JPWO2017090390A1 - Pipe thickness measuring apparatus and method using ultrasonic waves - Google Patents

Pipe thickness measuring apparatus and method using ultrasonic waves Download PDF

Info

Publication number
JPWO2017090390A1
JPWO2017090390A1 JP2017552334A JP2017552334A JPWO2017090390A1 JP WO2017090390 A1 JPWO2017090390 A1 JP WO2017090390A1 JP 2017552334 A JP2017552334 A JP 2017552334A JP 2017552334 A JP2017552334 A JP 2017552334A JP WO2017090390 A1 JPWO2017090390 A1 JP WO2017090390A1
Authority
JP
Japan
Prior art keywords
pipe
ultrasonic
ultrasonic waves
pipe thickness
thickness measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017552334A
Other languages
Japanese (ja)
Other versions
JP6458167B2 (en
Inventor
永島 良昭
良昭 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2017090390A1 publication Critical patent/JPWO2017090390A1/en
Application granted granted Critical
Publication of JP6458167B2 publication Critical patent/JP6458167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

構造不連続部位を有する配管の厚さを内面から測定する独立型(ケーブルレス)の超音波を用いた配管厚さ測定装置およびその方法を提供する。超音波を用いた配管厚さ測定装置において、配管内の液体に対して超音波を送受信する複数の超音波センサと、超音波を送受信する手段と、超音波センサ毎に複数の反射波伝搬時間を測定して記録する手段と、配管内壁に実質的に垂直に入射する超音波の伝搬時間を利用して配管厚さを計算する手段を有する。Provided are a pipe thickness measuring apparatus and method using ultrasonic waves of a stand-alone type (cableless) for measuring the thickness of a pipe having a structural discontinuity from the inner surface. In a pipe thickness measuring apparatus using ultrasonic waves, a plurality of ultrasonic sensors that transmit / receive ultrasonic waves to / from a liquid in the pipe, a means for transmitting / receiving ultrasonic waves, and a plurality of reflected wave propagation times for each ultrasonic sensor And a means for calculating the pipe thickness using the propagation time of the ultrasonic wave incident substantially perpendicularly on the inner wall of the pipe.

Description

本発明は、例えば、プラント等で用いられる配管の厚さ測定装置および方法に関する。   The present invention relates to a pipe thickness measuring apparatus and method used in, for example, a plant.

発電プラント,化学プラント等の配管は、敷設してから長期間が経過すると、内面に欠陥(減肉)が発生する。この減肉が進行すると、配管の厚壁を貫通し、液体や蒸気といった配管を流れる内部流体が外部に漏洩する恐れがある。このような内部流体の漏洩を避けるため、定期的な配管の非破壊検査により減肉の状態を把握し、交換や補修といった対策を施す必要がある。   When piping for a power plant, chemical plant, etc. is laid for a long time, defects (thinning) occur on the inner surface. As this thinning progresses, there is a risk that the internal fluid that passes through the thick wall of the pipe and flows through the pipe, such as liquid and vapor, will leak to the outside. In order to avoid such leakage of internal fluid, it is necessary to grasp the state of thinning by regular non-destructive inspection of piping, and to take measures such as replacement and repair.

配管の厚さを非破壊検査する非破壊検査手段として、検査対象の厚さを計測する超音波厚さ計が知られている。超音波厚さ計は、一般的には、電気と音響とを相互に変換可能な圧電素子を有する超音波センサが用いられている。超音波センサを配管外面に設置して、検査対象の配管に超音波(縦波や横波)を送信し、配管内面で反射した超音波を同一もしくは別の超音波センサで受信して配管の厚さを測定する。この超音波厚さ計は、検査範囲が狭いために、広範囲を検査するには配管に沿って複数の箇所を検査する必要があり、検査の長時間を要する。また、配管が埋設されている場合や、配管周囲に保温材が設置されている場合や、配管が二重になっている場合など、適用が困難な場合もある。   As a nondestructive inspection means for nondestructive inspection of the thickness of a pipe, an ultrasonic thickness meter that measures the thickness of an inspection object is known. As the ultrasonic thickness meter, an ultrasonic sensor having a piezoelectric element capable of mutually converting electricity and sound is generally used. Install an ultrasonic sensor on the outer surface of the pipe, transmit ultrasonic waves (longitudinal waves and transverse waves) to the pipe to be inspected, and receive the ultrasonic waves reflected on the inner surface of the pipe with the same or another ultrasonic sensor to obtain the thickness of the pipe. Measure the thickness. Since this ultrasonic thickness gauge has a narrow inspection range, in order to inspect a wide range, it is necessary to inspect a plurality of locations along the pipe, which requires a long inspection time. In addition, the application may be difficult, for example, when the pipe is buried, when a heat insulating material is installed around the pipe, or when the pipe is doubled.

