JPWO2017134813A1 - 信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム - Google Patents

信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム Download PDF

Info

Publication number
JPWO2017134813A1
JPWO2017134813A1 JP2017565365A JP2017565365A JPWO2017134813A1 JP WO2017134813 A1 JPWO2017134813 A1 JP WO2017134813A1 JP 2017565365 A JP2017565365 A JP 2017565365A JP 2017565365 A JP2017565365 A JP 2017565365A JP WO2017134813 A1 JPWO2017134813 A1 JP WO2017134813A1
Authority
JP
Japan
Prior art keywords
optical
signal light
light
wavelength
wavelength division
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017565365A
Other languages
English (en)
Inventor
金浩 松本
金浩 松本
十倉 俊之
俊之 十倉
峻 近森
峻 近森
賢吾 高田
賢吾 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2017134813A1 publication Critical patent/JPWO2017134813A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

信号光断検出装置(35)は、波長多重光を、主信号光成分を配置可能な等周波数間隔の周波数を含む第1の周波数グリッドに対応する第1の周波数範囲の光と、第1の周波数グリッドに対して前記等周波数間隔の半周期ずれた第2の周波数グリッドに対応する第2の周波数範囲の光とに分波する光インタリーバ(352)と、第1の周波数範囲の光のパワーの合計である第1の光パワーを検出する第1の光検出器(353)と、第2の周波数範囲の光のパワーの合計である第2の光パワーを検出する第2の光検出器(354)と、第1の光検出器(353)で検出された第1の光パワーと第2の光検出器(354)で検出された第2の光パワーとの差に基づいた通知信号を出力する判断部(355)とを備えている。

