外部上面に真空タンク層と連通した真空タンク室を設けて排水装置の設置と振動装置の固定設置をし、当該函体の外部上面と底面の水圧が連通する自動弁の付いた自動通水装置と当該函体の隔室から外部へ直接排水する自動弁の付いた自動排水装置を設置し、さらに当該函体タワーのタワー上部には真空装置とコンプレッサーを設置した構成である。
ここで、振動装置は真空タンク室に直付け固定する。これはこの装置の稼動で当該函体に共振を起こす固有の震動を伝え、この振動を中詰海底土に伝達すためである。また、自動通水装置は当該函体の中詰土を海底から切り離して吊り上げるとき、当該函体の真空状態を保ちながら底面の気密状態を解除するための装置である。また、自動排水装置は浚渫対象外となる海底土の最表層部の浮泥の比重が極めて小さいものなど、透水性蓋を通さずに排出されるための装置である。これは透水性蓋の無駄な目詰まりを避ける処置である。また、前項の真空タンク層の真空状態とは、真空装置と排水装置の稼動により真空タンク層に溜まり水がない真空の空間状態を云う。
The configuration of the main equipment of the tower type airtight loading box is as follows.
An automatic valve in which a vacuum tank chamber communicating with the vacuum tank layer is provided on the outer upper surface of the central part of the box to install a drainage device and a fixed vibration device, and the water pressure on the outer upper surface and the bottom surface of the box communicates. An automatic drainage device with an automatic drainage device and an automatic drainage device with an automatic valve that drains directly from the compartment of the box to the outside are installed, and a vacuum device and a compressor are installed above the tower of the box tower It is.
Here, the vibration device is fixed directly to the vacuum tank chamber. This is to transmit the inherent vibration that causes resonance in the box by the operation of this device, and to transmit this vibration to the subsea soil. In addition, the automatic water flow device is a device for releasing the airtight state of the bottom surface while maintaining the vacuum state of the box when the inside soil of the box is lifted off from the sea floor. Moreover, the automatic drainage device is a device for discharging without passing through the water-permeable lid, such as one having extremely small specific gravity of floating mud in the outermost layer of the seabed soil that is not subject to dredging. This is a measure for avoiding unnecessary clogging of the permeable lid. In addition, the vacuum state of the vacuum tank layer described above refers to a vacuum space state in which no water is accumulated in the vacuum tank layer due to the operation of the vacuum device and the drainage device.

上述した課題1は、浚渫の要である底板シャッターの故障のリスクが大きいことである。解決するための手段は、前述の模型隔室による検証実験にある。タワー式気密載荷函体の中詰海底土の落下力は自重である。これに対する落下防止力は、中詰海底土の上面の真空吸引力と隔室の壁面付着力である。
ここで、中詰海底土の落下力及び防止力のつり合いを考える。当該函体の高さは最大でも2m,十分に圧密の進んだ中詰海底土の単位体積重量は16kN/m程度、真空ポンプによる単位面積の真空吸引力を80kN/mとすると、真空吸引力80kN/m>中詰海底土の単位面積重量32kN/m
真空吸引力だけで十分吊り上げられる。ここで、真空吸引力は中詰海底土の上面に作用して引き上げる力である。従って、このつり合いは中詰海底土が分断されない一体のものという一体条件が付く。前述の隔室模型実験から、中詰海底土の一体条件は、中詰海底土の含水比W<液性限界の含水比Wlである。
Problem 1 described above is that the risk of failure of the bottom plate shutter, which is a key point of the bag, is high. The means for solving the problem is in the verification experiment using the model compartment described above. The falling force of the subsea soil in the tower type airtight loading box is its own weight. The fall prevention force against this is the vacuum suction force on the upper surface of the padded seabed soil and the wall adhesion force of the compartment.
Here, consider the balance between the drop force and the prevention force of the middle-sealed submarine soil. The height of the box-body 2m at maximum, sufficient specific weight of Chutsume Sediments advanced the consolidation 16 kN / m 3 approximately, when the vacuum suction force of the unit area by a vacuum pump and 80 kN / m 2, vacuum Suction force 80kN / m 2 > Unit area weight of padded seabed soil 32kN / m 2
Sufficiently lifted by vacuum suction alone. Here, the vacuum suction force is a force that acts on the upper surface of the subsea soil and pulls it up. Therefore, this balance is subject to the integral condition that the padded seabed soil is not divided. From the above-mentioned compartment model experiment, the integrated condition of the middle-filled seabed soil is the water content ratio W of the middle-filled seabed soil <the water content ratio Wl of the liquid limit.

底面開口の気密載荷函体を使用した海底地盤の真空圧密浚渫工法の浚渫において、気密載荷函体の中詰海底土の含水比が液性限界の含水比よりも高ければ圧密工程でこれ以下として中詰海底土の一体性を確保し、中詰海底土の上面の真空吸引力と壁面付着力で中詰海底土を保持する。
浚渫工程における浚渫土の積込みとは、当該函体の中詰海底土の海中,気中での保持のことを指す。一体条件を確保した中詰海底土の保持は、真空吸引力と壁面付着力を活用することで容易である。リスクの大きい底板シャッターは不要である。
In the case of a vacuum-consolidation method for seabed soil using an airtight loading box with a bottom opening, if the moisture content of the padded seabed soil in the airtight loading box is higher than the water content ratio of the liquid limit, it will be less than this Securing the integrity of the padded seabed soil and holding the padded seabed soil with the vacuum suction force and the wall adhesion of the upper surface of the padded seabed soil.
The loading of dredged soil in the dredging process refers to the retention of the padded seabed soil in the box. It is easy to retain the padded seabed soil that ensures the integration conditions by utilizing the vacuum suction force and the wall adhesion force. A risky bottom plate shutter is not required.

上述した課題2は浚渫工程における積み下ろし、すなわち中詰海底土の押し出しで、特許文献2の圧縮空気による方法では機能しない。これの原因は、透水性蓋(剛性フィルター)は、水は通すが土粒子は通さない機能である。透水性蓋は高い圧縮空気を通過させると大きな抵抗が発生する。このため、透水性蓋は高い圧縮空気を通過させようとすると破損に至る。 Problem 2 described above is the unloading in the dredging process, that is, the extrusion of the middle seabed soil, and does not function in the method using compressed air in Patent Document 2. The cause of this is the function of the water-permeable lid (rigid filter) that allows water to pass but not soil particles. The water-permeable lid generates a large resistance when passing high compressed air. For this reason, a water-permeable lid will be damaged when trying to pass high compressed air.

課題2の解決手段は、真空圧密浚渫工法に使用するタワー式気密載荷函体において、透水性蓋は上下の可動透水性蓋とする。可動透水性蓋ごと中詰海底土を押し下げることで、前記函体の中詰海底土の周面の付着強度を切り、必要に応じて振動を加えながら中詰海底土を押し出す。 The solution of the problem 2 is that the water-permeable lid is an upper and lower movable water-permeable lid in the tower-type airtight loading box used in the vacuum consolidation method. By pushing down the padded submarine soil together with the movable permeable lid, the adhesion strength of the peripheral surface of the padded submarine soil of the box is cut, and the padded submarine soil is pushed out while applying vibration as necessary.

可動透水性蓋を押し下げる方法は2つある。一つは圧縮空気による方法、もう一つは可動蓋駆動装置で押し下げる方法である。これらの方法の使い分けは必要とする押し下げる力の大きさによる。前者は簡易な方法であるが圧縮空気の圧が高くなると隔室の壁面と可動透水性蓋の隙間から圧縮空気が漏れて機能が低下する。これに対して後者は個々の隔室の可動透水性蓋に上下の駆動装置が必要であるが確実な方法である。ここで、上下の可動蓋駆動装置の一例として複動型の油圧シリンダーがある。 There are two ways to push down the movable permeable lid. One is a method using compressed air, and the other is a method of pushing down with a movable lid driving device. The proper use of these methods depends on the amount of pressing force required. The former is a simple method, but when the pressure of the compressed air increases, the compressed air leaks from the gap between the wall surface of the compartment and the movable water-permeable lid, and the function deteriorates. On the other hand, the latter is a reliable method that requires an upper and lower drive device for the movable permeable lid of each compartment. Here, as an example of the upper and lower movable lid driving devices, there is a double-acting hydraulic cylinder.

上述した課題3は、含水比が極めて大きい超軟弱粘性土は圧密時間が長時間となることである。圧密時間の短縮の基本は排水距離の短縮である。代表的な工法としてはバーチカルドレーン工法がある。排水距離は最も短くても30cm程度である。本工法では1〜2cmの極小排水距離を設定している。特許文献1の静荷重と動荷重の併用する急速圧密工法と組み合わせることにより超急速圧密工法を実現する。 Problem 3 described above is that the ultra-soft clay soil having a very high water content has a long consolidation time. The basis for shortening the consolidation time is to shorten the drainage distance. As a typical method, there is a vertical drain method. The drainage distance is about 30 cm at the shortest. In this method, a minimum drainage distance of 1 to 2 cm is set. The ultra-rapid consolidation method is realized by combining with the rapid consolidation method using both static load and dynamic load in Patent Document 1.

ドレーン材は、水は通すが土粒子は通さない。そして、水の通過量が多ければ多いほど目詰まりを起こす。また、含水比の高い粘土ほど圧密時間が長い傾向にある。浮泥がこれに相当する。浮泥の場合は1〜2分で目詰まりを起こし圧密速度は急速に低下する。ユニットパネルドレーンの片面の圧密の進捗は数mmから十数mmである。ユニットパネルドレーンは両面が排水面であるから、両面では進捗は2倍になる。これでも急速圧密には程遠い。 The drain material allows water to pass but not soil particles. And the more water that passes through, the more clogging occurs. Also, clay with a higher water content tends to have a longer consolidation time. Suspended mud corresponds to this. In the case of floating mud, clogging occurs in 1 to 2 minutes, and the consolidation speed decreases rapidly. The progress of consolidation on one side of the unit panel drain is from several mm to several tens of mm. The unit panel drain is double-sided, so the progress is doubled on both sides. This is far from rapid consolidation.

