JPWO2016208615A1 - Continuous heat treatment furnace and method for manufacturing ceramic electronic components using the same - Google Patents
Continuous heat treatment furnace and method for manufacturing ceramic electronic components using the same Download PDFInfo
- Publication number
- JPWO2016208615A1 JPWO2016208615A1 JP2017524940A JP2017524940A JPWO2016208615A1 JP WO2016208615 A1 JPWO2016208615 A1 JP WO2016208615A1 JP 2017524940 A JP2017524940 A JP 2017524940A JP 2017524940 A JP2017524940 A JP 2017524940A JP WO2016208615 A1 JPWO2016208615 A1 JP WO2016208615A1
- Authority
- JP
- Japan
- Prior art keywords
- workpiece
- heat treatment
- porous plate
- gas
- continuous heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 88
- 239000000919 ceramic Substances 0.000 title claims description 30
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title description 14
- 230000007246 mechanism Effects 0.000 claims abstract description 39
- 238000012546 transfer Methods 0.000 claims abstract description 20
- 238000005238 degreasing Methods 0.000 claims description 50
- 238000010304 firing Methods 0.000 claims description 9
- 239000012466 permeate Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 76
- 239000011230 binding agent Substances 0.000 description 11
- 238000012986 modification Methods 0.000 description 10
- 230000004048 modification Effects 0.000 description 10
- 238000012545 processing Methods 0.000 description 9
- 230000007723 transport mechanism Effects 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000003990 capacitor Substances 0.000 description 2
- 239000003985 ceramic capacitor Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000001141 propulsive effect Effects 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002003 electrode paste Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/14—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
- F27B9/20—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/30—Details, accessories, or equipment peculiar to furnaces of these types
- F27B9/3077—Arrangements for treating electronic components, e.g. semiconductors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B9/00—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
- F27B9/14—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment
- F27B9/20—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace
- F27B9/24—Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity characterised by the path of the charge during treatment; characterised by the means by which the charge is moved during treatment the charge moving in a substantially straight path tunnel furnace being carried by a conveyor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D3/00—Charging; Discharging; Manipulation of charge
- F27D3/12—Travelling or movable supports or containers for the charge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Tunnel Furnaces (AREA)
- Furnace Details (AREA)
- Furnace Charging Or Discharging (AREA)
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
連続式熱処理炉(HF1)では、搬送方向(b)に沿って、ワークの熱処理を行なう熱処理領域が設けられている。ワークは、熱処理領域(H)を搬送されながら熱処理される。ワークを搬送するためのワーク搬送機構(100)は、上方に開口部を有する箱状のベースフレーム(1)と、多孔質プレート(2)と、多孔質プレート(2)がベースフレーム(1)の開口部を覆うことにより形成された気室(3)と、気室(3)と連通し、多孔質プレート(2)を透過して流出する気体(g)を気室(3)に供給する気体供給手段(4)とを備えている。多孔質プレート(2)は上面(2a)がワークの搬送方向に向けて下り傾斜となるように配設されており、かつ上面(2a)にワーク(W)の搬送方向に沿った溝(2t1ないし2t10)が形成されている。In the continuous heat treatment furnace (HF1), a heat treatment region for heat treating the workpiece is provided along the transfer direction (b). The workpiece is heat-treated while being conveyed through the heat treatment region (H). A workpiece transfer mechanism (100) for transferring a workpiece includes a box-shaped base frame (1) having an opening on the upper side, a porous plate (2), and a porous plate (2). The air chamber (3) formed by covering the opening of the gas chamber (3) and the gas chamber (3) communicated with the air chamber (3), and the gas (g) flowing through the porous plate (2) and flowing out is supplied to the air chamber (3). Gas supply means (4). The porous plate (2) is disposed such that the upper surface (2a) is inclined downward toward the workpiece conveying direction, and the upper plate (2a) has a groove (2t) along the workpiece (W) conveying direction. 1 to 2t 10 ) are formed.
Description
この発明は、多数の微小なワーク(被処理物)を搬送するためのワーク搬送機構を備えた連続式熱処理炉、およびそれを用いたセラミック電子部品の製造方法に関するものである。 The present invention relates to a continuous heat treatment furnace provided with a workpiece transfer mechanism for transferring a large number of minute workpieces (objects to be processed), and a method of manufacturing a ceramic electronic component using the same.
連続式の処理設備は、ワークを連続して搬送するためのワーク搬送機構を備えている。そのようなワーク搬送機構としては、ベルトコンベアやローラーコンベアなどが広く用いられている。しかしながら、上記のワーク搬送機構では、ベルトやローラーを駆動する駆動機構が必要となり、ワーク搬送機構が複雑化、かつ大型化し、ワーク搬送機構を製造するためのコストが増大する。 The continuous processing equipment includes a workpiece transfer mechanism for transferring workpieces continuously. As such a workpiece conveyance mechanism, a belt conveyor, a roller conveyor, or the like is widely used. However, the above-described work transport mechanism requires a drive mechanism for driving a belt or a roller, which complicates and enlarges the work transport mechanism and increases the cost for manufacturing the work transport mechanism.
そのため、ワーク搬送機構を簡単な構成とすることが必要となる。特開2008−273727号公報(特許文献1)には、そのようなワーク搬送機構の一例が提案されている。 Therefore, it is necessary to make the workpiece transfer mechanism simple. JP 2008-273727 A (Patent Document 1) proposes an example of such a workpiece transfer mechanism.
図11は、特許文献1に記載されているワーク搬送機構400の模式図である。ワーク搬送機構400は、上方が開口した箱状のベースフレーム401と、多孔質プレート402と、気室403と、気体供給手段404と、配管405とを備えている。ここで、気室403は、多孔質プレート402がベースフレーム401の開口部を覆うことにより形成されている。また、多孔質プレート402は、搬送方向に向けて下り傾斜となるように配設されている。また、ワーク供給位置P1における多孔質プレート402の裏面には、供給されたワークWに対し、推進力を付加するための部分圧損調整機構402aが形成されている。 FIG. 11 is a schematic diagram of a workpiece transfer mechanism 400 described in Patent Document 1. The workpiece transfer mechanism 400 includes a box-shaped base frame 401 whose upper side is open, a porous plate 402, an air chamber 403, a gas supply unit 404, and a pipe 405. Here, the air chamber 403 is formed by the porous plate 402 covering the opening of the base frame 401. Further, the porous plate 402 is disposed so as to be inclined downward in the transport direction. Further, a partial pressure loss adjusting mechanism 402a for applying a propulsive force to the supplied workpiece W is formed on the back surface of the porous plate 402 at the workpiece supply position P1.
ベースフレーム401には、気室403に連通する気体供給口406が形成されている。気体供給手段404は、配管405を介して気体供給口406に接続され、気室403に気体を供給している。気室403に供給された気体は、多孔質プレート402内の細孔を透過して外部に流出する。 A gas supply port 406 that communicates with the air chamber 403 is formed in the base frame 401. The gas supply unit 404 is connected to the gas supply port 406 via the pipe 405 and supplies gas to the air chamber 403. The gas supplied to the air chamber 403 permeates through the pores in the porous plate 402 and flows out to the outside.
