JPWO2017018513A1 - Titanium composite and titanium material for hot rolling - Google Patents

Titanium composite and titanium material for hot rolling Download PDF

Info

Publication number
JPWO2017018513A1
JPWO2017018513A1 JP2017530939A JP2017530939A JPWO2017018513A1 JP WO2017018513 A1 JPWO2017018513 A1 JP WO2017018513A1 JP 2017530939 A JP2017530939 A JP 2017530939A JP 2017530939 A JP2017530939 A JP 2017530939A JP WO2017018513 A1 JPWO2017018513 A1 JP WO2017018513A1
Authority
JP
Japan
Prior art keywords
titanium
layer
alloy
slab
hot rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017530939A
Other languages
Japanese (ja)
Other versions
JP6515358B2 (en
Inventor
吉紹 立澤
吉紹 立澤
知徳 國枝
知徳 國枝
森 健一
健一 森
一浩 ▲高▼橋
一浩 ▲高▼橋
藤井 秀樹
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2017018513A1 publication Critical patent/JPWO2017018513A1/en
Application granted granted Critical
Publication of JP6515358B2 publication Critical patent/JP6515358B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F1/00Shielding characterised by the composition of the materials
    • G21F1/02Selection of uniform shielding materials
    • G21F1/08Metals; Alloys; Cermets, i.e. sintered mixtures of ceramics and metals
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F3/00Shielding characterised by its physical form, e.g. granules, or shape of the material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

工業用純チタンまたはチタン合金からなる内層5と、内層5の少なくとも一方の表面に形成された内層5とは異なる化学組成を有する表層3と、内層5と表層3との間に形成され、内層5とは異なる化学組成を有する中間層と、を備え、表層3が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、中間層の厚さが0.5μm以上である、チタン複合材1。表層3の化学組成は、B:0.1〜3.0%、残部:チタンおよび不純物である。このチタン複合材は、安価にも関わらず、所望の中性子遮断性を有する。An inner layer 5 made of industrial pure titanium or a titanium alloy, a surface layer 3 having a different chemical composition from the inner layer 5 formed on at least one surface of the inner layer 5, and an inner layer formed between the inner layer 5 and the surface layer 3. An intermediate layer having a chemical composition different from 5, the surface layer 3 has a thickness of 2 μm or more, the proportion of the total thickness is 40% or less per side, and the thickness of the intermediate layer is 0 1. Titanium composite 1 which is 5 μm or more. The chemical composition of the surface layer 3 is B: 0.1 to 3.0%, and the balance: titanium and impurities. This titanium composite material has a desired neutron blocking property despite its low cost.

Description

本発明は、チタン複合材および熱間圧延用チタン材に関する。   The present invention relates to a titanium composite material and a titanium material for hot rolling.

チタン材は、耐食性、耐酸化性、耐疲労性、耐水素脆化性、中性子遮断性などの特性に優れている。これらの特性は、チタンに様々な合金元素を添加することにより達成することができる。   Titanium materials are excellent in properties such as corrosion resistance, oxidation resistance, fatigue resistance, hydrogen embrittlement resistance, and neutron blocking properties. These properties can be achieved by adding various alloying elements to titanium.

原子力発電関連設備などの放射性廃棄物を取り扱う設備では、熱中性子を遮蔽可能な中性子線遮蔽板が使用される。中性子遮蔽効果は、天然のBの中に19.9%存在するボロン10(10B)が最も高い。Bを含有するステンレス鋼などが中性子線遮蔽板の素材として一般的に使用されている。In facilities that handle radioactive waste, such as nuclear power generation facilities, neutron beam shielding plates that can shield thermal neutrons are used. The neutron shielding effect is highest for boron 10 ( 10 B), which is 19.9% of natural B. Stainless steel containing B is generally used as a material for the neutron beam shielding plate.

特公昭58−6704号公報(特許文献1)には、クーナコパイト(2MgO・3B・13HO)、メーヤホツフェライト(3CaO・3B・7HO)、コレマナイト(2CaO・3B・5HO)などの結晶水を含有するボレート骨材と半水石膏、カルシウムアルミネート系セメントなどの無機接着剤を水と混練成型した硬化成形体であって、Bを5質量%以上含有する中性子線遮断材が開示されている。しかし、特許文献1により開示された中性子線遮蔽材はセメントからなるため、耐食性、製造性さらには加工性の点で問題がある。Japanese Examined Patent Publication No. 58-6704 (Patent Document 1) includes Kuna Copite (2MgO.3B 2 O 2 .13H 2 O), Meyerhot Ferrite (3CaO.3B 2 O 2 .7H 2 O), Colemanite (2CaO.3B). 2 O 2 · 5H 2 O), a cured molded body obtained by kneading and molding a borate aggregate containing crystal water such as hemihydrate gypsum and calcium aluminate cement with water, and containing 5 mass of B A neutron beam blocking material containing at least% is disclosed. However, since the neutron beam shielding material disclosed in Patent Document 1 is made of cement, there is a problem in terms of corrosion resistance, manufacturability, and workability.

ステンレス鋼よりも耐食性の優れるB含有チタン合金を中性子線遮断材に用いることも検討されている。例えば、特公平1−168833号公報(特許文献2)には、質量%でBを0.1〜10%含有し、残部がチタン及び不可避的不純物からなるボロン含有チタン合金の熱延板を用いることが開示されている。   The use of a B-containing titanium alloy, which has better corrosion resistance than stainless steel, as a neutron beam blocking material has also been studied. For example, Japanese Patent Publication No. 1-168833 (Patent Document 2) uses a hot-rolled sheet of boron-containing titanium alloy containing 0.1 to 10% by mass of B and the balance of titanium and inevitable impurities. It is disclosed.

さらに、特開平5−142392号公報(特許文献3)には、中空状金属ケーシング内に、ホウ素含有物(NaB、BやPbO、Feなど)の流動物とその中に混入した金属酸化物とを充填して、固化状態とした放射線遮蔽材が開示されている。特許文献3によれば、ボロンや水素によって主として中性子線を遮断し、かつ、ケーシングおよびその中の金属などによってガンマ線を遮断する。Further, JP-A-5-142392 (Patent Document 3) discloses a boron-containing material (NaB 4 O 7 , B 2 O 3 , PbO, Fe 2 O 3, etc.) in a hollow metal casing, A radiation shielding material filled with a metal oxide mixed therein to be solidified is disclosed. According to Patent Document 3, neutron beams are mainly blocked by boron and hydrogen, and gamma rays are blocked by a casing and metal therein.

チタン材は、通常、以下に示す方法により製造される。まず、クロール法によって、原料である酸化チタンを塩素化して四塩化チタンとした後、マグネシウムまたはナトリウムで還元することにより、塊状でスポンジ状の金属チタン(スポンジチタン)を製造する。このスポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造する。この際必要に応じて合金元素が添加されて、チタン合金インゴットが製造される。この後、チタン合金インゴットを分塊、鍛造、圧延してチタンスラブとし、さらに、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延、および真空熱処理してチタン薄板が製造される。   The titanium material is usually produced by the method shown below. First, the raw material titanium oxide is chlorinated to titanium tetrachloride by the crawl method, and then reduced with magnesium or sodium to produce a lump-like sponge-like metal titanium (sponge titanium). This sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode. At this time, an alloy element is added as necessary to produce a titanium alloy ingot. Thereafter, the titanium alloy ingot is divided, forged and rolled into a titanium slab, and the titanium slab is further subjected to hot rolling, annealing, pickling, cold rolling, and vacuum heat treatment to produce a titanium thin plate.

また、チタン薄板の製造方法として、チタンインゴットを分塊、水素化粉砕、脱水素、粉末解砕、および分級してチタン粉末を製造し、チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られる。   In addition, as a method for producing a titanium thin plate, titanium ingot is smashed, hydroground, dehydrogenated, powder crushed, and classified to produce titanium powder, and titanium powder is powder-rolled, sintered, and cold-rolled. The manufacturing method is also known.

特開2011−42828号公報(特許文献4)には、チタンインゴットではなくスポンジチタンから直接チタン粉末を製造し、得られるチタン粉末からチタン薄板を製造すべく、チタン金属粉、結着剤、可塑剤、溶剤を含む粘性組成物を薄板状に成形した焼結前成形体を焼結して焼結薄板を製造し、焼結薄板を圧密して焼結圧密薄板を製造し、焼結圧密薄板を再焼結するチタン薄板の製造方法において、焼結薄板の破断伸びを0.4%以上、密度比を80%以上とし、焼結圧密板の密度比を90%以上とする方法が開示されている。   Japanese Patent Laid-Open No. 2011-42828 (Patent Document 4) discloses that a titanium powder is produced directly from sponge titanium instead of a titanium ingot, and a titanium thin plate is produced from the obtained titanium powder. Sintered compacts are manufactured by sintering pre-sintered compacts made of viscous compositions containing agents and solvents into thin sheets, and sintered compacts are manufactured by compacting the sintered compacts. In the method for producing a titanium thin plate for re-sintering, a method is disclosed in which the fracture elongation of the sintered thin plate is 0.4% or more, the density ratio is 80% or more, and the density ratio of the sintered compacted plate is 90% or more. ing.

特開2014−19945号公報(特許文献5)には、チタン合金スクラップまたはチタン合金インゴットを原料としたチタン合金粉に、鉄粉、クロム粉または銅粉を適量添加して複合粉とし、複合粉を炭素鋼カプセル押出し、得られた丸棒の表面のカプセルを溶解除去した後、さらに溶体化処理あるいは、溶体化処理および時効処理を行うことにより、粉末法により品質の優れたチタン合金を製造する方法が開示されている。   Japanese Patent Laid-Open No. 2014-19945 (Patent Document 5) discloses a composite powder obtained by adding an appropriate amount of iron powder, chromium powder or copper powder to titanium alloy powder using titanium alloy scrap or titanium alloy ingot as a raw material. After extruding the carbon steel capsule, the capsule on the surface of the obtained round bar is dissolved and removed, and further solution treatment or solution treatment and aging treatment are performed to produce a titanium alloy with excellent quality by the powder method A method is disclosed.

特開2001−131609号公報(特許文献6)には、スポンジチタン粉末を銅製カプセルに充填した後で押出比1.5以上、押出温度700℃以下で温間押出加工を施して成形し、外側の銅を除く外周加工を施し、成形体の粒界の全長の内20%以上が金属接触しているチタン成形体を製造する方法が開示されている。   In JP 2001-131609 (Patent Document 6), a sponge capsule is filled with a sponge titanium powder and then subjected to warm extrusion at an extrusion ratio of 1.5 or more and an extrusion temperature of 700 ° C. or less. A method for producing a titanium molded body in which 20% or more of the total length of the grain boundary of the molded body is in metal contact is performed by performing outer peripheral processing excluding copper.

熱間圧延素材を熱間圧延するに際し、熱間圧延素材が純チタンまたはチタン合金のように熱間での延性不足で熱間変形抵抗値が高い、いわゆる難加工材である場合、これらを薄板に圧延する技術としてパック圧延方法が知られている。パック圧延方法とは、加工性の悪いチタン合金などのコア材を加工性の良い安価な炭素鋼などのカバー材で被覆し、熱間圧延する方法である。   When hot-rolling a hot-rolled material, if the hot-rolled material is a so-called difficult-to-process material with high hot deformation resistance due to insufficient hot ductility, such as pure titanium or titanium alloy, these are thin plates. A pack rolling method is known as a technique for rolling the sheet. The pack rolling method is a method in which a core material such as a titanium alloy having poor workability is covered with a cover material such as inexpensive carbon steel having good workability and hot rolling is performed.

具体的には、例えば、コア材の表面に剥離剤を塗布し、少なくともその上下2面をカバー材で被覆するか、または、上下面の他に四周面をスペーサー材により覆い、周りを溶接して組み立て、熱間圧延する。パック圧延では、被圧延材であるコア材をカバー材で覆って熱間圧延する。そのため、コア材表面は冷えた媒体(大気またはロール)に直接触れることがなく、コア材の温度低下を抑制できるため、加工性の悪いコア材でも薄板の製造が可能になる。   Specifically, for example, a release agent is applied to the surface of the core material, and at least two upper and lower surfaces thereof are covered with a cover material, or the four peripheral surfaces are covered with a spacer material in addition to the upper and lower surfaces, and the surroundings are welded. Assembled and hot rolled. In pack rolling, a core material, which is a material to be rolled, is covered with a cover material and hot rolled. Therefore, the core material surface does not directly contact a cold medium (atmosphere or roll), and the temperature drop of the core material can be suppressed, so that even a core material with poor workability can be manufactured.

特開昭63−207401号公報(特許文献7)には、密閉被覆箱の組み立て方法が開示され、特開平09−136102号公報(特許文献8)には、10−3torrオーダー以上の真空度にしてカバー材を密封して密閉被覆箱を製造する方法が開示され、さらに、特開平11−057810号公報(特許文献9)には、炭素鋼(カバー材)で覆って10−2torrオーダー以下の真空下で高エネルギー密度溶接によって密封し、密閉被覆箱を製造する方法が開示されている。Japanese Laid-Open Patent Publication No. 63-207401 (Patent Document 7) discloses a method of assembling a hermetically sealed box, and Japanese Laid-Open Patent Publication No. 09-136102 (Patent Document 8) discloses a degree of vacuum of 10 −3 torr order or more. A method of manufacturing a hermetically sealed box by sealing a cover material is disclosed, and further, Japanese Patent Application Laid-Open No. 11-057810 (Patent Document 9) covers carbon steel (cover material) and is in the order of 10 −2 torr. A method for producing a hermetic coated box by sealing by high energy density welding under the following vacuum is disclosed.

一方、耐食性の高い素材を安価に製造する方法として、チタン材を母材となる素材表面に接合する方法が知られている。   On the other hand, as a method for manufacturing a highly corrosion-resistant material at a low cost, a method is known in which a titanium material is bonded to the surface of a material serving as a base material.

特開平08−141754号公報(特許文献10)には、母材として鋼材を用いるとともに合わせ材としてチタンまたはチタン合金を用い、母材と合わせ材の接合面を真空排気した後に溶接して組み立てた圧延用組立スラブを、熱間圧延で接合するチタンクラッド鋼板の製造方法が開示されている。   In Japanese Patent Application Laid-Open No. 08-141754 (Patent Document 10), steel is used as a base material and titanium or a titanium alloy is used as a base material, and the joint surface between the base material and the base material is evacuated and then assembled by welding. A method for manufacturing a titanium clad steel sheet in which an assembly slab for rolling is joined by hot rolling is disclosed.

特開平11−170076号公報(特許文献11)には、0.03質量%以上の炭素を含有する母材鋼材の表面上に、純ニッケル、純鉄および炭素含有量が0.01質量%以下の低炭素鋼のうちのいずれかからなる厚さ20μm以上のインサート材を介在させてチタン箔材を積層配置した後、その積層方向のいずれか一方側からレーザビームを照射し、チタン箔材の少なくとも縁部近傍を全周にわたって母材鋼材と溶融接合させることによりチタン被覆鋼材を製造する方法が開示されている。   In JP-A-11-170076 (patent document 11), pure nickel, pure iron and a carbon content of 0.01% by mass or less are formed on the surface of a base steel material containing 0.03% by mass or more of carbon. After the titanium foil material is laminated by interposing an insert material made of any one of the above-mentioned low carbon steels with a thickness of 20 μm or more, a laser beam is irradiated from either side of the lamination direction, A method of manufacturing a titanium-coated steel material by melting and joining at least the vicinity of the edge with a base steel material over the entire circumference is disclosed.

特開2015−045040号公報(特許文献12)では、鋳塊状に成形された多孔質チタン原料(スポンジチタン)の表面を、真空下で電子ビームを用いて溶解して表層部を稠密なチタンとしたチタン鋳塊を製造し、これを熱間圧延および冷間圧延することにより、多孔質チタン原料が鋳塊状に成形された多孔質部と、稠密なチタンで構成されて多孔質部の全表面を被覆する稠密被覆部とを備える稠密なチタン素材(チタン鋳塊)を非常に少ないエネルギーで製造する方法が例示されている。   In JP-A-2015-045040 (Patent Document 12), the surface of a porous titanium raw material (sponge titanium) formed into an ingot shape is melted using an electron beam under vacuum, and the surface layer portion is made of dense titanium. The titanium ingot is manufactured and hot rolled and cold rolled to form a porous portion in which the porous titanium raw material is formed into an ingot shape, and the entire surface of the porous portion composed of dense titanium. A method for producing a dense titanium material (titanium ingot) having a dense coating portion for coating with very little energy is exemplified.

特開昭62−270277号公報(特許文献13)には、溶射により、自動車用エンジン部材の表面効果処理をすることが記載されている。   Japanese Patent Application Laid-Open No. Sho 62-270277 (Patent Document 13) describes that surface effect treatment of an engine member for automobiles is performed by thermal spraying.

特公昭58−6704号公報Japanese Patent Publication No.58-6704 特公平1−168833号公報Japanese Patent Publication No. 1-168833 特開平5−142392号公報Japanese Patent Laid-Open No. 5-142392 特開2011−42828号公報JP 2011-42828 A 特開2014−19945号公報JP 2014-19945 A 特開2001−131609号公報JP 2001-131609 A 特開昭63−207401号公報JP-A 63-207401 特開平09−136102号公報JP 09-136102 A 特開平11−057810号公報Japanese Patent Laid-Open No. 11-057810 特開平08−141754号公報Japanese Patent Laid-Open No. 08-141754 特開平11−170076号公報Japanese Patent Laid-Open No. 11-170076 特開2015−045040号公報Japanese Patent Laying-Open No. 2015-045040 特開昭62−270277号公報JP-A-62-270277

特許文献2により開示された熱延板は、B含有量が高いためにコストの上昇は否めないとともに、加工性も良好ではなく、中性子線遮蔽板として用いることが実際には難しい。   The hot-rolled sheet disclosed in Patent Document 2 has a high B content, so it cannot be denied that the cost is increased, and the workability is not good, so that it is actually difficult to use as a neutron beam shielding plate.