極小排水距離を実現する方法は、タワー式気密載荷函体のドレーンが断続的に移動するドレーンシステムである。
ドレーンが隔室と真空タンク室を断続的に移動して、ドレーンが隔室に在るときは中詰海底土の圧密が進行し、移動時においては隔室では圧密で密度増加してドレーンに付着した中詰海底土を削ぎ落とし、真空タンク室ではドレーン表面を洗浄することを断続的移動に合わせて繰り返す。これにより中詰海底土の圧密の排水距離を常に極小距離にして超急速圧密を実現する。ドレーンは柔軟なベルトドレーンと剛性のあるパネルドレーンがある。ベルトドレーンの移動は回遊で、ベルトドレーンの配置は定滑車で位置決めされる。これに対してパネルドレーンの移動は上下の往復である。
A method for realizing the minimum drainage distance is a drain system in which the drain of the tower-type airtight loading box moves intermittently.
When the drain moves intermittently between the compartment and the vacuum tank chamber, consolidation of the padded seabed soil proceeds when the drain is in the compartment. Scraping off the attached subsea soil and cleaning the drain surface in the vacuum tank chamber is repeated according to intermittent movement. This achieves ultra-rapid compaction by always keeping the drainage distance of the confined seabed soil to a minimum distance. There are flexible belt drains and rigid panel drains. The movement of the belt drain is a circuit, and the arrangement of the belt drain is positioned by a fixed pulley. In contrast, the panel drain moves up and down.

極小排水距離を実現する方法の一例として、上下可動するユニットパネルドレーン装置が使用される。ユニットパネルドレーン装置はユニットパネルドレーン,パネルドレーンホルダー,ドレーン上下駆動装置,パネルドレーン洗浄装置から成る。この装置の構成は次のとおりである。
タワー式気密載荷函体において、隔室には複数のパネルドレーンが一体となった上下可動なユニットパネルドレーンが設置され、隔室の天端には、固定透水性蓋が固定され、この蓋には当該ユニットパネルドレーンが擦り抜ける複数のスリットが設けられ、ユニットパネルドレーンは真空タンク層でこれの上部をドレーンホルダーで一体的に固定され、真空タンク層はユニットパネルドレーンを引き上げるのに必要な高さがあり、ドレーンホルダーは上下駆動装置に連動している構成を特徴とするタワー式気密載荷函体である。
As an example of a method for realizing the minimum drainage distance, a unit panel drain device that can move up and down is used. The unit panel drain device includes a unit panel drain, a panel drain holder, a drain vertical drive device, and a panel drain cleaning device. The configuration of this apparatus is as follows.
In a tower-type airtight loading box, a unit panel drain that can move up and down is installed in the compartment, and a fixed permeable lid is fixed to the top of the compartment. The unit panel drain is provided with a plurality of slits through which the unit panel drain is rubbed, and the unit panel drain is a vacuum tank layer, and the upper part thereof is fixed integrally with a drain holder, and the vacuum tank layer is high enough to lift the unit panel drain. The drain holder is a tower-type airtight loading box characterized in that it is linked to the vertical drive device.

超高含水比の流動状態の海底堆積土の真空圧密浚渫工法は上下可動のユニットパネルドレーン装置が組み込まれたタワー式気密載荷函体を使用する。これの工程は次のとおりである。
気密載荷函体の据付け工程はユニットパネルドレーンが隔室に位置する状態で気密載荷函体を海底地盤に押し込んで海底土を気密載荷函体の中詰海底土状態とする。圧密工程は真空タンク層を真空状態にすることで、中詰海底土に大気圧及び水圧を載荷して圧密沈下を進行させ、圧密速度が低下したら当該ユニットパネルドレーンを真空タンク層内に引き上げる。これにより、前記固定透水性蓋のスリットにより圧密が進行してユニットパネルドレーンに付着している中詰海底土を削ぎ落とし、続いてユニットパネルドレーンを隔室の元の位置に下げることで圧密未進行の中詰海底土との新たな排水面とすることを繰り返す。これにより、中詰海底土の圧密の排水距離を常に極小距離にして急速圧密を実現する。
The vacuum-consolidation method for fluidized seabed sediments with ultra-high water content uses a tower-type airtight loading box with a unit panel drain device that can move up and down. These steps are as follows.
In the process of installing the airtight loading box, the airtight loading box is pushed into the seabed ground with the unit panel drain located in the compartment, so that the seabed soil is in the middle of the bottom of the airtight loading box. In the consolidation process, the vacuum tank layer is placed in a vacuum state, and atmospheric pressure and water pressure are loaded on the padded seabed soil to advance the consolidation settlement. When the consolidation speed decreases, the unit panel drain is pulled into the vacuum tank layer. As a result, the consolidation proceeds by the slits of the fixed water-permeable lid, scraping off the padded seabed soil adhering to the unit panel drain, and then lowering the unit panel drain to the original position of the compartment to prevent consolidation. Repeat the process of making a new drainage surface with the progressing paddy subsoil. In this way, rapid consolidation is realized by always keeping the drainage distance for consolidation of the middle-sealed subsoil to a minimum distance.

超高含水比の流動状態の海底土の真空圧密浚渫工法は、前述のようにユニットパネルドレーン装置を装備したタワー式気密載荷函体が使用される。パネルドレーンは、水は通すが土粒子は通さない材質でできている。しかし、このドレーンは使っているうちに目詰まりを起こし透水性が悪くなってくる。通過する水の量が多いほど目詰まりの割合が高くなる。
超高含水比の海底土の場合は特に顕著で、目詰まりを解除する必要がある。その手段は当該ユニットパネルドレーンの上下動で真空タンク層に在る時間内に当該ユニットパネルドレーンを洗浄する機能を設ける。これは固定透水性蓋に並列するスリットの中間に水による高圧洗浄装置を設けるもので、当該ユニットパネルドレーンが上下する間に高圧散水で自動洗浄する。
As described above, the tower-type airtight loading box equipped with the unit panel drain device is used for the vacuum consolidation method of the seabed soil in a fluid state with an ultra-high water content ratio. The panel drain is made of a material that allows water to pass through but does not allow soil particles to pass through. However, this drain becomes clogged while using it and the water permeability becomes worse. The more water that passes through, the higher the percentage of clogging.
This is especially true for submarine soils with a very high water content, and it is necessary to release clogging. The means provides a function of cleaning the unit panel drain within the time in the vacuum tank layer by the vertical movement of the unit panel drain. This is provided with a high-pressure washing device using water in the middle of a slit parallel to the fixed water-permeable lid, and is automatically washed with high-pressure water spray while the unit panel drain moves up and down.

本発明の動荷重併用による急速圧密工法は特許文献1の工法をさらに発展させたものである。
飽和粘性土地盤に振動を加えると、地盤の固体部分には応力変動(縦波と横波)と間隙水部分には圧力変動(縦波のみ)が発生する。粘性土地盤の応力変動の伝播は、減衰が速いので対象地盤を深くすると大きなエネルギーを必要とする。これに対して圧力変動の伝播の減衰は緩やかなので大規模地盤改良にも有効である。圧力変動の伝播は大気圧と水圧の静荷重に繰返し荷重の動荷重が合成されるので過剰間隙水圧の波動となる。特許文献1の工法は地盤を振動させる巨大なエネルギーは使わない圧力変動に限定した繰返し荷重としたことは当然である。特許文献1は圧力変動のみの振動荷重を特に繰り返し荷重と称している。これに対して本発明の急速圧密の対象は小規模の表層地盤、気密載荷函体の中詰海底土である。従って、応力変動,圧力変動が共に有効である。その分、振動装置は小型化が図れる。
The rapid consolidation method using the dynamic load of the present invention is a further development of the method of Patent Document 1.
When vibration is applied to saturated viscous ground, stress fluctuations (longitudinal and transverse waves) occur in the solid part of the ground and pressure fluctuations (longitudinal wave only) occur in the pore water. Propagation of stress fluctuations in viscous ground is fast and requires a lot of energy to deepen the target ground. On the other hand, since the attenuation of propagation of pressure fluctuation is slow, it is effective for large-scale ground improvement. Propagation of pressure fluctuation becomes a wave of excess pore water pressure because dynamic load of repeated load is combined with static load of atmospheric pressure and water pressure. It is natural that the construction method of Patent Document 1 is a repetitive load limited to pressure fluctuation that does not use huge energy that vibrates the ground. Patent Document 1 specifically refers to a vibration load having only pressure fluctuation as a repeated load. On the other hand, the object of the rapid consolidation of the present invention is a small-scale surface ground, a medium-sealed submarine soil of an airtight loading box. Therefore, both stress fluctuation and pressure fluctuation are effective. Accordingly, the vibration device can be reduced in size.

本発明の動荷重併用の急速真空圧密浚渫工法の工程は、前記気密載荷函体の真空タンク層を真空状態とすることで静荷重の大気圧と水圧を載荷し、且つ、当該気密載荷函体の隔壁,またはユニットパネルドレーンの固有振動に合わせて前記振動装置を稼動させることでこれを共振させ、中詰海底土には振動の動荷重による応力変動と圧力変動の両変動を伝達させることで急速圧密を行うことを特徴とする。共振させることで振動装置はさらなる小型化が図れ、真空タンク室に直付け固定することが可能となっている。 The process of the rapid vacuum consolidation method using dynamic load according to the present invention comprises loading the atmospheric pressure and water pressure of static load by bringing the vacuum tank layer of the hermetic loading box into a vacuum state, and the hermetic loading box By operating the vibration device in accordance with the natural vibration of the bulkhead or unit panel drain, it is made to resonate, and both fluctuations of stress and pressure due to the dynamic load of vibration are transmitted to the padded submarine soil. It is characterized by performing rapid consolidation. By resonating, the vibration device can be further reduced in size and can be directly fixed to the vacuum tank chamber.

本発明の静荷重に加えて応力変動と圧力変動の両変動を伝達する動荷重の併用は急速圧密だけではなく強制的な有害物質の溶出にも効果がある。
汚染海底堆積土の汚染拡散防止工法において、有害物質の溶出工程は、前記函体の真空タンク層を真空状態とすることで静荷重の大気圧と水圧を載荷し、且つ、当該気密載荷函体の隔壁,またはユニットパネルドレーンの固有振動に合わせて前記振動装置を稼動させることでこれを共振させ、中詰海底土には振動の動荷重による応力変動と圧力変動の両変動を伝達させることで強制的な有害物質の溶出と急速圧密による中詰海底土の高密度化を図り、次に汚染水浄化工程は真空タンク層に溜まった汚染水を排水装置で汚染水浄化装置に送り無害化して汚染拡散を防止することを特徴とする。
In addition to the static load of the present invention, the combined use of a dynamic load that transmits both fluctuations of stress and pressure is effective not only for rapid compaction but also forcible elution of harmful substances.
In the pollution diffusion prevention method for contaminated seabed sediment, the elution process of harmful substances is carried out by loading the vacuum tank layer of the box into a vacuum state to load atmospheric pressure and water pressure of static load, and the airtight loading box By operating the vibration device in accordance with the natural vibration of the bulkhead or unit panel drain, it is made to resonate, and both fluctuations of stress and pressure due to the dynamic load of vibration are transmitted to the padded seabed soil. Concentrated seabed soil density is increased by forcibly eluting toxic substances and rapid compaction, and then the contaminated water purification process sends the contaminated water collected in the vacuum tank layer to the contaminated water purification device with a drainage device to make it harmless. It is characterized by preventing contamination diffusion.