Description

本発明は、光ファイバ伝送路における信号光断状態を検出する信号光断検出装置、信号光断検出装置を含む光増幅器、信号光断検出装置を含む光波長多重伝送装置、及び光波長多重伝送装置を含む光波長多重伝送システムに関する。
近年、通信トラフィックの増大に応えるため、海底ケーブルシステム及び陸上WDM(Wavelength Division Multiplexing)システムなどの光ファイバ通信システムでは、1本の光ファイバを通して送信することができる信号光の数(波長帯域が異なる複数の信号光の数)を増やす波長多重化が行われている。
また、光増幅器であるEDFA(Erbium−Doped Fiber Amplifier:希土類添加型光ファイバ増幅器)の広帯域化及び高出力化により、幹線系の光ファイバ通信システムにおいて主流である100Gbpsの高速信号光の超長距離伝送が可能である。
一方、光ファイバ通信システムでは、良好なOSNR(Optical Signal−Noise Ratio:光信号電力対雑音電力比)を確保するために、光増幅器として、EDFA及びラマン増幅器が用いられている。例えば、波長1550nm帯の信号光を伝送する光ファイバにラマン増幅器を適用する場合、ラマン増幅に寄与する1490nm帯のラマン励起光は、通常、受信側の光波長多重伝送装置(光受信器)から光カプラを介して光ファイバに信号光の送信側に向けて入力される。このとき、信号帯域のASE雑音(Amplified Spontaneous Emission Noise)光が信号光の受信側に向けて放出される。なお、ラマン励起光は、送信側の光波長多重伝送装置(光送信器)から光ファイバに入力される場合もある。
EDFA又はラマン増幅器を用いた光ファイバ通信システムでは、受信側の光波長多重伝送装置に具備される信号光断検出部に入力されるASE雑音光の光パワーが大きくなるため、信号光断状態の検出のための仕組みが必要である。特許文献1は、単一波長の主信号光成分を光バンドパスフィルタで抜き出し、主信号光成分と雑音光成分との比較を行う方法を提供している。
特開2001−358658号公報
しかしながら、上記従来技術は、単一波長の主信号光成分について信号光断状態の検出を行う方法であるから、任意の波長の主信号光成分を含む波長多重光を伝送する光ファイバ通信システムには適用するために、周波数可変フィルタを用いる必要があり、構成が複雑になるという問題がある。
また、主信号光成分となる波長帯域(周波数帯域)以外の波長帯域の雑音光成分は、主信号光成分の波長帯域に比べて波長帯域幅が狭く、レベルが不安定であるため、単一波長の主信号光成分の光パワー(電力)と雑音光成分の光パワー(電力)とを比較することによって、信号光断状態の信頼度の高い検出を行うことは難しいという問題がある。
さらに、主信号光成分を含む波長帯域(周波数帯域)における主信号光成分の受信レベルが、同帯域の雑音光成分のレベルよりも若干高い程度である場合には、単一波長の主信号光成分のレベルと雑音光成分のレベルとの比較によって、信号光断状態の信頼度の高い検出を行うことは難しいという問題がある。
本発明は、上記問題を解決するためになされたものであり、複雑な構成を用いずに、波長多重光が伝送される光ファイバ伝送路において信号光断状態を高い信頼度で検出することができる信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システムを提供することを目的とする。
本発明の一態様に係る信号光断検出装置は、波長多重光を、主信号光成分を配置可能な等周波数間隔の周波数を含む第1の周波数グリッドに対応する第1の周波数範囲の光と、前記第1の周波数グリッドに対して前記等周波数間隔の半周期ずれた第2の周波数グリッドに対応する第2の周波数範囲の光とに分波する光インタリーバと、前記第1の周波数範囲の光のパワーの合計である第1の光パワーを検出する第1の光検出器と、前記第2の周波数範囲の光のパワーの合計である第2の光パワーを検出する第2の光検出器と、前記第1の光検出器で検出された前記第1の光パワーと前記第2の光検出器で検出された前記第2の光パワーとの差に基づいた通知信号を出力する判断部とを備えたことを特徴とする。
本発明の他の態様に係る光増幅器は、前記波長多重光が伝送される光ファイバ伝送路に備えられたラマン増幅器と、前記光ファイバ伝送路に備えられた前記信号光断検出装置とを備えたことを特徴とする。
本発明の他の態様に係る光波長多重伝送装置は、光送受信器と、光ファイバ伝送路を通して伝送された波長多重光を分波することによって得られた信号光を前記光送受信器に出力する光分波器と、前記光ファイバ伝送路に備えられた前記信号光断検出装置とを有することを特徴とする。
本発明の他の態様に係る光波長多重伝送システムは、第1の光波長多重伝送装置と、光ファイバ伝送路を通して前記第1の光波長多重伝送装置と通信可能に接続された第2の光波長多重伝送装置と、を備えた光波長多重伝送システムであって、前記第1の光波長多重伝送装置及び前記第2の光波長多重伝送装置の少なくとも一方は、光送受信器と、光ファイバ伝送路を通して伝送された波長多重光を分波することによって得られた信号光を前記光送受信器に出力する光分波器と、前記光ファイバ伝送路に備えられた前記信号光断検出装置とを有することを特徴とする。
本発明によれば、複雑な構成を用いずに、波長多重光が伝送される光ファイバ伝送路において、信号光断状態を高い信頼度で検出することができるという効果が得られる。
本発明の実施の形態1に係る光波長多重伝送装置及び光波長多重伝送システムの構成を概略的に示す図である。 実施の形態1に係る信号光断検出装置の構成を概略的に示す図である。 実施の形態1におけるラマン増幅器による波長多重光の増幅を示す図である。 実施の形態1に係る信号光断検出装置に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。 信号光断状態であるときに、実施の形態1に係る信号光断検出装置に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。 本発明の実施の形態2に係る光波長多重伝送装置及び光波長多重伝送システムの構成を概略的に示す図である。 実施の形態2に係る信号光断検出装置の構成を概略的に示す図である。 実施の形態2におけるラマン増幅器による波長多重光の増幅を示す図である。 実施の形態2に係る信号光断検出装置に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。 信号光断状態であるときに、実施の形態2に係る信号光断検出装置に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。 本発明の実施の形態3に係る光増幅器の構成を概略的に示す図である。
実施の形態1.
図1は、本発明の実施の形態1に係る光波長多重伝送装置及び光波長多重伝送システムの構成を概略的に示す図である。実施の形態1に係る光波長多重伝送システムは、光ファイバ伝送路を介して信号光を伝送する光ファイバ通信システムである。実施の形態1に係る光波長多重伝送システムは、第1の光波長多重伝送装置としての光波長多重伝送装置10と、光ファイバ伝送路31,32によって光波長多重伝送装置10と通信可能に接続された第2の光波長多重伝送装置としての光波長多重伝送装置20とを備えている。通常、光波長多重伝送装置10と光波長多重伝送装置20とは、同じ構成及び機能を有する。したがって、第1の光波長多重伝送装置が光波長多重伝送装置20であり、第2の光波長多重伝送装置が光波長多重伝送装置10であってもよい。