多孔質プレート402上のワーク供給位置P1にワークWが供給されると、部分圧損調整機構402aにより、ワークWの下面の後方部分(図上左側)に多孔質プレート402を透過してきた気体が吹き当てられる。すると、ワークWは、斜め前下がりに浮上し、搬送方向への推進力が付加される。その後、ワークWは、下り傾斜の多孔質プレート402に沿って、斜め前下がりに浮上した状態で搬送方向に移動する。 When the workpiece W is supplied to the workpiece supply position P1 on the porous plate 402, the partial pressure loss adjusting mechanism 402a blows the gas that has permeated through the porous plate 402 to the rear portion (left side in the figure) of the lower surface of the workpiece W. Hit. Then, the workpiece W floats obliquely forward and a propulsive force in the transport direction is added. Thereafter, the workpiece W moves in the conveying direction along the downwardly inclined porous plate 402 in a state where it floats obliquely forward and downward.
特許文献1に記載されているワーク搬送機構400では、以上の構成により、簡易な構成で、ワークWを搬送方向に沿って搬送することができるため、ワーク搬送機構の製造コストを低減させることができるとされている。 In the work transport mechanism 400 described in Patent Document 1, the work W can be transported along the transport direction with a simple structure by the above configuration, so that the manufacturing cost of the work transport mechanism can be reduced. It is supposed to be possible.
上記のワーク搬送機構400は、例えばガラス基板のような、一辺が数十cmもあるような大型のワークWを一枚ずつ搬送し、熱処理する場合については、効果的に適用できると考えられる。一方、例えば積層セラミックコンデンサのコンデンサ本体のような、多数の微小なワークWを搬送し、脱脂する場合にワーク搬送機構400を適用することを考える。多数の微小なワークWが山積みに載せられた状態で多孔質プレート402上を移動する場合、多孔質プレート402を透過してきた気体の、ワークWの一つ一つへの当たり方は不均一となる。その結果、脱脂のされ方が不均一となり、ワークWの品質にばらつきが生じる虞がある。 It is considered that the workpiece transfer mechanism 400 can be effectively applied to a case where a large workpiece W having a side of several tens of centimeters, such as a glass substrate, is transferred and heat-treated one by one. On the other hand, it is considered to apply the workpiece transport mechanism 400 when a large number of minute workpieces W such as a capacitor body of a multilayer ceramic capacitor are transported and degreased. When a large number of minute workpieces W are moved on the porous plate 402 in a state of being piled up, the manner in which the gas that has permeated through the porous plate 402 strikes each workpiece W is not uniform. Become. As a result, the method of degreasing becomes non-uniform and the quality of the workpiece W may vary.
そこで、この発明の目的は、多数の微小なワークであっても、搬送中に脱脂などの処理を均一に施すことが可能となる連続式熱処理炉、およびそれを用いたセラミック電子部品の製造方法を提供することである。 Accordingly, an object of the present invention is to provide a continuous heat treatment furnace capable of uniformly performing a process such as degreasing during conveyance even for a large number of minute workpieces, and a method of manufacturing a ceramic electronic component using the same. Is to provide.
この発明では、連続式熱処理炉内における多数の微小なワークに対する処理の均一性を向上させるため、多孔質プレートの形状についての改良が図られる。 In the present invention, the shape of the porous plate is improved in order to improve the uniformity of processing for a large number of minute workpieces in the continuous heat treatment furnace.
この発明は、まず連続式熱処理炉に向けられる。
この発明に係る連続式熱処理炉は、ワークの搬送方向に沿って、ワークの熱処理を行なう少なくとも1つの熱処理領域が設けられている。ワークは、熱処理領域を搬送されながら熱処理される。The present invention is first directed to a continuous heat treatment furnace.
In the continuous heat treatment furnace according to the present invention, at least one heat treatment region for heat treating the workpiece is provided along the workpiece conveyance direction. The workpiece is heat-treated while being transported through the heat-treatment region.
ワークを搬送するためのワーク搬送機構は、ベースフレームと、多孔質プレートと、少なくとも1つの気室と、気体供給手段とを備えている。ベースフレームは、上方に少なくとも1つの開口部を有する箱状である。少なくとも1つの気室は、多孔質プレートがベースフレームの少なくとも1つの開口部を覆うことにより形成される。気体供給手段は、少なくとも1つの気室と連通し、多孔質プレートを透過して流出する気体を少なくとも1つの気室に供給する。そして、多孔質プレートは、上面がワークの搬送方向に向けて下り傾斜となるように配設されており、かつ上面にワークの搬送方向に沿った溝が形成されている。 A work transport mechanism for transporting a work includes a base frame, a porous plate, at least one air chamber, and a gas supply means. The base frame has a box shape having at least one opening on the upper side. At least one air chamber is formed by the porous plate covering at least one opening of the base frame. The gas supply means communicates with at least one air chamber, and supplies the gas flowing through the porous plate and flowing out to the at least one air chamber. The porous plate is disposed such that the upper surface is inclined downward toward the workpiece conveyance direction, and a groove is formed on the upper surface along the workpiece conveyance direction.
上記の連続式熱処理炉では、多孔質プレートの上面にワークの搬送方向に沿った溝が形成されている。この場合、多数の微小なワークであっても溝内に入り込むことで整列した状態を保つことができる。したがって、ワークが多孔質プレート上で山積みにならず、ワークの一つ一つに溝の底面および側面から気体(雰囲気ガス)が供給されるため、均一な熱処理を行なうことができる。 In the above-described continuous heat treatment furnace, a groove is formed on the upper surface of the porous plate along the workpiece conveyance direction. In this case, even a large number of minute workpieces can be kept aligned by entering the groove. Accordingly, the workpieces are not stacked on the porous plate, and gas (atmosphere gas) is supplied to each workpiece from the bottom and side surfaces of the groove, so that uniform heat treatment can be performed.
この発明に係る連続式熱処理炉は、以下の特徴を備えていることが好ましい。すなわち、ワーク搬送機構は、ワークを整列させて溝内に挿入する整列機構をさらに備えている。 The continuous heat treatment furnace according to the present invention preferably has the following features. That is, the workpiece transfer mechanism further includes an alignment mechanism that aligns the workpiece and inserts the workpiece into the groove.
上記の連続式熱処理炉では、ワーク搬送機構がワークを整列させて溝内に挿入する整列機構をさらに備えている。この場合、ワーク搬送機構に多数の微小なワークが山積みで供給されても、整列機構により多孔質プレートの溝内にワークが整列した状態で挿入される。したがって、ワークの一つ一つに溝の底面および側面から気体が確実に供給されるため、均一な熱処理を確実に行なうことができる。 In the above-described continuous heat treatment furnace, the work transfer mechanism further includes an alignment mechanism for aligning the work and inserting the work into the groove. In this case, even if a large number of minute workpieces are supplied in piles to the workpiece conveyance mechanism, the workpieces are inserted in an aligned state into the grooves of the porous plate by the alignment mechanism. Therefore, since gas is reliably supplied to each of the workpieces from the bottom and side surfaces of the groove, uniform heat treatment can be reliably performed.
また、この発明は、セラミック電子部品の製造方法にも向けられる。
この発明に係るセラミック電子部品の製造方法は、ワークが未脱脂のセラミック電子部品素体であり、ワークを作製するワーク作製工程と、脱脂工程と、脱脂後のワークを焼成する焼成工程とを含む。そして、脱脂工程では、この発明に係る連続式熱処理炉を用い、多孔質プレートを透過して流出する気体の量を気体供給手段により調整しながらワークの脱脂を行なう。The present invention is also directed to a method for manufacturing a ceramic electronic component.