本発明のタワー式気密載荷函体は、通常は専用作業船に装備される。当該函体は専用作業船の中央に装備する函体中央型専用作業船と前方に装備する函体前方型専用作業船がある。函体中央型専用作業船は、浚渫土の運搬を当該函体に中詰め状態で運搬することも可能である。当該函体は底面が開口状態なので、専用作業船は長距離運搬時に汚濁を撒き散らかさないように船底が必要である。函体前方型専用作業船は、汎用型の専用作業船で浚渫土の運搬は土運船となる。この専用作業船は浚渫時に船体重心が前方に偏るので安定対策が必要である。これらの専用作業船の構成,機能は次項のとおりである。 The tower-type airtight loading box of the present invention is usually installed on a dedicated work ship. The box has a box-type dedicated work ship equipped at the center of the dedicated work ship and a box-front-type dedicated work ship equipped at the front. The box-type dedicated work ship can also carry the dredged material in the box. Since the bottom of the box is open, the dedicated work ship needs a bottom so as not to disperse pollution during long-distance transportation. The box-type dedicated work ship is a general-purpose dedicated work ship that transports dredged soil. This dedicated work ship requires a countermeasure for stability because the center of gravity of the hull is biased forward when dredging. The configuration and functions of these dedicated work vessels are as follows.

タワー式気密載荷函体を装備した函体中央型専用作業船は、台船の中央には当該函体が納まる空間を形成し、この空間を囲んで取り外し可能な当該函体のガイドタワー及びガイドタワー支承桁が台船に固定され、これに組み込まれた当該荷函体はガイドタワー内を上下動する機能を有し、且つ当該函体が納まる台船の開口空間の船底にはこれを開閉する移動式船底装置が装備されていることを特徴とする専用作業船。 A box-type dedicated work ship equipped with a tower-type airtight loading box forms a space in which the box is housed in the center of the carriage, and the guide tower and guide of the box can be removed by surrounding the space. The tower support girder is fixed to the trolley, and the cargo box incorporated in the tower has a function of moving up and down in the guide tower, and opens and closes the bottom of the opening space of the trolley where the box is accommodated. A dedicated work ship equipped with a mobile ship bottom device.

同様に、タワー式気密載荷函体を装備した函体前方型専用作業船は、当該函体の位置を台船の前方とするための吊り込み櫓が台船に固定され、前記吊り込み櫓の鉛直ガイドレールに組み込まれた当該函体は、前記ガイドレール内を上下動する機能を有し、且つ浚渫作業時に前方に偏る専用作業船の重心を水平支持に加えて鉛直支持を持たせた移動式スパッド装置により安定を保つことを特徴とする専用作業船。 Similarly, a box front type dedicated work ship equipped with a tower type airtight loading box has a hanging rod for fixing the position of the box to the front of the carriage and is fixed to the carriage. The box incorporated in the vertical guide rail has the function of moving up and down in the guide rail, and the vertical support is added to the center of gravity of the dedicated work ship that is biased forward during dredging work. Dedicated work ship, characterized by maintaining stability with a spud device.

本発明の真空圧密浚渫工法は、海底土の含水比がこれの液性限界の含水比以上であれば少なくともこれを以下まで圧密する。これにより、真空圧密工法の底面開口のタワー式気密載荷函体のシンプルな装置,機能で浚渫工程における海底土の積み込みを可能とした。 In the vacuum consolidation method of the present invention, if the water content of the seabed soil is equal to or higher than the water content of its liquid limit, it is consolidated to at least the following. This enables the loading of seabed soil in dredging processes with the simple equipment and functions of a tower-type airtight loading box with a bottom opening in the vacuum consolidation method.

本発明の真空圧密浚渫工法は、タワー式気密載荷函体の透水性蓋を可動透水性蓋とし、透水性蓋ごと中詰海底土を押し下げる。このため浚渫工程では圧密により高密度した海底土の積み下ろしを可能とした。 In the vacuum consolidation method of the present invention, the water-permeable lid of the tower-type airtight loading box is used as a movable water-permeable lid, and the padded seabed soil is pushed down together with the water-permeable lid. For this reason, in the dredging process, it was possible to load and unload the seabed soil with high density by consolidation.

超高含水比の海底土の急速圧密において、ユニットパネルドレーン装置で中詰海底土の排水距離を極小とすることで超急速圧密実現した。 In the rapid consolidation of submarine soil with an ultra-high water content, ultra-rapid consolidation was achieved by minimizing the drainage distance of the padded submarine soil with a unit panel drain device.

本発明の真空圧密浚渫工法は、真空圧密工法の装置,機能を発展させることによって急速真空圧密と浚渫を一連の工程として実施する。これにより、浚渫土は圧密により減容化が図られると共に従来の浚渫のように海底土をかき乱して海水が混合された浚渫土ではなく、圧密後の強度増加,密度増加が図られた海底土がそのままの状態で浚渫土となるという効果を生み出す。 The vacuum compaction method of the present invention implements rapid vacuum compaction and scissors as a series of steps by developing the equipment and functions of the vacuum compaction method. As a result, the volume of dredged soil is reduced by consolidation, and it is not a dredged soil in which seawater is mixed by disturbing the submarine soil as in conventional dredging, but the strength and density increase after consolidation is achieved. Produces the effect of becoming dredged as it is.

タワー式気密載荷函体1Aを海底に据付けた状態の立面図Elevated view of tower type airtight loading box 1A installed on the seabed 同気密載荷函体11Aの立面図Elevated view of the airtight loading box 11A 同タワー式気密載荷函体1Aを海底から切り離した状態の立面図Elevated view of the tower type airtight loading box 1A separated from the seabed 同気密載荷函体11Aの中詰海底土を積み下ろした状態の立面図Elevated view of the state of loading the bottom-packed submarine soil of the same airtight loading box 11A タワー式気密載荷函体1Bを海底に据え付けた状態の立面図Elevated view of tower-type airtight loading box 1B installed on the seabed 同気密載荷函体11Bの立面図Elevated view of airtight loading box 11B 気密載荷函体11Bのドレーンシステムの説明図Explanatory drawing of drain system of airtight loading box 11B タワー式気密載荷函体1Aを装備した函体中央型専用作業船2Cの 立面図Elevated view of the box-type central workboat 2C equipped with a tower-type airtight loading box 1A 同専用作業船2Cの台船21上面における平面図Plan view on the upper surface of the carrier 21 of the dedicated work ship 2C 同専用作業船2Cのタワー式気密載荷函体1Aが、海底で圧密を進めている状態の立面図Elevated view of the tower-type airtight loading box 1A of the dedicated work ship 2C in the state of consolidation on the sea floor 同専用作業船2Cの気密載荷函体11Aを海底埋立面または盛土面に据え付け中詰海底土を積み下ろした状態の立面図Elevated view of airtight loading box 11A of the dedicated work ship 2C installed on the seabed landfill or embankment and loaded with unsealed seabed soil タワー式気密載荷函体1Aを装備した函体前方型専用作業船2Dの側面図Side view of box-type front dedicated work ship 2D equipped with tower-type airtight loading box 1A 同専用作業船2Dの立面図Elevated view of the dedicated workboat 2D 同専用作業船2Dの台船21上面における平面図Plan view of the upper surface of the carrier 21 of the dedicated work boat 2D 同専用作業船2Dの気密載荷函体1Aを海底面に据え付け圧密進行状態の立面図Elevation view of the airtight loading box 1A of the dedicated work ship 2D installed on the sea floor and in the state of consolidation

本発明の真空圧密浚渫工法の最大の特徴は、底面開口のタワー式気密載荷函体1を用いて真空圧密と浚渫を一連の工程で実施することにある。本発明のタワー式気密載荷函体1は、気密載荷函体11と函体タワー12から成る。タワー式気密載荷函体1は一体型の函体タワー12Aとタワー基部とタワー上部から成る分離型の函体タワー12Bの二種類がある。分離型の函体タワー12Bは水深の深さによってタワー上部の長さを変える。また、長尺の函体タワー12は作業船に装着するとき分離型が都合良い。当該函体11の水平断面積は正方形で、一辺は10m〜30m程度、高さは1〜2m程度である。 The greatest feature of the vacuum-consolidating method of the present invention is that the vacuum-consolidating and scissors are carried out in a series of steps using the tower-type airtight loading box 1 having a bottom opening. The tower-type airtight loading box 1 of the present invention includes an airtight loading box 11 and a box tower 12. There are two types of tower-type airtight loading boxes 1, an integrated box tower 12 </ b> A and a separate box tower 12 </ b> B composed of a tower base and a tower upper part. The separation type box tower 12B changes the length of the upper part of the tower according to the depth of water. The long box tower 12 is conveniently a separate type when mounted on a work boat. The horizontal cross-sectional area of the box 11 is a square, one side is about 10 to 30 m, and the height is about 1 to 2 m.

本発明のタワー式気密載荷函体1及び気密載荷函体11は浚渫対象の海底土の含水比によって構造が異なる。通常含水比の海底土用のタワー式気密載荷函体1A,気密載荷函体11Aと超高含水比の海底土用のタワー式気密載荷函体1B,気密載荷函体11Bである。また、本発明の真空圧密浚渫工法は工事の規模によってタワー式気密載荷函体1を装着する作業船が異なる。既存のクレーン船、或いは2種類の専用作業船2である。専用作業船2はタワー式気密載荷函体1を中央に装備する函体中央型専用作業船2Cと前方に装備する函体前方型専用作業船2Dである。専用作業船2Cは浚渫土運搬をこれの函体11に中詰め状態で運搬する。当該気密載荷函体11は底面が開放されているので、専用作業船2Cは運搬時に汚濁を撒き散らかさないように移動式船底装置24が設けられている。なお、本発明のタワー式気密載荷函体1を使用する真空圧密浚渫工法の作業工程は、どの作業船も同じである。 The tower-type airtight loading box 1 and the airtight loading box 11 of the present invention have different structures depending on the moisture content of the seabed soil to be dredged. There are a tower type airtight loading box 1A and an airtight loading box 11A for seabed soil with a normal water content ratio, and a tower type airtight loading box 1B and an airtight loading box 11B for seabed soil with an extremely high water content. Further, the vacuum compacting method according to the present invention differs in the work ship to which the tower type airtight loading box 1 is attached depending on the scale of construction. An existing crane ship or two types of dedicated work ships 2. The dedicated work ship 2 is a box-type dedicated work ship 2C equipped with a tower type airtight loading box 1 in the center and a box-front dedicated work ship 2D equipped in the front. The dedicated work ship 2C transports the dredged material to the box 11 in a packed state. Since the bottom surface of the airtight loading box 11 is open, the dedicated work ship 2C is provided with a mobile ship bottom device 24 so as not to disperse pollution during transportation. The work process of the vacuum consolidation method using the tower type airtight loading box 1 of the present invention is the same for all work ships.

