JPWO2017130946A1 - Coated alkaline earth metal compound fine particles, organic solvent dispersion, resin composition, and image display device - Google Patents

Coated alkaline earth metal compound fine particles, organic solvent dispersion, resin composition, and image display device Download PDF

Info

Publication number
JPWO2017130946A1
JPWO2017130946A1 JP2017564259A JP2017564259A JPWO2017130946A1 JP WO2017130946 A1 JPWO2017130946 A1 JP WO2017130946A1 JP 2017564259 A JP2017564259 A JP 2017564259A JP 2017564259 A JP2017564259 A JP 2017564259A JP WO2017130946 A1 JPWO2017130946 A1 JP WO2017130946A1
Authority
JP
Japan
Prior art keywords
fine particles
alkaline earth
metal compound
earth metal
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017564259A
Other languages
Japanese (ja)
Other versions
JP6834990B2 (en
Inventor
拓馬 酒井
拓馬 酒井
里花 野北
里花 野北
武史 日元
武史 日元
長井 淳
淳 長井
泰蔵 松永
泰蔵 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Publication of JPWO2017130946A1 publication Critical patent/JPWO2017130946A1/en
Application granted granted Critical
Publication of JP6834990B2 publication Critical patent/JP6834990B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/185After-treatment, e.g. grinding, purification, conversion of crystal morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/265Calcium, strontium or barium carbonate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)

Abstract

高分子の複屈折を打ち消しつつ、透明性が確保された光学フィルムを提供するため、高温での成膜時における分散性が高い被覆アルカリ土類金属化合物微粒子を提供すること。被覆アルカリ土類金属化合物微粒子は、アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆されており、大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の表面処理剤の質量を100質量%としたとき、100℃〜300℃の温度範囲での表面処理剤の質量減少率が30質量%以下である。To provide a coated alkaline earth metal compound fine particle having high dispersibility at the time of film formation at a high temperature in order to provide an optical film in which transparency is ensured while canceling the birefringence of the polymer. The coated alkaline earth metal compound fine particles have the surface of the alkaline earth metal compound fine particles coated with a surface treatment agent. When TG-DTA is performed in an air atmosphere, the mass of the surface treatment agent at the start of TG-DTA is calculated. When it is 100 mass%, the mass reduction rate of the surface treating agent in the temperature range of 100 ° C. to 300 ° C. is 30 mass% or less.

Description

本発明は、被覆アルカリ土類金属化合物微粒子、被覆アルカリ土類金属化合物微粒子が分散されている有機溶媒分散液及び樹脂組成物並びに樹脂組成物が備えられている画像表示装置等に関する。   The present invention relates to coated alkaline earth metal compound fine particles, an organic solvent dispersion in which coated alkaline earth metal compound fine particles are dispersed, a resin composition, an image display device including the resin composition, and the like.

液晶表示装置は複数の光学フィルム(樹脂組成物)が積層されている。光学フィルムとしては、例えば、偏光板や位相差フィルムが挙げられる。偏光板や位相差フィルムの原料には高分子が用いられる。偏光板や位相差フィルムは製造工程において延伸されるため、それらを形成する高分子は配向し、複屈折を示す。高分子の複屈折は材料に固有であり、正又は負のいずれかを示す。   In the liquid crystal display device, a plurality of optical films (resin compositions) are laminated. Examples of the optical film include a polarizing plate and a retardation film. Polymers are used as raw materials for polarizing plates and retardation films. Since the polarizing plate and the retardation film are stretched in the production process, the polymers forming them are oriented and exhibit birefringence. The birefringence of the polymer is intrinsic to the material and indicates either positive or negative.

特許文献1には、高分子が示す正の複屈折を打ち消す方法として、当該高分子と逆の負の複屈折を示す針状炭酸ストロンチウム微粒子をフィラーとして高分子中に分散する方法が記載されている。特許文献2には、アルカリ土類金属を含む炭酸塩やアルカリ土類金属を含む複合酸化物といったアルカリ土類金属化合物からなる粒子(アルカリ土類金属化合物微粒子)が樹脂に分散されている光学フィルムが記載されている。特許文献1には、さらに、高分子の透明性を維持する上で微粒子が500nm以下の平均長さを有することは極めて有利であり、特に200nm以下であれば透明性が殆ど損なわれないことも記載されている。   Patent Document 1 describes a method of dispersing the needle-shaped strontium carbonate fine particles exhibiting negative birefringence opposite to the polymer as fillers in the polymer as a method of canceling the positive birefringence exhibited by the polymer. Yes. Patent Document 2 discloses an optical film in which particles (alkaline earth metal compound fine particles) made of an alkaline earth metal compound such as a carbonate containing an alkaline earth metal or a composite oxide containing an alkaline earth metal are dispersed in a resin. Is described. Further, in Patent Document 1, it is extremely advantageous that the fine particles have an average length of 500 nm or less in order to maintain the transparency of the polymer. In particular, if the particle size is 200 nm or less, the transparency is hardly impaired. Have been described.

しかし、微粒子が微細化されると一次粒子(primary particle)のファンデルワールス力が強まり、二以上の一次粒子が凝集して二次粒子(secondary particle)が形成されやすくなる。二次粒子の粒径が大きくなると、二次粒子が透過光を遮断又は散乱し、光学フィルムの透明性が確保されにくくなる。そこで、アルカリ土類金属化合物微粒子の表面を高級脂肪酸からなる表面処理剤(分散剤)で被覆(表面処理)して被覆アルカリ土類金属化合物微粒子を形成することによって、アルカリ土類金属化合物微粒子の分散性を向上させる。特許文献3には、針状炭酸ストロンチウム微粒子の表面を、ポリオキシアルキレンアルキルエーテルカルボン酸からなる表面処理剤(分散剤)で被覆することによって、有機溶媒に対する針状炭酸ストロンチウム微粒子の分散性を向上させることが記載されている。   However, when the fine particles are miniaturized, the van der Waals force of the primary particles is strengthened, and two or more primary particles are aggregated to easily form secondary particles. When the particle size of the secondary particles increases, the secondary particles block or scatter transmitted light, and it becomes difficult to ensure the transparency of the optical film. Therefore, the surface of the alkaline earth metal compound fine particles is coated (surface treatment) with a surface treatment agent (dispersing agent) made of a higher fatty acid to form the coated alkaline earth metal compound fine particles. Improve dispersibility. Patent Document 3 discloses that the surface of acicular strontium carbonate fine particles is coated with a surface treatment agent (dispersant) made of polyoxyalkylene alkyl ether carboxylic acid to improve the dispersibility of acicular strontium carbonate fine particles in an organic solvent. Is described.

なお、本明細書中において、一次粒子(primary particle)とは一般的な粉体系における単位粒子(ultimate particle)をいい、二次粒子(secondary particle)とは二以上の一次粒子が集合(凝集)した粒子をいう。また、粒子(「微粒子」を含む)とは、一の一次粒子、一の二次粒子、二以上の一次粒子の集合体、二以上の二次粒子の集合体、及び、二以上の一次粒子と二以上の二次粒子との集合体の形態を含み得るが、いずれの形態を意味するかは当業者には容易に理解できるであろう。さらに、表面処理剤(分散剤)とは、一次粒子及び二次粒子の表面の少なくとも一部を被覆することによって、一次粒子及び二次粒子に表面活性又は立体障害等の作用を付与し、表面処理剤で被覆された一次粒子及び二次粒子に分散性を付与する剤をいう。   In addition, in this specification, primary particles (primary particles) refer to unit particles (ultimate particles) in a general powder system, and secondary particles (secondary particles) aggregate (aggregate) two or more primary particles. Particles. The particles (including “fine particles”) are one primary particle, one secondary particle, an aggregate of two or more primary particles, an aggregate of two or more secondary particles, and two or more primary particles. And an aggregate form of two or more secondary particles can be easily understood by those skilled in the art. Furthermore, the surface treatment agent (dispersing agent) is a surface treatment or steric hindrance to the primary particle and the secondary particle by covering at least a part of the surface of the primary particle and the secondary particle. An agent that imparts dispersibility to primary particles and secondary particles coated with a treating agent.

特開2004−35347号公報JP 2004-35347 A 特開2011−236111号公報JP 2011-236111 A 国際公開第2015/141817号International Publication No. 2015/141817

ところで、光学フィルム(樹脂組成物)の成膜方法として溶融混練法と溶液キャスト法とが知られる。近年、いずれの成膜方法も成膜温度がより高温になる傾向がある。しかし、従来の表面処理剤は、樹脂組成物の高温での成膜時に高い分散性を維持することができなかった。したがって、被覆アルカリ土類金属化合物微粒子は、樹脂組成物の高温での成膜時の分散性の向上が求められている。   By the way, a melt-kneading method and a solution casting method are known as methods for forming an optical film (resin composition). In recent years, any film forming method tends to have a higher film forming temperature. However, conventional surface treatment agents cannot maintain high dispersibility during film formation of the resin composition at a high temperature. Accordingly, the coated alkaline earth metal compound fine particles are required to have improved dispersibility during film formation of the resin composition at a high temperature.

また、光学フィルム(樹脂組成物)を溶液キャスト法で成膜する場合、高分子にアルカリ土類金属化合物微粒子を分散させるための分散媒として有機溶媒が用いられる。高分子が低吸水性の場合、有機溶媒は疎水性分散媒が用いられる。しかし、アルカリ土類金属化合物は親水性であるため、疎水性分散媒には分散しにくい。したがって、被覆アルカリ土類金属化合物微粒子は、有機溶媒(特に、疎水性分散媒)に対して分散性の向上が求められている。   In addition, when an optical film (resin composition) is formed by a solution casting method, an organic solvent is used as a dispersion medium for dispersing alkaline earth metal compound fine particles in a polymer. When the polymer has low water absorption, a hydrophobic dispersion medium is used as the organic solvent. However, since the alkaline earth metal compound is hydrophilic, it is difficult to disperse in the hydrophobic dispersion medium. Accordingly, the coated alkaline earth metal compound fine particles are required to have improved dispersibility with respect to an organic solvent (particularly, a hydrophobic dispersion medium).

本発明の第1〜第4の態様は、光学フィルム(樹脂組成物)の高温での成膜時に高い分散性を維持することができる被覆アルカリ土類金属化合物微粒子、その被覆アルカリ土類金属化合物微粒子を分散した有機溶媒分散液及び樹脂組成物並びにその樹脂組成物を備える画像表示装置を提供することを目的とする。   The first to fourth aspects of the present invention are coated alkaline earth metal compound fine particles capable of maintaining high dispersibility during film formation of an optical film (resin composition) at a high temperature, and the coated alkaline earth metal compound. An object of the present invention is to provide an organic solvent dispersion in which fine particles are dispersed, a resin composition, and an image display device including the resin composition.

本発明の第5〜第9の態様は、有機溶媒(特に、疎水性分散媒)に対する分散性が高い被覆アルカリ土類金属化合物微粒子、その被覆アルカリ土類金属化合物微粒子を分散した有機溶媒分散液及び樹脂組成物並びにその樹脂組成物を備える画像表示装置を提供することを目的とする。   The fifth to ninth aspects of the present invention are coated alkaline earth metal compound fine particles having high dispersibility in an organic solvent (particularly, a hydrophobic dispersion medium), and an organic solvent dispersion in which the coated alkaline earth metal compound fine particles are dispersed. Another object of the present invention is to provide a resin composition and an image display device including the resin composition.

(1)第1の態様
(1−1)第1の態様その1
本発明の第1の態様は、アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子であって、大気雰囲気中で熱重量測定(Thermogravimetry)・示差熱分析(Differential Thermal Analysis)(TG−DTA)を行うと、TG−DTA開始時の前記表面処理剤の質量を100質量%としたとき、100℃〜300℃の温度範囲での前記表面処理剤の質量減少率が30質量%以下であることを特徴とする被覆アルカリ土類金属化合物微粒子に関する。
(1) First mode (1-1) First mode 1
A first aspect of the present invention is a coated alkaline earth metal compound fine particle in which the surface of an alkaline earth metal compound fine particle is coated with a surface treatment agent, and thermogravimetry / differential thermal analysis in an air atmosphere. When (Differential Thermal Analysis) (TG-DTA) is performed, the mass of the surface treatment agent in a temperature range of 100 ° C. to 300 ° C. when the mass of the surface treatment agent at the start of TG-DTA is 100% by mass. The present invention relates to coated alkaline earth metal compound fine particles characterized by a reduction rate of 30% by mass or less.

(1−2)第1の態様その2
本発明の第1の態様では、前記表面処理剤は、前記アルカリ土類金属化合物微粒子100質量部に対して1〜50質量部であって、大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の前記被覆アルカリ土類金属化合物微粒子の質量を100質量%としたとき、100℃〜300℃の温度範囲での前記被覆アルカリ土類金属化合物微粒子の質量減少率が20質量%以下であることが好ましい。
(1-2) First aspect 2
In the first aspect of the present invention, the surface treatment agent is 1 to 50 parts by mass with respect to 100 parts by mass of the alkaline earth metal compound fine particles. When TG-DTA is performed in an air atmosphere, TG- When the mass of the coated alkaline earth metal compound fine particles at the start of DTA is 100 mass%, the mass reduction rate of the coated alkaline earth metal compound fine particles in the temperature range of 100 ° C. to 300 ° C. is 20 mass% or less. Preferably there is.

(1−3)第1の態様その3
本発明の第1の態様では、大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の前記表面処理剤の質量を100質量%としたとき、100℃〜250℃の温度範囲での前記表面処理剤の質量減少率が5質量%以下であることが好ましい。
(1-3) First aspect 3
In the first aspect of the present invention, when TG-DTA is performed in an air atmosphere, when the mass of the surface treatment agent at the start of TG-DTA is 100% by mass, the temperature is in the range of 100 ° C. to 250 ° C. It is preferable that the mass reduction rate of the surface treatment agent is 5% by mass or less.

(1−4)第1の態様その4
本発明の第1の態様では、1質量%の前記被覆アルカリ土類金属化合物微粒子を有機溶媒に分散した有機溶媒分散液の個数基準粒度分布を、動的光散乱法を用いて測定すると、前記個数基準粒度分布のD50(粒子を粒径の小さい方から順に並べたとき、全体の50%に位置する粒子の粒径)が100nm以下であることが好ましい。
(1-4) First aspect 4
In the first aspect of the present invention, when the number-based particle size distribution of an organic solvent dispersion obtained by dispersing 1% by mass of the coated alkaline earth metal compound fine particles in an organic solvent is measured using a dynamic light scattering method, It is preferable that D50 of the number-based particle size distribution (the particle size of particles located in 50% of the total when the particles are arranged in order from the smallest particle size) is 100 nm or less.

(1−5)第1の態様その5
本発明の第1の態様では、前記有機溶媒がN−メチル−2−ピロリドン(NMP)であることが好ましい。
(1-5) First aspect 5
In the first aspect of the present invention, the organic solvent is preferably N-methyl-2-pyrrolidone (NMP).

(1−6)第1の態様その6
本発明の第1の態様では、前記表面処理剤がフェニル基を有することが好ましい。
(1-6) First aspect 6
In the first aspect of the present invention, the surface treatment agent preferably has a phenyl group.

