JPWO2017141925A1 - Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same - Google Patents

Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same Download PDF

Info

Publication number
JPWO2017141925A1
JPWO2017141925A1 JP2017529403A JP2017529403A JPWO2017141925A1 JP WO2017141925 A1 JPWO2017141925 A1 JP WO2017141925A1 JP 2017529403 A JP2017529403 A JP 2017529403A JP 2017529403 A JP2017529403 A JP 2017529403A JP WO2017141925 A1 JPWO2017141925 A1 JP WO2017141925A1
Authority
JP
Japan
Prior art keywords
roll
cermet
carbide particles
mass
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017529403A
Other languages
Japanese (ja)
Other versions
JP6232524B1 (en
Inventor
雄也 馬場
雄也 馬場
竹内 純一
純一 竹内
圭史 小林
圭史 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tocalo Co Ltd
Original Assignee
JFE Steel Corp
Tocalo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Tocalo Co Ltd filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6232524B1 publication Critical patent/JP6232524B1/en
Publication of JPWO2017141925A1 publication Critical patent/JPWO2017141925A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/067Metallic material containing free particles of non-metal elements, e.g. carbon, silicon, boron, phosphorus or arsenic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/073Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/123Spraying molten metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • C25D7/0657Conducting rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12146Nonmetal particles in a component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Electrochemistry (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Powder Metallurgy (AREA)

Abstract

高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立したサーメット皮膜を作製可能なサーメット粉末を提供する。本発明のサーメット粉末は、40質量%以上の炭化タングステン粒子と、10〜40質量%の炭化モリブデン粒子と、マトリックス金属としての、Ni又はNi合金と、を含み、さらに、クロムを炭化物又は前記マトリックス金属に含まれる金属若しくは合金元素として8質量%以上含有することを特徴とする。Provided is a cermet powder capable of producing a cermet film having both high wear resistance and high corrosion resistance against a strong acid having a pH of less than 1. The cermet powder of the present invention includes 40% by mass or more of tungsten carbide particles, 10 to 40% by mass of molybdenum carbide particles, and Ni or Ni alloy as a matrix metal, and further comprises chromium as a carbide or the matrix. It is characterized by containing 8% by mass or more as a metal or alloy element contained in the metal.

Description

本発明は、サーメット粉末、保護皮膜被覆部材及びその製造方法、並びに電気めっき浴中ロール及びその製造方法に関する。   The present invention relates to a cermet powder, a protective film-coated member and a production method thereof, and a roll in an electroplating bath and a production method thereof.

従来、電気めっき浴中で使用されるコンダクターロールの製造方法としては以下のようなものが提案されてきた。特許文献1には、炭素鋼製ロールの表面に、Co又はNiを主成分として、Cr、C、Fe、Mo等を添加した合金を溶射材料として、低圧の無酸素雰囲気下でプラズマアーク溶射を施した後、再度同雰囲気下でプラズマアーク加熱による皮膜の熱溶融処理を行い、無気孔の溶射皮膜を形成するコンダクターロールの製造方法が記載されている。   Conventionally, the following methods have been proposed as a method for producing a conductor roll used in an electroplating bath. In Patent Document 1, plasma arc spraying is performed in a low-pressure oxygen-free atmosphere using an alloy in which Co or Ni is the main component and Cr, C, Fe, Mo, or the like is added to the surface of a carbon steel roll. A method of manufacturing a conductor roll is described in which after the application, the film is melted again by plasma arc heating in the same atmosphere to form a non-porous sprayed film.

特許文献2には、炭素鋼製ロール胴部表面に、炭化物サーメット粉とC含有ニッケルクロム合金粉末とからなる混合粉末を溶射して溶射被覆層を形成し、その後この溶射被覆層を加熱することにより炭化物を再析出させて、再析出炭化物分散溶射皮膜を形成し、その後ロール胴部をロール基材の外側に焼嵌め装入することを特徴とする電気めっき用コンダクターロールの製造方法が記載されている。   In Patent Document 2, a spray coating layer is formed by spraying a mixed powder composed of carbide cermet powder and C-containing nickel chromium alloy powder on the surface of a roll body made of carbon steel, and then heating the spray coating layer. A method of manufacturing a conductor roll for electroplating is described, wherein the carbide is reprecipitated to form a reprecipitated carbide dispersion sprayed coating, and then the roll body is shrink-fitted into the outside of the roll base. ing.

特許文献3には、SS400製ロール表面に、WC−Niサーメットと残部Ni基自溶合金からなる混合粉末を溶射した後、再溶融処理して皮膜層を形成する、耐食性を高めたコンダクターロールの製造方法が記載されている。   Patent Document 3 describes a conductor roll with improved corrosion resistance, in which a mixed powder composed of WC-Ni cermet and the remaining Ni-based self-fluxing alloy is sprayed on the surface of a roll made of SS400 and then remelted to form a coating layer. A manufacturing method is described.

特許文献4には、SS400製ロール表面に、WCサーメットを含有する自溶合金溶射層を作成し、更にその上にWCサーメット層を形成する、コンダクターロールの製造方法が記載されている。   Patent Document 4 describes a conductor roll manufacturing method in which a self-fluxing alloy sprayed layer containing WC cermet is formed on the surface of a roll made of SS400, and further a WC cermet layer is formed thereon.

特開平1−198460号公報JP-A-1-198460 特開平5−295592号公報Japanese Patent Laid-Open No. 5-295592 特開2002−88461号公報JP 2002-88461 A 特開2006−183107号公報JP 2006-183107 A

特許文献1では、pHが1未満となる強酸のめっき液下では、連続使用により皮膜表面からめっき液が浸潤するため、ロール母材と溶射皮膜の密着性が下がり、母材表面から皮膜が剥がれ落ちるという問題があった。実際、特許文献1では、pHが1未満の様な厳しい環境下での実施はされておらず、また、実施条件も5〜20A/dm2と低い電流密度範囲でしか示されておらず、操業期間も1000時間と短いため、1ヶ月連続操業といった長期間の実施にはなっていない。さらに、溶射後に皮膜の熱溶融処理を行うため、製造コストが上がる問題もある。In Patent Document 1, under strong acid plating solution with a pH of less than 1, the plating solution infiltrates from the surface of the coating by continuous use, so the adhesion between the roll base material and the thermal spray coating decreases, and the coating peels off from the surface of the base material. There was a problem of falling. In fact, Patent Document 1 does not carry out in a severe environment where the pH is less than 1, and the implementation conditions are also shown only in a low current density range of 5 to 20 A / dm 2 . Since the operation period is as short as 1000 hours, it has not been implemented for a long time, such as continuous operation for one month. Furthermore, since the coating is subjected to a thermal melting treatment after spraying, there is a problem that the manufacturing cost increases.

特許文献2でも、pHが1未満となる強酸のめっき液下では、連続使用により皮膜表面からめっき液が浸潤するため、ロール母材と溶射皮膜の密着性が下がり、母材表面から皮膜が剥がれ落ちるという問題があった。また、ロールのエッジがめっき液により酸腐食するため、その破片が原因となり製品の歩留を低下させる、という問題があった。また、溶射後にロールに再溶融処理を実施する必要があり、焼嵌め挿入を含めたロール再生に伴う時間及び費用が大きくなるという問題もあった。   Even in Patent Document 2, the plating solution infiltrates from the coating surface by continuous use under a strong acid plating solution having a pH of less than 1, so that the adhesion between the roll base material and the thermal spray coating is lowered, and the coating is peeled off from the base material surface. There was a problem of falling. Further, since the edge of the roll is acid-corroded by the plating solution, there is a problem that the yield of the product is lowered due to the fragments. In addition, it is necessary to remelt the roll after thermal spraying, and there is a problem that time and cost associated with roll regeneration including shrink fit insertion are increased.

特許文献3でも、pHが1未満となる強酸のめっき液下では、連続使用により皮膜表面からめっき液が浸潤するため、ロール母材と溶射皮膜の密着性が下がり、母材表面から皮膜が剥がれ落ちるという問題があった。また、溶射後にロールに再溶融処理を実施する必要があり、ロール再生に伴う時間及び費用が大きくなるという問題もあった。また、ステンレス鋼ロールに本皮膜を適用しようとすると、再溶融処理によって、ステンレス鋼の加熱により結晶粒界にクラックが入るため、ロールが破損してしまう。そのため、耐食性の低い炭素鋼をしなければならず、酸腐食された炭素鋼の破片が製品歩留を下げる、という問題もあった。   Even in Patent Document 3, the plating solution infiltrates from the surface of the coating under continuous use under a strong acid plating solution having a pH of less than 1. Therefore, the adhesion between the roll base material and the thermal spray coating decreases, and the coating peels off from the base material surface. There was a problem of falling. In addition, it is necessary to remelt the roll after thermal spraying, and there is a problem that time and cost associated with roll regeneration increase. Moreover, when it is going to apply this membrane | film | coat to a stainless steel roll, since a crack enters into a grain boundary by the heating of stainless steel by a remelting process, a roll will be damaged. For this reason, carbon steel having low corrosion resistance has to be used, and there has been a problem that fragments of acid-corroded carbon steel lower the product yield.

