JPWO2016194127A1 - アンテナ装置 - Google Patents

アンテナ装置 Download PDF

Info

Publication number
JPWO2016194127A1
JPWO2016194127A1 JP2016570357A JP2016570357A JPWO2016194127A1 JP WO2016194127 A1 JPWO2016194127 A1 JP WO2016194127A1 JP 2016570357 A JP2016570357 A JP 2016570357A JP 2016570357 A JP2016570357 A JP 2016570357A JP WO2016194127 A1 JPWO2016194127 A1 JP WO2016194127A1
Authority
JP
Japan
Prior art keywords
antenna
unit
phase difference
angle
antenna device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016570357A
Other languages
English (en)
Inventor
耕一 夏目
耕一 夏目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016194127A1 publication Critical patent/JPWO2016194127A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • H01Q3/08Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Abstract

アンテナ装置100は、衛星からの電波を受信して受信信号を生成するアンテナ1A、1Bと、およびアンテナ1A、1Bが向く方向である指向方向を変更するアンテナ駆動部3A、3Bとを有し、一列に配置された複数のアンテナユニット30A、30Bと、衛星が存在する方向と指向方向とが一致するように、アンテナ駆動部3A、3Bに与えられる指令値である方向指令値を生成する方向指令値生成部5と、複数のアンテナ1A、1Bが生成する受信信号の位相の差である位相差を算出する位相差算出部4と、位相差に基づき複数の受信信号を合成する信号合成装置40とを備える。