(1−7)第1の態様その7
本発明の第1の態様では、前記表面処理剤がポリオキシエチレンスチレン化フェニルエーテルリン酸エステルであることが好ましい。
(1-7) First aspect 7
In the first aspect of the present invention, the surface treatment agent is preferably polyoxyethylene styrenated phenyl ether phosphate.

(1−8)第1の態様その8
本発明の第1の態様では、前記表面処理剤が非イオン性ポリマーであることが好ましい。
(1-8) First aspect 8
In the first aspect of the present invention, the surface treatment agent is preferably a nonionic polymer.

(1−9)第1の態様その9
本発明の第1の態様では、前記表面処理剤がポリ−N−ビニルアセトアミドであることが好ましい。
(1-9) First aspect 9
In the first aspect of the present invention, the surface treatment agent is preferably poly-N-vinylacetamide.

(1−10)第1の態様その10
本発明の第1の態様では、前記アルカリ土類金属化合物微粒子が針状炭酸ストロンチウム微粒子であることが好ましい。
(1-10) First aspect 10
In the first aspect of the present invention, the alkaline earth metal compound fine particles are preferably acicular strontium carbonate fine particles.

(2)第2の態様
本発明の第2の態様は、第1の態様の被覆アルカリ土類金属化合物微粒子が有機溶媒に分散されていることを特徴とする有機溶媒分散液に関する。
(2) Second Aspect The second aspect of the present invention relates to an organic solvent dispersion characterized in that the coated alkaline earth metal compound fine particles of the first aspect are dispersed in an organic solvent.

(3)第3の態様
本発明の第3の態様は、第1の態様の被覆アルカリ土類金属化合物微粒子が樹脂に分散されていることを特徴とする樹脂組成物に関する。
(3) Third Aspect A third aspect of the present invention relates to a resin composition characterized in that the coated alkaline earth metal compound fine particles of the first aspect are dispersed in a resin.

(4)第4の態様
本発明の第4の態様は、第3の態様の樹脂組成物が画像表示装置に備えられていることを特徴とする画像表示装置に関する。
(4) Fourth Aspect A fourth aspect of the present invention relates to an image display device characterized in that the image composition is provided with the resin composition of the third aspect.

(5)第5の態様
(5−1)第5の態様その1
本発明の第5の態様は、1質量%の被覆アルカリ土類金属化合物微粒子を疎水性分散媒に分散した疎水性分散液の累積粒度分布を、動的光散乱法を用いて測定すると、累積粒度分布のD50が100nm以下であることを特徴とする被覆アルカリ土類金属化合物微粒子に関する。
(5) Fifth Aspect (5-1) Fifth Aspect 1
According to a fifth aspect of the present invention, when the cumulative particle size distribution of a hydrophobic dispersion obtained by dispersing 1% by mass of coated alkaline earth metal compound fine particles in a hydrophobic dispersion medium is measured using a dynamic light scattering method, The present invention relates to coated alkaline earth metal compound fine particles, wherein D50 of particle size distribution is 100 nm or less.

(5−2)第5の態様その2
本発明の第5の態様では、前記D50が75nm以下であることが好ましい。
(5-2) Fifth aspect 2
In the fifth aspect of the present invention, the D50 is preferably 75 nm or less.

(5−3)第5の態様その3
本発明の第5の態様では、前記疎水性分散媒がn−ヘキサンであることが好ましい。
(5-3) Fifth aspect 3
In the fifth aspect of the present invention, the hydrophobic dispersion medium is preferably n-hexane.

(6)第6の態様
(6−1)第6の態様その1
本発明の第6の態様は、アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子であって、前記表面処理剤が分岐型高級脂肪酸を有することを特徴とする被覆アルカリ土類金属化合物微粒子に関する。
(6) Sixth aspect (6-1) Sixth aspect 1
A sixth aspect of the present invention is a coated alkaline earth metal compound fine particle in which the surface of the alkaline earth metal compound fine particle is coated with a surface treatment agent, wherein the surface treatment agent has a branched higher fatty acid. It relates to the coated alkaline earth metal compound fine particles.

(6−2)第6の態様その2
本発明の第6の態様では、前記分岐型高級脂肪酸がイソステアリン酸又はイソパルミチン酸であることが好ましい。
(6-2) Sixth aspect 2
In the sixth aspect of the present invention, the branched higher fatty acid is preferably isostearic acid or isopalmitic acid.

(6−3)第5の態様その4又は第6の態様その3
本発明の第5又は第6の態様では、前記アルカリ土類金属化合物微粒子が針状炭酸ストロンチウム微粒子であることが好ましい。
(6-3) Fifth aspect 4 or sixth aspect 3
In the fifth or sixth aspect of the present invention, the alkaline earth metal compound fine particles are preferably acicular strontium carbonate fine particles.

(7)第7の態様
(7−1)第7の態様その1
本発明の第7の態様は、第5又は第6の態様の被覆アルカリ土類金属化合物微粒子が有機溶媒に分散されていることを特徴とする有機溶媒分散液に関する。
(7) Seventh Aspect (7-1) Seventh Aspect 1
A seventh aspect of the present invention relates to an organic solvent dispersion characterized in that the coated alkaline earth metal compound fine particles of the fifth or sixth aspect are dispersed in an organic solvent.

(7−2)第7の態様その2
本発明の第7の態様では、前記有機溶媒が疎水性分散媒であることが好ましい。
(7-2) Seventh aspect 2
In the seventh aspect of the present invention, the organic solvent is preferably a hydrophobic dispersion medium.

(8)第8の態様
本発明の第8の態様は、第5又は第6の態様の被覆アルカリ土類金属化合物微粒子が樹脂に分散されていることを特徴とする樹脂組成物に関する。
(8) Eighth aspect The eighth aspect of the present invention relates to a resin composition characterized in that the coated alkaline earth metal compound fine particles of the fifth or sixth aspect are dispersed in a resin.

(9)第9の態様
本発明の第9の態様は、第8の態様の樹脂組成物が画像表示装置に備えられていることを特徴とする画像表示装置に関する。
(9) Ninth Aspect A ninth aspect of the present invention relates to an image display device characterized in that the image composition is provided with the resin composition of the eighth aspect.

(1)第1の態様の効果
(1−1)第1の態様その1
アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が高い。さらに、TG−DTAを行うと、TG−DTA開始時の表面処理剤の質量を100質量%としたとき、100℃〜300℃の温度範囲での表面処理剤の質量減少率が30質量%以下であることから、この被覆アルカリ土類金属化合物微粒子は、従来のアルカリ土類金属化合物微粒子よりも表面処理剤の質量減少率が小さく、耐熱性が高い。
(1) Effects of the first mode (1-1) First mode 1
The coated alkaline earth metal compound fine particles in which the surface of the alkaline earth metal compound fine particles is coated with a surface treatment agent have high dispersibility in an organic solvent. Furthermore, when TG-DTA is performed, when the mass of the surface treatment agent at the start of TG-DTA is 100 mass%, the mass reduction rate of the surface treatment agent in the temperature range of 100 ° C. to 300 ° C. is 30 mass% or less. Therefore, the coated alkaline earth metal compound fine particles have a smaller mass reduction rate of the surface treatment agent and higher heat resistance than the conventional alkaline earth metal compound fine particles.

(1−2)第1の態様その2
アルカリ土類金属化合物微粒子100質量部に対して1〜50質量部の表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性がより高い。さらに、TG−DTAを行うと、TG−DTA開始時の被覆アルカリ土類金属化合物微粒子の質量を100質量%としたとき、100℃〜300℃の温度範囲での被覆アルカリ土類金属化合物微粒子の質量減少率が20質量%以下であることから、この被覆アルカリ土類金属化合物微粒子は、従来のアルカリ土類金属化合物微粒子よりも質量減少率が小さく、耐熱性がより高い。
(1-2) First aspect 2
The coated alkaline earth metal compound fine particles coated with 1 to 50 parts by mass of the surface treatment agent with respect to 100 parts by mass of the alkaline earth metal compound fine particles have higher dispersibility in the organic solvent. Furthermore, when TG-DTA is performed, when the mass of the coated alkaline earth metal compound fine particles at the start of TG-DTA is 100% by mass, the coated alkaline earth metal compound fine particles in the temperature range of 100 ° C. to 300 ° C. Since the mass reduction rate is 20% by mass or less, the coated alkaline earth metal compound fine particles have a smaller mass reduction rate and higher heat resistance than conventional alkaline earth metal compound fine particles.

(1−3)第1の態様その3
TG−DTAを行うと、TG−DTA開始時の表面処理剤の質量を100質量%としたとき、100℃〜250℃の温度範囲での表面処理剤の質量減少率が5質量%以下であり、被覆アルカリ土類金属化合物微粒子は耐熱性がさらに高い。
(1-3) First aspect 3
When TG-DTA is performed, when the mass of the surface treatment agent at the start of TG-DTA is 100 mass%, the mass reduction rate of the surface treatment agent in the temperature range of 100 ° C. to 250 ° C. is 5 mass% or less. The coated alkaline earth metal compound fine particles have higher heat resistance.

(1−4)第1の態様その4
1質量%の被覆アルカリ土類金属化合物微粒子を有機溶媒に分散した有機溶媒分散液の個数基準粒度分布を、動的光散乱法を用いて測定すると、個数基準粒度分布のD50が100nm以下である被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が非常に高い。
(1-4) First aspect 4
When the number-based particle size distribution of an organic solvent dispersion obtained by dispersing 1% by mass of coated alkaline earth metal compound fine particles in an organic solvent is measured using a dynamic light scattering method, D50 of the number-based particle size distribution is 100 nm or less. The coated alkaline earth metal compound fine particles have very high dispersibility in an organic solvent.

(1−5)第1の態様その5
N−メチル−2−ピロリドン(NMP)は有機溶媒の中でも疎水性が高いため、低吸水性の高分子を原料とする光学フィルム(樹脂組成物)に被覆アルカリ土類金属化合物微粒子を分散させるための分散媒として非常に好適である。
(1-5) First aspect 5
Since N-methyl-2-pyrrolidone (NMP) is highly hydrophobic among organic solvents, it is necessary to disperse coated alkaline earth metal compound fine particles in an optical film (resin composition) using a low water-absorbing polymer as a raw material. It is very suitable as a dispersion medium.

(1−6)第1の態様その6
表面処理剤がフェニル基を有する被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が非常に高く、耐熱性も非常に高い。
(1-6) First aspect 6
The coated alkaline earth metal compound fine particles whose surface treatment agent has a phenyl group have very high dispersibility in an organic solvent and very high heat resistance.

(1−7)第1の態様その7
表面処理剤がポリオキシエチレンスチレン化フェニルエーテルリン酸エステルである被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が特に高く、耐熱性も特に高い。
(1-7) First aspect 7
The coated alkaline earth metal compound fine particles in which the surface treatment agent is polyoxyethylene styrenated phenyl ether phosphate have particularly high dispersibility in organic solvents and particularly high heat resistance.

(1−8)第1の態様その8
表面処理剤が非イオン性ポリマーである被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が非常に高く、耐熱性も非常に高い。
(1-8) First aspect 8
The coated alkaline earth metal compound fine particles whose surface treating agent is a nonionic polymer have very high dispersibility in an organic solvent and very high heat resistance.

(1−9)第1の態様その9
表面処理剤がポリ−N−ビニルアセトアミドである被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が特に高く、耐熱性も特に高い。
(1-9) First aspect 9
The coated alkaline earth metal compound fine particles whose surface treating agent is poly-N-vinylacetamide have particularly high dispersibility in an organic solvent and particularly high heat resistance.

(1−10)第1の態様その10
針状炭酸ストロンチウム微粒子は負の複屈折が大きいため、高分子中に分散すると、高分子が示す正の複屈折を小さくすることができる。
(1-10) First aspect 10
Since acicular strontium carbonate fine particles have a large negative birefringence, when dispersed in a polymer, the positive birefringence exhibited by the polymer can be reduced.

(2)第2の態様の効果
第1の態様の被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が高く、耐熱性も高いため、高分子中に被覆アルカリ土類金属化合物微粒子を分散させるための分散液として好適である。
(2) Effect of the second aspect The coated alkaline earth metal compound fine particles of the first aspect are highly dispersible in organic solvents and have high heat resistance, so that the coated alkaline earth metal compound fine particles are dispersed in the polymer. It is suitable as a dispersion liquid for making it.

(3)第3の態様の効果
第1の態様の被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が高く、耐熱性も高いため、樹脂組成物の高温での成膜時に被覆アルカリ土類金属化合物微粒子は高い分散性を維持することができる。このため、樹脂組成物は、被覆アルカリ土類金属化合物微粒子の凝集による透過光の遮断又は散乱が少なく、透明性を確保することができる。
(3) Effect of the Third Aspect The coated alkaline earth metal compound fine particles according to the first aspect have high dispersibility in organic solvents and high heat resistance, so that the coated alkaline earth at the time of film formation of the resin composition at a high temperature. The fine metal compound fine particles can maintain high dispersibility. For this reason, the resin composition has little blocking or scattering of transmitted light due to aggregation of the coated alkaline earth metal compound fine particles, and can ensure transparency.

(4)第4の態様の効果
第3の態様の樹脂組成物は透明性を確保することができるため、画像表示装置の画面を明るく、かつ、鮮明にすることができる。
(4) Effect of the Fourth Aspect The resin composition of the third aspect can ensure transparency, so that the screen of the image display device can be brightened and clear.

(5)第5の態様の効果
(5−1)第5の態様その1
1質量%の被覆アルカリ土類金属化合物微粒子を疎水性分散媒に分散した疎水性分散液の累積粒度分布を、動的光散乱法を用いて測定すると、累積粒度分布のD50が100nm以下である被覆アルカリ土類金属化合物微粒子は、有機溶媒の中でも疎水性分散媒に対する分散性が非常に高い。
(5) Effects of the fifth aspect (5-1) Fifth aspect 1
When the cumulative particle size distribution of a hydrophobic dispersion obtained by dispersing 1% by mass of coated alkaline earth metal compound fine particles in a hydrophobic dispersion medium is measured using a dynamic light scattering method, the cumulative particle size distribution D50 is 100 nm or less. The coated alkaline earth metal compound fine particles have very high dispersibility in a hydrophobic dispersion medium among organic solvents.

(5−2)第5の態様その2
累積粒度分布のD50が75nm以下である被覆アルカリ土類金属化合物微粒子は、疎水性分散媒に対する分散性がより高い。
(5-2) Fifth aspect 2
The coated alkaline earth metal compound fine particles having a cumulative particle size distribution D50 of 75 nm or less have higher dispersibility in the hydrophobic dispersion medium.

(5−3)第5の態様その3
n−ヘキサンは疎水性分散媒の中でも疎水性が高いため、低吸水性の高分子を原料とする光学フィルム(樹脂組成物)に被覆アルカリ土類金属化合物微粒子を分散させるための分散媒として非常に好適である。
(5-3) Fifth aspect 3
Since n-hexane is highly hydrophobic among hydrophobic dispersion media, it is extremely useful as a dispersion medium for dispersing coated alkaline earth metal compound fine particles in an optical film (resin composition) made from a low water-absorbing polymer. It is suitable for.

