JPWO2017110455A1 - Pest control material and pest control method using the same - Google Patents

Pest control material and pest control method using the same Download PDF

Info

Publication number
JPWO2017110455A1
JPWO2017110455A1 JP2017557849A JP2017557849A JPWO2017110455A1 JP WO2017110455 A1 JPWO2017110455 A1 JP WO2017110455A1 JP 2017557849 A JP2017557849 A JP 2017557849A JP 2017557849 A JP2017557849 A JP 2017557849A JP WO2017110455 A1 JPWO2017110455 A1 JP WO2017110455A1
Authority
JP
Japan
Prior art keywords
carrier
pest control
test
pyrethroid compound
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017557849A
Other languages
Japanese (ja)
Other versions
JP6774717B2 (en
Inventor
千佳 小倉
千佳 小倉
邦一 前原
邦一 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth Chemical Co Ltd
Original Assignee
Earth Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59089381&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPWO2017110455(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Earth Chemical Co Ltd filed Critical Earth Chemical Co Ltd
Publication of JPWO2017110455A1 publication Critical patent/JPWO2017110455A1/en
Application granted granted Critical
Publication of JP6774717B2 publication Critical patent/JP6774717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Insects & Arthropods (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Abstract

本開示の害虫防除材は、担体と、この担体に保持された常温揮散性のピレスロイド系化合物とを含み、少なくとも下記の式(I)で示される量の常温揮散性のピレスロイド系化合物が、担体に保持されている。
保持量(mg)=100mg+A×B (I)
A:常温揮散性のピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B:使用期間(日数)
The pest control material of the present disclosure includes a carrier and a room temperature volatile pyrethroid compound retained on the carrier, and at least an amount of the room temperature volatile pyrethroid compound represented by the following formula (I) is represented by the carrier Is held in.
Retention amount (mg) = 100 mg + A × B (I)
A: Maximum volatilization amount per day of a room temperature volatile pyrethroid compound (mg / day)
B: Use period (days)

Description

本開示は、使用開始時から終了時まで、安定して優れた防除効果を発揮し得る害虫防除材およびそれを用いた害虫防除方法に関する。   The present disclosure relates to a pest control material that can stably exhibit an excellent control effect from the start to the end of use and a pest control method using the same.

従来、ネットなどの薬剤保持体に薬剤を含浸させた虫よけ材が報告されている(例えば、特許文献1および2)。このような虫よけ材は、薬剤としてトランスフルトリンやメトフルトリンなど自然蒸散する薬剤を使用し、飛翔害虫が家屋内などに侵入するのを防止するものである。このような虫よけ材は、一般に使用期間が定められている。   Conventionally, insect repellent materials in which a drug holding body such as a net is impregnated with a drug have been reported (for example, Patent Documents 1 and 2). Such an insect repellent material uses a natural transpiration agent such as transfluthrin or methfluthrin as the agent, and prevents flying insects from entering a house or the like. Such insect repellents generally have a fixed period of use.

このような虫よけ材は、薬剤含浸量が多い使用初期には十分な虫よけ効果を発揮する。しかし、使用終期に近づくと、薬剤含浸量の減少とともに効力が低下するため、使用開始時から終了時まで安定した効力を発揮させることができないという問題がある。   Such an insect repellent material exhibits a sufficient insect repellent effect at the beginning of use with a large amount of drug impregnation. However, as the end of use is approached, the efficacy decreases with a decrease in the amount of the impregnated drug, and there is a problem that stable efficacy cannot be exhibited from the start of use to the end of use.

特開2008−194034号公報JP 2008-194034 A 特開2011−19507号公報JP 2011-19507 A

本開示の課題は、使用開始時から終了時まで、安定して優れた防除効果を発揮し得る害虫防除材および害虫防除方法を提供することである。   An object of the present disclosure is to provide a pest control material and a pest control method that can stably exhibit an excellent control effect from the start to the end of use.

本開示の害虫防除材は、担体と、この担体に保持された常温揮散性のピレスロイド系化合物とを含み、少なくとも下記の式(I)で示される量の常温揮散性のピレスロイド系化合物が、担体に保持されている。さらに、本開示の害虫防除方法は、少なくとも下記の式(I)で示される量の常温揮散性のピレスロイド系化合物が保持された担体から、常温揮散性のピレスロイド系化合物を少なくとも0.05μg/m3の気中濃度となるように揮散させる。
保持量(mg)=100mg+A×B (I)
A:常温揮散性のピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B:使用期間(日数)
The pest control material of the present disclosure includes a carrier and a room temperature volatile pyrethroid compound retained on the carrier, and at least an amount of the room temperature volatile pyrethroid compound represented by the following formula (I) is represented by the carrier Is held in. Furthermore, the pest control method according to the present disclosure includes at least 0.05 μg / m of a room temperature volatile pyrethroid compound from a carrier on which a room temperature volatile pyrethroid compound in an amount represented by the following formula (I) is held. Volatilize to an air concentration of 3 .
Retention amount (mg) = 100 mg + A × B (I)
A: Maximum volatilization amount per day of a room temperature volatile pyrethroid compound (mg / day)
B: Use period (days)

本開示によれば、使用開始時から終了時まで、安定して優れた害虫に対する防除効果が発揮される。   According to the present disclosure, a stable and excellent pest control effect is exhibited from the start to the end of use.

実施例1および2で行った侵入阻害試験(準自然環境下)の方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of the penetration | invasion inhibition test (under semi-natural environment) performed in Example 1 and 2. FIG. 実施例3および比較例1で行った侵入阻害試験(自然環境下)の方法を説明するための説明図である。It is explanatory drawing for demonstrating the method of the penetration | invasion inhibition test (under natural environment) performed in Example 3 and Comparative Example 1. FIG. 実施例4および5で行ったノックダウン効果の検証方法を説明するための説明図である。It is explanatory drawing for demonstrating the verification method of the knockdown effect performed in Example 4 and 5. FIG. 実施例7で用いた揮散量を測定するための試験装置を示す説明図であり、図4(A)は試験装置の外観を示し、図4(B)は試験装置の内側を示す。It is explanatory drawing which shows the test apparatus for measuring the volatilization amount used in Example 7, FIG. 4 (A) shows the external appearance of a test apparatus, FIG.4 (B) shows the inner side of a test apparatus. 実施例8〜11で用いた気中濃度を測定するための試験装置を示す説明図であり、図5(A)は試験装置の外観を示し、図5(B)は試験装置の内側を示す。It is explanatory drawing which shows the test apparatus for measuring the air | atmosphere density | concentration used in Examples 8-11, FIG. 5 (A) shows the external appearance of a test apparatus, FIG.5 (B) shows the inner side of a test apparatus. . 実施例12で行った60日間の実地試験の方法を説明するための説明図である。FIG. 10 is an explanatory diagram for explaining a method of a 60-day field test performed in Example 12.

本開示の害虫防除材は、担体とこの担体に保持された常温揮散性のピレスロイド系化合物(以下、単に「ピレスロイド系化合物」と記載する場合がある)とを含む。本明細書において「防除」とは、害虫の侵入を阻止すること(忌避)、害虫を駆除すること(殺虫)、害虫をノックダウンさせること、および害虫に不快行動(例えば吸血行動、刺咬行動など)を起こさせないようにすることの少なくとも1つを意味する。   The pest control material of the present disclosure includes a carrier and a room temperature volatile pyrethroid compound (hereinafter sometimes simply referred to as “pyresroid compound”) held on the carrier. In this specification, “control” refers to preventing the invasion of pests (repelling), extinguishing the pests (insecticidal), knocking down the pests, and causing the pests to be uncomfortable (for example, blood sucking behavior, biting behavior) Etc.) means at least one of preventing the occurrence of the above.

本開示の害虫防除材に用いられる担体は、ピレスロイド系化合物を保持できれば特に限定されない。担体の材料としては、例えば、糸(撚り糸など)、不織布、木材、パルプ(紙)、無機高分子物質、無機多孔質物質(ケイ酸塩、シリカ、ゼオライトなど)、有機高分子物質(セルロース、ポリエステル、ポリエチレン、ポリプロピレン、ポリビニルアルコールなど)などが挙げられる。また、自重の数倍以上を保持できる担体、例えば高吸液性ポリマー、綿、海綿体、連続気泡の発泡体などを用いてもよい。   The carrier used for the pest control material of the present disclosure is not particularly limited as long as it can hold a pyrethroid compound. Examples of the carrier material include yarn (twisted yarn, etc.), non-woven fabric, wood, pulp (paper), inorganic polymer substance, inorganic porous substance (silicate, silica, zeolite, etc.), organic polymer substance (cellulose, Polyester, polyethylene, polypropylene, polyvinyl alcohol, etc.). Further, a carrier capable of holding several times or more of its own weight, for example, a highly absorbent polymer, cotton, sponge, open cell foam, or the like may be used.