以下本発明の通常含水比の海底土用のタワー式気密載荷函体1Aの実施形態を図1〜図4に基づいて説明する。
図1はタワー式気密載荷函体1Aを海底に据え付けた状態の立面図、或いは圧密工程の実施状態の立面図、図2は気密載荷函体11Aの立面図、図3はタワー式気密載荷函体1Aを海底地盤から切り離した状態の立面図、図4は気密載荷函体11Aの海底中詰土を海底面に積み下ろしをした状態の立面図である。
Hereinafter, an embodiment of a tower-type airtight loading box 1A for seabed soil having a normal water content ratio according to the present invention will be described with reference to FIGS.
Fig. 1 is an elevation view of the tower type airtight loading box 1A installed on the seabed, or an elevation view of the state of the consolidation process, Fig. 2 is an elevation view of the airtight loading box 11A, and Fig. 3 is a tower type. FIG. 4 is an elevational view of the airtight loading box 1A separated from the seabed ground, and FIG. 4 is an elevational view of the state where the undersea filling soil of the airtight loading box 11A is loaded on the bottom of the sea.

タワー式気密載荷函体1Aの構成は、気密載荷函体11Aと函体タワー12から成る。気密載荷函体11Aは真空タンク層111,函体隔壁112,隔室113,真空タンク室114,可動透水性蓋115Aから成る。タワー式気密載荷函体1Aの装置構成は、自動通水パイプ14,真空装置15,排水装置16,コンプレッサー17,振動装置18,自動排水装置19,可動蓋駆動装置116である。可動透水性蓋115Aの駆動方法は圧縮空気(コンプレッサー17)と可動蓋駆動装置116(複動型油圧シリンダー)の2通りがあるが、ここでは後者とした。 The structure of the tower-type airtight loading box 1 </ b> A includes an airtight loading box 11 </ b> A and a box tower 12. The airtight loading box 11A includes a vacuum tank layer 111, a box partition 112, a compartment 113, a vacuum tank chamber 114, and a movable water-permeable lid 115A. The device configuration of the tower-type airtight loading box 1A includes an automatic water flow pipe 14, a vacuum device 15, a drainage device 16, a compressor 17, a vibration device 18, an automatic drainage device 19, and a movable lid driving device 116. There are two methods for driving the movable water-permeable lid 115A: compressed air (compressor 17) and movable lid driving device 116 (double-acting hydraulic cylinder).

タワー式気密載荷函体1Aを使用する真空圧密浚渫工法の作業工程は、まず据え付け工程で排水装置16を僅かに稼働させながら、海底土を当該函体11Aの中詰状態とする。このとき可動透水性蓋115Aは隔室113の上端にある。ここで、海底土の最表層部に浚渫対象外となるきわめて小さい比重の浮泥があれば、これを自動排水装置19で当該函体11Aの外に直接排出する。次に圧密工程は真空装置15,排水装置16を稼働させることで中詰海底土6及び海底地盤5に大気圧及び水圧の静荷重を載荷する。
急速圧密工法は静荷重載荷に並行して振動装置18を稼働させて当該函体の函体隔壁112を共振させることで、中詰海底土6には振動の動荷重による応力変動と圧力変動の両変動を伝達させることで急速圧密を促す。(図1,2を参照)中詰海底土6の含水比がこれの液性限界の含水比よりも大きい場合は、液性限界の含水比以下として当該函体11Aで浚渫可能な強度以上となるように圧密して強度増加を図る。
In the vacuum compacting method using the tower-type airtight loading box 1A, first, the drainage device 16 is slightly operated in the installation process, and the seabed soil is filled with the box 11A. At this time, the movable water-permeable lid 115A is at the upper end of the compartment 113. Here, if there is an extremely small specific gravity floating mud that is not subject to dredging in the outermost surface layer of the seabed soil, this is directly discharged out of the box 11A by the automatic drainage device 19. Next, in the consolidation process, the vacuum device 15 and the drainage device 16 are operated, and a static load of atmospheric pressure and water pressure is loaded on the padded seabed soil 6 and the seabed ground 5.
In the rapid consolidation method, the vibration device 18 is operated in parallel with the static load loading to resonate the box bulkhead 112 of the box. It promotes rapid consolidation by transmitting both fluctuations. (Refer to Figs. 1 and 2) If the water content of the padded seabed soil 6 is greater than the water content of the liquid limit, the water content is less than the liquid limit and is not less than the strength that can be dredged by the box 11A. Consolidate to increase strength.

浚渫工程における海底土の積み込みは、当該タワー式気密載荷函体1Aの真空状態を保ちながら自動通水パイプ14を開とすることでこれの底面の気密状態を解除して、当該函体1Aを引き上げ、中詰海底土6を海底地盤5から切り離す。(図3参照)中詰海底土の積み下ろしは当該函体1Aの真空状態を停止し、低い圧縮空気を送りながら、可動透水性蓋115Aを可動蓋駆動装置116で押し下げて海底中詰土6の積み下ろしを行う。(図4参照) The loading of the seabed soil in the dredging process is to release the airtight state of the bottom surface of the tower-type airtight loading box 1A by opening the automatic water pipe 14 while keeping the vacuum state of the tower-type airtight loading box 1A. Pull up and detach the middle-sealed soil 6 from the seabed 5. (Refer to FIG. 3) The filling of the bottom sea bottom soil stops the vacuum state of the box 1A, and while sending low compressed air, pushes down the movable water permeable lid 115A with the movable lid driving device 116 to Perform loading and unloading. (See Figure 4)

以下本発明の超高含水比の海底土用のタワー式気密載荷函体1Bの実施形態を図5〜図7に基づいて説明する。浮泥は超高含水比の海底土の代表的なものである。浮泥の真空圧密での大きな課題はドレーンの目詰まりと圧密時間の長さである。
図5はタワー式気密載荷函体1Bを海底に据え付けた状態の立面図、或いは圧密工程の実施状態の立面図、図6は気密載荷函体11Bの立面図、図7は気密載荷函体11Bのドレーンシステムの説明図である。
Hereinafter, an embodiment of a tower-type airtight loading box 1B for seabed soil with an ultra-high water content of the present invention will be described with reference to FIGS. Suspended mud is a typical submarine soil with a very high water content. The big problem in vacuum compaction of floating mud is the clogging of drain and the length of compaction time.
5 is an elevation view of the tower-type airtight loading box 1B installed on the seabed, or an elevation view of the compaction process, FIG. 6 is an elevation view of the airtight loading box 11B, and FIG. 7 is an airtight load. It is explanatory drawing of the drain system of the box 11B.

当該気密載荷函体11Bの基本構成及び基本作業工程は、気密載荷函体11Aとほぼ同じであるが、大きく異なるのは上下可動するユニットパネルドレーン装置13及びこれの関連にある。
タワー式気密載荷函体1Bを海底に据え付けた状態の時点では、ユニットパネルドレーン131の位置は隔室113に在る。(図5,図6参照)隔室113の天端には固定透水性蓋115Bがあり、この蓋には当該ユニットパネルドレーン131が擦り抜ける複数のスリットが設けられている。ユニットパネルドレーン131の頭部は真空タンク層111に突き出ていて、この頭部はパネルドレーンホルダー132で一体的に固定され、さらにドレーン上下駆動装置133に連動されている。ここで、真空タンク層111はユニットパネルドレーン131を引き上げるのに必要な十分な高さがある。図7において、134はドレーン洗浄装置で、前記複数のスリットの列の中間位置に等間隔に設置されてある。
The basic configuration and basic work process of the airtight loading box 11B are substantially the same as those of the airtight loading box 11A, but the main difference is the unit panel drain device 13 that can be moved up and down and the relationship thereof.
At the time when the tower type airtight loading box 1B is installed on the seabed, the unit panel drain 131 is located in the compartment 113. (See FIGS. 5 and 6) A fixed water-permeable lid 115B is provided at the top end of the compartment 113, and a plurality of slits through which the unit panel drain 131 is rubbed are provided. The head of the unit panel drain 131 protrudes from the vacuum tank layer 111, and this head is integrally fixed by a panel drain holder 132, and further linked to the drain vertical drive device 133. Here, the vacuum tank layer 111 has a sufficient height necessary for pulling up the unit panel drain 131. In FIG. 7, reference numeral 134 denotes a drain cleaning device, which is installed at equal intervals in the middle position of the plurality of slit rows.

急速圧密工程は図5のタワー式気密載荷函体1Bを海底に据え付けた状態から始められる。圧密工程の装置の基本的な操作はタワー式気密載荷函体1Aと同じである。当該函体1Bの真空タンク層111を真空状態とすることで静荷重の大気圧と水圧を載荷し、且つ、ユニットパネルドレーン131の固有振動に合わせて振動装置18を稼動させることでこれを共振させ、中詰海底土6には静荷重に加えて振動の動荷重による応力変動と圧力変動の両変動を伝達させることで超急速圧密を行う。 The rapid consolidation process is started from a state where the tower type airtight loading box 1B of FIG. 5 is installed on the seabed. The basic operation of the consolidation process apparatus is the same as that of the tower-type hermetic loading box 1A. The vacuum tank layer 111 of the box 1B is brought into a vacuum state so that static atmospheric pressure and water pressure are loaded, and the vibration device 18 is operated in accordance with the natural vibration of the unit panel drain 131 to resonate. In addition to the static load, both the stress fluctuation and the pressure fluctuation due to the dynamic load of vibration are transmitted to the middle seabed soil 6 to perform ultra-rapid consolidation.