(6)第6の態様の効果
(6−1)第6の態様その1
アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子であって、前記表面処理剤は、分岐型高級脂肪酸を有する分散剤である被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が非常に高い。アルカリ土類金属化合物微粒子の表面を被覆する分岐型高級脂肪酸の炭素鎖の分岐によって立体障害が大きくなるためと考えられる。
(6) Effects of the sixth aspect (6-1) Sixth aspect 1
Coated alkaline earth metal compound fine particles in which the surface of the alkaline earth metal compound fine particles is coated with a surface treatment agent, wherein the surface treatment agent is a dispersant having a branched higher fatty acid. Is very dispersible in organic solvents. This is probably because the steric hindrance increases due to the branching of the carbon chain of the branched higher fatty acid covering the surface of the alkaline earth metal compound fine particles.

(6−2)第6の態様その2
イソステアリン酸又はイソパルミチン酸を有する分散剤で被覆された被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が特に高い。1質量%の被覆アルカリ土類金属化合物微粒子をn−ヘキサンに分散した分散液の累積粒度分布を、動的光散乱法を用いて測定すると、累積粒度分布のD50を100nm以下にすることができる。
(6-2) Sixth aspect 2
The coated alkaline earth metal compound fine particles coated with a dispersant having isostearic acid or isopalmitic acid have particularly high dispersibility in an organic solvent. When the cumulative particle size distribution of a dispersion obtained by dispersing 1% by mass of coated alkaline earth metal compound fine particles in n-hexane is measured using a dynamic light scattering method, the D50 of the cumulative particle size distribution can be reduced to 100 nm or less. .

(6−3)第5の態様その4又は第6の態様その3
針状炭酸ストロンチウム微粒子は負の複屈折が大きいため、高分子中に分散すると、高分子が示す正の複屈折を小さくすることができる。
(6-3) Fifth aspect 4 or sixth aspect 3
Since acicular strontium carbonate fine particles have a large negative birefringence, when dispersed in a polymer, the positive birefringence exhibited by the polymer can be reduced.

(7)第7の態様の効果
(7−1)第7の態様その1
第5の又は第6の態様の被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が高いため、有機溶媒は、高分子中に被覆アルカリ土類金属化合物微粒子を分散させるための分散液として好適である。
(7) Effects of the seventh aspect (7-1) Seventh aspect 1
Since the coated alkaline earth metal compound fine particles of the fifth or sixth aspect are highly dispersible in an organic solvent, the organic solvent is used as a dispersion for dispersing the coated alkaline earth metal compound fine particles in the polymer. Is preferred.

(7−2)第7の態様その2
第5又は第6の態様の被覆アルカリ土類金属化合物微粒子は、有機溶媒の中でも疎水性分散媒に対して分散性が特に高いため、疎水性分散媒は、被覆アルカリ土類金属化合物微粒子の分散液としてさらに好適である。
(7-2) Seventh aspect 2
Since the coated alkaline earth metal compound fine particles of the fifth or sixth aspect are particularly highly dispersible with respect to the hydrophobic dispersion medium among organic solvents, the hydrophobic dispersion medium is a dispersion of the coated alkaline earth metal compound fine particles. It is further suitable as a liquid.

(8)第8の態様の効果
第5又は第6の態様の被覆アルカリ土類金属化合物微粒子は、有機溶媒に対する分散性が高いため、樹脂組成物は、被覆アルカリ土類金属化合物微粒子の凝集による透過光の遮断又は散乱が少なく、透明性を確保することができる。
(8) Effect of Eighth Aspect Since the coated alkaline earth metal compound fine particles of the fifth or sixth aspect are highly dispersible in an organic solvent, the resin composition is formed by aggregation of the coated alkaline earth metal compound fine particles. Transparency can be ensured with little blocking or scattering of transmitted light.

(9)第9の態様の効果
第8の態様の樹脂組成物の透明性を確保することができるため、画像表示装置の画面を明るく、かつ、鮮明にすることができる。
(9) Effect of the ninth aspect Since the transparency of the resin composition of the eighth aspect can be ensured, the screen of the image display device can be brightened and clear.

アルカリ土類金属化合物微粒子としては、例えば、酸化カルシウム微粒子、酸化ストロンチウム微粒子及び酸化バリウム微粒子を含む酸化物微粒子、炭酸マグネシウム微粒子、炭酸カルシウム微粒子、炭酸ストロンチウム微粒子及び炭酸バリウム微粒子を含む炭酸塩微粒子並びに水酸化マグネシウム微粒子、水酸化カルシウム微粒子、水酸化ストロンチウム微粒子及び水酸化バリウム微粒子を含む水酸化物微粒子が挙げられる。以下、アルカリ土類金属化合物微粒子のうち、本発明の好適な実施形態(本実施形態)である針状炭酸ストロンチウム微粒子について詳細に説明する。なお、以下に説明する本実施形態は、請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成のすべてが本発明の解決手段として必須であるとは限らない。   Examples of the alkaline earth metal compound fine particles include calcium oxide fine particles, oxide fine particles containing strontium oxide fine particles and barium oxide fine particles, magnesium carbonate fine particles, calcium carbonate fine particles, carbonate fine particles containing strontium carbonate fine particles and barium carbonate fine particles, and water. Examples thereof include hydroxide fine particles including magnesium oxide fine particles, calcium hydroxide fine particles, strontium hydroxide fine particles, and barium hydroxide fine particles. Hereinafter, among the alkaline earth metal compound fine particles, acicular strontium carbonate fine particles which are a preferred embodiment (this embodiment) of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are indispensable as means for solving the present invention. Not always.

(1)被覆針状炭酸ストロンチウム微粒子の製造方法
本実施形態の被覆針状炭酸ストロンチウム微粒子の製造方法は、針状炭酸ストロンチウム微粒子を製造する工程と、針状炭酸ストロンチウム微粒子の表面を表面処理剤で被覆して被覆針状炭酸ストロンチウム微粒子を製造する工程と、を有する。以下に、さらに詳しく説明する。
(1) Method for Producing Coated Needle-Strontium Carbonate Fine Particles The method for producing the coated needle-like strontium carbonate fine particles according to the present embodiment includes a step of producing needle-like strontium carbonate fine particles, Coating to produce coated needle-like strontium carbonate fine particles. This will be described in more detail below.

(1−1)針状炭酸ストロンチウム微粒子の製造工程
針状炭酸ストロンチウム微粒子を製造する工程は、球状炭酸ストロンチウム微粒子の水性分散液を製造する工程と、球状炭酸ストロンチウム微粒子を粒成長させる工程(熟成工程)と、を有する。
(1-1) Production process of acicular strontium carbonate fine particles The process of producing acicular strontium carbonate fine particles includes a step of producing an aqueous dispersion of spherical strontium carbonate fine particles and a step of growing spherical strontium carbonate fine particles (ripening step). And).

(1−1−1)球状炭酸ストロンチウム微粒子の水性分散液の製造工程
球状炭酸ストロンチウム微粒子の水性分散液を製造する工程は、水酸化ストロンチウムの水溶液又は水性懸濁液を撹拌しながら有機酸の添加と二酸化炭素ガスの導入を行うことによって水酸化ストロンチウムを炭酸化する工程を有する。
(1-1-1) Process for producing aqueous dispersion of spherical strontium carbonate fine particles The process of producing an aqueous dispersion of spherical strontium carbonate fine particles involves adding an organic acid while stirring an aqueous solution or aqueous suspension of strontium hydroxide. And carbon dioxide gas is introduced to carbonate strontium hydroxide.

水酸化ストロンチウムの水溶液又は水性懸濁液の濃度は1〜20質量%であり、好ましくは2〜15質量%であり、さらに好ましくは3〜8質量%である。   The density | concentration of the aqueous solution or aqueous suspension of strontium hydroxide is 1-20 mass%, Preferably it is 2-15 mass%, More preferably, it is 3-8 mass%.

有機酸は、水酸化ストロンチウムの炭酸化によって生成する炭酸ストロンチウムの結晶成長を抑制する結晶成長抑制剤として作用すると共に、炭酸化によって生成する炭酸ストロンチウム粒子の凝集を抑制する凝集抑制剤としても作用する。有機酸は、水酸基とカルボキシル基をそれぞれ少なくとも1個、かつ、合計で少なくとも3個含む。好ましくは、有機酸は、カルボキシル基を1個又は2個、かつ、水酸基とカルボキシル基を合計で3〜6個含む。好ましい有機酸としては、例えば、酒石酸、リンゴ酸又はグルコン酸が挙げられる。有機酸の添加量は、水酸化ストロンチウム100質量部に対して0.1〜20質量部であり、好ましくは1〜10質量部である。   The organic acid acts as a crystal growth inhibitor that suppresses crystal growth of strontium carbonate generated by carbonation of strontium hydroxide, and also acts as an aggregation inhibitor that suppresses aggregation of strontium carbonate particles generated by carbonation. . The organic acid contains at least one hydroxyl group and a carboxyl group, respectively, and a total of at least three. Preferably, the organic acid contains 1 or 2 carboxyl groups and 3 to 6 hydroxyl groups and carboxyl groups in total. Preferred organic acids include, for example, tartaric acid, malic acid or gluconic acid. The addition amount of the organic acid is 0.1 to 20 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of strontium hydroxide.

二酸化炭素ガスの流量は、水酸化ストロンチウム1gに対して0.5〜200mL/分であり、好ましくは0.5〜100mL/分である。炭酸化する際の水酸化ストロンチウムの水溶液又は水性懸濁液の温度は0〜40℃であり、好ましくは0〜30℃であり、さらに好ましくは5〜15℃である。炭酸化の終点は、一般には水溶液又は水性懸濁液のpHが7以下になる時点である。   The flow rate of carbon dioxide gas is 0.5 to 200 mL / min, preferably 0.5 to 100 mL / min, with respect to 1 g of strontium hydroxide. The temperature of the aqueous solution or suspension of strontium hydroxide at the time of carbonation is 0 to 40 ° C, preferably 0 to 30 ° C, more preferably 5 to 15 ° C. The end point of carbonation is generally when the pH of the aqueous solution or suspension becomes 7 or less.

(1−1−2)球状炭酸ストロンチウム微粒子の粒成長工程(熟成工程)
球状炭酸ストロンチウム微粒子を粒成長させる工程は、得られた球状炭酸ストロンチウム微粒子の水性分散液を所定温度で所定時間保持する工程(熟成工程)を有する。熟成工程によって球状炭酸ストロンチウム微粒子は長軸方向に粒成長する。
(1-1-2) Grain growth process (ripening process) of spherical strontium carbonate fine particles
The step of growing the spherical strontium carbonate fine particles has a step (aging step) of holding the obtained aqueous dispersion of spherical strontium carbonate fine particles at a predetermined temperature for a predetermined time. Through the aging process, spherical strontium carbonate fine particles grow in the major axis direction.

熟成工程の所定温度は60℃以上であり、好ましくは60〜100℃であり、さらに好ましくは70〜100℃である。熟成工程の所定時間は、所定形状の針状粒子が得られれば特に制限はない。針状粒子の所定形状については、平均長径は5〜50nm、平均アスペクト比(長径/短径)は2.2〜5.0が好ましい。熟成工程によって得られた針状炭酸ストロンチウム微粒子の水性分散液では、一次粒子の一部は凝集して二次粒子を形成している可能性があるが、一次粒子の多くは分散状態を維持していると考えられる。   The predetermined temperature of the aging step is 60 ° C or higher, preferably 60 to 100 ° C, and more preferably 70 to 100 ° C. The predetermined time of the aging step is not particularly limited as long as needle-shaped particles having a predetermined shape are obtained. As for the predetermined shape of the acicular particles, the average major axis is preferably 5 to 50 nm, and the average aspect ratio (major axis / minor axis) is preferably 2.2 to 5.0. In the aqueous dispersion of acicular strontium carbonate fine particles obtained by the aging process, some of the primary particles may aggregate to form secondary particles, but many of the primary particles maintain the dispersed state. It is thought that.

(1−2)針状炭酸ストロンチウム微粒子の被覆工程
針状炭酸ストロンチウム微粒子の表面を表面処理剤で被覆する工程は、針状炭酸ストロンチウム微粒子の表面を表面処理剤で表面処理を行って被覆針状炭酸ストロンチウム微粒子を得る工程と、被覆針状炭酸ストロンチウム微粒子を乾燥して被覆針状炭酸ストロンチウム微粒子を得る工程と、を有する。
(1-2) Coating process of acicular strontium carbonate fine particles The process of coating the surface of acicular strontium carbonate fine particles with a surface treatment agent is performed by surface-treating the surface of acicular strontium carbonate fine particles with a surface treatment agent. A step of obtaining fine particles of strontium carbonate, and a step of obtaining fine particles of coated strontium carbonate by drying the coated fine particles of strontium carbonate.

(1−2−1)針状炭酸ストロンチウム微粒子の表面処理工程
針状炭酸ストロンチウム微粒子の表面処理を行って被覆針状炭酸ストロンチウム微粒子を得る工程は、針状炭酸ストロンチウム微粒子の水性分散液に下記の表面処理剤を添加後、水性分散液に強いせん断力を付与する工程を有する。
(1-2-1) Surface treatment step of acicular strontium carbonate fine particles The step of surface treatment of acicular strontium carbonate fine particles to obtain coated acicular strontium carbonate fine particles is carried out by adding the following to an aqueous dispersion of acicular strontium carbonate fine particles: After adding the surface treating agent, it has a step of imparting a strong shearing force to the aqueous dispersion.

(1−2−1−1)表面処理剤
(1−2−1−1−1)第1の態様の実施形態
本発明の第1の態様の実施形態である被覆アルカリ土類金属化合物微粒子を製造するための表面処理剤について説明する。本実施形態の被覆アルカリ土類金属化合物微粒子は耐熱性が高く、光学フィルム(樹脂組成物)の高温での成膜時に高い分散性を維持することができる。
(1-2-1-1) Surface treatment agent (1-2-1-1) Embodiment of the first aspect The coated alkaline earth metal compound fine particle according to the embodiment of the first aspect of the present invention is used. The surface treatment agent for manufacturing will be described. The coated alkaline earth metal compound fine particles of the present embodiment have high heat resistance and can maintain high dispersibility when the optical film (resin composition) is formed at a high temperature.

(1−2−1−1−1−1)フェニル基含有表面処理剤
添加される表面処理剤はフェニル基を有することが好ましい。フェニル基を有する表面処理剤は、従来の針状炭酸ストロンチウム微粒子に用いられた表面処理剤よりも耐熱性が高い。このため、フェニル基を有する表面処理剤で被覆された被覆炭酸ストロンチウム微粒子は、光学フィルム(樹脂組成物)の高温での成膜時に高い分散性を維持することができる。被覆炭酸ストロンチウム微粒子による透過光の遮断又は散乱が少なくなるため、光学フィルム(樹脂組成物)の透明性を確保することができる。
(1-2-1-1-1-1) Phenyl group-containing surface treatment agent The surface treatment agent to be added preferably has a phenyl group. The surface treatment agent having a phenyl group has higher heat resistance than the surface treatment agent used for conventional acicular strontium carbonate fine particles. For this reason, the coated strontium carbonate fine particles coated with the surface treating agent having a phenyl group can maintain high dispersibility when the optical film (resin composition) is formed at a high temperature. Since blocking or scattering of transmitted light by the coated strontium carbonate fine particles is reduced, the transparency of the optical film (resin composition) can be ensured.