担体の形状は特に限定されず、揮散方法によって適宜設定すればよい。例えば、本開示の害虫防除材が自然揮散用の場合、ピレスロイド系化合物が効率よく大気中に放出されるように、網目構造を有するシート状の担体を用いることが好ましい。網目構造を有するシート状の担体としては、ネット状、メッシュ状、レース状などのように多数の連続的または断続的な空隙を有する生地が挙げられる。このような生地を形成している横糸および縦糸は、真直ぐであってもよいし、ジグザグになっていてもよい。   The shape of the carrier is not particularly limited, and may be appropriately set depending on the volatilization method. For example, when the pest control material of the present disclosure is for natural volatilization, it is preferable to use a sheet-like carrier having a network structure so that the pyrethroid compound is efficiently released into the atmosphere. Examples of the sheet-like carrier having a network structure include a cloth having a large number of continuous or intermittent voids such as a net shape, a mesh shape, and a lace shape. The weft and warp that form such a fabric may be straight or zigzag.

自然揮散用の場合、本開示の害虫防除材は、通常、窓やドア、室内などに吊り下げて使用される。この場合、網目構造を有するシート状の担体に保持されたピレスロイド系化合物は、重力方向に偏りやすい。吊り下げて使用しても、偏りを生じにくくするために、例えば、横糸にピレスロイド系化合物を含浸させ得る素材を採用し、縦糸に非含浸性の素材を採用するのが好ましい。担体がこのように形成されていると、横糸に含浸された薬剤が一定幅ごとに縦糸で固定されるので、偏りが生じにくくなる。   In the case of natural volatilization, the pest control material of the present disclosure is usually used by being suspended in a window, door, room or the like. In this case, the pyrethroid compound held on the sheet-like carrier having a network structure tends to be biased in the direction of gravity. In order to prevent the occurrence of bias even when suspended, it is preferable to employ, for example, a material that can be impregnated with a pyrethroid compound in the weft and a non-impregnated material in the warp. When the carrier is formed in this way, the drug impregnated in the weft yarn is fixed by the warp yarn every fixed width, so that it is difficult to cause a bias.

担体の大きさは、保持させるピレスロイド系化合物の種類や、害虫防除材の使用期間などを考慮して適宜設定される。例えば、害虫防除材の使用終了時に、ピレスロイド系化合物が少なくとも1mg/cm2の濃度で残存するような大きさの担体が好ましい。網目構造を有するシート状の担体の場合、保持濃度の算出は、シート状の担体の面積から開口部の面積を除いた面積で算出する。網目構造を有するシート状の担体は、50〜200cm2程度の面積を有し、5〜30%程度の開口率を有するものが好ましい。このような網目構造を有するシート状の担体を用いることによって、式(I)に示される保持量のピレスロイド系化合物を、十分な薬剤濃度で保持させることができる。The size of the carrier is appropriately set in consideration of the type of pyrethroid compound to be retained, the period of use of the pest control material, and the like. For example, a carrier having such a size that the pyrethroid compound remains at a concentration of at least 1 mg / cm 2 at the end of use of the pest control material is preferable. In the case of a sheet-like carrier having a network structure, the retention concentration is calculated by the area obtained by subtracting the area of the opening from the area of the sheet-like carrier. The sheet-like carrier having a network structure preferably has an area of about 50 to 200 cm 2 and an opening ratio of about 5 to 30%. By using a sheet-like carrier having such a network structure, the retention amount of the pyrethroid compound represented by the formula (I) can be retained at a sufficient drug concentration.

このような担体に保持されるピレスロイド系化合物は特に限定されず、例えば、トランスフルトリン、メトフルトリン、プロフルトリン、エンペントリン、テラレスリン、フラメトリン、テフラメトリン、ジメトリン、ジメフルトリン、メパフルトリンなどが挙げられる。ピレスロイド系化合物は単独で用いてもよく、2種以上を併用してもよい。   The pyrethroid compound held on such a carrier is not particularly limited, and examples thereof include transfluthrin, metfurthrin, profluthrin, empentrin, teraleslin, framethrin, tephrametrin, dimethrin, dimeflutrin, and mepafluthrin. A pyrethroid type compound may be used independently and may use 2 or more types together.

本開示の害虫防除材において、ピレスロイド系化合物は、少なくとも下記の式(I)に示される保持量で、担体に保持される。ピレスロイド系化合物がこのような保持量で保持されていると、使用開始時から終了時まで、安定して優れた防除効果が発揮される。
保持量(mg)=100mg+A×B (I)
A:ピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B:使用期間(日数)
In the pest control material of the present disclosure, the pyrethroid compound is held on the carrier at a holding amount represented by at least the following formula (I). When the pyrethroid compound is held in such a holding amount, an excellent control effect is stably exhibited from the start to the end of use.
Retention amount (mg) = 100 mg + A × B (I)
A: Maximum volatilization amount of pyrethroid compound per day (mg / day)
B: Use period (days)

式(I)中の「100mg」は、本開示の害虫防除材において重要なファクターである。すなわち、ピレスロイド系化合物が担体に100mg保持されていれば、害虫を防除するのに十分な気中濃度でピレスロイド系化合物が揮散することを見出して、本開示の害虫防除材はなされたものである。保持量が100mg未満になると、害虫を防除するのに十分な気中濃度でピレスロイド系化合物が揮散せず、防除効果が発揮されなくなる。   “100 mg” in the formula (I) is an important factor in the pest control material of the present disclosure. That is, if 100 mg of the pyrethroid compound is retained on the carrier, the pyrethroid compound is found to be volatilized at an air concentration sufficient to control the pest, and the pest control material of the present disclosure has been made. . When the amount to be retained is less than 100 mg, the pyrethroid compound is not volatilized at a concentration in the air sufficient to control pests, and the control effect is not exhibited.

この「100mg」に、使用するピレスロイド系化合物の1日あたりの最大揮散量(mg/日)に防除材の使用期間(日数)を乗じて得られる量を加えて保持量とすればよい。1日あたりの揮散量(揮散速度)は、気温が高いほど多くなり、気温が低いほど少なくなる。そこで、最も気温が高くなる夏季の気温を考慮して、1日あたりの最大揮散量を規定すればよい。1日の平均気温を30℃とした場合、主なピレスロイド系化合物の1日あたりの最大揮散量は下記のとおりである。
トランスフルトリン:4.5mg/日
メトフルトリン:2.0mg/日
プロフルトリン:4.5mg/日
The amount obtained by multiplying the maximum volatilization amount per day (mg / day) of the pyrethroid compound to be used by this “100 mg” and the usage period (days) of the control material may be added to obtain the retention amount. The volatilization amount (volatilization rate) per day increases as the temperature increases, and decreases as the temperature decreases. Therefore, the maximum volatilization amount per day may be defined in consideration of the summer temperature when the temperature is highest. When the average daily temperature is 30 ° C., the maximum volatilization amount per day of the main pyrethroid compounds is as follows.
Transfluthrin: 4.5 mg / day Metofluthrin: 2.0 mg / day Profluthrin: 4.5 mg / day

ピレスロイド系化合物は、好ましくは、少なくとも下記の式(I)’に示される保持量で、担体に保持される。
保持量(mg)=200mg+A’×B’ (I)’
A’:ピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B’:使用期間(日数)
The pyrethroid compound is preferably held on the carrier at least in the holding amount represented by the following formula (I) ′.
Retention amount (mg) = 200 mg + A ′ × B ′ (I) ′
A ′: Maximum volatilization amount per day of the pyrethroid compound (mg / day)
B ': Use period (days)

ピレスロイド系化合物の中でも、例えばトランスフルトリンは、少なくとも式(I)’に示される保持量で、担体に保持されるのが好ましい。   Among the pyrethroid compounds, for example, transfluthrin is preferably held on the carrier at least in the holding amount represented by the formula (I) ′.

例えば、ピレスロイド系化合物としてトランスフルトリンを用い、60日間使用する防除材を得る場合、少なくとも370mg(100mg+4.5mg/日×60日)、好ましくは少なくとも470mg(200mg+4.5mg/日×60日)のトランスフルトリンを担体に保持させればよい。120日間使用する防除材であれば、少なくとも640mg(100mg+4.5mg/日×120日)、好ましくは少なくとも740mg(200mg+4.5mg/日×120日)のトランスフルトリンを担体に保持させればよい。   For example, when using transfluthrin as a pyrethroid compound to obtain a control material for 60 days, at least 370 mg (100 mg + 4.5 mg / day × 60 days), preferably at least 470 mg (200 mg + 4.5 mg / day × 60 days) Transfluthrin may be held on a carrier. If the control material is used for 120 days, at least 640 mg (100 mg + 4.5 mg / day × 120 days), preferably at least 740 mg (200 mg + 4.5 mg / day × 120 days) of transfluthrin may be held on the carrier.