特許文献4でも、pHが1未満となる強酸のめっき液下では、連続使用により皮膜表面からめっき液が浸潤するため、ロール母材と溶射皮膜の密着性が下がり、母材表面から皮膜が剥がれ落ちるという問題があった。実際、特許文献4における、めっき液中への浸漬による酸腐食性の試験では、pH=3.0となっており、pHが1未満の様な厳しい環境下での試験はなされていない。また、溶射後にロールに再溶融処理を実施する必要があり、ロール再生に伴う時間及び費用が大きくなるという問題もあった。また、ステンレス鋼ロールに本皮膜を適用しようとすると、再溶融処理によって、ステンレス鋼の加熱により結晶粒界にクラックが入るため、ロールが破損してしまう。そのため、耐食性の低い炭素鋼を使用しなければならず、酸腐食された炭素鋼の破片が製品歩留を下げる、という問題もあった。   Even in Patent Document 4, the plating solution infiltrates from the coating surface by continuous use under a strong acid plating solution having a pH of less than 1. Therefore, the adhesion between the roll base material and the thermal spray coating decreases, and the coating peels off from the base material surface. There was a problem of falling. Actually, in the acid corrosion test by immersion in the plating solution in Patent Document 4, the pH is 3.0, and the test under a severe environment where the pH is less than 1 is not performed. In addition, it is necessary to remelt the roll after thermal spraying, and there is a problem that time and cost associated with roll regeneration increase. Moreover, when it is going to apply this membrane | film | coat to a stainless steel roll, since a crack enters into a grain boundary by the heating of stainless steel by a remelting process, a roll will be damaged. For this reason, carbon steel having low corrosion resistance has to be used, and there is also a problem that the pieces of acid-corroded carbon steel reduce the product yield.

以上に述べたように従来のコンダクターロールの特徴は、ロール素材に炭素鋼が用いられており、またその炭素鋼のめっき液との反応を防止する目的でNiCr系合金の被覆層をロール表面に形成することを基本としている。また、この被覆層は鋼板との擦れによる摩耗を防止する目的で、WCを主とした炭化物(あるいはサーメット)を含有することが特徴となっている。その結果、pH≧1の酸性めっき浴中では反応や摩耗を大幅に軽減し、ロール寿命の確保と不良率低減を図ることが可能となっている。   As described above, the characteristics of conventional conductor rolls are that carbon steel is used as the roll material, and a NiCr alloy coating layer is applied to the roll surface to prevent reaction with the plating solution of the carbon steel. It is based on forming. The coating layer is characterized by containing a carbide (or cermet) mainly composed of WC for the purpose of preventing wear due to rubbing with the steel plate. As a result, it is possible to significantly reduce reaction and wear in an acidic plating bath with pH ≧ 1, and to ensure the roll life and reduce the defect rate.

しかしながらこのような従来のコンダクターロールは、pH<1となる強酸めっき浴中では、炭素鋼自体の酸腐食量が大幅に増加することに加え、炭化物を含む被覆層自体の耐食性も不十分となるために、ロール製造の費用が大きい割に得られる効果が小さいという課題があった。すなわち、従来技術を用いたロールおよびその表面処理技術では、高い耐摩耗性と、pHが1未満となる強酸に対する高い耐食性とを両立させることが困難であった。   However, such a conventional conductor roll significantly increases the amount of acid corrosion of the carbon steel itself in a strong acid plating bath with pH <1, and the corrosion resistance of the coating layer itself containing carbide is insufficient. For this reason, there is a problem that the effect obtained for the large cost of roll production is small. That is, it has been difficult to achieve both high wear resistance and high corrosion resistance against strong acids having a pH of less than 1 with the rolls using the conventional technology and the surface treatment technology thereof.

さらに、炭素鋼製ロール基材上に溶射皮膜を付着させた従来品は、溶射皮膜及び基材が酸腐食起因により破損するため、その破片がめっき製品に飛び込むことで凹み、押し疵等の不良品を発生させてしまい、製品歩留の低下を引き起こすことが判明した。また、一般的な電気錫めっきプロセスでは、めっき液中の錫イオンは金属錫に変化し、ロール表面に電析する事象があることが知られている。この電析した金属錫もまた押し疵等の不良品を引き起こすが、上記の従来ロールを使用すると、その傾向が顕著となる課題もあった。   Furthermore, the conventional product with a sprayed coating on a carbon steel roll base material is damaged due to acid corrosion because the sprayed coating and the base material are damaged. It was found that non-defective products were generated and the product yield was lowered. Moreover, in a general electrotin plating process, it is known that tin ions in the plating solution change into metallic tin and cause an electrodeposition on the roll surface. Although this electrodeposited metal tin also causes defective products such as pressing irons, there is a problem that the tendency becomes prominent when the conventional roll is used.

そこで本発明は、上記課題に鑑み、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立したサーメット皮膜を作製可能なサーメット粉末を提供することを目的とする。また、本発明は、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立した保護皮膜被覆部材及び電気めっき浴中ロールを、それらの製造方法とともに提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a cermet powder capable of producing a cermet film having both high wear resistance and high corrosion resistance against a strong acid having a pH of less than 1. Another object of the present invention is to provide a protective film-coated member and a roll in an electroplating bath that have both high wear resistance and high corrosion resistance against a strong acid having a pH of less than 1, together with their production methods.

上記課題を解決する本発明の要旨構成は以下のとおりである。
(1)40質量%以上の炭化タングステン粒子と、
10〜40質量%の炭化モリブデン粒子と、
マトリックス金属としての、Ni又はNi合金と、
を含み、
さらに、クロムを炭化物又は前記マトリックス金属中の金属若しくは合金元素として8質量%以上含有することを特徴とするサーメット粉末。
The gist configuration of the present invention for solving the above-described problems is as follows.
(1) 40% by mass or more of tungsten carbide particles,
10-40 mass% molybdenum carbide particles,
Ni or Ni alloy as matrix metal,
Including
The cermet powder further contains 8% by mass or more of chromium as a carbide or a metal or alloy element in the matrix metal.

(2)炭化タングステン粒子の含有量が70質量%以下である、上記(1)に記載のサーメット粉末。   (2) The cermet powder according to (1) above, wherein the content of tungsten carbide particles is 70% by mass or less.

(3)前記炭化タングステン粒子の粒度範囲が0.1〜6μmの範囲内にある、上記(1)又は(2)に記載のサーメット粉末。   (3) The cermet powder according to (1) or (2), wherein the tungsten carbide particles have a particle size range of 0.1 to 6 μm.

(4)前記炭化モリブデン粒子の粒度範囲が0.1〜6μmの範囲内にある、上記(1)〜(3)のいずれか一項に記載のサーメット粉末。   (4) The cermet powder according to any one of (1) to (3), wherein a particle size range of the molybdenum carbide particles is in a range of 0.1 to 6 μm.

(5)ステンレス鋼基材と、該ステンレス鋼基材上に形成されたサーメット皮膜と、を有する保護皮膜被覆部材であって、
前記サーメット皮膜は、Ni又はNi合金からなるマトリックス中に炭化タングステン粒子及び炭化モリブデン粒子が分散してなり、
前記サーメット皮膜中、前記炭化タングステン粒子の含有量が40質量%以上、前記炭化モリブデン粒子の含有量が10〜40質量%であり、さらに、クロムを炭化物又は前記マトリックス中の金属若しくは合金元素として8質量%以上含有することを特徴とする保護皮膜被覆部材。
(5) A protective coating member having a stainless steel substrate and a cermet coating formed on the stainless steel substrate,
The cermet film is formed by dispersing tungsten carbide particles and molybdenum carbide particles in a matrix made of Ni or Ni alloy,
In the cermet film, the content of the tungsten carbide particles is 40% by mass or more, the content of the molybdenum carbide particles is 10 to 40% by mass, and further chromium as a carbide or a metal or alloy element in the matrix. A protective film-coated member containing at least mass%.

(6)炭化タングステン粒子の含有量が70質量%以下である、上記(5)に記載の保護皮膜被覆部材。   (6) The protective film-coated member according to (5), wherein the content of tungsten carbide particles is 70% by mass or less.

(7)前記サーメット皮膜中、前記炭化タングステン粒子の粒度範囲が0.1〜6μmの範囲内にある、上記(5)又は(6)に記載の保護皮膜被覆部材。   (7) The protective film-coated member according to (5) or (6), wherein a particle size range of the tungsten carbide particles is in a range of 0.1 to 6 μm in the cermet film.

(8)前記サーメット皮膜中、前記炭化モリブデン粒子の粒度範囲が0.1〜6μmの範囲内にある、上記(5)〜(7)のいずれか一項に記載の保護皮膜被覆部材。   (8) The protective coating-coated member according to any one of (5) to (7), wherein a particle size range of the molybdenum carbide particles is in a range of 0.1 to 6 μm in the cermet coating.

(9)前記サーメット皮膜の表面粗さRaが0.5〜10μmである、上記(5)〜(8)のいずれか一項に記載の保護皮膜被覆部材。   (9) The protective film-coated member according to any one of (5) to (8), wherein the cermet film has a surface roughness Ra of 0.5 to 10 μm.

(10)上記(1)〜(4)のいずれか一項に記載のサーメット粉末をステンレス鋼基材上に溶射する工程を含む、保護皮膜被覆部材の製造方法。   (10) A method for producing a protective coating-coated member, comprising a step of thermally spraying the cermet powder according to any one of (1) to (4) above onto a stainless steel substrate.

(11)前記溶射は、HVOF溶射である、上記(10)に記載の保護皮膜被覆部材の製造方法。   (11) The said thermal spraying is a manufacturing method of the protective film coating | coated member as described in said (10) which is HVOF thermal spraying.

(12)上記(5)〜(9)のいずれか一項に記載の保護皮膜被覆部材を含むことを特徴とする電気めっき浴中ロール。   (12) A roll in an electroplating bath comprising the protective film-coated member according to any one of (5) to (9) above.

(13)ロール軸部及びロール胴部がともにステンレス鋼からなり、前記ロール胴部のみが上記(5)〜(9)のいずれか一項に記載の保護皮膜被覆部材から構成されることを特徴とする電気めっき浴中ロール。   (13) The roll shaft part and the roll body part are both made of stainless steel, and only the roll body part is composed of the protective film-coated member according to any one of the above (5) to (9). A roll in an electroplating bath.