このような配管に対しては、超音波式、電磁気式などのセンサを有する配管挿入型の検査装置があり、実際の使用に供されている。しかしながら、検査する距離が長くなると、配管挿入型検査装置のケーブルが長くなり、設置コストが大きくなる問題がある。   For such a pipe, there is a pipe insertion type inspection device having an ultrasonic sensor, an electromagnetic sensor, or the like, which is used for actual use. However, when the distance to be inspected becomes long, there is a problem that the cable of the pipe insertion type inspection apparatus becomes long and the installation cost increases.

これに対して、ケーブルを接続せずに配管内面から厚さを測定する技術が開示されている。例えば、特許文献1には、超音波パルス発生・受信部、制御部、記録部等を装置内部に有する管内挿入式超音波探傷検査装置が開示されている。また、特許文献2には、球状の計測装置本体内に電磁超音波探触子を立体的に配置し、配管内を移動する計測装置が開示されている。また、特許文献3には、球体内に音響センサを有し、圧力管内での漏れや空気溜まりが発生する音を検知、記録することで、漏水箇所や漏水量、空気溜まり位置を測定する技術が開示されている。   On the other hand, a technique for measuring the thickness from the inner surface of a pipe without connecting a cable is disclosed. For example, Patent Document 1 discloses an in-tube insertion type ultrasonic flaw detection apparatus having an ultrasonic pulse generation / reception unit, a control unit, a recording unit, and the like inside the apparatus. Patent Document 2 discloses a measuring device in which electromagnetic ultrasonic probes are three-dimensionally arranged in a spherical measuring device main body and moved in a pipe. Patent Document 3 discloses a technique for measuring a water leak location, a water leak amount, and an air reservoir position by having an acoustic sensor in a sphere and detecting and recording a sound generated by a leak or an air reservoir in a pressure tube. Is disclosed.

特開2011−75384号公報JP 2011-75384 A 特開2005−292044号公報JP 2005-290204 A WO2006/081671号公報WO2006 / 081671

しかしながら、上記特許文献1から3では、いずれも分岐や口径変化などの構造不連続部位を有する配管に対しては、配管厚さを測定ができない課題がある。   However, in the above Patent Documents 1 to 3, there is a problem that the pipe thickness cannot be measured for a pipe having a structural discontinuity portion such as a branch or a change in diameter.

特許文献1においては、装置構造が、センサユニット、パルサレシーバユニット、電源ユニットなど、複数ユニットに分けられ、それらが配管軸方向に沿って配列・連結される構造になっている。このように装置全体が長い構造では、配管構造の不連続部(分岐等)をスムーズに通過できない可能性がある。   In Patent Document 1, the device structure is divided into a plurality of units such as a sensor unit, a pulsar receiver unit, and a power supply unit, and these are arranged and connected along the pipe axis direction. Thus, in the structure where the whole apparatus is long, there is a possibility that the discontinuous part (branch etc.) of the piping structure cannot be smoothly passed.

また、特許文献2では、球状の計測装置本体内に電磁超音波探触子を立体的に配置しているが、電磁超音波探触子では超音波を送受信する対象物(この場合は配管内壁)に近接する必要があるので、球体外径を実質的に配管内径とほぼ同程度にする必要がある。したがって、配管の口径変化に対応できない問題や、配管内壁に付着物がある場合に通過できなくなる懸念がある。   In Patent Document 2, an electromagnetic ultrasonic probe is three-dimensionally arranged in a spherical measuring device main body, but the electromagnetic ultrasonic probe is an object that transmits and receives ultrasonic waves (in this case, the inner wall of a pipe). ) Must be close to the inner diameter of the pipe. Therefore, there is a problem that it is not possible to cope with a change in the diameter of the pipe, and there is a concern that the pipe cannot pass when there is a deposit on the inner wall of the pipe.

また、特許文献3では、球体内に音響センサを有するが、配管の厚さを測定する技術に関しては開示されていない。   Moreover, in patent document 3, although it has an acoustic sensor in a spherical body, it is not disclosed regarding the technique which measures the thickness of piping.

本発明は上記に鑑みてなされたものであり、構造不連続部位を有する配管の厚さを内面から測定する独立型(ケーブルレス)の超音波を用いた配管厚さ測定装置及びその方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a pipe thickness measuring apparatus and method using ultrasonic waves of an independent type (cableless) for measuring the thickness of a pipe having a discontinuous structure from the inner surface. The purpose is to do.