ピレスロイド系化合物を担体に保持させる濃度は特に限定されない。効率よく自然に揮散させるために、ピレスロイド系化合物は、例えば少なくとも2mg/cm2、好ましくは少なくとも2.5mg/cm2、より好ましくは少なくとも3mg/cm2の濃度で担体に保持される。なお、上限については特に限定されず、担体に保持させ得る飽和量を考慮すると、多くても7mg/cm2程度である。ピレスロイド系化合物の保持量(総量)は、化合物の種類、使用期間などによって異なるため、担体の大きさによって濃度を調整すればよい。The concentration at which the pyrethroid compound is held on the carrier is not particularly limited. In order to evaporate efficiently and naturally, the pyrethroid compound is held on the carrier at a concentration of, for example, at least 2 mg / cm 2 , preferably at least 2.5 mg / cm 2 , more preferably at least 3 mg / cm 2 . The upper limit is not particularly limited, and is about 7 mg / cm 2 at the maximum considering the saturation amount that can be held on the carrier. Since the retention amount (total amount) of the pyrethroid compound varies depending on the type of compound, the period of use, etc., the concentration may be adjusted depending on the size of the carrier.

ピレスロイド系化合物を担体に保持させる方法は特に限定されない。例えば、ピレスロイド系化合物を担体に滴下塗布やスプレー塗布する方法、含浸させる方法、練り込む方法などが挙げられる。ピレスロイド系化合物を担体に保持させる際に、ピレスロイド系化合物を溶剤に溶解させて用いてもよい。溶剤としては、例えば水、アルコール類(メタノール、エタノールなど)、エーテル類(テトラヒドロフラン、ジオキサンなど)、脂肪族炭化水素類(ヘキサン、パラフィン、流動パラフィン、石油ベンジンなど)、エステル類(酢酸エチルなど)などが挙げられる。   The method for holding the pyrethroid compound on the carrier is not particularly limited. For example, a method of dropping or spraying a pyrethroid compound on a carrier, a method of impregnation, a method of kneading and the like can be mentioned. When holding a pyrethroid compound on a carrier, the pyrethroid compound may be dissolved in a solvent. Examples of the solvent include water, alcohols (such as methanol and ethanol), ethers (such as tetrahydrofuran and dioxane), aliphatic hydrocarbons (such as hexane, paraffin, liquid paraffin, and petroleum benzine), and esters (such as ethyl acetate). Etc.

ピレスロイド系化合物は、上述のように、害虫防除材の使用終了時にピレスロイド系化合物が少なくとも1mg/cm2の濃度で残存するような保持濃度で保持させるのが好ましい。さらに、本開示の害虫防除材には、ピレスロイド系化合物以外に、本開示の効果を阻害しない範囲で、香料、酸化防止剤、消臭剤、色素、キレート剤、界面活性剤、保留剤、pH調整剤、殺菌剤、防カビ剤などの添加剤が含まれていてもよい。As described above, the pyrethroid compound is preferably retained at a retention concentration such that the pyrethroid compound remains at a concentration of at least 1 mg / cm 2 at the end of use of the pest control material. Furthermore, the insect pest control material of the present disclosure includes a perfume, an antioxidant, a deodorant, a dye, a chelating agent, a surfactant, a retention agent, pH, as long as the effect of the present disclosure is not impaired in addition to the pyrethroid compound. Additives such as regulators, bactericides, and fungicides may be included.

本開示の害虫防除材は、通常、自然揮散用として使用され、例えば風のある環境下に設置して使用される。「風のある環境下」とは、自然または強制的に気流が生じている環境を意味する。強制的な気流とは、扇風機、送風機、エアコンなどの送風手段による気流、ドア、障子、窓などの開閉によって生じる気流、団扇や扇子による気流などが挙げられる。   The pest control material of the present disclosure is usually used for natural volatilization, for example, installed in a windy environment. “In an environment with wind” means an environment in which airflow is naturally or forcibly generated. Examples of the forced airflow include an airflow generated by a blowing unit such as a fan, a blower, and an air conditioner, an airflow generated by opening / closing a door, a shoji, and a window, an airflow generated by a fan or a fan, and the like.

本開示に係る害虫防除材の使用方法は特に限定されない。例えば、窓やドア、室内などに吊り下げて使用される。害虫防除効果を発揮させるためには、ピレスロイド系化合物の気中濃度が少なくとも0.05μg/m3、好ましくは0.1μg/m3となるように揮散させればよい。例えば、トランスフルトリンまたはプロフルトリンを用いる場合は、少なくとも0.5μg/m3の気中濃度となるように揮散させることが好ましい。メトフルトリンを用いる場合は、少なくとも0.05μg/m3の気中濃度となるように揮散させることが好ましい。害虫の侵入口付近に、ピレスロイド系化合物が上記のような気中濃度で揮散していれば、侵入口に近づいてきた害虫に対しては忌避効果が発揮され、既に侵入している害虫に対してはノックダウン効果などが発揮される。The method for using the pest control material according to the present disclosure is not particularly limited. For example, it is used by being suspended in a window, a door, a room or the like. In order to exert a pest control effect, the pyrethroid compound may be volatilized so that the concentration in the air is at least 0.05 μg / m 3 , preferably 0.1 μg / m 3 . For example, when transfluthrin or profluthrin is used, it is preferably volatilized to have an air concentration of at least 0.5 μg / m 3 . In the case of using metfurthrin, it is preferable to volatilize it so that the air concentration is at least 0.05 μg / m 3 . If the pyrethroid compound is volatilized in the air concentration as described above near the entrance of the pest, the repellent effect is exerted against the pest approaching the entrance, and against the pest that has already entered. The knockdown effect is demonstrated.

本開示の害虫防除材は、使用開始時から終了時まで、安定して優れた害虫に対する防除効果を発揮する。本開示の害虫防除材によって防除し得る害虫は特に限定されず、各種の衛生害虫、農業害虫、不快害虫などが挙げられ、特に、飛翔害虫に対して好適に使用される。飛翔害虫としては、例えば、ヒトスジシマカ、アカイエカ、シナハマダラカ、コガタアカイエカ、ネッタイシマカ、トウゴウヤブカなどの蚊;サシバエなどのハエ;シクロアブ、ウシアブ、メクラアブ、ゴマフアブなどのアブ;クロオオブユ、キアシオオブユ、アオキツメトゲブユなどのブユ;トクナガクロズカカ、オオシマヌカカ、ニワトリヌカカなどのヌカカ;キイロスズメバチ、セグロアシナガバチ、ミツバチなどのハチ;ハネアリなどのアリ;その他のランディング行動を有する害虫が挙げられる。   The pest control material of the present disclosure exhibits a stable and excellent pest control effect from the start to the end of use. The pests that can be controlled by the pest control material of the present disclosure are not particularly limited, and examples thereof include various sanitary pests, agricultural pests, and unpleasant pests, and are particularly preferably used for flying pests. Examples of flying pests include mosquitoes such as Aedes albopictus, Akaieka, Shinamadaraka, Kotatakaikaeka, Aedes albopictus, Aedes albopictus; flies such as fly flies; Nukaka such as Tokunagakurozukaka, Oshimamanukaka, and chicknutka; bees such as Kirosuzubee, Sesuroga wasp and honeybee; ants such as honeybees; and other pests having landing behavior.

以下、実施例および比較例を挙げて本開示の害虫防除材および害虫防除方法を具体的に説明するが、本開示の害虫防除材および害虫防除方法はこれらの実施例に限定されるものではない。   Hereinafter, the pest control material and the pest control method of the present disclosure will be specifically described with reference to examples and comparative examples, but the pest control material and the pest control method of the present disclosure are not limited to these examples. .

(実施例1:準自然環境下での侵入阻害試験)
<処理区>
図1に示すように、約100m2の試験区域1内に、12畳の居室11を設置した。居室11以外の空間を居室外12とする。試験区域1の高さは3.5mであり、居室11の高さは2.4mであった。次いで、200mgのトランスフルトリンと100mgの流動パラフィンとの混合物を、担体に含浸させて検体13を得た。担体として、縦14cm、横9cm、開口率が15%のメッシュ状のポリエステル製の担体を用いた。なお、以下の試験において、特に記載のない場合には、環境温度20〜30℃にて実施した。
(Example 1: Invasion inhibition test under quasi-natural environment)
<Treatment zone>
As shown in FIG. 1, a 12 tatami room 11 was installed in a test area 1 of about 100 m 2 . A space other than the living room 11 is referred to as an outside room 12. The height of the test area 1 was 3.5 m, and the height of the living room 11 was 2.4 m. Next, a sample was obtained by impregnating a carrier with a mixture of 200 mg of transfluthrin and 100 mg of liquid paraffin. As the carrier, a mesh polyester carrier having a length of 14 cm, a width of 9 cm, and an opening ratio of 15% was used. In addition, in the following tests, when there was no description in particular, it implemented at environmental temperature 20-30 degreeC.