さらに、特許文献3により開示された放射線遮蔽材は、金属製のケーシング材の中にホウ素含有物を充填したものであり、ホウ素含有物を充填した後の加工が難しい。   Furthermore, the radiation shielding material disclosed by Patent Document 3 is a metal casing material filled with a boron-containing material, and processing after filling the boron-containing material is difficult.

従来、熱間加工を経てチタン材を製造するに際しては、スポンジチタンをプレス成形してチタン消耗電極とし、チタン消耗電極を電極として真空アーク溶解してチタンインゴットを製造し、さらにチタンインゴットを分塊、鍛造、圧延してチタンスラブとし、チタンスラブを熱間圧延、焼鈍、酸洗、冷間圧延することによって製造されていた。   Conventionally, when manufacturing a titanium material through hot working, sponge titanium is press-molded to form a titanium consumable electrode, and a titanium ingot is manufactured by vacuum arc melting using the titanium consumable electrode as an electrode. The titanium slab was forged and rolled into a titanium slab, and the titanium slab was manufactured by hot rolling, annealing, pickling, and cold rolling.

この場合、チタンを溶解してチタンインゴットを製造する工程が必ず加えられていた。チタン粉末を粉末圧延、焼結、および冷間圧延して製造する方法も知られているが、チタンインゴットからチタン粉末を製造する方法では、やはりチタンを溶解する工程が加えられていた。   In this case, a process of manufacturing titanium ingot by dissolving titanium has been added. A method of producing titanium powder by powder rolling, sintering, and cold rolling is also known, but in the method of producing titanium powder from a titanium ingot, a step of dissolving titanium is also added.

チタン粉末からチタン材を製造する方法においては、たとえ溶解工程を経ないとしても、高価なチタン粉末を原料として用いるので、得られたチタン材は非常に高価になる。特許文献7〜特許文献8に開示された方法でも同様である。   In the method for producing a titanium material from titanium powder, even if it does not go through a melting step, expensive titanium powder is used as a raw material, so that the obtained titanium material is very expensive. The same applies to the methods disclosed in Patent Documents 7 to 8.

パック圧延においては、カバー材で被覆されるコア材はあくまでスラブまたはインゴットであって、溶解工程を経ているか、高価なチタン粉末を原料としており、製造コストを低減することはできない。   In pack rolling, the core material covered with the cover material is slab or ingot to the last, and has undergone a melting step or is made of expensive titanium powder, and the manufacturing cost cannot be reduced.

特許文献12では、非常に少ないエネルギーで稠密なチタン素材を製造することができるものの、鋳塊状に成形されたスポンジチタンの表面を溶解して稠密なチタン表層部および内部の成分は同種の純チタンまたはチタン合金と規定されており、例えば、表層部のみにチタン合金層を均一かつ広範囲に亘って形成することにより製造コストの低下を図ることはできない。   In Patent Document 12, a dense titanium material can be produced with very little energy, but the surface of the titanium sponge formed into an ingot shape is dissolved, and the dense titanium surface layer portion and the internal components are the same kind of pure titanium. Or it is prescribed | regulated as a titanium alloy, for example, a manufacturing cost cannot be reduced by forming a titanium alloy layer uniformly only over the surface layer part over a wide range.

一方、安価な耐食素材を製造できる、母材の表面にチタンまたはチタン合金を接合させた素材では、その多くが母材として鋼を選択している。そのため、表面のチタン層が失われると耐食性は損なわれてしまう。仮に、母材にもチタン材を採用したとしても、通常の製造工程を経て製造されるチタン材を用いる限り、抜本的なコスト改善は期待できない。そこで、本発明者らは、工業用純チタンまたはチタン合金からなるスラブの表層に、特定の合金元素を含有する合金層を設け、安価で特定性能に優れたチタン材を得ることを考えた。   On the other hand, many materials that can manufacture inexpensive corrosion-resistant materials and have titanium or a titanium alloy bonded to the surface of the base material select steel as the base material. Therefore, if the titanium layer on the surface is lost, the corrosion resistance is impaired. Even if a titanium material is adopted as a base material, a drastic cost improvement cannot be expected as long as a titanium material manufactured through a normal manufacturing process is used. Then, the present inventors considered providing an alloy layer containing a specific alloy element on the surface layer of a slab made of industrial pure titanium or a titanium alloy to obtain a titanium material that is inexpensive and excellent in specific performance.

特許文献13のように、溶射は、金属、セラミックスなどを溶融し、チタン材表面に噴きつけて皮膜を形成させる方法である。この方法で皮膜を形成させた場合、皮膜中の気孔の形成を避けることができない。通常、溶射時には、皮膜の酸化を避けるため、不活性ガスでシールドしながら溶射が行われる。これら不活性ガスは、皮膜の気孔内に巻き込まれる。このような不活性ガスを内包する気孔は、熱間加工などで圧着しない。また、チタンの製造においては、一般的に真空熱処理が実施されるが、この処理時に、気孔内の不活性ガスが膨張して、皮膜が剥がれるおそれがある。本発明者らの経験上、溶射により生じる気孔の存在率(空隙率)は、数vol.%以上となり、溶射条件によっては10vol.%を超えることもある。このように、皮膜内の空隙率が高いチタン材は、製造工程において剥離する危険性があり、また、加工時の割れなどの欠損が生じるおそれがある。   As in Patent Document 13, thermal spraying is a method in which a film is formed by melting metal, ceramics or the like and spraying it on the surface of a titanium material. When a film is formed by this method, the formation of pores in the film cannot be avoided. Usually, during thermal spraying, thermal spraying is performed while shielding with an inert gas in order to avoid oxidation of the film. These inert gases are entrained in the pores of the coating. Such pores containing the inert gas are not pressed by hot working or the like. Further, in the production of titanium, vacuum heat treatment is generally carried out, but during this treatment, the inert gas in the pores may expand and the film may be peeled off. According to the experience of the present inventors, the abundance ratio (porosity) of pores generated by thermal spraying is several vol. % Or more and 10 vol. % May be exceeded. As described above, a titanium material having a high porosity in the film has a risk of peeling in the manufacturing process, and there is a risk that a defect such as a crack during processing may occur.

皮膜の形成方法としては、コールドスプレー法がある。この方法により表面に皮膜を形成する場合も、不活性の高圧ガスが使用される。この方法では、その条件によっては空隙率を1vol.%未満にすることも可能であるものの、気孔の発生を完全に防止することは極めて難しい。そして、溶射の場合と同様に、気孔は不活性ガスを内包しているため、その後の加工によっても消滅しない。また、真空中で熱処理を施した場合、気孔内の不活性ガスが膨張して、皮膜が割れるおそれがある。   As a method for forming the film, there is a cold spray method. Even when a film is formed on the surface by this method, an inert high-pressure gas is used. In this method, the porosity is 1 vol. However, it is extremely difficult to completely prevent the generation of pores. As in the case of thermal spraying, since the pores contain the inert gas, they do not disappear even by subsequent processing. In addition, when heat treatment is performed in a vacuum, the inert gas in the pores may expand and the film may break.

熱延時の表面疵を抑制するために、電子ビームを用いてスラブの表層を溶融し、再凝固させる処理として、溶融再凝固処理がある。通常、溶融再凝固した表層は、熱延後の酸洗工程で除去される。このため、従来の溶融再凝固処理では、表層部の合金成分の偏析について全く考慮されていない。   In order to suppress surface flaws during hot rolling, there is a melt resolidification process as a process for melting and resolidifying the surface layer of the slab using an electron beam. Usually, the melted and re-solidified surface layer is removed in a pickling step after hot rolling. For this reason, in the conventional melt resolidification treatment, no consideration is given to the segregation of the alloy components in the surface layer portion.

そこで、本発明者らは、工業用純チタンまたはチタン合金からなるスラブの表面に、特定の合金元素を含有するチタン板を貼り付けたものを熱間圧延用素材とすることにより、安価で特定性能に優れたチタン材を得ることを考えた。   Therefore, the present inventors specify the material for hot rolling at a low price by attaching a titanium plate containing a specific alloy element to the surface of a slab made of industrial pure titanium or titanium alloy. We considered obtaining a titanium material with excellent performance.

本発明は、中性子遮断性を向上させるために添加する合金元素の含有量(目標特性を発現する特定の合金元素の使用量)を低減し、かつ、チタン材の製造コストを抑制することにより、安価に所望の中性子遮断性を有するチタン複合材および熱間圧延用チタン材を得ることを目的としている。   The present invention reduces the content of alloying elements to be added to improve neutron blocking properties (the amount of specific alloying elements that express target characteristics), and suppresses the production cost of titanium materials, An object is to obtain a titanium composite material having a desired neutron blocking property and a titanium material for hot rolling at low cost.

本発明は、上記課題を解決するためになされたものであり、下記のチタン複合材および熱間圧延用チタン材を要旨とする。   This invention is made | formed in order to solve the said subject, and makes a summary the following titanium composite material and the titanium material for hot rolling.

(1)工業用純チタンまたはチタン合金からなる内層と、
前記内層の少なくとも一方の圧延面に形成された前記内層とは異なる化学組成を有する表層と、
前記内層と前記表層との間に形成され、前記内層とは異なる化学組成を有する中間層と、
を備えるチタン複合材であって、
前記表層が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、
前記表層部の化学組成が、質量%で、
B:0.1〜3.0%残部:チタンおよび不純物であり、
前記中間層の厚さが0.5μm以上である、
チタン複合材。
(1) an inner layer made of industrial pure titanium or titanium alloy;
A surface layer having a chemical composition different from that of the inner layer formed on at least one rolling surface of the inner layer;
An intermediate layer formed between the inner layer and the surface layer and having a different chemical composition from the inner layer;
A titanium composite comprising:
The surface layer has a thickness of 2 μm or more, and the proportion of the total thickness is 40% or less per side,
The chemical composition of the surface layer part is mass%,
B: 0.1-3.0% balance: titanium and impurities,
The intermediate layer has a thickness of 0.5 μm or more.
Titanium composite material.

(2)前記内層の圧延面以外の面に、他の表層が形成されており、
前記他の表層が、前記表層と同一の化学組成を備える、
上記(1)のチタン複合材。
(2) Another surface layer is formed on a surface other than the rolled surface of the inner layer,
The other surface layer has the same chemical composition as the surface layer,
The titanium composite material of (1) above.

(3)工業用純チタンまたはチタン合金からなる母材と、
前記母材の少なくとも一方の圧延面に接合された表層材と、
前記母材と前記表層材の周囲を接合する溶接部とを備える熱間圧延用チタン材であって、
前記表層材が、前記母材とは異なる化学組成を有し、かつ、質量%で、
B:0.1〜3.0%、
残部:チタンおよび不純物であり、
前記溶接部が、前記母材と前記表層材の界面を外気から遮断する、
熱間圧延用チタン材。
(3) a base material made of pure industrial titanium or a titanium alloy;
A surface layer material joined to at least one rolling surface of the base material;
A titanium material for hot rolling comprising a welded portion that joins the periphery of the base material and the surface layer material,
The surface layer material has a chemical composition different from that of the base material, and in mass%,
B: 0.1 to 3.0%
The balance: titanium and impurities
The welded portion shields the interface between the base material and the surface material from outside air;
Titanium material for hot rolling.

(4)前記母材の圧延面以外の面に、他の表層材が接合されており、
前記他の表層材が、前記表層材と同一の化学組成を備える、
上記(3)の熱間圧延用チタン材。
(4) Other surface material is joined to a surface other than the rolling surface of the base material,
The other surface layer material has the same chemical composition as the surface layer material,
The titanium material for hot rolling according to (3) above.

(5)前記母材が、直接鋳造スラブからなる、
上記(3)または(4)の熱間圧延用チタン材。
(5) The base material comprises a direct cast slab.
The titanium material for hot rolling according to the above (3) or (4).

(6)前記直接鋳造スラブが、表面の少なくとも一部に溶融再凝固層を形成したものである、
上記(5)の熱間圧延用チタン材。
(6) The directly cast slab is obtained by forming a melt-resolidified layer on at least a part of the surface.
The titanium material for hot rolling according to (5) above.

(7)前記溶融再凝固層の化学組成が、前記直接鋳造スラブの板厚中心部の化学組成とは異なる、
上記(6)熱間圧延用チタン材。
(7) The chemical composition of the melt-resolidified layer is different from the chemical composition of the center portion of the thickness of the direct cast slab,
(6) Titanium material for hot rolling.

本発明に係るチタン複合材は、工業用純チタンまたはチタン合金からなる内層と、内層とは異なる化学組成を有する表層を備えるものであるから、全体が同一のチタン合金からなるチタン材と比較して、同等の中性子遮断性を有するが、安価に製造することができる。   Since the titanium composite material according to the present invention includes an inner layer made of industrial pure titanium or a titanium alloy and a surface layer having a chemical composition different from that of the inner layer, the whole is compared with a titanium material made of the same titanium alloy. Thus, it has the same neutron blocking property, but can be manufactured at low cost.

図1は、本発明に係るチタン複合材の構成の一例を示す説明図である。FIG. 1 is an explanatory view showing an example of the configuration of a titanium composite material according to the present invention. 図2は、本発明に係るチタン複合材の構成の一例を示す説明図である。FIG. 2 is an explanatory view showing an example of the configuration of the titanium composite material according to the present invention. 図3は、チタン矩形鋳片とチタン板を真空中で溶接することにより、貼り合わせることを模式的に示す説明図である。FIG. 3 is an explanatory view schematically showing that the titanium rectangular slab and the titanium plate are bonded together by welding in a vacuum. 図4は、チタン矩形鋳片の表面だけでなく側面にもチタン板を溶接することにより、貼り合わせることを模式的に示す説明図である。FIG. 4 is an explanatory view schematically showing bonding by welding a titanium plate not only on the surface of the titanium rectangular cast piece but also on the side surface. 図5は溶融再凝固の方法を示す説明図である。FIG. 5 is an explanatory view showing a method of melt re-solidification. 図6は溶融再凝固の方法を示す説明図である。FIG. 6 is an explanatory view showing a method of melt re-solidification. 図7は溶融再凝固の方法を示す説明図である。FIG. 7 is an explanatory view showing a method of melt re-solidification.

本発明者らは、上記課題を解決するために、最終製品のチタン板の表層のみを合金化することにより、中性子遮断性を発現する特定の合金元素の使用量を低減し、かつ、チタン材の製造コストを抑制するべく、鋭意検討を行った結果、工業用純チタンまたはチタン合金からなる母材と母材とは異なる化学組成を有する表層材とを、これらの界面が外気から遮断されるように母材および表層材の周囲を溶接した熱間圧延用チタン材を見出した。この熱間圧延用チタン材を熱間加工して得たチタン複合材は、安価に優れた中性子遮断性を有するチタン材となる。   In order to solve the above problems, the present inventors reduced the amount of a specific alloy element that exhibits neutron blocking properties by alloying only the surface layer of the titanium plate of the final product, and the titanium material As a result of diligent investigations to reduce the manufacturing costs of these materials, the interface between the base material made of industrial pure titanium or titanium alloy and the surface layer material having a different chemical composition from the base material is blocked from the outside air. Thus, the titanium material for hot rolling which welded the circumference | surroundings of a base material and surface layer material was discovered. The titanium composite obtained by hot working this titanium material for hot rolling becomes a titanium material having excellent neutron blocking properties at low cost.

本発明は上記の知見に基づいてなされたものである。以下、本発明に係るチタン複合材およびその熱間圧延用のチタン材を、図面を参照しながら説明する。なお、以降の説明では、各元素の含有量に関する「%」は特にことわりがない限り「質量%」を意味する。   The present invention has been made based on the above findings. Hereinafter, a titanium composite material and a titanium material for hot rolling thereof according to the present invention will be described with reference to the drawings. In the following description, “%” regarding the content of each element means “mass%” unless otherwise specified.

1.チタン複合材
1−1.全体構成
図1,2に示すように、チタン複合材1,2は、工業用純チタンまたはチタン合金からなる内層5と、内層5の少なくとも一方の圧延面に形成された内層5とは異なる化学組成を有する表層3,4と、内層5と表層3,4との間に形成され、内層5とは異なる化学組成を有する中間層(図示省略)とを備える。なお、図1,2に示す例では、内層5の一方または両方の圧延面に表層を形成した例を示しているが、内層5の圧延面以外の面(図1,2に示す例では側面)に他の表層(図示省略)を設けてもよい。以下、表層、内層、中間層を順次説明する。
1. 1. Titanium composite 1-1. Overall Configuration As shown in FIGS. 1 and 2, titanium composites 1 and 2 are different in chemical composition from inner layer 5 made of industrial pure titanium or titanium alloy and inner layer 5 formed on at least one rolling surface of inner layer 5. The surface layers 3 and 4 which have a composition, and the intermediate | middle layer (illustration omitted) which is formed between the inner layer 5 and the surface layers 3 and 4 and has a chemical composition different from the inner layer 5 is provided. In the example shown in FIGS. 1 and 2, an example is shown in which a surface layer is formed on one or both rolling surfaces of the inner layer 5, but a surface other than the rolling surface of the inner layer 5 (side surface in the example shown in FIGS. 1 and 2). ) May be provided with another surface layer (not shown). Hereinafter, the surface layer, the inner layer, and the intermediate layer will be described in order.

表層の厚さが薄すぎると、所望の特性が十分に得られない。一方、厚すぎると、チタン複合材全体に占めるチタン合金の割合が増すため、コストメリットが小さくなる。そのため、その厚さは2μm以上とし、全厚さに占める割合は片面あたり40%以下とする。   If the thickness of the surface layer is too thin, desired characteristics cannot be obtained sufficiently. On the other hand, if it is too thick, the proportion of the titanium alloy in the entire titanium composite increases, so the cost merit decreases. Therefore, the thickness is 2 μm or more, and the proportion of the total thickness is 40% or less per side.

1−2.表層
(厚さ)
表層のうち外部環境に接する表層の厚さが薄過ぎると、中性子線遮蔽効果を十分に得られない。一方、表層が厚い場合には中性子線遮蔽効果は向上するものの、素材全体に占めるチタン合金の割合が増すため、製造コストが上昇する。表層の厚さは、5μm以上であることが望ましく、10μm以上であることがより望ましい。チタン複合材の全厚さに対する表層の厚さの割合は、片面あたり40%以下とし、30%以下であることがより望ましい。特に、5〜40%とするのがよい。
1-2. Surface layer (thickness)
If the thickness of the surface layer in contact with the external environment is too thin, the neutron beam shielding effect cannot be obtained sufficiently. On the other hand, when the surface layer is thick, the neutron beam shielding effect is improved, but the proportion of the titanium alloy in the entire material increases, so that the manufacturing cost increases. The thickness of the surface layer is preferably 5 μm or more, and more preferably 10 μm or more. The ratio of the thickness of the surface layer to the total thickness of the titanium composite is 40% or less per side, and more preferably 30% or less. In particular, it should be 5 to 40%.

(化学成分)
本発明に係るチタン複合材1では、表層に中性子線遮蔽効果を具備させるために、合金元素が含有される。以下に、添加元素の選択理由と、その添加量範囲を限定する理由を詳しく説明する。
(Chemical composition)
In the titanium composite material 1 according to the present invention, an alloy element is contained in order to provide the surface layer with a neutron beam shielding effect. Hereinafter, the reason for selecting the additive element and the reason for limiting the addition amount range will be described in detail.

B:0.1〜3.0%
Bの中には、10Bが19.9%存在するが、この10Bは、熱中性子の吸収断面積が大きく、中性子線の遮蔽効果が大きい。B含有量が0.1%未満では中性子線遮蔽効果を十分得られず、B含有量が3.0%を超えると熱間圧延時の割れおよび加工性の劣化を引き起こすおそれがある。
B: 0.1 to 3.0%
In B, 19.9% of 10 B exists, but this 10 B has a large absorption cross section of thermal neutrons and a large shielding effect of neutron beams. If the B content is less than 0.1%, a sufficient neutron beam shielding effect cannot be obtained. If the B content exceeds 3.0%, cracking during hot rolling and deterioration of workability may occur.

ここで、Bを含有するチタン合金は、チタンにBまたはTiBなどの硼化物を添加することで作製可能である。この他、H 10BO1010Cなどの10B濃縮ほう素含有素材(10B含有量が概ね90%以上)を用いると、B含有量が少なくても中性子線遮蔽効果が大きいため、極めて有効である。Here, the titanium alloy containing B can be produced by adding a boride such as B or TiB 2 to titanium. In addition, if a 10 B enriched boron-containing material ( 10 B content is approximately 90% or more) such as H 3 10 BO 3 , 10 B 2 O 10 B 4 C is used, neutron beams even if the B content is small Since the shielding effect is large, it is extremely effective.

10BO10O、10Cを使用する場合、合金層にHおよびOも濃化することになるが、Hは真空焼鈍などの熱処理時に素材から抜けるため問題とならず、OおよびCは、工業用純チタンに含まれる上限以下の0.4質量%O以下、0.1質量%C以下であれば問題なく製造が可能である。When H 3 10 BO 3 , 10 B 2 O, 10 B 4 C is used, H and O are also concentrated in the alloy layer. However, if H is removed from the material during heat treatment such as vacuum annealing, it is a problem. If O and C are 0.4 mass% O or less and 0.1 mass% C or less, which are below the upper limit contained in industrial pure titanium, they can be produced without any problem.

上記以外の残部は、不純物である。不純物としては、中性子遮断性を阻害しない範囲で含有することができ、その他の不純物は主にスクラップから混入する不純物元素としてCr、Ta、Al、V、Cr、Nb、Si、Sn、Mn、MoおよびCu等があり、一般的な不純物元素であるC、N、Fe、OおよびHと併せて、総量で5%以下であれば許容される。   The remainder other than the above is impurities. Impurities can be contained within a range that does not impair the neutron blocking properties, and other impurities are mainly impurity elements mixed from scrap such as Cr, Ta, Al, V, Cr, Nb, Si, Sn, Mn, Mo. And Cu, etc., together with general impurity elements C, N, Fe, O and H, a total amount of 5% or less is acceptable.

(用途)
粒子線治療、BNCT(ホウ素中性子捕捉療法)などの放射線療法の施設に、B含有量が3.0〜4.0質量%、板厚が10〜100mmであるポリエチレン材料が用いられている。また、原子力関連設備では、核燃料保管用ラックに、B含有量が0.5〜1.5質量%、板厚が4.0〜6.0mmであるステンレス鋼板が用いられている。表層のB含有量および厚さ(B濃化層厚さ)を調整したチタン複合材1を用いることにより、上記の材料と同等またはそれ以上の特性を発揮することが可能である。
(Use)
A polyethylene material having a B content of 3.0 to 4.0 mass% and a plate thickness of 10 to 100 mm is used in a radiation therapy facility such as particle beam therapy or BNCT (boron neutron capture therapy). Moreover, in the nuclear power related equipment, a stainless steel plate having a B content of 0.5 to 1.5 mass% and a plate thickness of 4.0 to 6.0 mm is used for the nuclear fuel storage rack. By using the titanium composite material 1 in which the B content and thickness (B-concentrated layer thickness) of the surface layer are adjusted, it is possible to exhibit characteristics equal to or higher than those of the above materials.

1−3.内層
内層5には、工業用純チタンまたはチタン合金からなる。例えば、内層5に工業用純チタンを用いると、全体が同一のチタン合金からなるチタン材と比べて、室温での加工性に優れる。
1-3. Inner layer The inner layer 5 is made of industrial pure titanium or a titanium alloy. For example, when industrial pure titanium is used for the inner layer 5, the processability at room temperature is excellent as compared with a titanium material made entirely of the same titanium alloy.

なお、ここでいう工業用純チタンは、JIS規格の1種〜4種、およびそれに対応するASTM規格のGrade1〜4、DIN規格の3・7025,3・7035、3・7055で規定される工業用純チタンを含むものとする。すなわち、本発明で対象とする工業用純チタンは、例えば、C:0.1%以下、H:0.015%以下、O:0.4%以下、N:0.07%以下、Fe:0.5%以下、残部Tiからなるものである。   In addition, the industrial pure titanium here is an industry defined by JIS standards 1 to 4 and ASTM standards Grades 1 to 4 and DIN standards 3, 7025, 3, 7035, and 37055. Contains pure titanium. That is, the industrial pure titanium targeted in the present invention is, for example, C: 0.1% or less, H: 0.015% or less, O: 0.4% or less, N: 0.07% or less, Fe: It consists of 0.5% or less and the balance Ti.

また、特定の性能に加え、強度も要求される用途に供される場合には、内層5にチタン合金を用いてもよい。表層のB含有量を高めるとともに内層5をチタン合金により構成することにより、合金コストを大幅に削減できるとともに、高強度を得ることができる。   In addition to the specific performance, a titanium alloy may be used for the inner layer 5 when the strength is also required. By increasing the B content of the surface layer and forming the inner layer 5 from a titanium alloy, the alloy cost can be significantly reduced and high strength can be obtained.

内層5をなすチタン合金には、必要とする用途に応じて、α型チタン合金、α+β型チタン合金、β型チタン合金のいずれも用いることが可能である。   As the titanium alloy forming the inner layer 5, any of an α-type titanium alloy, an α + β-type titanium alloy, and a β-type titanium alloy can be used according to a required application.

ここで、α型チタン合金としては、例えば高耐食性合金(ASTM Grade 7、11、16、26、13、30、33あるいはこれらに対応するJIS種や更に種々の元素を少量含有させたチタン材)、Ti−0.5Cu、Ti−1.0Cu、Ti−1.0Cu−0.5Nb、Ti−1.0Cu−1.0Sn−0.3Si−0.25Nb、Ti−0.5Al−0.45Si、Ti−0.9Al−0.35Si、Ti−3Al−2.5V、Ti−5Al−2.5Sn、Ti−6Al−2Sn−4Zr−2Mo、Ti−6Al−2.75Sn−4Zr−0.4Mo−0.45Siなどを用いることができる。   Here, as the α-type titanium alloy, for example, a high corrosion resistance alloy (ASTM Grade 7, 11, 16, 26, 13, 30, 33 or a titanium material containing a small amount of JIS species corresponding to these or various elements). Ti-0.5Cu, Ti-1.0Cu, Ti-1.0Cu-0.5Nb, Ti-1.0Cu-1.0Sn-0.3Si-0.25Nb, Ti-0.5Al-0.45Si Ti-0.9Al-0.35Si, Ti-3Al-2.5V, Ti-5Al-2.5Sn, Ti-6Al-2Sn-4Zr-2Mo, Ti-6Al-2.75Sn-4Zr-0.4Mo -0.45Si or the like can be used.

α+β型チタン合金としては、例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−7V、Ti−3Al−5V、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−6Al−2Sn−4Zr−6Mo、Ti−1Fe−0.35O、Ti−1.5Fe−0.5O、Ti−5Al−1Fe、Ti−5Al−1Fe−0.3Si、Ti−5Al−2Fe、Ti−5Al−2Fe−0.3Si、Ti−5Al−2Fe−3Mo、Ti−4.5Al−2Fe−2V−3Moなどを用いることができる。   Examples of the α + β type titanium alloy include Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-7V, Ti-3Al-5V, Ti-5Al-2Sn-2Zr-4Mo-4Cr, and Ti-6Al. -2Sn-4Zr-6Mo, Ti-1Fe-0.35O, Ti-1.5Fe-0.5O, Ti-5Al-1Fe, Ti-5Al-1Fe-0.3Si, Ti-5Al-2Fe, Ti-5Al -2Fe-0.3Si, Ti-5Al-2Fe-3Mo, Ti-4.5Al-2Fe-2V-3Mo, or the like can be used.

さらに、β型チタン合金としては、例えば、Ti−11.5Mo−6Zr−4.5Sn,Ti−8V−3Al−6Cr−4Mo−4Zr,Ti−10V−2Fe−3Mo,Ti−13V−11Cr−3Al,Ti−15V−3Al−3Cr−3Sn,Ti−6.8Mo−4.5Fe−1.5Al、Ti−20V−4Al−1Sn、Ti−22V−4Alな どを用いることができる。   Further, as the β-type titanium alloy, for example, Ti-11.5Mo-6Zr-4.5Sn, Ti-8V-3Al-6Cr-4Mo-4Zr, Ti-10V-2Fe-3Mo, Ti-13V-11Cr-3Al Ti-15V-3Al-3Cr-3Sn, Ti-6.8Mo-4.5Fe-1.5Al, Ti-20V-4Al-1Sn, Ti-22V-4Al, etc. can be used.

ただし、内層5の0.2%耐力が1000MPaを超えると、加工性が悪化し、例えば、曲げ加工時に割れが生じる恐れがある。そのため、内層5に用いるチタンおよびチタン合金は、0.2%耐力が1000MPa以下であることが望ましい。   However, if the 0.2% proof stress of the inner layer 5 exceeds 1000 MPa, the workability deteriorates, and for example, there is a risk of cracking during bending. Therefore, the titanium and titanium alloy used for the inner layer 5 desirably have a 0.2% proof stress of 1000 MPa or less.

1−4.中間層
本発明のチタン複合材は、前記内層と前記表層との間に中間層を備えている。すなわち、後述する熱間圧延用チタン材は、母材に表層材を貼り付け周囲を溶接したものであるが、その後の熱延加熱時、および、冷延後の熱処理工程において、母材と表層材との界面で拡散が生じ、最終的にチタン複合材に仕上げた時には、上記母材由来の内層と、上記表層材由来の表層との間には中間層が形成される。この中間層は、母材の化学組成とは異なる化学組成を有している。この中間層が、上記内層と上記表層とを金属結合させ、強固に接合する。また、中間層では連続した元素勾配を生じるため、上記内層と上記表層との強度差を和らげることができ、加工時の割れを抑制することができる。
1-4. Intermediate Layer The titanium composite material of the present invention includes an intermediate layer between the inner layer and the surface layer. That is, a titanium material for hot rolling, which will be described later, is a material in which a surface layer material is attached to a base material and the periphery thereof is welded. During the subsequent hot rolling and heat treatment processes after cold rolling, the base material and the surface layer When diffusion occurs at the interface with the material and the titanium composite material is finally finished, an intermediate layer is formed between the inner layer derived from the base material and the surface layer derived from the surface material. This intermediate layer has a chemical composition different from the chemical composition of the base material. This intermediate layer bonds the inner layer and the surface layer to each other and bonds them firmly. Further, since a continuous element gradient is generated in the intermediate layer, the difference in strength between the inner layer and the surface layer can be reduced, and cracks during processing can be suppressed.

なお、中間層の厚さは、EPMAまたはGDSを用いて測定することができる。GDSを用いればより詳細な測定が可能である。GDSの場合は表層をある程度、研磨で除去した後、表面から深さ方向にGDS分析を行うことで中間層の厚みを測定することが可能である。中間層とは、母材からの増加含有量(母材には含まれない元素の場合は、その含有量、母材にも含まれる元素の場合には、母材からの含有量の増加分)をCMIDとし、表層部における増加含有量の平均をCAVEとするとき、0<CMID≦0.8×CAVEの領域を意味する。The thickness of the intermediate layer can be measured using EPMA or GDS. If GDS is used, more detailed measurement is possible. In the case of GDS, after removing the surface layer to some extent by polishing, the thickness of the intermediate layer can be measured by performing GDS analysis in the depth direction from the surface. The intermediate layer is the increased content from the base material (in the case of an element not included in the base material, its content, in the case of an element also included in the base material, the increase in content from the base material) ) Is C MID, and the average of the increased content in the surface layer portion is C AVE , it means a region of 0 <C MID ≦ 0.8 × C AVE .

この中間層の厚さは、0.5μm以上とする。一方、中間層の厚みが大きくなり過ぎると、その分だけ表層の合金層が薄くなってしまい効果を発現しない場合がある。よって、その上限は15μmとするのがよい。   The thickness of this intermediate layer is 0.5 μm or more. On the other hand, if the thickness of the intermediate layer becomes too large, the surface alloy layer may become thin by that amount, and the effect may not be exhibited. Therefore, the upper limit is preferably 15 μm.

2.熱間圧延用チタン材
本発明の熱間圧延用チタン材は、熱間加工に供される素材(スラブ、ブルーム、ビレットなどの鋳片)であり、熱間加工後、必要に応じて、冷間加工、熱処理などを施して、チタン複合材に加工される。以下、図面を用いて、本発明本発明の熱間圧延用チタン材を説明する。また、以下の説明において、各元素の含有量に関する「%」は「質量%」を意味する。
2. Titanium material for hot rolling The titanium material for hot rolling of the present invention is a material (slab of slab, bloom, billet, etc.) used for hot working, and after hot working, it can be cooled if necessary. It is processed into a titanium composite material by performing inter-processing, heat treatment, etc. Hereinafter, the titanium material for hot rolling according to the present invention will be described with reference to the drawings. In the following description, “%” regarding the content of each element means “mass%”.

2−1.全体構成
図3は、母材(チタン矩形鋳片、スラブ)6と表層材(チタン板)7を真空中で溶接することにより貼り合わせることを模式的に示す説明図であり、図4は、母材(チタン矩形鋳片、スラブ)6の表面(圧延面)だけでなく側面(圧延面以外の面)にも表層材(チタン板)7,8を溶接することにより貼り合わせることを模式的に示す説明図である。
2-1. Overall Configuration FIG. 3 is an explanatory view schematically showing that the base material (titanium rectangular cast, slab) 6 and the surface layer material (titanium plate) 7 are bonded together in a vacuum, and FIG. It is typical to bond the surface materials (titanium plates) 7 and 8 not only to the surface (rolled surface) of the base material (titanium rectangular cast slab, slab) but also to the side surfaces (surfaces other than the rolled surface). It is explanatory drawing shown in.

本発明では、図3,4に示すように、母材であるスラブ6の表面に中性子遮断性を発現する合金元素を含有したチタン板7,8を貼り合わせた後、熱延クラッド法により接合させることによりチタン複合材1,2の表層を合金化する。   In the present invention, as shown in FIGS. 3 and 4, titanium plates 7 and 8 containing an alloy element that exhibits neutron blocking properties are bonded to the surface of a slab 6 that is a base material, and then bonded by hot rolling cladding. As a result, the surface layers of the titanium composite materials 1 and 2 are alloyed.

図1に示すチタン複合材1を製造する場合には、図3に示すようにスラブ6の片面にのみチタン板7を真空中で貼り合わせればよく、スラブ6のもう片面にはチタン板7を貼り付けずに熱間圧延してもよい。   When the titanium composite material 1 shown in FIG. 1 is manufactured, a titanium plate 7 may be bonded to only one side of the slab 6 in a vacuum as shown in FIG. 3, and the titanium plate 7 is attached to the other side of the slab 6. You may hot-roll without sticking.

図4に示すように、スラブ6の片面とともにもう片面にもチタン板7を貼り合わせてもよい。これにより、上述したように熱間圧延工程での熱延疵の発生を抑制できる。   As shown in FIG. 4, a titanium plate 7 may be bonded to one side of the slab 6 as well as the other side. Thereby, generation | occurrence | production of the hot rolling in a hot rolling process can be suppressed as mentioned above.

さらに、図2に示すチタン複合材2を製造する場合には、図4に示すようにスラブ6の両圧延面に合金元素を含有する板を貼り合わせればよい。   Furthermore, when the titanium composite material 2 shown in FIG. 2 is manufactured, a plate containing an alloy element may be bonded to both rolling surfaces of the slab 6 as shown in FIG.

さらに、図4に示すように、熱間圧延時のエッジ側となるスラブ6の側面についても、圧延面と同様に同一規格のチタン板8を真空中で貼り合わせて溶接してもよい。   Furthermore, as shown in FIG. 4, the same standard titanium plate 8 may be bonded in a vacuum and welded to the side surface of the slab 6 that becomes the edge side during hot rolling as well as the rolled surface.

すなわち、熱間圧延においては、通常、スラブ6に圧下が加えられることによって、スラブ6の側面の少なくとも一部が熱延板の表面側に回り込む。そのため、スラブ6の側面の表層の組織が粗大であったり、多数の欠陥が存在していたりすると、熱延板の幅方向の両端近くの表面に表面疵が発生する可能性がある。このため、スラブ6の側面にもチタン板8を真空中で貼り合わせて溶接することによって、熱延板の幅方向の両端近くの表面における表面疵の発生を有効に防止できる。   That is, in hot rolling, usually, when the slab 6 is subjected to reduction, at least a part of the side surface of the slab 6 wraps around the surface side of the hot-rolled sheet. Therefore, if the structure of the surface layer on the side surface of the slab 6 is coarse or a large number of defects exist, surface flaws may occur on the surface near both ends in the width direction of the hot-rolled sheet. For this reason, generation | occurrence | production of the surface flaw in the surface near the both ends of the width direction of a hot-rolled sheet can be effectively prevented by bonding the titanium plate 8 to the side surface of the slab 6 and welding it.

なお、熱間圧延時にスラブ6の側面が回り込む量は、製造方法により異なるが、通常は20〜30mm程度であるため、スラブ6の側面全面にチタン板8を貼り付ける必要はなく、製造方法に則した回り込み量に相当する部分にのみチタン板8を貼り付ければよい。   In addition, although the quantity which the side surface of the slab 6 wraps around at the time of hot rolling changes with manufacturing methods, since it is usually about 20-30 mm, it is not necessary to stick the titanium plate 8 on the whole side surface of the slab 6, and it is a manufacturing method. It is only necessary to attach the titanium plate 8 only to the portion corresponding to the sneak amount.

2−2.表層材
チタン複合材1,2を製造する際には、熱間圧延により形成した酸化層を除去するため、熱間圧延後にショット−酸洗の工程を経て製造される。しかしながら、この工程の際に熱延クラッドにより形成した表層が除去されてしまうと、中性子遮断特性を発現させることができない。
2-2. Surface layer material When manufacturing the titanium composite materials 1 and 2, in order to remove the oxide layer formed by hot rolling, it is manufactured through a shot-pickling process after hot rolling. However, if the surface layer formed by the hot-rolled cladding is removed during this step, the neutron blocking characteristics cannot be expressed.

また、チタン複合材1,2の表層の厚みが薄くなり過ぎると、狙いとする中性子遮断特性を発現しなくなってしまう。一方で、表層の厚みが厚過ぎると、その分だけ製造コストが増加する。チタン複合材1,2が使用目的に合わせた表層の厚みを有すればよいことから、素材として使用するチタン板7,8の厚さは、特に限定する必要はないが、スラブ6の厚みの5〜40%の範囲にあることが好ましい。   Moreover, when the thickness of the surface layer of the titanium composites 1 and 2 becomes too thin, the target neutron blocking characteristic is not expressed. On the other hand, if the thickness of the surface layer is too thick, the manufacturing cost increases accordingly. Since the titanium composite materials 1 and 2 only have to have a surface layer thickness suitable for the purpose of use, the thickness of the titanium plates 7 and 8 used as the material is not particularly limited, but the thickness of the slab 6 It is preferable to be in the range of 5 to 40%.

表層材(チタン板)としては、前記のチタン複合材の表層の項で説明した所定の化学組成を有するチタン板を用いる。特に、チタン板の化学組成は、熱間圧延での板破断を抑制するため、上記の母材と同様の成分を基本とし、これに所定の元素が含有されている成分に調整することが望ましい。特に、下記の点の注意が必要である。   As the surface layer material (titanium plate), a titanium plate having a predetermined chemical composition described in the section of the surface layer of the titanium composite material is used. In particular, it is desirable to adjust the chemical composition of the titanium plate to a component containing a predetermined element in the same component as the base material in order to suppress the plate breakage during hot rolling. . In particular, the following points should be noted.

表層材としては、0.1%以上3%以下のBを含有するチタン合金板を用いる。すなわち、表層材の化学組成は、熱間圧延での板破断を抑制するため、上記の母材と同様の成分を基本とし、これにBが0.1%以上3%以下含有されている成分に調整することが望ましい。また、熱間冷間での加工性を良好に保つために、Ti−0.1〜3%B合金としてもよい。   As the surface layer material, a titanium alloy plate containing 0.1% or more and 3% or less of B is used. In other words, the chemical composition of the surface layer material is based on the same components as the above-mentioned base material in order to suppress plate breakage during hot rolling, and the component contains B in the range of 0.1% to 3%. It is desirable to adjust to. Moreover, in order to maintain favorable workability in hot and cold, it is good also as a Ti-0.1-3% B alloy.

このB含有チタン合金板は、チタンにB、TiBなどのほう化物を添加することにより製造可能である。この他、H 10BO10O、10Cなどの10B濃縮ほう素含有素材(10B含有量が概ね90%以上)を用いると、表層3,4のB添加量が少なくてもチタン複合材1,2は大きな中性子線遮蔽効果を有するため、極めて有効である。This B-containing titanium alloy plate can be produced by adding a boride such as B or TiB 2 to titanium. In addition, the use of H 3 10 BO 3, 10 B 2 O, 10 B 4 C 10B concentrated boron-containing material, such as (10 B content of about 90% or more), B addition amount of the surface layer 3 and 4 At least the titanium composites 1 and 2 are extremely effective because they have a large neutron shielding effect.

10BO10O、10Cを使用する場合、合金層にH、O、Cも濃化することになるが、Hは真空焼鈍などの熱処理時に素材から抜けるため問題とならず、OやCは、工業用純チタンに含まれる上限以下の0.4%O以下、0.1%C以下であれば問題なく製造可能である。When H 3 10 BO 3 , 10 B 2 O, 10 B 4 C is used, H, O, and C will also be concentrated in the alloy layer, but H is a problem because it escapes from the material during heat treatment such as vacuum annealing. However, O and C can be produced without problems as long as they are 0.4% O or less and 0.1% C or less, which are below the upper limit contained in industrial pure titanium.

2−3.母材(スラブ)
母材としては、前記のチタン複合材の内層の項で説明した工業用純チタンまたはチタン合金を用いる。特に、母材として直接鋳造スラブを用いるのがよい。直接鋳造スラブは、表面の少なくとも一部に溶融再凝固層を形成したものであってもよい。また、直接鋳造スラブの表面に溶融再凝固処理を実施する際に所定の元素を添加して、直接鋳造スラブの板厚中心部とは異なる化学組成を有する溶融再凝固層を形成したものであってもよい。
2-3. Base material (slab)
As the base material, the industrial pure titanium or titanium alloy described in the section of the inner layer of the titanium composite is used. In particular, it is preferable to use a direct casting slab as a base material. The direct cast slab may be one in which a melt resolidified layer is formed on at least a part of the surface. In addition, a predetermined element was added to the surface of the direct casting slab when the melt resolidification process was performed, and a melt resolidification layer having a chemical composition different from that of the center portion of the direct casting slab was formed. May be.

2−4.溶接部
スラブ6の圧延面に当たる表面に、合金元素を含有するチタン板7を貼り合わせた後、真空容器内で、少なくとも周囲を溶接部9により溶接することによって、スラブ6とチタン板7,8の間を真空で密閉し、外気と遮断し、圧延することによりスラブ6とチタン板7,8とを貼り合わせる。スラブ6にチタン板7,8を貼り合わせた後に接合する溶接部は、スラブ6とチタン板7,8の界面を大気から遮断するように、例えば、図3,4に示すように全周を溶接する。
2-4. After the titanium plate 7 containing an alloy element is bonded to the surface corresponding to the rolling surface of the welded portion slab 6, the slab 6 and the titanium plates 7 and 8 are welded at least around the welded portion 9 in a vacuum vessel. The slab 6 and the titanium plates 7 and 8 are bonded together by sealing with a vacuum, blocking the outside air, and rolling. For example, as shown in FIGS. 3 and 4, the welded portion to be joined after the titanium plates 7 and 8 are bonded to the slab 6 is shielded from the atmosphere at the interface between the slab 6 and the titanium plates 7 and 8. Weld.

チタンは活性な金属であるため、大気中に放置すると表面に強固な不動態皮膜を形成する。この表面部の酸化濃化層を除去することは不可能である。しかし、ステンレス等とは異なり、チタンには酸素が固溶し易いため、真空中で密閉されて外部からの酸素の供給が無い状態で加熱されると、表面の酸素は内部に拡散し固溶するため、表面に形成した不動態皮膜は消滅する。そのため、スラブ6とその表面のチタン板7,8とは、その間に介在物なども発生せずに、熱延クラッド法により完全に密着することができる。   Titanium is an active metal and forms a strong passive film on the surface when left in the atmosphere. It is impossible to remove the oxidized layer on the surface. However, unlike stainless steel, etc., oxygen easily dissolves in titanium. Therefore, when heated in a vacuum and sealed without external oxygen supply, oxygen on the surface diffuses into the solid solution. Therefore, the passive film formed on the surface disappears. Therefore, the slab 6 and the titanium plates 7 and 8 on the surface thereof can be completely adhered by the hot rolling cladding method without generating any inclusions between them.

さらに、スラブ6として鋳造ままのスラブを用いると、凝固時に生成した粗大な結晶粒に起因し、その後の熱間圧延工程で表面疵が発生してしまう。これに対し、本発明のようにスラブ6の圧延面にチタン板7,8を貼り合わせると、貼り合わせたチタン板7が微細な組織を有するために熱間圧延工程での表面疵も抑制できる。   Furthermore, when a slab as cast is used as the slab 6, surface defects will occur in the subsequent hot rolling process due to coarse crystal grains generated during solidification. On the other hand, when the titanium plates 7 and 8 are bonded to the rolled surface of the slab 6 as in the present invention, the bonded titanium plate 7 has a fine structure, so that surface defects in the hot rolling process can be suppressed. .

3.熱間圧延用チタン材の製造方法
3−1.母材の製造方法
熱間圧延用チタン材の母材は、通常、インゴットをブレークダウンによりスラブやビレット形状にした後、切削精整して製造される。また、近年ではインゴット製造時に直接熱延可能な矩形スラブを製造し、熱延に供されることもある。ブレークダウンにより製造された場合、ブレークダウンにより表面が比較的平坦になっているため、合金元素を含有する素材を比較的均一に散布し易く、合金相の元素分布を均一にしやすい。
3. 3. Method for producing titanium material for hot rolling 3-1. Manufacturing method of base material A base material of a titanium material for hot rolling is usually manufactured by cutting and refining an ingot after making it into a slab or billet shape by breakdown. In recent years, rectangular slabs that can be hot-rolled directly at the time of ingot production are sometimes produced and used for hot-rolling. When manufactured by breakdown, since the surface is relatively flat by breakdown, it is easy to disperse the material containing the alloy element relatively uniformly, and it is easy to make the element distribution of the alloy phase uniform.

一方、鋳造時に熱延用素材の形状に直接製造された鋳塊(直接鋳造スラブ)を母材として用いる場合、切削精整工程を省略できるため、より安価に製造することができる。また、鋳塊を製造後に、表面を切削精整してから用いれば、ブレークダウンを経て製造した場合同様の効果が期待できる。本発明においては、表層に安定的に合金層が形成すればよく、状況に合わせて適切な素材を選べばよい。   On the other hand, when using the ingot (direct casting slab) directly manufactured to the shape of the material for hot rolling at the time of casting as a base material, since a cutting and refining process can be omitted, it can manufacture more cheaply. In addition, if the ingot is manufactured and then used after the surface is cut and refined, the same effect can be expected when it is manufactured through breakdown. In the present invention, an alloy layer may be stably formed on the surface layer, and an appropriate material may be selected according to the situation.

例えば、スラブを組み立て、周囲を溶接した後、700〜850℃に加熱し10〜30%の接合圧延を行い、その後β域温度で3〜10時間加熱し母材成分を表層部に拡散させた後に、熱間圧延を行うことが好ましい。β域温度で熱間圧延を行うことによって、変形抵抗が低くなり圧延し易くなるからである。   For example, after assembling the slab and welding the surroundings, it is heated to 700 to 850 ° C. and bonded and rolled at 10 to 30%, and then heated at the β region temperature for 3 to 10 hours to diffuse the base material component to the surface layer portion. It is preferable to perform hot rolling later. This is because by performing hot rolling at a β-region temperature, the deformation resistance becomes low and rolling becomes easy.

母材として用いる直接鋳造スラブは、表面の少なくとも一部に溶融再凝固層を形成したものであってもよい。また、直接鋳造スラブの表面に溶融再凝固処理を実施する際に所定の元素を添加して、直接鋳造スラブの板厚中心部とは異なる化学組成を有する溶融再凝固層を形成したものであってもよい。以下、溶融再凝固処理について詳しく説明する。   The direct casting slab used as the base material may be one in which a melt resolidification layer is formed on at least a part of the surface. In addition, a predetermined element was added to the surface of the direct casting slab when the melt resolidification process was performed, and a melt resolidification layer having a chemical composition different from that of the center portion of the direct casting slab was formed. May be. Hereinafter, the melt resolidification process will be described in detail.

図5〜7は、いずれも溶融再凝固の方法を示す説明図である。熱間圧延用チタン材の母材表面を溶融再凝固させる方法としては、レーザー加熱、プラズマ加熱、誘導加熱、電子ビーム加熱などがあり、いずれかの方法で行えばよい。特に、特に電子ビーム加熱の場合、高真空中で行うため、溶融再凝固処理の際に、この層にボイド等を形成しても、真空であるため、後の圧延で圧着し無害化できる。   5-7 is explanatory drawing which shows the method of melt re-solidification all. As a method for melting and resolidifying the surface of the base material of the titanium material for hot rolling, there are laser heating, plasma heating, induction heating, electron beam heating, etc., and any method may be used. In particular, especially in the case of electron beam heating, since it is performed in a high vacuum, even if a void or the like is formed in this layer during the melt resolidification treatment, it can be made harmless by pressure bonding in subsequent rolling because it is a vacuum.

さらに、エネルギー効率が高いことから大面積を処理しても深く溶融させることができるため、特にチタン複合材の製造に適している。真空中で溶融する場合の真空度は、3×10−3Torr以下のより高い真空度であることが望ましい。また、熱間圧延用チタン材の表層を溶融再凝固する回数については、特に制限はない。ただし、回数が多くなるほど、処理時間が長くなりコスト増につながるため、1回ないし2回であることが望ましい。Furthermore, since it is high in energy efficiency, it can be melted deeply even if a large area is processed, and is particularly suitable for the production of titanium composite materials. The degree of vacuum in the case of melting in vacuum is desirably a higher degree of vacuum of 3 × 10 −3 Torr or less. Moreover, there is no restriction | limiting in particular about the frequency | count of melt-solidifying the surface layer of the titanium material for hot rolling. However, as the number of times increases, the processing time becomes longer and the cost increases.

表層の溶融再凝固法は、矩形のスラブの場合では図5に示しているように実施する。すなわち、矩形スラブ10の外表面のうち、少なくとも熱間圧延工程での圧延面(熱延ロールに接する面)となる幅広な2面10A,10Bについて、電子ビームを照射して、その面における表面層のみを溶融させる。ここでは先ずその2面10A,10Bのうちの一方の面10Aについて実施するものとする。   In the case of a rectangular slab, the melt resolidification method of the surface layer is performed as shown in FIG. That is, among the outer surfaces of the rectangular slab 10, at least two wide surfaces 10A and 10B that become the rolling surfaces (surfaces in contact with the hot rolling roll) in the hot rolling process are irradiated with an electron beam, and the surfaces on the surfaces are irradiated. Only melt the layer. Here, it is assumed that the surface 10A is one of the two surfaces 10A and 10B.

ここで、図5に示しているように、矩形鋳片10の面10Aに対する一基の電子ビーム照射ガン12による電子ビームの照射領域14の面積は、照射すべき面10Aの全面積と比較して格段に小さいのが通常である、そこで、実際には、電子ビーム照射ガン12を連続的に移動させながら、または、矩形鋳片10を連続的に移動させながら、電子ビーム照射を行なうのが通常である。この照射領域は、電子ビームの焦点を調整することによって、あるいは電磁レンズを使用して小ビームを高周波数で振動(オシレーション Oscillation)させてビーム束を形成させることによって、その形状や面積を調整することができる。   Here, as shown in FIG. 5, the area of the electron beam irradiation region 14 by the single electron beam irradiation gun 12 on the surface 10A of the rectangular slab 10 is compared with the total area of the surface 10A to be irradiated. The electron beam irradiation is actually performed while continuously moving the electron beam irradiation gun 12 or continuously moving the rectangular slab 10. It is normal. The shape and area of this irradiation area can be adjusted by adjusting the focus of the electron beam or by using an electromagnetic lens to oscillate a small beam at a high frequency (oscillation oscillation) to form a beam bundle. can do.

そして、図5中の矢印Aで示しているように、電子ビーム照射ガン12を連続的に移動させるものとして、以下の説明を進める。なお電子ビーム照射ガンの移動方向は特に限定されないが、一般には矩形鋳片10の長さ方向(通常は鋳造方向D)または幅方向(通常は鋳造方向Dと垂直な方向)に沿って連続的に移動させ、前記照射領域14の幅W(円形ビームまたはビーム束の場合は、直径W)で連続的に帯状に照射する。さらにその隣の未照射の帯状領域について逆方向(もしくは同方向)に照射ガン12を連続的に移動させながら帯状に電子ビーム照射を行なう。また場合によっては複数の照射ガンを用いて、同時に複数の領域について同時に電子ビーム照射を行なっても良い。図5では、矩形鋳片10の長さ方向(通常は鋳造方向D)に沿って矩形ビームを連続的に移動させる場合を示している。   Then, as indicated by an arrow A in FIG. 5, the following explanation will be made on the assumption that the electron beam irradiation gun 12 is continuously moved. Although the moving direction of the electron beam irradiation gun is not particularly limited, it is generally continuous along the length direction (usually the casting direction D) or the width direction (usually the direction perpendicular to the casting direction D) of the rectangular slab 10. Then, the irradiation region 14 is continuously irradiated in a band shape with a width W (in the case of a circular beam or beam bundle, a diameter W). Further, the electron beam irradiation is performed in a belt shape while continuously moving the irradiation gun 12 in the reverse direction (or the same direction) in the adjacent unirradiated belt region. In some cases, a plurality of irradiation guns may be used to simultaneously perform electron beam irradiation on a plurality of regions. In FIG. 5, the case where a rectangular beam is continuously moved along the length direction (usually casting direction D) of the rectangular slab 10 is shown.

このような表層加熱処理工程によって矩形チタン鋳片10の表面(面10A)に電子ビームを照射して、その表面を溶融するように加熱すれば、図6の中央左寄りに示すように、矩形チタン鋳片10の面10Aの表面層が、入熱量に応じた深さだけ最大溶融される。しかしながら、電子ビームの照射方向に対して垂直方向からの深さは図7に示すように一定ではなく、電子ビーム照射の中央部が最も深さが大きくなり、帯状の端部に行くほどその厚みが減少する、下に凸の湾曲形状となる。   If the surface (surface 10A) of the rectangular titanium cast piece 10 is irradiated with an electron beam by such a surface heat treatment step and heated to melt the surface, the rectangular titanium as shown in the left side of the center of FIG. The surface layer of the surface 10A of the slab 10 is melted at the maximum by a depth corresponding to the heat input. However, the depth from the direction perpendicular to the irradiation direction of the electron beam is not constant as shown in FIG. 7, and the depth becomes the largest at the central part of the electron beam irradiation, and the thickness increases toward the strip-shaped end part. Decreases, resulting in a downwardly convex curved shape.

またその溶融層16よりも鋳片内部側の領域も、電子ビーム照射による熱影響によって温度上昇し、純チタンのβ変態点以上の温度となった部分(熱影響層=HAZ層)がβ相に変態する。このように表層加熱処理工程での電子ビーム照射による熱影響によってβ相に変態した領域も、溶融層16の形状と同様に下に凸の湾曲形状となる。   The region inside the slab from the molten layer 16 also rises in temperature due to the heat effect of electron beam irradiation, and the portion where the temperature is higher than the β transformation point of pure titanium (heat affected layer = HAZ layer) is the β phase. To metamorphosis. In this way, the region transformed into the β phase by the heat effect of the electron beam irradiation in the surface heat treatment step also has a downwardly curved shape similar to the shape of the molten layer 16.

表層を、目的とする合金元素から成る素材とともに溶融再凝固を行うことにより、熱間圧延用素材表層を合金化し、母材とは異なる化学組成の合金層を形成することができる。この際に用いる素材としては、粉末、チップ、ワイヤー、薄膜、切り粉、メッシュのうちの1種以上を用いればよい。溶融前に配置する材料の成分および量については、素材表面とともに溶融し凝固した後の元素濃化領域の成分が目標成分となるように定める。   By performing re-solidification of the surface layer together with the material composed of the target alloy element, the material layer for hot rolling can be alloyed to form an alloy layer having a chemical composition different from that of the base material. As a material used in this case, one or more of powder, chip, wire, thin film, cutting powder, and mesh may be used. The component and amount of the material to be arranged before melting are determined so that the component in the element concentration region after melting and solidifying together with the material surface becomes the target component.

ただし、この添加する素材が大きすぎると、合金成分の偏析の原因となる。そして、合金成分の偏析が存在すると、所望の性能を十分に発揮できないか、劣化が早まってしまう。このため、チタン母材表面の被加熱部位が溶融状態にあるうちに、合金素材が溶融し終えるサイズにすることが重要である。また、特定の時間における溶融部の形状および広さを考慮した上で、上記合金素材をチタン母材表面に均等に配置しておくことが重要である。しかしながら、電子ビームを使って照射位置を連続的に移動させる場合には、溶融部は溶融したチタンおよび合金とともに連続的に移動しながら攪拌されるため、合金素材は必ずしも連続的に配置しておく必要はない。そのほか、チタンの融点よりも極端に高い融点を有する合金素材の使用は避けなければならないことは当然である。   However, if the material to be added is too large, it causes segregation of alloy components. And when the segregation of an alloy component exists, desired performance cannot fully be exhibited, or deterioration will be accelerated. For this reason, it is important to make the size of the alloy material completely melted while the heated portion on the surface of the titanium base material is in a molten state. In addition, it is important that the alloy material is evenly arranged on the surface of the titanium base material in consideration of the shape and size of the melted part at a specific time. However, when the irradiation position is continuously moved using the electron beam, the molten part is stirred while moving continuously with the molten titanium and the alloy, so that the alloy material is always arranged continuously. There is no need. In addition, it is natural that the use of an alloy material having a melting point extremely higher than that of titanium must be avoided.

溶融再凝固処理後は、100℃以上500℃未満の温度で1時間以上保持するのがよい。溶融再凝固後、急激に冷却すると凝固時の歪で表層部に微細な割れが発生するおそれがある。その後の熱延工程や冷延工程において、この微細な割れが起点となって、表層の剥離が発生する、部分的に合金層が薄い部位が発生するなど、中性子遮断性が劣化するおそれがある。また、微細な割れによって内部が酸化すると、酸洗工程で除去する必要があり、合金層の厚さをさらに減少させる。上記の温度で保持することで表面の微細な割れを抑制できる。また、この温度であれば大気中で保持しても大気酸化は殆どしない。   After the melt resolidification treatment, it is preferable to hold at a temperature of 100 ° C. or higher and lower than 500 ° C. for 1 hour or longer. If it is cooled rapidly after melting and resolidification, fine cracks may occur in the surface layer due to strain during solidification. In the subsequent hot rolling process and cold rolling process, this fine crack may be the starting point, causing surface layer peeling, or a part where the alloy layer is partially thin, which may deteriorate the neutron blocking performance. . Further, if the inside is oxidized due to fine cracks, it is necessary to remove in the pickling process, and the thickness of the alloy layer is further reduced. By maintaining at the above temperature, fine cracks on the surface can be suppressed. At this temperature, atmospheric oxidation hardly occurs even if the temperature is maintained.

溶融再凝固処理によって形成した表層部を備える母材表面に所定の合金成分を含有するチタン板を貼り付けることにより熱間圧延用チタン材を製造することができる。
3−2.熱延クラッド法
熱間圧延用チタン材は、熱延クラッド法により、予め、周囲を溶接したスラブ6とチタン板7,8を接合するのがよい。
A titanium material for hot rolling can be manufactured by attaching a titanium plate containing a predetermined alloy component to the surface of a base material provided with a surface layer portion formed by melt resolidification treatment.
3-2. Hot Rolled Clad Method The titanium material for hot rolling is preferably bonded to the slab 6 and the titanium plates 7 and 8 which are welded in advance by the hot rolled clad method.

図3,4に示すように、スラブ6の表層に中性子遮断性を発現する合金元素を含有したチタン板7,8を貼り合わせた後、熱延クラッド法により接合させることによりチタン複合材の表層を合金化する。すなわち、スラブ6の圧延面に当たる表面に、合金元素を含有するチタン板7を貼り合わせた後、好ましくは真空容器内で、少なくとも周囲を溶接部9により溶接することによって、スラブ6とチタン板7の間を真空で密閉し、圧延することによりスラブ6とチタン板7とを貼り合わせる。スラブ6にチタン板7を貼り合わせる溶接は、スラブ6とチタン板7の間に大気が侵入しないよう、例えば、図3,4に示すように全周を溶接する。   As shown in FIGS. 3 and 4, after the titanium plates 7 and 8 containing the alloy element exhibiting neutron blocking properties are bonded to the surface layer of the slab 6, the surface layer of the titanium composite material is bonded by hot rolling cladding. Is alloyed. That is, after the titanium plate 7 containing the alloy element is bonded to the surface corresponding to the rolling surface of the slab 6, the slab 6 and the titanium plate 7 are preferably welded at least around the welded portion 9 in a vacuum vessel. The space between the slab 6 and the titanium plate 7 is bonded together by vacuum sealing and rolling. In welding for bonding the titanium plate 7 to the slab 6, for example, as shown in FIGS. 3 and 4, the entire circumference is welded so that air does not enter between the slab 6 and the titanium plate 7.

チタンは活性な金属であるため、大気中に放置すると表面に強固な不動態皮膜を形成する。この表面部の酸化濃化層を除去することは不可能である。しかし、ステンレス等とは異なり、チタンには酸素が固溶し易いため、真空中で密閉されて外部からの酸素の供給が無い状態で加熱されると、表面の酸素は内部に拡散し固溶するため、表面に形成した不動態皮膜は消滅する。そのため、スラブ6とその表面のチタン板7とは、その間に介在物なども発生せずに、熱延クラッド法により完全に密着することができる。   Titanium is an active metal and forms a strong passive film on the surface when left in the atmosphere. It is impossible to remove the oxidized layer on the surface. However, unlike stainless steel, etc., oxygen easily dissolves in titanium. Therefore, when heated in a vacuum and sealed without external oxygen supply, oxygen on the surface diffuses into the solid solution. Therefore, the passive film formed on the surface disappears. For this reason, the slab 6 and the titanium plate 7 on the surface thereof can be completely adhered by the hot rolling cladding method without generating any inclusions between them.

さらに、スラブ6として鋳造ままのスラブを用いると、凝固時に生成した粗大な結晶粒に起因し、その後の熱間圧延工程で表面疵が発生してしまう。これに対し、本発明のようにスラブ6の圧延面にチタン板7を貼り合わせると、貼り合わせたチタン板7が微細な組織を有するために熱間圧延工程での表面疵も抑制できる。   Furthermore, when a slab as cast is used as the slab 6, surface defects will occur in the subsequent hot rolling process due to coarse crystal grains generated during solidification. On the other hand, when the titanium plate 7 is bonded to the rolled surface of the slab 6 as in the present invention, the bonded titanium plate 7 has a fine structure, so that surface defects in the hot rolling process can be suppressed.

図3に示すように、スラブ6の片面たけでなく両面にチタン板7を貼り合わせてもよい。これにより、上述したように熱間圧延工程での熱延疵の発生を抑制できる。熱間圧延においては、通常、スラブ6に圧下されることによって、スラブ6の側面の少なくとも一部が熱延板の表面側に回り込む。そのため、スラブ6の側面の表層の組織が粗大であったり、多数の欠陥が存在していたりすると、熱延板の幅方向の両端近くの表面に表面疵が発生する可能性がある。このため、図4に示すように、熱間圧延時のエッジ側となるスラブ6の側面についても、圧延面と同様に同一規格のチタン板8を貼り合わせて溶接するのがよい。これにより、熱延板の幅方向の両端近くの表面における表面疵の発生を有効に防止できる。この溶接は、真空中で行うのが好ましい。   As shown in FIG. 3, a titanium plate 7 may be bonded to both sides of the slab 6 instead of just one side. Thereby, generation | occurrence | production of the hot rolling in a hot rolling process can be suppressed as mentioned above. In hot rolling, at least a part of the side surface of the slab 6 usually wraps around the surface side of the hot-rolled sheet by being rolled down by the slab 6. Therefore, if the structure of the surface layer on the side surface of the slab 6 is coarse or a large number of defects exist, surface flaws may occur on the surface near both ends in the width direction of the hot-rolled sheet. For this reason, as shown in FIG. 4, the same standard titanium plate 8 is preferably bonded and welded to the side surface of the slab 6 on the edge side during hot rolling as well as the rolled surface. Thereby, generation | occurrence | production of the surface flaw in the surface near the both ends of the width direction of a hot rolled sheet can be prevented effectively. This welding is preferably performed in a vacuum.

なお、熱間圧延時にスラブ6の側面が回り込む量は、製造方法により異なるが、通常は20〜30mm程度であるため、スラブ6の側面全面にチタン板8を貼り付ける必要はなく、製造方法に則した回り込み量に相当する部分にのみチタン板8を貼り付ければよい。熱間圧延以降に高温長時間焼鈍を行うことにより、母材由来成分をチタン複合材の内部に含有させることができる。例えば700〜900℃で30時間の熱処理が例示される。   In addition, although the quantity which the side surface of the slab 6 wraps around at the time of hot rolling changes with manufacturing methods, since it is usually about 20-30 mm, it is not necessary to stick the titanium plate 8 on the whole side surface of the slab 6, and it is a manufacturing method. It is only necessary to attach the titanium plate 8 only to the portion corresponding to the sneak amount. By performing high-temperature long-time annealing after hot rolling, the base material-derived component can be contained in the titanium composite material. For example, a heat treatment at 700 to 900 ° C. for 30 hours is exemplified.

スラブ6とチタン板7,8を真空中で溶接する方法は、電子ビーム溶接やプラズマ溶接などがある。特に電子ビーム溶接は、高真空下で実施できることから、スラブ6とチタン板7,8との間を高真空にすることができるため、望ましい。チタン板7,8を真空中で溶接する場合の真空度は3×10-3Torr以下のより高い真空度であることが望ましい。Methods for welding the slab 6 and the titanium plates 7 and 8 in vacuum include electron beam welding and plasma welding. In particular, since the electron beam welding can be performed under a high vacuum, the space between the slab 6 and the titanium plates 7 and 8 can be made a high vacuum, which is desirable. The degree of vacuum when the titanium plates 7 and 8 are welded in a vacuum is desirably a higher degree of vacuum of 3 × 10 −3 Torr or less.

なお、スラブ6とチタン板7との溶接は、必ずしも真空容器内で行う必要はなく、例えば、チタン板7の内部に真空吸引用孔を設けておき、チタン板7をスラブ6と重ね合わせた後に、真空吸引孔を用いてスラブ6とチタン板7との間を真空引きしながらスラブ6とチタン板7とを溶接し、溶接後に真空吸引孔を封止してもよい。   The slab 6 and the titanium plate 7 are not necessarily welded in a vacuum vessel. For example, a vacuum suction hole is provided in the titanium plate 7 and the titanium plate 7 is overlapped with the slab 6. Later, the slab 6 and the titanium plate 7 may be welded while evacuating the slab 6 and the titanium plate 7 using a vacuum suction hole, and the vacuum suction hole may be sealed after welding.

クラッドとしてスラブ6の表面に目的とする合金元素を有するチタン板7,8を使用し、熱延クラッドによりチタン複合材1,2の表層に合金層を形成する場合、表層の厚みや化学成分は貼り合わせる前のチタン板7,8の厚みや合金元素の分布に依存する。もちろん、チタン板7,8を製造する際には、最終的に必要とする強度や延性を得るために、真空雰囲気などで焼鈍処理が施されるため、界面での拡散を生じ、界面近傍では深さ方向に濃度勾配を生じる。   When titanium plates 7 and 8 having a target alloy element are used as the clad on the surface of the slab 6 and an alloy layer is formed on the surface of the titanium composites 1 and 2 by hot rolling clad, the thickness and chemical composition of the surface layer are as follows: It depends on the thickness of the titanium plates 7 and 8 before bonding and the distribution of alloy elements. Of course, when the titanium plates 7 and 8 are manufactured, the annealing treatment is performed in a vacuum atmosphere or the like in order to obtain the finally required strength and ductility. A concentration gradient is generated in the depth direction.

しかしながら、最終焼鈍工程で生じる元素の拡散距離は数μm程度であり、合金層の厚み全体が拡散するわけではなく、特に中性子遮断性発現に重要となる表層の近傍の合金元素の濃度には影響しない。   However, the diffusion distance of the element generated in the final annealing process is about several μm, and the entire thickness of the alloy layer is not diffused. In particular, it affects the concentration of the alloy element in the vicinity of the surface layer, which is important for neutron blocking performance. do not do.

このため、チタン板7,8全体での合金成分の均一性が特性の安定的な発現につながる。熱延クラッドの場合、製品として製造されたチタン板7,8を使用することが可能であるため、板厚精度はもちろんのこと、合金成分の偏析をコントロールし易く、製造後に均一な厚みかつ化学成分を有する表層を備えるチタン複合材1,2を製造することが可能であり、安定した特性を発現できる。   For this reason, the uniformity of the alloy components in the entire titanium plates 7 and 8 leads to stable expression of the characteristics. In the case of hot-rolled clad, it is possible to use titanium plates 7 and 8 manufactured as products, so it is easy to control the segregation of alloy components as well as the plate thickness accuracy, and have a uniform thickness and chemical properties after manufacturing. Titanium composite materials 1 and 2 having a surface layer having components can be produced, and stable characteristics can be expressed.

また、上述したように、チタン複合材1,2の表層と内層5との間に介在物が発生しないことから、密着性の他、割れや疲労などの起点になることもない。   Further, as described above, since no inclusion is generated between the surface layer of the titanium composites 1 and 2 and the inner layer 5, in addition to adhesion, there is no starting point such as cracking or fatigue.

3.チタン複合材の製造方法
スラブ表面にチタン板を貼り付けることにより形成した合金層を最終製品として残存させることが重要であり、スケールロスや表面疵による表面層の除去を可能な限り抑制する必要がある。具体的には、下記のような熱間圧延工程上の工夫を、生産に使用する設備の特性や能力を考慮した上で最適化し適宜採用することにより、達成される。
3. Manufacturing method of titanium composite It is important to leave the alloy layer formed by sticking a titanium plate on the slab surface as the final product, and it is necessary to suppress the removal of the surface layer due to scale loss and surface flaws as much as possible. is there. Specifically, this is achieved by optimizing and appropriately adopting the following devices in the hot rolling process in consideration of the characteristics and capabilities of the equipment used for production.

4−1.加熱工程
熱間圧延用素材を加熱する際には低温短時間加熱を行うことによりスケールロスを低く抑制できるが、チタン材は熱伝導が小さくスラブ内部が低温状態で熱間圧延を行うと内部で割れが発生し易くなる欠点もあり、使用する加熱炉の性能や特性に合わせてスケール発生を最小限に抑制するように最適化する。
4-1. Heating process When heating the raw material for hot rolling, scale loss can be suppressed by heating at low temperature for a short time, but the titanium material has low heat conduction, and if the inside of the slab is hot rolled at a low temperature, There is also a drawback that cracks are likely to occur, and optimization is performed to minimize the generation of scales according to the performance and characteristics of the heating furnace used.

4−2.熱間圧延工程
熱間圧延工程においても、表面温度が高すぎると通板時にスケールが多く生成し、スケールロスが大きくなる。一方で、低すぎると、スケールロスは小さくなるが、表面疵が発生し易くなるため、後工程の酸洗で除去する必要があり、表面疵が抑制できる温度範囲で熱間圧延することが望ましい。そのため、最適温度域で圧延することが望ましい。また、圧延中にチタン材の表面温度が低下するため、圧延中のロール冷却は最小限とし、チタン材の表面温度の低下を抑制することが望ましい。
4-2. Hot rolling process Also in the hot rolling process, if the surface temperature is too high, a large amount of scale is generated during sheet passing, and the scale loss increases. On the other hand, if it is too low, the scale loss is reduced, but surface flaws are likely to occur. Therefore, it is necessary to remove by surface pickling, and it is desirable to perform hot rolling in a temperature range in which surface flaws can be suppressed. . Therefore, it is desirable to perform rolling in the optimum temperature range. In addition, since the surface temperature of the titanium material decreases during rolling, it is desirable to minimize roll cooling during rolling and suppress the decrease in the surface temperature of the titanium material.

4−3.酸洗工程
熱間圧延された板には、表面に酸化層があるため、その後の工程で酸化層を除去するデスケーリングの工程がある。チタンでは主に、ショットブラスト後に、硝ふっ酸溶液による酸洗で酸化層を除去するのが一般的である。また、場合によっては酸洗後に砥石研磨により表面を研削する場合もある。デスケーリング後に、熱間圧延用チタン材の母材および表層部に由来する、内層および表層からなる、2層または3層構造となっていればよい。
4-3. Pickling process Since the hot-rolled plate has an oxide layer on its surface, there is a descaling process for removing the oxide layer in the subsequent process. In titanium, after shot blasting, the oxide layer is generally removed by pickling with a nitric hydrofluoric acid solution. In some cases, the surface may be ground by grinding with a grindstone after pickling. After descaling, a two-layer or three-layer structure including an inner layer and a surface layer derived from the base material and the surface layer portion of the titanium material for hot rolling may be used.

熱間圧延工程で生成したスケールは厚いため、通常は酸洗処理の前処理としてショットブラスト処理を行い表面のスケールの一部を除去すると同時に、表面にクラックを形成させ、その後の酸洗工程で液をクラックに浸透させ、母材の一部も含めて除去している。このとき、母材表面にクラックを生じさせないに弱いブラスト処理を行うことが重要であり、チタン材表面の化学成分に応じて最適なブラスト条件を選択する必要がある。具体的には、例えば適正な投射材の選択や投射速度(エンペラーの回転速度で調整可能)を最適化することによって、母材にクラックが生じない条件を選択する。これらの条件の最適化は、スラブ表面に貼り付けたチタン板の特性によって異なるため、予め最適条件をそれぞれ決めておけばよい。   Since the scale generated in the hot rolling process is thick, usually a shot blasting process is performed as a pretreatment for the pickling process to remove a part of the scale on the surface, and at the same time, cracks are formed on the surface, and in the subsequent pickling process The liquid penetrates into the cracks and removes part of the base material. At this time, it is important to perform weak blasting without causing cracks on the surface of the base material, and it is necessary to select optimum blasting conditions according to the chemical components on the surface of the titanium material. Specifically, for example, by selecting an appropriate projecting material and optimizing the projecting speed (adjustable by the rotation speed of the emperor), a condition that does not cause a crack in the base material is selected. Since optimization of these conditions differs depending on the characteristics of the titanium plate attached to the slab surface, the optimum conditions may be determined in advance.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.

以下、実施例を参照しながら、本発明をより具体的に説明する。
図1,2および表1に示す中性子線遮蔽板を、図3,4に示すスラブ6およびチタン板7,8を素材として以下に示す熱延クラッドにより製造した。
Hereinafter, the present invention will be described more specifically with reference to examples.
The neutron beam shielding plates shown in FIGS. 1 and 2 and Table 1 were manufactured by the hot rolling cladding shown below using the slab 6 and the titanium plates 7 and 8 shown in FIGS.

まず、素材となるチタンインゴット6を、電子ビーム溶解(EB溶解)、プラズマアーク溶解(プラズマ溶解)により矩形鋳型を用いて、または、VAR溶解により円筒鋳型を用いて、製造した。インゴット6のサイズは、円柱インゴット6が直径1200mm×長さ2500mm、矩形インゴット6が厚さ100mm×幅1000mm×長さ4500mmであり、品種は純チタンJIS1種、JIS2種、JIS3種、Ti−1Fe−0.35O、Ti−0.5Cu、Ti−1Cu、Ti−1Cu−0.5Nb、Ti−5Al−1Fe、Ti−3Al−2.5V、Ti−3Al−5Vとした。   First, a titanium ingot 6 as a material was manufactured using a rectangular mold by electron beam melting (EB melting) or plasma arc melting (plasma melting), or using a cylindrical mold by VAR melting. The size of the ingot 6 is a cylindrical ingot 6 having a diameter of 1200 mm × a length of 2500 mm, and a rectangular ingot 6 having a thickness of 100 mm × a width of 1000 mm × a length of 4500 mm. -0.35O, Ti-0.5Cu, Ti-1Cu, Ti-1Cu-0.5Nb, Ti-5Al-1Fe, Ti-3Al-2.5V, Ti-3Al-5V.

鋳造されたインゴット6の殆どは、そのまま、もしくは、インゴット6の表面の鋳肌を切削した後、チタン板7の貼り合わせを行った。その他のインゴット6は、分塊圧延後、切削を行い、チタン板7の貼り合わせを行った。   Most of the cast ingot 6 was bonded to the titanium plate 7 as it was or after the cast skin on the surface of the ingot 6 was cut. The other ingot 6 was cut after the block rolling, and the titanium plate 7 was bonded.

チタン板7の貼り合わせは、インゴットまたはスラブ6の圧延面と同等のサイズかつ種々厚みのTi−B合金板を重ね合わせ(覆い被せ)、チタン板7の端部を電子ビーム溶接(約3×10−3Torr以下の真空度)により溶接し、チタン板7とインゴット(またはスラブ)6の間を真空状態で密閉した。The titanium plate 7 is bonded by overlapping (covering) Ti-B alloy plates having various sizes and thicknesses equivalent to the rolling surface of the ingot or slab 6, and electron beam welding (about 3 ×). Welding was performed at a vacuum degree of 10 −3 Torr or less, and the space between the titanium plate 7 and the ingot (or slab) 6 was sealed in a vacuum state.

合金板の貼り合わせは、主に圧延面に対し行い、片側表面のみ実施した二層構造のものと、両側表面を実施した三層構造の2種類を作製した。表層(B濃化層)3,4については、最終製品での全厚さに占める片面あたりの割合を表1に示しており、三層構造においては、両表面のB濃化層が同じ厚みになるように調整した。板貼り合わせに使用したチタン板7にはTi−B合金板を用い、事前に、TiBもしくは10B濃縮ほう素(H 10BO1010C)によりBを添加して溶解したインゴットを熱間圧延することにより作製した。なお、Ti−B合金板は、熱間圧延後、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングを行っている。Bonding of the alloy plate was mainly performed on the rolled surface, and two types of a two-layer structure in which only one side surface was performed and a three-layer structure in which both side surfaces were performed were produced. For the surface layers (B-concentrated layers) 3 and 4, the ratio per one side of the total thickness in the final product is shown in Table 1, and in the three-layer structure, the B-concentrated layers on both surfaces have the same thickness. It was adjusted to become. Ti-B alloy plate is used for the titanium plate 7 used for bonding the plates, and B is added in advance by TiB 2 or 10 B enriched boron (H 3 10 BO 3 , 10 B 2 O 10 B 4 C). The ingot melted in this manner was produced by hot rolling. The Ti-B alloy plate is descaled by passing a continuous pickling line made of nitric hydrofluoric acid after hot rolling.

鉄鋼設備を用い、スラブ6を800℃で240分間加熱した後に熱間圧延を行い、厚さ約4mmの帯状コイル(チタン複合材)1,2を製造した。この熱間圧延により、チタン複合材1,2の表層をTi−0.1〜3.8%B合金とした。   Using steel equipment, the slab 6 was heated at 800 ° C. for 240 minutes and then hot-rolled to manufacture strip coils (titanium composite materials) 1 and 2 having a thickness of about 4 mm. By this hot rolling, the surface layers of the titanium composites 1 and 2 were made Ti-0.1 to 3.8% B alloy.

本実施例では、スラブ6にチタン合金を使用した場合があるが、その場合も貼り合わせるチタン板7はTiとBのみを含有するTi−0.1〜3.8%B合金を用いた。   In this embodiment, a titanium alloy may be used for the slab 6, but in this case as well, the titanium plate 7 to be bonded was a Ti-0.1 to 3.8% B alloy containing only Ti and B.

熱間圧延後の帯状コイル1,2は、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングし、その後、割れの発生状況について目視観察を行った。なお、表層3,4(B濃化層)の深さの測定方法は、熱延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対するB濃化層の割合とB濃化層のB濃度を求めた(観察箇所の中の平均値を採用した)。   The strip coils 1 and 2 after hot rolling were passed through a continuous pickling line made of nitric hydrofluoric acid, descaled, and then visually observed for the occurrence of cracks. In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the hot-rolled sheet (collected from the central part in the width direction at three points of the front end, the center and the rear end in the longitudinal direction). The cut and polished material was subjected to SEM / EDS analysis, and the ratio of the B-concentrated layer to the plate thickness and the B concentration of the B-concentrated layer were determined (the average value in the observed portion was adopted).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×4mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種と試験片で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, the evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece of 500 mm × 500 mm × 4 mm thickness at a position 200 mm from the radiation source. The detector is installed at a position of 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 and the test piece of the control test piece. The shielding effect was evaluated (industrial pure titanium JIS type 1 neutron beam shielding effect is 1, and the value of each test piece is described).

結果を表1にまとめて示す。   The results are summarized in Table 1.

Figure 2017018513
Figure 2017018513

No.1〜No.8に示す比較例及び実施例は、鋳造ままのEB溶解インゴット(スラブ6)を使用した場合である。   No. 1-No. The comparative example and Example shown in 8 are the cases where the EB melt | dissolution ingot (slab 6) as cast is used.

No.1の比較例は、チタン板7としてスラブ6と同種の純チタンJIS1種を使用した場合である。熱延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example 1 is a case where the same kind of pure titanium JIS as the slab 6 is used as the titanium plate 7. No cracks occurred in the hot-rolled sheet, and no cracks occurred in the bending test.

No.2の比較例は、中間層が薄い場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. The comparative example 2 is a case where the intermediate layer is thin. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.3の比較例は、表層3,4の厚み比率が40%を超えた場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. 3 is a case where the thickness ratio of the surface layers 3 and 4 exceeds 40%. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.4〜7の実施例は、内部5の品種、層構造、表層3,4の厚み比率やB含有量を変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. The examples of 4 to 7 are cases in which the evaluation was made by changing the type of the interior 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.8の実施例は、圧延面のみではなく長手方向の側面にも合金板の貼り合わせを実施した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。また、長手方向の側面に合金板を貼り合わせたため、側面の回り込みに起因した幅方向端部の表面疵も軽減していた。   No. Example 8 is a case where the alloy plate is bonded not only to the rolling surface but also to the side surface in the longitudinal direction. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test. In addition, since the alloy plate is bonded to the side surface in the longitudinal direction, surface wrinkles at the end in the width direction due to the wraparound of the side surface are reduced.

No.9〜11の実施例は、鋳造ままのプラズマ溶解インゴットを使用し、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. Examples 9 to 11 are cases in which the as-cast plasma melted ingot was used, and the varieties of the inner part 5, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content were changed and evaluated. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.12〜14の実施例は、EB溶解インゴットの鋳肌表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 12 to 14, when the cast skin surface of an EB melting ingot is cut and used, evaluation is made by changing the type of the inner 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.15〜17の実施例は、プラズマ溶解インゴットの鋳肌表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 15 to 17, when the casting surface of the plasma melting ingot is cut and used, evaluation is made by changing the type of the interior 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.18〜20の実施例は、各種インゴットを分塊圧延した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 18-20, various ingots were used after ingot rolling, and the surface was cut and used, and the inner 5 varieties, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content were changed and evaluated. This is the case. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.21〜23の実施例は、各種インゴットを鍛造した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 21 to 23, after forging various ingots, the surface is cut and used. When the inner 5 varieties, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content are changed, they are evaluated. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.24〜37に示す実施例は、VARインゴットを分塊圧延した後に表面を切削して使用しており、内部5の品種として各種チタン合金を使用し、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples shown in 24-37, the surface is cut and used after the VAR ingot is ingot-rolled, and various titanium alloys are used as the internal 5 types, and the layer structure, the thickness ratio of the surface layers 3 and 4, It is a case where B content is changed and evaluated. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、本発明例で内部5に用いた合金は、事前に1.5mm厚のJIS13B試験片で引張試験を行ったところ、0.2%耐力は1000MPa以下であった。   In addition, the alloy used for the inner part 5 in the example of the present invention was subjected to a tensile test with a JIS 13B specimen having a thickness of 1.5 mm in advance, and the 0.2% proof stress was 1000 MPa or less.

さらに、上述した手法による評価の結果、No.1の比較例では中性子線遮蔽効果を確認できなかったが、No.4〜37の実施例では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。   Furthermore, as a result of evaluation by the above-described method, In Comparative Example 1, the neutron beam shielding effect could not be confirmed. In all of Examples 4 to 37, the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed.

なお、核燃料保管用ラックに使用されているB含有量が0.5%であるステンレス鋼板(4mm厚)では、中性子遮蔽効果は23.7であり、No.11,13,17の実施例でこのステンレス鋼板よりも高い中性子線遮蔽効果が得られた。   Note that the stainless steel plate (4 mm thickness) having a B content of 0.5% used in the nuclear fuel storage rack has a neutron shielding effect of 23.7. In Examples 11, 13 and 17, a higher neutron beam shielding effect was obtained than this stainless steel plate.

表2に各実施例(本発明例)として示す中性子遮蔽板は以下の方法で製造した。
実施例1と同様の手順で板貼り合わせを行ったスラブ6は、鉄鋼設備を用い、800℃で240分間加熱した後に熱間圧延を行い、厚さ約20mmの帯状コイル(チタン複合材)1,2を製造した。この熱間圧延により、チタン複合材1,2の表層をTi−0.1〜3.8%B合金とした。熱間圧延後の帯状コイル1,2は、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングし、その後、割れの発生状況について目視観察を行った。なお、表層3,4(B濃化層)の深さの測定方法は、熱延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対するB濃化層の割合とB濃化層のB濃度を求めた(観察箇所の中の平均値を採用した)
The neutron shielding plate shown in Table 2 as each example (example of the present invention) was manufactured by the following method.
The slab 6 subjected to plate bonding in the same procedure as in Example 1 was heated at 800 ° C. for 240 minutes using a steel facility, and then hot-rolled to form a strip coil (titanium composite) 1 having a thickness of about 20 mm. , 2 were produced. By this hot rolling, the surface layers of the titanium composites 1 and 2 were made Ti-0.1 to 3.8% B alloy. The strip coils 1 and 2 after hot rolling were passed through a continuous pickling line made of nitric hydrofluoric acid, descaled, and then visually observed for the occurrence of cracks. In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the hot-rolled sheet (collected from the central part in the width direction at three points of the front end, the center, and the rear end in the longitudinal direction). The cut and polished material was subjected to SEM / EDS analysis, and the ratio of the B-concentrated layer to the plate thickness and the B concentration of the B-concentrated layer were determined (the average value in the observed portion was adopted).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×20mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種と試験片で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece having a thickness of 500 mm × 500 mm × 20 mm at a position 200 mm from the radiation source. The detector is installed at a position of 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 and the test piece of the control test piece. The shielding effect was evaluated (industrial pure titanium JIS type 1 neutron beam shielding effect is 1, and the value of each test piece is described).

結果を表2にまとめて示す。   The results are summarized in Table 2.

Figure 2017018513
Figure 2017018513

No.38〜No.42の比較例及び実施例は、鋳造ままのEB溶解インゴット(スラブ6)を使用した場合である。   No. 38-No. The comparative example of 42 and an Example are the cases where the EB melt | dissolution ingot (slab 6) as cast is used.

No.38の比較例は、チタン板7としてスラブ6と同種の純チタンJIS1種を使用した場合である。熱延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example of 38 is a case where the same kind of pure titanium JIS type 1 as the slab 6 is used as the titanium plate 7. No cracks occurred in the hot-rolled sheet, and no cracks occurred in the bending test.

No.39の比較例は、中間層が薄い場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. In the comparative example 39, the intermediate layer is thin. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.40〜42の実施例は、内部5の品種、層構造、表層3,4の厚み比率やB含有量を変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. Examples of 40 to 42 are cases in which the evaluation was made by changing the type of the interior 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.43〜45の実施例は、鋳造ままのプラズマ溶解インゴットを使用し、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. Examples 43 to 45 are cases in which an as-cast plasma melted ingot is used, and evaluation is performed by changing the type of the inner part 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.46〜48の実施例は、EB溶解インゴットの鋳肌表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 46 to 48, the cast skin surface of the EB melted ingot is cut and used, and evaluation is made by changing the type of the inner 5, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.49〜51の実施例は、プラズマ溶解インゴットの鋳肌表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 49 to 51, the surface of the cast surface of the plasma melting ingot is cut and used. When the inner 5 type, layer structure, thickness ratio of the surface layers 3 and 4 and the B content are changed, the evaluation is performed. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.52〜54の実施例は、各種インゴットを分塊圧延した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 52 to 54, various ingots were subjected to ingot rolling, and the surface was cut and used. Evaluation was made by changing the type of the inner 5 layer, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content. This is the case. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.55〜57の実施例は、各種インゴットを鍛造した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 55 to 57, various ingots are forged and then used after cutting the surface. When the inner 5 varieties, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content are changed, the evaluation is performed. It is. Since the thickness ratio of the surface layers 3 and 4 is within the range of 5 to 40% and the B content of the surface layers 3 and 4 is within the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、No.40〜57の実施例では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。   No. In each of Examples 40 to 57, the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed.

表3に各実施例(本発明例)として示す中性子遮蔽板は以下の方法で製造した。
実施例1と同様の手順で板貼り合わせを行ったスラブ6は、鉄鋼設備を用い、800℃で240分間加熱した後に熱間圧延を行い、厚さ約5mmの帯状コイル(チタン複合材)1,2を製造した。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600〜750℃まで加熱し、240分間保持する熱処理を行った。冷延板は、焼鈍後の表面検査工程で、目視にて割れの発生状況を観察した。なお、表層3,4(B濃化層)の深さの測定方法は、冷延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対するB濃化層の割合とB濃化層のB濃度を求めた(観察箇所の中の平均値を採用した)。
The neutron shielding plate shown in Table 3 as each example (example of the present invention) was manufactured by the following method.
The slab 6 bonded to the plate in the same procedure as in Example 1 was heated at 800 ° C. for 240 minutes using a steel facility and then hot-rolled to obtain a strip coil (titanium composite) 1 having a thickness of about 5 mm. , 2 were produced. Further, cold rolling was performed to obtain a titanium plate having a thickness of 1 mm, and as an annealing treatment, heat treatment was performed by heating to 600 to 750 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes. The cold-rolled sheet was visually observed for cracking in the surface inspection process after annealing. In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the cold-rolled plate (collected from the central portion in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction). The cut and polished material was subjected to SEM / EDS analysis, and the ratio of the B-concentrated layer to the plate thickness and the B concentration of the B-concentrated layer were determined (the average value in the observed portion was adopted).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×1mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種と試験片で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, the evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece having a thickness of 500 mm × 500 mm × 1 mm at a position 200 mm from the radiation source. The detector is installed at a position of 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 and the test piece of the control test piece. The shielding effect was evaluated (industrial pure titanium JIS type 1 neutron beam shielding effect is 1, and the value of each test piece is described).

結果を表3にまとめて示す。   The results are summarized in Table 3.

Figure 2017018513
Figure 2017018513

No.58〜No.63の比較例および実施例は、鋳造ままのEB溶解インゴット(スラブ6)を使用した場合である。   No. 58-No. The comparative example of 63 and an Example are the cases where the EB melt | dissolution ingot (slab 6) as cast is used.

No.58の比較例は、チタン板7としてスラブ6と同種の純チタンJIS1種を使用した場合である。冷延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example of 58 is a case where the same kind of pure titanium JIS as the slab 6 is used as the titanium plate 7. No cracks occurred in the cold-rolled sheet, and no cracks occurred in the bending test.

No.59の比較例は、表層3,4のB含有量が3.0%を超えた場合である。冷延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. 59 is a case where the B content of the surface layers 3 and 4 exceeds 3.0%. The cold-rolled sheet was partially cracked, and the rate of cracking was high in the bending test.

No.60の比較例は、表層3,4の厚み比率が40%を超えた場合である。冷延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. The comparative example of 60 is a case where the thickness ratio of the surface layers 3 and 4 exceeds 40%. The cold-rolled sheet was partially cracked, and the rate of cracking was high in the bending test.

No.61〜63の実施例は、内部5の品種、層構造、表層3,4の厚み比率やB含有量を変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. The examples of 61 to 63 are cases in which evaluation was made by changing the type of the inner 5 and the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B content in the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.64〜66の実施例は、鋳造ままのプラズマ溶解インゴットを使用し、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. Examples 64 to 66 are cases where evaluation was performed by using as-cast plasma melted ingots and changing the type of inner 5 and the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B content in the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.67,68の実施例は、EB溶解インゴットもしくはプラズマ溶解インゴットの鋳肌表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 67 and 68, the cast skin surface of the EB melting ingot or the plasma melting ingot is cut and used, and the type of the inner five, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content are changed. It is a case where it evaluates. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B content in the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.69〜71の実施例は、各種インゴットを分塊圧延した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 69 to 71, various ingots were used after being ingot-rolled, and the surface was cut and used. Evaluation was made by changing the type of the inner 5 layer, the layer structure, the thickness ratio of the surface layers 3 and 4, and the B content. This is the case. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B content in the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.72〜74の実施例は、各種インゴットを鍛造した後に表面を切削して使用しており、内部5の品種、層構造、表層3,4の厚み比率やB含有量をそれぞれ変えて評価した場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB含有量が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。   No. In Examples 72 to 74, various ingots are forged and used after cutting the surface. When the inner 5 varieties, the layer structure, the thickness ratio of the surface layers 3 and 4 and the B content are changed, the evaluation is performed. It is. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B content in the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、No.61〜74の実施例では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。   No. In all of the examples 61 to 74, the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed.

図1に示す、本発明に係る二層構造のチタン複合材である中性子線遮蔽板1は、母材の片側表面を溶融再凝固させた後に熱間圧延されることにより、表層3および内部5を形成される。また、図2に示す、本発明に係る三層構造の中性子線遮蔽板2は、母材の両側表面を溶融再凝固させた後に熱間圧延されることにより、表層3,4および内部5を形成される。中性子線遮蔽板1,2の製造方法を具体的に説明する。   The neutron beam shielding plate 1 which is a titanium composite material having a two-layer structure according to the present invention shown in FIG. 1 is subjected to hot rolling after melting and re-solidifying one side surface of the base material, whereby the surface layer 3 and the inner 5 Formed. Moreover, the neutron beam shielding plate 2 having a three-layer structure according to the present invention shown in FIG. 2 is obtained by hot rolling after melting and re-solidifying the both side surfaces of the base material, so that the surface layers 3 and 4 and the inside 5 are formed. It is formed. The manufacturing method of the neutron beam shielding plates 1 and 2 will be specifically described.

表4に実施例(本発明例)として示す中性子線遮蔽板1,2は、次の方法で製造される。   The neutron beam shielding plates 1 and 2 shown as examples (examples of the present invention) in Table 4 are manufactured by the following method.

Figure 2017018513
なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
Figure 2017018513
In addition, although the element derived from a slab (base material) is contained in a surface layer part, only content of the element which is not contained in a slab is shown in the table.

まず、素材となるチタンインゴットは、電子ビーム溶解(EB溶解)、プラズマアーク溶解(プラズマ溶解)により矩形鋳型を用いて、または、VAR溶解により円筒鋳型を用いて、それぞれ製造した。   First, a titanium ingot as a raw material was manufactured using a rectangular mold by electron beam melting (EB melting) or plasma arc melting (plasma melting) or using a cylindrical mold by VAR melting.

インゴットのサイズは、円柱インゴットが直径1200mm×長さ2500mm、矩形インゴットが厚さ100mm×幅1000mm×長さ4500mmであり、品種は純チタンJIS1種、JIS2種、JIS3種とした。   As for the size of the ingot, the cylindrical ingot was 1200 mm in diameter x 2500 mm in length, and the rectangular ingot was 100 mm in thickness x 1000 mm in width x 4500 mm in length.

鋳造されたインゴットの殆どは、そのまま、もしくは、インゴット表面の鋳肌を切削した後、溶融再凝固を実施した。その他のインゴットは、分塊圧延後、切削を行い、溶融再凝固を行った。   Most of the cast ingots were melted and re-solidified as they were or after the cast surface on the surface of the ingot was cut. The other ingots were cut and subjected to melt re-solidification after partial rolling.

溶融再凝固処理は、少なくとも圧延面の一方について行い、必要に応じて長手方向の側面にも実施した。この処理は、約3×10−3Torrの真空雰囲気下で電子ビーム溶接にて行い、溶融時にTiB粉末(100μm以下)、Ti−B合金チップ(2mm角、1mm厚)、Ti−B合金ワイヤー(φ5mm以下)、Ti−B合金薄膜(20μm以下)、Ti−B合金メッシュ(φ1mmを格子状に組み合わせたもの)のいずれかを添加し、溶融再凝固層をTi−0.1〜3.5%B合金とすることで、二層構造または三層構造のチタンスラブとした。表層3,4(B濃化層)については、チタン複合材1,2での全厚さに占める片面あたりの割合を表4に示しており、三層構造においては、両表面のB濃化層が同じ厚みになるように調整した。The melt resolidification treatment was performed on at least one of the rolling surfaces, and was also performed on the side surface in the longitudinal direction as necessary. This treatment is performed by electron beam welding in a vacuum atmosphere of about 3 × 10 −3 Torr, and TiB 2 powder (100 μm or less), Ti—B alloy tip (2 mm square, 1 mm thickness), Ti—B alloy at the time of melting. Any of a wire (φ5 mm or less), a Ti—B alloy thin film (20 μm or less), or a Ti—B alloy mesh (φ1 mm combined in a lattice shape) is added, and the molten resolidified layer is Ti—0.1-3 By using a 5% B alloy, a titanium slab having a two-layer structure or a three-layer structure was obtained. For the surface layers 3 and 4 (B-concentrated layer), the ratio per one side of the total thickness of the titanium composite materials 1 and 2 is shown in Table 4, and in the three-layer structure, B-concentration on both surfaces The layers were adjusted to have the same thickness.

各種素材を添加する際は、スラブ全体に均一に添加されるように、Bを含有する素材を、チタン鋳片の圧延面全体に均一に分散させ、溶融再凝固処理を行った。なお、溶融再凝固処理後に100℃以上500℃未満での1時間以上保持を行った。   When various materials were added, the material containing B was uniformly dispersed over the entire rolled surface of the titanium slab so as to be uniformly added to the entire slab, and melt resolidification treatment was performed. In addition, it hold | maintained at 100 degreeC or more and less than 500 degreeC for 1 hour or more after a melt re-solidification process.

溶融再凝固したチタンスラブについて、鉄鋼設備を用い、800℃で240分間加熱後、熱間圧延を行い、厚さ約4mmの帯状コイルを製造した。なお、熱間圧延後の帯状コイルは、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングし、その後、割れの発生状況について目視観察を行った。   The melted and re-solidified titanium slab was heated at 800 ° C. for 240 minutes using a steel facility, and then hot-rolled to produce a strip coil having a thickness of about 4 mm. The strip-like coil after hot rolling was passed through a continuous pickling line made of nitric hydrofluoric acid, descaled, and then visually observed for the occurrence of cracks.

なお、表層3,4(B濃化層)の深さの測定方法は、酸洗後の熱延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対する表層3,4(B濃化層)の割合と表層3,4(B濃化層)のB濃度を求めた(観察箇所の中の平均値を採用した)。   In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the hot-rolled sheet after pickling (from the center in the width direction for three portions of the front end, center, and rear end in the longitudinal direction). Each sampled) was cut out and polished, and subjected to SEM / EDS analysis to determine the ratio of the surface layers 3 and 4 (B concentrated layer) to the plate thickness and the B concentration of the surface layers 3 and 4 (B concentrated layer) ( The average value among the observation points was adopted).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×4mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種と試験片で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, the evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece of 500 mm × 500 mm × 4 mm thickness at a position 200 mm from the radiation source. The detector is installed at a position of 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 and the test piece of the control test piece. The shielding effect was evaluated (industrial pure titanium JIS type 1 neutron beam shielding effect is 1, and the value of each test piece is described).

結果を試験条件とともに表4にまとめて示す。
表4におけるNo.75〜83に示す比較例および実施例(本発明例)は、鋳造ままのEB溶解インゴットを使用した場合である。
The results are summarized in Table 4 together with the test conditions.
No. in Table 4 Comparative examples and examples (examples of the present invention) shown in 75 to 83 are cases where an as-cast EB melting ingot is used.

No.75の比較例は、溶融再凝固時にBを含有する素材を添加しなかった場合である。熱延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example of 75 is a case where the raw material containing B was not added at the time of melt re-solidification. No cracks occurred in the hot-rolled sheet, and no cracks occurred in the bending test.

No.76の比較例は、表層3,4のB濃度が3.0%を超えた場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. A comparative example of 76 is a case where the B concentration of the surface layers 3 and 4 exceeds 3.0%. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.77の比較例は、表層3,4の厚み比率が40%を超えた場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. The comparative example of 77 is a case where the thickness ratio of the surface layers 3 and 4 exceeds 40%. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.78〜83の実施例(本発明例)は、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 78-83 (examples of the present invention), the B-containing material was changed to TiB 2 powder, Ti-B alloy chip, Ti-B alloy wire, Ti-B alloy thin film, and Ti-B alloy mesh, respectively. This is the case. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.84〜88の実施例(本発明例)は、鋳造ままのプラズマ溶解インゴットを使用し、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 84-88 (examples of the present invention) use an as-cast plasma melting ingot, and the B-containing material is TiB 2 powder, Ti-B alloy tip, Ti-B alloy wire, Ti-B alloy thin film, It is a case where it changes and each evaluates with a Ti-B alloy mesh. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.89〜93の実施例(本発明例)は、EB溶解インゴットの鋳肌表面を切削して使用しており、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。なお、本実施例では長手方向の側面についても圧延面と同様に溶融再凝固処理を行っている。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 89 to 93 (examples of the present invention) are obtained by cutting the cast skin surface of an EB melting ingot, and using B-containing materials as TiB 2 powder, Ti-B alloy chips, Ti-B alloy wires, It is a case where it changes and evaluates with a Ti-B alloy thin film and a Ti-B alloy mesh, respectively. In the present embodiment, the melt re-solidification treatment is performed on the side surface in the longitudinal direction as well as the rolled surface. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.94〜98の実施例(本発明例)は、プラズマ溶解インゴットの鋳肌表面を切削して使用しており、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。なお、本実施例では長手方向の側面についても圧延面と同様に溶融再凝固処理を行っている。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 94-98 (examples of the present invention) are obtained by cutting the cast skin surface of a plasma melting ingot and using a B-containing material as TiB 2 powder, Ti-B alloy tip, Ti-B alloy wire, It is a case where it changes and evaluates with a Ti-B alloy thin film and a Ti-B alloy mesh, respectively. In the present embodiment, the melt re-solidification treatment is performed on the side surface in the longitudinal direction as well as the rolled surface. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.99〜101の実施例(本発明例)は、各種インゴットを分塊圧延した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 99 to 101 (examples of the present invention) are the cases where various ingots are subjected to ingot rolling and the surface is cut and used, and TiB 2 powder is used as a B-containing material during melt resolidification. . Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.102〜104の実施例(本発明例)は、各種インゴットを鍛造した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 102-104 (examples of the present invention) are obtained by forging various ingots and then cutting and using the surface. At the time of melting and re-solidification, TiB 2 powder is used as the B-containing material. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、本発明例で内部5に用いた合金は、事前に1.5mm厚のJIS13B試験片で引張試験を行ったところ、0.2%耐力は1000MPa以下であった。   In addition, the alloy used for the inner part 5 in the example of the present invention was subjected to a tensile test with a JIS 13B specimen having a thickness of 1.5 mm in advance, and the 0.2% proof stress was 1000 MPa or less.

また、No.78〜104の実施例(本発明例)では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。なお、核燃料保管用ラックに使用されているB量が0.5質量%添加されたステンレス鋼板(4mm厚)では、中性子遮蔽効果は23.7であり、No.86,93,106,108の実施例でこのステンレス鋼板よりも高い中性子線遮蔽効果が得られた。   No. In Examples 78-104 (examples of the present invention), the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed. Note that the stainless steel plate (4 mm thickness) to which 0.5% by mass of B used in the nuclear fuel storage rack is added has a neutron shielding effect of 23.7. In Examples 86, 93, 106, and 108, a higher neutron beam shielding effect was obtained than this stainless steel plate.

表5に各実施例(本発明例)として示す中性子線遮蔽板1,2は、次の方法で製造される。   The neutron beam shielding plates 1 and 2 shown in Table 5 as examples (examples of the present invention) are manufactured by the following method.

Figure 2017018513
なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
Figure 2017018513
In addition, although the element derived from a slab (base material) is contained in a surface layer part, only content of the element which is not contained in a slab is shown in the table.

実施例4と同様の手順で、溶融再凝固したチタンスラブについて、鉄鋼設備を用い、800℃で240分間加熱後、熱間圧延を行い、厚さ約20mmの帯状コイルを製造した。なお、熱間圧延後の帯状コイルは、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングし、その後、割れの発生状況について目視観察を行った。   A titanium slab melted and re-solidified in the same procedure as in Example 4 was heated at 800 ° C. for 240 minutes using a steel facility, and then hot-rolled to produce a strip coil having a thickness of about 20 mm. The strip-like coil after hot rolling was passed through a continuous pickling line made of nitric hydrofluoric acid, descaled, and then visually observed for the occurrence of cracks.

なお、表層3,4(B濃化層)の深さの測定方法は、酸洗後の熱延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対する表層3,4(B濃化層)の割合と表層3,4(B濃化層)のB濃度を求めた(観察箇所の中の平均値を採用した)。   In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the hot-rolled sheet after pickling (from the center in the width direction for three portions of the front end, center, and rear end in the longitudinal direction). Each sampled) was cut out and polished, and subjected to SEM / EDS analysis to determine the ratio of the surface layers 3 and 4 (B concentrated layer) to the plate thickness and the B concentration of the surface layers 3 and 4 (B concentrated layer) ( The average value among the observation points was adopted).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×20mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種と試験片で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece having a thickness of 500 mm × 500 mm × 20 mm at a position 200 mm from the radiation source. The detector is installed at a position of 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 and the test piece of the control test piece. The shielding effect was evaluated (industrial pure titanium JIS type 1 neutron beam shielding effect is 1, and the value of each test piece is described).

結果を試験条件とともに表5にまとめて示す。
表5におけるNo.105〜112に示す比較例および実施例(本発明例)は、鋳造ままのEB溶解インゴットを使用した場合である。
The results are summarized in Table 5 together with the test conditions.
No. in Table 5 The comparative examples and examples (examples of the present invention) shown in 105 to 112 are cases where an as-cast EB melting ingot is used.

No.105の比較例は、溶融再凝固時にBを含有する素材を添加しなかった場合である。熱延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example of 105 is a case where the raw material containing B was not added at the time of melt re-solidification. No cracks occurred in the hot-rolled sheet, and no cracks occurred in the bending test.

No.106の比較例は、表層3,4のB濃度が3.0%を超えた場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. 106 is a case where the B concentration of the surface layers 3 and 4 exceeds 3.0%. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.107の比較例は、表層3,4の厚み比率が40%を超えた場合である。熱延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. A comparative example 107 is a case where the thickness ratio of the surface layers 3 and 4 exceeds 40%. The hot-rolled sheet was partially cracked, and the crack generation rate was high even in the bending test.