上記目的を達成するための本発明の配管厚さ測定装置は、超音波を用いた配管厚さ測定装置において、配管内の液体に対して超音波を送受信する複数の超音波センサと、超音波を送受信する手段と、超音波センサ毎に複数の反射波伝搬時間を測定・記録する手段と、配管内壁に実質的に垂直に入射する超音波の伝搬時間を利用して配管厚さを計算する手段を有することを特徴とする。   In order to achieve the above object, a pipe thickness measuring apparatus according to the present invention includes a plurality of ultrasonic sensors that transmit and receive ultrasonic waves to and from the liquid in the pipe, and ultrasonic waves. The pipe thickness is calculated by using means for transmitting and receiving, means for measuring and recording a plurality of reflected wave propagation times for each ultrasonic sensor, and propagation time of ultrasonic waves that are incident substantially perpendicularly to the inner wall of the pipe. It has the means.

上記目的を達成するための本発明の配管厚さ測定方法は、超音波を用いた配管厚さ測定方法において、複数の超音波センサと超音波を送受信する手段とを備える配管厚さ測定装置を、配管内にて移動可能なように配置し、配管の内側から前記配管厚さ測定装置上の各超音波センサにより反射波伝搬時間を測定し、配管内壁に対して実質的に垂直に入射する超音波の伝搬時間を利用して配管厚さを計算することを特徴とする。   In order to achieve the above object, a pipe thickness measuring method according to the present invention is a pipe thickness measuring method using ultrasonic waves, comprising: a pipe thickness measuring device comprising a plurality of ultrasonic sensors and means for transmitting and receiving ultrasonic waves. It is arranged so that it can move in the pipe, and the reflected wave propagation time is measured from the inside of the pipe by each ultrasonic sensor on the pipe thickness measuring device, and is incident substantially perpendicular to the inner wall of the pipe. The pipe thickness is calculated using the propagation time of ultrasonic waves.

本発明によれば、構造不連続部位を有する配管の厚さを測定することが可能になる。   According to the present invention, it is possible to measure the thickness of a pipe having a structural discontinuity portion.

本発明の実施例1による超音波を用いた配管厚さ測定装置の概略構造を示す図である。It is a figure which shows schematic structure of the pipe thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention. 本発明の実施例1による超音波を用いた配管厚さ測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the pipe thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention. 本発明の実施例1による超音波を用いた配管厚さ測定装置の各超音波センサから送信された超音波の伝搬の様子を説明した図である。It is the figure explaining the mode of propagation of the ultrasonic wave transmitted from each ultrasonic sensor of the pipe thickness measuring device using the ultrasonic wave by Example 1 of the present invention. 本発明の実施例1による超音波を用いた配管厚さ測定装置から送信された超音波の受信信号を模式的に示した図である。It is the figure which showed typically the received signal of the ultrasonic wave transmitted from the pipe thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention. 本発明の実施例1による超音波を用いた配管厚さ測定装置が配管内を移動する様子を説明した図である。It is the figure explaining a mode that the piping thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention moved the inside of piping. 本発明の実施例1による超音波を用いた配管厚さ測定装置による配管厚さ測定結果の表示画面を模式的に示した図である。It is the figure which showed typically the display screen of the pipe thickness measurement result by the pipe thickness measuring apparatus using the ultrasonic wave by Example 1 of this invention. 本発明の実施例2による超音波を用いた配管厚さ測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the pipe thickness measuring apparatus using the ultrasonic wave by Example 2 of this invention. 本発明の実施例2による超音波を用いた配管厚さ測定装置による配管厚さ測定結果の表示画面を模式的に示した図である。It is the figure which showed typically the display screen of the pipe thickness measurement result by the pipe thickness measuring apparatus using the ultrasonic wave by Example 2 of this invention.

以下、実施例を図面を用いて説明する。   Hereinafter, examples will be described with reference to the drawings.

以下、本発明の一実施例を図1〜図6を用いて説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図1は、本実施例に係る超音波を用いた配管厚さ測定装置の全体構成を、検査対象の配管とともに概略的に示す図である。   FIG. 1 is a diagram schematically showing an overall configuration of a pipe thickness measuring apparatus using ultrasonic waves according to the present embodiment, along with pipes to be inspected.

図1において、配管厚さ測定装置2は、超音波センサ11、超音波センサ11を駆動して超音波センサ11からの波形信号を受信する超音波送受信手段12、超音波送受信手段12から出力された波形信号をデジタル波形信号に変換し、超音波の伝搬時間を測定・記録する超音波伝搬時間測定・記録手段14、伝搬時間から配管厚さを計算する配管厚さ計算手段15を備える。   In FIG. 1, a pipe thickness measuring device 2 is output from an ultrasonic sensor 11, an ultrasonic transmission / reception unit 12 that drives the ultrasonic sensor 11 and receives a waveform signal from the ultrasonic sensor 11, and an ultrasonic transmission / reception unit 12. An ultrasonic wave propagation time measuring / recording means 14 for converting the waveform signal into a digital waveform signal and measuring and recording the ultrasonic wave propagation time, and a pipe thickness calculating means 15 for calculating the pipe thickness from the propagation time.