(14)ロール軸部及びロール胴部がともにステンレス鋼からなるロール部材の前記ロール胴部上にのみ、上記(1)〜(4)のいずれか一項に記載のサーメット粉末を溶射してサーメット皮膜を形成することを特徴とする電気めっき浴中ロールの製造方法。   (14) A cermet obtained by spraying the cermet powder according to any one of (1) to (4) above only on the roll body portion of a roll member in which the roll shaft portion and the roll body portion are both made of stainless steel. A method for producing a roll in an electroplating bath, wherein a film is formed.

(15)前記溶射は、HVOF溶射である、上記(14)に記載の電気めっき浴中ロールの製造方法。   (15) The method for manufacturing a roll in an electroplating bath according to (14), wherein the thermal spraying is HVOF thermal spraying.

本発明のサーメット粉末によれば、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立したサーメット皮膜を作製可能である。また、本発明の保護皮膜被覆部材及び電気めっき浴中ロールは、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立できる。   According to the cermet powder of the present invention, it is possible to produce a cermet film that achieves both high wear resistance and high corrosion resistance against a strong acid having a pH of less than 1. Moreover, the protective film covering member and the roll in the electroplating bath of the present invention can achieve both high wear resistance and high corrosion resistance against strong acid having a pH of less than 1.

本発明の一実施形態による保護皮膜被覆部材100の模式断面図である。1 is a schematic cross-sectional view of a protective film covering member 100 according to an embodiment of the present invention. (A)は従来の電気めっき浴中ロール200の模式断面図であり、(B)は本発明の一実施形態による電気めっき浴中ロール300の模式断面図である。(A) is a schematic cross-sectional view of a conventional roll 200 in an electroplating bath, and (B) is a schematic cross-sectional view of a roll 300 in an electroplating bath according to an embodiment of the present invention.

(サーメット粉末)
本発明の一実施形態によるサーメット粉末は、40質量%以上の炭化タングステン粒子と、10〜40質量%の炭化モリブデン粒子と、マトリックス金属としてのNi又はNi合金を含み、さらに、クロムを炭化物又は前記マトリックス金属に含まれる金属若しくは合金元素として8質量%以上含有することを特徴とする。このサーメット粉末によれば、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立したサーメット皮膜を作製可能である。以下、本開示のサーメット粉末の各要素について説明する。
(Cermet powder)
The cermet powder according to an embodiment of the present invention includes 40% by mass or more of tungsten carbide particles, 10 to 40% by mass of molybdenum carbide particles, and Ni or Ni alloy as a matrix metal, and further includes chromium as a carbide or the above-mentioned It is characterized by containing 8% by mass or more as a metal or alloy element contained in the matrix metal. According to this cermet powder, it is possible to produce a cermet film that has both high wear resistance and high corrosion resistance against strong acids with a pH of less than 1. Hereinafter, each element of the cermet powder of the present disclosure will be described.

炭化タングステン粒子は、サーメット皮膜に高い耐摩耗性と比較的高い耐食性を付与する役割を果たす。炭化タングステン粒子としては、WC粒子を挙げることができる。炭化タングステン粒子の含有量は、40質量%以上である必要がある。40質量%未満の場合、サーメット皮膜の耐摩耗性が十分に得られないからである。また、炭化タングステン粒子の含有量は、70質量%以下であることが好ましい。70質量%超えの場合、他の成分の含有量が小さくなることによって、サーメット皮膜においてpHが1未満となる強酸に対する高い耐食性が得られないからである。本発明の効果を確実に得る観点から、炭化タングステン粒子の粒度範囲は0.1〜6μmの範囲内にあることが好ましい。   Tungsten carbide particles serve to impart high wear resistance and relatively high corrosion resistance to the cermet film. Examples of tungsten carbide particles include WC particles. The content of tungsten carbide particles needs to be 40% by mass or more. This is because if the amount is less than 40% by mass, sufficient wear resistance of the cermet film cannot be obtained. Further, the content of the tungsten carbide particles is preferably 70% by mass or less. This is because when the content exceeds 70% by mass, the content of other components becomes small, so that high corrosion resistance against strong acid having a pH of less than 1 cannot be obtained in the cermet film. From the viewpoint of reliably obtaining the effects of the present invention, the particle size range of the tungsten carbide particles is preferably in the range of 0.1 to 6 μm.

炭化モリブデン粒子は、サーメット皮膜に高い耐摩耗性のみならず、pHが1未満となる強酸に対する高い耐食性を付与する役割を果たす、本発明において重要な成分である。炭化モリブデン粒子としては、Mo2C粒子を挙げることができる。炭化モリブデン粒子の含有量は、10〜40質量%である必要がある。10質量%未満の場合、サーメット皮膜においてpHが1未満となる強酸に対する高い耐食性が得られず、40質量%超えの場合、他の成分、特に炭化タングステン粒子の含有量が小さくならざるを得ず、サーメット皮膜の耐摩耗性が十分に得られないからである。本発明の効果を確実に得る観点から、炭化モリブデン粒子の粒度範囲が0.1〜6μmの範囲内にあることが好ましい。Molybdenum carbide particles are an important component in the present invention that plays a role of imparting not only high abrasion resistance to a cermet film but also high corrosion resistance against a strong acid having a pH of less than 1. Examples of molybdenum carbide particles include Mo 2 C particles. The content of molybdenum carbide particles needs to be 10 to 40% by mass. If it is less than 10% by mass, high corrosion resistance to strong acid with a pH of less than 1 cannot be obtained in the cermet film. If it exceeds 40% by mass, the content of other components, particularly tungsten carbide particles, must be reduced. This is because sufficient wear resistance of the cermet film cannot be obtained. From the viewpoint of reliably obtaining the effects of the present invention, the particle size range of the molybdenum carbide particles is preferably in the range of 0.1 to 6 μm.

本開示のサーメット粉末は、マトリックス金属としてNi又はNi合金を含む。Ni合金としては、Niを主成分とするNiCr系合金、NiCrMo系合金、及びNiCoCrAlY系合金などを挙げることができる。マトリックス金属としてのNiは、サーメット皮膜にpHが1未満となる強酸に対する高い耐食性を付与する役割を果たす。その観点から、サーメット粉末中のNi含有量は、5質量%以上であることが好ましい。また、他の成分の好適含有量との関係から、サーメット粉末中のNi含有量は、20質量%以下であることが好ましい。   The cermet powder of the present disclosure contains Ni or a Ni alloy as a matrix metal. Examples of the Ni alloy include NiCr-based alloys, NiCrMo-based alloys, and NiCoCrAlY-based alloys containing Ni as a main component. Ni as a matrix metal plays a role of imparting high corrosion resistance to a strong acid having a pH of less than 1 to the cermet film. From this viewpoint, the Ni content in the cermet powder is preferably 5% by mass or more. Moreover, it is preferable that Ni content in a cermet powder is 20 mass% or less from the relationship with suitable content of another component.

本開示のサーメット粉末は、クロムを炭化物又は前記マトリックス金属に含まれる金属若しくは合金元素として8質量%以上含有する。このクロムは、サーメット皮膜にpHが1未満となる強酸に対する高い耐食性を付与する役割を果たし、その観点から含有量が8質量%以上であることが必要である。他の成分の好適含有量との関係から、サーメット粉末中のクロム含有量は、20質量%以下であることが好ましい。また、本開示のサーメット粉末が炭化クロム粒子(Cr32粒子)を含む場合、本発明の効果を確実に得る観点から、その粒度範囲は0.1〜6μmの範囲内にあることが好ましい。The cermet powder of this indication contains 8 mass% or more of chromium as a carbide or a metal or alloy element contained in the matrix metal. This chromium plays a role of imparting high corrosion resistance to a strong acid having a pH of less than 1 to the cermet film, and from this viewpoint, the content is required to be 8% by mass or more. From the relationship with the preferred content of other components, the chromium content in the cermet powder is preferably 20% by mass or less. Further, when the cermet powder of the present disclosure containing chromium carbide particles (Cr 3 C 2 particles), the effect from the standpoint of obtaining reliably the present invention, the particle size range is preferably in the range of 0.1~6Myuemu.

本開示のサーメット粉末は、上記成分及び不可避的不純物からなるものとすることが好ましい。   The cermet powder of the present disclosure is preferably composed of the above components and inevitable impurities.

本開示のサーメット粉末において、サーメット皮膜にpHが1未満となる強酸に対する高い耐食性を付与する観点から、モリブデン含有量はクロム含有量以上であることが好ましい。   In the cermet powder of the present disclosure, the molybdenum content is preferably not less than the chromium content from the viewpoint of imparting high corrosion resistance to a strong acid having a pH of less than 1 to the cermet coating.

本開示のサーメット粉末に関して、その製造方法は特に限定されず、溶融粉砕法、焼結粉砕法、造粒焼結法などの公知の又は任意の方法によって製造することができる。   The production method of the cermet powder of the present disclosure is not particularly limited, and can be produced by a known or arbitrary method such as a melt pulverization method, a sintering pulverization method, or a granulation sintering method.