No.108〜112の実施例(本発明例)は、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 108-112 (examples of the present invention), the B-containing material was changed to TiB 2 powder, Ti-B alloy tip, Ti-B alloy wire, Ti-B alloy thin film, and Ti-B alloy mesh, respectively. This is the case. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.113〜117の実施例(本発明例)は、鋳造ままのプラズマ溶解インゴットを使用し、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤー、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 113-117 (examples of the present invention) use an as-cast plasma melting ingot, and the B-containing material is TiB 2 powder, Ti-B alloy tip, Ti-B alloy wire, Ti-B alloy thin film, It is a case where it changes and evaluates with each Ti-B alloy mesh. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.118および119の実施例(本発明例)は、EB溶解インゴットもしくはプラズマ溶解インゴットの鋳肌表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 118 and 119 (examples of the present invention), the cast skin surface of an EB melting ingot or a plasma melting ingot is cut and used, and TiB 2 powder is used as a B-containing material at the time of melt resolidification. It is. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.120〜122の実施例(本発明例)は、各種インゴットを分塊圧延した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 120-122 (examples of the present invention) are obtained by cutting various surfaces of ingots and then cutting the surface and using TiB 2 powder as the B-containing material at the time of melt resolidification. . Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.123〜125の実施例(本発明例)は、各種インゴットを鍛造した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも熱延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 123 to 125 (examples of the present invention) are obtained by forging various ingots and then cutting and using the surface. At the time of melt resolidification, TiB 2 powder is used as the B-containing material. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are hot-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、No.108〜125の実施例(本発明例)では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。   No. In each of Examples 108 to 125 (examples of the present invention), the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed.

表6に各実施例(本発明例)として示す中性子線遮蔽板1,2は、次の方法で製造される。   The neutron beam shielding plates 1 and 2 shown as examples (invention examples) in Table 6 are manufactured by the following method.

Figure 2017018513
なお、表層部には、スラブ(母材)に由来する元素が含まれるが、表には、スラブには含まれない元素の含有量のみを示している。
Figure 2017018513
In addition, although the element derived from a slab (base material) is contained in a surface layer part, only content of the element which is not contained in a slab is shown in the table.

実施例4と同様の手順で、溶融再凝固したチタンスラブについて、鉄鋼設備を用い、800℃で240分間加熱後、熱間圧延を行い、厚さ約5mmの帯状コイルを製造した。なお、熱間圧延後の帯状コイルは、硝フッ酸からなる連続酸洗ラインを通板し、デスケーリングした。さらに冷間圧延を行い、厚さ1mmのチタン板とし、焼鈍処理として、真空あるいは不活性ガス雰囲気中で600〜750℃まで加熱し、240分間保持する熱処理を行った。冷延板は、焼鈍後の表面検査工程で、目視にて割れの発生状況を観察した。なお、表層3,4(B濃化層)の深さの測定方法は、冷延板の一部(長手方向の先端、中央、後端の3箇所について、幅方向中央部からそれぞれ採取)を切り出し、研磨したものを、SEM/EDS分析し、板厚に対する表層3,4(B濃化層)の割合と表層3,4(B濃化層)のB濃度を求めた(観察箇所の中の平均値を採用した)。   The titanium slab melted and re-solidified in the same procedure as in Example 4 was heated at 800 ° C. for 240 minutes using a steel facility, and then hot-rolled to produce a strip coil having a thickness of about 5 mm. The strip coil after hot rolling was descaled through a continuous pickling line made of nitric hydrofluoric acid. Further, cold rolling was performed to obtain a titanium plate having a thickness of 1 mm, and as an annealing treatment, heat treatment was performed by heating to 600 to 750 ° C. in a vacuum or an inert gas atmosphere and holding for 240 minutes. The cold-rolled sheet was visually observed for cracking in the surface inspection process after annealing. In addition, the measuring method of the depth of the surface layers 3 and 4 (B concentrating layer) is a part of the cold-rolled plate (collected from the central portion in the width direction at three locations, the front end, the center and the rear end in the longitudinal direction) The SEM / EDS analysis was performed on the cut and polished material, and the ratio of the surface layers 3 and 4 (B concentrated layer) to the plate thickness and the B concentration of the surface layers 3 and 4 (B concentrated layer) were obtained (in the observed portion). Was used).

また、長手方向の先端、中央、後端の3箇所について、幅方向中央部からL方向の曲げ試験片を計20本採取し、JIS Z 2248(金属材料曲げ試験方法)に準拠して、曲げ試験を行った。試験温度は室温とし、3点曲げ試験により、120度までの曲げ角度で曲げ試験を行い、割れの発生有無を評価し、割れ発生率を求めた。   In addition, a total of 20 bending specimens in the L direction were sampled from the central part in the width direction at three locations, the front end, the center, and the rear end in the longitudinal direction, and bent according to JIS Z 2248 (metal material bending test method). A test was conducted. The test temperature was room temperature, a three-point bending test was performed at a bending angle up to 120 degrees, the presence or absence of cracks was evaluated, and the crack generation rate was determined.

また、中性子線遮蔽効果の評価は、線源としてAm−Be(4.5MeV)を用いて、線源から200mmの位置に500mm×500mm×1mm厚の試験片を固定した。検出器は、線源から300mmの位置に設置し、対象エネルギーのピーク値を、対照試験片の工業用純チタンJIS1種(1mm厚)と試験片(1mm厚)で放射線当量をそれぞれ測定し、その値の比から、中性子線遮蔽効果を評価した(工業用純チタンJIS1種の中性子線遮蔽効果を1として、各試験片の値を記載した)。   Moreover, the evaluation of the neutron beam shielding effect used Am-Be (4.5 MeV) as a radiation source, and fixed a test piece having a thickness of 500 mm × 500 mm × 1 mm at a position 200 mm from the radiation source. The detector is installed at a position 300 mm from the radiation source, and the peak value of the target energy is measured for each of the radiation equivalents of the industrial test pure titanium JIS type 1 (1 mm thickness) and the test piece (1 mm thickness). From the ratio of the values, the neutron beam shielding effect was evaluated (the value of each test piece was described with the neutron beam shielding effect of 1 type of industrial pure titanium JIS being 1).

結果を試験条件とともに表6にまとめて示す。
表6におけるNo.126〜131に示す比較例および実施例(本発明例)は、鋳造ままのEB溶解インゴットを使用した場合である。
The results are summarized in Table 6 together with the test conditions.
No. in Table 6 The comparative examples and examples (examples of the present invention) shown in 126 to 131 are cases where EB melting ingots as cast were used.

No.126の比較例は、溶融再凝固時にBを含有する素材を添加しなかった場合である。冷延板に割れは発生せず、曲げ試験でも割れは発生しなかった。   No. The comparative example of 126 is a case where the raw material containing B was not added at the time of melt re-solidification. No cracks occurred in the cold-rolled sheet, and no cracks occurred in the bending test.

No.127の比較例は、表層3,4のB濃度が3.0%を超えた場合である。冷延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. In the comparative example of 127, the B concentration of the surface layers 3 and 4 exceeds 3.0%. The cold-rolled sheet was partially cracked, and the rate of cracking was high in the bending test.

No.128の比較例は、表層3,4の厚み比率が40%を超えた場合である。冷延板には部分的に割れが発生しており、曲げ試験でも割れ発生率が高かった。   No. A comparative example of 128 is a case where the thickness ratio of the surface layers 3 and 4 exceeds 40%. The cold-rolled sheet was partially cracked, and the rate of cracking was high in the bending test.

No.129〜131の実施例(本発明例)は、B含有素材を、TiB粉末、Ti−B合金チップ、Ti−B合金ワイヤーとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 129 to 131 (examples of the present invention) are cases in which the B-containing material is evaluated by changing to a TiB 2 powder, a Ti—B alloy chip, and a Ti—B alloy wire, respectively. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, so both are cold-rolled. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.132〜134の実施例(本発明例)は、鋳造ままのプラズマ溶解インゴットを使用し、B含有素材を、TiB粉末、Ti−B合金薄膜、Ti−B合金メッシュとそれぞれ変えて評価した場合である。いずれも、表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 132-134 (examples of the present invention), as-cast plasma melting ingots were used, and the B-containing material was evaluated by changing to TiB 2 powder, Ti-B alloy thin film, and Ti-B alloy mesh, respectively. It is. In any case, the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40%, and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, so both are cold-rolled. No cracks occurred in the plate, and no cracks occurred in the bending test.

No.135および136の実施例(本発明例)は、EB溶解インゴットもしくはプラズマ溶解インゴットの鋳肌表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 135 and 136 (examples of the present invention), the cast skin surface of an EB melting ingot or a plasma melting ingot is cut and used, and TiB 2 powder is used as a B-containing material at the time of melting and resolidification. It is. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.137〜139の実施例(本発明例)は、各種インゴットを分塊圧延した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. In Examples 137 to 139 (examples of the present invention), various ingots are subjected to ingot rolling and then the surface is cut and used, and TiB 2 powder is used as a B-containing material during re-solidification. . Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

No.140〜142の実施例(本発明例)は、各種インゴットを鍛造した後表面を切削して使用しており、溶融再凝固時には、B含有素材として、TiB粉末を用いた場合である。表層3,4の厚み比率が5〜40%の範囲内であり、かつ、表層3,4のB濃度が0.1〜3.0%の範囲内であるため、いずれも冷延板には割れが発生しておらず、曲げ試験でも割れが発生しなかった。No. Examples 140 to 142 (examples of the present invention) are obtained by forging various ingots and then cutting and using the surface, and TiB 2 powder is used as a B-containing material at the time of melt resolidification. Since the thickness ratio of the surface layers 3 and 4 is in the range of 5 to 40% and the B concentration of the surface layers 3 and 4 is in the range of 0.1 to 3.0%, both are cold-rolled sheets. No cracks occurred, and no cracks occurred in the bending test.

また、No.129〜142の実施例(本発明例)では、いずれも中性子遮蔽効果が1以上であり、中性子線遮蔽効果を確認することができた。   No. In each of Examples 129 to 142 (examples of the present invention), the neutron shielding effect was 1 or more, and the neutron beam shielding effect could be confirmed.

1,2 本発明に係るチタン複合材
3,4 表層
5 内層
6 母材(スラブ)
7,8 表層材(チタン板)
9 溶接部
1, 2 Titanium composites 3, 4 according to the present invention Surface layer 5 Inner layer 6 Base material (slab)
7,8 Surface material (titanium plate)
9 Welded part

Claims (7)

工業用純チタンまたはチタン合金からなる内層と、
前記内層の少なくとも一方の圧延面に形成された前記内層とは異なる化学組成を有する表層と、
前記内層と前記表層との間に形成され、前記内層とは異なる化学組成を有する中間層と、
を備えるチタン複合材であって、
前記表層が、その厚さが2μm以上であり、全厚さに占める割合が片面あたり40%以下であり、
前記表層部の化学組成が、質量%で、
B:0.1〜3.0%、
残部:チタンおよび不純物であり、
前記中間層の厚さが0.5μm以上である、
チタン複合材。
An inner layer made of pure titanium or titanium alloy for industrial use;
A surface layer having a chemical composition different from that of the inner layer formed on at least one rolling surface of the inner layer;
An intermediate layer formed between the inner layer and the surface layer and having a different chemical composition from the inner layer;
A titanium composite comprising:
The surface layer has a thickness of 2 μm or more, and the proportion of the total thickness is 40% or less per side,
The chemical composition of the surface layer part is mass%,
B: 0.1 to 3.0%
The balance: titanium and impurities
The intermediate layer has a thickness of 0.5 μm or more.
Titanium composite material.
前記内層の圧延面以外の面に、他の表層が形成されており、
前記他の表層が、前記表層と同一の化学組成を備える、
請求項1に記載のチタン複合材。
Other surfaces are formed on the surface other than the rolling surface of the inner layer,
The other surface layer has the same chemical composition as the surface layer,
The titanium composite according to claim 1.
工業用純チタンまたはチタン合金からなる母材と、
前記母材の少なくとも一方の圧延面に接合された表層材と、
前記母材と前記表層材の周囲を接合する溶接部とを備える熱間圧延用チタン材であって、
前記表層材が、前記母材とは異なる化学組成を有し、かつ、質量%で、
B:0.1〜3.0%、
残部:チタンおよび不純物であり、
前記溶接部が、前記母材と前記表層材の界面を外気から遮断する、
熱間圧延用チタン材。
A base material made of pure titanium or titanium alloy for industrial use;
A surface layer material joined to at least one rolling surface of the base material;
A titanium material for hot rolling comprising a welded portion that joins the periphery of the base material and the surface layer material,
The surface layer material has a chemical composition different from that of the base material, and in mass%,
B: 0.1 to 3.0%
The balance: titanium and impurities
The welded portion shields the interface between the base material and the surface material from outside air;
Titanium material for hot rolling.
前記母材の圧延面以外の面に、他の表層材が接合されており、
前記他の表層材が、前記表層材と同一の化学組成を備える、
請求項3に記載の熱間圧延用チタン材。
Other surface layer materials are joined to a surface other than the rolling surface of the base material,
The other surface layer material has the same chemical composition as the surface layer material,
The titanium material for hot rolling according to claim 3.
前記母材が、直接鋳造スラブからなる、
請求項3または4に記載の熱間圧延用チタン材。
The base material consists of a direct cast slab,
The titanium material for hot rolling according to claim 3 or 4.
前記直接鋳造スラブが、表面の少なくとも一部に溶融再凝固層を形成したものである、
請求項5に記載の熱間圧延用チタン材。
The direct cast slab is obtained by forming a melt resolidified layer on at least a part of the surface.
The titanium material for hot rolling according to claim 5.
前記溶融再凝固層の化学組成が、前記直接鋳造スラブの板厚中心部の化学組成とは異なる、
請求項6に記載の熱間圧延用チタン材。

The chemical composition of the melt-resolidified layer is different from the chemical composition of the center thickness of the direct cast slab,
The titanium material for hot rolling according to claim 6.

JP2017530939A 2015-07-29 2016-07-29 Titanium composite material and titanium material for hot rolling Active JP6515358B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015149395 2015-07-29
JP2015149395 2015-07-29
PCT/JP2016/072335 WO2017018513A1 (en) 2015-07-29 2016-07-29 Titanium composite material, and titanium material for use in hot rolling

Publications (2)

Publication Number Publication Date
JPWO2017018513A1 true JPWO2017018513A1 (en) 2018-05-24
JP6515358B2 JP6515358B2 (en) 2019-05-22

Family

ID=57884464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530939A Active JP6515358B2 (en) 2015-07-29 2016-07-29 Titanium composite material and titanium material for hot rolling

Country Status (3)

Country Link
JP (1) JP6515358B2 (en)
TW (1) TWI605130B (en)
WO (1) WO2017018513A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107999949B (en) * 2017-11-30 2020-11-06 中国航发沈阳黎明航空发动机有限责任公司 Electron beam welding packaging method for titanium alloy multilayer metal plate
CN112824498B (en) * 2019-11-21 2022-12-30 江苏和成显示科技有限公司 Liquid crystal composition and application thereof
CN112824495B (en) * 2019-11-21 2023-01-24 江苏和成显示科技有限公司 Liquid crystal composition and application thereof
CN112824491B (en) * 2019-11-21 2022-12-30 江苏和成显示科技有限公司 Liquid crystal composition and application thereof
CN114346512B (en) * 2021-12-29 2023-07-28 西安理工大学 Welding wire for alloy steel-stainless steel composite material transition layer and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119819B2 (en) * 1971-07-15 1976-06-21
JPH01168833A (en) * 1987-12-25 1989-07-04 Nippon Steel Corp Boron-containing titanium alloy
US5579988A (en) * 1995-06-09 1996-12-03 Rmi Titanium Company Clad reactive metal plate product and process for producing the same
JP2002311190A (en) * 2001-04-12 2002-10-23 Toshiba Corp Neutron shielding material, spent fuel storage rack, cask for spent fuel transportation and its production method
JP2006095589A (en) * 2004-09-30 2006-04-13 Teigu:Kk Surface hardening method for titanium material
JP2012077346A (en) * 2010-09-30 2012-04-19 Kyushu Institute Of Technology Boron-containing pure titanium material, and method of manufacturing the same
WO2014163087A1 (en) * 2013-04-01 2014-10-09 新日鐵住金株式会社 Titanium cast piece for hot rolling use, and method for producing same
JP2014233753A (en) * 2013-06-05 2014-12-15 新日鐵住金株式会社 Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119819B2 (en) * 1971-07-15 1976-06-21
JPH01168833A (en) * 1987-12-25 1989-07-04 Nippon Steel Corp Boron-containing titanium alloy
US5579988A (en) * 1995-06-09 1996-12-03 Rmi Titanium Company Clad reactive metal plate product and process for producing the same
JP2002311190A (en) * 2001-04-12 2002-10-23 Toshiba Corp Neutron shielding material, spent fuel storage rack, cask for spent fuel transportation and its production method
JP2006095589A (en) * 2004-09-30 2006-04-13 Teigu:Kk Surface hardening method for titanium material
JP2012077346A (en) * 2010-09-30 2012-04-19 Kyushu Institute Of Technology Boron-containing pure titanium material, and method of manufacturing the same
WO2014163087A1 (en) * 2013-04-01 2014-10-09 新日鐵住金株式会社 Titanium cast piece for hot rolling use, and method for producing same
JP2014233753A (en) * 2013-06-05 2014-12-15 新日鐵住金株式会社 Industrial pure titanium ingot excellent in surface properties after hot rolling even if blooming process or fine arrangement process is omitted and method for manufacturing the same

Also Published As

Publication number Publication date
WO2017018513A1 (en) 2017-02-02
JP6515358B2 (en) 2019-05-22
TW201718890A (en) 2017-06-01
TWI605130B (en) 2017-11-11

Similar Documents

Publication Publication Date Title
JP6658756B2 (en) Titanium composite materials and titanium materials for hot rolling
JP6787418B2 (en) Titanium material for hot rolling
WO2017018513A1 (en) Titanium composite material, and titanium material for use in hot rolling
JPWO2017018522A1 (en) Titanium composite and titanium material for hot working
JP6515359B2 (en) Titanium composite material and titanium material for hot rolling
JP6128289B1 (en) Titanium composite and titanium material for hot rolling
JP6787428B2 (en) Titanium material for hot rolling
JP6515357B2 (en) Titanium material for hot rolling
JP6086178B1 (en) Titanium material for hot rolling
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JP6094724B1 (en) Titanium composite and titanium material for hot working
JP6848991B2 (en) Titanium material for hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6515358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151