超音波送信センサ11は、配管厚さ測定装置2の周囲に複数配置され、同軸ケーブルなどで超音波送受信手段12と接続される。超音波センサ11は、例えば圧電素子によって構成されている。   A plurality of ultrasonic transmission sensors 11 are arranged around the pipe thickness measuring device 2 and connected to the ultrasonic transmission / reception means 12 by a coaxial cable or the like. The ultrasonic sensor 11 is composed of, for example, a piezoelectric element.

超音波送受信手段12は、超音波伝搬時間測定・記録手段14とデジタルケーブルで接続され、配管厚さ計算手段15の制御によって、超音波送信センサ11に送信波形信号を印加し、さらに超音波センサ11からの受信波形信号を増幅し、受信波形信号を出力する。   The ultrasonic transmission / reception means 12 is connected to the ultrasonic propagation time measurement / recording means 14 by a digital cable, and applies a transmission waveform signal to the ultrasonic transmission sensor 11 under the control of the pipe thickness calculation means 15. Furthermore, the ultrasonic sensor 11 amplifies the received waveform signal from 11 and outputs the received waveform signal.

姿勢測定手段13は、ジャイロスコープなどで構成され、配管厚さ測定装置2の姿勢の相対的な変化を測定する。   The posture measuring means 13 is composed of a gyroscope or the like, and measures a relative change in the posture of the pipe thickness measuring device 2.

超音波伝搬時間測定・記録手段14は、A/D変換器・メモリ等で構成され、受信波形を超音波送信センサ11で受信した受信波形データを記録する。   The ultrasonic propagation time measuring / recording means 14 is composed of an A / D converter, a memory, etc., and records the received waveform data received by the ultrasonic transmission sensor 11.

配管厚さ計算手段15は、超音波伝搬時間測定・記録手段14が記録した受信波形データを元に、配管厚さを計算する。   The pipe thickness calculation means 15 calculates the pipe thickness based on the received waveform data recorded by the ultrasonic propagation time measurement / recording means 14.

配管厚さ測定装置2は、配管1のほぼ中心軸上を移動するのが適切であり、液体8に対して中性浮力になるように体積と質量を調整すると良い。また、図示しないが、配管厚さ測定装置2の周囲に、超音波の伝搬に影響を与えない程度の太さの紐状の弾性体を配置することで、配管厚さ測定装置2は配管1のほぼ中心軸上を移動することができる。   It is appropriate that the pipe thickness measuring device 2 moves substantially on the central axis of the pipe 1, and the volume and mass should be adjusted so that the buoyancy is neutral with respect to the liquid 8. Although not shown, the pipe thickness measuring apparatus 2 is arranged around the pipe thickness measuring apparatus 2 by arranging a string-like elastic body having a thickness that does not affect the propagation of ultrasonic waves. Can be moved almost on the central axis.

超音波を用いた配管厚さ測定方法を、図2のフローチャートを用いて以下に説明する。   A pipe thickness measurement method using ultrasonic waves will be described below using the flowchart of FIG.

ステップS101において、配管厚さ測定装置2は、配管1に投入される。   In step S <b> 101, the pipe thickness measuring device 2 is put into the pipe 1.

次に、ステップS102において、超音波送受信手段12は、超音波送信センサ11のうちの一つを駆動し、同じ超音波送信センサ11で超音波を受信する。   Next, in step S <b> 102, the ultrasonic transmission / reception unit 12 drives one of the ultrasonic transmission sensors 11 and receives the ultrasonic waves by the same ultrasonic transmission sensor 11.

ステップS103において、超音波伝搬時間測定・記録手段14は、超音波の受信波形をデジタル波形データとして記録する。   In step S103, the ultrasonic wave propagation time measurement / recording unit 14 records the ultrasonic reception waveform as digital waveform data.

ステップS104において、配管厚さ計算手段15は、配管の厚さを計算する。   In step S104, the pipe thickness calculation means 15 calculates the thickness of the pipe.