Description

この発明は、航空機などの移動体に搭載される衛星通信用のアンテナ装置に関する。
航空機に搭載される衛星通信用のアンテナ装置は、航空機の機体の上部に取付けられ、空気抵抗を増大させる要因となる。航空機に搭載されるアンテナでは、空気抵抗による抗力(ドラッグと呼ぶ)を低減すること(低ドラッグ化と呼ぶ)が求められている。
空気抵抗抗力を小さくするには、搭載された航空機の進行方向の前方から見たアンテナ装置の断面積(機首向断面積と略す)をできるだけ小さくすることが必要である。アンテナ性能を変更せずにアンテナの機首向断面積を小さくする技術としては、複数の半円筒形アンテナ要素を回転可能なベースの上に載せたものがある(特許文献1参照)。すべてのアンテナ要素の仰角は同じになるように制御され、複数のアンテナ要素を広範囲な方向に向けることができる。このように構成されたアンテナ装置は、等価な開口径を持つ単一のアンテナで構成されたアンテナ装置と比較して、機首向断面積を小さくすることができる。
特開2005−510104号公報
従来技術では、アンテナ要素のすべてを1個の方位角を回転させるベースに搭載している。そのため、ベースの直径を小さくすると、アンテナ要素間の間隔が狭くなる。間隔が狭いと、アンテナが低い仰角を指向する場合には、アンテナ要素間の干渉やブロッキングが大きくなり、アンテナ利得が低下する。アンテナ要素間の間隔を広げると、低い仰角でのアンテナ要素間の干渉やブロッキングは軽減されるが、ベースがアンテナ要素の配置方向に長くなる。その結果、方位角を回転させるベースの直径が大きくなる。ベースの直径が大きくなると、搭載された航空機の進行方向から見たアンテナ装置の幅が広くなり、アンテナ装置の高さは低くても、機首向断面積が大きくなる。すなわち、アンテナ要素間の干渉やブロッキングによるアンテナ利得の低下と、機首向断面積を小さくすることとがトレードオフ関係にあるという課題がある。
この発明は上記のような問題点を解決するためになされたものであり、複数のアンテナ要素によって単一のアンテナを構成することで機首向断面積を小さくするアンテナ装置において、アンテナが低い仰角を指向する場合でもあっても、アンテナ利得を維持できるアンテナ装置を得ることを目的とする。
この発明に係るアンテナ装置は、衛星からの電波を受信して受信信号を生成するアンテナと、およびアンテナが向く方向である指向方向を変更するアンテナ駆動部とを有し、一列に配置された複数のアンテナユニットを有する。さらに、衛星が存在する方向と指向方向とが一致するように、アンテナ駆動部に与えられる指令値である方向指令値を生成する方向指令値生成部と、複数のアンテナが生成する受信信号の位相の差である位相差を算出する位相差算出部と、位相差に基づき複数の受信信号を合成する信号合成装置とを備える。
この発明によれば、アンテナが低い仰角を指向する場合でもあってもアンテナ利得を維持でき、かつ移動体の進行方向前方から見たアンテナ装置の断面積を小さくできる。
この発明の実施の形態1に係るアンテナ装置の側面図である。 実施の形態1に係るアンテナ装置の平面図である。 実施の形態1に係るアンテナ装置の正面図である。 実施の形態1に係るアンテナ装置の背面図である。 実施の形態1に係るアンテナ装置の機能ブロック図である。 実施の形態1に係るアンテナ装置が有する複数のアンテナが受信する電波の経路長差を説明する図である。 実施の形態1に係るアンテナ装置のアンテナが設置面に垂直な方向を向いている状態での平面図である。 実施の形態1に係るアンテナ装置の高さが最大になる状態での側面図である。 実施の形態1に係るアンテナ装置の高さが最大になる状態での正面図である。 第1の比較例としての同じ開口面積を有する1個のアンテナが設置面に垂直な方向を向いている状態での平面図である。 第1の比較例としての同じ開口面積を有する1個のアンテナの高さが最大になる状態での側面図である。 第2の比較例としての2個のアンテナが同じ方位軸の回りを回転するアンテナ装置のアンテナが設置面に垂直な方向を向いている状態での平面図である。 第2の比較例としての2個のアンテナが同じ方位軸の回りを回転するアンテナ装置の高さが最大になる状態での側面図である。 実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生している状態を説明する図である。 実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生する高度角でのアンテナの方位角とアンテナ利用率の関係を説明する図である。 実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生する別の高度角でのアンテナの方位角とアンテナ利用率の関係を説明する図である。 実施の形態1に係るアンテナ装置でアンテナの方位角を変化させて平均したアンテナ利用率と仰角の関係を説明する図である。 この発明の実施の形態2に係るアンテナ装置の機能ブロック図である。
実施の形態1
図1は、この発明の実施の形態1に係るアンテナ装置の側面図である。図2は、実施の形態1に係るアンテナ装置の平面図である。図3は、実施の形態1に係るアンテナ装置の正面図である。図4は、実施の形態1に係るアンテナ装置の背面図である。図5は、実施の形態1に係るアンテナ装置の機能ブロック図である。この実施の形態1に係るアンテナ装置100では、2個のアンテナユニット30A、30Bが航空機70の機首上部に、機体と平行に一列に決められた間隔で配置されている。アンテナユニットは、3個以上を1列に決められた間隔で配列してもよい。なお、機体の方向と機体の進行方向とは、同じ方向である。機体の方向を機首方向とも呼ぶ。
アンテナユニット30A、30Bは、機体70の機首上部にあるアンテナ設置面に設置される。アンテナ設置面に垂直な方向を機体垂直方向と呼ぶ。機首側のアンテナユニット30Aは、衛星からの電波を受信して受信信号を生成するアンテナ1Aと、アンテナ1Aが出力する受信信号を増幅する増幅器2Aと、アンテナ1Aが向く方向である指向方向を変更するアンテナ駆動部3Aと、アンテナ駆動部3Aを航空機70に固定する移動体固定部である機体固定部71Aとを有する。機尾側のアンテナユニット30Bも同様に、アンテナ1Bと、増幅器2Bと、アンテナ駆動部3Bと、機体固定部71Bとを有する。なお、アンテナ1Aとアンテナ1Bは同一の構成であり、アンテナ1A、1Bの両方に関する場合は、アンテナ1と表記する。増幅器2なども同様に表記する。
アンテナ装置100は、2個のアンテナ1A、1Bが生成する受信信号の位相差を算出する位相差算出部4と、アンテナ駆動部3に与えられるアンテナ1の指向方向の方向指令値を生成する方向指令値生成部5と、位相差算出部4が算出する位相差に基づき2個のアンテナ1A、1Bが出力し増幅された受信信号を合成する信号合成装置40とをさらに備える。信号合成装置40が出力する信号は、復調装置50(図示せず)により復調される。
信号合成装置40は、入力される2個の信号の位相が同期するように調整する2個の位相器6A、6Bと、位相器6A、6Bで位相が同期された信号を合成する合成器7とを有する。位相器6Aは、アンテナ1Aで受信した信号の位相を調整する。位相器6Bは、アンテナ1Bで受信した信号の位相を調整する。
アンテナ1A、1Bの受信信号が位相器6A、6Bにより位相が一致するように調整されているため、合成器7では最大合成され受信信号強度が2倍になる。こうして、アンテナ1Aおよびアンテナ1Bの2倍の開口面積を有する1個のアンテナで衛星からの信号を受信した場合と同等のアンテナ利得を得ることができる。
なお、位相差をゼロにすることが目的なので、一方の側の位相だけを調整することにして、位相器6A、6Bのどちらかを備えないようにしてもよい。位相差に基づき複数の受信信号の位相を合わせることができるように、必要な数の位相器を必要な箇所に設ければよい。