The method for manufacturing a ceramic electronic component according to the present invention is a ceramic electronic component element body in which the workpiece is not degreased, and includes a workpiece preparation step for producing the workpiece, a degreasing step, and a firing step for firing the workpiece after degreasing. . In the degreasing process, the continuous heat treatment furnace according to the present invention is used to degrease the work while adjusting the amount of gas that permeates and flows out of the porous plate by the gas supply means.
セラミック電子部品の製造においては、セラミック材料粉末を結着し、セラミック電子部品素体を成形するために、バインダーと呼ばれる高分子の有機材料が用いられる。このバインダーは、セラミック電子部品素体を焼成するまでには燃焼除去する必要がある。このバインダーの燃焼除去は脱脂と呼ばれる。 In the production of ceramic electronic components, a polymer organic material called a binder is used to bind ceramic material powder and form a ceramic electronic component body. This binder must be removed by combustion before firing the ceramic electronic component body. This removal of the binder by burning is called degreasing.
上記のセラミック電子部品の製造方法では、未脱脂のセラミック電子部品素体であるワークの脱脂を、この発明に係る連続式熱処理炉を用いて行なう。この場合、前述のように、ワークが多孔質プレート上で山積みにならず、ワークの一つ一つに溝の底面および側面から気体(酸素濃度を調整した雰囲気ガス)が供給される。 In the above-described method for manufacturing a ceramic electronic component, the workpiece, which is an undegreasing ceramic electronic component body, is degreased using the continuous heat treatment furnace according to the present invention. In this case, as described above, the work is not piled up on the porous plate, and gas (atmospheric gas having an adjusted oxygen concentration) is supplied to each work from the bottom and side surfaces of the groove.
また、ワークが山積みになった状態で脱脂を行なうと、ワークの山の内部では脱脂により発生した熱が放散されず、ワークの山の内部は、表面と比べて温度が高くなる。一方、上記のワークの脱脂方法では、ワークが山積みにならないため、ワークの一つ一つの温度のばらつきを抑えることができる。したがって、セラミック電子部品素体のような多数の微小なワークであっても、均一な脱脂を行なうことができる。すなわち、焼成後のセラミック電子部品の品質のばらつきを抑えることができる。 Further, when degreasing is performed in a state where the workpieces are piled up, the heat generated by the degreasing is not dissipated inside the workpiece pile, and the temperature inside the workpiece pile becomes higher than that of the surface. On the other hand, in the above-described method for degreasing a work, since the work is not piled up, it is possible to suppress variations in the temperature of each work. Therefore, even a large number of minute workpieces such as ceramic electronic component bodies can be uniformly degreased. That is, it is possible to suppress variations in the quality of the ceramic electronic component after firing.
この発明に係る連続式熱処理炉では、多孔質プレートの上面にワークの搬送方向に沿った溝が形成されている。この場合、多数の微小なワークであっても溝内に入り込むことで整列した状態を保つことができる。したがって、ワークが多孔質プレート上で山積みにならず、ワークの一つ一つに溝の底面および側面から気体(雰囲気ガス)が供給されるため、均一な熱処理を行なうことができる。 In the continuous heat treatment furnace according to the present invention, a groove is formed on the upper surface of the porous plate along the workpiece conveyance direction. In this case, even a large number of minute workpieces can be kept aligned by entering the groove. Accordingly, the workpieces are not stacked on the porous plate, and gas (atmosphere gas) is supplied to each workpiece from the bottom and side surfaces of the groove, so that uniform heat treatment can be performed.
また、この発明に係るセラミック電子部品の製造方法では、未脱脂のセラミック電子部品素体であるワークの脱脂を、この発明に係る連続式熱処理炉を用いて行なう。この場合、前述のように、ワークが多孔質プレート上で山積みにならず、ワークの一つ一つに溝の底面および側面から気体(酸素濃度を調整した雰囲気ガス)が供給され、かつワークの一つ一つの温度のばらつきを抑えることができる。したがって、セラミック電子部品素体のような多数の微小なワークであっても、均一な脱脂を行なうことができる。すなわち、焼成後のセラミック電子部品の品質のばらつきを抑えることができる。 Moreover, in the method for manufacturing a ceramic electronic component according to the present invention, the degreasing of the workpiece which is an undegritted ceramic electronic component body is performed using the continuous heat treatment furnace according to the present invention. In this case, as described above, the workpieces are not stacked on the porous plate, and gas (atmospheric gas with an adjusted oxygen concentration) is supplied to each workpiece from the bottom and side surfaces of the groove, and Each temperature variation can be suppressed. Therefore, even a large number of minute workpieces such as ceramic electronic component bodies can be uniformly degreased. That is, it is possible to suppress variations in the quality of the ceramic electronic component after firing.
以下にこの発明の実施形態を示して、この発明の特徴とするところをさらに詳しく説明する。 Embodiments of the present invention will be described below to describe the features of the present invention in more detail.
−連続式熱処理炉の第1の実施形態−
この発明に係る連続式熱処理炉の第1の実施形態である連続式熱処理炉HF1について、図1ないし図3を用いて説明する。連続式熱処理炉HF1は、未脱脂のセラミック電子部品素体の脱脂に用いられる脱脂炉である。以下、この発明に係る連続式熱処理炉の実施形態の説明は、上記に倣って脱脂炉を具体例として行なう。-First embodiment of continuous heat treatment furnace-
A continuous heat treatment furnace HF1 which is a first embodiment of a continuous heat treatment furnace according to the present invention will be described with reference to FIGS. The continuous heat treatment furnace HF1 is a degreasing furnace used for degreasing the non-degreasing ceramic electronic component body. Hereinafter, the embodiment of the continuous heat treatment furnace according to the present invention will be described by taking a degreasing furnace as a specific example according to the above.
<連続式熱処理炉の構造>
図1は、連続式熱処理炉HF1を模式的に示した断面図である。連続式熱処理炉HF1には、ワーク(不図示)の搬送方向bに沿って、ワークの熱処理を行なう熱処理領域Hが設けられている。ワークは、熱処理領域Hを搬送されながら熱処理される。ワークは、上記のように未脱脂のセラミック電子部品素体であり、既知の方法により作製される。なお、セラミック電子部品の製造方法には、脱脂後のセラミック電子部品素体と外部電極とを共焼成する場合がある。このような場合、セラミック電子部品素体とは、外部電極ペーストを予め塗布してあるものも含む。<Construction of continuous heat treatment furnace>
FIG. 1 is a cross-sectional view schematically showing a continuous heat treatment furnace HF1. The continuous heat treatment furnace HF1 is provided with a heat treatment region H in which a heat treatment of the workpiece is performed along the conveyance direction b of the workpiece (not shown). The workpiece is heat-treated while being conveyed through the heat-treatment region H. The workpiece is a non-degreasing ceramic electronic component body as described above, and is manufactured by a known method. In addition, in the method for manufacturing a ceramic electronic component, the ceramic electronic component body after degreasing and the external electrode may be co-fired. In such a case, the ceramic electronic component element body includes those to which an external electrode paste has been applied in advance.