居室外12に、ヒトスジシマカの雌成虫150頭を放ち、1時間馴化させた。その後、居室11に試験者14に入ってもらい、居室11のほぼ中央部に立ってもらった。居室11の入り口を10cm開けて開口部15とした。得られた検体13を、開口部15の床から180cmの位置に吊るした。試験者14を誘引源として、試験開始から30分後まで10分毎に、居室11内に侵入したヒトスジシマカの頭数をカウントした。30分間に侵入した頭数を処理区合計侵入数とした。   150 female adults of Aedes albopictus were released outside the room 12 and allowed to acclimate for 1 hour. Thereafter, the test room 14 was entered into the living room 11 and was allowed to stand in the center of the living room 11. The entrance of the living room 11 was opened 10 cm to form an opening 15. The obtained specimen 13 was suspended at a position 180 cm from the floor of the opening 15. Using the tester 14 as an attracting source, the number of Aedes albopictus that entered the living room 11 was counted every 10 minutes until 30 minutes after the start of the test. The number of heads that invaded in 30 minutes was defined as the total number of intrusions in the treatment area.

<無処理区>
検体13を用いなかった以外は、上記の処理区と同様の手順で居室11内に侵入したヒトスジシマカの頭数をカウントした。30分間に侵入した頭数を無処理区合計侵入数とした。下記の式(II)を用いて侵入阻害率を求めた。同様の試験を2回行い、侵入阻害率の平均を求めた。結果を表1に示す。
侵入阻害率(%)={1−(処理区合計侵入数/無処理区合計侵入数)}×100 (II)
<No treatment zone>
The number of Aedes albopictus that entered the living room 11 was counted in the same procedure as in the above-mentioned treatment section except that the sample 13 was not used. The number of heads that invaded in 30 minutes was defined as the total number of intrusions in the untreated section. The invasion inhibition rate was determined using the following formula (II). The same test was performed twice, and the average of the invasion inhibition rate was obtained. The results are shown in Table 1.
Invasion inhibition rate (%) = {1− (total number of intrusions in treated area / total number of intrusions in untreated area)} × 100 (II)

(実施例2)
トランスフルトリンの使用量を300mgおよび流動パラフィンの使用量を150mgに変更した以外は、実施例1と同様の手順で試験を行い、ヒトスジシマカの侵入阻害率を求めた。同様の試験を2回行い、侵入阻害率の平均を求めた。結果を表1に示す。
(Example 2)
A test was performed in the same manner as in Example 1 except that the amount of transfluthrin used was changed to 300 mg and the amount of liquid paraffin used was changed to 150 mg, and the invasion inhibition rate of human striped mosquito was determined. The same test was performed twice, and the average of the invasion inhibition rate was obtained. The results are shown in Table 1.

Figure 2017110455
Figure 2017110455

表1に示すように、トランスフルトリンの使用量が200mgおよび300mgの場合は80%以上であった。したがって、担体にトランスフルトリンが少なくとも100mg、好ましくは少なくとも200mg含浸されていれば、優れた侵入阻害効果を発揮することがわかる。   As shown in Table 1, when the amount of transfluthrin used was 200 mg and 300 mg, it was 80% or more. Therefore, it can be seen that if the carrier is impregnated with at least 100 mg, preferably at least 200 mg of transfluthrin, it exhibits an excellent invasion inhibiting effect.

(実施例3:自然環境下での侵入阻害試験)
<処理区>
図2に示すように、1か所に開口部22が設けられた8畳の居室21からなる試験室2を、ヒトスジシマカを含む蚊類が生息している自然環境下に設置した。居室21の高さは2.4mであり、開口部22の高さおよび幅は、それぞれ1.9mおよび0.8mであった。次いで、200mgのトランスフルトリンと100mgの流動パラフィンとの混合物を、担体に含浸させて検体23を得た。担体としては実施例1と同じ担体を用いた。
(Example 3: Invasion inhibition test under natural environment)
<Treatment zone>
As shown in FIG. 2, a test chamber 2 composed of an 8-tatami living room 21 provided with an opening 22 in one place was set up in a natural environment where mosquitoes including Aedes albopictus live. The height of the living room 21 was 2.4 m, and the height and width of the opening 22 were 1.9 m and 0.8 m, respectively. Next, a sample was obtained by impregnating a carrier with a mixture of 200 mg of transfluthrin and 100 mg of liquid paraffin. The same carrier as in Example 1 was used as the carrier.

居室21に試験者に入ってもらい、得られた検体23を、開口部22の上部に吊るした。開口部22の外側にドライアイス24を誘引源として置き、3時間、居室21内に侵入したヒトスジシマカを含む蚊類の頭数をカウントした。この頭数を処理区合計侵入数とした。   The examiner was allowed to enter the living room 21, and the obtained specimen 23 was suspended above the opening 22. The dry ice 24 was placed outside the opening 22 as an attracting source, and the number of mosquitoes including the human striped mosquito that entered the room 21 was counted for 3 hours. This number was used as the total number of intrusions in the treatment area.

<無処理区>
検体23を用いなかった以外は、上記の処理区と同様の手順で居室21内に侵入したヒトスジシマカを含む蚊類の頭数をカウントした。この頭数を無処理区合計侵入数とした。上記の式(II)を用いて侵入阻害率を求めた。同様の試験を3回行い、侵入阻害率の平均を求めた。結果を表2に示す。
<No treatment zone>
The number of mosquitoes including human striped mosquitoes that entered the living room 21 was counted in the same procedure as in the above-mentioned treatment section except that the sample 23 was not used. This number was taken as the total number of intrusions in the untreated area. The invasion inhibition rate was determined using the above formula (II). The same test was performed 3 times, and the average of the invasion inhibition rate was obtained. The results are shown in Table 2.

(比較例1)
トランスフルトリンの使用量を50mgに変更した以外は、実施例3と同様の手順で試験を行い、ヒトスジシマカを含む蚊類の侵入阻害率を求めた。結果を表2に示す。
(Comparative Example 1)
A test was performed in the same manner as in Example 3 except that the amount of transfluthrin used was changed to 50 mg, and the invasion inhibition rate of mosquitoes including human striped mosquito was determined. The results are shown in Table 2.

Figure 2017110455
Figure 2017110455

表2に示すように、トランスフルトリンの使用量が200mgの場合、自然環境下であっても侵入阻害率が80%を超えており、優れた侵入阻害効果を発揮することがわかる。一方、50mgの場合は、80%を下回っている。したがって、実施例1〜3から、害虫防除材の使用終了時に、トランスフルトリンが少なくとも100mg、好ましくは少なくとも200mg残存していれば、使用開始時から終了時まで、安定して優れた防除効果が発揮されることがわかる。   As shown in Table 2, it can be seen that when the amount of transfluthrin used is 200 mg, the invasion inhibition rate exceeds 80% even in a natural environment, and an excellent invasion inhibition effect is exhibited. On the other hand, in the case of 50 mg, it is less than 80%. Therefore, from Examples 1 to 3, if at least 100 mg, preferably at least 200 mg of transfluthrin remains at the end of the use of the pest control material, a stable and excellent control effect can be obtained from the start to the end of use. It can be seen that it is demonstrated.

(実施例4:ノックダウン効果の検証)
次に、ノックダウン効果をケージ法に準じで検証した。図3に示すように、8畳の試験室3(高さ2.4m)のほぼ中央部に、床面から120cmの位置に検体31を設置した。検体31としては、200mgのトランスフルトリンと100mgの流動パラフィンとの混合物を、実施例1と同じ担体に含浸させものを用いた。次いで、アカイエカの雌成虫20頭を入れた試験ケージ32を4個準備した。床面から75cmの位置に2個の試験ケージ32aを、検体31を中心に対称となるように設置した。残りの2個の試験ケージ32bを、床面から150cmの位置に検体31を中心に対称となるように設置した。試験ケージ32は、いずれも検体31から130cm離して設置した。一定時間ごとにアカイエカのノックダウン数を観察し、半数のアカイエカがノックダウンした時間(KT50)を測定した。試験開始から6時間後に検体31と試験ケージ32とを取り除き(6時間暴露)、試験ケージ32の中のアカイエカを清潔なポリカップに移し替えた。その後、24時間後に致死観察を行い、致死率を求めた。結果を表3に示す。
(Example 4: Verification of knockdown effect)
Next, the knockdown effect was verified according to the cage method. As shown in FIG. 3, a specimen 31 was installed at a position 120 cm from the floor surface in a substantially central part of an 8-tatami test room 3 (height 2.4 m). The specimen 31 used was obtained by impregnating a mixture of 200 mg transfluthrin and 100 mg liquid paraffin into the same carrier as in Example 1. Next, four test cages 32 containing 20 female adult mosquitoes were prepared. Two test cages 32a were installed at a position 75 cm from the floor so as to be symmetrical about the specimen 31. The remaining two test cages 32b were placed symmetrically about the specimen 31 at a position 150 cm from the floor surface. All the test cages 32 were installed 130 cm away from the specimen 31. The number of cuttlefish knocked down was observed at regular intervals, and the time (KT50) at which half of the cuttlefish knocked down was measured. After 6 hours from the start of the test, the specimen 31 and the test cage 32 were removed (exposure for 6 hours), and the squid was transferred to a clean polycup. Thereafter, lethal observation was performed 24 hours later, and the lethal rate was determined. The results are shown in Table 3.