アンテナ1は、この発明の効果を最大限に利用するために、平面アンテナを使用することが望ましい。平面アンテナは、パラボラアンテナのような開口面形状の物理的な制約がなく、自由に開口面形状を決めることができる。平面アンテナを使用することで、開口面積およびアンテナ利得が同じアンテナであっても、横長の長方形の平面アンテナにできる。横長にすることで、低仰角を指向した場合でもアンテナ1の高さを低く抑えることができる。平面アンテナを使用したアンテナユニットを機体の方向に並べることで、図1から図4に示すように、高さを低くしたアンテナ装置を実現できる。
増幅器2は、アンテナ1から入力する受信信号を増幅して後段の位相器6に出力する。増幅器2は、受信信号の信号ノイズ比ができるだけ悪化しないように、アンテナ1の背面に設置する。他の位置に増幅器を設置してもよい。
アンテナ駆動部3は、アンテナ1の長手方向に平行かつアンテナ設置面に平行な高度軸31の回りにアンテナ1を回転可能に支持する高度角変更部32と、アンテナ設置面に垂直な方位軸の回りに高度角変更部32を機体固定部71に対して回転可能に支持する方位角変更部33とを有する。なお、方位軸と高度軸は互いに垂直である。ここで、高度角は、機体垂直方向と指向方向の間の角度である。仰角は、アンテナ設置面と指向方向との間の角度である。
平面アンテナを横から支持すると、支持する部材によりアンテナ装置の幅が大きくなる。アンテナ装置100の幅を大きくしないために、高度軸31をアンテナ1の背後に配置する構成としている。平面アンテナを横から支持する構成としてもよい。
高度角変更部32と方位角変更部33は、図示しないが、回転させる駆動力を発生するモータと、モータが発生する駆動力により回転させる駆動力伝達機構を有する。アンテナ駆動部3は、アンテナの方位角および高度角すなわちアンテナの指向方向を方向指令値に一致するようにモータを制御する駆動制御部34(図示せず)とを有する。
方向指令値生成部5は、機体70(厳密には、アンテナ設置面)に対する相対的な衛星が存在する方向である方向指令値を生成する。方向指令値を生成する上で、方向指令値生成部5は、電波を受信する衛星の位置情報と、GPS(Grobal positioning system)などにより取得した航空機の位置情報と、航空機に搭載されている慣性航法装置から取得する航空機の姿勢角度(ヨー角、ピッチ角、ロール角)を使用する。このように、何らかのデータに基づきアンテナの指向方向を決める方法を、オープン方式と呼ぶ。別の方法として、衛星から送信されてアンテナ装置が受信する信号の信号強度を測定し、信号強度が最大になるようにフィードバック制御でアンテナの指向方向を決めるクローズドループ方式がある。あるいは、オープン方式とクローズドループ方式とを組合わせたハイブリッド方式により、方向指令値を決めてもよい。これらのいずれかの方式により駆動制御部34に対する方向指令値が与えられて、駆動制御部34が、方向指令値から許容できる偏差以内でアンテナが衛星が存在する方向を指向するように、アンテナ駆動部3を駆動する。
位相差算出部4は、アンテナ1A、1Bから出力される受信信号を最適に合成するために必要な、各受信信号の間の位相差を演算し、信号合成装置40に出力する。図6を使用して、位相差の算出方法を説明する。図6は、実施の形態1に係るアンテナ装置が有する複数のアンテナが受信する電波の経路長差を説明する図である。方位角αは、アンテナの指向方向82をアンテナ設置面に垂直に投影した方位方向成分と機首方向81との間の角度である。高度角βは、機体垂直方向83とアンテナの指向方向82との間の角度である。アンテナユニット30A,30Bの方位軸の中心間の距離であるユニット間距離を変数Lで表す。ユニット間距離Lをアンテナの指向方向82に射影した距離である指向方向距離を変数Dで表す。図6の上部の平面図から分かるように、指向方向距離Dとユニット間距離Lの間には、以下の関係がある。
D=L*cosα (1)
図6の下部の側面図から分かるように、アンテナ設置面とアンテナの指向方向82の間の角度もβになる。したがって、アンテナ1A、1Bが受信する衛星からの信号の経路長差Eは、指向方向距離Dとの間に以下の関係がある。
E=D*sinβ (2)
式(1)と式(2)とを組み合わせて、以下の式が得られる。つまり、経路長差Eは、方位角αと高度角βとから決まる。
E=L*cosα*sinβ (3)
アンテナ1A、1Bが受信する衛星からの信号の位相差δは、経路長差Eを信号の波長λで割ることにより得られる。
アンテナ装置100の大きさに関して検討する。図7は、実施の形態1に係るアンテナ装置のアンテナが設置面に垂直な方向を向いている状態での平面図である。図8は、実施の形態1に係るアンテナ装置の高さが最大になる状態での側面図である。図9は、実施の形態1に係るアンテナ装置の高さが最大になる状態での正面図である。図7から図9は、アンテナ1が機首方向を向いている場合の図である。図9の正面図から分かるように、複数のアンテナユニットを機体の進行方向に並べても、機首向断面積は1個分のアンテナユニットのものとなることが、この発明の特長の1つである。
アンテナ1の幅を変数Wで表現し、高さを変数Hで表現する。アンテナ1の高度角βを変更する高度軸の中心とアンテナ1の電波を受信する開口面との距離(高度軸距離と呼ぶ)を変数dで表現する。高度軸31の中心を含みアンテナ1の開口面に垂直な平面と開口面が交差する直線が開口面を高さ方向に2分するような位置に、高度軸31は設ける。高度軸31の中心のアンテナ設置面からの高さは、アンテナ1の高さHの半分とする。
アンテナ1の方位角αを全方位360度の範囲で変化させ、高度角βを−90度から90度の範囲で変化させた場合に、アンテナ1が存在する可能性がある空間(アンテナ空間と呼ぶ)について検討する。アンテナ空間84の境界を図8と図9に点線で示す。アンテナ空間84は円盤状の空間になる。アンテナ空間84の直径を変数Wで表現し、高さを変数Hで表現する。側面図において高度軸31の中心から最も遠いアンテナ1の開口面の端部と高度軸31の中心を結ぶ直線がアンテナ設置面と平行になる場合に、アンテナ1の当該端部は方位軸の中心からの距離が最大になる。したがって、アンテナ空間84の直径Wは、以下の式で計算できる。なお、図7などの平面図に示すように、方位角変更部33の直径をアンテナ空間84の直径と同じにして表現する。
=√(W +H +d ) (4)
ここで、ユニット間距離Lは、それぞれのアンテナユニット30が支障なく回転できるようにする必要があり、以下を満足する必要がある。
L≧W (5)
図8に示すように、高度軸31の中心から最も遠いアンテナ1の開口面の端部が高度軸31の中心を含みアンテナ設置面に垂直な平面上に位置する時に、当該端部はアンテナ設置面からの距離が最大になる。したがって、アンテナ空間の高さH1は、以下の式で計算できる。
=H/2+√((H/2)+d ) (6)
機首方向から見た場合のアンテナ空間の断面積である機首向断面積を変数Sで表現すると、Sは以下の式で計算できる。厳密にはアンテナ空間の断面形状は角が丸いが、簡単のため長方形として計算する。
=W*H
=√(W +H +d )*(H/2+√((H/2)+d )) (7)
式(7)から分かるように、この発明に係るアンテナ装置では、機首向断面積Sがアンテナユニット30間の距離Lによらないという特長を持つ。
この発明により機首向断面積Sが小さくできることを説明するために、2つの比較例で機首向断面積を計算する。第1の比較例は、同じ開口面積を有する1個のアンテナである。図10は、第1の比較例としての同じ開口面積を有する1個のアンテナが設置面に垂直な方向を向いている状態での平面図である。図11は、第1の比較例としての同じ開口面積を有する1個のアンテナの高さが最大になる状態での側面図である。第1の比較例であるアンテナ装置100Xは、1個のアンテナ1Xを有する。アンテナ1Xの幅はこの実施の形態1と同じWであり、高さは2倍の2Hであり、高度軸距離はdである。第1の比較例でのアンテナ空間の直径を変数W2で表現し、アンテナ空間の高さを変数H2で表現し、機首向断面積を変数S2で表現する。
第1の比較例でのアンテナ空間の直径W2、高さH2および機首向断面積S2は、以下の式で計算できる。
=√(W +4H +d ) (8)
=H+√(H +d ) (9)
=W*H
=√(W +4H +d )*(H+√(H +d )) (10)