フェニル基を有する表面処理剤は、アニオン表面処理剤が好ましく、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルがさらに好ましい。アニオン表面処理剤は有機溶媒に対する分散性が高く、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルは耐熱性がさらに高い。これらによって、光学フィルムの高温での成膜時に被覆炭酸ストロンチウム微粒子はより高い分散性を維持することができる。被覆炭酸ストロンチウム微粒子による透過光の遮断又は散乱がより少なくなるため、光学フィルム(樹脂組成物)のより高い透明性を確保することができる。   The surface treatment agent having a phenyl group is preferably an anionic surface treatment agent, and more preferably polyoxyethylene styrenated phenyl ether phosphate. An anionic surface treatment agent is highly dispersible in an organic solvent, and polyoxyethylene styrenated phenyl ether phosphate ester has higher heat resistance. By these, the coated strontium carbonate fine particles can maintain higher dispersibility when the optical film is formed at a high temperature. Since blocking or scattering of the transmitted light by the coated strontium carbonate fine particles is reduced, higher transparency of the optical film (resin composition) can be ensured.

ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルとしては、例えば、化学式1及び化学式1のRが化学式2で表されるポリオキシエチレンスチレン化フェニルエーテルリン酸エステルが挙げられる。

Figure 2017130946
Figure 2017130946
Examples of the polyoxyethylene styrenated phenyl ether phosphate ester include polyoxyethylene styrenated phenyl ether phosphate ester in which R in Chemical Formula 1 and Chemical Formula 1 is represented by Chemical Formula 2.
Figure 2017130946
Figure 2017130946

(1−2−1−1−1−2)非イオン性ポリマー
添加される他の表面処理剤は非イオン性ポリマーが好ましく、ポリ−N−ビニルアセトアミド(PNVA)であることがさらに好ましい。非イオン性ポリマーは有機溶媒に対する分散性が高く、PNVAは耐熱性がさらに高い。PNVAの化学式を化学式3に示す。

Figure 2017130946
(1-2-1-1-1-2) Nonionic polymer The other surface treatment agent to be added is preferably a nonionic polymer, and more preferably poly-N-vinylacetamide (PNVA). Nonionic polymers have high dispersibility in organic solvents, and PNVA has higher heat resistance. The chemical formula of PNVA is shown in Chemical Formula 3.
Figure 2017130946

(1−2−1−1−2)第5及び第6の態様の実施形態
本発明の第5及び第6の態様の実施形態である被覆アルカリ土類金属化合物微粒子を製造するための表面処理剤について説明する。本実施形態の被覆アルカリ土類金属化合物微粒子は有機溶媒(特に、疎水性分散媒)に対する分散性が高い。
(1-2-1-1) Embodiments of Fifth and Sixth Aspects Surface treatment for producing coated alkaline earth metal compound fine particles according to embodiments of the fifth and sixth aspects of the present invention The agent will be described. The coated alkaline earth metal compound fine particles of the present embodiment have high dispersibility in an organic solvent (particularly, a hydrophobic dispersion medium).

添加される表面処理剤は分岐型高級脂肪酸、疎水性炭素鎖を有する高級脂肪酸又は炭素鎖にエチレンオキサイド鎖を有さない高級脂肪酸が好ましい。従来の直鎖型高級脂肪酸よりも有機溶媒、特に、疎水性分散媒に対する分散性が高くなるからである。分岐型高級脂肪酸は炭素鎖の分岐によって立体障害が大きくなるためと考えられる。   The surface treatment agent to be added is preferably a branched higher fatty acid, a higher fatty acid having a hydrophobic carbon chain, or a higher fatty acid having no ethylene oxide chain in the carbon chain. It is because the dispersibility with respect to an organic solvent, especially a hydrophobic dispersion medium becomes higher than the conventional linear higher fatty acid. This is probably because branched higher fatty acids have greater steric hindrance due to carbon chain branching.

分岐型高級脂肪酸としては、化学式4で表される高級脂肪酸が挙げられる。

Figure 2017130946
Examples of branched higher fatty acids include higher fatty acids represented by Chemical Formula 4.
Figure 2017130946

はアルキル基が好ましい。また、Rは第3級炭素原子及び第4級炭素原子を合計で1個以上、好ましくは1〜10個含む。さらに、Rは炭素原子を10〜32個、好ましくは10〜18個含む。化学式4で表される高級脂肪酸は、第3級炭素原子を1個含み、化学式5で表される分岐型高級脂肪酸がより好ましい。

Figure 2017130946
化学式5のx+yは7〜29であり、好ましくは7〜15である。R 1 is preferably an alkyl group. R 1 contains a total of one or more, preferably 1 to 10, tertiary carbon atoms and quaternary carbon atoms. Further, R 1 contains 10 to 32 carbon atoms, preferably 10 to 18 carbon atoms. The higher fatty acid represented by Chemical Formula 4 contains one tertiary carbon atom, and a branched higher fatty acid represented by Chemical Formula 5 is more preferable.
Figure 2017130946
In Formula 5, x + y is 7 to 29, and preferably 7 to 15.

(1−2−1−2)表面処理剤の添加量
針状炭酸ストロンチウム微粒子の水性分散液への表面処理剤の添加量は、針状炭酸ストロンチウム微粒子100質量部に対して1〜50質量部であり、好ましくは5〜40質量部であり、さらに好ましくは10〜35質量部であり、特に好ましくは20〜35質量部である。
(1-2-1-2) Addition amount of surface treatment agent The addition amount of the surface treatment agent to the aqueous dispersion of acicular strontium carbonate fine particles is 1 to 50 parts by mass with respect to 100 parts by mass of acicular strontium carbonate fine particles. Preferably, it is 5-40 mass parts, More preferably, it is 10-35 mass parts, Most preferably, it is 20-35 mass parts.

(1−2−1−3)せん断力の付与
針状炭酸ストロンチウム微粒子の水性分散液に強いせん断力を付与するために、10〜60m/秒の周速で高速回転している回転体が用いられる。回転体の周速は、20〜50m/秒がより好ましく、30〜40m/秒がさらに好ましい。せん断力を与える装置としては、必要なせん断力を与えることができれば特に制限はない。
(1-2-1-3) Giving shear force In order to impart strong shear force to the aqueous dispersion of acicular strontium carbonate fine particles, a rotating body rotating at a high speed at a peripheral speed of 10 to 60 m / sec is used. It is done. The peripheral speed of the rotating body is more preferably 20 to 50 m / sec, and further preferably 30 to 40 m / sec. There is no particular limitation on the apparatus for applying the shearing force as long as the necessary shearing force can be applied.

強いせん断力によって針状炭酸ストロンチウム微粒子は凝集が解され、分散性が向上する。凝集が一次粒子まで解されない針状炭酸ストロンチウム微粒子が存在する可能性もあるが、加えられるせん断力が非常に強いため、少なくとも一次粒子近くまで解されると考えられる。この効果が持続している間に、添加された表面処理剤が針状炭酸ストロンチウム微粒子の一次粒子及び一次粒子近くまで解された二次粒子の表面を被覆し、被覆針状炭酸ストロンチウム微粒子が得られる。一次粒子及び一次粒子近くまで解された二次粒子の表面が表面処理剤で被覆されるため、被覆針状炭酸ストロンチウム微粒子は、一次粒子及び一次粒子近くまで解された二次粒子の分散状態が維持される。   Due to the strong shearing force, the acicular strontium carbonate fine particles are disaggregated and the dispersibility is improved. There may be acicular strontium carbonate fine particles in which aggregation is not solved up to the primary particles, but since the applied shearing force is very strong, it is considered that at least the primary particles are solved. While this effect is sustained, the added surface treatment agent coats the primary particles of the acicular strontium carbonate fine particles and the surface of the secondary particles that have been dissolved to the vicinity of the primary particles, thereby obtaining coated acicular strontium carbonate fine particles. It is done. Since the surface of the primary particles and the secondary particles that have been dissolved to the vicinity of the primary particles are coated with the surface treatment agent, the coated acicular strontium carbonate fine particles have a dispersion state of the primary particles and the secondary particles that have been dissolved to the vicinity of the primary particles. Maintained.

被覆の態様としては、一次粒子及び一次粒子近くまで解された二次粒子からなる針状炭酸ストロンチウム微粒子の表面の少なくとも一部が、表面処理剤で被覆されていればよい。即ち、針状炭酸ストロンチウムからなる一次粒子の表面の少なくとも一部が表面処理剤で被覆されていてもよいし、一次粒子近くまで解された針状炭酸ストロンチウムからなる二次粒子(二以上の一次粒子の凝集体)の表面の少なくとも一部が表面処理剤で被覆されていてもよい。   As a mode of coating, at least a part of the surface of the acicular strontium carbonate fine particles composed of the primary particles and the secondary particles that have been broken up to the vicinity of the primary particles may be coated with the surface treatment agent. That is, at least a part of the surface of primary particles made of acicular strontium carbonate may be coated with a surface treatment agent, or secondary particles made of acicular strontium carbonate that has been broken up to the vicinity of the primary particles (two or more primary particles). At least a part of the surface of the particle aggregate) may be coated with a surface treatment agent.

(1−2−2)被覆針状炭酸ストロンチウム微粒子の乾燥工程
被覆針状炭酸ストロンチウム微粒子を乾燥して、被覆針状炭酸ストロンチウム微粒子を得る工程では、水性分散液を乾燥、除去する。水性分散液を乾燥する方法は、水性分散媒の水が除去されれば特に制限はなく、スプレードライヤーやドラムドライヤーを含む公知の乾燥方法を用いることができる。得られた被覆針状炭酸ストロンチウム微粒子は、必要に応じて有機溶媒に投入され、撹拌混合されて分散性が高い被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液が製造され、光学フィルムの製造等に供される。
(1-2-2) Drying step of coated needle-like strontium carbonate fine particles In the step of drying coated needle-like strontium carbonate fine particles to obtain coated needle-like strontium carbonate fine particles, the aqueous dispersion is dried and removed. The method for drying the aqueous dispersion is not particularly limited as long as the water of the aqueous dispersion medium is removed, and a known drying method including a spray dryer or a drum dryer can be used. The obtained coated needle-like strontium carbonate fine particles are put into an organic solvent as necessary, and mixed with stirring to produce a highly dispersible organic solvent dispersion of coated needle-like strontium carbonate fine particles. Provided.

(2)被覆針状炭酸ストロンチウム微粒子の耐熱性及び分散性
本実施形態のうち、本発明の第1の態様の実施形態における被覆針状炭酸ストロンチウム微粒子の耐熱性及び本実施形態(第1の態様並びに第5及び第6の態様)における被覆針状炭酸ストロンチウム微粒子の分散性は以下のとおりである。
(2) Heat resistance and dispersibility of coated acicular strontium carbonate fine particles Among the present embodiments, the heat resistance of the coated acicular strontium carbonate fine particles in the first embodiment of the present invention and the present embodiment (first embodiment). In addition, the dispersibility of the coated acicular strontium carbonate fine particles in the fifth and sixth embodiments) is as follows.

(2−1)第1の態様の実施形態の耐熱性
(2−1−1)大気雰囲気及び100℃〜300℃の温度範囲
大気雰囲気中で熱重量測定(Thermogravimetry)・示差熱分析(Differential Thermal Analysis)(TG−DTA)を行うと、TG−DTA開始時の表面処理剤の質量を100質量%としたとき、100℃〜300℃の温度範囲での表面処理剤の質量減少率は70質量%以下であり、好ましくは40質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは24質量%以下であり、特に好ましくは22質量%以下である。
(2-1) Heat resistance of the embodiment of the first aspect (2-1-1) Air atmosphere and temperature range of 100 ° C. to 300 ° C. Thermogravimetry / Differential Thermal Analysis in the air atmosphere Analysis) (TG-DTA), when the mass of the surface treatment agent at the start of TG-DTA is 100 mass%, the mass reduction rate of the surface treatment agent in the temperature range of 100 ° C. to 300 ° C. is 70 mass. % Or less, preferably 40% by mass or less, more preferably 30% by mass or less, still more preferably 24% by mass or less, and particularly preferably 22% by mass or less.

また、TG−DTA開始時の表面処理された被覆針状炭酸ストロンチウム微粒子の質量を100質量%としたとき、100℃〜300℃の温度範囲での表面処理された被覆針状炭酸ストロンチウム微粒子の質量減少率は20質量%以下であり、好ましくは15質量%以下であり、より好ましくは11質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは8質量%以下であり、特に好ましくは7.5質量%以下である。   Further, when the mass of the surface-treated coated acicular strontium carbonate fine particles at the start of TG-DTA is 100% by mass, the mass of the surface-treated coated acicular strontium carbonate fine particles in the temperature range of 100 ° C. to 300 ° C. The reduction rate is 20% by mass or less, preferably 15% by mass or less, more preferably 11% by mass or less, more preferably 10% by mass or less, and further preferably 8% by mass or less. Preferably it is 7.5 mass% or less.

(2−1−2)大気雰囲気及び100℃〜250℃の温度範囲
大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の表面処理剤の質量を100質量%としたとき、100℃〜250℃の温度範囲での表面処理剤の質量減少率は19質量%以下であり、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2質量%以下であり、特に好ましくは1.5質量%以下ある。
(2-1-2) Air atmosphere and temperature range of 100 ° C. to 250 ° C. When TG-DTA is performed in the air atmosphere, when the mass of the surface treatment agent at the start of TG-DTA is 100% by mass, 100 ° C. The mass reduction rate of the surface treatment agent in the temperature range of ˜250 ° C. is 19% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, and further preferably 2% by mass or less. Yes, particularly preferably 1.5% by mass or less.

また、TG−DTA開始時の表面処理された被覆針状炭酸ストロンチウム微粒子の質量を100質量%としたとき、100℃〜250℃の温度範囲での表面処理された被覆針状炭酸ストロンチウム微粒子の質量減少率は16質量%以下であり、好ましくは10質量%以下であり、より好ましくは5質量%以下であり、さらに好ましくは2.5質量%以下であり、特に好ましくは1.6質量%以下である。   Further, when the mass of the surface-treated coated acicular strontium carbonate fine particles at the start of TG-DTA is 100% by mass, the mass of the surface-treated coated acicular strontium carbonate fine particles in the temperature range of 100 ° C. to 250 ° C. The reduction rate is 16% by mass or less, preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably 2.5% by mass or less, and particularly preferably 1.6% by mass or less. It is.