8畳の試験室3の代わりに12畳の試験室(高さ2.4m)に変更した以外は、上記と同様の手順でKT50を測定し、さらに致死率を求めた。結果を表3に示す。   KT50 was measured in the same procedure as above except that the test room 3 was changed to a 12-tatami test room (height 2.4 m) instead of the 8-tatami test room 3, and the lethality was obtained. The results are shown in Table 3.

(実施例5)
試験開始から8時間後に検体31を取り除いた以外は(8時間暴露)、実施例4と同様の手順でKT50を測定し、さらに致死率を求めた。結果を表3に示す。
(Example 5)
KT50 was measured by the same procedure as in Example 4 except that the specimen 31 was removed 8 hours after the start of the test (8 hours exposure), and the mortality was further determined. The results are shown in Table 3.

Figure 2017110455
Figure 2017110455

表3に示すように、たとえ害虫が室内に侵入したとしても、6時間以上検体に曝されることによって、高い致死効果が発揮されることがわかる。なお、12時間以上暴露した場合の24時間後の致死率は100%であった。このように、室内に侵入した害虫についても駆除できることがわかる。   As shown in Table 3, it can be seen that even if pests enter the room, a high lethal effect is exhibited by exposure to the specimen for 6 hours or more. In addition, the lethality after 24 hours when exposed for 12 hours or more was 100%. In this way, it can be seen that pests that have entered the room can also be controlled.

(実施例6:吸血阻害効果の検証)
PET製の円筒(内径4.5cmおよび長さ12cm)を2個準備し、それぞれの円筒内にヒトスジシマカの雌成虫10頭程度入れて、円筒の両端をメッシュ生地で閉じた。次いで、実施例4で用いた試験室(8畳、高さ2.4m)のほぼ中央部に、床面から120cmの位置に検体を設置した。検体は、実施例4と同じ検体を用いた。検体から130cm離して、床面から75cmの位置に、ヒトスジシマカを入れた円筒を設置した。2つの円筒は、検体を中心に対称となるように設置した。
(Example 6: Verification of blood sucking inhibitory effect)
Two cylinders made of PET (inner diameter: 4.5 cm and length: 12 cm) were prepared, and about 10 adult females of Aedes albopictus were placed in each cylinder, and both ends of the cylinder were closed with mesh fabric. Next, a specimen was placed at a position 120 cm from the floor in the approximate center of the test chamber (8 tatami mats, height 2.4 m) used in Example 4. The same sample as in Example 4 was used. A cylinder filled with Aedes albopictus was placed 130 cm away from the specimen and 75 cm from the floor. The two cylinders were placed so as to be symmetric about the specimen.

試験開始から10分後(ヒトスジシマカへの暴露時間10分)、試験室から円筒を2本取り出して、円筒の両端に手のひらを近づけて3分間保持し、吸血行動を行った頭数をカウントして下記の式(III)を用いて吸血阻害率を求めた。円筒の両端から手を離し、さらに10分後(20分暴露)、吸血行動を行った頭数を同様の手順でカウントして吸血阻害率を求めた。検体への暴露時間が60分となるまで、同様の手順で吸血阻害率を求めた。同様の試験を2回繰り返して行い、吸血阻害率の平均を求めた。結果を表4に示す。
吸血阻害率(%)={1−(X/Y)}×100 (III)
X:吸血行動を行った頭数
Y:検体暴露前の吸血行動数
Ten minutes after the start of the test (exposure time to Aedes albopictus 10 minutes), two cylinders were removed from the test chamber, the palms were held close to both ends of the cylinder and held for 3 minutes, and the number of heads that performed blood-sucking behavior was counted The blood absorption inhibition rate was determined using the formula (III). The hands were released from both ends of the cylinder, and after 10 minutes (exposure for 20 minutes), the number of heads that had sucked blood was counted in the same procedure, and the blood sucking inhibition rate was determined. The blood sucking inhibition rate was determined in the same procedure until the exposure time to the specimen reached 60 minutes. The same test was repeated twice, and the average of the blood sucking inhibition rate was obtained. The results are shown in Table 4.
Blood absorption inhibition rate (%) = {1− (X / Y)} × 100 (III)
X: Number of heads that sucked blood
Y: Number of blood sucking actions before specimen exposure

Figure 2017110455
Figure 2017110455

表4に示すように、検体に少なくとも50分間曝されると、吸血阻害率が80%を超えることがわかる。これは、たとえノックダウンしていなくても、吸血行動を行わないことを示しており、刺される被害を軽減し得ることを示している。   As shown in Table 4, it can be seen that the blood absorption inhibition rate exceeds 80% when exposed to the specimen for at least 50 minutes. This indicates that blood sucking behavior is not performed even if knockdown is not performed, which indicates that the damage caused by stinging can be reduced.

(実施例7:1日あたりの揮散量)
図4(A)に示すように、揮散量を測定するための試験装置4を準備した。試験装置4は、プラスチックボックス41(各辺1mの立方体)で作製されており、ボックス41の天井面の2か所に吸気孔42が設けられている。一方、ボックス41の側面底部の1か所に排気孔43が設けられている。排気孔43は、ボックス41内の空気が17L/分の割合で排気される、すなわちボックス41内の空気がほぼ1時間で排気されるように設けられている。図4(B)に示すように、ボックス41内に小型ファン44を設置し、ボックス41内の空気を循環させた。次いで、ボックス41内のほぼ中央部に5個の検体45を吊り下げた。検体45としては、実施例1と同じ担体にトランスフルトリンを500mgおよび流動パラフィンを250mg含浸させたものを用いた。
(Example 7: volatilization amount per day)
As shown in FIG. 4A, a test apparatus 4 for measuring the volatilization amount was prepared. The test apparatus 4 is made of a plastic box 41 (a cube having a side of 1 m), and air intake holes 42 are provided at two locations on the ceiling surface of the box 41. On the other hand, an exhaust hole 43 is provided at one place on the bottom of the side surface of the box 41. The exhaust hole 43 is provided so that the air in the box 41 is exhausted at a rate of 17 L / min, that is, the air in the box 41 is exhausted in approximately one hour. As shown in FIG. 4B, a small fan 44 was installed in the box 41 and the air in the box 41 was circulated. Next, five specimens 45 were hung at substantially the center in the box 41. As the specimen 45, the same carrier as in Example 1 was used in which 500 mg of transfluthrin and 250 mg of liquid paraffin were impregnated.

ボックス41内の温度を20〜25℃に維持して試験を進めた。試験開始から9日後、20日後、41日後および60日後に検体を回収して、薬剤残量から揮散総量(mg)を求めた。さらに、揮散総量を日数と検体の設置個数との積で除して、1日あたりの揮散量(揮散速度(mg/日))を求めた。同様の手順で試験を4回行い、揮散速度の平均を求めた。結果を表5に示す。   The test proceeded with the temperature in the box 41 maintained at 20-25 ° C. Samples were collected 9 days, 20 days, 41 days and 60 days after the start of the test, and the total volatilization amount (mg) was determined from the remaining amount of the drug. Further, the total amount of volatilization was divided by the product of the number of days and the number of specimens installed to determine the amount of volatilization per day (volatilization rate (mg / day)). The test was performed 4 times in the same procedure, and the average of the volatilization rate was obtained. The results are shown in Table 5.

さらに、ボックス内の温度を30〜35℃に変更した以外は、同様の手順で揮散総量(mg)および揮散速度(mg/日)を求めた。同様の手順で試験を4回行い、揮散速度の平均を求めた。結果を表5に示す。   Furthermore, the total volatilization amount (mg) and the volatilization rate (mg / day) were determined in the same procedure except that the temperature in the box was changed to 30 to 35 ° C. The test was performed 4 times in the same procedure, and the average of the volatilization rate was obtained. The results are shown in Table 5.