図7は気密載荷函体11Bのドレーンシステムの説明図で、ユニットパネルドレーン131が隔室113と真空タンク層111を断続的に移動するユニットパネルドレーン装置13の立面図である。中詰海底土6の圧密進行は図7aである。圧密速度が低下したらユニットパネルドレーン131を真空タンク層111に引き上げる。この状態が図7bである。ユニットパネルドレーン131が移動する。すなわち、図7aの状態から図7bで状態である。この移動のとき、前記固定透水性蓋115Bのスリットにより圧密が進行してユニットパネルドレーン131に付着している中詰海底土6を削ぎ落とし、真空タンク層111ではドレーン洗浄装置134でユニットパネルドレーン131が洗浄される。ユニットパネルドレーン131が隔室113の位置に下がると、圧密未進行の中詰海底土6との新たな排水面ができ、圧密が進行する。この作業工程を繰り返すことにより、中詰海底土6の圧密の排水距離を常に極小距離にして急速圧密を実現する。ここで、圧密工程のユニットパネルドレーン131の上下動のサイクルタイムは数分である。 FIG. 7 is an explanatory view of the drain system of the airtight loading box 11B, and is an elevation view of the unit panel drain device 13 in which the unit panel drain 131 moves intermittently between the compartment 113 and the vacuum tank layer 111. The progress of consolidation of the middle subsea soil 6 is shown in FIG. 7a. When the consolidation speed decreases, the unit panel drain 131 is pulled up to the vacuum tank layer 111. This state is shown in FIG. The unit panel drain 131 moves. That is, it is the state from FIG. 7a to FIG. 7b. During this movement, consolidation progresses through the slits of the fixed water permeable lid 115B and scrapes off the padded seabed soil 6 adhering to the unit panel drain 131. In the vacuum tank layer 111, the unit panel drain is operated by the drain cleaning device 134. 131 is washed. When the unit panel drain 131 is lowered to the position of the compartment 113, a new drainage surface with the unfilled undersea soil 6 is formed, and the consolidation proceeds. By repeating this work process, rapid consolidation is realized by always setting the drainage distance of consolidation of the padded seabed soil 6 to a minimum distance. Here, the cycle time of the vertical movement of the unit panel drain 131 in the consolidation process is several minutes.

浚渫工程における海底土の積み込みは、当該函体1Bの真空状態を保ちながら自動通水パイプ14を開とすることでこれの底面の気密状態を解除して、当該函体1Bを引き上げることで、中詰海底土6を海底から切り離す。中詰海底土6の積み下ろしは当該函体1Bの真空状態を停止し、ユニットパネルドレーン131を真空タンク層111に引き上げる。ユニットパネルドレーン131と海底中詰土6の付着強度を切り、必要に応じて振動の併用により中詰海底土6を押し出す。 The loading of the seabed soil in the dredging process is to release the airtight state of the bottom surface by opening the automatic water pipe 14 while keeping the vacuum state of the box 1B, and pulling up the box 1B. Cut off the middle seabed soil 6 from the seabed. The loading and unloading of the middle-sealed submarine soil 6 stops the vacuum state of the box 1B and raises the unit panel drain 131 to the vacuum tank layer 111. The adhesion strength of the unit panel drain 131 and the undersea filling soil 6 is cut, and if necessary, the intermediate filling soil 6 is pushed out by combined use of vibration.

本発明の函体中央型専用作業船2Cの構成は図8〜図9に基づいて説明する。大規模な真空圧密,浚渫及び海底盛土工の一連の工程については、図10〜図11に基づいて説明する。タワー式気密載荷函体1はA,Bの二種類あるがここではタワー式気密載荷函体1Aを使用した例である。 The configuration of the box central dedicated work boat 2C according to the present invention will be described with reference to FIGS. A series of processes of large-scale vacuum consolidation, dredging, and seabed embankment will be described with reference to FIGS. There are two types of tower-type airtight loading boxes 1, A and B, but here is an example using a tower-type airtight loading box 1 </ b> A.

図8は本発明のタワー式気密載荷函体1Aを装備した函体中央型専用作業船2Cの浮上時の立面図である。図9は当該専用作業船2Cの台船21上面における平面図で、タワー式気密載荷函体1Aを2基並列とした例である。
本発明の函体中央型専用作業船2Cを構成する主な構造体及び装置は、2基のタワー式気密載荷函体1A,2基のガイドタワー22,2基のガイドタワー支承桁23,4隻の台船21,4基の移動式スパッド装置3,2組の移動式船底装置24である。4隻の台船21は2基のタワー式気密載荷函体1Aが納まる空間を形成して接合一体化している。
当該専用作業船2Cは作業時においても船体重心が中央なので安定性がきわめて高い。また、気密載荷函体11Aの引き上げ高さは台船21に収納する位置までである。図8の船底装置24は閉の状態である。
FIG. 8 is an elevational view when the box-shaped central workboat 2C equipped with the tower-type airtight loading box 1A of the present invention is levitated. FIG. 9 is a plan view on the upper surface of the carriage 21 of the dedicated work ship 2C, and shows an example in which two tower-type airtight loading boxes 1A are arranged in parallel.
The main structure and apparatus constituting the central box-type dedicated work ship 2C of the present invention are two tower type airtight loading boxes 1A, two guide towers 22, two guide tower support girders 23, 4 A ship carrier 21, four mobile spud devices 3, and two sets of mobile bottom devices 24. The four trolleys 21 are joined and integrated to form a space in which two tower-type airtight loading boxes 1A are accommodated.
The dedicated work boat 2C has extremely high stability because the center of gravity of the hull is central even during work. The lifting height of the airtight loading box 11A is up to the position where it is stored in the carriage 21. The ship bottom device 24 in FIG. 8 is in a closed state.

タワー式気密載荷函体1Aはガイドタワー22内を自在に上下移動する。これの移動はラックアンドピニオンシステムで実現する。函体タワー12の両側面に一対のラックを固定し、2基の函体上下駆動装置25を組み合わせる。函体上下駆動装置25は減速機付モーターの回転運動を直線運動に変換してラックに伝達する。2基の函体上下駆動装置25は同時稼動である。 The tower-type airtight loading box 1A moves up and down freely within the guide tower 22. This movement is realized by a rack and pinion system. A pair of racks are fixed to both sides of the box tower 12, and two box vertical drive units 25 are combined. The box vertical drive device 25 converts the rotational motion of the motor with a speed reducer into a linear motion and transmits it to the rack. The two box vertical drive devices 25 are simultaneously operated.

本発明の函体中央型専用作業船2Cの移動式スパッド装置3は特許文献2と同等で、専用作業船2Cの移動を自在に正確に行う装置である。移動式スパッド装置3は移動式スパッド31を4機と台船21の外周4辺に設けた軌道32から成る。   The mobile spud device 3 of the box-type dedicated work boat 2C of the present invention is equivalent to Patent Document 2, and is a device that freely and accurately moves the dedicated work boat 2C. The mobile spud device 3 is composed of four mobile spuds 31 and a track 32 provided on four sides of the outer periphery of the carriage 21.

移動式船底装置24は作業船底板241と底板支承桁242から構成される。作業船底板241は薄い箱型で半浮体構造になっている。このため、水中重量は自重と浮力が相殺されて移動における摩擦は生じない。これの移動はウインチで操作される。底板支承桁242は2本の溝形の鋼材を横に向かい合わせた形式の構造で、左右の台船21の両端まで伸ばして固定される。これの溝に作業船底板241が組み込まれる。 The mobile ship bottom device 24 includes a work ship bottom plate 241 and a bottom plate support girder 242. The work ship bottom plate 241 is a thin box type and has a semi-floating structure. For this reason, the weight in water cancels out its own weight and buoyancy and does not cause friction in movement. This movement is operated with a winch. The bottom plate support girder 242 has a structure in which two groove-shaped steel members face each other, and is extended and fixed to both ends of the left and right trolleys 21. A work bottom plate 241 is incorporated in the groove.

図10は函体中央型専用作業船2Cのタワー式気密載荷函体1Aが、海底に据え付けられて圧密を進めている状態の立面図である。図10の移動式船底装置24は開の状態である。タワー式気密載荷函体1Aの海底据え付け工程及び圧密工程は、段落番号0051の通りである。また、浚渫工程は段落番号0052の通りである。 FIG. 10 is an elevational view of a state in which the tower-type airtight loading box 1A of the box-type central workboat 2C is installed on the seabed and is being consolidated. The mobile ship bottom device 24 of FIG. 10 is in an open state. The submarine installation process and the consolidation process of the tower type airtight loading box 1A are as shown in paragraph number 0051. The dredge process is as shown in paragraph 0052.

図11は気密載荷函体11Aを海底埋立面、または海底盛土7の盛土面に据え付けた状態の立面図である。函体中央型専用作業船2Cによる海底盛土工程は次の通りである。
浚渫土で海底盛土7をする手段は、所要の強度に高めた浚渫土を気密載荷函体11Aに中詰め状態で海底盛土7の工区まで運搬する。そして、気密載荷函体11Aを海底盛土7の所定の位置に降下させて据え付ける。本発明の海底盛土工は中詰海底土を海中落下させることはない。これは中詰海底土の材料劣化,海水汚濁を発生させないためである。気密載荷函体11Aの盛土面における中詰海底土の抜き出し(積み下ろし)は、真空タンク層111の真空状態を停止すると共に可動蓋駆動装置116で可動透水性蓋115Aを押して中詰海底土を押し出す。本発明による浚渫土の再利用の効果は、盛土材としての強度があるので所定の盛土勾配を確保できる。必要に応じて後付けで法面防護工を行えばよい。
FIG. 11 is an elevational view showing a state in which the airtight loading box 11A is installed on the seabed landfill surface or the embankment surface of the seabed embankment 7. The submarine embankment process by the box central dedicated work boat 2C is as follows.
The means for carrying out the seabed embankment 7 with dredged material transports the dredged soil with a required strength to the work area of the seabed embankment 7 in an airtight loading box 11A. Then, the airtight loading box 11A is lowered to a predetermined position on the seabed embankment 7 and installed. The submarine embankment of the present invention does not drop the padded submarine soil into the sea. This is to prevent material deterioration and seawater pollution of the middle-sealed submarine soil. The extraction (unloading) of the middle seabed soil on the embankment surface of the airtight loading box 11A stops the vacuum state of the vacuum tank layer 111 and pushes the movable water permeable lid 115A by the movable lid driving device 116 to push out the middle seabed soil. . The effect of reusing dredged soil according to the present invention has a strength as a banking material, so that a predetermined banking gradient can be secured. If necessary, slope protection work can be performed later.