数値例により、この発明により機首向断面積が、第1の比較例よりも小さくなることを示す。アンテナの幅W=1.00m、高さH=0.30m、高度軸距離d=0.10mの場合で計算すると、この発明のアンテナ装置100では以下のようになる。
=√(1.00+0.30+0.10)=1.049m
=0.30/2+√((0.30/2)+0.10)=0.330m
=W*H=1.049*0.330=0.346m
第1の比較例のアンテナ装置100Xに対して計算すると、以下のようになる。
=√(1.00+4*0.30+0.10)=1.170m
=0.30+√(0.30+0.10)=0.616m
=W*H=1.170*0.616=0.721m
第1の比較例に対する機首向断面積の減少率γは、以下のようになる。第1の比較例に対して約48%と半分未満に、機首向断面積を小さくできる。
γ=S/S=0.346/0.721=0.480
なお、高度軸距離dがより小さくなれば、減少率γはより小さくなる。d=0mであれば、γ=0.448になる。
第2の比較例として、特許文献1のように、1個の方位軸の回りに回転する台座に2個のアンテナを載せる場合について検討する。図12は、第2の比較例としての2個のアンテナが同じ方位軸の回りを回転するアンテナ装置のアンテナが設置面に垂直な方向を向いている状態での平面図である。第2の比較例のアンテナ装置100Yは、前側のアンテナ1YAと後側のアンテナ1YBとを有する。図12は、機首方向から見たアンテナの幅が最大になる方向をアンテナ1YA、1YBが指向している状態である。図13は、第2の比較例としての2個のアンテナが同じ方位軸の回りを回転するアンテナ装置の高さが最大になる状態での側面図である。アンテナ1YA、1YBはアンテナ1A、1Bと同じである。ここで、2個のアンテナ1YA、1YBの間には、間隔Lが存在する。
第2の比較例でのアンテナ空間の直径を変数Wで表現し、アンテナ空間の高さを変数Hで表現し、機首向断面積を変数Sで表現する。
第2の比較例でのアンテナ空間の直径W、高さHおよび機首向断面積Sは、以下の式で計算できる。
=√(W +(L+√(H +d ))) (11)
=H=H/2+√((H/2)+d ) (12)
=W*H
=√(W +(L+√(H +d )))
*(H/2+√((H/2)+d )) (13)
第1の比較例と同様に、アンテナの幅W=1.00m、高さH=0.30m、高度軸距離d=0.10mの場合で計算する。アンテナ間の距離Lは、この発明と比較できるようにL=Wとして計算する。なお、この発明に係るアンテナ装置の場合には、アンテナユニット30が回転できるように、アンテナユニット間の距離Lは、アンテナ空間の直径W以上である必要がある。
L=Wの場合での第2の比較例について計算した結果は、以下のようになる。
=√(1.00+(1.049+√(0.30+0.10))=1.692m
=H=0.330m
=W*H=1.692*0.330=0.558m
L=Wの場合では、第2の比較例に対する機首向断面積の減少率γは、以下のようになる。第2の比較例に対して約62%に、機首向断面積を小さくできる。
γ=S/S=0.346/0.6558=0.620
L=Wの場合の第2の比較例は、低仰角での遮蔽がこの発明と同程度であると想定する場合である。この発明の方が、機首向断面積を第2の比較例の半分近くまで小さくできることが分かる。
L=1.5Wの場合には、第2の比較例のアンテナ空間の幅Wは、W=2.177mになる。この発明でのアンテナ空間の幅Wはユニット間距離Lに依存しないので、L=1.5Wとしても変化しない。よって、L=1.5Wの場合には、γ3=0.4818と半分未満になる。低仰角でのアンテナの遮蔽が少なくなるように、ユニット間距離Lを大きくするほど、第2の比較例と比較した場合のこの発明の機首向断面積の減少率が大きくなる。
このように、この発明によれば、同じ開口面の面積を有する従来のアンテナ装置と比較して、機首向断面積を低減できる。ここでは、アンテナを2つに分割した場合を示したが、3個以上に分割する場合にも、機首向断面積を低減できる。
次に、この発明では、アンテナが低仰角を指向する場合に、方位角により前方のアンテナが後方のアンテナを遮蔽する面積が変化し、全体として遮蔽を低減できることを示す。図14は、実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生している状態を説明する図である。図14では、上側の平面図に示すように、遮蔽が発生している遮蔽部分85が存在する。遮蔽部分85には、ハッチングを施している。
アンテナ装置100で、アンテナの指向方向から見た際の前後のアンテナが重複する部分の高さを、重複高さと呼ぶ。また、アンテナが重複する部分の幅を、重複幅と呼ぶ。重複高さを変数GH1で表現し、重複幅を変数GW1で表現し、遮蔽部分の面積を変数GS1で表現する。
図14の下部の側面図に示すように、機体面垂直方向83とアンテナ指向方向82との間の角度が高度角βなので、アンテナ1A、1Bの上端を結ぶ線とアンテナの開口面との間の角度もβとなる。したがって、アンテナ1Aの上端のすぐ上を通る電波は、アンテナ1Bの開口面の上端からL*cosα*cosβだけ下の位置に到達する。この位置とアンテナ1Bの上端との間の距離が、アンテナ1Bの高さH以上であれば、前後のアンテナは指向方向から見て重ならない。よって、重複高さGH1は以下の式で計算できる。
H1=max(0, H−L*cosα*cosβ) (14)
第2の比較例で遮蔽が発生する最小の高度角を遮蔽開始高度角と呼び、変数βs0で表す。遮蔽開始高度角βs0は、この発明のアンテナ装置100において、方位角αが0度の場合に高さ方向で重複する部分が発生する最小の高度角でもある。遮蔽開始高度角βs0は、以下の式で計算できる。
βs0=cos-1(H/L) (15)
高さ方向で重複する部分が発生する高度角βにおいて、高さ方向で重複する部分が発生する方位角αである遮蔽開始方位角αは、以下の式で計算できる。
α=0 for β≧βs0 (16)
α=cos-1(H/(L*cosβ)) for β<βs0 (17)
図14の上部の平面図に示すように、指向方向82の方位方向の成分(アンテナの指向方向82をアンテナ設置面に投影した方向)と機首方向81との間の角度は、方位角αである。アンテナ1A、1Bの図における左上の角どうしを結ぶ線分の長さはユニット間距離Lとなり、この線分は機首方向81と平行である。アンテナ1Aの図における上端を通り指向方向82に平行な直線とアンテナ1Bとの交点は、アンテナ1Bの図における上端から、L*sinαだけ図における下側の距離の位置に存在する。このアンテナ1Aにより遮蔽される範囲の境界が、アンテナ1Bの開口面よりも図における下側に位置する場合に、重複幅GW1はゼロになる。よって、重複幅Gw1は以下の式で計算できる。
W1=max(0, W−L*sinα) (18)
式(18)から、方位角αが大きいと、アンテナの幅方向での前後のアンテナ間で重複する部分が存在しないことが分かる。前後のアンテナが幅方向で重複する部分が発生する最大の方位角αである遮蔽終了方位角αは、以下の式で計算できる。ユニット間距離Lを大きくするほど、遮蔽終了方位角αが小さくなる。
α=sin−1(W/L) (19)
式(19)に示すように、方位角αが大きい、すなわち航空機の進行方向と指向方向の方位角成分との角度差が大きい場合に、高度角βによらず遮蔽が発生しないことが、従来技術にはなかったこの発明の特長である。
式(14)と式(18)を組合せると、遮蔽部分の面積GS1は、以下の式で計算できる。
S1=GH1*GW1
=max(0, H−L*cosα*cosβ)
*max(0, W−L*sinα) (20)
α≧αになると遮蔽が発生しなくなるので、遮蔽が発生する高度角βには下限が存在する。どこかの方位角αで遮蔽が発生する高度角βの下限である遮蔽下限高度角βsmは、以下の式で計算できる。
βsm=cos-1(H/√(L−W )) (21)