Figure 2017110455
Figure 2017110455

表5に示すように、常温(20〜25℃)条件下では、トランスフルトリンの揮散量(揮散速度)は約1.1〜1.4mg/日であり、高温条件下(30〜35℃)条件下では、約3.7〜4.5mg/日であることがわかる。例えば、最も揮散量が多くなる夏季(7月および8月)において、1日の気温変化を考慮すると、1日あたりの最大揮散量は4.5mg/日程度と想定できる。したがって、使用開始から終了まで60日間(60日用)の害虫防除材を調製する際に、少なくとも470mg(200mg+4.5mg×60日)のトランスフルトリンを担体に含浸させれば、60日後(終了時)でも少なくとも200mgのトランスフルトリンが残存している。その結果、使用開始時から終了時まで、安定して優れた防除効果が発揮される。   As shown in Table 5, under normal temperature (20 to 25 ° C.) conditions, the transfluthrin volatilization amount (volatilization rate) is about 1.1 to 1.4 mg / day, and under high temperature conditions (30 to 35 ° C.). ) Under the conditions, it is found to be about 3.7 to 4.5 mg / day. For example, in the summer season (July and August) when the volatilization amount is the largest, the maximum volatilization amount per day can be assumed to be about 4.5 mg / day in consideration of the daily temperature change. Therefore, when preparing a pest control material for 60 days (for 60 days) from the start to the end of use, if the carrier is impregnated with at least 470 mg (200 mg + 4.5 mg × 60 days) of transfluthrin, after 60 days (end) At least 200 mg of transfluthrin remains. As a result, a stable and excellent control effect is exhibited from the start to the end of use.

(実施例8:トランスフルトリンの気中濃度の測定)
図5(A)に示すように、ボックス41に捕集孔46を設けた以外は、図4(A)に示す試験装置4と同様の試験装置4’を準備した。次いで、図5(B)に示すように、実施例7と同様、この試験装置4’の中に小型ファン44を設置し、ボックス41内の空気を循環させた。次いで、ボックス41内のほぼ中央部に、実施例7と同じ5個の検体45を吊り下げた。
(Example 8: Measurement of air concentration of transfluthrin)
As shown in FIG. 5A, a test apparatus 4 ′ similar to the test apparatus 4 shown in FIG. 4A was prepared except that the collection hole 46 was provided in the box 41. Next, as shown in FIG. 5B, as in Example 7, a small fan 44 was installed in the test apparatus 4 ′, and the air in the box 41 was circulated. Subsequently, the same five specimens 45 as those in Example 7 were suspended at a substantially central portion in the box 41.

ボックス41内の温度を20〜25℃に維持して、検体45から薬剤を揮散させた。試験開始から表6に示す所定期間経過時に、排気を停止した状態で、捕集孔46からボックス41内の空気を17L/分の速度で約1時間吸引した。吸引は、下記に示すシリカゲルトラップを用いて行った。シリカゲルトラップに捕集されたトランスフルトリンの定量分析を行った。
<シリカゲルトラップ>
15mmの内径および100mmの長さを有するガラス管の一方の端部に脱脂綿を挿入した。ガラス管の中に約1gのシリカゲル(ワコーゲルC−100、和光純薬工業(株)製)を充填した。その後、別の脱脂綿をガラス管に挿入して(すなわち、ガラス管の両端部を脱脂綿で栓をして)、シリカゲルトラップを得た。
The temperature in the box 41 was maintained at 20 to 25 ° C. to volatilize the drug from the specimen 45. At the elapse of a predetermined period shown in Table 6 from the start of the test, the air in the box 41 was sucked from the collection hole 46 at a rate of 17 L / min for about 1 hour while exhausting was stopped. The suction was performed using a silica gel trap shown below. Quantitative analysis of transfluthrin collected in a silica gel trap was performed.
<Silica gel trap>
Absorbent cotton was inserted into one end of a glass tube having an inner diameter of 15 mm and a length of 100 mm. About 1 g of silica gel (Wakogel C-100, manufactured by Wako Pure Chemical Industries, Ltd.) was filled in the glass tube. Thereafter, another absorbent cotton was inserted into the glass tube (that is, both ends of the glass tube were plugged with absorbent cotton) to obtain a silica gel trap.

シリカゲルトラップに捕集されたトランスフルトリンの定量分析を行い、得られた値から下記の式(IV)を用いて、ボックス41内のトランスフルトリンの気中濃度を求めた。同様の試験を2回行い、気中濃度の平均を求めた。結果を表6に示す。
気中濃度(μg/m3)=R×1000(L)/S (IV)
R:トランスフルトリンの定量値(μg)
S:積算流量計の空気吸引量(L)
Quantitative analysis of transfluthrin collected in the silica gel trap was performed, and the air concentration of transfluthrin in the box 41 was determined from the obtained value using the following formula (IV). The same test was performed twice, and the average concentration in the air was determined. The results are shown in Table 6.
Air concentration (μg / m 3 ) = R × 1000 (L) / S (IV)
R: quantitative value of transfluthrin (μg)
S: Air suction amount of integrated flow meter (L)

(実施例9)
ボックス41内の温度を30〜35℃に維持した以外は、実施例8と同様の手順で、トランスフルトリンの気中濃度を求めた。同様の試験を2回行い、気中濃度の平均を求めた。結果を表6に示す。
Example 9
The airborne concentration of transfluthrin was determined in the same manner as in Example 8, except that the temperature in the box 41 was maintained at 30 to 35 ° C. The same test was performed twice, and the average concentration in the air was determined. The results are shown in Table 6.

Figure 2017110455
Figure 2017110455

表6に示すように、実施例8(20〜25℃)では、試験期間中、ボックス41内のトランスフルトリンの気中濃度は、少なくとも86μg/m3であることがわかる。すなわち、検体1個あたり少なくとも17μg/m3(86μg/5個)であることがわかる。この検体を例えば12畳(約19.8m2、高さ2.4m)の居室で使用した場合、居室内での気中濃度は、約0.36μg/m3(17μg/47.52m3)となり、8畳(約13.2m2、高さ2.4m)の場合は、約0.54μg/m3(17μg/31.68m3)となる。トランスフルトリンなどの薬剤は、通常、温度が高いほど揮散しやすいため、試験温度が高い実施例9の方が、実施例8よりも気中濃度が高いことがわかる。As shown in Table 6, in Example 8 (20 to 25 ° C.), it can be seen that the air concentration of transfluthrin in the box 41 is at least 86 μg / m 3 during the test period. That is, it is found that the amount per sample is at least 17 μg / m 3 (86 μg / 5). For example, when this specimen is used in a room with 12 tatami mats (about 19.8 m 2 , height 2.4 m), the air concentration in the room is about 0.36 μg / m 3 (17 μg / 47.52 m 3 ). In the case of 8 tatami mats (about 13.2 m 2 , height 2.4 m), it is about 0.54 μg / m 3 (17 μg / 31.68 m 3 ). A drug such as transfluthrin usually tends to volatilize at a higher temperature, so it can be seen that Example 9 having a higher test temperature has a higher concentration in the air than Example 8.

(実施例10:メトフルトリンの気中濃度の測定)
トランスフルトリンの代わりにメトフルトリンを200mgおよび流動パラフィンを400mg用いて、試験開始から表7に示す所定期間経過時に、ボックス41内の空気を17L/分の速度で約1時間吸引した以外は、実施例8と同様の手順でメトフルトリンの気中濃度を求めた。同様の試験を2回行い、気中濃度の平均を求めた。結果を表7に示す。
(Example 10: Measurement of airborne concentration of metfurthrin)
Implemented, except that 200 mg of metfurthrin and 400 mg of liquid paraffin were used instead of transfluthrin, and the air in the box 41 was sucked at a rate of 17 L / min for about 1 hour after the predetermined period shown in Table 7 from the start of the test. In the same procedure as in Example 8, the air concentration of metfurthrin was determined. The same test was performed twice, and the average concentration in the air was determined. The results are shown in Table 7.

(実施例11)
ボックス41内の温度を30〜35℃に維持した以外は、実施例10と同様の手順で、メトフルトリンの気中濃度を求めた。同様の試験を2回行い、気中濃度の平均を求めた。結果を表7に示す。
(Example 11)
Except for maintaining the temperature in the box 41 at 30 to 35 ° C., the air concentration of metfurthrin was determined in the same manner as in Example 10. The same test was performed twice, and the average concentration in the air was determined. The results are shown in Table 7.