(2−1−3)窒素雰囲気及び100℃〜250℃の温度範囲
窒素雰囲気中でTG−DTAを行うと、TG−DTA開始時の表面処理された被覆針状炭酸ストロンチウム微粒子の質量を100質量%としたとき、100℃〜250℃の温度範囲での表面処理された被覆針状炭酸ストロンチウム微粒子の質量減少率は3.6質量%以下であり、好ましくは2.3質量%以下であり、より好ましくは2質量%以下であり、さらに好ましくは1.5質量%以下である。
(2-1-3) Nitrogen atmosphere and a temperature range of 100 ° C. to 250 ° C. When TG-DTA is performed in a nitrogen atmosphere, the mass of the surface-treated coated acicular strontium carbonate fine particles at the start of TG-DTA is 100 masses. %, The mass reduction rate of the surface-treated coated needle-like strontium carbonate fine particles in the temperature range of 100 ° C. to 250 ° C. is 3.6% by mass or less, preferably 2.3% by mass or less. More preferably, it is 2 mass% or less, More preferably, it is 1.5 mass% or less.

(2−2)本実施形態(第1の態様並びに第5及び第6の態様)の分散性
(2−2−1)被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液
本実施形態(第1の態様並びに第5及び第6の態様)の被覆針状炭酸ストロンチウム微粒子は有機溶媒に投入され、撹拌混合されることにより、分散性が高い被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液が製造される。有機溶媒の例としては、アルコール(例えば、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、エチレングルコール)、塩化メチレン、N−メチル−2−ピロリドン(NMP)、テトラヒドロフラン、メチルエチルケトン(MEK)、酢酸エチル、酢酸ブチル、1−メトキシ−2−プロパノール(PEGME)、1−メトキシ−2−プロピルアセテ−ト(PEGMEA)、炭化水素系溶剤(n−ヘキサン、シクロヘキサン、n−ヘプタン等)、芳香族炭化水素系溶剤(トルエン、キシレン等)等を挙げることができる。有機溶媒は上記有機溶媒のうち1種類のみを用いてもよいし、上記有機溶媒の複数を組み合わせて用いてもよい。本発明の第1の態様の実施形態ではNMPを用い、本発明の第5及び第6の態様の実施形態ではn−ヘキサンを用いる。被覆針状炭酸ストロンチウム微粒子の濃度は利用目的に応じて適宜決定することができる。本実施形態の被覆針状炭酸ストロンチウム微粒子の濃度は、後述するように、被覆針状炭酸ストロンチウム微粒子の有機溶媒に対する分散性を、動的光散乱法を用いて評価するため、1質量%とする。
(2-2) Dispersibility of the present embodiment (first aspect and fifth and sixth aspects) (2-2-1) Organic solvent dispersion of coated acicular strontium carbonate fine particles This embodiment (first The coated needle-like strontium carbonate fine particles of the embodiment and the fifth and sixth embodiments) are put into an organic solvent and mixed by stirring to produce an organic solvent dispersion of the coated needle-like strontium carbonate fine particles having high dispersibility. . Examples of organic solvents include alcohols (eg, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol), methylene chloride, N-methyl-2-pyrrolidone (NMP), tetrahydrofuran, methyl ethyl ketone (MEK). , Ethyl acetate, butyl acetate, 1-methoxy-2-propanol (PEGME), 1-methoxy-2-propyl acetate (PEGMEA), hydrocarbon solvents (n-hexane, cyclohexane, n-heptane, etc.), aroma Group hydrocarbon solvents (toluene, xylene, etc.). As the organic solvent, only one of the organic solvents may be used, or a plurality of the organic solvents may be used in combination. Embodiments of the first aspect of the present invention use NMP, and embodiments of the fifth and sixth aspects of the present invention use n-hexane. The concentration of the coated acicular strontium carbonate fine particles can be appropriately determined according to the purpose of use. As will be described later, the concentration of the coated acicular strontium carbonate fine particles of the present embodiment is 1% by mass in order to evaluate the dispersibility of the coated acicular strontium carbonate fine particles in an organic solvent using a dynamic light scattering method. .

撹拌混合に用いられる装置としては、例えば、超音波ホモジナイザー、ホモミキサー、インペラー式攪拌機、マグネットスターラーが挙げられる。撹拌混合時間は所定の分散性が得られれば特に制限はない。その後、フィルターで異物を除去してもよい。   Examples of the apparatus used for stirring and mixing include an ultrasonic homogenizer, a homomixer, an impeller stirrer, and a magnetic stirrer. The stirring and mixing time is not particularly limited as long as a predetermined dispersibility can be obtained. Thereafter, foreign matter may be removed with a filter.

(2−2−2)分散性
被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液では、一部の一次粒子が凝集して二次粒子が形成される可能性があるが、多くの一次粒子は分散状態が維持される。即ち、被覆針状炭酸ストロンチウム微粒子は分散性が高い。1質量%の被覆針状炭酸ストロンチウム微粒子をNMP又はn−ヘキサンに分散した有機溶媒分散液の個数基準粒度分布を、動的光散乱法を用いて測定すると、個数基準粒度分布のD50(粒子を粒径の小さい方から順に並べたとき、全体の50%に位置する粒子の粒径)は100nm以下であり、好ましくは75nm以下であり、より好ましくは60nm以下であり、さらに好ましくは50nm以下である。本実施形態の被覆針状炭酸ストロンチウム微粒子は有機溶媒に対する分散性が高いため、有機溶媒分散液として高分子樹脂組成物の工業的な製造等に供することができる。
(2-2-2) Dispersibility In the organic solvent dispersion of coated acicular strontium carbonate fine particles, some primary particles may aggregate to form secondary particles, but many primary particles are dispersed. State is maintained. That is, the coated acicular strontium carbonate fine particles have high dispersibility. When the number-based particle size distribution of an organic solvent dispersion obtained by dispersing 1% by mass of coated acicular strontium carbonate fine particles in NMP or n-hexane was measured using a dynamic light scattering method, the number-based particle size distribution D50 (particles When arranged in order from the smallest particle size, the particle size of the particles located at 50% of the total particle size) is 100 nm or less, preferably 75 nm or less, more preferably 60 nm or less, and even more preferably 50 nm or less. is there. Since the coated acicular strontium carbonate fine particles of this embodiment have high dispersibility in an organic solvent, they can be used as an organic solvent dispersion for industrial production of a polymer resin composition.

なお、動的光散乱法とは、分散液に光を照射したときに、分散媒(本実施形態では、NMP)中でブラウン運動をしている分散質(本実施形態では、被覆針状炭酸ストロンチウム微粒子)に散乱されることによって生じる散乱光の強度の揺らぎから分散質の粒径を測定する方法である。動的光散乱法を用いて測定される被覆針状炭酸ストロンチウム微粒子の粒径は、累積粒度分布であり、一次粒子が凝集して二次粒子を形成している場合は二次粒子の粒径を含む。累積粒度分布に基づいて個数基準の粒度分布を算出することができる。   The dynamic light scattering method refers to a dispersoid (in this embodiment, coated needle-like carbonic acid) that performs a Brownian motion in a dispersion medium (NMP in this embodiment) when light is applied to the dispersion. This is a method of measuring the particle size of the dispersoid from the fluctuation of the intensity of the scattered light generated by being scattered by the strontium fine particles. The particle size of the coated acicular strontium carbonate fine particles measured using the dynamic light scattering method is a cumulative particle size distribution, and when the primary particles aggregate to form secondary particles, the particle size of the secondary particles including. A number-based particle size distribution can be calculated based on the cumulative particle size distribution.

(3)被覆アルカリ土類金属化合物微粒子の応用
本実施形態の被覆針状炭酸ストロンチウム微粒子と同様に、表面処理された被覆アルカリ土類金属化合物微粒子は有機溶媒に対する分散性が高い。このため、高分子を原料とする光学フィルム(樹脂組成物)に被覆アルカリ土類金属化合物微粒子を添加するときに分散媒として有機溶媒を用いた場合、アルカリ土類金属化合物の機能を光学フィルム(樹脂組成物)に付与することができると同時に、アルカリ土類金属化合物微粒子による透過光の遮断又は散乱が少なくなるため、光学フィルムの透明性を確保することができる。特に、本発明の第1の態様の実施形態である被覆針状炭酸ストロンチウム微粒子と同様に表面処理された被覆アルカリ土類金属化合物微粒子は、高い分散性に加え、耐熱性も高い。このため、被覆アルカリ土類金属化合物微粒子を樹脂に分散させ、高温で成膜した場合でも高い分散性を維持することができる。光学フィルム(樹脂組成物)の原料となる高分子としては、例えば、ポリカーボネート、ポリメチルメタクリレート、セルロースエステル、ポリスチレン、スチレンアクリロニトリル共重合体、ポリフマル酸ジエステル、ポリアリレート、ポリエーテルスルフォン、ポリオレフィン、マレイミド系共重合体、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリアミド、ポリウレタン、ポリウレタンアクリレートが挙げられる。この光学フィルム(樹脂組成物)を偏光板又は位相差フィルム等として備える画像表示装置は、画面を明るく、かつ、鮮明にすることができる。
(3) Application of coated alkaline earth metal compound fine particles Similar to the coated acicular strontium carbonate fine particles of the present embodiment, the surface-treated coated alkaline earth metal compound fine particles have high dispersibility in organic solvents. For this reason, when an organic solvent is used as a dispersion medium when the coated alkaline earth metal compound fine particles are added to an optical film (resin composition) made of a polymer as a raw material, the function of the alkaline earth metal compound is improved. At the same time, since the blocking or scattering of transmitted light by the alkaline earth metal compound fine particles is reduced, the transparency of the optical film can be ensured. In particular, the coated alkaline earth metal compound fine particles surface-treated in the same manner as the coated acicular strontium carbonate fine particles according to the embodiment of the first aspect of the present invention have high heat resistance in addition to high dispersibility. Therefore, even when the coated alkaline earth metal compound fine particles are dispersed in the resin and formed into a film at a high temperature, high dispersibility can be maintained. Examples of the polymer used as a raw material for the optical film (resin composition) include polycarbonate, polymethyl methacrylate, cellulose ester, polystyrene, styrene acrylonitrile copolymer, polyfumaric acid diester, polyarylate, polyethersulfone, polyolefin, and maleimide. Examples thereof include copolymers, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyamide, polyurethane, and polyurethane acrylate. An image display device provided with this optical film (resin composition) as a polarizing plate or a retardation film can make the screen bright and clear.

上記高分子への被覆アルカリ土類金属化合物微粒子の分散方法としては、被覆アルカリ土類金属化合物微粒子の分散液に高分子を溶解する方法(溶液キャスト法)、アルカリ土類金属化合物の分散液に高分子を均一に溶解し、その後溶媒を除去し、ペレット化又は粉化する方法、アルカリ土類金属化合物と高分子を押出機等で溶融混練する方法(溶融混練法)などが挙げられる。また、あらかじめマスターバッチを作製し、混練機にて混練を行ってもよい。マスターバッチは、上記の溶液キャスト法、溶融混練法などで作製できる。また、樹脂組成物と適当な溶媒とを混合したドープ溶液を調製し、塗膜により光学フィルムを成膜してもよい。このような溶媒の種類としては特に制限はなく、樹脂組成物の性質等に応じて適宜選択される。溶媒としては、上記に例示したものを用いることができる。   As the dispersion method of the coated alkaline earth metal compound fine particles in the above polymer, a method of dissolving the polymer in the dispersion of the coated alkaline earth metal compound fine particles (solution casting method), a dispersion of the alkaline earth metal compound, Examples thereof include a method of uniformly dissolving the polymer, then removing the solvent and pelletizing or pulverizing, and a method of melt-kneading the alkaline earth metal compound and the polymer with an extruder or the like (melt-kneading method). Alternatively, a master batch may be prepared in advance and kneaded with a kneader. The master batch can be produced by the above solution casting method, melt kneading method, or the like. Moreover, the optical film may be formed into a film by preparing a dope solution in which the resin composition and a suitable solvent are mixed. There is no restriction | limiting in particular as a kind of such solvent, According to the property etc. of a resin composition, it selects suitably. As the solvent, those exemplified above can be used.

以下、本発明の実施例及び比較例を詳細に説明する。なお、実施例1、2は本発明の第1の態様の実施形態の1つであり、実施例3は本発明の第5及び第6の態様の実施形態の1つであるが、本発明の態様はこれらの実施形態に限定されず、種々の変形が可能である。   Hereinafter, examples and comparative examples of the present invention will be described in detail. Examples 1 and 2 are one of the embodiments of the first aspect of the present invention, and Example 3 is one of the embodiments of the fifth and sixth aspects of the present invention. The aspect is not limited to these embodiments, and various modifications are possible.

(1)被覆針状炭酸ストロンチウム微粒子の製造方法
(1−1)実施例1
10℃の純水3Lに、水酸化ストロンチウム八水和物366g(水酸化ストロンチウム167.6g)を添加、混合して5.0質量%の水酸化ストロンチウムの水性懸濁液を調製する。調製した水酸化ストロンチウムの水性懸濁液を10℃で撹拌しながら、水酸化ストロンチウム100質量部に対して8.5質量部(14.2g)の酒石酸を有機酸として添加した後、500mL/分(水酸化ストロンチウム1gに対して3.0mL/分)の流量で二酸化炭素を導入し、水酸化ストロンチウムを炭酸化する。炭酸化の終点は、一般には水性懸濁液のpHが7以下になる時点であるが、本実施例ではpHが7になった後、さらに30分間撹拌を続け、球状炭酸ストロンチウム微粒子の水性分散液を得る。球状炭酸ストロンチウム微粒子の水性分散液を95℃で12時間保持して粒成長させ(熟成工程)、針状炭酸ストロンチウム微粒子の水性分散液を得る。
(1) Manufacturing method of coated acicular strontium carbonate fine particles (1-1) Example 1
To 3 L of pure water at 10 ° C., 366 g of strontium hydroxide octahydrate (167.6 g of strontium hydroxide) is added and mixed to prepare an aqueous suspension of 5.0 mass% strontium hydroxide. While stirring the prepared aqueous suspension of strontium hydroxide at 10 ° C., 8.5 parts by mass (14.2 g) of tartaric acid was added as an organic acid to 100 parts by mass of strontium hydroxide, and then 500 mL / min. Carbon dioxide is introduced at a flow rate (3.0 mL / min for 1 g of strontium hydroxide) to carbonate strontium hydroxide. The end point of carbonation is generally when the pH of the aqueous suspension becomes 7 or less, but in this example, after the pH reached 7, stirring was continued for another 30 minutes to disperse the aqueous dispersion of spherical strontium carbonate fine particles. Obtain a liquid. An aqueous dispersion of spherical strontium carbonate fine particles is held at 95 ° C. for 12 hours to cause grain growth (ripening step) to obtain an aqueous dispersion of acicular strontium carbonate fine particles.