実施の形態1の遮蔽部分の面積GS1を計算する式(20)には、方位角αも含まれる。つまり、方位角αが変化すると、遮蔽部分の面積GS1が変化する。アンテナの遮蔽部分の面積GS1のそのアンテナの開口面積に対する割合を遮蔽率と呼び、変数K(α,β)で表現する。遮蔽を考慮したアンテナ全体のアンテナ利用率を、変数M(α,β)で表現する。遮蔽率K(α,β)とアンテナ利用率M(α,β)は、以下の式で計算できる。遮蔽部分の面積GS1も、方位角αと高度角βの関数であることを示すためGS1(α,β)と表記する。
(α,β)=GS1(α,β)/(H*W) (22)
(α,β)=1.0−0.5*K(α,β) (23)
第2の比較例のアンテナ装置での遮蔽面積について検討する。第2の比較例のアンテナ装置での重複高さを変数GH2で表現し、重複幅を変数GW2で表現し、遮蔽部分の面積を変数GS2で表現する。第2の比較例では、指向方向距離Dは方位角αによらずLで一定である。そのため、重複高さGH2は、以下の式で計算できる。
H2=max(0, H−L*cosβ) (24)
第2の比較例では、方位軸の回りに回転しても常に前方のアンテナの指向方向の真後ろに後方のアンテナが存在する。そのため、重複幅GW2は、以下の式で計算できる。
W2=W (25)
したがって、遮蔽部分の面積変数GS2は、以下の式で計算できる。
S2=GH2*GW2
=max(0, H−L*cosβ)*W (26)
第2の比較例のアンテナ装置での遮蔽面積GH2は高度角βに依存し方位角αに依存しないので、遮蔽率Kとアンテナ利用率Mは、高度角βだけの関数として、以下のように表現できる。
(β)=GS2(β)/(H0*W0) (27)
(β)=1.0−0.5*K(β) (28)
アンテナ装置100では、遮蔽開始高度角βs0では、0<α<αの範囲では遮蔽が発生する。第2の比較例のアンテナ装置では、遮蔽開始高度角βs0では、方位角αによらず、遮蔽は発生しない。したがって、高度角βが遮蔽開始高度角βs0付近では、方位角によっては、この発明のアンテナ装置の遮蔽率の方が第2の比較例よりも大きくなる場合がある。図15を使用して、方位角αによりどの程度、この発明のアンテナ装置のアンテナ利用率が低下するかを説明する。図15は、実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生する高度角でのアンテナの方位角とアンテナ利用率の関係を説明する図である。図15では、高度角βは、L=Wの場合の遮蔽開始高度角βs0(=79.5度、仰角で10.5度)である。実線で示すグラフ91は、この発明のアンテナ利用率Mである。破線で示すグラフ92は、第2の比較例でのアンテナ利用率Mである。図15から分かるように、方位角αが40度付近で、この発明のアンテナ利用率Mが約96%まで低下する。アンテナ利用率Mの低下しても、約96%以上を確保できれば、運用上で問題ではない。
高度角βがより大きい場合として、高度角βが、L=1.5Wの場合のアンテナ装置100の遮蔽開始高度角βs0(=82.3度、仰角で7.7度)である場合を図16に示す。図16は、実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生する別の高度角でのアンテナの方位角とアンテナ利用率の関係を説明する図である。図16において、実線で示すグラフ93は、アンテナ装置100(L=Wの場合)のアンテナ利用率Mである。破線で示すグラフ94は、第2の比較例のアンテナ利用率Mである。一点鎖線で示すグラフ95は、アンテナ装置100(L=1.5Wの場合)のアンテナ利用率Mである。アンテナ装置100(L=Wの場合)のアンテナ利用率Mは、方位角αが0度では約84%に低下する。しかし、αが大きくなるとアンテナ利用率Mはほぼ直線状に大きくなり、αが約71度以上ではアンテナ利用率は100%になる。アンテナ装置100(L=1.5Wの場合)のアンテナ利用率Mは、αが約40度以下の範囲で、最も低下した場合で約98%まで低下する。第2の比較例でのアンテナ利用率Mは、方位角αによらず、約84%である。この発明により、方位角αが大きい場合にアンテナ利用率が改善することが分かる。この発明では、ユニット間距離Lを大きくすると、機首向断面積を大きくすることなく、アンテナ利用率の低下を小さくできることが分かる。
方位角αの分布確率がどの方位でも同じと仮定して、異なる方位角αでの遮蔽部分の面積GS1の平均により、遮蔽部分の面積の大きさを評価する。
遮蔽部分の平均面積GSAは、下に示す式で計算できる。なお、方位角αに関しては、前後のアンテナの位置関係は、正負対称かつ90度(=π/2[rad])に対しても対称なので、αの積分範囲は0からπ/2[rad]とする。
SA=(1/π)∫GS1dα (29)
導出の過程は省略するが、どこかの方位角αで遮蔽が発生する高度角β(≧βsm)での遮蔽部分の平均面積GSAは、以下の式で計算できる。
SA=(2/π)*H*W
*(αF−α−(L/W)*(cosα−cosαF)
−(W/H)*(cosβ/2)
+(L*cosβ/H)*sinα
−(L*cosβ/(2H*W))*sinα ) (30)
方位角αが0度で高さ方向に重複する部分が発生する高度角β(≧βs0)での遮蔽部分の平均面積GSAは、以下の式で計算できる。
SA=(2/π)*H*W
*(αF−(L/W)*(1−cosαF)−(W/H)*(cosβ/2)) (31)
遮蔽部分の平均面積GSAから求める遮蔽率KA1とアンテナ利用率MA1を以下のように定義する。
A1(β)=GSA(β)/(H*W) (32)
A1(β)=1.0−0.5*KA1(β) (33)
遮蔽部分の平均面積が仰角に対してどのように変化するかを考察する。図17は、実施の形態1に係るアンテナ装置でアンテナの方位角を変化させて平均したアンテナ利用率と仰角の関係を説明する図である。図17において、実線で示すグラフ96は、アンテナ装置100(L=Wの場合)のアンテナ利用率MA1である。破線で示すグラフ97は、第2の比較例(L=Wの場合)のアンテナ利用率Mである。一点鎖線で示すグラフ98は、アンテナ装置100(L=1.5Wの場合)のアンテナ利用率MA1である。二点鎖線で示すグラフ99は、第2の比較例(L=1.02Hの場合)のアンテナ利用率Mである。L=1.02Hの場合は、第2の比較例での機首向断面積をできるだけ小さくする場合である。なお、L=1.02Hとしている理由は、アンテナには厚みがあるので、L=Hの場合には、隣接するアンテナが干渉して、アンテナが設置面垂直方向を向くことができないからである。
L=Wの場合での第2の比較例のアンテナ利用率Mは、仰角が16度(高度角βで74度)より小さくなると急激に低下して、仰角が0度(高度角βで90度)では、50%まで低下する。また、L=1.02Hの場合では、仰角が80度(高度角βで10度)ぐらいから低下しはじめ、サインカーブで減少して仰角が30度(高度角βで60度)では、75%まで低下する。第2の比較例では、機首向断面積を小さくすると前後のアンテナの間の遮蔽が大きくなる。仰角が16度(高度角βで74度)以上では遮蔽が発生しないようにすると、機首向断面積がこの発明の場合の1.5倍程度になる。このように、第2の比較例では、機首向断面積の減少と遮蔽の発生を抑制することとが、トレードオフの関係にある。
これに対して、この発明ではL=Wの場合は、仰角が0度(高度角βで90度)でもアンテナ利用率MA1が約83%となる。これは、方位角αが大きいと遮蔽が発生せず、遮蔽が発生する場合でも遮蔽面積が小さくなるからである。さらに、L=1.5Wにすると、仰角が0度(高度角βで90度)でもアンテナ利用率MA1が90%以上を維持できる。
このように、この発明では、前後のアンテナを別の方位軸で回転させることにより、方位角が大きくなると、前後のアンテナの重なりが発生しなくなる。そのため、第2の比較例よりも、この発明の方が、アンテナが低仰角を指向する場合のアンテナの遮蔽による有効な開口面の面積の減少が小さくなる。すなわち、アンテナの利用率すなわちアンテナ利得が低下する場合でも、アンテナ利得を許容できる下限以上にある状態を維持できる。
この発明によれば、仰角が0度に近いすなわち低仰角をアンテナが指向している場合でも、アンテナ利用率が80%程度以上を確保できることが分かる。第2の比較例ではアンテナ利用率の低下が大きくなる低仰角の場合に、この発明によるアンテナ利用率の改善率が大きくなる。第2の比較例でアンテナの遮蔽が始まる付近の高度角では、この発明の方がアンテナ利用率が低下するが、最大に低下した場合でも96%程度は確保できるので、アンテナ装置の運用上では問題にならない。
この実施の形態では、衛星からの電波を受信するアンテナ装置について説明したが、送受共用のアンテナ装置でも、受信に関してはこの発明を適用できる。航空機の場合で説明したが、車両、船舶など他の種類の移動体に対しても適用できる。高速で移動し、空気抵抗抗力をできるだけ小さくする必要がある移動体に適用すれば、この発明の効果は大きくなる。車両に搭載する場合でも、アンテナを搭載した状態での車高を低くする必要がある場合には、この発明が有効である。航空機以外の移動体の場合でも、移動体の進行方向から見たアンテナ装置の断面積を機首向断面積と呼ぶ。
2個のアンテナユニットを使用する場合を示したが、3個以上のアンテナユニットを使用してもよい。アンテナユニットおよびアンテナはすべて同じものである方が、機首向断
面積を最小化できる、製造コストを低減できるなどの点で有利である。しかし、必ずしもすべて同じアンテナユニットでなくてもよい。アンテナユニットとしては異なる部分がある場合でも、アンテナは同じ大きさである方が望ましい。アンテナ装置を設置する空間に制約がある場合は、制約に合わせて異なる大きさのアンテナユニットを使用してもよい。例えば、最も機首側のアンテナユニットだけを小さくするなどしてもよい。複数のアンテナユニットを機首方向に平行に配置したが、ずれ角が小さければ、平行でなくてもよい。
3個以上のアンテナユニットを使用する場合には、各アンテナユニットの方位軸の中心が1直線上にある方が機首向断面積を最小化できるので望ましい。直線からの方位軸のずれがそれほど大きくなければ、1直線上でなくてもよい。すべてのアンテナユニットを通る直線が引けるように、アンテナユニットを1列に配置すればよい。ユニット間距離は同じである方が望ましいが、同じでなくてもよい。
以上のことは、他の実施の形態にもあてはまる。
実施の形態2
実施の形態2は、アンテナが受信した電波から生成したアナログ信号をデジタル信号に変換してから合成する場合である。図18は、この発明の実施の形態2の機能ブロック図である。実施の形態1の場合の図5と異なる点だけを説明する。
アンテナ装置100Aは、アンテナユニット30Aに対して設けられた周波数変換器8AおよびA/D変換器9A、アンテナユニット30Bに対して設けられた周波数変換器8BおよびA/D変換器9Bを有する。周波数変換器8Aは、アンテナユニット30Aが出力する信号をより低い周波数に周波数変換して出力する。A/D変換器9Aは、周波数変換器8Aから出力されるアナログの受信信号をデジタル受信信号にアナログデジタル変換して、デジタル受信信号を出力する。同様に、周波数変換器8Bは、アンテナユニット30Bが出力する信号をより低い周波数に周波数変換して出力する。A/D変換器9Bは、周波数変換器8Bから出力される受信信号をアナログデジタル変換して、デジタル受信信号を出力する。A/D変換器9は、周波数変換器8から出力される受信信号を決められたサンプリング周期で決められたビット数のデジタル信号であるデジタル受信信号に変換する連続離散変換器である。
アンテナ装置100Aは、位相差算出部4が算出する位相差に基づき、A/D変換器9AおよびA/D変換器9Bから出力される受信信号のデジタル受信信号を、位相を合わせて電子的に合成演算する復調演算部15を有する。
周波数変換器8は、衛星からの受信信号の周波数をより低い周波数に周波数変換し、後段のA/D変換器9でデジタル受信信号に変換しやすくする。
復調演算部15は、A/D変換器9AおよびA/D変換器9Bから出力されるデジタル受信信号を、位相差算出部4が算出する位相差を用いて、位相を変化させる位相シフト演算を行ってから加算することで受信信号の合成を行った後に、データの復調演算を実行する。
実施の形態2は、受信信号の合成がデジタル信号に対する信号処理でなされるため、位相器が不要になり装置が簡素化される。また、アナログ信号を処理する位相器に比べて、デジタル信号を処理する場合には、位相を移動できる範囲が大きくなる。
なお、本願発明はその発明の精神の範囲内において各実施の形態の自由な組み合わせ、あるいは各実施の形態の変形や省略が可能である。
100、100A、100X、100Y アンテナ装置
30A、30B アンテナユニット
70 機体
71A、71B 機体固定部(移動体固定部)
1A、1B、1X、1YA、1YB アンテナ
2A、2B 増幅器
3A、3B アンテナ駆動部
31A、31B 高度軸
32A、32B 高度角変更部
33A、33B 方位角変更部
34 駆動制御部
4 位相差算出部
5 方向指令値生成部
40 信号合成装置
6A、6B 位相器
7 合成器
50 復調装置
81 機首方向
82 指向方向
83 機体面垂直方向
84 アンテナ空間
85 遮蔽部分
91、92、93、94、95、96,97、98、99 グラフ
8A、8B 周波数変換器
9A、9B A/D変換器9A
15 復調演算部
この発明に係るアンテナ装置は、一列に配置された複数のアンテナユニットを有する。それぞれのアンテナユニットが、衛星からの電波を受信して受信信号を生成するアンテナと、アンテナが向く方向である指向方向の方位角および高度角を変更するアンテナ駆動部とを有する。さらに、衛星が存在する方向と指向方向とが一致するように、アンテナ駆動部に与えられる指令値である方向指令値を生成する方向指令値生成部と、複数のアンテナが生成する受信信号の位相の差である位相差を算出する位相差算出部と、位相差に基づき複数の受信信号を合成する信号合成装置とを備える。
アンテナ装置100では、遮蔽開始高度角βs0では、0<α<αの範囲では遮蔽が発生する。第2の比較例のアンテナ装置では、遮蔽開始高度角βs0では、方位角αによらず、遮蔽は発生しない。したがって、高度角βが遮蔽開始高度角βs0付近では、方位角によっては、この発明のアンテナ装置の遮蔽率の方が第2の比較例よりも大きくなる場合がある。図15を使用して、方位角αによりどの程度、この発明のアンテナ装置のアンテナ利用率が低下するかを説明する。図15は、実施の形態1に係るアンテナ装置でアンテナの遮蔽が発生する高度角でのアンテナの方位角とアンテナ利用率の関係を説明する図である。図15では、高度角βは、L=Wの場合の遮蔽開始高度角βs0(=79.5度、仰角で10.5度)である。実線で示すグラフ91は、この発明のアンテナ利用率Mである。破線で示すグラフ92は、第2の比較例でのアンテナ利用率Mである。図15から分かるように、方位角αが40度付近で、この発明のアンテナ利用率Mが約96%まで低下する。アンテナ利用率M 低下しても、約96%以上を確保できれば、運用上で問題ではない。
2個のアンテナユニットを使用する場合を示したが、3個以上のアンテナユニットを使用してもよい。アンテナユニットおよびアンテナはすべて同じものである方が、機首向断面積を最小化できる、製造コストを低減できるなどの点で有利である。しかし、必ずしもすべて同じアンテナユニットでなくてもよい。
ンテナユニットとしては異なる部分がある場合でも、アンテナは同じ大きさである方が望ましい。アンテナ装置を設置する空間に制約がある場合は、制約に合わせて異なる大きさのアンテナユニットを使用してもよい。例えば、最も機首側のアンテナユニットだけを小さくするなどしてもよい。複数のアンテナユニットを機首方向に平行に配置したが、ずれ角が小さければ、平行でなくてもよい。
この発明に係るアンテナ装置は、移動体の進行方向に一列に配置された複数のアンテナユニットを有する。それぞれのアンテナユニットが、衛星からの電波を受信して受信信号を生成するアンテナと、アンテナが向く方向である指向方向の方位角および高度角を変更するアンテナ駆動部とを有する。アンテナ駆動部は移動体に固定される。さらに、衛星が存在する方向と指向方向とが一致するように、アンテナ駆動部に与えられる指令値である方向指令値を生成する方向指令値生成部と、複数のアンテナが生成する受信信号の位相の差である位相差を算出する位相差算出部と、位相差に基づき複数の受信信号を合成する信号合成装置とを備える。