ステップS102乃至S104は、全ての超音波センサ11に対して繰り返される。例えば、図3に示すように、超音波センサ11が配管厚さ測定装置2の周囲に26個配置される場合、26個の超音波センサ11に対して繰り返される。このとき、超音波センサ11の指向角の範囲内で超音波センサ11に対して正対する内壁がある場合には、実線で示した超音波61のように、配管1の内壁に対して実質垂直に入射する伝搬経路が存在する。一方で、超音波センサ11の指向角の範囲内で超音波センサ11に対して正対する内壁がない場合は、破線で示した超音波62のように、配管1の内壁に対して垂直に入射する経路が存在しない。各々の受信信号を模式的に示したのが図4である。図4(a)は、配管1の内壁に対して実質垂直に入射した超音波61の受信信号21であり、配管内壁の表面で反射した信号21a、及び配管1の内壁の表面を通過して配管1の外壁で反射した信号21bが観測される(21bは繰り返し複数観測される可能性がある)。信号21aと信号21bの時間差(t21b−t21a)が当該部の配管厚さと対応する。一方、図4(b)は、配管1の内壁に対して垂直に入射しない超音波62の受信信号22であり、反射波が観測されない。Steps S <b> 102 to S <b> 104 are repeated for all the ultrasonic sensors 11. For example, as shown in FIG. 3, when 26 ultrasonic sensors 11 are arranged around the pipe thickness measuring device 2, the process is repeated for the 26 ultrasonic sensors 11. At this time, if there is an inner wall that faces the ultrasonic sensor 11 within the range of the directivity angle of the ultrasonic sensor 11, it is substantially perpendicular to the inner wall of the pipe 1 as shown by the ultrasonic wave 61 shown by the solid line. There is a propagation path incident on the. On the other hand, when there is no inner wall facing the ultrasonic sensor 11 within the range of the directivity angle of the ultrasonic sensor 11, the incident is perpendicular to the inner wall of the pipe 1 like the ultrasonic wave 62 indicated by a broken line. There is no route to do. FIG. 4 schematically shows each received signal. FIG. 4A shows the received signal 21 of the ultrasonic wave 61 incident substantially perpendicularly to the inner wall of the pipe 1, passing through the signal 21 a reflected on the surface of the inner wall of the pipe and the surface of the inner wall of the pipe 1. A signal 21b reflected on the outer wall of the pipe 1 is observed (21b may be repeatedly observed). The time difference (t 21b −t 21a ) between the signal 21a and the signal 21b corresponds to the pipe thickness of the part. On the other hand, FIG. 4B shows the reception signal 22 of the ultrasonic wave 62 that is not perpendicularly incident on the inner wall of the pipe 1 and no reflected wave is observed.

このように、全ての超音波センサ11に対するステップS102乃至S104の繰り返しは、ある特定の時間間隔で繰り返される。例えば、図5に示すように、配管厚さ測定装置を2aに示す位置で投入し、距離L進むまで配管1の中を流し、配管厚さ測定装置を2bに示す位置で回収する場合では、この間、ステップS102乃至S104の繰り返しを繰り返すことになる。   Thus, the repetition of steps S102 to S104 for all the ultrasonic sensors 11 is repeated at a specific time interval. For example, as shown in FIG. 5, when the pipe thickness measuring device is inserted at the position shown in 2a, the pipe 1 is flowed until the distance L advances, and the pipe thickness measuring device is collected at the position shown in 2b, During this time, steps S102 to S104 are repeated.

最後に、ステップS106において、配管厚さ測定装置2は、配管1から回収される。   Finally, in step S106, the pipe thickness measuring device 2 is recovered from the pipe 1.

図6は、回収した配管厚さ測定装置2の中に記録された配管厚さデータを、横軸を配管軸方向距離L(m)、縦軸を超音波センサチャンネルとして表示した画面の例を示したものである。26個の超音波センサ11のうち、配管1の内壁に正対する8個の超音波センサ11の受信波形では配管厚さ測定データが有り、それ以外では配管厚さ測定データが無い。図5に示した配管では、配管1の同じ周方向に減肉31、32が存在する例であるが、配管厚さ測定装置2が3次元的に回転しながら配管1内を流れていくため、配管厚さ測定データが存在する8個の超音波センサ11は配管軸方向距離Lによって変化する。しかしながら、8個の超音波センサ11のいずれかで、減肉31、32に対応する減肉部厚さの測定結果41a、42aが表示される。   FIG. 6 shows an example of a screen in which the pipe thickness data recorded in the collected pipe thickness measuring device 2 is displayed with the horizontal axis as the pipe axis direction distance L (m) and the vertical axis as the ultrasonic sensor channel. It is shown. Of the 26 ultrasonic sensors 11, there are pipe thickness measurement data in the received waveforms of the eight ultrasonic sensors 11 that face the inner wall of the pipe 1, and there are no pipe thickness measurement data in the other cases. The pipe shown in FIG. 5 is an example in which the thinnings 31 and 32 exist in the same circumferential direction of the pipe 1, but the pipe thickness measuring device 2 flows in the pipe 1 while rotating three-dimensionally. The eight ultrasonic sensors 11 in which pipe thickness measurement data exist vary depending on the pipe axis direction distance L. However, the thinned portion thickness measurement results 41a and 42a corresponding to the thinnings 31 and 32 are displayed by any of the eight ultrasonic sensors 11.