(保護皮膜被覆部材及びその製造方法、並びに電気めっき浴中ロール及びその製造方法)
図1を参照して、本発明の一実施形態による保護皮膜被覆部材100は、ステンレス鋼基材10と、このステンレス鋼基材上に形成されたサーメット皮膜20と、を有する。サーメット皮膜20は、上記本開示のサーメット粉末を溶射材料として基材10上に溶射することにより形成される。その結果、サーメット皮膜20は、Ni又はNi合金からなるマトリックス22中に、炭化タングステン粒子及び炭化モリブデン粒子、さらに任意に炭化クロムを含む炭化物粒子24が分散した状態となる。サーメット皮膜20中における、炭化タングステン粒子の含有量及び粒度範囲、炭化モリブデン粒子の含有量及び粒度範囲、Ni含有量、クロム含有量、並びに炭化クロム粒子の粒度範囲に関しては、上記サーメット粉末に関して説明したものと同様である。また、本発明の一実施形態による電気めっき浴中ロールは、上記保護皮膜被覆部材100を含む。このような、本開示の保護皮膜被覆部材及び電気めっき浴中ロールは、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とを両立できる。
(Protective film covering member and method for producing the same, and roll in electroplating bath and method for producing the same)
Referring to FIG. 1, a protective film covering member 100 according to an embodiment of the present invention includes a stainless steel base material 10 and a cermet film 20 formed on the stainless steel base material. The cermet film 20 is formed by spraying the cermet powder of the present disclosure on the base material 10 as a thermal spray material. As a result, the cermet film 20 is in a state in which tungsten carbide particles and molybdenum carbide particles, and optionally carbide particles 24 containing chromium carbide are dispersed in a matrix 22 made of Ni or Ni alloy. Regarding the content and particle size range of tungsten carbide particles, the content and particle size range of molybdenum carbide particles, the Ni content, the chromium content, and the particle size range of the chromium carbide particles in the cermet coating 20, the cermet powder has been described. It is the same as that. In addition, a roll in an electroplating bath according to an embodiment of the present invention includes the protective film covering member 100. Such a protective coating-coated member and roll in an electroplating bath of the present disclosure can achieve both high wear resistance and high corrosion resistance against strong acid having a pH of less than 1.

特に、本実施形態では、図2(B)を参照して、ロール軸部30及びロール胴部32がともにステンレス鋼からなるロール部材の前記ロール胴部32上にのみ、上記本開示のサーメット粉末を溶射してサーメット皮膜34を形成して、電気めっき浴中ロール300を製造することが好ましい。   In particular, in the present embodiment, referring to FIG. 2 (B), the cermet powder of the present disclosure is provided only on the roll body 32 of a roll member in which the roll shaft 30 and the roll body 32 are both made of stainless steel. It is preferable to produce the roll 300 in the electroplating bath by spraying the cermet film 34 to form the cermet film 34.

本開示の保護皮膜被覆部材及びその製造方法、並びに電気めっき浴中ロール及びその製造方法は、以下のような本発明者らの知見に基づき完成されたものである。   The protective film covering member of the present disclosure and the manufacturing method thereof, and the roll in an electroplating bath and the manufacturing method thereof have been completed based on the following knowledge of the present inventors.

既述のように、メタンスルホン酸溶液などのpH<1となる強酸めっき浴中では、従来のロールでは寿命や製品歩留りが大きく低下してしまう。この現象を解明し、対策を検討するために、めっき溶液中でロールに生じる電気化学的な反応に着目した。まず、めっき浴中のコンダクターロールでは、通常の腐食反応とは異なり、表面でFe(あるいは被覆層中のNi等)がイオンとなって液中に溶解する腐食反応(アノード反応)と、一方において溶液中のSnイオンが電析する反応(カソード反応)の2つの主反応からなる置換反応が進行していると考えられる。これらの反応は、例えばロール成分をFe、めっき成分をSnとする場合には次のように表現できる。
カソード反応: Sn2+ + 2e- → Sn (1)
アノード反応: Fe → Fe2+ + 2e- (2)
As described above, in a strong acid plating bath having a pH <1, such as a methanesulfonic acid solution, the life and product yield are greatly reduced in the conventional roll. In order to elucidate this phenomenon and examine countermeasures, we focused on the electrochemical reaction that occurs on the roll in the plating solution. First, in the conductor roll in the plating bath, unlike the normal corrosion reaction, the corrosion reaction (anodic reaction) in which Fe (or Ni in the coating layer) is ionized and dissolved in the liquid on the surface, It is considered that a substitution reaction consisting of two main reactions, a reaction (cathode reaction) in which Sn ions in the solution are electrodeposited, proceeds. These reactions can be expressed as follows when the roll component is Fe and the plating component is Sn, for example.
The cathode reaction: Sn 2+ + 2e - → Sn (1)
Anode reaction: Fe → Fe 2+ + 2e - (2)

上記式(1)、(2)の反応は電気化学的に当量であり、アノード反応で生じた電子(e-)の総量は、カソード反応で消費される電子の総量に等しい。このような電気化学的な反応環境下にあるコンダクターロールの表面では、局所的に電位が高くなる部分(アノード)で溶解反応が進行し、また局所的に電位が低くなる部分(カソード)では電析反応が進行する。   The reactions of the above formulas (1) and (2) are electrochemically equivalent, and the total amount of electrons (e−) generated in the anode reaction is equal to the total amount of electrons consumed in the cathode reaction. On the surface of the conductor roll under such an electrochemical reaction environment, the dissolution reaction proceeds at a portion where the potential is locally increased (anode), and at the portion where the potential is locally decreased (cathode). The analysis reaction proceeds.

これらの反応がおこる部位は、ロールを液中に浸漬した時の腐食電位が比較的高い場合では、微視的に見て均一に分布しているとみなすことができ、腐食は全面で均等に進行し、その結果、表面形態は初期の良好な状態を維持できる。しかしながら、めっき液がpH<1の強酸であったり、めっきの電流密度が過度に高く設定されるなどの条件下では、カソード反応またはアノード反応が生じる部位が局所的に固定されて、反応が進行することがある。このような場合には、表面形態は以下に記すように大きく変化し、めっき製品を傷つける可能性がある。   The sites where these reactions occur can be considered to be uniformly distributed microscopically when the corrosion potential when the roll is immersed in the liquid is relatively high, and the corrosion is evenly distributed over the entire surface. As a result, the surface morphology can maintain the initial good state. However, under conditions where the plating solution is a strong acid with pH <1 or the plating current density is set too high, the site where the cathodic or anodic reaction occurs is fixed locally and the reaction proceeds. There are things to do. In such a case, the surface form changes greatly as described below, which may damage the plated product.

まず、カソード反応によるSnなどのめっき成分の析出に関しては、析出が最初に生じた部位に反応が集中し金属として成長する傾向がある。そして、成長した金属付着物はある大きさまで成長したのちに、鋼板との擦れなどの負荷により脱落し、カソード反応の集中する部位が他所に移ることになる。このような反応を繰り返すことで表面に不均一にSnなどのめっき金属の析出が進行すると同時に、脱落しためっき金属の破片は、製品である鋼板の表面を損傷させる可能性がある。   First, regarding deposition of a plating component such as Sn by the cathode reaction, the reaction tends to concentrate at a site where the precipitation first occurs and grow as a metal. The grown metal deposit grows up to a certain size and then falls off due to a load such as rubbing with the steel plate, and the portion where the cathode reaction concentrates moves to another place. By repeating such a reaction, the plating metal such as Sn is deposited on the surface non-uniformly. At the same time, the dropped pieces of the plating metal may damage the surface of the product steel plate.

また、アノード反応が特定部位に固定されて反応が集中すると、その部位を構成する特定の元素(ロール中のFeなど)が粒界などで選択的に溶解する結果、ロール表面の一部あるいは被覆層の一部が破片となって脱落する可能性がある。この表面から脱落した破片は、製品である鋼板の表面を損傷させる可能性がある。   In addition, when the anode reaction is fixed at a specific part and the reaction is concentrated, a specific element (such as Fe in the roll) constituting the part is selectively dissolved at the grain boundary, so that part of the roll surface or coating Part of the layer may fall off as fragments. Debris dropped from the surface may damage the surface of the product steel plate.

すなわち、既述の従来型のロールではpH<1となる強酸めっき浴中や電流密度が過度に高い場合などで相対的に腐食電位が低下し、アノードおよびカソードの分布の微視的均一性が破壊され、局所的な固定化によって上記のめっき金属の付着・脱落や、ロール表面の部分的破損が顕著となり、その結果、製品歩留りが低下している可能性がある。   That is, in the conventional roll described above, the corrosion potential is relatively lowered in a strong acid plating bath where the pH is <1 or when the current density is excessively high, and the microscopic uniformity of the anode and cathode distributions. Due to the destruction, the above-mentioned plating metal adheres and falls and the roll surface is partially broken due to local fixation, and as a result, the product yield may be lowered.

従って、pH<1となる強酸めっき浴中であったり、ラインスピードを上げるために電流密度を高く設定するような場合でもロール寿命を確保し、また高い製品歩留りを維持するためには、単に反応量だけに着目せず、上記のようにカソード反応あるいはアノード反応の進行する部位が局所的に固定化されて反応が集中する現象を極力防止できるような材料を見出す必要がある。逆に、もしそのような材料があれば、上記のような局部腐食の進行を防止でき、ロール寿命と製品歩留りを確保できることになる。   Therefore, in order to ensure the roll life and maintain a high product yield even in a strong acid plating bath where the pH is <1 or when the current density is set high in order to increase the line speed, the reaction is simply performed. It is necessary to find a material that can prevent the phenomenon in which the reaction is concentrated as a result of locally fixing the site where the cathode reaction or the anode reaction proceeds as described above, without paying attention only to the amount. On the other hand, if such a material is used, it is possible to prevent the progress of the local corrosion as described above, and to secure the roll life and the product yield.