Claims (7)

  1. 衛星からの電波を受信して受信信号を生成するアンテナと、前記アンテナが向く方向である指向方向を変更するアンテナ駆動部とを有し、一列に配置された複数のアンテナユニットと、
    前記衛星が存在する方向と前記指向方向とが一致するように、前記アンテナ駆動部に与えられる指令値である方向指令値を生成する方向指令値生成部と、
    複数の前記アンテナが生成する前記受信信号の位相の差である位相差を算出する位相差算出部と、
    前記位相差に基づき複数の前記受信信号を合成する信号合成装置とを備えたアンテナ装置。
  2. 前記アンテナユニットは、前記アンテナ駆動部を移動体に固定する移動体固定部を有し、
    前記方向指令値生成部は、前記移動体の位置および姿勢と前記衛星の位置に基づき前記方向指令値を生成することを特徴とする請求項1に記載のアンテナ装置。
  3. 前記アンテナ駆動部は、前記アンテナの長手方向に平行な高度軸の回りに前記アンテナを回転可能に支持する高度角変更部と、前記高度軸に垂直な方位軸の回りに前記高度角変更部を前記移動体固定部に対して回転可能に支持する方位角変更部とを有することを特徴とする請求項2に記載のアンテナ装置。
  4. 複数の前記アンテナユニットは、前記移動体の進行方向に平行な一本の直線上にそれぞれの前記方位軸が存在するように配置されることを特徴とする請求項3に記載のアンテナ装置。
  5. 複数の前記アンテナユニットが有する前記アンテナが同じ大きさであることを特徴とする請求項1から請求項4までの何れか1項に記載のアンテナ装置。
  6. 前記信号合成装置は、前記位相差に基づき複数の前記受信信号の位相を合わせることができるように設けられた位相器と、前記位相器が出力する位相が調整された前記受信信号を合成する合成器とを有することを特徴とする請求項1から請求項5までの何れか1項に記載のアンテナ装置。
  7. 前記信号合成装置は、前記受信信号を決められたサンプリング周期で決められたビット数のデジタル信号であるデジタル受信信号に変換する前記アンテナごとに設けられた複数の連続離散変換器と、複数の前記デジタル受信信号を前記位相差に基づいて合成する復調演算部とを有することを特徴とする請求項1から請求項5までの何れか1項に記載のアンテナ装置。
JP2016570357A 2015-06-02 2015-06-02 アンテナ装置 Pending JPWO2016194127A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/065873 WO2016194127A1 (ja) 2015-06-02 2015-06-02 アンテナ装置