Figure 2017110455
Figure 2017110455

表7に示すように、実施例10(20〜25℃)では、試験期間中、ボックス41内のメトフルトリンの気中濃度は、少なくとも17μg/m3であることがわかる。すなわち、検体1個あたり少なくとも3.4μg/m3(17μg/5個)であることがわかる。この検体を例えば12畳の居室で使用した場合、居室内での気中濃度は、約0.07μg/m3(3.4μg/47.52m3)となり、8畳の場合は、約0.11μg/m3(3.4μg/31.68m3)となる。メトフルトリンなどの薬剤は、通常、温度が高いほど揮散しやすいため、試験温度が高い実施例11の方が、実施例10よりも気中濃度が高いことがわかる。As shown in Table 7, in Example 10 (20-25 ° C.), it can be seen that the airborne concentration of methfluthrin in the box 41 is at least 17 μg / m 3 during the test period. That is, it is found that the amount per sample is at least 3.4 μg / m 3 (17 μg / 5). For example, when this sample is used in a 12 tatami room, the air concentration in the room is about 0.07 μg / m 3 (3.4 μg / 47.52 m 3 ), and in the case of 8 tatami mats, the air concentration is about 0.07 μg / m 3 . 11μg / m 3 a (3.4μg / 31.68m 3). It can be seen that a drug such as metfurthrin usually tends to volatilize at a higher temperature, so that Example 11 having a higher test temperature has a higher concentration in the air than Example 10.

(実施例12:60日間の実地試験)
<処理区>
図6に示すように、1か所にドア52が設けられた8畳の居室51からなる試験室5を、ヒトスジシマカを含む蚊類が生息している自然環境下に設置した。居室51の高さは2.4mであり、ドア52の高さおよび幅は、それぞれ2.1mおよび0.85mであった。次いで、500mgのトランスフルトリンと250mgの流動パラフィンとの混合物を、担体に含浸させて検体53を得た。担体としては実施例1と同じ担体を用いた。
(Example 12: 60-day field test)
<Treatment zone>
As shown in FIG. 6, the test room 5 composed of an 8 tatami room 51 provided with a door 52 at one place was set up in a natural environment where mosquitoes including human mosquitoes live. The height of the living room 51 was 2.4 m, and the height and width of the door 52 were 2.1 m and 0.85 m, respectively. Next, a specimen 53 was obtained by impregnating a carrier with a mixture of 500 mg of transfluthrin and 250 mg of liquid paraffin. The same carrier as in Example 1 was used as the carrier.

ドア52を全開にして、得られた検体53を居室51への出入口付近の上部に吊るした。次いで、出入口付近の外側にドライアイス54を誘引源として置いた。初日および60日後に、朝夕各3時間、ほぼ同時刻に居室51内に侵入した蚊類の頭数をカウントした。朝夕の合計頭数を処理区合計侵入数とした。   The door 52 was fully opened, and the obtained specimen 53 was suspended above the entrance to the living room 51. Next, dry ice 54 was placed as an attraction source outside the vicinity of the entrance / exit. On the first day and 60 days later, the number of mosquitoes that entered the room 51 at about the same time for 3 hours each morning and evening was counted. The total number of heads in the morning and evening was taken as the total number of intrusions in the treatment area.

<無処理区>
検体53を用いなかった以外は、上記の処理区と同様の試験室を、試験室5の隣に設置した。上記の処理区と同様の手順で居室51内に侵入した蚊類の頭数をカウントした。朝夕の合計頭数を無処理区合計侵入数とした。
<No treatment zone>
A test chamber similar to the above-described treatment section was installed next to the test chamber 5 except that the sample 53 was not used. The number of mosquitoes that entered the living room 51 was counted in the same procedure as in the above treatment section. The total number of heads in the morning and evening was taken as the total number of intrusions in the untreated area.

得られた処理区合計侵入数および無処理区合計侵入数から、上記の式(II)を用いて侵入阻害率を求めた。試験開始初日(使用開始時)の侵入阻害率は88%であった。一方、試験開始から60日後(使用終了時)の侵入阻害率は81%であった。このように、使用終了時においても侵入阻害率が80%を超えており、本開示の害虫防除材は、使用開始時から終了時まで高い侵入阻害率を維持しており、優れた侵入阻害効果を発揮することがわかる。   The intrusion inhibition rate was determined from the total number of intrusions in the treated area and the total number of intrusions in the untreated area using the above formula (II). The invasion inhibition rate on the first day of the test (at the start of use) was 88%. On the other hand, the penetration inhibition rate 60 days after the start of the test (at the end of use) was 81%. Thus, the penetration inhibition rate exceeds 80% even at the end of use, and the pest control material of the present disclosure maintains a high penetration inhibition rate from the start to the end of use, and has an excellent penetration inhibition effect It can be seen that

(実施例13:準自然環境下での侵入阻害試験)
<処理区>
実施例1で用いた試験区域1(図1)において、12畳の居室11の代わりに8畳の居室を設置した試験区域を準備した。居室以外の空間を居室外(図1の居室外12に相当)とする。この試験区域の高さは3.5mであり、居室の高さは2.4mであった。次いで、100mgのメトフルトリンと200mgの流動パラフィンとの混合物を、担体に含浸させて検体を得た。担体としては実施例1と同じ担体を用いた。
(Example 13: Invasion inhibition test under quasi-natural environment)
<Treatment zone>
In the test area 1 (FIG. 1) used in Example 1, a test area in which an 8 tatami room was installed instead of the 12 tatami room 11 was prepared. A space other than the living room is assumed to be outside the room (corresponding to outside room 12 in FIG. 1). The height of this test area was 3.5 m, and the height of the living room was 2.4 m. Next, a sample was obtained by impregnating a carrier with a mixture of 100 mg of metfurthrin and 200 mg of liquid paraffin. The same carrier as in Example 1 was used as the carrier.

居室外に、ヒトスジシマカの雌成虫150頭を放ち、1時間馴化させた。その後、居室に試験者(図1の試験者14に相当)に入ってもらい、居室のほぼ中央部に立ってもらった。居室の入り口を10cm開けて開口部(図1の開口部15に相当)とした。得られた検体を、開口部の床から180cmの位置に吊るした。試験者を誘引源として、試験開始から30分後まで10分毎に、居室内に侵入したヒトスジシマカの頭数をカウントした。30分間に侵入した頭数を処理区合計侵入数とした。   Outside the room, 150 adult females of Aedes albopictus were released and allowed to acclimatize for 1 hour. Thereafter, the tester (corresponding to the tester 14 in FIG. 1) entered the room, and was allowed to stand in the center of the room. The entrance of the room was opened 10 cm to form an opening (corresponding to the opening 15 in FIG. 1). The obtained specimen was hung at a position 180 cm from the floor of the opening. Using the tester as an attracting source, the number of Aedes albopictus entering the room was counted every 10 minutes from the start of the test to 30 minutes later. The number of heads that invaded in 30 minutes was defined as the total number of intrusions in the treatment area.

<無処理区>
検体を用いなかった以外は、上記の処理区と同様の手順で居室内に侵入したヒトスジシマカの頭数をカウントした。30分間に侵入した頭数を無処理区合計侵入数とした。上記の式(II)を用いて侵入阻害率を求めた。同様の試験を2回行い、侵入阻害率の平均を求めた。結果を表8に示す。
<No treatment zone>
The number of Aedes albopictus that invaded the living room was counted in the same procedure as in the treatment section except that no sample was used. The number of heads that invaded in 30 minutes was defined as the total number of intrusions in the untreated section. The invasion inhibition rate was determined using the above formula (II). The same test was performed twice, and the average of the invasion inhibition rate was obtained. The results are shown in Table 8.

(実施例14)
メトフルトリンの使用量を200mgおよび流動パラフィンの使用量を400mgに変更した以外は、実施例13と同様の手順で試験を行い、ヒトスジシマカの侵入阻害率を求めた。同様の試験を2回行い、侵入阻害率の平均を求めた。結果を表8に示す。
(Example 14)
A test was carried out in the same manner as in Example 13 except that the amount of metfurthrin used was changed to 200 mg and the amount of liquid paraffin used was changed to 400 mg, and the invasion inhibition rate of Aedes albopictus was obtained. The same test was performed twice, and the average of the invasion inhibition rate was obtained. The results are shown in Table 8.

(比較例2)
メトフルトリンの使用量を50mgおよび流動パラフィンの使用量を100mgに変更した以外は、実施例13と同様の手順で試験を行い、ヒトスジシマカの侵入阻害率を求めた。同様の試験を2回行い、侵入阻害率の平均を求めた。結果を表8に示す。
(Comparative Example 2)
A test was carried out in the same procedure as in Example 13 except that the amount of metfurthrin used was changed to 50 mg and the amount of liquid paraffin used was changed to 100 mg, and the invasion inhibition rate of Aedes albopictus was obtained. The same test was performed twice, and the average of the invasion inhibition rate was obtained. The results are shown in Table 8.