針状炭酸ストロンチウム微粒子の水性分散液に表面処理剤を添加する。本実施例の表面処理剤はフェニル基を有し、化学式1及び化学式1のRが化学式2で表されるポリオキシエチレンスチレン化フェニルエーテルリン酸エステルである。

Figure 2017130946
Figure 2017130946
A surface treatment agent is added to an aqueous dispersion of acicular strontium carbonate fine particles. The surface treating agent of this example is a polyoxyethylene styrenated phenyl ether phosphate ester having a phenyl group, wherein R in Chemical Formula 1 and Chemical Formula 1 is represented by Chemical Formula 2.
Figure 2017130946
Figure 2017130946

本実施例では、フェニル基を2〜4個とエチレンオキサイド鎖(EO鎖)を10個未満(n<10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステルと、フェニル基を2〜4個とEO鎖を10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステルの2種類を用いる。   In this example, polyoxyethylene styrenated phenyl ether phosphate ester containing 2 to 4 phenyl groups and less than 10 ethylene oxide chains (EO chains) (n <10), and 2 to 4 phenyl groups Two types of polyoxyethylene styrenated phenyl ether phosphates containing more than 10 EO chains (n> 10) are used.

針状炭酸ストロンチウム微粒子の水性分散液への表面処理剤の添加量は、針状炭酸ストロンチウム微粒子100質量部に対して30質量部である。針状炭酸ストロンチウム微粒子の水性分散液に表面処理剤を添加後、エム・テクニック株式会社製のクレアミックス(登録商標)を用いて水性分散液に35m/秒のせん断力を付与し(針状炭酸ストロンチウム微粒子の被覆工程)、被覆針状炭酸ストロンチウム微粒子の水性分散液を得る。被覆針状炭酸ストロンチウム微粒子の水性分散液を130℃に加熱した鉄板の表面に吹き付けて水を蒸発させ、鉄板の表面に残存する粒子を削ぎ取ることにより、被覆針状炭酸ストロンチウム微粒子を得る。   The addition amount of the surface treatment agent to the aqueous dispersion of acicular strontium carbonate fine particles is 30 parts by mass with respect to 100 parts by mass of acicular strontium carbonate fine particles. After adding a surface treatment agent to an aqueous dispersion of acicular strontium carbonate fine particles, a shear force of 35 m / sec was applied to the aqueous dispersion using CLEARMIX (registered trademark) manufactured by M Technique Co., Ltd. (acicular carbonate Strontium fine particle coating step), and an aqueous dispersion of coated needle-like strontium carbonate fine particles is obtained. The aqueous dispersion of coated acicular strontium carbonate fine particles is sprayed onto the surface of an iron plate heated to 130 ° C. to evaporate water, and the remaining particles on the surface of the iron plate are scraped off to obtain coated acicular strontium carbonate fine particles.

(1−2)実施例2
添加する表面処理剤を、化学式3で表されるポリ−N−ビニルアセトアミド(PNVA)とする以外は実施例1と同様の製造工程を行い、被覆針状炭酸ストロンチウム微粒子を得る。

Figure 2017130946
(1-2) Example 2
The same manufacturing process as in Example 1 is performed except that the surface treatment agent to be added is poly-N-vinylacetamide (PNVA) represented by Chemical Formula 3 to obtain coated needle-like strontium carbonate fine particles.
Figure 2017130946

(1−3)比較例1
本発明の第1の態様に対する比較例として、下記表面処理剤を添加する。表面処理剤以外は実施例1と同様の製造工程を行い、被覆針状炭酸ストロンチウム微粒子を得る。
(1-3) Comparative Example 1
As a comparative example for the first aspect of the present invention, the following surface treatment agent is added. Except for the surface treatment agent, the same production steps as in Example 1 are performed to obtain coated needle-like strontium carbonate fine particles.

比較例に用いる表面処理剤として、特許文献3に記載され、化学式6で表されるポリオキシアルキレンアルキルエーテルカルボン酸と、化学式1のRがフェニル基を含まないポリオキシアルキレンエーテルリン酸エステルを用いる。

Figure 2017130946
As the surface treatment agent used in the comparative example, a polyoxyalkylene alkyl ether carboxylic acid described in Patent Document 3 and represented by Chemical Formula 6 and a polyoxyalkylene ether phosphate ester in which R in Chemical Formula 1 does not contain a phenyl group are used. .
Figure 2017130946

化学式6のRは第3級炭素原子又は第4級炭素原子を含まない。Rは置換若しくは無置換のアルキル基又は置換若しくは無置換のアリール基を意味し、Eは炭素原子を1〜8個含むアルキレン基を意味する。aは1〜20であり、好ましくは2〜6である。本比較例では、炭素原子を12個含むRと炭素原子を2個含むEとa=3を有するポリオキシエチレンアルキルエーテルカルボン酸を用いた。用いたポリオキシエチレンアルキルエーテルカルボン酸の化学式を化学式7に示す。

Figure 2017130946
R 1 in Chemical Formula 6 does not contain a tertiary carbon atom or a quaternary carbon atom. R 1 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, and E 1 represents an alkylene group containing 1 to 8 carbon atoms. a is 1-20, Preferably it is 2-6. In this comparative example, R 1 containing 12 carbon atoms, E 1 containing 2 carbon atoms, and polyoxyethylene alkyl ether carboxylic acid having a = 3 were used. The chemical formula of the used polyoxyethylene alkyl ether carboxylic acid is shown in Chemical Formula 7.
Figure 2017130946

化学式1のRがフェニル基を含まないポリオキシアルキレンエーテルリン酸エステルとして、本比較例では、EO鎖を6個(n=6)含む化学式8及び化学式8のRが化学式9で表されるポリオキシエチレントリデシルエーテルリン酸エステルを用いる。

Figure 2017130946
Figure 2017130946
In this comparative example, R in Chemical Formula 1 is a polyoxyalkylene ether phosphate ester that does not contain a phenyl group. In this Comparative Example, Poly 8 in which 6 EO chains (n = 6) and R in Chemical Formula 8 are represented by Chemical Formula 9 Oxyethylene tridecyl ether phosphate is used.
Figure 2017130946
Figure 2017130946

(1−4)比較例2
本発明の第1の態様に対する比較例として、表面処理剤(分散剤)として汎用されているステアリン酸を添加する。エタノールに対し、針状炭酸ストロンチウム微粒子とステアリン酸を添加し、5時間攪拌して表面処理を行う。ステアリン酸の添加量は針状炭酸ストロンチウム微粒子100質量部に対して30質量部である。表面処理後、吸引ろ過して固形分を回収し、120℃で乾燥して被覆針状炭酸ストロンチウム微粒子を得る。
(1-4) Comparative Example 2
As a comparative example for the first aspect of the present invention, stearic acid, which is widely used as a surface treatment agent (dispersant), is added. Acicular strontium carbonate fine particles and stearic acid are added to ethanol, and the surface treatment is performed by stirring for 5 hours. The amount of stearic acid added is 30 parts by mass with respect to 100 parts by mass of acicular strontium carbonate fine particles. After the surface treatment, the solid content is collected by suction filtration and dried at 120 ° C. to obtain coated needle-like strontium carbonate fine particles.

(1−5)比較例3
本発明の第1の態様に対する比較例として、表面処理剤(分散剤)として汎用されているグリセリンステアレートを添加する。エタノールに対し、針状炭酸ストロンチウム微粒子とグリセリンステアレート(エキセルT95花王株式会社製)を添加し、50℃にて5時間攪拌して表面処理を行う。グリセリンステアレートの添加量は針状炭酸ストロンチウム微粒子100質量部に対して30質量部である。表面処理後、吸引ろ過して固形分を回収し、120℃で乾燥して被覆針状炭酸ストロンチウム微粒子を得る。
(1-5) Comparative Example 3
As a comparative example for the first aspect of the present invention, glycerol stearate, which is widely used as a surface treatment agent (dispersant), is added. Needle-shaped strontium carbonate fine particles and glyceryl stearate (excel T95 manufactured by Kao Corporation) are added to ethanol, and surface treatment is performed by stirring at 50 ° C. for 5 hours. The addition amount of glycerol stearate is 30 parts by mass with respect to 100 parts by mass of acicular strontium carbonate fine particles. After the surface treatment, the solid content is collected by suction filtration and dried at 120 ° C. to obtain coated needle-like strontium carbonate fine particles.

(1−6)実施例3
針状炭酸ストロンチウム微粒子100質量部に対して20質量部の下記表面処理剤を、針状炭酸ストロンチウム微粒子の水性分散液に添加する。表面処理剤及びその添加量以外は実施例1と同様の製造工程を行い、被覆針状炭酸ストロンチウム微粒子を得る。
(1-6) Example 3
20 parts by mass of the following surface treatment agent per 100 parts by mass of acicular strontium carbonate fine particles is added to the aqueous dispersion of acicular strontium carbonate fine particles. Except for the surface treatment agent and the amount added, the same production steps as in Example 1 are performed to obtain coated needle-like strontium carbonate fine particles.

実施例3に用いる表面処理剤は、化学式5で表される分岐型高級脂肪酸のうち、炭素原子を17個含むイソステアリン酸(x+y=14)及び15個含むイソパルミチン酸(x+y=12)とする。用いたイソステアリン酸とイソパルミチン酸の化学式をそれぞれ化学式10と化学式11に示す。

Figure 2017130946
Figure 2017130946
The surface treatment agent used in Example 3 is isostearic acid (x + y = 14) containing 17 carbon atoms and isopalmitic acid (x + y = 12) containing 17 carbon atoms among the branched higher fatty acids represented by Chemical Formula 5. . The chemical formulas of isostearic acid and isopalmitic acid used are shown in chemical formula 10 and chemical formula 11, respectively.
Figure 2017130946
Figure 2017130946

(1−7)比較例4
本発明の第5及び第6の態様に対する比較例として、下記表面処理剤を添加する。表面処理剤以外は実施例3と同様の製造工程を行い、被覆針状炭酸ストロンチウム微粒子を得る。
(1-7) Comparative Example 4
As a comparative example for the fifth and sixth aspects of the present invention, the following surface treatment agent is added. Except for the surface treatment agent, the same production steps as in Example 3 are performed to obtain coated needle-like strontium carbonate fine particles.

比較例に用いる表面処理剤として、特許文献3に記載され、化学式12で表されるポリオキシアルキレンアルキルエーテルカルボン酸を用いる。

Figure 2017130946
As the surface treating agent used in the comparative example, polyoxyalkylene alkyl ether carboxylic acid described in Patent Document 3 and represented by Chemical Formula 12 is used.
Figure 2017130946

化学式12のRは第3級炭素原子又は第4級炭素原子を含まない。Rは置換若しくは無置換のアルキル基又は置換若しくは無置換のアリール基を意味し、Eは炭素原子を1〜8個含むアルキレン基を意味する。aは1〜20の範囲であり、好ましくは2〜6の範囲である。本比較例では、炭素原子を18個含むRと、炭素原子を2個含むEと、a=2を有するポリオキシアルキレンアルキルエーテルカルボン酸を用いる。用いたポリオキシアルキレンアルキルエーテルカルボン酸の化学式を化学式13に示す。

Figure 2017130946
R 2 in Chemical Formula 12 does not contain a tertiary carbon atom or a quaternary carbon atom. R 2 represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group, and E 1 represents an alkylene group containing 1 to 8 carbon atoms. a is in the range of 1-20, preferably in the range of 2-6. In this comparative example, R 2 containing 18 carbon atoms, E 1 containing 2 carbon atoms, and a polyoxyalkylene alkyl ether carboxylic acid having a = 2 are used. The chemical formula of the used polyoxyalkylene alkyl ether carboxylic acid is shown in Chemical Formula 13.
Figure 2017130946

(2)評価
表面処理前の針状炭酸ストロンチウム微粒子(一次粒子)の形状並びに表面処理後の被覆針状炭酸ストロンチウム微粒子の耐熱性及び分散性を評価する。
(2) Evaluation The shape of the acicular strontium carbonate fine particles (primary particles) before the surface treatment and the heat resistance and dispersibility of the coated acicular strontium carbonate fine particles after the surface treatment are evaluated.

(2−1)針状炭酸ストロンチウム微粒子(一次粒子)の形状
表面処理前の針状炭酸ストロンチウム微粒子の水性分散液から一部を分取し、乾燥して、針状炭酸ストロンチウム微粒子を得る。得られた針状炭酸ストロンチウム微粒子を、電解放射型走査型電子顕微鏡(FE−SEM)を用いて撮影し、電子顕微鏡画像から1000個の針状炭酸ストロンチウム微粒子(一次粒子)について長径と短径を測定する。平均長径は35nmであり、平均アスペクト比(長径/短径)は2.3である。
(2-1) Shape of acicular strontium carbonate fine particles (primary particles) A portion of the aqueous dispersion of acicular strontium carbonate fine particles before surface treatment is taken and dried to obtain acicular strontium carbonate fine particles. The obtained acicular strontium carbonate fine particles were photographed using an electrolytic emission scanning electron microscope (FE-SEM), and the major and minor diameters of 1000 acicular strontium carbonate fine particles (primary particles) were obtained from an electron microscope image. taking measurement. The average major axis is 35 nm, and the average aspect ratio (major axis / minor axis) is 2.3.

(2−2)実施例1、2(第1の態様)及び比較例1〜3の耐熱性
実施例1、2(本発明の第1の態様の実施形態)及び比較例1〜3の被覆針状炭酸ストロンチウム微粒子の耐熱性を、TG−DTAを行うことによって評価する。TG−DTAの測定対象物は、表面処理後の被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)、表面処理前の針状炭酸ストロンチウム微粒子(表面処理前SrCO)及び表面処理剤とする。表面処理剤としては、本実施形態としてEO鎖を10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステル並びにPNVAを用い、比較例としてポリオキシエチレンアルキルエーテルカルボン酸、ポリオキシエチレントリデシルエーテルリン酸エステル、ステアリン酸及びグリセリンステアレートを用いる。TG−DTAの雰囲気としては、大気及び窒素を用いる。TG−DTA開始時の測定対象物の質量を100質量%とし、100℃〜300℃及び100℃〜250℃の温度範囲での測定対象物の質量減少率(質量%)を測定する。なお、表面処理剤の質量減少率は、100℃〜600℃(表面処理剤がすべて分解・揮発する温度)の温度範囲で減少する質量を表面処理剤の全吸着量(100質量%)とし、この全吸着量に対して100℃〜300℃及び100℃〜250℃の温度範囲で減少する質量の割合のことをいう。
(2-2) Heat resistance of Examples 1 and 2 (first aspect) and Comparative Examples 1 to 3 Coatings of Examples 1 and 2 (embodiments of the first aspect of the present invention) and Comparative Examples 1 to 3 The heat resistance of the acicular strontium carbonate fine particles is evaluated by performing TG-DTA. TG-DTA objects to be measured are coated acicular strontium carbonate fine particles after surface treatment (SrCO 3 after surface treatment + surface treatment agent), acicular strontium carbonate fine particles before surface treatment (SrCO 3 before surface treatment), and surface treatment. Use as an agent. As the surface treatment agent, polyoxyethylene styrenated phenyl ether phosphate ester and PNVA containing less than 10 EO chains (n <10) and more than 10 (n> 10) and PNVA are used as a comparative example. Oxyethylene alkyl ether carboxylic acid, polyoxyethylene tridecyl ether phosphate, stearic acid and glyceryl stearate are used. The atmosphere of TG-DTA is air and nitrogen. The mass of the measurement object at the start of TG-DTA is set to 100 mass%, and the mass reduction rate (mass%) of the measurement object in the temperature ranges of 100 ° C. to 300 ° C. and 100 ° C. to 250 ° C. is measured. The mass reduction rate of the surface treatment agent is defined as the total amount of adsorption (100% by mass) of the surface treatment agent, with the mass decreasing in the temperature range of 100 ° C. to 600 ° C. (temperature at which the surface treatment agent is all decomposed and volatilized). It means the proportion of mass that decreases in the temperature range of 100 ° C. to 300 ° C. and 100 ° C. to 250 ° C. with respect to the total adsorption amount.

(2−2−1)大気雰囲気及び100℃〜300℃の温度範囲
大気雰囲気中のTG−DTAにおける100℃〜300℃の温度範囲での質量減少率を表1に示す。

Figure 2017130946
(2-2-1) Air atmosphere and temperature range of 100 ° C. to 300 ° C. Table 1 shows mass reduction ratios in the temperature range of 100 ° C. to 300 ° C. in TG-DTA in the air atmosphere.
Figure 2017130946

EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステル並びにPNVAで表面処理され、表面処理剤を含む本実施形態の被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ10.95質量%、9.70質量%及び7.48質量%である。これに対して、比較例としてポリオキシエチレンアルキルエーテルカルボン酸及びポリオキシエチレントリデシルエーテルリン酸エステルで表面処理された被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ20.96質量%及び20.18質量%である。また、表面処理されていない針状炭酸ストロンチウム微粒子(表面処理前SrCO)の質量減少率は2.67質量%である。さらに、表面処理剤のみで質量減少率を測定すると、EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステル並びにPNVAはそれぞれ21.34質量%、25.49質量%及び23.40質量%である。これに対して、比較例に用いたポリオキシエチレンアルキルエーテルカルボン酸、ポリオキシエチレントリデシルエーテルリン酸エステル、ステアリン酸及びグリセリンステアレートはそれぞれ74.91質量%、86.78質量%、53.80質量%及び81.00質量%である。なお、ステアリン酸及びグリセリンステアレートで表面処理された被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は測定できなかった。これは、ステアリン酸及びグリセリンステアレートは炭酸ストロンチウム微粒子の表面に付着するための結合基を有していないため、炭酸ストロンチウム微粒子の表面に測定可能な量が付着することができなかったためと考えられる。The coated needle of this embodiment, which is surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester containing less than 10 EO chains (n <10) and more than 10 (n> 10) and PNVA and containing a surface treatment agent The mass reduction rate of the strontium carbonate fine particles (post-surface treatment SrCO 3 + surface treatment agent) is 10.95% by mass, 9.70% by mass and 7.48% by mass, respectively. On the other hand, as a comparative example, mass reduction of coated acicular strontium carbonate fine particles (SrCO 3 after surface treatment + surface treatment agent) surface-treated with polyoxyethylene alkyl ether carboxylic acid and polyoxyethylene tridecyl ether phosphate ester The rates are 20.96% by mass and 20.18% by mass, respectively. Moreover, the mass reduction rate of the acicular strontium carbonate fine particles not subjected to surface treatment (SrCO 3 before surface treatment) is 2.67% by mass. Further, when the mass reduction rate is measured only with the surface treatment agent, polyoxyethylene styrenated phenyl ether phosphate ester and PNVA containing less than 10 EO chains (n <10) and more than 10 (n> 10) respectively and PNVA are respectively 21.34% by mass, 25.49% by mass and 23.40% by mass. On the other hand, the polyoxyethylene alkyl ether carboxylic acid, polyoxyethylene tridecyl ether phosphate ester, stearic acid and glyceryl stearate used in the comparative examples were 74.91% by mass, 86.78% by mass and 53.%, respectively. 80% by mass and 81.00% by mass. In addition, the mass reduction rate of the coated acicular strontium carbonate fine particles (SrCO 3 + surface treatment agent after the surface treatment) surface-treated with stearic acid and glyceryl stearate could not be measured. This is probably because stearic acid and glyceryl stearate did not have a bonding group for adhering to the surface of the strontium carbonate fine particles, so that a measurable amount could not adhere to the surface of the strontium carbonate fine particles. .

以上より、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル及びPNVAで表面処理された本実施形態の被覆針状炭酸ストロンチウム微粒子は表面処理剤の質量減少率が小さく、耐熱性が比較例の従来技術を大きく上回っていることがわかる。したがって、本実施形態の被覆針状炭酸ストロンチウム微粒子は、光学フィルムの高温での成膜時に高い分散性を維持することができる。   From the above, the coated needle-like strontium carbonate fine particles of this embodiment surface-treated with polyoxyethylene styrenated phenyl ether phosphate and PNVA have a small mass reduction rate of the surface treatment agent, and the heat resistance is the conventional technology of the comparative example. You can see that it is much higher. Therefore, the coated acicular strontium carbonate fine particles of the present embodiment can maintain high dispersibility when the optical film is formed at a high temperature.

(2−2−2)大気雰囲気及び100℃〜250℃の温度範囲
大気雰囲気中のTG−DTAにおける100℃〜250℃の温度範囲での質量減少率を表2に示す。

Figure 2017130946
(2-2-2) Air atmosphere and temperature range of 100 ° C. to 250 ° C. Table 2 shows mass reduction rates in the temperature range of 100 ° C. to 250 ° C. in TG-DTA in the air atmosphere.
Figure 2017130946

EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステル並びにPNVAで表面処理され、表面処理剤を含む本実施形態の被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ2.45質量%、1.59質量%及び1.70質量%である。これに対して、比較例としてポリオキシエチレンアルキルエーテルカルボン酸及びポリオキシエチレントリデシルエーテルリン酸エステルで表面処理された被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ16.29質量%及び17.00質量%である。また、表面処理されていない針状炭酸ストロンチウム微粒子(表面処理前SrCO)の質量減少率は0.90質量%である。さらに、表面処理剤のみで質量減少率を測定すると、本実施形態に用いた、EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステル並びにPNVAはそれぞれ1.62質量%、1.50質量%及び4.10質量%である。これに対して、比較例に用いたポリオキシエチレンアルキルエーテルカルボン酸、ポリオキシエチレントリデシルエーテルリン酸エステル、ステアリン酸及びグリセリンステアレートはそれぞれ36.90質量%、19.38質量%、13.90質量%及び47.00質量%である。なお、ステアリン酸及びグリセリンステアレートで表面処理された被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、100℃〜300℃の温度範囲の場合と同様に測定できなかった。これは、ステアリン酸及びグリセリンステアレートは炭酸ストロンチウム微粒子の表面に付着するための結合基を有していないため、炭酸ストロンチウム微粒子の表面に測定可能な量が付着することができなかったためと考えられる。The coated needle of this embodiment, which is surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester containing less than 10 EO chains (n <10) and more than 10 (n> 10) and PNVA and containing a surface treatment agent The mass reduction rate of the strontium carbonate fine particles (post-surface treatment SrCO 3 + surface treatment agent) is 2.45% by mass, 1.59% by mass and 1.70% by mass, respectively. On the other hand, as a comparative example, mass reduction of coated acicular strontium carbonate fine particles (SrCO 3 after surface treatment + surface treatment agent) surface-treated with polyoxyethylene alkyl ether carboxylic acid and polyoxyethylene tridecyl ether phosphate ester The rates are 16.29% by mass and 17.00% by mass, respectively. Moreover, the mass reduction rate of the acicular strontium carbonate fine particles not subjected to surface treatment (SrCO 3 before surface treatment) is 0.90 mass%. Further, when the mass reduction rate is measured only with the surface treatment agent, polyoxyethylene styrenated phenyl ether containing less than 10 EO chains (n <10) and more than 10 (n> 10), respectively, used in this embodiment. Phosphate ester and PNVA are 1.62% by mass, 1.50% by mass and 4.10% by mass, respectively. On the other hand, the polyoxyethylene alkyl ether carboxylic acid, polyoxyethylene tridecyl ether phosphate, stearic acid and glyceryl stearate used in the comparative examples were 36.90% by mass, 19.38% by mass, and 13. 90 mass% and 47.00 mass%. In addition, the mass reduction rate of the coated acicular strontium carbonate fine particles (surface-treated SrCO 3 + surface treatment agent) surface-treated with stearic acid and glyceryl stearate was measured in the same manner as in the temperature range of 100 ° C. to 300 ° C. could not. This is probably because stearic acid and glyceryl stearate did not have a bonding group for adhering to the surface of the strontium carbonate fine particles, so that a measurable amount could not adhere to the surface of the strontium carbonate fine particles. .

以上より、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステル及びPNVAで表面処理された本実施形態の被覆針状炭酸ストロンチウム微粒子は表面処理剤の質量減少率が小さく、耐熱性が比較例の従来技術を大きく上回っていることがわかる。したがって、本実施形態の被覆針状炭酸ストロンチウム微粒子は、光学フィルムの高温での成膜時に高い分散性を維持することができる。   From the above, the coated needle-like strontium carbonate fine particles of this embodiment surface-treated with polyoxyethylene styrenated phenyl ether phosphate and PNVA have a small mass reduction rate of the surface treatment agent, and the heat resistance is the conventional technology of the comparative example. You can see that it is much higher. Therefore, the coated acicular strontium carbonate fine particles of the present embodiment can maintain high dispersibility when the optical film is formed at a high temperature.

(2−2−3)窒素雰囲気及び100℃〜250℃の温度範囲
窒素雰囲気中のTG−DTAにおける100℃〜250℃の温度範囲での質量減少率を表3に示す。

Figure 2017130946
(2-2-3) Nitrogen atmosphere and temperature range of 100 ° C. to 250 ° C. Table 3 shows mass reduction ratios in the temperature range of 100 ° C. to 250 ° C. in TG-DTA in a nitrogen atmosphere.
Figure 2017130946

EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステルで表面処理され、表面処理剤を含む本実施形態の被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ2.27質量%、1.49質量%である。これに対して、比較例としてポリオキシエチレンアルキルエーテルカルボン酸及びポリオキシエチレントリデシルエーテルリン酸エステルで表面処理された被覆針状炭酸ストロンチウム微粒子(表面処理後SrCO+表面処理剤)の質量減少率は、それぞれ3.67質量%及び5.50質量%である。The coated needle-like carbonic acid of this embodiment, which is surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester containing less than 10 EO chains (n <10) and more than 10 (n> 10), respectively, and containing a surface treating agent The mass reduction ratios of the strontium fine particles (post-surface treatment SrCO 3 + surface treatment agent) are 2.27 mass% and 1.49 mass%, respectively. On the other hand, as a comparative example, mass reduction of coated acicular strontium carbonate fine particles (SrCO 3 after surface treatment + surface treatment agent) surface-treated with polyoxyethylene alkyl ether carboxylic acid and polyoxyethylene tridecyl ether phosphate ester The rates are 3.67% by mass and 5.50% by mass, respectively.

以上より、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルで表面処理された本実施形態の被覆針状炭酸ストロンチウム微粒子は表面処理剤の質量減少率が小さく、耐熱性が比較例の従来技術を大きく上回っていることがわかる。したがって、本実施形態の被覆針状炭酸ストロンチウム微粒子は、光学フィルムの高温での成膜時に高い分散性を維持することができる。   From the above, the coated needle-like strontium carbonate fine particles of this embodiment surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester have a small mass reduction rate of the surface treatment agent, and the heat resistance greatly exceeds the conventional technology of the comparative example. You can see that Therefore, the coated acicular strontium carbonate fine particles of the present embodiment can maintain high dispersibility when the optical film is formed at a high temperature.

(2−3)被覆針状炭酸ストロンチウム微粒子の分散性
実施例1、2(本発明の第1の態様)及び比較例1並びに実施例3(第5及び第6の態様)及び比較例4の被覆針状炭酸ストロンチウム微粒子の分散性を、動的光散乱法を用いて個数基準粒度分布を測定することによって評価する。
(2-3) Dispersibility of coated needle-like strontium carbonate fine particles Examples 1 and 2 (first aspect of the present invention), Comparative Example 1 and Example 3 (5th and 6th aspects) and Comparative Example 4 The dispersibility of the coated acicular strontium carbonate fine particles is evaluated by measuring the number-based particle size distribution using the dynamic light scattering method.

(2−3−1)被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液の製造
被覆針状炭酸ストロンチウム微粒子の分散性を評価するために、本実施形態(第1の態様並びに第5及び第6の態様)の被覆針状炭酸ストロンチウム微粒子を有機溶媒に投入、撹拌混合して、被覆針状炭酸ストロンチウム微粒子の有機溶媒分散液を製造する。有機溶媒は、実施例1(第1の態様)の被覆針状炭酸ストロンチウム微粒子にはNMPを用い、実施例3(第5及び第6の態様)の被覆針状炭酸ストロンチウム微粒子にはn−ヘキサンを用いる。被覆針状炭酸ストロンチウム微粒子の濃度は1質量%である。撹拌混合には、超音波ホモジナイザーを用い、撹拌混合時間は3分とする。その後、目開き1μmのシリンジフィルターを用いて異物を除去する。
(2-3-1) Production of organic solvent dispersion of coated needle-like strontium carbonate fine particles In order to evaluate the dispersibility of the coated needle-like strontium carbonate fine particles, the present embodiment (first aspect and fifth and sixth The coated needle-like strontium carbonate fine particles of the aspect) are put into an organic solvent and mixed with stirring to produce an organic solvent dispersion of the coated needle-like strontium carbonate fine particles. As the organic solvent, NMP is used for the coated acicular strontium carbonate fine particles of Example 1 (first aspect), and n-hexane is used for the coated acicular strontium carbonate fine particles of Example 3 (fifth and sixth aspects). Is used. The concentration of the coated acicular strontium carbonate fine particles is 1% by mass. For stirring and mixing, an ultrasonic homogenizer is used, and the stirring and mixing time is 3 minutes. Thereafter, the foreign matter is removed using a syringe filter having an opening of 1 μm.

(2−3−2)実施例1(第1の態様)の分散性
実施例1(第1の態様)及び比較例1の個数基準粒度分布のD50(粒子を粒径の小さい方から順に並べたとき50%となる粒子の粒径)を表4に示す。

Figure 2017130946
(2-3-2) Dispersibility of Example 1 (first aspect) D50 of the number-based particle size distribution of Example 1 (first aspect) and Comparative Example 1 (particles are arranged in order from the smallest particle diameter) Table 4 shows the particle diameter of the particles that is 50% when measured.
Figure 2017130946

EO鎖をそれぞれ10個未満(n<10)及び10個超(n>10)含むポリオキシエチレンスチレン化フェニルエーテルリン酸エステルで表面処理された本実施形態の被覆針状炭酸ストロンチウム微粒子のD50は、それぞれ66.1nm及び33.3nmである。これに対して、比較例としてポリオキシエチレンアルキルエーテルカルボン酸及びポリオキシエチレントリデシルエーテルリン酸エステルで表面処理された被覆針状炭酸ストロンチウム微粒子は、いずれも個数基準粒度分布を測定することができない。これは、比較例の被覆針状炭酸ストロンチウム微粒子はいずれも凝集し、目開き1μmのシリンジフィルターを通過することができないためである。   D50 of the coated needle-like strontium carbonate fine particles of this embodiment surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester each containing less than 10 EO chains (n <10) and more than 10 (n> 10) , 66.1 nm and 33.3 nm, respectively. On the other hand, as a comparative example, none of the coated needle-like strontium carbonate fine particles surface-treated with polyoxyethylene alkyl ether carboxylic acid and polyoxyethylene tridecyl ether phosphate can measure the number-based particle size distribution. . This is because all of the coated needle-like strontium carbonate fine particles of the comparative example aggregate and cannot pass through a syringe filter having an opening of 1 μm.

分散媒がNMPの場合、針状炭酸ストロンチウム微粒子の凝集力が強く作用し、従来の表面処理剤では被覆針状炭酸ストロンチウム微粒子の分散性を維持することができないと考えられる。したがって、ポリオキシエチレンスチレン化フェニルエーテルリン酸エステルで表面処理された本実施形態の被覆針状炭酸ストロンチウム微粒子は、有機溶媒(特に、疎水性分散媒)に対する分散性が比較例の従来技術を大きく上回っていることがわかる。   When the dispersion medium is NMP, the cohesive force of the acicular strontium carbonate fine particles acts strongly, and it is considered that the dispersibility of the coated acicular strontium carbonate fine particles cannot be maintained with the conventional surface treatment agent. Therefore, the coated needle-like strontium carbonate fine particles of this embodiment surface-treated with polyoxyethylene styrenated phenyl ether phosphate ester have a greater dispersibility in organic solvents (especially hydrophobic dispersion media) than in the comparative example. You can see that it is higher.

(3−2−3−2)実施例3(第5及び第6の態様)の分散性
実施例3(第5及び第6の態様)及び比較例4の個数基準粒度分布のD50を表5に示す。

Figure 2017130946
(3-2-3-2) Dispersibility of Example 3 (Fifth and Sixth Aspects) Table 5 shows D50 of the number-based particle size distributions of Example 3 (Fifth and Sixth Aspects) and Comparative Example 4. Shown in
Figure 2017130946

比較例であるポリオキシアルキレンアルキルエーテルカルボン酸を分散剤に用いたときのD50は107.4nmである。これに対して、本実施形態のイソステアリン酸及びイソパルミチン酸を分散剤に用いたときのD50はそれぞれ58.1nm及び74.4nmである。本実施形態の被覆針状炭酸ストロンチウム微粒子の疎水性分散媒に対する分散性が比較例を大きく上回っていることがわかる。   D50 when the polyoxyalkylene alkyl ether carboxylic acid which is a comparative example is used for a dispersing agent is 107.4 nm. On the other hand, D50 when the isostearic acid and the isopalmitic acid of this embodiment are used for a dispersing agent is 58.1 nm and 74.4 nm, respectively. It can be seen that the dispersibility of the coated acicular strontium carbonate fine particles of the present embodiment in the hydrophobic dispersion medium greatly exceeds the comparative example.

なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。したがって、このような変形例はすべて本発明の範囲に含まれる。例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、被覆アルカリ土類金属化合物微粒子、被覆アルカリ土類金属化合物微粒子を分散した有機溶媒分散液及び光学フィルム並びにその光学フィルムを備える画像表示装置等の構成及び動作も本実施形態で説明したものに限定されず、種々の変形が可能である。   Although the present embodiment has been described in detail as described above, it will be easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. Therefore, all such modifications are included in the scope of the present invention. For example, a term described with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration and operation of the coated alkaline earth metal compound fine particles, the organic solvent dispersion liquid in which the coated alkaline earth metal compound fine particles are dispersed, the optical film, and the image display device including the optical film are also described in this embodiment. Without being limited, various modifications are possible.

Claims (12)

アルカリ土類金属化合物微粒子の表面が表面処理剤で被覆された被覆アルカリ土類金属化合物微粒子であって、
大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の前記表面処理剤の質量を100質量%としたとき、100℃〜300℃の温度範囲での前記表面処理剤の質量減少率が30質量%以下であることを特徴とする被覆アルカリ土類金属化合物微粒子。
The surface of the alkaline earth metal compound fine particle is a coated alkaline earth metal compound fine particle coated with a surface treatment agent,
When TG-DTA is performed in an air atmosphere, when the mass of the surface treatment agent at the start of TG-DTA is 100% by mass, the mass reduction rate of the surface treatment agent in the temperature range of 100 ° C. to 300 ° C. Coated alkaline earth metal compound fine particles, characterized in that it is 30% by mass or less.
請求項1に記載の被覆アルカリ土類金属化合物微粒子において、
前記表面処理剤は、前記アルカリ土類金属化合物微粒子100質量部に対して1〜50質量部であって、
大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の前記被覆アルカリ土類金属化合物微粒子の質量を100質量%としたとき、100℃〜300℃の温度範囲での前記被覆アルカリ土類金属化合物微粒子の質量減少率が20質量%以下であることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to claim 1,
The surface treatment agent is 1 to 50 parts by mass with respect to 100 parts by mass of the alkaline earth metal compound fine particles,
When TG-DTA is performed in an air atmosphere, the coated alkaline earth in a temperature range of 100 ° C. to 300 ° C. when the mass of the coated alkaline earth metal compound fine particles at the start of TG-DTA is 100% by mass. Coated alkaline earth metal compound fine particles, wherein the mass reduction rate of the metal compound fine particles is 20% by mass or less.
請求項1又は2に記載の被覆アルカリ土類金属化合物微粒子において、
大気雰囲気中でTG−DTAを行うと、TG−DTA開始時の前記表面処理剤の質量を100質量%としたとき、100℃〜250℃の温度範囲での前記表面処理剤の質量減少率が5質量%以下であることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to claim 1 or 2,
When TG-DTA is performed in an air atmosphere, when the mass of the surface treatment agent at the start of TG-DTA is 100% by mass, the mass reduction rate of the surface treatment agent in the temperature range of 100 ° C. to 250 ° C. Coated alkaline earth metal compound fine particles characterized by being 5% by mass or less.
請求項1乃至3のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子において、
1質量%の前記被覆アルカリ土類金属化合物微粒子を有機溶媒のN−メチル−2−ピロリドン(NMP)に分散した有機溶媒分散液の個数基準粒度分布を、動的光散乱法を用いて測定すると、前記個数基準粒度分布のD50が100nm以下であることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to any one of claims 1 to 3,
When the number-based particle size distribution of an organic solvent dispersion in which 1% by mass of the coated alkaline earth metal compound fine particles are dispersed in N-methyl-2-pyrrolidone (NMP) as an organic solvent is measured using a dynamic light scattering method. The coated alkaline earth metal compound fine particles, wherein the number-based particle size distribution D50 is 100 nm or less.
請求項1乃至4のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子において、
前記表面処理剤がフェニル基を有することを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to any one of claims 1 to 4,
Coated alkaline earth metal compound fine particles, wherein the surface treatment agent has a phenyl group.
請求項5に記載の被覆アルカリ土類金属化合物微粒子において、
前記表面処理剤がポリオキシエチレンスチレン化フェニルエーテルリン酸エステルであることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to claim 5,
Coated alkaline earth metal compound fine particles, wherein the surface treatment agent is polyoxyethylene styrenated phenyl ether phosphate.
請求項1乃至3のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子において、
前記表面処理剤が非イオン性ポリマーであることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to any one of claims 1 to 3,
Coated alkaline earth metal compound fine particles, wherein the surface treatment agent is a nonionic polymer.
請求項7に記載の被覆アルカリ土類金属化合物微粒子において、
前記表面処理剤がポリ−N−ビニルアセトアミドであることを特徴とする被覆アルカリ土類金属化合物微粒子。
In the coated alkaline earth metal compound fine particles according to claim 7,
Coated alkaline earth metal compound fine particles, wherein the surface treatment agent is poly-N-vinylacetamide.
請求項1乃至8のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子において、
前記アルカリ土類金属化合物微粒子が針状炭酸ストロンチウム微粒子であることを特徴とする被覆アルカリ土類金属化合物微粒子。
The coated alkaline earth metal compound fine particle according to any one of claims 1 to 8,
Coated alkaline earth metal compound fine particles, wherein the alkaline earth metal compound fine particles are acicular strontium carbonate fine particles.
請求項1乃至9のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子が有機溶媒に分散されていることを特徴とする有機溶媒分散液。   An organic solvent dispersion, wherein the coated alkaline earth metal compound fine particles according to any one of claims 1 to 9 are dispersed in an organic solvent. 請求項1乃至9のいずれか1項に記載の被覆アルカリ土類金属化合物微粒子が樹脂に分散されていることを特徴とする樹脂組成物。   A resin composition, wherein the coated alkaline earth metal compound fine particles according to claim 1 are dispersed in a resin. 請求項11に記載の樹脂組成物が画像表示装置に備えられていることを特徴とする画像表示装置。   An image display device comprising the resin composition according to claim 11 in an image display device.
JP2017564259A 2016-01-29 2017-01-24 Coated alkaline earth metal compound fine particles, organic solvent dispersion, resin composition and image display device Active JP6834990B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2016015870 2016-01-29
JP2016015870 2016-01-29
JP2016063472 2016-03-28
JP2016063472 2016-03-28
PCT/JP2017/002296 WO2017130946A1 (en) 2016-01-29 2017-01-24 Coated fine particles of alkaline-earth metal compound, dispersion in organic solvent, resin composition, and image display device

Publications (2)

Publication Number Publication Date
JPWO2017130946A1 true JPWO2017130946A1 (en) 2018-11-29
JP6834990B2 JP6834990B2 (en) 2021-02-24

Family

ID=59398000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017564259A Active JP6834990B2 (en) 2016-01-29 2017-01-24 Coated alkaline earth metal compound fine particles, organic solvent dispersion, resin composition and image display device

Country Status (5)

Country Link
JP (1) JP6834990B2 (en)
KR (1) KR20180110672A (en)
CN (1) CN108602687B (en)
TW (1) TW201741242A (en)
WO (1) WO2017130946A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3200272A1 (en) 2015-12-16 2017-06-22 6K Inc. Spheroidal dehydrogenated metals and metal alloy particles
CN111712463A (en) * 2018-05-01 2020-09-25 宇部兴产株式会社 Strontium carbonate particles, optical film, and image display device
KR20220006079A (en) * 2019-04-29 2022-01-14 글로벌 어드밴스드 메탈스 유에스에이, 아이엔씨. Ti-Zr alloy powder and anode containing same
JP2023512391A (en) 2019-11-18 2023-03-27 シックスケー インコーポレイテッド Unique feedstock and manufacturing method for spherical powders
CN114787403B (en) * 2019-12-13 2023-08-04 轻材料与技术研究所有限责任公司 Powder aluminum material
US11590568B2 (en) * 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
CN116034496A (en) 2020-06-25 2023-04-28 6K有限公司 Microcosmic composite alloy structure
KR20230073182A (en) 2020-09-24 2023-05-25 6케이 인크. Systems, devices and methods for initiating plasma
JP2023548325A (en) 2020-10-30 2023-11-16 シックスケー インコーポレイテッド System and method for the synthesis of spheroidized metal powders
CN114291836B (en) * 2021-12-31 2023-09-19 连州市凯恩斯纳米材料有限公司 Calcium carbonate crystal form control agent, application thereof and preparation method of cubic calcium carbonate
WO2023145905A1 (en) * 2022-01-31 2023-08-03 Ube株式会社 Coated alkaline earth metal carbonate fine particles, resin composition and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013009A (en) * 2007-07-04 2009-01-22 Konica Minolta Opto Inc Method for producing inorganic fine particle powder, organic-inorganic composite material and optical element
JP2009096699A (en) * 2007-10-19 2009-05-07 Konica Minolta Opto Inc Method for producing dried powder of inorganic fine particles, composite resin material containing the dried powder, and optical element
WO2015141817A1 (en) * 2014-03-20 2015-09-24 宇部マテリアルズ株式会社 Needle-shaped strontium carbonate microparticles and dispersion liquid thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013009A (en) * 2007-07-04 2009-01-22 Konica Minolta Opto Inc Method for producing inorganic fine particle powder, organic-inorganic composite material and optical element
JP2009096699A (en) * 2007-10-19 2009-05-07 Konica Minolta Opto Inc Method for producing dried powder of inorganic fine particles, composite resin material containing the dried powder, and optical element
WO2015141817A1 (en) * 2014-03-20 2015-09-24 宇部マテリアルズ株式会社 Needle-shaped strontium carbonate microparticles and dispersion liquid thereof

Also Published As

Publication number Publication date
KR20180110672A (en) 2018-10-10
CN108602687A (en) 2018-09-28
CN108602687B (en) 2020-10-30
WO2017130946A1 (en) 2017-08-03
TW201741242A (en) 2017-12-01
JP6834990B2 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JPWO2017130946A1 (en) Coated alkaline earth metal compound fine particles, organic solvent dispersion, resin composition, and image display device
JP5390193B2 (en) Cellulose microparticles and dispersions and dispersions thereof
JP6555483B2 (en) Acicular strontium carbonate fine particles and dispersions thereof
US9102810B2 (en) Alkaline earth metal carbonate micropowder
JP2008285632A (en) High jetness carbon black dispersion, process for producing the same, and coating material composition using the high jetness carbon black dispersion
EP1818380A1 (en) Adhesive dispersion
WO2014058057A2 (en) Calcium carbonate filler for resin, and resin composition containing said filler
TW201625726A (en) Highly dispersible fine powder of alkaline earth metal compound, optical film, image display device and manufacturing method, method for evaluating dispersibility of fine powder, and device for evaluating dispersibility of fine powder
JP2008101051A (en) Surface treatment method of carbonate salt fine particle, and resin composition and film comprising fine particle
KR102251155B1 (en) Needle-like strontium carbonate fine powder and method for producing same
JP2004269653A (en) Light diffusing agent for synthetic resin film and light diffusing resin film using the light diffusing agent
CN114045611A (en) Preparation method of zinc oxide nanofiber membrane
JP5358132B2 (en) Method for producing composite fine particles
WO2015190556A1 (en) Barium titanate fine particle powder, dispersion, and coating film
JP6347134B2 (en) Strontium carbonate fine powder and method for producing the same
JP2006160874A (en) Method for producing resin particle
JPWO2020032238A1 (en) Alkaline earth metal carbonate fine powder and its production method, and alkaline earth metal carbonate fine powder-containing polymer composition and its production method
JP2008150511A (en) Manufacturing method of resin composition containing alkaline earth metal carbonate particles
JP2008144010A (en) Method for producing resin composition and resin composition film
JP6244164B2 (en) Acicular strontium carbonate fine powder
JP2004076207A (en) Chlorine-resistant agent for polyurethane fiber
TW202337941A (en) Coated alkaline earth metal carbonate fine particles, resin composition and image display device
JP2017066363A (en) Aggregate for dispersing resin and resin composition, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250