そこで、pH<1のメタンスルホン酸を用いた錫めっき溶液中でロール素材の静的浸漬試験を実施し、腐食電位の時間変化を測定するとともに、置換反応の程度を評価した。その結果、ロール素材として炭素鋼を用いた場合、反応量は極めて高く、表面のあらゆる部位に金属Snが析出し、析出した金属Snの塊が成長と脱落を繰り返すことが分かった。これに比べ、ロール素材としてSUS316Lなどのステンレス鋼を用いた場合、反応量は大幅に低く、表面に薄い反応層が形成されるものの、明瞭な金属Snの析出は確認できなかった。また、表面の反応層は水洗および化学洗浄で容易に除去でき、除去された表面に金属Snの析出は確認できなかった。また、浸漬後20日が経過した時点の腐食電位を比較したところ、ステンレス鋼では炭素鋼より0.1V以上電位が高く、電位的に貴な状態を維持することがわかった。   Therefore, a static immersion test of the roll material was carried out in a tin plating solution using methanesulfonic acid having a pH of <1, and the change in corrosion potential with time was measured and the degree of substitution reaction was evaluated. As a result, when carbon steel was used as the roll material, the reaction amount was extremely high, and it was found that metal Sn was deposited at every part of the surface, and the deposited metal Sn mass repeated growth and detachment. In comparison, when stainless steel such as SUS316L was used as the roll material, the reaction amount was significantly low, and a thin reaction layer was formed on the surface, but no clear precipitation of metal Sn could be confirmed. Further, the reaction layer on the surface could be easily removed by washing with water and chemical washing, and precipitation of metal Sn could not be confirmed on the removed surface. In addition, when the corrosion potential at the time when 20 days passed after immersion was compared, it was found that stainless steel has a higher potential of 0.1 V or more than carbon steel and maintains a potential noble state.

これらの結果から、pH<1の強酸溶液中でも炭素鋼に比べ腐食電位が0.1V程度高いステンレス鋼であれば、反応量は小さく、表面でのアノードおよびカソードの固定化も生じにくいと判断した。しかしながら、ステンレス鋼の硬さは高々HV200程度であるため、鋼板との擦れに対する耐摩耗性が低いことが懸念される。そこで、ステンレス鋼を保護するための被覆層の材料について、さらなる検討を行った。ステンレス鋼を保護する材料としては、硬さが高く耐摩耗に優れ、強酸めっき浴中で良好な耐食性を示すものである必要がある。このような材料としては炭化物サーメットが有望であるが、特許文献1〜4に記載されたものでは良好な特性が得られないことが分かっている。しかしながら、これらの炭化物サーメットは成分を調整することで強酸めっき浴中での電気化学的特性を改善できる可能性があると判断し鋭意研究を進めた。   From these results, it was judged that stainless steel having a corrosion potential of about 0.1 V higher than that of carbon steel even in a strong acid solution with pH <1 has a small reaction amount and is less likely to cause immobilization of the anode and cathode on the surface. However, since the hardness of stainless steel is at most about HV200, there is a concern that the wear resistance against rubbing against the steel plate is low. Then, further examination was performed about the material of the coating layer for protecting stainless steel. As a material for protecting stainless steel, it is necessary to have high hardness and excellent wear resistance and to exhibit good corrosion resistance in a strong acid plating bath. As such a material, carbide cermet is promising, but it is known that good characteristics cannot be obtained with those described in Patent Documents 1 to 4. However, these carbide cermets were determined to have the potential to improve the electrochemical properties in the strong acid plating bath by adjusting the components, and were intensively studied.

すなわち、ステンレス鋼を基材とし、その表面に、市販されているものを含めて10数種類の溶射用炭化物サーメット粉末をHVOF溶射法により被覆した試料を準備し、pH<1.0の強酸めっき溶液を用いた浸漬実験を行った。その結果、サーメットのマトリックスにはNiまたはNiCr系合金が優れており、炭化物はWC粒子単独よりMo炭化物を含む場合に、良好な耐食性が得られることを見出した。そこで、さらに研究を続けた結果、強酸溶液中で高い耐食性を得るには、Crは炭化物あるいはマトリックスの合金元素として8質量%以上含有していることが望ましく、炭化物として含まれるMoの含有量は、少なくともCrの含有量と同等以上であることが望ましいことをつきとめた。また、Mo炭化物としてはMo2Cが好ましく、サーメットに含まれるMoの含有量はCrの含有量より多くても耐食性を損なうことはないが、逆にCrの含有量に比べMoの含有量が半分以下の場合では望ましい耐食性は得られ難いことを見出した。In other words, a sample was prepared by using stainless steel as a base material and coating the surface with a dozen types of carbide cermet powders for thermal spraying, including those commercially available, by the HVOF thermal spraying method, and using a strong acid plating solution with pH <1.0. Immersion experiments were performed. As a result, it has been found that Ni or NiCr-based alloys are excellent for the cermet matrix, and that when the carbide contains Mo carbide rather than WC particles alone, good corrosion resistance can be obtained. Therefore, as a result of further research, in order to obtain high corrosion resistance in a strong acid solution, Cr is desirably contained in an amount of 8% by mass or more as a carbide or alloy element of the matrix, and the content of Mo contained as a carbide is It has been found that it is desirable that the content is at least equivalent to the Cr content. Moreover, Mo 2 C is preferable as the Mo carbide, and even if the Mo content in the cermet is higher than the Cr content, the corrosion resistance is not impaired, but conversely the Mo content is higher than the Cr content. It has been found that desirable corrosion resistance is difficult to obtain when the amount is less than half.

すなわち、pH<1の強酸溶液中でステンレス鋼を上記のような置換反応から保護し、なおかつ鋼板との摺動作用に対する十分な耐摩耗性を確保するための炭化物サーメット皮膜としては、Ni又はNi合金からなるマトリックス中に炭化タングステン粒子及び炭化モリブデン粒子が分散してなり、サーメット皮膜中、炭化タングステン粒子の含有量が40質量%以上、炭化モリブデン粒子の含有量が10〜40質量%であり、さらに、クロムを炭化物又はマトリックス中の金属若しくは合金元素として8質量%以上含有するものが望ましい。Niを主成分とするマトリックスとしては、NiCr系合金、NiCrMo系合金、及びNiCoCrAlY系合金で良好な結果が得られた。   That is, as a carbide cermet film for protecting stainless steel from the substitution reaction as described above in a strong acid solution of pH <1, and for ensuring sufficient wear resistance against sliding action with a steel plate, Ni or Ni Tungsten carbide particles and molybdenum carbide particles are dispersed in a matrix made of an alloy. In the cermet film, the content of tungsten carbide particles is 40% by mass or more, and the content of molybdenum carbide particles is 10 to 40% by mass. Further, it is desirable to contain chromium in an amount of 8% by mass or more as a carbide or a metal or alloy element in the matrix. As the matrix mainly composed of Ni, good results were obtained with NiCr alloys, NiCrMo alloys, and NiCoCrAlY alloys.

以上に示した条件を満たす炭化物サーメット皮膜をHVOF溶射によりステンレス鋼上に成膜して保護皮膜を形成した試験片の定電流アノード・カソード分極溶解実験の結果では、反応層の形成も少なく、ステンレス鋼よりさらに表面の形態が良好であった。また、腐食電位の測定結果では、ステンレス鋼よりさらに0.1V程度高い電位が得られた。以上の結果は、上記のHVOF溶射で形成した炭化物サーメット皮膜の表面に形成されるアノードとカソードの分布の均一性がステンレス鋼よりさらに微細なレベルで達成されていることを示しており、反応生成物により鋼板が損傷する懸念はほとんどないことがわかった。このようにして、優れた耐摩耗性を有しつつ、強酸めっき浴中でも良好な耐食性を示す保護皮膜の形成が可能であることをつきとめた。   As a result of constant current anode / cathode polarization dissolution test of a test piece in which a carbide cermet film satisfying the above conditions was formed on stainless steel by HVOF spraying to form a protective film, the reaction layer was not formed, and The surface morphology was better than that of steel. In addition, as a result of measuring the corrosion potential, a potential higher by about 0.1 V than stainless steel was obtained. The above results indicate that the uniformity of the anode and cathode distribution formed on the surface of the carbide cermet coating formed by the above HVOF spraying is achieved at a finer level than stainless steel, and the reaction generation It was found that there was almost no concern that the steel plate would be damaged by objects. Thus, it has been found that it is possible to form a protective film exhibiting excellent corrosion resistance even in a strong acid plating bath while having excellent wear resistance.

ここで、トレードオフの関係にある耐摩耗性と耐食性とを両立させる方法としては、サーメットの主成分である炭化タングステン粒子及び炭化モリブデン粒子の粒度を調整することが重要であることを確認した。すなわち、サーメットの主成分である炭化物に0.1μm未満の粒度のものを使用すると、耐摩耗性が著しく低下してしまい、また、6μm以上の粒度のものを使用すると、溶液中でのアノードおよびカソードの分布の微視的均一性を十分に保てなくなる傾向が認められた。炭化タングステン粒子及び炭化モリブデン粒子の粒度が0.1〜6μmの範囲内にある場合に、耐摩耗性と耐食性を両立できることを確認した。   Here, it was confirmed that it is important to adjust the particle size of tungsten carbide particles and molybdenum carbide particles, which are the main components of the cermet, as a method for achieving both wear resistance and corrosion resistance in a trade-off relationship. That is, if a carbide having a particle size of less than 0.1 μm is used for the carbide which is the main component of cermet, the wear resistance is remarkably lowered, and if a particle having a particle size of 6 μm or more is used, the anode and cathode in the solution are used. There was a tendency that the microscopic uniformity of the distribution was not sufficiently maintained. It was confirmed that both wear resistance and corrosion resistance can be achieved when the particle sizes of tungsten carbide particles and molybdenum carbide particles are in the range of 0.1 to 6 μm.