ワークを搬送するためのワーク搬送機構100は、連続式熱処理炉HF1の下側炉体でもあるベースフレーム1と、多孔質プレート2と、気室3と、気体供給手段4とを備えている。 A workpiece conveyance mechanism 100 for conveying workpieces includes a base frame 1 that is also a lower furnace body of a continuous heat treatment furnace HF1, a porous plate 2, an air chamber 3, and a gas supply means 4.
ベースフレーム1は、上方に開口部を有する箱状である。多孔質プレート2は、上面2aがワークの搬送方向bに向けて下り傾斜となるように配設されており、かつ上面2aにワークの搬送方向bに沿った溝(不図示)が形成されている。気室3は、多孔質プレート2がベースフレーム1の開口部を覆うことにより形成される。気体供給手段4は、配管5および気体供給口6を介して気室3と連通し、多孔質プレート2を透過して流出する気体gを気室3に供給する。 The base frame 1 has a box shape having an opening on the upper side. The porous plate 2 is disposed such that the upper surface 2a is inclined downward toward the workpiece conveyance direction b, and a groove (not shown) is formed on the upper surface 2a along the workpiece conveyance direction b. Yes. The air chamber 3 is formed by the porous plate 2 covering the opening of the base frame 1. The gas supply means 4 communicates with the air chamber 3 through the pipe 5 and the gas supply port 6, and supplies the gas g that flows through the porous plate 2 and flows out to the air chamber 3.
また、ワーク搬送機構100は、多孔質プレート2の上面2aの上方に、整列機構10を備えている。整列機構10の働きについては後述する。 The work transport mechanism 100 includes an alignment mechanism 10 above the upper surface 2a of the porous plate 2. The operation of the alignment mechanism 10 will be described later.
連続式熱処理炉HF1は、下側炉体と共に炉体を構成する上側炉体7と、ワークを加熱するヒーター9を備えている。上側炉体7には、多孔質プレート2を透過して流出する気体gが排出される気体排出口8が設けられている。図1では、気体排出口8は、連続式熱処理炉HF1の入口側と出口側にそれぞれ設けられているが、その数および設けられる場所はこれに限らない。また、上側炉体は、断熱材(不図示)を備えており、連続式熱処理炉HF1の外部への熱の放散が抑えられている。 The continuous heat treatment furnace HF1 includes an upper furnace body 7 that constitutes a furnace body together with a lower furnace body, and a heater 9 that heats a workpiece. The upper furnace body 7 is provided with a gas discharge port 8 through which the gas g flowing through the porous plate 2 and flowing out is discharged. In FIG. 1, the gas discharge ports 8 are provided on the inlet side and the outlet side of the continuous heat treatment furnace HF1, respectively, but the number and locations are not limited thereto. Further, the upper furnace body is provided with a heat insulating material (not shown), and heat dissipation to the outside of the continuous heat treatment furnace HF1 is suppressed.
図2(A)は、図1に示した連続式熱処理炉HF1における、多孔質プレート2の上面図であり、例えば積層セラミックコンデンサのコンデンサ本体のような、直方体形状の多数の微小なワークWを併せて図示している。図2(B)は、上面図のA−A線を含む面の矢視断面図である。図2では、上面2aには、ワークWの搬送方向bに沿った溝2t1ないし2t10が形成されている。FIG. 2 (A) is a top view of the porous plate 2 in the continuous heat treatment furnace HF1 shown in FIG. 1, for example, a large number of cuboid shaped workpieces W such as a capacitor body of a multilayer ceramic capacitor. It is also illustrated. FIG. 2B is a cross-sectional view taken along the line AA of the top view. In FIG. 2, grooves 2t 1 to 2t 10 are formed on the upper surface 2a along the conveyance direction b of the workpiece W.
溝2t1ないし2t10の、ワークWの搬送方向bに直交する断面は、矩形状となっている。ワークWは、直方体形状のワークWの一番長い辺が搬送方向bに沿うようにして溝2t1ないし2t10に入り込んだ状態で移動する。なお、直方体形状のワークWの一番長い辺が搬送方向bに沿った状態とは、一番長い辺と搬送方向bとが幾らか傾いた状態も含んでいる。The cross section of the grooves 2t 1 to 2t 10 perpendicular to the conveyance direction b of the workpiece W is rectangular. The workpiece W moves in a state in which the longest side of the rectangular parallelepiped workpiece W enters the grooves 2t 1 to 2t 10 so that the longest side is along the conveyance direction b. The state in which the longest side of the rectangular parallelepiped workpiece W is along the transport direction b includes a state in which the longest side and the transport direction b are somewhat inclined.
溝2t1ないし2t10を上面視した際の各溝の幅は、直方体形状のワークWの二番目に長い辺の長さに対して、幾らか長くなるように設定されている。すなわち、ワークWの一つ一つに溝の底面のみならず、側面からも気体gが供給され得る状態となっている。具体的には、各溝の幅は、直方体形状のワークWの二番目に長い辺の長さに対して、20%程度長いことが好ましい。The width of each groove when the grooves 2t 1 to 2t 10 are viewed from above is set to be somewhat longer than the length of the second longest side of the rectangular parallelepiped workpiece W. That is, the gas g can be supplied to each workpiece W not only from the bottom surface of the groove but also from the side surface. Specifically, the width of each groove is preferably about 20% longer than the length of the second longest side of the rectangular parallelepiped workpiece W.
また、上面2aの上方には、ワークWの搬送方向bと直交するように設置された板状部材である整列機構10が設置されている。整列機構10の下端と多孔質プレート2の上面2aとの間の間隔は、溝2t1ないし2t10に入り込んでいるワークWのみが、整列機構10の下を通過できるような間隔に設定されている。Further, an alignment mechanism 10 which is a plate-like member installed so as to be orthogonal to the conveyance direction b of the workpiece W is installed above the upper surface 2a. Spacing between the upper surface 2a of the lower end and the porous plate 2 of the alignment mechanism 10, only the work W that enters the to no groove 2t 1 2t 10 is set to an interval that can pass under the alignment mechanism 10 Yes.
ワークWは、図2(A)において、多孔質プレート2上のワーク供給位置(不図示)に山積みの状態で供給される。供給された山積みのワークWは、一部が溝2t1ないし2t10に入り込み、別の一部は上面2a上にあり、さらに別の一部は、別のワークWと重なっている。それらのワークWのうち、特に溝2t1ないし2t10に入り込んでいるものには、多孔質プレート2を透過してきた気体gが吹き当てられる。すると、それらのワークWは、溝2t1ないし2t10の側面および底面との摩擦力が低下した状態になる。In FIG. 2A, the workpiece W is supplied in a piled state to a workpiece supply position (not shown) on the porous plate 2. A part of the supplied piled work W enters the grooves 2t 1 to 2t 10 , another part is on the upper surface 2a, and another part overlaps another work W. Among these workpieces W, the gas g that has permeated through the porous plate 2 is blown onto the workpieces that have entered the grooves 2t 1 to 2t 10 in particular. Then, the workpieces W are in a state where the frictional force between the side surfaces and the bottom surface of the grooves 2t 1 to 2t 10 is reduced.