大規模な圧密,浚渫及び海底盛土工事の場合は、圧密浚渫工区の工区外の近隣に浚渫土の仮置き場を確保すると良い。函体中央型専用作業船2Cを複数用意して、役割を分担させる。圧密及び浚渫と再圧密,運搬及び盛土である。圧密及び浚渫の専用作業船2Cは、気密載荷函体11Aで浚渫可能な必要最小限の圧密、すなわち、函体中詰土の含水比が液性限界よりも少し低くなる程度の圧密を実施して圧密浚渫工区の作業時間の短縮を図る。再圧密,運搬及び盛土の専用作業船2Cは函体中詰土が盛土材としての十分な強度が得られる圧密時間を確保する。これは圧密浚渫工区が船舶航行の激しい航路等の場合、圧密作業時間の短縮を図り航行の制限期間を短縮させるためである。圧密及び浚渫と再圧密,運搬及び盛土の専用作業船2Cの割合は後者が大きい。具体的な割合は後者の再圧密時間及び運搬距離等で決定される。 In the case of large-scale consolidation, dredging, and submarine embankment construction, it is recommended to secure a temporary storage area for dredging in the vicinity of the consolidation dredging area. A plurality of box-type central work boats 2C are prepared and assigned roles. Consolidation and dredging and reconsolidation, transportation and embankment. The dedicated work vessel 2C for compaction and dredging performs the necessary minimum consolidation that can be dredged with the airtight loading box 11A, that is, the consolidation of the water content of the boxed soil is slightly lower than the liquid limit. In order to shorten the working time of the consolidation zone. The dedicated work vessel 2C for re-consolidation, transportation and embankment ensures a consolidation time in which the padded soil in the box has sufficient strength as a embankment material. This is in order to reduce the time limit for navigation by shortening the consolidation work time when the consolidation dredging zone is a route with severe ship navigation. The latter is large in the proportion of the dedicated work ship 2C for consolidation and dredging and reconsolidation, transportation and embankment. The specific ratio is determined by the latter re-consolidation time and transport distance.

浚渫対象の海底堆積土の含水比が液性限界よりも高い場合の圧密浚渫工程は次の通りである。
函体中央型専用作業船2Cは圧密終了後に直ちに浚渫の工程をとらずに対象区域全体の圧密工程を先行させる。その理由は、海底堆積土は液性限界を超えて流動化状態であるから、浚渫しても周りの海底堆積土が流入して浚渫部分を埋め戻してしまう。このため、周りの海底土の含水比も液性限界以下とする必要がある。函体中央型専用作業船2Cは圧密工程と仮置き場までの運搬工程を分業として複数隻で実施するのが好適である。
The consolidation dredging process when the water content of the seabed sediments to be dredged is higher than the liquid limit is as follows.
The box-type dedicated work ship 2C immediately precedes the consolidation process for the entire target area without taking the dredging process immediately after the consolidation. The reason is that the seabed sediments are in a fluidized state exceeding the liquid limit, so even if they are drowned, the surrounding seabed sediments flow in and refill the dredged part. For this reason, it is necessary to make the water content ratio of the surrounding seabed soil below the liquid limit. It is preferable that the box-centered dedicated work ship 2C is implemented by a plurality of ships with the consolidation process and the transport process up to the temporary storage area as a division of labor.

海底堆積土が有害物質で汚染されて拡散する恐れのある場合、函体中央型専用作業船2Cによる拡散防止対策工法は次の通りである。
対策工法は圧密,浚渫,覆土の工程を経て実施される。その狙いは汚染堆積土の溶出しやすい汚染物質の除去と現位置の良質海底土による覆土である。本発明による振動圧密は有害物質の溶出を促進する。圧密工程において、堆積土の間隙水は真空タンク層111に溜まり、排水装置16で排水される。この排水には有害物質が溶出しているので汚染水浄化装置を経由して無害化する。この段階で溶出しやすい汚染物質は除去される。
When there is a possibility that the seabed sediment may be contaminated and diffused by the harmful substances, the diffusion prevention countermeasure method by the box central type dedicated work ship 2C is as follows.
The countermeasure method is implemented through consolidation, dredging and soil covering processes. The aim is to remove pollutants that are likely to elute from contaminated sediments and to cover them with high quality seabed soil at the current location. The vibration consolidation according to the present invention promotes the elution of harmful substances. In the consolidation process, the interstitial water in the sedimentary soil accumulates in the vacuum tank layer 111 and is drained by the drainage device 16. Since harmful substances are eluted in this waste water, it is rendered harmless via a contaminated water purification device. Contaminants that are likely to elute at this stage are removed.

通常、汚染された海底堆積土は薄く広く分布している。また、拡散する汚染堆積土は液性限界を超えて流動化状態にある。従って、対象全区域の圧密工程を先行させる。対象全区域の圧密及び間隙水の浄化が完了したならば覆土工程に移る。覆土材は良質な浚渫土が利用できると好都合である。 Normally, contaminated marine sediments are thin and widely distributed. Moreover, the diffused contaminated sediment is fluidized beyond the liquid limit. Therefore, the consolidation process of the entire target area is preceded. When the consolidation of all the target areas and the purification of pore water have been completed, move to the soil covering process. It is convenient if a good quality clay is available for the covering material.

浚渫による海底面の水深管理はタワー式気密載荷函体1の底面の水準高さで実施される。タワー式気密載荷函体1の形状寸法は既知である。圧密工程終了時の函体タワー12の水準高さが確認されれば良い。函体タワー12の高さは水準測量で実施される。函体タワー12には天端からの標尺が印されているのが好適である。 The depth control of the sea floor by dredging is carried out at the level height of the bottom of the tower type airtight loading box 1. The shape dimensions of the tower type airtight loading box 1 are known. The level height of the box tower 12 at the end of the consolidation process may be confirmed. The height of the box tower 12 is measured by leveling. The box tower 12 is preferably marked with a scale from the top.

函体前方型専用作業船2Dは、汎用型の専用作業船で浚渫土の運搬は土運船となる。この型の作業船は浚渫時に船体重心が前方に偏るので安定対策が必要である。当該専用作業船2Dの構成,機能は図12〜図14に基づいて説明する。 The box front type dedicated work ship 2D is a general purpose dedicated work ship, and the transport of dredged soil becomes an earth ship. This type of work ship requires a countermeasure against stability because the center of gravity of the hull is biased forward when dredged. The configuration and function of the dedicated work boat 2D will be described with reference to FIGS.

図12は本発明の函体前方型専用作業船2Dでタワー式気密載荷函体1Aが浮上の状態の側面図である。図13は同専用作業船2Dの立面図である。図14は同専用作業船2Dの平面図である。図において、26は操舵棟,27は吊り込み櫓,28はウインチ,3は移動式スパッド装置で移動式スパッド31,軌道32でから成る。 FIG. 12 is a side view showing a state in which the tower-type airtight loading box 1A is levitated in the box front dedicated work ship 2D of the present invention. FIG. 13 is an elevation view of the dedicated work boat 2D. FIG. 14 is a plan view of the dedicated work boat 2D. In the figure, 26 is a steering ridge, 27 is a suspension rod, 28 is a winch, 3 is a mobile spud device, which includes a mobile spud 31 and a track 32.

本発明の函体前方型専用作業船2Dは、気密載荷函体1の位置を台船21の前方とするための吊り込み櫓27を台船21に固定する。当該気密載荷函体1は吊り込み櫓27の鉛直ガイドレールに組み込まれ、ガイドレール内を上下動する機能を有する。また、浚渫作業時の当該専用作業船2Dは重心が前方に偏るので水平支持に加えて鉛直支持を持たせた移動式スパッド装置3で必要に応じて安定の補助をする。図14において、4基の移動式スパッド装置3うち3基を台船21前方に集中させた状態の平面図である。なお、実施例3の移動式スパッド装置3は、専用作業船2Cの移動を自在に正確に行う装置としては特許文献2と同等である。図15は同専用作業船2Dの気密載荷函体1Aを海底面に据え付け圧密進行状態の立面図である。 The box front dedicated work boat 2D of the present invention fixes a suspension rod 27 for making the position of the airtight loading box 1 in front of the base boat 21 to the base boat 21. The airtight loading box 1 is incorporated in the vertical guide rail of the suspension rod 27 and has a function of moving up and down in the guide rail. Further, since the center of gravity of the dedicated work ship 2D during the dredging work is biased forward, the mobile spud device 3 provided with vertical support in addition to horizontal support assists in stability as necessary. 14 is a plan view of a state in which three of the four mobile spud devices 3 are concentrated in front of the carriage 21. FIG. In addition, the mobile spud device 3 of Example 3 is equivalent to Patent Document 2 as a device that freely and accurately moves the dedicated work ship 2C. FIG. 15 is an elevation view of the airtight loading box 1 </ b> A of the dedicated work ship 2 </ b> D installed on the sea bottom in a state of consolidation progress.

本発明の函体前方型専用作業船2Dによる真空圧密,浚渫の作業操作及び工程は、タワー式載荷函体1が同じものであるから、函体中央型専用作業船2Cと同様である。ただし、海底盛土工は不向きである。当該専用作業船2Dは港湾施設の岸壁等の際などの浚渫も容易である。これに対して、函体中央型専用作業船2Cは岸壁等の際などの浚渫は不向きである。 The vacuum compaction and dredging work operations and processes by the box front dedicated work ship 2D of the present invention are the same as those of the box central dedicated work ship 2C because the tower type loading box 1 is the same. However, seabed embankment is not suitable. The dedicated work ship 2D can easily be dredged at the quay of a port facility. On the other hand, the box-type dedicated work ship 2C is not suitable for dredging such as on a quay.

1 タワー式気密載荷函体
1A 通常含水比の海底土用のタワー式気密載荷函体
1B 超高含水比の海底土用のタワー式気密載荷函体
11 気密載荷函体
11A 通常含水比の海底土用の気密載荷函体
11B 超高含水比の海底土用の気密載荷函体
111 真空タンク層
112 函体隔壁
113 隔室
114 真空タンク室
115 透水性蓋
115A 可動透水性蓋
115B 固定透水性蓋
116 可動蓋駆動装置
12 函体タワー
12A 一体型函体タワー
12B 分離型函体タワー
121 排気菅
122 排水菅
123 送気菅
13 ユニットパネルドレーン装置
131 ユニットパネルドレーン
132 パネルドレーンホルダー
133 ドレーン上下駆動装置
134 ドレーン洗浄装置
14 自動通水装置
15 真空装置
16 排水装置
17 コンプレッサー
18 振動装置
19 自動排水装置
2 専用作業船
2C 函体中央型専用作業船
2D 函体前方型専用作業船
21 台船
22 ガイドタワー
23 ガイドタワー支承桁
24 移動式船底装置
241 作業船底板
242 底板支承桁
25 函体上下動駆動装置
26 操舵棟
27 吊り込み櫓
28 ウインチ
3 移動式スパッド装置
31 移動式スパッド
32 軌道
4 海面
5 海底地盤
6 中詰海底土
7 海底盛土
1 Tower-type airtight loading box
1A Tower-type airtight loading box for submarine soil with normal water content
1B Tower type airtight loading box for submarine soil with ultra high water content
11 Airtight box
11A Airtight loading box for submarine soil with normal water content
11B Airtight loading box for submarine soil with ultra high water content
111 Vacuum tank layer
112 Box bulkhead
113 compartment
114 Vacuum tank chamber
115 permeable lid
115A movable permeable lid
115B fixed permeable lid
116 Movable lid drive
12 Box tower
12A Integrated box tower
12B Separate box tower
121 exhaust
122 Drainage
123 Air supply
13 Unit panel drain device
131 Unit panel drain
132 Panel drain holder
133 Drain vertical drive
134 Drain cleaning device
14 Automatic water flow device
15 Vacuum equipment
16 Drainage device
17 Compressor
18 Vibration device
19 Automatic drainage device 2 Dedicated work boat 2C Box central type dedicated work boat 2D Box forward type dedicated work boat
21 trolley
22 Guide tower
23 Guide tower support girder
24 Mobile ship bottom equipment
241 Work boat bottom plate
242 Bottom plate support girder
25 Box vertical drive
26 Steering building
27 Hanging rod
28 Winch 3 Mobile spud device
31 Mobile spud
32 Track 4 Sea surface 5 Submarine ground 6 Filled seabed 7 Seabed embankment

Claims (13)

海底地盤の真空圧密浚渫工法において、底面開口の気密載荷函体の内部天井面に真空タンク層を、これの直下にドレーン機能のある函体隔壁で分割して複数の隔室を形成し、隔室上面には透水性蓋を設け、前記函体の外部上面の中央部分には函体タワーを取付けたタワー式気密載荷函体を使用して、圧密工程では海底土を底面開口の前記函体で浚渫可能な強度以上に圧密の進行を図り、浚渫工程では前記函体の空圧,水圧を制御して海底土の浚渫を行うことで、底面開口のタワー式気密載荷函体によって圧密と浚渫を一連の工程とすることを特徴とする海底地盤の真空圧密浚渫工法。   In the vacuum consolidation method for seabed ground, a vacuum tank layer is divided on the inner ceiling surface of the airtight loading box at the bottom opening, and a plurality of compartments are formed by dividing it by a box bulkhead with a drain function directly below it. Provided with a water-permeable lid on the upper surface of the room, and a tower-type airtight loading box with a box tower attached to the central part of the outer upper surface of the box. Consolidation progresses beyond the strength that can be dredged, and in the dredging process, the air pressure and water pressure of the box are controlled and dredging of the seabed soil is performed. A method for vacuum consolidation of submarine ground characterized by a series of processes. 請求項1のタワー式気密載荷函体において、当該函体の外部上面と底面の水圧が連通する自動弁の付いた自動通水装置と当該函体の隔室から外部へ直接排水する自動弁の付いた自動排水装置を設置した装置構成を特徴とするタワー式気密載荷函体。   The tower-type airtight loading box according to claim 1, wherein there is an automatic water flow device with an automatic valve that communicates the water pressure between the outer top surface and the bottom surface of the box and an automatic valve that drains directly from the compartment of the box to the outside. A tower-type airtight loading box that features an automatic drainage system. 請求項2のタワー式気密載荷函体を使用した海底地盤の真空圧密浚渫工法において、圧密工程の前工程で海底土の最表層部の浚渫対象外のきわめて小さい比重の浮泥を自動排水装置によって当該函体の隔室から外部へ直接排水する工程を特徴とする海底地盤の真空圧密浚渫工法。   In the vacuum consolidation dredging method of the seabed ground using the tower-type airtight loading box according to claim 2, an automatic drainage device is used to remove floating mud with a very small specific gravity outside the target of dredging in the outermost layer of the seabed soil before the consolidation process. A method of vacuum-consolidating submarine ground, characterized by the process of draining directly from the compartment of the box to the outside. 請求項2のタワー式気密載荷函体を使用した海底地盤の真空圧密浚渫工法において、圧密工程では当該気密載荷函体の中詰海底土の含水比をこれの液性限界の含水比以下とし、浚渫工程では中詰海底土の保持は前記函体の内部上面の真空吸引力と壁面付着力を活用し、海底地盤からの切り離し時は前記函体底面の気密状態を自動通水装置で解除する工程を特徴とする海底地盤の真空圧密浚渫工法。 In the vacuum consolidation method for submarine ground using the tower type airtight loading box of claim 2, in the consolidation process, the water content of the padded seabed soil in the airtight loading box is set to be equal to or lower than the water content ratio of the liquid limit. In the dredging process, the inside bottom soil is retained by utilizing the vacuum suction force and wall adhesion force on the inner top surface of the box, and the airtight state on the bottom of the box is released with an automatic water flow device when separated from the seabed ground. Vacuum-consolidated dredging method for seabed ground characterized by processes. 請求項2のタワー式気密載荷函体において、透水性蓋は上下の可動透水性蓋とした構造を特徴とするタワー式気密載荷函体。 3. The tower-type airtight loading box according to claim 2, wherein the water-permeable cover has upper and lower movable water-permeable covers. 請求項5のタワー式気密載荷函体を使用する真空圧密浚渫工法の中詰海底土の積み下ろしにおいて、前記可動の透水性蓋を圧縮空気、又は可動蓋駆動装置で押し下げることで、前記函体の中詰海底土を押し出して積み下ろしを行うことを特徴とする真空圧密浚渫工法。 In loading and unloading the middle-packed seabed soil using the tower-type airtight loading box according to claim 5, the movable water-permeable lid is pushed down with compressed air or a movable lid driving device, thereby A vacuum-consolidated dredging method characterized by extruding and loading the middle-sealed submarine soil. 請求項2のタワー式気密載荷函体のドレーンシステムにおいて、ドレーンが隔室と真空タンク層を断続的に移動して、ドレーンが隔室に在るときは中詰海底土の圧密が進行し、ドレーンの移動時においては隔室では圧密により密度増加してドレーンに付着した中詰海底土を削ぎ落とし、真空タンク室ではドレーン表面を洗浄することを繰り返すシステムを備えたことを特徴とするタワー式気密載荷函体。 The drain system of the tower type airtight loading box according to claim 2, wherein the drain intermittently moves between the compartment and the vacuum tank layer, and when the drain is in the compartment, consolidation of the padded seabed soil proceeds, The tower type is equipped with a system that repeats washing the drained surface in the vacuum tank chamber while the drainage is moving and the density increases in the compartment due to consolidation and scrapes off the padded seabed soil attached to the drain Airtight loading box. 請求項7のタワー式気密載荷函体において、隔室には複数のパネルドレーンが一体となった上下可動なユニットパネルドレーンが設置され、隔室の天端には、固定透水性蓋が固定され、この固定透水性蓋には当該ユニットパネルドレーンが擦り抜ける複数のスリットが設けられ、ユニットパネルドレーンは真空タンク層でこれの上部をドレーンホルダーで一体的に固定され、また、真空タンク層はユニットパネルドレーンを引き上げるのに必要な高さがあり、ドレーンホルダーは上下駆動装置に連動している構成とし、且つ、当該ユニットパネルドレーンの上下動で当該ユニットパネルドレーンが真空タンク層に在る時にはこれを洗浄する機能を有することを特徴とするタワー式気密載荷函体。 8. The tower type airtight loading box according to claim 7, wherein a unit panel drain that is vertically movable and integrated with a plurality of panel drains is installed in the compartment, and a fixed permeable lid is fixed to the top end of the compartment. The fixed water permeable lid is provided with a plurality of slits through which the unit panel drain can be worn. The unit panel drain is a vacuum tank layer, and the upper part thereof is integrally fixed by a drain holder, and the vacuum tank layer is a unit. There is a height required to pull up the panel drain, the drain holder is linked to the vertical drive device, and when the unit panel drain is in the vacuum tank layer due to vertical movement of the unit panel drain A tower type airtight loading box characterized by having a function of cleaning. 請求項8のタワー式気密載荷函体を使用する超高含水比の流動状態の海底土の真空圧密浚渫工法において、前記気密載荷函体の据付け工程は前記ユニットパネルドレーンが隔室に位置する状態で海底地盤に押し込んで海底土をタワー式気密載荷函体の中詰海底土状態とし、圧密工程は前記真空タンク層を真空状態にすることで圧密沈下を進行させ、圧密速度が低下したら当該ユニットパネルドレーンを真空タンク層内に引き上げることで前記固定透水性蓋のスリットにより圧密で密度増加してドレーンに付着した中詰海底土を削ぎ落とし、並行して真空タンク層内では当該ユニットパネルドレーンを洗浄し、続いて当該ユニットパネルドレーンを隔室の位置に下げることで圧密未進行の中詰海底土との新たな排水面とすることを繰り返えすことで、中詰海底土の圧密の排水距離を常に極小距離にして急速圧密を実現することを特徴とする真空圧密浚渫工法。 9. A vacuum consolidation method for a seabed soil with a flow rate of ultra-high water content using the tower type airtight loading box of claim 8, wherein the unit panel drain is located in the compartment in the vacuum consolidation dredging method of the airtight loading box. The unit is pushed into the seabed ground to make the seabed soil in the middle of the tower type airtight loading box, and in the consolidation process, the vacuum tank layer is brought into a vacuum state to proceed with consolidation settlement. By pulling up the panel drain into the vacuum tank layer, it is compacted by the slits of the fixed permeable lid and the density increases and the padded seabed soil adhering to the drain is scraped off. Washing and then lowering the unit panel drain to the position of the compartment can be repeated to form a new drainage surface with unfilled undersea soil. In vacuum consolidation dredging method, characterized in that to achieve a rapid consolidation and always minimum distance drainage distance compaction Chutsume seabed soil. 請求項5又は8のタワー式気密載荷函体を使用する急速圧密の真空圧密浚渫工法において、急速圧密工程は前記気密載荷函体の真空タンク層を真空状態とすることで静荷重の大気圧と水圧を載荷し、且つ、当該気密載荷函体の隔壁,またはユニットパネルドレーンの固有振動に合わせて前記振動装置を稼動させることでこれを共振させ、中詰海底土には静荷重に加えて振動の動荷重による応力変動と圧力変動の両変動を伝達させることで急速圧密を行うことを特徴とする真空圧密浚渫工法。 9. The rapid consolidation vacuum consolidation method using the tower-type hermetic loading box according to claim 5 or 8, wherein the rapid consolidation step is performed by setting the vacuum tank layer of the hermetic loading box to a vacuum state, The water pressure is loaded, and the vibrating device is operated in accordance with the natural vibration of the bulkhead of the airtight loading box or the unit panel drain, so that it resonates. A vacuum-consolidation method that performs rapid consolidation by transmitting both fluctuations of stress and pressure due to the dynamic load of the steel. 請求項5又は8のタワー式気密載荷函体を使用する汚染海底土の汚染拡散防止工法において、有害物質の溶出工程は、前記函体の真空タンク層を真空状態とすることで静荷重の大気圧と水圧を載荷し、且つ、当該気密載荷函体の隔壁,またはユニットパネルドレーンの固有振動に合わせて前記振動装置を稼動させることでこれを共振させ、中詰海底土には静荷重に加えて振動の動荷重による応力変動と圧力変動の両変動を伝達させることで強制的な有害物質の溶出と急速圧密による中詰海底土の高密度化を図り、次に汚染水浄化工程は真空タンク層に溜まった汚染水を排水装置で汚染水浄化装置に送り無害化して汚染拡散を防止することを特徴とする真空圧密浚渫工法。 9. The method for preventing contamination and diffusion of contaminated seabed soil using the tower-type airtight loading box according to claim 5 or 8, wherein the toxic substance elution step is performed by applying a large static load by placing the vacuum tank layer of the box in a vacuum state. The atmospheric pressure and water pressure are loaded, and the vibration device is resonated by operating the bulkhead of the airtight loading box or the natural vibration of the unit panel drain. By transmitting both fluctuations of stress and pressure due to dynamic load of vibration, forcible leaching of harmful substances and densification of the solid seabed soil by rapid consolidation are performed, and then the contaminated water purification process is a vacuum tank A vacuum-consolidation method, characterized in that the contaminated water collected in the bed is sent to the contaminated water purification device by a drainage device to make it harmless and prevent contamination diffusion. 請求項5又は8のタワー式気密載荷函体を装備した専用作業船において、台船の中央には当該函体が納まる空間を形成し、この空間を囲んで取り外し可能とした当該函体のガイドタワー及びガイドタワー支承桁が台船に固定され、これに組み込まれた当該荷函体はガイドタワー内を上下動する機能を有し、且つ当該函体が納まる台船の開口空間の船底にはこれを開閉する移動式船底装置が装備されていることを特徴とする専用作業船。 9. A dedicated work ship equipped with the tower-type airtight loading box according to claim 5 or 8, wherein a space for accommodating the box is formed in the center of the carriage, and the box guide that is removable around the space. The tower and the guide tower support girder are fixed to the carriage, and the cargo box incorporated in the tower has a function of moving up and down in the guide tower, and the bottom of the opening space of the carriage where the box is accommodated A dedicated work ship equipped with a mobile ship bottom device that opens and closes it. 請求項5又は8のタワー式気密載荷函体を装備した専用作業船おいて、当該函体の位置を台船の前方とするための吊り込み櫓が台船に固定され、前記吊り込み櫓の鉛直ガイドレールに組み込まれた当該函体は、前記ガイドレール内を上下動する機能を有し、且つ浚渫作業時に前方に偏る専用作業船の重心を水平支持に加えて鉛直支持を持たせた移動式スパッド装置により安定を保つことを特徴とする専用作業船。 A dedicated work ship equipped with the tower-type airtight load box according to claim 5 or 8, wherein a suspension rod for fixing the position of the box to the front of the carriage is fixed to the carriage, The box incorporated in the vertical guide rail has the function of moving up and down in the guide rail, and the vertical support is added to the center of gravity of the dedicated work ship that is biased forward during dredging work. Dedicated work ship, characterized by maintaining stability with a spud device.
JP2018505957A 2016-03-18 2017-03-14 Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship. Active JP6582361B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016076870 2016-03-18
JP2016076870 2016-03-18
PCT/JP2017/010246 WO2017159692A1 (en) 2016-03-18 2017-03-14 Vacuum consolidation and dredging method, tower-like airtight preloading caisson, and dedicated work ship