以上のように構成した本実施例の効果を説明する。   The effect of the present embodiment configured as described above will be described.

従来技術としては、例えば、装置構造が、センサユニット、パルサレシーバユニット、電源ユニットなど、複数ユニットに分けられ、それらが配管軸方向に沿って配列・連結される構造の管内挿入式超音波探傷検査装置があった。しかしながら、このように装置全体が長い構造では、配管構造の不連続部(分岐等)をスムーズに通過できない可能性があった。また、別の従来技術としては、球状の計測装置本体内に電磁超音波探触子を立体的に配置し、配管内を移動する計測装置があった。しかしながら、電磁超音波探触子では超音波を送受信する対象物(この場合は配管内壁)に近接する必要があるので、球体外径を実質的に配管内径とほぼ同程度にする必要がある。したがって、配管の口径変化に対応できない問題や、配管内壁に付着物がある場合に通過できなくなる懸念があった。   As a prior art, for example, the device structure is divided into a plurality of units such as a sensor unit, a pulsar receiver unit, a power supply unit, etc., and these are arranged and connected along the pipe axis direction. There was a device. However, in such a long structure of the entire apparatus, there is a possibility that the discontinuous part (branch or the like) of the piping structure cannot be smoothly passed. As another prior art, there has been a measuring device in which electromagnetic ultrasonic probes are arranged three-dimensionally in a spherical measuring device body and moved in a pipe. However, since the electromagnetic ultrasonic probe needs to be close to the object (in this case, the pipe inner wall) that transmits and receives ultrasonic waves, the spherical outer diameter needs to be substantially the same as the pipe inner diameter. Therefore, there is a problem that it is not possible to cope with a change in the diameter of the pipe, and there is a concern that the pipe cannot pass when there is a deposit on the inner wall of the pipe.

これに対して、本実施例においては、超音波を用いた配管厚さ測定装置2において、配管1内の液体8に対して超音波6を送受信する複数の超音波センサ11と、超音波を送受信する手段12と、超音波センサ11毎に複数の反射波伝搬時間を測定・記録する手段14と、配管内壁に実質的に垂直に入射する超音波の伝搬時間を利用して配管厚さを計算する手段15を有するので、構造不連続部位を有する配管の厚さを測定することが可能になる。   On the other hand, in the present embodiment, in the pipe thickness measuring apparatus 2 using ultrasonic waves, a plurality of ultrasonic sensors 11 that transmit and receive the ultrasonic waves 6 to and from the liquid 8 in the pipes 1 and ultrasonic waves. The pipe thickness is determined by using the means 12 for transmitting / receiving, the means 14 for measuring / recording a plurality of reflected wave propagation times for each ultrasonic sensor 11, and the propagation time of the ultrasonic wave substantially perpendicularly incident on the pipe inner wall. Since the calculating means 15 is provided, it is possible to measure the thickness of the pipe having the structural discontinuity portion.

本発明による第2の実施例を図7〜図8を用いて説明する。   A second embodiment of the present invention will be described with reference to FIGS.

図7は、本発明による第2の実施例による、超音波を用いた配管厚さ測定方法を示したフローチャートである。ステップS104以外の動作は、第1の実施例と同じであるので、説明は省略する。   FIG. 7 is a flowchart showing a pipe thickness measuring method using ultrasonic waves according to the second embodiment of the present invention. Since the operations other than step S104 are the same as those in the first embodiment, description thereof will be omitted.

ステップS105では、時間間隔毎に、全ての超音波センサ11に対して超音波を送信し(ステップS102)、受信波を記録し(ステップS103)、配管厚さを計算した(ステップS104)後に実行されるステップであり、配管厚さ測定装置2の姿勢を記録する。   In step S105, ultrasonic waves are transmitted to all ultrasonic sensors 11 at every time interval (step S102), received waves are recorded (step S103), and pipe thicknesses are calculated (step S104). The posture of the pipe thickness measuring device 2 is recorded.

図8は、図5で示した配管に対して、本実施例による配管厚さ測定結果を模式的に示した図である。各時間の配管厚さ測定装置2の姿勢データが記録されているので、配管厚さ測定装置2が有する26個の超音波センサ11のうち、配管1の内面に対して実質的に垂直に入射する超音波を測定できるセンサを特定できるとともに、配管1の周方向位置に対する超音波センサ11の相対的な位置を把握できる。このことから、減肉31、32に対応する位置で、減肉部の厚さが41b、42bのように測定される。すなわち、減肉の配管周方向位置を表示することが可能になる。   FIG. 8 is a diagram schematically showing the result of pipe thickness measurement according to this example for the pipe shown in FIG. Since the posture data of the pipe thickness measuring device 2 for each hour is recorded, the ultrasonic wave is incident substantially perpendicular to the inner surface of the pipe 1 among the 26 ultrasonic sensors 11 of the pipe thickness measuring device 2. It is possible to identify a sensor that can measure ultrasonic waves to be measured, and to grasp the relative position of the ultrasonic sensor 11 with respect to the circumferential position of the pipe 1. From this, at the positions corresponding to the thinnings 31 and 32, the thickness of the thinning part is measured as 41b and 42b. That is, it is possible to display the pipe circumferential direction position of the thinning.