Figure 2017110455
Figure 2017110455

表8に示すように、メトフルトリンの使用量が100mgおよび200mgの場合は80%以上であった。したがって、担体にメトフルトリンが少なくとも100mg含浸されていれば、優れた侵入阻害効果を発揮することがわかる。   As shown in Table 8, when the amount of metfurthrin used was 100 mg and 200 mg, it was 80% or more. Therefore, it can be seen that if the carrier is impregnated with at least 100 mg of metfurthrin, an excellent invasion inhibiting effect is exhibited.

1 試験区域
11 居室空間
12 居室空間外
13 検体
14 試験者(誘引源)
15 開口部
2 試験室
21 居室
22 開口部
23 検体
24 ドライアイス(誘引源)
3 試験室
31 検体
32 試験ケージ
4、4’ 試験装置
41 ボックス(プラスチックボックス)
42 吸気孔
43 排気孔
44 小型ファン
45 検体
46 捕集孔
5 試験室
51 居室
52 ドア
53 検体
54 ドライアイス(誘引源)
1 Test area 11 Living space 12 Outside living space 13 Sample 14 Tester (attraction source)
15 Opening 2 Test room 21 Living room 22 Opening 23 Sample 24 Dry ice (attraction source)
3 Test room 31 Sample 32 Test cage 4, 4 'Test equipment 41 Box (plastic box)
42 Intake hole 43 Exhaust hole 44 Small fan 45 Sample 46 Collection hole 5 Test chamber 51 Living room 52 Door 53 Sample 54 Dry ice (attraction source)

Claims (7)

担体と、この担体に保持された常温揮散性のピレスロイド系化合物とを含み、
少なくとも下記の式(I)で示される量の常温揮散性のピレスロイド系化合物が、担体に保持されていることを特徴とする害虫防除材。
保持量(mg)=100mg+A×B (I)
A:常温揮散性のピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B:使用期間(日数)
A carrier, and a room temperature volatile pyrethroid compound held on the carrier,
A pest control material characterized in that at least an amount of a room temperature volatile pyrethroid compound represented by the following formula (I) is held on a carrier.
Retention amount (mg) = 100 mg + A × B (I)
A: Maximum volatilization amount per day of a room temperature volatile pyrethroid compound (mg / day)
B: Use period (days)
前記常温揮散性のピレスロイド系化合物が、少なくとも2mg/cm2の濃度で担体に保持されている請求項1に記載の害虫防除材。The pest control material according to claim 1, wherein the room temperature volatile pyrethroid compound is held on a carrier at a concentration of at least 2 mg / cm 2 . 前記常温揮散性のピレスロイド系化合物が、害虫防除材の使用終了時に少なくとも1mg/cm2の濃度で残存するように担体に保持されている請求項1または2に記載の害虫防除材。The pest control material according to claim 1 or 2, wherein the room temperature volatile pyrethroid compound is held on a carrier so as to remain at a concentration of at least 1 mg / cm 2 at the end of use of the pest control material. 前記担体が、網目構造を有するシート状の担体である請求項1〜3のいずれかに記載の害虫防除材。   The pest control material according to any one of claims 1 to 3, wherein the carrier is a sheet-like carrier having a network structure. 自然揮散用である請求項1〜4のいずれかに記載の害虫防除材。   The pest control material according to any one of claims 1 to 4, which is for natural volatilization. 少なくとも下記の式(I)で示される量の常温揮散性のピレスロイド系化合物が保持された担体から、常温揮散性のピレスロイド系化合物を少なくとも0.05μg/m3の気中濃度となるように揮散させることを特徴とする害虫防除方法。
保持量(mg)=100mg+A×B (I)
A:常温揮散性のピレスロイド系化合物の1日あたりの最大揮散量(mg/日)
B:使用期間(日数)
Volatilization of the room temperature volatile pyrethroid compound from the carrier holding at least the amount of the room temperature volatile pyrethroid compound represented by the following formula (I) to an air concentration of at least 0.05 μg / m 3 A method for controlling pests, characterized in that
Retention amount (mg) = 100 mg + A × B (I)
A: Maximum volatilization amount per day of a room temperature volatile pyrethroid compound (mg / day)
B: Use period (days)
前記常温揮散性のピレスロイド系化合物を自然に揮散させる請求項6に記載の害虫防除方法。   The pest control method according to claim 6, wherein the room temperature volatile pyrethroid compound is volatilized naturally.
JP2017557849A 2015-12-24 2016-12-06 Pest control material and pest control method using it Active JP6774717B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015251415 2015-12-24
JP2015251415 2015-12-24
PCT/JP2016/086242 WO2017110455A1 (en) 2015-12-24 2016-12-06 Pest control material and pest control method using same

Publications (2)

Publication Number Publication Date
JPWO2017110455A1 true JPWO2017110455A1 (en) 2018-08-30
JP6774717B2 JP6774717B2 (en) 2020-10-28

Family

ID=59089381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017557849A Active JP6774717B2 (en) 2015-12-24 2016-12-06 Pest control material and pest control method using it

Country Status (2)

Country Link
JP (1) JP6774717B2 (en)
WO (1) WO2017110455A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124987A (en) * 2007-11-22 2009-06-11 Dainippon Jochugiku Co Ltd Apparatus for volatilizing chemical
JP2012236779A (en) * 2011-05-10 2012-12-06 Earth Chemical Co Ltd Transpiration material
WO2014065150A1 (en) * 2012-10-22 2014-05-01 大日本除蟲菊株式会社 Chemical volatilization body
JP2014177475A (en) * 2011-11-16 2014-09-25 Dainippon Jochugiku Co Ltd Resin pellet including insect repellent component, and insect repellent product using the same
JP2015020968A (en) * 2013-07-18 2015-02-02 大日本除蟲菊株式会社 Medicinal agent vaporization body with flavor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006296351A (en) * 2005-04-22 2006-11-02 Dainippon Jochugiku Co Ltd Insect-proof agent
JP2008178336A (en) * 2007-01-24 2008-08-07 Earth Chem Corp Ltd Method for controlling insect pest
JP2010090048A (en) * 2008-10-07 2010-04-22 Dainippon Jochugiku Co Ltd Drug vaporizer
JP6018488B2 (en) * 2012-07-12 2016-11-02 大日本除蟲菊株式会社 Drug volatilizer and method for controlling flying insect pests using the same
JP6013119B2 (en) * 2012-10-03 2016-10-25 大日本除蟲菊株式会社 Drug volatilizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009124987A (en) * 2007-11-22 2009-06-11 Dainippon Jochugiku Co Ltd Apparatus for volatilizing chemical
JP2012236779A (en) * 2011-05-10 2012-12-06 Earth Chemical Co Ltd Transpiration material
JP2014177475A (en) * 2011-11-16 2014-09-25 Dainippon Jochugiku Co Ltd Resin pellet including insect repellent component, and insect repellent product using the same
WO2014065150A1 (en) * 2012-10-22 2014-05-01 大日本除蟲菊株式会社 Chemical volatilization body
JP2015020968A (en) * 2013-07-18 2015-02-02 大日本除蟲菊株式会社 Medicinal agent vaporization body with flavor

Also Published As

Publication number Publication date
JP6774717B2 (en) 2020-10-28
WO2017110455A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR100394164B1 (en) Insecticide-containing products for insect control
US6534079B1 (en) Passive space insect repellant strip
RU2167523C2 (en) Method of control of harmful insects
US10506804B2 (en) Collapsible stackable disposable inexpensive pesticide free traps and attractant for surveillance and control of Aedes container breeding mosquitos and other container breeding insects
JP6663228B2 (en) Volatile enclosed space pesticide
US20110044936A1 (en) Composition for Attracting Bed Bugs
JP6576643B2 (en) Volatile closed space insecticide
US20160270393A1 (en) Insect repellent compositions and methods of use
CN104273158A (en) Pyrethroid release control composition
WO2017110455A1 (en) Pest control material and pest control method using same
JP5385501B2 (en) Transpiration material, pre-sucking action reducing agent for blood-sucking pests, and method
JP2001103899A (en) Device for diffusing chemical agent
JP2023101394A (en) Agent for repelling flying pests and method for repelling flying pests
KR200257582Y1 (en) Net-type captor for vermin
BR112019013844A2 (en) insect-pest control product and insect-pest control method
JP2004123702A (en) Indoor hygienic vermin-exterminating agent and method for exterminating indoor hygienic vermin
JP2006166745A (en) Method for controlling landing of insect pest, volatilization apparatus and volatile preparation
Gahan et al. Cheesecloth impregnated with baygon for control of Anopheles quadrimaculatus Say.
HRP20020661A2 (en) Debugging method of expelling hramful insects by chemical volatilization
JPH11322508A (en) Heating and transpiring type pest-controlling agent, and pest control by utilizing the same
JPH10316506A (en) Heat-fumigation type noxious insect expellent and insect extermination using the same
JP2016026495A (en) Agent volatilizing device for preventing cockroach intrusion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190402

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200923

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250