そして、溝2t1ないし2t10に入り込んでいるワークWは、その自重により、下り傾斜の多孔質プレート2に沿って、斜め前下がりの状態で搬送方向bに移動する。溝2t1ないし2t10に入り込んでいないワークWも、溝2t1ないし2t10に入り込んでいるワークWの搬送につれて、同様に搬送方向bに移動する。Then, the workpiece W entering the grooves 2t 1 to 2t 10 moves in the conveying direction b in a slanting forward downward state along the downwardly inclined porous plate 2 by its own weight. Workpiece W to no groove 2t 1 does not enter into 2t 10 also, as the transport of the workpiece W has entered into to 2t 10 without a groove 2t 1, it moves likewise in the conveying direction b.
移動してきた山積みのワークWが整列機構10に到達すると、溝2t1ないし2t10に入り込んでいるワークWはそのまま搬送方向bに移動する。一方、溝2t1ないし2t10に入り込んでいないワークWは、整列機構10によって堰き止められる。そして、溝2t1ないし2t10に入り込んでいるワークWが整列機構10を通過し終えた後か、または溝2t1ないし2t10に入り込んでいるワークWの間に隙間があったときに、溝2t1ないし2t10に落ち込んで搬送方向bに移動する。すなわち、整列機構10により、ワークWは、溝2t1ないし2t10に入り込んで整列された状態で多孔質プレート2上を移動する。この場合、極めて単純な構成でワークWの整列搬送を行なうことができる。When the piled workpieces W that have moved reach the alignment mechanism 10, the workpieces W that have entered the grooves 2t 1 to 2t 10 move in the transport direction b as they are. On the other hand, the workpiece W that has not entered the grooves 2t 1 to 2t 10 is blocked by the alignment mechanism 10. Then, after the workpiece W entering the grooves 2t 1 to 2t 10 has passed through the alignment mechanism 10, or when there is a gap between the workpieces W entering the grooves 2t 1 to 2t 10 , the grooves It falls to 2t 1 to 2t 10 and moves in the transport direction b. That is, the alignment mechanism 10 moves the workpiece W on the porous plate 2 in a state where the workpiece W enters the grooves 2t 1 to 2t 10 and is aligned. In this case, the work W can be aligned and conveyed with a very simple configuration.
なお、整列機構10は、以上で説明した単純な板状部材に限らず、多孔質プレート2上にワークWを供給する時点で、ワークWが溝2t1ないし2t10に入り込むように設計された振り込み治具のようなものでもよい。また、多孔質プレート2に微弱な振動を与え、ワーク供給位置に山積みの状態で供給されたワークWの山を崩して溝2t1ないし2t10に入り込むようにした、振動装置のようなものでもよい。The alignment mechanism 10 is not limited to the simple plate member described above, and is designed so that the workpiece W enters the grooves 2t 1 to 2t 10 when the workpiece W is supplied onto the porous plate 2. It may be a transfer jig. Also, a vibration device such as a vibration device that gives a weak vibration to the porous plate 2 and breaks the pile of the workpiece W supplied in a piled state at the workpiece supply position and enters the grooves 2t 1 to 2t 10. Good.
図3は、図1に示した連続式熱処理炉HF1における、炉内の各領域での設定温度および気体流量と、時間経過との関係を表すグラフである。連続式熱処理炉HF1の内部は、大まかには、昇温および最高温度維持でワークWに含まれているバインダーが燃焼し、脱脂が進行する脱脂進行領域と、最高温度維持および降温で脱脂がほぼ完了している脱脂完了領域に大別できる。図3の場合、供給される気体流量は一定である。 FIG. 3 is a graph showing the relationship between the set temperature and gas flow rate in each region in the furnace and the passage of time in the continuous heat treatment furnace HF1 shown in FIG. The inside of the continuous heat treatment furnace HF1 is roughly degreasing progress region where the binder contained in the work W is burned when the temperature is increased and the maximum temperature is maintained, and degreasing proceeds, and the degreasing is approximately performed when the maximum temperature is maintained and the temperature is decreased. It can be roughly divided into completed degreasing completed areas. In the case of FIG. 3, the supplied gas flow rate is constant.
前述したように、多孔質プレート2上で山積みにならず、整列搬送されているワークWには、前述したように、その一つ一つに溝2t1ないし2t10の底面および側面から気体gが供給される。また、脱脂進行領域において、脱脂により発生した熱が均一に放散され、ワークWの一つ一つの温度のばらつきが抑えられている。したがって、セラミック電子部品素体のような多数の微小なワークWであっても、均一な脱脂を行なうことができる。As described above, as described above, the workpieces W that are aligned and transported without being stacked on the porous plate 2 are separated from the bottom and side surfaces of the grooves 2t 1 to 2t 10 by the gas g. Is supplied. Further, in the degreasing progress region, the heat generated by the degreasing is uniformly dissipated, and the temperature variation of each workpiece W is suppressed. Therefore, even a large number of minute workpieces W such as ceramic electronic component bodies can be uniformly degreased.
以上のようにして脱脂されたワークWを焼成することにより、セラミック電子部品素体が得られる。得られたセラミック電子部品素体に、必要に応じて外部電極などを形成することにより、セラミック電子部品が得られる。 A ceramic electronic component element body is obtained by firing the workpiece W degreased as described above. A ceramic electronic component can be obtained by forming an external electrode or the like on the obtained ceramic electronic component body as necessary.
<多孔質プレートの変形例>
この発明にかかる連続式熱処理炉HF1におけるワーク搬送機構100が備える多孔質プレート2の変形例について、図4ないし図6を用いて説明する。<Modified example of porous plate>
Modification examples of the porous plate 2 provided in the workpiece transfer mechanism 100 in the continuous heat treatment furnace HF1 according to the present invention will be described with reference to FIGS.
<多孔質プレートの第1の変形例>
図4は、ワーク搬送機構100が備える多孔質プレート2の第1の変形例である多孔質プレート2Aの、図2(B)に示した矢視断面図に相当する断面図である。多孔質プレート2Aでは、上面2Aaに形成されている溝2t1ないし2t10の、ワークWの搬送方向bに直交する断面は、U字状になっている。<First Modification of Porous Plate>
FIG. 4 is a cross-sectional view corresponding to the cross-sectional view of the porous plate 2 </ b> A that is a first modification of the porous plate 2 provided in the workpiece transfer mechanism 100, as viewed in the direction of the arrow shown in FIG. In the porous plate 2A, the cross section of the grooves 2t 1 to 2t 10 formed in the upper surface 2Aa and perpendicular to the conveyance direction b of the workpiece W is U-shaped.
この場合、ワークWと溝2t1ないし2t10の底部との間に隙間ができ、底部から気体gが供給されやすく、かつ供給された気体gが流れやすくなる。したがって、ワークWに含まれているバインダーを効果的に燃焼させることができ、かつバインダーの燃焼によって発生する熱を効果的に放散させることができる。また、底部に角部がなく、丸みを帯びた形状となっているので、機械的な強度を向上させることができる。In this case, a gap is formed between the workpiece W and the bottom of the grooves 2t 1 to 2t 10 , the gas g is easily supplied from the bottom, and the supplied gas g easily flows. Therefore, the binder contained in the work W can be burned effectively, and the heat generated by the burning of the binder can be effectively dissipated. Moreover, since there is no corner | angular part in the bottom part and it is the rounded shape, mechanical strength can be improved.