保護皮膜の形成方法としては、HVOF、HVAF等の高速フレーム溶射法が望ましいことがわかった。例えば、HVOF、HVAF等の高速フレーム溶射法で得られたサーメット皮膜と、プラズマ溶射やその他の溶射法で得られたサーメット皮膜とを比較すると、その気孔率が大きく異なり、HVOF、HVAF等の高速フレーム以外の溶射法で得られた皮膜では、溶液が皮膜の内部に浸透するなどして良好な表面状態を保つことが困難であった。また、気孔率を下げるために得られた皮膜を高温で加熱処理すると、炭化物が脱炭して低級炭化物を生成したり、マトリックス成分と反応相を形成してしまい、耐摩耗性も耐食性も著しく低下してしまう。このような傾向は溶接肉盛やクラッド法で形成した皮膜でも確認された。すなわち、炭化物サーメット皮膜の形成方法としてはHVOF、HVAF等の高速フレーム溶射法が望ましい。   It was found that high-speed flame spraying methods such as HVOF and HVAF are desirable as a method for forming the protective film. For example, when comparing cermet coatings obtained by high-speed flame spraying methods such as HVOF and HVAF with cermet coatings obtained by plasma spraying and other thermal spraying methods, the porosity differs greatly, and high-speed HVOF, HVAF, etc. With a coating obtained by a thermal spraying method other than the flame, it was difficult to maintain a good surface state because the solution penetrated into the coating. In addition, when the film obtained to reduce the porosity is heat-treated at a high temperature, the carbides are decarburized to form lower carbides or form a reaction phase with the matrix component, and the wear resistance and corrosion resistance are remarkably high. It will decline. Such a tendency was also confirmed in a coating formed by welding overlay or cladding. That is, as a method for forming the carbide cermet film, a high-speed flame spraying method such as HVOF or HVAF is desirable.

HVOF、HVAF等の高速フレーム溶射法で形成された保護皮膜でも、その表面粗さRaが10μmを超えるような場合では、炭化物の突起で鋼板に傷をつけてしまう確率が高くなり、またRaが0.5μm未満の場合では、摩擦力が十分に得られず鋼板上をロールが空転する結果、鋼板の表面状態が損なわれることが分かった。従って、炭化物サーメット皮膜の表面粗さRaは0.5〜10μmであることが好ましい。   Even with protective coatings formed by high-speed flame spraying methods such as HVOF and HVAF, if the surface roughness Ra exceeds 10 μm, the probability of scratching the steel plate with carbide projections increases, and Ra When the thickness was less than 0.5 μm, it was found that the surface condition of the steel sheet was impaired as a result of insufficient frictional force and rolling of the roll on the steel sheet. Accordingly, the surface roughness Ra of the carbide cermet film is preferably 0.5 to 10 μm.

<実施例1>
従来型のロール仕様と本発明によるロール仕様の試料を作製し、pH<1となるように調整した強酸めっき溶液(メタンスルホン酸50g/L、錫イオン濃度25g/L)中で20日間の浸漬試験を行った。試料は、表1に示す5種類を作製した。すなわち、No.1は基材が従来型の炭素鋼であり、保護皮膜も従来型の試料である。これに対し、No.2〜5の試料では、基材をステンレス鋼とした。保護皮膜については、No.2ではNo.1と同じ従来型の皮膜を採用し、No.3〜No.5では、NiあるいはNi基合金をマトリックスとした各種炭化物サーメットのHVOF皮膜を採用しており、この内No.5が本発明例のサーメット仕様にあたる。No.5の皮膜において、Mo含有量は9.4質量%、Cr含有量は8.7質量%であり、WC粒子の粒度は最小0.1μm、最大6μmであり、Mo2C粒子の粒度は最小0.1μm、最大6μmであり、表面粗さRaは3.0μmであった。各試料は基材が露出した部分と保護皮膜部分がほぼ等しい表面積を持つように作製し、皮膜と基材の継ぎ目部分の特性も評価できるよう工夫した。
<Example 1>
Samples of conventional roll specifications and roll specifications according to the present invention were prepared and immersed for 20 days in a strong acid plating solution (methanesulfonic acid 50 g / L, tin ion concentration 25 g / L) adjusted to pH <1 A test was conducted. Five types of samples shown in Table 1 were produced. That is, No. 1 is a conventional carbon steel base material, and the protective film is also a conventional sample. On the other hand, in the samples Nos. 2 to 5, the base material was stainless steel. As for the protective coating, No. 2 uses the same conventional coating as No. 1, and No. 3 to No. 5 use various carbide cermet HVOF coatings with a matrix of Ni or Ni-based alloy. No. 5 corresponds to the cermet specification of the present invention. In the film No. 5, the Mo content is 9.4% by mass, the Cr content is 8.7% by mass, the WC particles have a minimum particle size of 0.1 μm and a maximum of 6 μm, and the Mo 2 C particles have a minimum particle size of 0.1 μm. The maximum was 6 μm, and the surface roughness Ra was 3.0 μm. Each sample was prepared so that the exposed portion of the substrate and the protective coating portion had approximately the same surface area, and the characteristics of the joint portion between the coating and the substrate could be evaluated.

保護皮膜の耐食性を評価するため、浸漬前後の試料の質量変化(腐食減量)を測定し、結果を表1に示した。表1には、この質量変化に加えて、20日浸漬後の保護皮膜表面の状態を電子顕微鏡で観察した結果と、腐食電位の測定値を示した。また、別途実施した保護皮膜のスガ摩耗試験(#120-SiCペーパー、荷重3.25kgf、400往復)の結果を合わせて示している。なお、皮膜観察結果は、以下の基準で評価した。
◎:ほとんど変化なし
○:若干の変化あり
△:変化あり
×:大きく変化あり
In order to evaluate the corrosion resistance of the protective film, the mass change (corrosion loss) of the sample before and after immersion was measured, and the results are shown in Table 1. In addition to this mass change, Table 1 shows the result of observing the surface of the protective film after immersion for 20 days with an electron microscope and the measured value of the corrosion potential. In addition, the results of the Suga abrasion test (# 120-SiC paper, load 3.25 kgf, 400 reciprocations) conducted separately are also shown. The film observation results were evaluated according to the following criteria.
◎: Almost no change ○: Slight change △: Change x: Large change

Figure 2017141925
Figure 2017141925

表1に示す結果から明らかなように、pH<1のめっき溶液中では従来仕様の試料No.1〜4、特に炭素鋼を基材とする試料No.1において、質量変化が大きくなり、表面形態も悪くなることが分かる。さらに、炭素鋼を基材とする従来仕様の試料では、皮膜と基材の境界が腐食により大きく破壊されていた。これに比較し、ステンレス鋼をサーメット皮膜で保護した試料では、質量変化が小さいだけでなく、表面形態が悪化し難いことがわかる。特に本発明例である試料No.5では、他に比較して表面形態が極めて良好であった。このことは、腐食電位の測定結果(測定試料中最も高い)とも対応しており、皮膜表面におけるアノードとカソードの分布の均一性が優れていることを裏付けている。また、耐摩耗性の点でも本発明例は優れていることが分かる。   As is clear from the results shown in Table 1, in the plating solution with pH <1, the mass change is large in the conventional specification sample Nos. 1 to 4, especially the sample No. 1 based on carbon steel. It turns out that a form also worsens. Furthermore, in the conventional specification sample using carbon steel as a base material, the boundary between the coating and the base material was largely destroyed by corrosion. Compared to this, it can be seen that the sample in which stainless steel is protected with a cermet film not only has a small mass change but also hardly deteriorates the surface morphology. In particular, Sample No. 5, which is an example of the present invention, had a very good surface morphology as compared with others. This also corresponds to the measurement result of the corrosion potential (the highest among the measurement samples), and confirms that the uniformity of the anode and cathode distribution on the coating surface is excellent. Moreover, it turns out that the example of this invention is excellent also at the point of abrasion resistance.

<実施例2>
実施例1に示したNo.5仕様の保護皮膜の配合比に着目して、マトリックスとしてNi又はNi-20Cr合金を含み、粒度が0.1〜6μmの範囲に調整されたWC粒子、Cr32粒子、およびMo2C粒子を含む種々のサーメット粉末を作製した。ステンレス鋼上に得られたサーメット粉末をHVOF溶射して、保護皮膜を形成した。各試料における皮膜組成を表2に示す。実施例1と同様の浸漬試験を行うとともに、スガ摩耗試験を実施した。評価結果を表2に示す。
<Example 2>
Focusing on the blending ratio of the protective film of No. 5 specification shown in Example 1, WC particles containing Ni or Ni-20Cr alloy as a matrix and having a particle size adjusted to a range of 0.1 to 6 μm, Cr 3 C 2 Various cermet powders containing particles and Mo 2 C particles were prepared. The cermet powder obtained on stainless steel was HVOF sprayed to form a protective coating. Table 2 shows the film composition of each sample. While performing the immersion test similar to Example 1, the Suga abrasion test was implemented. The evaluation results are shown in Table 2.

Figure 2017141925
Figure 2017141925

表2に示す結果から明らかなように、めっき溶液に対する耐食性を向上させようとすればMo2C粒子を多く配合するのが効果的であり、耐摩耗性の向上にはWC粒子を多く配合することが効果的である。そして、本発明例であるNo.4〜11では、高い耐摩耗性とpHが1未満となる強酸に対する高い耐食性とが両立できていることがわかる。As is apparent from the results shown in Table 2, it is effective to add a large amount of Mo 2 C particles if the corrosion resistance to the plating solution is to be improved, and a large amount of WC particles is added to improve the wear resistance. It is effective. And in No.4-11 which is an example of this invention, it turns out that high abrasion resistance and the high corrosion resistance with respect to the strong acid from which pH is less than 1 are compatible.

なお、本実施例で述べたサーメット粉末を大気プラズマ溶射法により保護皮膜とした試料では、気孔率が高くなり、また炭化物が変質するなどの影響が強く、耐食性に関しても、耐摩耗性に関しても、HVOF溶射によって作製した皮膜ほどの良好な特性は得られなかった。   In addition, in the sample in which the cermet powder described in the present example was a protective coating by the atmospheric plasma spraying method, the porosity is high, and the influence of the alteration of the carbide is strong, and regarding corrosion resistance and wear resistance, The properties as good as those of the coating prepared by HVOF spraying were not obtained.

<実施例3>
電気めっきラインのコンダクターロールに、従来品と本発明品を適用して比較した例について述べる。図2(A),(B)は、従来ロールの構造と本発明によるロールの構造を比較して示したものである。図2(A)に示す従来ロールでは、銅製の軸芯に炭素鋼管を焼嵌めして軸部を構成する一方、溶射により保護皮膜を形成した炭素鋼製スリーブを、炭素鋼管で形成したロール胴部に焼嵌めして胴部を構成し、これらを組み合わせてロール本体としていた。これに対し、図2(B)に示す本発明では、ステンレス鋼で構成したロール本体に溶射皮膜を形成するだけでよく、ロール本体の作製が極めて容易になっていることがわかる。本発明による皮膜の仕様は実施例2のNo.6を採用した。
<Example 3>
An example in which a conventional product and the present invention product are applied to a conductor roll of an electroplating line will be described. 2A and 2B show a comparison between the structure of a conventional roll and the structure of a roll according to the present invention. In the conventional roll shown in FIG. 2 (A), a carbon steel sleeve is formed by heat-spraying a carbon steel sleeve while a carbon steel tube is heat-fitted to a copper shaft core to form a shaft portion. The body part was configured by shrink fitting to the part, and these were combined to form a roll body. On the other hand, in the present invention shown in FIG. 2 (B), it is only necessary to form a thermal spray coating on the roll body made of stainless steel, and it can be seen that the production of the roll body is extremely easy. The specification of the film according to the present invention was No. 6 in Example 2.

なお、各ロールの通電による発熱をサーモビュアーで測定したところ、ともに0.14〜0.16℃/分であり、操業性に問題ないレベルであることを確認した。めっき浴の組成は実施例1と同じである。鋼板へのロール押し付け圧は0.2MPaであり、通板速度は150〜490m/分の範囲で実施した。使用日数は230日である。使用終了後、各ロールを浴から引き上げ、通板部の面粗度およびSn付着量の調査を実施した。結果を表3に示す。   In addition, when the heat generation by energization of each roll was measured with a thermoviewer, both were 0.14 to 0.16 ° C./min, and it was confirmed that the level was satisfactory for operability. The composition of the plating bath is the same as in Example 1. The roll pressing pressure on the steel plate was 0.2 MPa, and the plate passing speed was 150 to 490 m / min. The number of days used is 230 days. After the use was completed, each roll was pulled up from the bath, and the surface roughness of the threaded plate portion and the Sn adhesion amount were investigated. The results are shown in Table 3.

Figure 2017141925
Figure 2017141925

表3に示す結果から、従来ロールの通板部の面粗度は使用前のRa3.0μmからRa0.81μmと1/4近くまで低下したのに対し、本発明を適用したロールでは使用後もRa1.0μm以上を維持しており、従来ロールに比べ30%以上の皮膜寿命の向上が確認できた。また、Sn付着量は従来ロールに比べ本発明のロールでは10%程度低下していることが分かる。これらの結果はともに、本発明の仕様においてめっき液に対する耐食性と鋼板に対する耐摩耗を向上できていることを示している。実際、各ロールを使用して得られた製品の不良発生率は、従来ロールが2.37%と高いのに対し、本発明のロールでは0.43%と1/5以下にまで下げることに成功した。これは耐食性の向上により、押し疵の発生原因となる皮膜の破損や粗大化した電着Snの破片の発生率が大幅に低下したためと考えられる。   From the results shown in Table 3, the surface roughness of the threaded part of the conventional roll decreased from Ra3.0 μm before use to Ra0.81 μm, close to 1/4, whereas with the roll to which the present invention was applied, after use. Ra1.0μm or more was maintained, and it was confirmed that the film life was improved by 30% or more compared to the conventional roll. It can also be seen that the Sn adhesion amount is reduced by about 10% in the roll of the present invention compared to the conventional roll. Both of these results show that the corrosion resistance to the plating solution and the wear resistance to the steel sheet can be improved in the specification of the present invention. In fact, the failure rate of the products obtained using each roll was as high as 2.37% with the conventional roll, whereas the roll of the present invention succeeded in reducing it to 0.43% with 1/5 or less. This is presumably because the rate of occurrence of coating damage and coarse electrodeposited Sn debris, which are the cause of pressing creases, was significantly reduced by improving corrosion resistance.

なお、同様の実機操業の結果から、ロールの使用限界は表面粗さがRa0.5μm程度までであり、初期の表面粗さがRa10μm超えでは、製品に傷を発生させる頻度が高くなることもわかっている。従って、本発明によるサーメット皮膜の表面粗さはRa0.5〜10μmとすることが好ましい。   In addition, from the results of the same actual machine operation, it is also understood that the roll usage limit is about Ra 0.5μm surface roughness, and if the initial surface roughness exceeds Ra 10μm, the frequency of generating scratches on the product increases. ing. Therefore, the surface roughness of the cermet coating according to the present invention is preferably Ra 0.5 to 10 μm.

本発明のサーメット粉末は、電気めっき浴中ロール等の保護皮膜被覆部材における保護皮膜(サーメット皮膜)の材料として好適に用いることができる。本発明の電気めっき浴中ロールは、pHが1未満となる強酸の電気めっき浴中でも、例えばコンダクターロール等として好適に用いることができる。   The cermet powder of the present invention can be suitably used as a material for a protective film (cermet film) in a protective film coating member such as a roll in an electroplating bath. The roll in the electroplating bath of the present invention can be suitably used, for example, as a conductor roll in a strong acid electroplating bath having a pH of less than 1.

100 保護皮膜被覆部材
10 基材(ステンレス鋼)
20 サーメット皮膜
22 マトリックス
24 炭化物粒子(WC粒子、Mo2C粒子、任意でCr32粒子)
300 電気めっき浴中ロール
30 ロール軸部
32 ロール胴部
34 サーメット皮膜(溶射皮膜)
100 Protective film covering member 10 Base material (stainless steel)
20 Cermet coating 22 Matrix 24 Carbide particles (WC particles, Mo 2 C particles, optionally Cr 3 C 2 particles)
300 Roll in electroplating bath 30 Roll shaft part 32 Roll body part 34 Cermet coating (thermal spray coating)

Claims (15)

40質量%以上の炭化タングステン粒子と、
10〜40質量%の炭化モリブデン粒子と、
マトリックス金属としての、Ni又はNi合金と、
を含み、
さらに、クロムを炭化物又は前記マトリックス金属に含まれる金属若しくは合金元素として8質量%以上含有することを特徴とするサーメット粉末。
40% by weight or more of tungsten carbide particles,
10-40 mass% molybdenum carbide particles,
Ni or Ni alloy as matrix metal,
Including
The cermet powder further contains 8% by mass or more of chromium as a carbide or a metal or alloy element contained in the matrix metal.
炭化タングステン粒子の含有量が70質量%以下である、請求項1に記載のサーメット粉末。   The cermet powder according to claim 1, wherein the content of tungsten carbide particles is 70% by mass or less. 前記炭化タングステン粒子の粒度範囲が0.1〜6μmの範囲内にある、請求項1又は2に記載のサーメット粉末。   The cermet powder according to claim 1 or 2, wherein a particle size range of the tungsten carbide particles is in a range of 0.1 to 6 µm. 前記炭化モリブデン粒子の粒度範囲が0.1〜6μmの範囲内にある、請求項1〜3のいずれか一項に記載のサーメット粉末。   The cermet powder as described in any one of Claims 1-3 whose particle size range of the said molybdenum carbide particle exists in the range of 0.1-6 micrometers. ステンレス鋼基材と、該ステンレス鋼基材上に形成されたサーメット皮膜と、を有する保護皮膜被覆部材であって、
前記サーメット皮膜は、Ni又はNi合金からなるマトリックス中に炭化タングステン粒子及び炭化モリブデン粒子が分散してなり、
前記サーメット皮膜中、前記炭化タングステン粒子の含有量が40質量%以上、前記炭化モリブデン粒子の含有量が10〜40質量%であり、さらに、クロムを炭化物又は前記マトリックス中の金属若しくは合金元素として8質量%以上含有することを特徴とする保護皮膜被覆部材。
A protective coating member having a stainless steel substrate and a cermet coating formed on the stainless steel substrate,
The cermet film is formed by dispersing tungsten carbide particles and molybdenum carbide particles in a matrix made of Ni or Ni alloy,
In the cermet film, the content of the tungsten carbide particles is 40% by mass or more, the content of the molybdenum carbide particles is 10 to 40% by mass, and further chromium as a carbide or a metal or alloy element in the matrix. A protective film-coated member containing at least mass%.
炭化タングステン粒子の含有量が70質量%以下である、請求項5に記載の保護皮膜被覆部材。   The protective film-coated member according to claim 5, wherein the content of tungsten carbide particles is 70% by mass or less. 前記サーメット皮膜中、前記炭化タングステン粒子の粒度範囲が0.1〜6μmの範囲内にある、請求項5又は6に記載の保護皮膜被覆部材。   The protective coating-coated member according to claim 5 or 6, wherein a particle size range of the tungsten carbide particles is in a range of 0.1 to 6 µm in the cermet coating. 前記サーメット皮膜中、前記炭化モリブデン粒子の粒度範囲が0.1〜6μmの範囲内にある、請求項5〜7のいずれか一項に記載の保護皮膜被覆部材。   The protective film covering member according to any one of claims 5 to 7, wherein a particle size range of the molybdenum carbide particles in the cermet film is in a range of 0.1 to 6 µm. 前記サーメット皮膜の表面粗さRaが0.5〜10μmである、請求項5〜8のいずれか一項に記載の保護皮膜被覆部材。   The protective film covering member according to any one of claims 5 to 8, wherein the cermet film has a surface roughness Ra of 0.5 to 10 µm. 請求項1〜4のいずれか一項に記載のサーメット粉末をステンレス鋼基材上に溶射する工程を含む、保護皮膜被覆部材の製造方法。   The manufacturing method of a protective film coating | coated member including the process of thermally spraying the cermet powder as described in any one of Claims 1-4 on a stainless steel base material. 前記溶射は、HVOF溶射である、請求項10に記載の保護皮膜被覆部材の製造方法。   The said thermal spraying is a manufacturing method of the protective film coating | coated member of Claim 10 which is HVOF thermal spraying. 請求項5〜9のいずれか一項に記載の保護皮膜被覆部材を含むことを特徴とする電気めっき浴中ロール。   The roll in an electroplating bath characterized by including the protective film coating | coated member as described in any one of Claims 5-9. ロール軸部及びロール胴部がともにステンレス鋼からなり、前記ロール胴部のみが請求項5〜9のいずれか一項に記載の保護皮膜被覆部材から構成されることを特徴とする電気めっき浴中ロール。   In an electroplating bath, the roll shaft portion and the roll body portion are both made of stainless steel, and only the roll body portion is composed of the protective film-coated member according to any one of claims 5 to 9. roll. ロール軸部及びロール胴部がともにステンレス鋼からなるロール部材の前記ロール胴部上にのみ、請求項1〜4のいずれか一項に記載のサーメット粉末を溶射してサーメット皮膜を形成することを特徴とする電気めっき浴中ロールの製造方法。   A cermet film is formed by spraying the cermet powder according to any one of claims 1 to 4 only on the roll body part of a roll member made of stainless steel, both of the roll shaft part and the roll body part. A method for producing a roll in an electroplating bath. 前記溶射は、HVOF溶射である、請求項14に記載の電気めっき浴中ロールの製造方法。   The said thermal spraying is a manufacturing method of the roll in an electroplating bath of Claim 14 which is HVOF thermal spraying.
JP2017529403A 2016-02-19 2017-02-14 Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same Active JP6232524B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016030368 2016-02-19
JP2016030368 2016-02-19
PCT/JP2017/005385 WO2017141925A1 (en) 2016-02-19 2017-02-14 Cermet powder, protective film-coated member and method for producing same, and electroplating-bath roll and method for producing same

Publications (2)

Publication Number Publication Date
JP6232524B1 JP6232524B1 (en) 2017-11-15
JPWO2017141925A1 true JPWO2017141925A1 (en) 2018-02-22

Family

ID=59625070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017529403A Active JP6232524B1 (en) 2016-02-19 2017-02-14 Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same

Country Status (9)

Country Link
US (1) US20190032239A1 (en)
EP (1) EP3418421B1 (en)
JP (1) JP6232524B1 (en)
KR (1) KR102177464B1 (en)
CN (1) CN108699667B (en)
CO (1) CO2018009602A2 (en)
MY (1) MY186906A (en)
TW (1) TWI623624B (en)
WO (1) WO2017141925A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111386356B (en) * 2018-01-31 2022-01-04 日立金属株式会社 Hard alloy and composite hard alloy roller for rolling
CN109536871A (en) * 2018-11-27 2019-03-29 广东省新材料研究所 The manufacturing method of delivery roll in lithium battery pole slice production
CN110724983B (en) * 2019-10-12 2022-02-08 天津大学 Method for preparing nano-copper-coated tungsten carbide core-shell structure powder by pulse electrodeposition
US12000027B2 (en) 2019-11-01 2024-06-04 Exxonmobil Chemical Patents Inc. Bimetallic materials comprising cermets with improved metal dusting corrosion and abrasion/erosion resistance
CN117105673B (en) * 2023-10-24 2023-12-29 内蒙古工业大学 Aluminum nitride complex phase ceramic and preparation method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4519840A (en) * 1983-10-28 1985-05-28 Union Carbide Corporation High strength, wear and corrosion resistant coatings
JP2728254B2 (en) 1988-02-03 1998-03-18 トーカロ株式会社 Method of manufacturing conductor roll
JP2661837B2 (en) 1992-04-22 1997-10-08 川崎製鉄株式会社 Conductor roll for electroplating and method for manufacturing the same
JP3430498B2 (en) * 1995-05-12 2003-07-28 住友金属鉱山株式会社 Corrosion- and wear-resistant self-fluxing alloy material for thermal spraying
JPH11131172A (en) * 1997-08-26 1999-05-18 Topy Ind Ltd Wear resistant alloy
JP2002088461A (en) * 2000-09-14 2002-03-27 Kawasaki Steel Corp Corrosion resisting roll
KR100762027B1 (en) 2001-05-17 2007-09-28 비오이 하이디스 테크놀로지 주식회사 method for etching electrode with 3 layer of Mo/Al/Mo
WO2003049889A2 (en) * 2001-12-05 2003-06-19 Baker Hughes Incorporated Consolidated hard materials, methods of manufacture, and applications
JP4561359B2 (en) 2004-12-28 2010-10-13 Jfeスチール株式会社 Conductor roll
US8524375B2 (en) * 2006-05-12 2013-09-03 Praxair S.T. Technology, Inc. Thermal spray coated work rolls for use in metal and metal alloy sheet manufacture
CN101443472A (en) * 2006-05-12 2009-05-27 普莱克斯S.T.技术有限公司 Thermal spray coated work rolls
WO2009060868A1 (en) * 2007-11-06 2009-05-14 Asahi Glass Co., Ltd. Roller for conveying float plate glass, process for producing the same, and process for producing float plate glass with the same
KR20130038188A (en) * 2010-03-23 2013-04-17 아사히 가라스 가부시키가이샤 Sprayed coating of jig for producing glass sheet, and jig for producing glass sheet
DE102011112435B3 (en) * 2011-09-06 2012-10-25 H.C. Starck Gmbh Cermet powder, process for producing a cermet powder, use of the cermet powder, process for producing a coated part, coated part
DK2772562T3 (en) * 2011-10-25 2018-08-13 Ihi Corp piston Ring
CN102586713A (en) * 2012-03-11 2012-07-18 赣州章源钨业新材料有限公司 Novel WC-Cr3C2-Ni thermal spraying powder and preparation process thereof
JP6271567B2 (en) * 2012-10-09 2018-01-31 サンドビック インテレクチュアル プロパティー アクティエボラーグ Wear resistant hard metal with low binder
DE102013201103A1 (en) * 2013-01-24 2014-07-24 H.C. Starck Gmbh Thermal spray powder for heavily used sliding systems

Also Published As

Publication number Publication date
TW201734223A (en) 2017-10-01
KR20180110110A (en) 2018-10-08
CN108699667B (en) 2021-06-15
CO2018009602A2 (en) 2018-09-28
TWI623624B (en) 2018-05-11
EP3418421A4 (en) 2018-12-26
KR102177464B1 (en) 2020-11-11
JP6232524B1 (en) 2017-11-15
US20190032239A1 (en) 2019-01-31
EP3418421A1 (en) 2018-12-26
CN108699667A (en) 2018-10-23
EP3418421B1 (en) 2021-05-26
WO2017141925A1 (en) 2017-08-24
MY186906A (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6232524B1 (en) Cermet powder, protective coating member and method for producing the same, roll in electroplating bath and method for producing the same
TWI258509B (en) Corrosion resistant powder and coating
US8445114B2 (en) Electrocomposite coatings for hard chrome replacement
Wang et al. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel
JP5353613B2 (en) Coated cemented carbide member
JP2002146588A (en) Metal plating method
US6635165B1 (en) Method for coating workpieces
Zuo et al. Preparation and performance of a Pd-Co gradient coating on stainless steel
JP5217712B2 (en) Coated cemented carbide member
US5116431A (en) Immersion member for hot dip galvanizing bath and method for preparing the same
JP2003096553A (en) Coating member for carbide cermet thermal spraying film having excellent corrosion resistance, and carbide based cermet thermal spray material
JP4579706B2 (en) Articles with improved zinc erosion resistance
Li et al. Microstructure and corrosion properties of laser cladding MoNi based alloy coatings
JPH04346693A (en) Conductor roll for electroplating
JPS63199892A (en) Conductive roll for electroplating
JP2661837B2 (en) Conductor roll for electroplating and method for manufacturing the same
CN109628927A (en) A kind of wear-resistant corrosion-resistant nickel-base silicon carbide compound coating and preparation method thereof for marine worker liquid presses piston pole
JP4286427B2 (en) High strength alloy and metal coated with the high strength alloy
JP5227126B2 (en) Roll bearing structure in hot dipping bath and manufacturing method thereof
Thomas et al. Cobalt/Chromium Carbide Composite Coatings Applied by Brush Plating for Use as an Alternative to Hard Chrome
Zhu et al. Study of corrosion resistance of Ni-WB amorphous alloy deposits
JPH08269787A (en) Conductor roll for ni plating excellent in corrosion resistance and wear resistance
Aole et al. Synthesis And Characterization Of Nickel-Alumina Dispersion Strengthened Composite By Electrodeposition Method
JP2017145505A (en) Manufacturing method of electrogalvanized steel sheet
Boiciuc et al. Technologies and Installation for Electrochemical Hardening of Wear Surfaces

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171023

R150 Certificate of patent or registration of utility model

Ref document number: 6232524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250