以上のように構成した本実施例の効果を説明する。   The effect of the present embodiment configured as described above will be described.

本実施例においては、第1の実施例に対して、前記配管厚さ測定装置の姿勢を測定する手段を追加で有するので、減肉の配管周方向の位置を特定することが可能となる。   In the present embodiment, since a means for measuring the posture of the pipe thickness measuring device is additionally provided with respect to the first embodiment, it is possible to specify the position in the pipe circumferential direction of the thinning.

1 配管
2 配管厚さ測定装置
6 超音波
7 移動経路
8 液体
11 超音波センサ
12 超音波送受信手段
13 姿勢測定手段
14 超音波伝搬時間測定・記録手段
15 配管厚さ計算手段
21、22 超音波の受信信号
31、32 減肉
41a、42a、41b、42b 減肉部厚さ
DESCRIPTION OF SYMBOLS 1 Pipe 2 Pipe thickness measurement apparatus 6 Ultrasonic 7 Movement path 8 Liquid 11 Ultrasonic sensor 12 Ultrasonic transmission / reception means 13 Attitude measurement means 14 Ultrasonic propagation time measurement and recording means 15 Pipe thickness calculation means 21, 22 Received signals 31, 32 Thinning thickness 41a, 42a, 41b, 42b Thinning portion thickness

Claims (6)

配管内の液体に対して超音波を送受信する複数の超音波センサと、
超音波を送受信する手段と、
前記超音波センサ毎に複数の反射波伝搬時間を測定して記録する手段と、
配管内壁に垂直に入射する超音波の伝搬時間を利用して配管厚さを計算する手段と、
を有することを特徴とする超音波を用いた配管厚さ測定装置。
A plurality of ultrasonic sensors that transmit and receive ultrasonic waves to and from the liquid in the pipe;
Means for transmitting and receiving ultrasound;
Means for measuring and recording a plurality of reflected wave propagation times for each ultrasonic sensor;
Means for calculating the pipe thickness using the propagation time of the ultrasonic wave perpendicularly incident on the pipe inner wall;
A pipe thickness measuring device using ultrasonic waves, characterized by comprising:
請求項1において、
さらに、前記配管厚さ測定装置の姿勢を測定する手段を有することを特徴とする超音波を用いた配管厚さ測定装置。
In claim 1,
The pipe thickness measuring apparatus using ultrasonic waves further includes means for measuring the posture of the pipe thickness measuring apparatus.
請求項2において、
前記配管厚さ測定装置の姿勢を測定する手段が、加速度センサであることを特徴とする超音波を用いた配管厚さ測定装置。
In claim 2,
The pipe thickness measuring apparatus using ultrasonic waves, wherein the means for measuring the posture of the pipe thickness measuring apparatus is an acceleration sensor.
複数の超音波センサと超音波を送受信する手段とを備える配管厚さ測定装置を、配管内にて移動可能に配置し、
配管内側から前記配管厚さ測定装置上のそれぞれの超音波センサにより反射波伝搬時間を測定し、
配管内壁に対して垂直に入射する超音波の伝搬時間を利用して配管厚さを計算することを特徴とする超音波を用いた配管厚さ測定方法。
A pipe thickness measuring device including a plurality of ultrasonic sensors and means for transmitting and receiving ultrasonic waves is arranged so as to be movable in the pipe,
The reflected wave propagation time is measured by the respective ultrasonic sensors on the pipe thickness measuring device from the inside of the pipe,
A pipe thickness measurement method using ultrasonic waves, characterized in that the pipe thickness is calculated using propagation time of ultrasonic waves incident perpendicularly to the pipe inner wall.
請求項4において、
さらに、前記配管厚さ測定装置の姿勢を測定することを特徴とする超音波を用いた配管厚さ測定方法。
In claim 4,
Further, the pipe thickness measuring method using ultrasonic waves, characterized in that the posture of the pipe thickness measuring device is measured.
請求項5において、
前記配管厚さ測定装置の姿勢測定結果から、配管内壁に対して垂直に入射する方向にある超音波センサを選択的に送受信することによって、配管内壁に対して垂直に入射する超音波の伝搬時間を利用することを特徴とする超音波を用いた配管厚さ測定方法。
In claim 5,
Propagation time of ultrasonic waves perpendicular to the pipe inner wall by selectively transmitting / receiving ultrasonic sensors in the direction perpendicular to the pipe inner wall from the posture measurement result of the pipe thickness measuring device A method for measuring the thickness of a pipe using ultrasonic waves, characterized in that the method is used.
JP2017552334A 2015-11-26 2016-11-02 Pipe thickness measuring apparatus and method using ultrasonic waves Active JP6458167B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015230191 2015-11-26
JP2015230191 2015-11-26
PCT/JP2016/082507 WO2017090390A1 (en) 2015-11-26 2016-11-02 Device and method for measuring piping thickness using ultrasonic waves