光波長多重伝送装置10は、光送受信器11と、光送受信器11から出力された波長λaの信号光と、他の波長の信号光(図1には示していない)とを合波することができる光合波器12と、受信された波長多重光から波長λbの信号光を分波することができる光分波器13とを備えている。λaとλbとは、同じ波長であってもよい。光波長多重伝送装置10は、光ファイバ伝送路31に送出される波長多重光を増幅する光増幅器14を備えてもよい。また、光波長多重伝送装置10は、光ファイバ伝送路32を介して入力された波長多重光を増幅する光増幅器15を備えてもよい。光増幅器14及び15は、例えば、EDFAである。さらに、光波長多重伝送装置10は、光ファイバ伝送路32を介して入力される波長多重光を増幅するラマン増幅器34を備えてもよい。さらにまた、光波長多重伝送装置10は、光ファイバ伝送路32を介して入力される波長多重光が、主信号光成分が存在しない信号光断状態であるか否かを検出する信号光断検出装置36を備えることができる。
光波長多重伝送装置20は、光送受信器21と、光送受信器21から出力された波長λbの信号光と、他の波長の信号光(図1には示していない)とを合波することができる光合波器22と、受信された波長多重光から波長λaの信号光を分波することができる光分波器23とを備えている。光波長多重伝送装置20は、光ファイバ伝送路32に送出される波長多重光を増幅する光増幅器24を備えてもよい。また、光波長多重伝送装置20は、光ファイバ伝送路31を介して入力された波長多重光を増幅する光増幅器25を備えてもよい。光増幅器24及び25は、例えば、EDFAである。さらに、光波長多重伝送装置20は、光ファイバ伝送路31を介して入力される波長多重光を増幅するラマン増幅器33を備えてもよい。さらにまた、光波長多重伝送装置20は、光ファイバ伝送路31を介して入力される波長多重光が、主信号光成分が存在しない信号光断状態であるか否かを検出する信号光断検出装置35を備えることができる。ラマン増幅器33とラマン増幅器34とは、同じ構成及び機能を持つ。信号光断検出装置35と信号光断検出装置36とは、同じ構成及び機能を持つことができる。
実施の形態1に係る光波長多重伝送システムにおいて、光送受信器11は、波長λaの信号光を出力する。波長λaの信号光は、光合波器12で他の波長の信号光と合波され、光増幅器14で増幅され、光ファイバ伝送路31に送出される。図1には、他の波長の信号光が光合波器12に入力されない場合を示す。信号光は、ラマン増幅器33で増幅され、信号光断検出装置35を通過し、光増幅器25で増幅され、光分波器23に入力する。光分波器23に入力された信号光は分波され、分波によって得られた波長λaの信号光は光送受信器21に入力される。
また、実施の形態1に係る光波長多重伝送システムにおいて、光送受信器21は、波長λbの信号光を出力する。波長λbの信号光は、光合波器22で他の波長の信号光と合波され、光増幅器24で増幅され、光ファイバ伝送路32に送出される。図1には、他の波長の信号光が光合波器22に入力されない場合を示す。信号光は、ラマン増幅器34で増幅され、信号光断検出装置36を通過し、光増幅器15で増幅され、光分波器13に入力する。光分波器13に入力された信号光は分波され、分波によって得られた波長λbの信号光は光送受信器11に入力される。
図2は、実施の形態1に係る信号光断検出装置35の構成を概略的に示す図である。また、図2には、信号光を増幅するラマン増幅器33の構成も示されている。光波長多重伝送装置20は、光波長多重伝送装置10の対向構成である。光波長多重伝送装置20と光波長多重伝送装置10とは、実質的に同じ構成を有することができる。図2に示されるように、光波長多重伝送装置20は、ラマン増幅器33と信号光断検出装置35とを備える。また、ラマン増幅器33と信号光断検出装置35とは、光波長多重伝送装置20と別個の装置であってもよい。このような形態は、実施の形態3で説明される。
図3は、実施の形態1におけるラマン増幅器33による信号光の増幅を示す図である。図2及び図3に示されるように、ラマン増幅器33は、光カプラ331と、ラマン励起光REを出力するラマン励起LD(レーザダイオード)332とを有する。ラマン増幅器33は、ラマン励起光REを光カプラ331を介して光ファイバ伝送路31に出力することで、信号光SLを増幅する。ラマン増幅器33は、光送受信器11から光送受信器21への送信方向に対して、逆方向にラマン励起光REを出力する。送信局側から送信された信号光SLは、光ファイバ伝送路31内でラマン励起光REによって励起されたコア内部の励起準位から増幅エネルギーを受け取ることによって、増幅される。言い換えれば、ラマン励起光REによって、送信局側から送信された信号光SLの光ファイバ伝送路31における損失が低減される。ラマン増幅器33により増幅された信号光SLaは、良好なOSNRを維持しながら、光ファイバ伝送路31を伝送され、受信側の光波長多重伝送装置20内の光増幅器25、光分波器23及び光送受信器21に入力する。
ラマン増幅器33において、光ファイバ伝送路31中でラマン励起光REによって増幅された信号光(ラマン増幅光)SLaは信号光SLの準位に緩和することとなるが、信号光の励起に用いられない帯域の光は信号光の準位に緩和せず、雑音光成分として送信側及び受信側に放出される。送信側の光波長多重伝送装置10には、光増幅器14であるEDFAが配されるが、EDFAの入力部には、光アイソレータが備えられているので、光ファイバ伝送路31からのラマン励起光RE及びASE雑音光成分の入力は遮断される。
図2に示されるように、信号光断検出装置35は、信号光の一部を分岐する光カプラ351と、光受動素子である光インタリーバ352と、第1の光検出器である光電気変換器としてのPD(フォトダイオード)353と、第2の光検出器である光電気変換器としてのPD354と、PD353から出力される信号の値からPD354から出力される信号の値を差し引いて得られた差に基づく判断を行う判断部355とを備えている。
図4は、実施の形態1に係る信号光断検出装置35に入力される信号光である波長多重光のスペクトル51、及び分波された波長多重光である主信号光成分のスペクトル52と雑音光(ノイズ)成分のスペクトル53を示す図である。図5は、信号光断状態であるときに、実施の形態1に係る信号光断検出装置35に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。