<多孔質プレートの第2の変形例>
図5は、ワーク搬送機構100が備える多孔質プレート2の第2の変形例である多孔質プレート2Bの、図2(B)に示した矢視断面図に相当する断面図である。多孔質プレート2Bでは、上面2Baに形成されている溝2t1ないし2t10の、ワークWの搬送方向bに直交する断面は、V字状になっている。<Second Modification of Porous Plate>
FIG. 5 is a cross-sectional view of a porous plate 2B, which is a second modification of the porous plate 2 provided in the workpiece transfer mechanism 100, corresponding to the cross-sectional view taken along the arrow shown in FIG. In the porous plate 2B, the cross section of the grooves 2t 1 to 2t 10 formed in the upper surface 2Ba perpendicular to the conveyance direction b of the workpiece W is V-shaped.
この場合、多孔質プレート2Aと同様に、ワークWと溝2t1ないし2t10の底部との間に隙間ができ、底部から気体gが供給されやすくなる。また、上面2Baにおける開口部の面積が広くなるため、供給された気体gがより流れやすくなる。したがって、ワークWに含まれているバインダーをより効果的に燃焼させることができ、かつバインダーの燃焼によって発生する熱をより効果的に放散させることができる。In this case, like the porous plate 2A, a gap is formed between the workpiece W and the bottom of the grooves 2t 1 to 2t 10 , and the gas g is easily supplied from the bottom. Moreover, since the area of the opening part in upper surface 2Ba becomes large, the supplied gas g becomes easy to flow. Therefore, the binder contained in the workpiece | work W can be burned more effectively, and the heat which generate | occur | produces by combustion of a binder can be dissipated more effectively.
<多孔質プレートの第3の変形例>
図6は、ワーク搬送機構100が備える多孔質プレート2の第3の変形例である多孔質プレート2Cの、図2(B)に示した矢視断面図に相当する断面図である。多孔質プレート2Cでは、上面2Caに形成されている溝2t1ないし2t10の、ワークWの搬送方向bに直交する断面は、底部が丸みを帯びたV字状になっている。<Third Modification of Porous Plate>
FIG. 6 is a cross-sectional view corresponding to the cross-sectional view taken in the direction of the arrow shown in FIG. 2B of a porous plate 2 </ b> C that is a third modification of the porous plate 2 provided in the workpiece transfer mechanism 100. In the porous plate 2C, the cross section of the grooves 2t 1 to 2t 10 formed in the upper surface 2Ca perpendicular to the conveyance direction b of the workpiece W has a V shape with a round bottom.
この場合、多孔質プレート2Bと同様に、ワークWと溝2t1ないし2t10の底部との間に隙間ができ、底部から気体gが供給されやすくなる。また、上面2Caにおける開口部の面積が広くなるため、供給された気体gがより流れやすくなる。また、多孔質プレート2Aと同様に、底部に角部がなく、丸みを帯びた形状となっている。したがって、ワークWに含まれているバインダーをより効果的に燃焼させることができ、かつバインダーの燃焼によって発生する熱をより効果的に放散させることができる。また、機械的な強度を向上させることができる。In this case, like the porous plate 2B, a gap is formed between the workpiece W and the bottom of the grooves 2t 1 to 2t 10 , and the gas g is easily supplied from the bottom. Moreover, since the area of the opening part in upper surface 2Ca becomes large, the supplied gas g becomes easier to flow. Further, like the porous plate 2A, the bottom has no corners and has a rounded shape. Therefore, the binder contained in the workpiece | work W can be burned more effectively, and the heat which generate | occur | produces by combustion of a binder can be dissipated more effectively. Further, the mechanical strength can be improved.
−連続式熱処理炉の第2の実施形態−
この発明に係る連続式熱処理炉の第2の実施形態である連続式熱処理炉HF2について、図7および図8を用いて説明する。連続式熱処理炉HF2は、連続式熱処理炉HF1と同様に、セラミック電子部品を構成する電子部品素体の脱脂に用いられる脱脂炉である。-Second embodiment of continuous heat treatment furnace-
A continuous heat treatment furnace HF2 which is a second embodiment of the continuous heat treatment furnace according to the present invention will be described with reference to FIGS. Similar to the continuous heat treatment furnace HF1, the continuous heat treatment furnace HF2 is a degreasing furnace used for degreasing the electronic component body constituting the ceramic electronic component.
図7は、連続式熱処理炉HF2を模式的に示した断面図である。連続式熱処理炉HF2では、気室が第1の気室3aと第2の気室3bとに分かれている。気体供給手段4は、第1の配管5aおよび第1の気体供給口6aを介して第1の気室3aと連通し、第2の配管5bおよび第2の気体供給口6bを介して第2の気室3bと連通し、気体gを各気室に供給している。その他の部分については、前述の連続式熱処理炉HF1と同様であるため、説明を省略する。 FIG. 7 is a cross-sectional view schematically showing the continuous heat treatment furnace HF2. In the continuous heat treatment furnace HF2, the air chamber is divided into a first air chamber 3a and a second air chamber 3b. The gas supply means 4 communicates with the first air chamber 3a through the first pipe 5a and the first gas supply port 6a, and the second through the second pipe 5b and the second gas supply port 6b. The gas g is supplied to each air chamber in communication with the air chamber 3b. The other parts are the same as those of the above-described continuous heat treatment furnace HF1, and thus the description thereof is omitted.
連続式熱処理炉HF2では、上記の構成により、ワーク(不図示)の搬送方向bに沿って、ワークの熱処理を行なう第1の熱処理領域H1および第2の熱処理領域H2が設けられることになる。ワークは、第1の熱処理領域H1および第2の熱処理領域H2を搬送されながら熱処理される。 In the continuous heat treatment furnace HF2, with the above-described configuration, the first heat treatment region H1 and the second heat treatment region H2 for heat treating the workpiece are provided along the conveyance direction b of the workpiece (not shown). The workpiece is heat-treated while being transported through the first heat-treatment region H1 and the second heat-treatment region H2.
図8は、図7に示した連続式熱処理炉HF2における、炉内の各領域での設定温度および気体gの流量と、時間経過との関係を表すグラフである。連続式熱処理炉HF2の内部は、連続式熱処理炉HF1と同様に、大まかには、脱脂進行領域と、脱脂完了領域に大別できる。図8の場合、各気室に供給される気体(酸素濃度を調整した雰囲気ガス)gの量は、気体供給手段4により調整され、脱脂進行領域で多く、脱脂完了領域で少なくなっている。なお、各領域に供給される気体g成分は同じものとしている。 FIG. 8 is a graph showing the relationship between the set temperature and the flow rate of gas g in each region in the furnace and the passage of time in the continuous heat treatment furnace HF2 shown in FIG. Similar to the continuous heat treatment furnace HF1, the interior of the continuous heat treatment furnace HF2 can be roughly divided into a degreasing progress region and a degreasing completion region. In the case of FIG. 8, the amount of gas (atmospheric gas with adjusted oxygen concentration) g supplied to each air chamber is adjusted by the gas supply means 4 and is large in the degreasing progress region and small in the degreasing completion region. The gas g component supplied to each region is the same.
上記の脱脂方法では、脱脂進行領域では気体gの量を多くして脱脂を促進し、脱脂完了領域では気体gの流量を少なくして無駄に流れる気体gを減らすことにより、効率的な脱脂を行なうことができる。 In the degreasing method described above, efficient degreasing is achieved by increasing the amount of gas g in the degreasing progress region to promote degreasing, and decreasing the flow rate of gas g in the degreasing completed region to reduce the gas g flowing wastefully. Can be done.