Publications (2)

Publication Number Publication Date
JPWO2017090390A1 true JPWO2017090390A1 (en) 2018-06-21
JP6458167B2 JP6458167B2 (en) 2019-01-23

Family

ID=58763802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017552334A Active JP6458167B2 (en) 2015-11-26 2016-11-02 Pipe thickness measuring apparatus and method using ultrasonic waves

Country Status (3)

Country Link
JP (1) JP6458167B2 (en)
MY (1) MY196011A (en)
WO (1) WO2017090390A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308308B (en) * 2022-10-10 2022-12-13 山东广悦化工有限公司 Diesel pipeline corrosion prevention detection device and application method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587534A (en) * 1994-10-28 1996-12-24 The United States Of America As Represented By The Secretary Of Commerce Wall thickness and flow detection apparatus and method for gas pipelines
JP2003004710A (en) * 2001-06-21 2003-01-08 Daido Steel Co Ltd Method for inspecting padded pipe
JP2011075384A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd In-pipe insertion type ultrasonic flaw inspection device and ultrasonic flaw inspection system
JP2013092505A (en) * 2011-10-27 2013-05-16 Shin Nippon Hihakai Kensa Kk Piping thickness measurement device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587534A (en) * 1994-10-28 1996-12-24 The United States Of America As Represented By The Secretary Of Commerce Wall thickness and flow detection apparatus and method for gas pipelines
JP2003004710A (en) * 2001-06-21 2003-01-08 Daido Steel Co Ltd Method for inspecting padded pipe
JP2011075384A (en) * 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd In-pipe insertion type ultrasonic flaw inspection device and ultrasonic flaw inspection system
JP2013092505A (en) * 2011-10-27 2013-05-16 Shin Nippon Hihakai Kensa Kk Piping thickness measurement device

Also Published As

Publication number Publication date
JP6458167B2 (en) 2019-01-23
MY196011A (en) 2023-03-06
WO2017090390A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US8820163B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
JP4094464B2 (en) Nondestructive inspection method and nondestructive inspection device
JP2017003583A (en) Fiber optic shape sensing technology for encoding of nde inspections
JP2008064540A (en) Piping inspection method using guide wave and piping inspection device
JP5531376B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP5663319B2 (en) Guide wave inspection method and apparatus
JP5297791B2 (en) Nondestructive inspection apparatus and nondestructive inspection method
JP6458167B2 (en) Pipe thickness measuring apparatus and method using ultrasonic waves
JP5193720B2 (en) Non-contact aerial ultrasonic tube ultrasonic inspection apparatus and method
JP5893538B2 (en) Nondestructive inspection method and apparatus using guide wave
JP6458164B2 (en) Apparatus and method for measuring deposit thickness using ultrasonic waves
JP5143111B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guide wave
JP4363699B2 (en) Method for detecting carburized layer and measuring thickness thereof
JP2009293981A (en) Inspection method using guide wave
CN111220709B (en) Sound beam deflection time delay control method for ultrasonic phased array imaging in pipeline
CN106885849A (en) A kind of multi-point sampler method for removing of pipe ultrasonic Guided waves spurious echo
JP5431905B2 (en) Nondestructive inspection method and nondestructive inspection apparatus using guide wave
Liao et al. A method for identifying free span of subsea pipelines
RU2620023C1 (en) Method of determining the place of the flow in the pipeline and the device for its implementation
RU2539603C1 (en) Early diagnostic method for oil-trunk pipeline in order to prevent development of its destruction processes
JP5750066B2 (en) Non-destructive inspection method using guided waves
Nordin et al. Hardware development of reflection mode ultrasonic tomography system for monitoring flaws on pipeline
Hennig et al. Latest generation of ILI tools for high resolution ultrasonic inspection and integrity assessment
CN115824330A (en) Device and method for synchronously measuring pipeline defects and fluid flow in pipeline
JP4389218B2 (en) Method and apparatus for measuring angle of refraction in oblique ultrasonic inspection of tube, and method and apparatus for oblique ultrasonic inspection of tube using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181221

R150 Certificate of patent or registration of utility model

Ref document number: 6458167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150