Publications (2)

Publication Number Publication Date
JPWO2017159692A1 true JPWO2017159692A1 (en) 2018-09-13
JP6582361B2 JP6582361B2 (en) 2019-10-02

Family

ID=59850921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018505957A Active JP6582361B2 (en) 2016-03-18 2017-03-14 Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship.

Country Status (2)

Country Link
JP (1) JP6582361B2 (en)
WO (1) WO2017159692A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019187169A1 (en) * 2018-03-27 2019-10-03 正佳 近藤 Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
CN108560618A (en) * 2018-05-18 2018-09-21 中原工学院 A kind of test apparatus of simulation Combined Vacuum-surcharge Preloading Composite Foundation Consolidation
CN108999179B (en) * 2018-08-13 2020-07-07 重庆科技学院 Method for reinforcing and treating soft soil foundation by combining vacuum preloading and microorganism sand consolidation technology
CN110331710B (en) * 2019-06-24 2021-03-09 中国路桥工程有限责任公司 Port large-area ultra-soft soil foundation treatment method
WO2021065690A1 (en) * 2019-10-03 2021-04-08 正佳 近藤 Vacuum consolidation dredging method, airtight loading box, and vacuum consolidation dredger
JP7325701B2 (en) * 2021-03-24 2023-08-15 正佳 近藤 Vacuum Consolidation Method, Vacuum Consolidation Dredging Method, Vacuum Consolidation Test System, Vertical Drain Driving Machine, and Airtight Loading Box
CN113250266A (en) * 2021-06-18 2021-08-13 中铁四局集团有限公司 Dry-type dredging method for river channel
CN116559025B (en) * 2023-06-06 2024-05-24 上海勘测设计研究院有限公司 Density-based sludge water content detection device and detection method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524384U (en) * 1978-08-03 1980-02-16
JPH03244708A (en) * 1990-02-22 1991-10-31 Unyusho Daini Kowan Kensetsukyoku Ground improvement with movable load
JPH06264432A (en) * 1993-03-10 1994-09-20 Tokyu Constr Co Ltd Ground solidification device of sea bottom
JPH07149286A (en) * 1993-11-30 1995-06-13 Mitsubishi Heavy Ind Ltd Nonwatertight dock and barge to build and launch caisson
JPH107074A (en) * 1996-06-24 1998-01-13 Nishi Nippon Chishitsu Chiyousashiyo:Kk Carrier for muddy ground, and the carrier for muddy ground of boring equipment
JP2007309073A (en) * 2006-05-19 2007-11-29 Masayoshi Kondo Consolidation settlement method, and loading device and working ship used in the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302930A (en) * 2001-04-10 2002-10-18 Kumagai Gumi Co Ltd Volume reducing method for reclaimed artificial island

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5524384U (en) * 1978-08-03 1980-02-16
JPH03244708A (en) * 1990-02-22 1991-10-31 Unyusho Daini Kowan Kensetsukyoku Ground improvement with movable load
JPH06264432A (en) * 1993-03-10 1994-09-20 Tokyu Constr Co Ltd Ground solidification device of sea bottom
JPH07149286A (en) * 1993-11-30 1995-06-13 Mitsubishi Heavy Ind Ltd Nonwatertight dock and barge to build and launch caisson
JPH107074A (en) * 1996-06-24 1998-01-13 Nishi Nippon Chishitsu Chiyousashiyo:Kk Carrier for muddy ground, and the carrier for muddy ground of boring equipment
JP2007309073A (en) * 2006-05-19 2007-11-29 Masayoshi Kondo Consolidation settlement method, and loading device and working ship used in the same

Also Published As

Publication number Publication date
WO2017159692A1 (en) 2017-09-21
JP6582361B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP6582361B2 (en) Vacuum-consolidated dredging method, tower-type airtight loading box and dedicated work ship.
US6640470B2 (en) Contaminated sediment remediation vessel
US9649675B2 (en) In-situ capping with no loss of water depth
US8926221B2 (en) Concurrent disposal and consolidation of dredged sediment using horizontal drains and vacuum loading
JP4051666B2 (en) Consolidation improvement method for water bottom soft ground.
US8882397B2 (en) Methods for waterproofing depositing sites
JP4996883B2 (en) Consolidation settlement method and loading equipment and work boat used for construction method.
JP6593703B2 (en) Coal ash landfill method
US20020124440A1 (en) Contaminated sediment removal vessel
JP2016196791A (en) Seabed cutting/banking system and method, and loading box body and work ship used therewith
WO2021065690A1 (en) Vacuum consolidation dredging method, airtight loading box, and vacuum consolidation dredger
WO2016114951A1 (en) In-situ capping with no loss of water depth
NL1001731C2 (en) Method for withdrawing a liquid from a mixture.
KR100672815B1 (en) Sand spreader apparatus and method on water
WO2019187174A1 (en) Vacuum consolidation dredging method, tower air-tight loading caisson, and dedicated work ship
JP4055184B2 (en) Volume reduction method for water-bottom soft ground
JP6746556B2 (en) Lake decontamination method
KR100994242B1 (en) Sand spreader apparatus and method on water
KR200316779Y1 (en) Reclaimed land formed in the soft ground of the seashore using dredged soil and sand so as to reinforce bearing power
US10458087B2 (en) System and method for dewatering sediment ponds
KR100579701B1 (en) Reclaimed land formed in the soft ground of the seashore using dredged soil and sand so as to reinforce bearing power, and forming method thereof
KR200405514Y1 (en) sand spreader apparatus on water
JP2023129165A (en) Mining, pulling up, wet type smelting, residual sludge treatment method and resource mining bucket, pressure control tank, wet type hydrometallurgical processing tank, and resource mining vessel for deposition resources on deep sea bottom
JPS6073920A (en) Settled-mud dredger
JP2000045257A (en) Processing engineering method for weak soil and drain material used for it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190816

R150 Certificate of patent or registration of utility model

Ref document number: 6582361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150