−連続式熱処理炉の第3の実施形態−
この発明に係る連続式熱処理炉の第3の実施形態である連続式熱処理炉HF3について、図9および図10を用いて説明する。連続式熱処理炉HF3は、連続式熱処理炉HF1およびHF2と同様に、セラミック電子部品を構成する電子部品素体の脱脂に用いられる脱脂炉である。-Third embodiment of continuous heat treatment furnace-
A continuous heat treatment furnace HF3, which is a third embodiment of the continuous heat treatment furnace according to the present invention, will be described with reference to FIGS. Similar to the continuous heat treatment furnaces HF1 and HF2, the continuous heat treatment furnace HF3 is a degreasing furnace used for degreasing the electronic component body constituting the ceramic electronic component.
図9は、連続式熱処理炉HF3を模式的に示した断面図である。連続式熱処理炉HF3では、気室が第1の気室3a、第2の気室3bおよび第3の気室3cに分かれている。気体供給手段4は、第1の配管5aおよび第1の気体供給口6aを介して第1の気室3aと連通し、第2の配管5bおよび第2の気体供給口6bを介して第2の気室3bと連通し、第3の配管5cおよび第3の気体供給口6cを介して第3の気室3cと連通し、気体gを各気室に供給している。その他の部分については、前述の連続式熱処理炉HF1およびHF2と同様であるため、説明を省略する。 FIG. 9 is a cross-sectional view schematically showing the continuous heat treatment furnace HF3. In the continuous heat treatment furnace HF3, the air chamber is divided into a first air chamber 3a, a second air chamber 3b, and a third air chamber 3c. The gas supply means 4 communicates with the first air chamber 3a through the first pipe 5a and the first gas supply port 6a, and the second through the second pipe 5b and the second gas supply port 6b. The air chamber 3b communicates with the third air chamber 3c via the third pipe 5c and the third gas supply port 6c, and the gas g is supplied to each air chamber. The other parts are the same as those of the above-described continuous heat treatment furnaces HF1 and HF2, and thus the description thereof is omitted.
連続式熱処理炉HF3では、上記の構成により、ワーク(不図示)の搬送方向bに沿って、ワークの熱処理を行なう第1の熱処理領域H1、第2の熱処理領域H2および第3の熱処理領域H3が設けられることになる。ワークは、第1の熱処理領域H1、第2の熱処理領域H2および第3の熱処理領域H3を搬送されながら熱処理される。 In the continuous heat treatment furnace HF3, with the above-described configuration, the first heat treatment region H1, the second heat treatment region H2, and the third heat treatment region H3 that heat treat the workpiece along the conveyance direction b of the workpiece (not shown). Will be provided. The workpiece is heat-treated while being conveyed through the first heat treatment region H1, the second heat treatment region H2, and the third heat treatment region H3.
図10は、図9に示した連続式熱処理炉HF3における、炉内の各領域での設定温度および気体gの流量と、時間経過との関係を表すグラフである。連続式熱処理炉HF3の内部は、連続式熱処理炉HF1およびHF2と同様に、大まかには、脱脂進行領域と、脱脂完了領域に大別できる。そして、ヒーター9の配置の仕方により、脱脂進行領域をさらに低温域と高温域とに分けることができる。図10の場合、各気室に供給される気体gの流量は、気体供給手段4により調整され、脱脂進行領域の低温域では二番目に多く、脱脂進行領域の高温域では最も多く、脱脂完了領域で最も少なくなっている。なお、各領域に供給される気体gの成分は同じものとしている。 FIG. 10 is a graph showing the relationship between the set temperature and the flow rate of the gas g in each region in the furnace and the passage of time in the continuous heat treatment furnace HF3 shown in FIG. Similar to the continuous heat treatment furnaces HF1 and HF2, the interior of the continuous heat treatment furnace HF3 can be roughly divided into a degreasing progress region and a degreasing completion region. And according to the arrangement | positioning method of the heater 9, a degreasing progress area | region can be further divided into a low temperature area and a high temperature area. In the case of FIG. 10, the flow rate of the gas g supplied to each air chamber is adjusted by the gas supply means 4, second most in the low temperature region of the degreasing progress region, and most in the high temperature region of the degreasing progress region. It is the least in the area. Note that the components of the gas g supplied to each region are the same.
上記の脱脂方法では、脱脂進行領域であってもバインダーの燃焼の進みにくい低温域での気体gの流量を高温域に比べて少なくし、高温域では気体gの流量を最も多くして脱脂を促進し、脱脂完了領域では気体gの流量を少なくして無駄に流れる気体gを減らすことにより、さらに効率的な脱脂を行なうことができる。 In the above degreasing method, the flow rate of the gas g in the low temperature region where the combustion of the binder is difficult to proceed even in the degreasing progress region is smaller than that in the high temperature region, and the degreasing is performed by increasing the flow rate of the gas g in the high temperature region. In the degreasing completion region, further efficient degreasing can be performed by reducing the flow rate of the gas g and reducing the gas g flowing unnecessarily.
なお、この発明は上記の実施形態に限定されるものではなく、この発明の範囲内において、種々の応用、変形を加えることができる。例えば、各気室に供給する気体gの量は、気体供給手段4により調整するだけでなく、多孔質プレート2の開口率によって調整するようにしてもよい。また、気体供給手段4が供給する気体gの種類は、各気室間で異なるようにしてもよい。 In addition, this invention is not limited to said embodiment, A various application and deformation | transformation can be added within the scope of this invention. For example, the amount of gas g supplied to each air chamber may be adjusted not only by the gas supply means 4 but also by the aperture ratio of the porous plate 2. Further, the type of the gas g supplied by the gas supply means 4 may be different between the air chambers.
例えば、ヒーター9の種類および配置、ならびに気体供給手段4が供給する気体gの種類を各気室間で異ならせることにより、脱脂と焼成とを1つの連続式熱処理炉内で行なうようにしてもよい。すなわち、連続式熱処理炉であれば、熱処理の内容を問わずこの発明を適用することができる。 For example, the degreasing and firing may be performed in one continuous heat treatment furnace by making the type and arrangement of the heater 9 and the type of gas g supplied by the gas supply means 4 different between the air chambers. Good. That is, the present invention can be applied to any continuous heat treatment furnace regardless of the content of the heat treatment.
また、この明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 In addition, it is pointed out that each embodiment described in this specification is an exemplification, and a partial replacement or combination of configurations is possible between different embodiments.
HF1,HF2,HF3 連続式熱処理炉、100 ワーク搬送機構、1 ベースフレーム、2 多孔質プレート、2a 上面、2t1〜2t10 溝、3 気室、4 気体供給手段、W ワーク、H 熱処理領域、g 気体、b 搬送方向。HF1, HF2, HF3 Continuous heat treatment furnace, 100 workpiece transfer mechanism, 1 base frame, 2 porous plate, 2a upper surface, 2t 1 to 2t 10 groove, 3 air chamber, 4 gas supply means, W work, H heat treatment region, g Gas, b Transport direction.