図2又は図4に示されるように、光インタリーバ352は、光カプラ351で分岐された波長多重光(スペクトル51)を、主信号光成分(波長λa)を配置可能な等周波数間隔の周波数を含む第1の周波数グリッド(「第1の波長グリッド」とも言う。)FG1に対応する第1の周波数範囲(「第1の波長範囲」とも言う。)FR1の光(スペクトル52)と、第1の周波数グリッドFG1に対して等周波数間隔の半周期(半波長)ずれた第2の周波数グリッド(「第2の波長グリッド」とも言う。)FG2に対応する第2の周波数範囲(「第2の波長範囲」とも言う。)FR2の光(スペクトル53)とに分波する。PD353は、第1の周波数範囲FR1の光(スペクトル52)のパワーの合計である第1の光パワーを検出し、第1の光パワーに相当する第1の信号を出力する。PD354は、第2の周波数範囲FR2の光(スペクトル53)のパワーの合計である第2の光パワーを検出し、第2の光パワーに相当する第2の信号を出力する。判断部355は、PD353で検出された第1の光パワーに相当する第1の信号と、PD354で検出された第2の光パワーに相当する第2の信号との差に基づいた通知信号を出力する。例えば、判断部355は、PD353から出力される信号の値(電圧値)からPD354から出力される信号の値(電圧値)を差し引いて得られた差(又は、PD353及び354から出力される信号の値の差の絶対値)が予め決められた閾値以下であるときに、信号光に主信号光成分が存在しない信号光断状態を示す通知信号を出力する。
受信側の光波長多重伝送装置20には、光送受信器11から送出される主信号光成分(波長λa)と、光波長多重伝送装置10の光増幅器14であるEDFAから放出されるASE雑音光成分及びラマン増幅器33によって励起され主信号光成分の準位に緩和されたASE雑音光成分が入力される。主信号光成分(波長λa)が存在する場合には、主信号光成分(波長λa)と雑音光成分とを含む第1の周波数範囲FR1の光(図4におけるスペクトル52)の第1の光パワーに対応する電圧値と、雑音光成分のみを含む第2の周波数範囲FR2の光(図4におけるスペクトル53)の第2の光パワーに対応する電圧値との間に差が生じる、又は、差が大きくなるため、この差に基づいて、主信号光成分(波長λa)が存在するか否かを判断することができる。
主信号光成分(波長λa)が伝送の途中の減衰などによって消光していたり(LOS:Loss Of Signal)、光ファイバ伝送路31が途中で切断されていたりする場合には、図5の光(図5におけるスペクトル51a)に示されるように、主信号光成分(波長λa)が存在しない信号光断状態になる。しかし、光ファイバ伝送路31に、ラマン増幅器からラマン励起光が入力されている場合には、信号光断状態であっても光ファイバ伝送路31に雑音光成分は存在する。このため、図5に示されるように、主信号光成分(波長λa)が存在しない場合には、雑音光成分のみを含む第1の周波数範囲FR1の光(図5におけるスペクトル52a)の第1の光パワーに対応する電圧値と、雑音光成分のみを含む第2の周波数範囲FR2の光(図5におけるスペクトル53a)の第2の光パワーに対応する電圧値との間の差が閾値よりも小さくなる。
実施の形態1に係る信号光断検出装置35においては、判断部355は、主信号光成分(波長λa)が配置される第1の周波数範囲FR1の光の第1の光パワーの合計値から、主信号光成分(波長λa)が配置されていない第2の周波数範囲FR2の光の第2の光パワーの合計値を差し引いて得られる光パワーの差分に対応する電圧値に基づいて、主信号光成分(波長λa)が存在しない信号光断状態であるか否かを判断するので、雑音光成分のパワーが大きい場合であっても、信号光断状態の信頼性の高い判断が可能になる。
また、主信号光成分を含む第1の周波数範囲FR1以外の周波数範囲のASE雑音光成分を抽出した場合には、このASE雑音光成分の合計の光パワーが安定していない場合がある。実施の形態1においては、主信号光成分を含む第1の周波数範囲FR1以外の周波数範囲の雑音光成分を、第1の周波数範囲FR1から半周期ずれた、第1の周波数範囲FR1の周波数グリッドと同様の周波数グリッドに対応する第2の周波数範囲FR2で検出しているので、ASE雑音光成分の合計の光パワーが安定している。このため、判断部355は、主信号光成分(波長λa)が配置される第1の周波数範囲FR1の第1の光パワーの合計値から、主信号光成分(波長λa)が配置されていない第2の周波数範囲FR2の第2の光パワーの合計値を差し引いて得られる光パワーの差分に対応する電圧値に基づいて、信号光断状態についての信頼性の高い判断が可能になる。
また、主信号光成分(波長λa)のレベルが、同帯域の雑音光ノイズのレベルよりも若干高い程度となる場合があり、これらのレベルが近くなるほど、主信号光成分を取り出して得られる総パワー(比較対象となる総電圧レベルであって、主信号光成分と雑音光成分とを合わせたレベル)と、雑音光成分を取り出して得られる総パワー(比較対象となる総電圧レベルであって、雑音光成分のみのレベル)との差が小さくなり、信号光断状態であるか否かの判断が難い場合がある。しかし、実施の形態1においては、光インタリーバ352によって分割された雑音光成分の総パワーは、分割前の雑音光成分の総パワーの約半分となるため、主信号光成分と雑音光成分との総パワーの差を大きくすることができる。
実施の形態1によれば、光受動素子である光インタリーバ352を使用して、ラマン増幅器を具備する光波長多重伝送システムにおいて主信号光成分と雑音光成分とをそれぞれ抜き出し、光インタリーバ352からの光出力を光電気変換し比較することによって信号光断状態(伝送路の切断及びLOSの発生)を検出することができるので、周期的な波長間隔で配列される主信号光を利用する光波長多重伝送システムで、複雑な制御を用いずに、信号光断状態の信頼度の高い且つ高速な検出が可能である。
また、実施の形態1によれば、光インタリーバ352を用いることによって、波長多重伝送における主信号光成分の波長周波数の周期で、主信号光成分を含む帯域のレベルを取り出すとともに、半周期ずれた成分の帯域のレベルを雑音光成分として取り出し利用することが可能となるため、安定したレベルでの抽出が困難であった雑音光成分を、容易に安定して取り出し利用することができる。
さらに、実施の形態1によれば、構成部品の数を少なくすることができるため、断検出及びLOS信号発生を決定する手段としてコスト削減を図る効果を得られる。
さらに、実施の形態1によれば、光インタリーバ352によって分離後のノイズの総パワーを分離前の約半分とすることができるため、主信号光成分と雑音光成分との総パワーの差を広げて信頼性の高い比較を行うことができる。このため、信号光断状態の信頼度の高い且つ高速な検出が可能である。
実施の形態2.
実施の形態1では、単一の波長の主信号光成分が存在する信号光を伝送する場合について説明した。実施の形態2では、複数の波長の光が合波され、多段中継器を有する光波長多重伝送システム(光ファイバ通信システム)について説明する。
図6は、本発明の実施の形態2に係る光波長多重伝送装置及び光波長多重伝送システムの構成を概略的に示す図である。図6において、図1に示される構成要素と同一又は対応する構成要素には、図1に示される符号と同じ符号が付される。実施の形態2に係る光波長多重伝送システムは、光ファイバ伝送路を介して波長多重光を伝送する光ファイバ通信システムである。実施の形態2に係る光波長多重伝送装置70は、波長λ1,…,λk,…,λNの信号光をそれぞれ送受信する複数の光送受信器11_1,…,11_k,…,11_Nを有する点において、実施の形態1に係る光波長多重伝送装置10と相違する。実施の形態2に係る光波長多重伝送装置80は、波長λ1,…,λk,…,λNの信号光をそれぞれ送受信する複数の光送受信器21_1,…,21_k,…,21_Nを有する点において、実施の形態1に係る光波長多重伝送装置20と相違する。なお、Nはマルチキャリア数を示す正の整数であり、kは1以上N以下の整数である。
実施の形態2に係る光波長多重伝送システムにおいて、光送受信器11_k(k=1,2,…,N)は、波長λkの信号光を出力する。波長λ1,…,λk,…,λNの信号光は、光合波器12で合波されて波長多重光となり、光増幅器14で増幅され、光ファイバ伝送路31に送出される。波長多重光は、光増幅器37であるEDFAで増幅され、ラマン増幅器33で増幅され、信号光断検出装置35を通過し、光増幅器25で増幅され、光分波器23に入力する。光分波器23に入力された波長多重光は分波され、分波によって得られた波長λ1,…,λk,…,λNの信号光は、光送受信器21_1,…,21_k,…,21_Nにそれぞれ入力される。
また、実施の形態1に係る光波長多重伝送システムにおいて、光送受信器21_k(k=1,2,…,N)は、波長λkの信号光を出力する。波長λ1,…,λk,…,λNの信号光は、光合波器22で合波されて波長多重光となり、光増幅器24で増幅され、光ファイバ伝送路32に送出される。波長多重光は、光増幅器38であるEDFAで増幅され、ラマン増幅器34で増幅され、信号光断検出装置36を通過し、光増幅器15で増幅され、光分波器13に入力する。光分波器13に入力された波長多重光は分波され、分波によって得られた波長λ1,…,λk,…,λNの信号光は、光送受信器11_1,…,11_k,…,11_Nにそれぞれ入力される。
図7は、実施の形態2に係る信号光断検出装置35の構成を概略的に示す図である。また、図7には、信号光を増幅するラマン増幅器33の構成も示されている。図7において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。光波長多重伝送装置80は、光波長多重伝送装置70の対向構成である。光波長多重伝送装置80と光波長多重伝送装置70とは、実質的に同じ構成を有することができる。図7に示されるように、光波長多重伝送装置80は、ラマン増幅器33と信号光断検出装置35とを備える。また、ラマン増幅器33と信号光断検出装置35とは、光波長多重伝送装置80と別個の装置であってもよい。
図8は、実施の形態2におけるラマン増幅器33による信号光の増幅を示す図である。図7及び図8に示されるように、ラマン増幅器33は、光カプラ331と、ラマン励起光REを出力するラマン励起LD(レーザダイオード)332とを有する。ラマン増幅器33は、ラマン励起光REを光カプラ331を介して光ファイバ伝送路31に出力することで、信号光SLを増幅する。ラマン増幅器33は、光送受信器11から光送受信器21への送信方向に対して、逆方向にラマン励起光REを出力する。送信局側から送信された信号光SLは、光ファイバ伝送路31内でラマン励起光REによって励起されたコア内部の励起準位から増幅エネルギーを受け取ることによって、増幅される。言い換えれば、ラマン励起光REによって、送信局側から送信された信号光SLの光ファイバ伝送路31における損失が低減される。ラマン増幅器33により増幅された信号光SLaは、良好なOSNRを維持しながら、光ファイバ伝送路31を伝送され、受信側の光波長多重伝送装置20内の光増幅器25、光分波器23及び光送受信器21に入力する。
ラマン増幅器33において、光ファイバ伝送路31中でラマン励起光REによって増幅された信号光(ラマン増幅光)SLaは信号光SLの準位に緩和することとなるが、信号光の励起に用いられない帯域の光は信号光の準位に緩和せず、雑音光成分として送信側及び受信側に放出される。送信側の光波長多重伝送装置70には、光増幅器14であるEDFAが配されるが、EDFAの入力部には、光アイソレータが備えられているので、光ファイバ伝送路31からのラマン励起光RE及びASE雑音光成分の入力は遮断される。
図7に示されるように、信号光断検出装置35は、波長多重光の一部を分岐する光カプラ351と、光受動素子である光インタリーバ352と、第1の光検出器である光電気変換器としてのPD(フォトダイオード)353と、第2の光検出器である光電気変換器としてのPD354と、PD353から出力される信号の値からPD354から出力される信号の値を差し引いて得られた差に基づく判断を行う判断部355とを備えている。
図9は、実施の形態2に係る信号光断検出装置35に入力される信号光である波長多重光のスペクトル61、及び分波された波長多重光である主信号光成分のスペクトル62と雑音光(ノイズ)成分のスペクトル63を示す図である。図10は、信号光断状態であるときに、実施の形態2に係る信号光断検出装置35に入力される波長多重光のスペクトル、及び分波された波長多重光である主信号光成分と雑音光成分のスペクトルを示す図である。
図7又は図9に示されるように、光インタリーバ352は、光カプラ351で分岐された波長多重光(スペクトル61)を、主信号光成分(波長λ1,…,λk,…,λN)を配置可能な等周波数間隔の周波数を含む第1の周波数グリッド(「第1の波長グリッド」とも言う。)FG1に対応する第1の周波数範囲(「第1の波長範囲」とも言う。)FR1の光(スペクトル62)と、第1の周波数グリッドFG1に対して等周波数間隔の半周期(半波長)ずれた第2の周波数グリッド(「第2の波長グリッド」とも言う。)FG2に対応する第2の周波数範囲(「第2の波長範囲」とも言う。)FR2の光(スペクトル63)とに分波する。図9では、N=4の場合が示されている。PD353は、第1の周波数範囲FR1の光(スペクトル62)のパワーの合計である第1の光パワーを検出し、第1の光パワーに相当する第1の信号を出力する。PD354は、第2の周波数範囲FR2の光(スペクトル63)のパワーの合計である第2の光パワーを検出し、第2の光パワーに相当する第2の信号を出力する。判断部355は、PD353で検出された第1の光パワーに相当する第1の信号と、PD354で検出された第2の光パワーに相当する第2の信号との差に基づいた通知信号を出力する。例えば、判断部355は、PD353から出力される信号の値(電圧値)からPD354から出力される信号の値(電圧値)を差し引いて得られた差(又は、PD353及び354から出力される信号の値の差の絶対値)が予め決められた閾値以下であるときに、信号光に主信号光成分が存在しない信号光断状態を示す通知信号を出力する。
受信側の光波長多重伝送装置80には、光送受信器11_1,…,11_k,…,11_Nから送出される主信号光成分(波長λ1,…,λk,…,λN)と、光波長多重伝送装置70の光増幅器14,31であるEDFAから放出されるASE雑音光成分及びラマン増幅器33によって励起され主信号光成分の準位に緩和されたASE雑音光成分が入力される。主信号光成分(波長λ1,…,λk,…,λN)が存在する場合には、主信号光成分(波長λk)と雑音光成分とを含む第1の周波数範囲FR1の光(図9におけるスペクトル62)の第1の光パワーに対応する電圧値と、雑音光成分のみを含む第2の周波数範囲FR2の光(図9におけるスペクトル63)の第2の光パワーに対応する電圧値との間に差が生じる、又は、差が大きくなるため、この差に基づいて、主信号光成分(波長λ1,…,λk,…,λN)が存在するか否かを判断することができる。
主信号光成分(波長λ1,…,λk,…,λN)が伝送の途中の減衰などによって消光していたり(LOS)、光ファイバ伝送路31が途中で切断されていたりする場合には、図10の光(図10におけるスペクトル61a)に示されるように、主信号光成分(波長λ1,…,λk,…,λN)が存在しない信号光断状態になる。しかし、光ファイバ伝送路31に、ラマン増幅器からラマン励起光が入力されている場合には、信号光断状態であっても光ファイバ伝送路31に雑音光成分は存在する。このため、図10に示されるように、主信号光成分(波長λ1,…,λk,…,λN)が存在しない場合には、雑音光成分のみを含む第1の周波数範囲FR1の光(図10におけるスペクトル62a)の第1の光パワーに対応する電圧値と、雑音光成分のみを含む第2の周波数範囲FR2の光(図10におけるスペクトル63a)の第2の光パワーに対応する電圧値との間の差が閾値よりも小さくなる。
実施の形態2に係る信号光断検出装置35においては、判断部355は、主信号光成分(波長λ1,…,λk,…,λN)が配置される第1の周波数範囲FR1の光の第1の光パワーの合計値から、主信号光成分(波長λ1,…,λk,…,λN)が配置されていない第2の周波数範囲FR2の光の第2の光パワーの合計値を差し引いて得られる光パワーの差分に対応する電圧値に基づいて、主信号光成分(波長λ1,…,λk,…,λN)が存在しない信号光断状態であるか否かを判断するので、雑音光成分のパワーが大きい場合であっても、信号光断状態の信頼性の高い判断が可能になる。
実施の形態2においては、主信号光成分を含む第1の周波数範囲FR1以外の周波数範囲の雑音光成分を、第1の周波数範囲FR1から半周期ずれた、第1の周波数範囲FR1の周波数グリッドと同様の周波数グリッドに対応する第2の周波数範囲FR2で検出しているので、ASE雑音光成分の合計の光パワーが安定している。このため、判断部355は、主信号光成分(波長λ1,…,λk,…,λN)が配置される第1の周波数範囲FR1の第1の光パワーの合計値から、主信号光成分(波長λ1,…,λk,…,λN)が配置されていない第2の周波数範囲FR2の第2の光パワーの合計値を差し引いて得られる光パワーの差分に対応する電圧値に基づいて、信号光断状態についての信頼性の高い判断が可能になる。
また、実施の形態2においては、光インタリーバ352によって分割された雑音光成分の総パワーは、分割前の雑音光成分の総パワーの約半分となるため、主信号光成分と雑音光成分との総パワーの差を大きくすることができる。このため、信号光断状態の信頼度の高い且つ高速な検出が可能である。
さらに、実施の形態2によれば、光インタリーバ352を使用して、ラマン増幅器を具備する光波長多重伝送システムにおいて主信号光成分と雑音光成分とをそれぞれ抜き出し、光インタリーバ352からの光出力を光電気変換し比較することによって信号光断状態(伝送路の切断及びLOSの発生)を検出することができるので、周期的な波長間隔で配列される主信号光を利用する光波長多重伝送システムで、複雑な制御を用いずに、信号光断状態の信頼度の高い且つ高速な検出が可能である。
さらに、実施の形態2によれば、構成部品の数を少なくすることができるため、断検出及びLOS信号発生を決定する手段としてコスト削減を図る効果を得られる。
また、実施の形態2では、多段中継の光ファイバ伝送路において、単一の波長信号だけでなく複数の波長成分が存在する場合であっても、波長配置にかかわらず、信号光断状態を高い信頼度で検出することができる。
実施の形態3.
実施の形態1及び2では、受信側の光波長多重伝送装置20又は80にラマン増幅器33及び信号光断検出装置35を備えた場合を説明した。実施の形態3においては、光ファイバ伝送路31の途中にラマン増幅器33及び信号光断検出装置35を備えた光増幅器39(例えば、光増幅部を具備する光中継装置)を説明する。
図11は、本発明の実施の形態3に係る光増幅器39の構成を概略的に示す図である。光増幅器39は、光波長多重伝送装置20又は80から独立した、例えば、光中継装置の一部である。図11において、図2に示される構成要素と同一又は対応する構成要素には、図2に示される符号と同じ符号が付される。実施の形態3に係る光増幅器39は、信号光断検出装置35から出力される通知信号に基づいて、ラマン増幅器33の動作を制御する増幅制御部333をさらに備えた点が、実施の形態1の構成と相違する。例えば、増幅制御部333は、信号光断検出装置35から出力される通知信号が示す情報に応じて(例えば、PD353とPD354の出力の差分)に応じてラマン増幅器33のラマン励起LD332から出力されるラマン励起光の強度を変更することができる。例えば、増幅制御部333は、PD353とPD354の出力の差分が大きくなるようにラマン増幅器33のラマン励起LD332から出力されるラマン励起光の強度を変更してもよい。また、増幅制御部333は、信号光断検出装置35から出力される通知信号が信号光断状態を示す信号である場合に、ラマン増幅器33のラマン励起LD332から出力されるラマン励起光の出力を停止させるように制御してもよい。
実施の形態3に係る光増幅器39においては、実施の形態1及び2の場合と同様に、雑音光成分のパワーが大きい場合であっても、信号光断状態の信頼性の高い判断が可能になる。
また、実施の形態3においては、光インタリーバ352によって分割された雑音光成分の総パワーは、分割前の雑音光成分の総パワーの約半分となるため、主信号光成分と雑音光成分との総パワーの差を大きくすることができる。このため、信号光断状態の信頼度の高い且つ高速な検出が可能である。
さらに、実施の形態3によれば、光インタリーバ352を使用して、ラマン増幅器を具備する光波長多重伝送システムにおいて主信号光成分と雑音光成分とをそれぞれ抜き出し、光インタリーバ352からの光出力を光電気変換し比較することによって信号光断状態(伝送路の切断及びLOSの発生)を検出することができるので、周期的な波長間隔で配列される主信号光を利用する光波長多重伝送システムで、複雑な制御を用いずに、信号光断状態の信頼度の高い且つ高速な検出が可能である。
10,20,70,80 光波長多重伝送装置、 11,11_k,21,21_k 光送受信器、 12,22 光合波器、 13,23 光分波器、 14,15,24,25,37,38 光増幅器、 31,32 光ファイバ伝送路、 33,34 ラマン増幅器、 35,36 信号光断検出装置、 39 光増幅器、 51,51a 信号光(スペクトル)、 52 主信号光成分と雑音光成分(スペクトル)、 52a 雑音光成分(スペクトル)、 53,53a 雑音光成分(スペクトル)、 61,61a 多重信号光(スペクトル)、 62 主信号光成分と雑音光成分(スペクトル)、 62a 雑音光成分(スペクトル)、 63 雑音光成分(スペクトル)、 331 光カプラ、 332 ラマン励起LD、 333 増幅制御部、 352 光インタリーバ、 353 PD(第1の光検出器)、 354 PD(第2の光検出器)、 355 判断部、 FG1 第1の周波数グリッド、 FG2 第2の周波数グリッド、 FR1 第1の周波数範囲、 FR2 第2の周波数範囲。

Claims (7)

  1. 波長多重光を、主信号光成分を配置可能な等周波数間隔の周波数を含む第1の周波数グリッドに対応する第1の周波数範囲の光と、前記第1の周波数グリッドに対して前記等周波数間隔の半周期ずれた第2の周波数グリッドに対応する第2の周波数範囲の光とに分波する光インタリーバと、
    前記第1の周波数範囲の光のパワーの合計である第1の光パワーを検出する第1の光検出器と、
    前記第2の周波数範囲の光のパワーの合計である第2の光パワーを検出する第2の光検出器と、
    前記第1の光検出器で検出された前記第1の光パワーと前記第2の光検出器で検出された前記第2の光パワーとの差に基づいた通知信号を出力する判断部と、
    を備えたことを特徴とする信号光断検出装置。
  2. 前記判断部は、前記第1の光検出器から出力される信号の値から前記第2の光検出器から出力される信号の値を差し引いて得られた前記差が予め決められた閾値以下であるときに、前記波長多重光に前記主信号光成分が存在しない信号光断状態を示す前記通知信号を出力することを特徴とする請求項1に記載の信号光断検出装置。
  3. 前記波長多重光が伝送される光ファイバ伝送路から前記波長多重光の一部を分岐する光カプラをさらに備えたことを特徴とする請求項1又は2に記載の信号光断検出装置。
  4. 前記波長多重光が伝送される光ファイバ伝送路に備えられたラマン増幅器と、
    前記光ファイバ伝送路に備えられた請求項1から3のいずれか1項に記載の信号光断検出装置と、
    を備えたことを特徴とする光増幅器。
  5. 前記信号光断検出装置から出力される前記通知信号に基づいて、前記ラマン増幅器の動作を制御する増幅制御部をさらに備えたことを特徴とする請求項4に記載の光増幅器。
  6. 光送受信器と、
    光ファイバ伝送路を通して伝送された波長多重光を分波することによって得られた信号光を前記光送受信器に出力する光分波器と、
    前記光ファイバ伝送路に備えられた請求項1から3のいずれか1項に記載の信号光断検出装置と、
    を有することを特徴とする光波長多重伝送装置。
  7. 第1の光波長多重伝送装置と、
    光ファイバ伝送路を通して前記第1の光波長多重伝送装置と通信可能に接続された第2の光波長多重伝送装置と、
    を備えた光波長多重伝送システムであって、
    前記第1の光波長多重伝送装置及び前記第2の光波長多重伝送装置の少なくとも一方は、
    光送受信器と、
    光ファイバ伝送路を通して伝送された波長多重光を分波することによって得られた信号光を前記光送受信器に出力する光分波器と、
    前記光ファイバ伝送路に備えられた請求項1から3のいずれか1項に記載の信号光断検出装置と、を有する
    ことを特徴とする光波長多重伝送システム。
JP2017565365A 2016-02-05 2016-02-05 信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム Pending JPWO2017134813A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/053481 WO2017134813A1 (ja) 2016-02-05 2016-02-05 信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム

Publications (1)

Publication Number Publication Date
JPWO2017134813A1 true JPWO2017134813A1 (ja) 2018-08-30

Family

ID=59499495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017565365A Pending JPWO2017134813A1 (ja) 2016-02-05 2016-02-05 信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム

Country Status (5)

Country Link
US (1) US11128380B2 (ja)
EP (1) EP3413482B1 (ja)
JP (1) JPWO2017134813A1 (ja)
CN (1) CN108604926B (ja)
WO (1) WO2017134813A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7474789B2 (ja) * 2020-02-07 2024-04-25 株式会社Fuji 部品実装機
KR102226841B1 (ko) * 2020-05-19 2021-03-12 주식회사 이스트포토닉스 가변 파장을 식별하는 가변 광파장 판별 송수신장치
EP3917034A1 (en) * 2020-05-27 2021-12-01 Telia Company AB Monitor of optical fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144692A (ja) * 1999-11-16 2001-05-25 Fujitsu Ltd 波長多重用光アンプの制御装置および制御方法
JP2001358658A (ja) * 2000-06-14 2001-12-26 Nec Corp 光受信器の入力信号異常検出システム及び方法
JP2015097302A (ja) * 2013-11-15 2015-05-21 三菱電機株式会社 光増幅装置、光通信システムおよび光増幅方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6496300B2 (en) * 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier
US6456428B1 (en) * 1999-09-02 2002-09-24 Sumitomo Electric Industries, Ltd. Optical amplifier
FR2805106A1 (fr) * 2000-02-14 2001-08-17 Mitsubishi Electric Inf Tech Procede de transmission numerique de type a codage correcteur d'erreurs
US6373621B1 (en) * 2001-01-18 2002-04-16 Nortel Networks Limited Method and apparatus for safer operation of raman amplifiers
CN100380481C (zh) * 2002-01-28 2008-04-09 皇家飞利浦电子股份有限公司 记录载体以及用于扫描记录载体的设备和方法
EP1460737B1 (en) * 2003-03-13 2006-06-07 Fujitsu Limited Optical amplifier provided with control function of pumping light, and optical transmission system using the same
US6867852B2 (en) 2003-06-05 2005-03-15 Lucent Technologies Inc. Method and apparatus for channel detection
CN100485510C (zh) * 2004-06-23 2009-05-06 日本电信电话株式会社 线性中继器以及光纤通信系统
JP2006066610A (ja) * 2004-08-26 2006-03-09 Fujitsu Ltd 光増幅装置、ラマン増幅器、光波長多重伝送システム、光波長多重伝送方法
CN101273557A (zh) * 2005-09-21 2008-09-24 富士通株式会社 波分复用传输系统中的监控光传输方法和波分复用传输装置
US7457032B2 (en) * 2005-09-22 2008-11-25 Bti Photonic Systems Inc. Arrangement, system, and method for accurate power measurements using an optical performance monitor (OPM)
US8699354B2 (en) * 2005-12-21 2014-04-15 Rockstar Consortium Us Lp Method and apparatus for detecting a fault on an optical fiber
WO2007138649A1 (ja) * 2006-05-25 2007-12-06 Mitsubishi Electric Corporation 光中継装置および光中継伝送システム
JP5001698B2 (ja) * 2007-03-29 2012-08-15 富士通株式会社 光信号入力の有無を検出する信号入力検出装置
CN101141218B (zh) * 2007-04-18 2013-01-16 中兴通讯股份有限公司 用于波分复用承载客户网的保护倒换系统及方法
EP2161859B1 (en) * 2008-09-05 2012-06-27 Nokia Siemens Networks OY Safety and power control arrangement for optical fiber communication apparatus
US8606119B2 (en) * 2010-08-27 2013-12-10 Finisar Corporation Optical channel monitor
EP2645599B1 (en) * 2012-03-29 2015-08-19 Alcatel Lucent Flexible Optimization of the Signal-to-Noise Ratio for Ultra Dense Coherent WDM Systems
CN203747828U (zh) * 2014-03-25 2014-07-30 武汉光迅科技股份有限公司 一种实现光信噪比平坦的光纤传输系统
CN104038226B (zh) * 2014-06-25 2018-06-05 华为技术有限公司 多通道时间交织模数转换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144692A (ja) * 1999-11-16 2001-05-25 Fujitsu Ltd 波長多重用光アンプの制御装置および制御方法
JP2001358658A (ja) * 2000-06-14 2001-12-26 Nec Corp 光受信器の入力信号異常検出システム及び方法
JP2015097302A (ja) * 2013-11-15 2015-05-21 三菱電機株式会社 光増幅装置、光通信システムおよび光増幅方法

Also Published As

Publication number Publication date
EP3413482B1 (en) 2022-05-18
US11128380B2 (en) 2021-09-21
WO2017134813A1 (ja) 2017-08-10
CN108604926A (zh) 2018-09-28
CN108604926B (zh) 2021-10-26
US20190028202A1 (en) 2019-01-24
EP3413482A1 (en) 2018-12-12
EP3413482A4 (en) 2019-03-06

Similar Documents

Publication Publication Date Title
JP6150942B2 (ja) 受動光波長分割多重ネットワーク用の光回線終端装置
US9166726B2 (en) Diverging device with OADM function and wavelength division multiplexing optical network system and method therefor
JP5564692B2 (ja) 光伝送システム、及び、光ノード
JP4727485B2 (ja) 光伝送装置
JP5151691B2 (ja) 伝送路種別特定装置および伝送路種別特定方法
US8824045B2 (en) Optical amplifier control apparatus
US9571200B2 (en) Transmitter optical signal to noise ratio improvement through receiver amplification in single laser coherent systems
JP5387311B2 (ja) 波長多重光ネットワークシステム及び波長多重光の送受信方法
US9391421B2 (en) Optical amplification apparatus, optical transmission apparatus, and optical transmission system
WO2017134813A1 (ja) 信号光断検出装置、光増幅器、光波長多重伝送装置、及び光波長多重伝送システム
US8861965B2 (en) Optical transmission apparatus
JP2012015675A (ja) Wdm信号光の監視装置
US9001413B2 (en) Control circuit, control method, and transmission system
JP2004312550A (ja) 波長多重光伝送システム
JP2002280962A (ja) コヒーレント光通信システムの光sn検出装置及び方法
WO2013132596A1 (ja) 波長多重光伝送システム、光中継装置および光強度制御方法
JP6276137B2 (ja) 光増幅装置
JP2015039110A (ja) 伝送装置
Zhang et al. Remotely pumped EDFA and self wavelength managed tunable laser-based wavelength-reuse bidirectional 10-Gb/s/X long-reach WDM-PON
Zhang et al. Rayleigh Noise Mitigation in Channel-reuse 10Gb/s/λ DWDM-PON Employing Optical Beat Noise-based Self Wavelength Managed Tunable Laser
JP2004048071A (ja) 波長多重光増幅装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200317