Publications (1)

Publication Number Publication Date
JPWO2016194127A1 true JPWO2016194127A1 (ja) 2017-06-22

Family

ID=57440385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016570357A Pending JPWO2016194127A1 (ja) 2015-06-02 2015-06-02 アンテナ装置

Country Status (4)

Country Link
US (1) US20180145407A1 (ja)
EP (1) EP3306749A4 (ja)
JP (1) JPWO2016194127A1 (ja)
WO (1) WO2016194127A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10419245B2 (en) * 2016-11-29 2019-09-17 Motorola Mobility Llc Method and apparatus for determining parameters and conditions for line of sight MIMO communication
US10250306B2 (en) 2016-11-29 2019-04-02 Motorola Mobility Llc Method and apparatus for determining parameters and conditions for line of sight MIMO communication
US10320471B1 (en) * 2018-06-26 2019-06-11 Panasonic Avionics Corporation Dynamic effective isotropic radiated power spectral density control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381509U (ja) * 1986-11-15 1988-05-28
JPH06169212A (ja) * 1992-11-30 1994-06-14 Nippon Hoso Kyokai <Nhk> 衛星放送移動受信装置
JP3767372B2 (ja) * 2000-11-22 2006-04-19 三菱電機株式会社 衛星追尾用アンテナ制御装置
JP2014187489A (ja) * 2013-03-22 2014-10-02 Furuno Electric Co Ltd ダイバーシチ受信装置、ダイバーシチ受信方法、及びダイバーシチ受信プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3032310B2 (ja) * 1991-02-28 2000-04-17 株式会社豊田中央研究所 追尾アンテナ装置
EP0600699B1 (en) * 1992-11-30 1999-05-06 All Nippon Airways Co. Ltd. Mobile receiver for satellite broadcast
JPH08250921A (ja) * 1995-03-10 1996-09-27 Alpine Electron Inc 車載用衛星放送受信機
JP2005510104A (ja) * 2001-11-09 2005-04-14 イーエムエス テクノロジイーズ インコーポレーテッド 移動車両用のアンテナ・アレイ
US7911400B2 (en) * 2004-01-07 2011-03-22 Raysat Antenna Systems, L.L.C. Applications for low profile two-way satellite antenna system
US7903038B2 (en) * 2006-12-08 2011-03-08 Lockheed Martin Corporation Mobile radar array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381509U (ja) * 1986-11-15 1988-05-28
JPH06169212A (ja) * 1992-11-30 1994-06-14 Nippon Hoso Kyokai <Nhk> 衛星放送移動受信装置
JP3767372B2 (ja) * 2000-11-22 2006-04-19 三菱電機株式会社 衛星追尾用アンテナ制御装置
JP2014187489A (ja) * 2013-03-22 2014-10-02 Furuno Electric Co Ltd ダイバーシチ受信装置、ダイバーシチ受信方法、及びダイバーシチ受信プログラム

Also Published As

Publication number Publication date
WO2016194127A1 (ja) 2016-12-08
EP3306749A1 (en) 2018-04-11
US20180145407A1 (en) 2018-05-24
EP3306749A4 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
US11817636B2 (en) System and method for a digitally beamformed phased array feed
WO2016194127A1 (ja) アンテナ装置
CN112965041A (zh) 球面相控阵天线波控自跟踪的差阵列划分方法
JP5606217B2 (ja) 追尾アンテナ装置
JP5907535B2 (ja) 衛星追尾アンテナシステムおよび衛星追尾アンテナ制御方法
CN115639849B (zh) 一种机电复合的目标过顶跟踪方法及装置
JP6698977B2 (ja) アンテナ装置、アンテナ制御方法、およびプログラム
CN109657195B (zh) 一种victs天线极化匹配方法
JP2010136258A (ja) 追尾アンテナ
JP2022135374A (ja) 移動体
JP2013005378A (ja) 太陽光発電衛星システム及び放射位相設定方法
JP6415397B2 (ja) 分散アレーアンテナ装置
EP2855277B1 (en) A method for geostationary station keeping of a spacecraft, and a system therefor
Schmidt Electronic scanning of 2-channel monopulse patterns Patent

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180410