Claims (3)
前記ワークを搬送するためのワーク搬送機構は、上方に少なくとも1つの開口部を有する箱状のベースフレームと、多孔質プレートと、前記多孔質プレートが前記ベースフレームの前記少なくとも1つの開口部を覆うことにより形成された少なくとも1つの気室と、前記少なくとも1つの気室と連通し、前記多孔質プレートを透過して流出する気体を前記少なくとも1つの気室に供給する気体供給手段とを備え、
前記多孔質プレートは上面が前記ワークの搬送方向に向けて下り傾斜となるように配設されており、かつ前記上面に前記ワークの搬送方向に沿った溝が形成されていることを特徴とする、連続式熱処理炉。A continuous heat treatment furnace provided with at least one heat treatment region for heat-treating the workpiece along a workpiece conveyance direction, wherein the workpiece is heat-treated while being conveyed through the heat treatment region,
A workpiece transfer mechanism for transferring the workpiece includes a box-shaped base frame having at least one opening on the upper side, a porous plate, and the porous plate covering the at least one opening of the base frame. Comprising at least one air chamber formed by the gas supply means, and a gas supply means that communicates with the at least one air chamber and supplies the gas flowing through the porous plate and flowing out to the at least one air chamber,
The porous plate is arranged such that the upper surface is inclined downward toward the workpiece conveying direction, and a groove is formed on the upper surface along the workpiece conveying direction. , Continuous heat treatment furnace.
前記ワークを作製するワーク作製工程と、
請求項1または2に記載の連続式熱処理炉を用い、前記多孔質プレートを透過して流出する気体の量を前記気体供給手段により調整しながら前記ワークの脱脂を行なう脱脂工程と、
脱脂後の前記ワークを焼成する焼成工程と、
を含むことを特徴とする、セラミック電子部品の製造方法。The workpiece is a non-degreasing ceramic electronic component body,
A workpiece production process for producing the workpiece;
A degreasing step of degreasing the workpiece while adjusting the amount of gas that permeates and flows out of the porous plate by the gas supply means, using the continuous heat treatment furnace according to claim 1 or 2;
A firing step of firing the workpiece after degreasing;
A method for producing a ceramic electronic component, comprising:
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015125525 | 2015-06-23 | ||
JP2015125525 | 2015-06-23 | ||
PCT/JP2016/068495 WO2016208615A1 (en) | 2015-06-23 | 2016-06-22 | Continuous heat treatment furnace and manufacturing method for ceramic electronic component using same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2016208615A1 true JPWO2016208615A1 (en) | 2018-03-29 |
JP6455595B2 JP6455595B2 (en) | 2019-01-23 |
Family
ID=57584872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017524940A Active JP6455595B2 (en) | 2015-06-23 | 2016-06-22 | Continuous heat treatment furnace and method for manufacturing ceramic electronic components using the same |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6455595B2 (en) |
KR (1) | KR102000007B1 (en) |
CN (1) | CN107735637B (en) |
WO (1) | WO2016208615A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6959526B2 (en) * | 2017-12-28 | 2021-11-02 | 株式会社豊田自動織機 | Electrode unit manufacturing equipment |
KR102338258B1 (en) * | 2021-06-04 | 2021-12-15 | (주)앤피에스 | Firing apparatus and method thereof |
CN114951654B (en) * | 2022-06-02 | 2023-05-09 | 株洲金佰利硬质合金有限公司 | Vacuum sintering furnace for producing high-performance hard alloy |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699955A (en) * | 1927-01-03 | 1929-01-22 | Electric Furnace Co | Material conveyer for furnaces |
JPH08136144A (en) * | 1994-11-08 | 1996-05-31 | Murata Mfg Co Ltd | Continuous heat treatment furnace |
JP2008273727A (en) * | 2007-05-07 | 2008-11-13 | Seiko Epson Corp | Workpiece conveying device |
JP2015049020A (en) * | 2013-09-04 | 2015-03-16 | 株式会社村田製作所 | Furnace |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3679902B2 (en) * | 1997-07-23 | 2005-08-03 | セイコーエプソン株式会社 | Degreasing equipment |
JP2001220214A (en) * | 2000-01-31 | 2001-08-14 | Ngk Insulators Ltd | Method of firing ceramic member and continuous furnace for ceramic member |
JP2004182378A (en) * | 2002-12-02 | 2004-07-02 | Toppan Printing Co Ltd | Conveyance method and fixing method for large-sized substrate |
CN102851459B (en) * | 2012-08-14 | 2013-09-04 | 苏州汇科机电设备有限公司 | Stepping automatic feeding device of heat-treatment furnace |
CN103612875B (en) * | 2013-12-16 | 2016-08-17 | 苏州中门子科技有限公司 | A kind of transmission chain and production technology thereof |
-
2016
- 2016-06-22 KR KR1020177036832A patent/KR102000007B1/en active IP Right Grant
- 2016-06-22 CN CN201680036384.XA patent/CN107735637B/en active Active
- 2016-06-22 WO PCT/JP2016/068495 patent/WO2016208615A1/en active Application Filing
- 2016-06-22 JP JP2017524940A patent/JP6455595B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1699955A (en) * | 1927-01-03 | 1929-01-22 | Electric Furnace Co | Material conveyer for furnaces |
JPH08136144A (en) * | 1994-11-08 | 1996-05-31 | Murata Mfg Co Ltd | Continuous heat treatment furnace |
JP2008273727A (en) * | 2007-05-07 | 2008-11-13 | Seiko Epson Corp | Workpiece conveying device |
JP2015049020A (en) * | 2013-09-04 | 2015-03-16 | 株式会社村田製作所 | Furnace |
Also Published As
Publication number | Publication date |
---|---|
CN107735637A (en) | 2018-02-23 |
JP6455595B2 (en) | 2019-01-23 |
KR20180009787A (en) | 2018-01-29 |
KR102000007B1 (en) | 2019-07-15 |
WO2016208615A1 (en) | 2016-12-29 |
CN107735637B (en) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6455595B2 (en) | Continuous heat treatment furnace and method for manufacturing ceramic electronic components using the same | |
JP5544732B2 (en) | Continuous firing furnace and manufacturing system | |
JP2007000915A5 (en) | ||
JP2012225620A5 (en) | ||
JP2006273570A (en) | Walking beam type transport device | |
JP2016083699A (en) | Brazing furnace and brazing method for aluminium material | |
TW201837410A (en) | Heat treatment furnace capable of appropriately suppressing the introduction of atmospheric gas in another space into a space having a different gas atmosphere | |
JPWO2010137286A1 (en) | Firing equipment | |
JP5446653B2 (en) | Heat treatment equipment | |
KR101835922B1 (en) | Heat treatment furnace | |
JP2017166024A (en) | Heat treatment method and plate | |
JP2003109994A (en) | Substrate treatment device | |
JP5468318B2 (en) | Heat treatment furnace | |
KR101037990B1 (en) | Continuous furnace | |
JP2003109993A (en) | Substrate treatment device | |
JP2006029644A (en) | Continuous heat treatment furnace | |
JP6275659B2 (en) | Continuous firing furnace | |
TW202045876A (en) | Heat treatment furnace | |
JP6195105B2 (en) | Continuous firing furnace | |
JP5603555B2 (en) | Heat treatment method for the object to be heat treated | |
JP2012225557A (en) | Heat treatment device | |
KR101353584B1 (en) | Continuous furnace and detachalbe gas supply & exhaust unit for continuous furnace | |
JP6289149B2 (en) | Heat treatment furnace | |
JP2008256229A (en) | Firing furnace and firing method | |
JP5556759B2 (en) | Heat treatment equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180905 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20181105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181120 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181203 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6455595 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |