JPWO2016104278A1 - Highly shrinkable polyamide fiber and blended yarn and woven / knitted fabric using the same - Google Patents
Highly shrinkable polyamide fiber and blended yarn and woven / knitted fabric using the same Download PDFInfo
- Publication number
- JPWO2016104278A1 JPWO2016104278A1 JP2016512722A JP2016512722A JPWO2016104278A1 JP WO2016104278 A1 JPWO2016104278 A1 JP WO2016104278A1 JP 2016512722 A JP2016512722 A JP 2016512722A JP 2016512722 A JP2016512722 A JP 2016512722A JP WO2016104278 A1 JPWO2016104278 A1 JP WO2016104278A1
- Authority
- JP
- Japan
- Prior art keywords
- polyamide
- shrinkage
- yarn
- fiber
- amorphous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 119
- 239000004952 Polyamide Substances 0.000 title claims abstract description 102
- 229920002647 polyamide Polymers 0.000 title claims abstract description 102
- 239000004744 fabric Substances 0.000 title claims abstract description 61
- 229920006020 amorphous polyamide Polymers 0.000 claims abstract description 66
- 229920006039 crystalline polyamide Polymers 0.000 claims abstract description 65
- 238000009835 boiling Methods 0.000 claims abstract description 43
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 41
- 230000008961 swelling Effects 0.000 abstract description 16
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000009987 spinning Methods 0.000 description 47
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 43
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 40
- 230000035882 stress Effects 0.000 description 35
- 238000000034 method Methods 0.000 description 28
- 238000002844 melting Methods 0.000 description 22
- 230000008018 melting Effects 0.000 description 22
- 229920002292 Nylon 6 Polymers 0.000 description 21
- 238000010438 heat treatment Methods 0.000 description 20
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 18
- 238000005259 measurement Methods 0.000 description 18
- 239000002759 woven fabric Substances 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 15
- 238000002156 mixing Methods 0.000 description 14
- 229920000642 polymer Polymers 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 11
- 238000007334 copolymerization reaction Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- JCUZDQXWVYNXHD-UHFFFAOYSA-N 2,2,4-trimethylhexane-1,6-diamine Chemical compound NCCC(C)CC(C)(C)CN JCUZDQXWVYNXHD-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 239000013078 crystal Substances 0.000 description 7
- 238000004898 kneading Methods 0.000 description 7
- -1 polyhexamethylene Polymers 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 206010016322 Feeling abnormal Diseases 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- DJZKNOVUNYPPEE-UHFFFAOYSA-N tetradecane-1,4,11,14-tetracarboxamide Chemical compound NC(=O)CCCC(C(N)=O)CCCCCCC(C(N)=O)CCCC(N)=O DJZKNOVUNYPPEE-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 229920002302 Nylon 6,6 Polymers 0.000 description 4
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 238000009998 heat setting Methods 0.000 description 4
- 238000004949 mass spectrometry Methods 0.000 description 4
- 238000002074 melt spinning Methods 0.000 description 4
- 238000005191 phase separation Methods 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 150000004985 diamines Chemical class 0.000 description 3
- 238000010036 direct spinning Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N 4-[(4-amino-3-methylcyclohexyl)methyl]-2-methylcyclohexan-1-amine Chemical compound C1CC(N)C(C)CC1CC1CC(C)C(N)CC1 IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 2
- 241001131696 Eurystomus Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002427 irreversible effect Effects 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- IYDGMDWEHDFVQI-UHFFFAOYSA-N phosphoric acid;trioxotungsten Chemical compound O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.O=[W](=O)=O.OP(O)(O)=O IYDGMDWEHDFVQI-UHFFFAOYSA-N 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000000452 restraining effect Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 2
- LWBHHRRTOZQPDM-UHFFFAOYSA-N undecanedioic acid Chemical compound OC(=O)CCCCCCCCCC(O)=O LWBHHRRTOZQPDM-UHFFFAOYSA-N 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- IWTMSCUHCJHPPR-ACCUITESSA-N (E)-hexadec-2-enedioic acid Chemical compound OC(=O)CCCCCCCCCCCC\C=C\C(O)=O IWTMSCUHCJHPPR-ACCUITESSA-N 0.000 description 1
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- DPQHRXRAZHNGRU-UHFFFAOYSA-N 2,4,4-trimethylhexane-1,6-diamine Chemical compound NCC(C)CC(C)(C)CCN DPQHRXRAZHNGRU-UHFFFAOYSA-N 0.000 description 1
- HWRRQRKPNKYPBW-UHFFFAOYSA-N 2,4-dimethylcyclohexan-1-amine Chemical compound CC1CCC(N)C(C)C1 HWRRQRKPNKYPBW-UHFFFAOYSA-N 0.000 description 1
- GVNWZKBFMFUVNX-UHFFFAOYSA-N Adipamide Chemical compound NC(=O)CCCCC(N)=O GVNWZKBFMFUVNX-UHFFFAOYSA-N 0.000 description 1
- QEVGZEDELICMKH-UHFFFAOYSA-N Diglycolic acid Chemical compound OC(=O)COCC(O)=O QEVGZEDELICMKH-UHFFFAOYSA-N 0.000 description 1
- 239000004129 EU approved improving agent Substances 0.000 description 1
- JJOJFIHJIRWASH-UHFFFAOYSA-N Eicosanedioic acid Natural products OC(=O)CCCCCCCCCCCCCCCCCCC(O)=O JJOJFIHJIRWASH-UHFFFAOYSA-N 0.000 description 1
- 101000576320 Homo sapiens Max-binding protein MNT Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920000007 Nylon MXD6 Polymers 0.000 description 1
- 229920006121 Polyxylylene adipamide Polymers 0.000 description 1
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 description 1
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- QFTYSVGGYOXFRQ-UHFFFAOYSA-N dodecane-1,12-diamine Chemical compound NCCCCCCCCCCCCN QFTYSVGGYOXFRQ-UHFFFAOYSA-N 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 1
- 229920006017 homo-polyamide Polymers 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- SXJVFQLYZSNZBT-UHFFFAOYSA-N nonane-1,9-diamine Chemical compound NCCCCCCCCCN SXJVFQLYZSNZBT-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 238000009958 sewing Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- KLNPWTHGTVSSEU-UHFFFAOYSA-N undecane-1,11-diamine Chemical compound NCCCCCCCCCCCN KLNPWTHGTVSSEU-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/88—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
- D01F6/90—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyamides
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/283—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Artificial Filaments (AREA)
- Knitting Of Fabric (AREA)
- Woven Fabrics (AREA)
Abstract
熱収縮応力(H)、沸騰水収縮率(B)が高い収縮特性を有するポリアミド繊維によって、少なくとも一部に高収縮性ポリアミド繊維を用いた混繊糸は嵩高性を有し、少なくとも一部に高収縮性を有するポリアミド繊維および/又は混繊糸を用いた織編物は、ふくらみ感、ソフト感のある高密度な織編物とすることができる高収縮ポリアミド繊維を提供する。高収縮性ポリアミド繊維は、結晶性ポリアミドと非晶性ポリアミドが相溶し、それぞれの重量比率が結晶性ポリアミド:非晶性ポリアミド=90:10〜50:50、沸騰水収縮率(B)が20〜50%、熱収縮応力(H)が0.15cN/dtex以上であることを特徴とする。Due to the polyamide fiber having high shrinkage characteristics with high heat shrinkage stress (H) and boiling water shrinkage (B), the mixed yarn using the high shrinkage polyamide fiber at least partially has bulkiness and at least partially A woven or knitted fabric using a polyamide fiber and / or mixed yarn having high shrinkage provides a high shrinkage polyamide fiber that can be formed into a high-density woven or knitted fabric having a feeling of swelling and softness. The highly shrinkable polyamide fiber is a mixture of crystalline polyamide and amorphous polyamide, and the weight ratio of each is crystalline polyamide: amorphous polyamide = 90: 10-50: 50, and the boiling water shrinkage ratio (B) is It is characterized by being 20 to 50% and heat shrinkage stress (H) being 0.15 cN / dtex or more.
Description
本発明は高収縮性を有するポリアミド繊維およびそれを一部に用いた混繊糸および織編物に関するものである。 The present invention relates to a polyamide fiber having high shrinkage and a blended yarn and a woven or knitted fabric using the polyamide fiber as a part thereof.
近年、これまでの繊維には見られなかった特殊繊維を用いた織物などの縫製品の開発が活発である。その中で高収縮性を付与した繊維を利用した例は多く、例えば熱収縮性の異なる2種の繊維を混合した混繊糸や、熱収縮性の高い原糸を製織した後に沸騰水やスチーム等で熱処理して嵩高性やふくらみ感を持たせ、風合いや表面特性を改良した織物の開発が数多くなされている。 In recent years, there has been active development of sewing products such as woven fabrics using special fibers not found in conventional fibers. Among them, there are many examples using fibers imparted with high shrinkage, for example, mixed yarn obtained by mixing two kinds of fibers having different heat shrinkability, or boiling water or steam after weaving raw yarn with high heat shrinkability. Numerous developments have been made on fabrics that have been improved in texture and surface properties by heat treatment such as to give them a bulky and bulging feel.
高収縮性を付与した繊維の代表例として、高収縮性ポリエステル繊維あるが、ポリエステル繊維はポリアミド繊維と比較してヤング率が高い特性があるために、熱処理して収縮させた後の風合いが硬く、衣料用途としての快適性に問題があった。一方、ポリアミド繊維はヤング率が低く柔らかな風合いが得られ、耐摩耗性などの優れた特性を有することから衣料用途に好適に用いられるが、更なる、機能付与のために高収縮性ポリアミド繊維について、多数の開発が行なわれている。 A typical example of fibers imparted with high shrinkage is high-shrinkage polyester fibers, but polyester fibers have a higher Young's modulus than polyamide fibers, so the texture after heat treatment and shrinkage is hard. There was a problem with comfort as clothing. On the other hand, the polyamide fiber has a low Young's modulus and a soft texture, and has excellent properties such as wear resistance. Therefore, the polyamide fiber is suitably used for clothing applications. A lot of development has been done.
例えば特許文献1には、沸騰水収縮率が15%以上である高収縮性ポリアミド繊維が開示されている。また、特許文献2には、収縮応力が220〜400mg/dの高収縮性ポリアミド繊維が開示されている。また、特許文献3には、収縮応力が0.15cN/dtex以上である高収縮性ポリアミド繊維が開示されている。 For example, Patent Document 1 discloses a highly shrinkable polyamide fiber having a boiling water shrinkage ratio of 15% or more. Patent Document 2 discloses a highly shrinkable polyamide fiber having a shrinkage stress of 220 to 400 mg / d. Patent Document 3 discloses a highly shrinkable polyamide fiber having a shrinkage stress of 0.15 cN / dtex or more.
しかしながら、特許文献1に開示されている高収縮性ポリアミド繊維は、他の繊維と混繊して異収縮混繊糸とするためのものであるが、沸騰水収縮率(B)が高くても熱収縮応力(H)が低い場合、十分に収縮されず、嵩高性やふくらみ感のある混繊糸を得ることができなかった。また、沸騰水収縮率(B)が高くて熱収縮応力(H)が低い高収縮性ポリアミド繊維を用いた織物に熱処理を施しても、熱収縮応力(H)が小さいため十分に収縮されず、嵩高性やふくらみ感のある高密度の織物を得ることはできなかった。 However, the high-shrinkage polyamide fiber disclosed in Patent Document 1 is for blending with other fibers to form a different-shrinkage mixed yarn, but even if the boiling water shrinkage rate (B) is high. When the heat shrinkage stress (H) was low, the fiber was not sufficiently shrunk, and a mixed yarn with bulkiness and a feeling of swelling could not be obtained. In addition, even when heat treatment is applied to a fabric using a high-shrinkage polyamide fiber having a high boiling water shrinkage ratio (B) and a low heat shrinkage stress (H), the heat shrinkage stress (H) is small, so that it does not shrink sufficiently. It was not possible to obtain a high-density fabric with bulkiness and swell.
特許文献2、3に開示されている高収縮性ポリアミド繊維は、繊維中のポリマー同士の相溶性が悪いために曳糸性に乏しく、衣料用途において、やわらかい風合いが主流であり、かつ高速製糸による高効率生産が主流であるため、単糸細繊度化や高速紡糸に対応することができないという問題があった。単糸細繊度化できないことからふくらみ感、ソフト感のある高密度な織物は得られなかった。また、この繊維を製造するために用いられるポリマーは共重合によって製造されるため、共重合ポリマーを製造するのに手間がかかり、製造コストも高くなるという問題があった。 The high-shrinkage polyamide fibers disclosed in Patent Documents 2 and 3 have poor spinnability due to poor compatibility between the polymers in the fibers, and a soft texture is mainstream in clothing applications, and due to high-speed yarn production. Since high-efficiency production is the mainstream, there was a problem that it was not possible to cope with single yarn fineness and high-speed spinning. Since the fineness of the single yarn could not be reduced, a high-density fabric with a feeling of swelling and softness could not be obtained. In addition, since the polymer used for producing the fiber is produced by copolymerization, there is a problem that it takes time and effort to produce the copolymer and the production cost is increased.
そこで、本発明では上記問題点を解決するものであり、熱収縮応力(H)、沸騰水収縮率(B)が高い収縮特性を有する高収縮性を有するポリアミド繊維を提供すること、およびこれによって、少なくとも一部に高収縮性ポリアミド繊維を用いた混繊糸が嵩高性を有し、少なくとも一部に高収縮性を有するポリアミド繊維および/又は混繊糸を用いた織編物が、ふくらみ感、ソフト感のある高密度な織編物とすることを提供することを課題とする。 Accordingly, the present invention solves the above-mentioned problems, and provides a polyamide fiber having high shrinkage having a high shrinkage characteristic such as heat shrinkage stress (H) and boiling water shrinkage (B), and thereby A woven or knitted fabric using a polyamide fiber and / or a mixed yarn having a high shrinkage at least partially has a bulkiness. It is an object to provide a high-density woven or knitted fabric with a soft feeling.
上記目的を達成するために、本発明の高収縮性ポリアミド繊維は、主として、次の構成を有する。すなわち、
(1)結晶性ポリアミドと、非晶性ポリアミドからなる繊維であって、結晶性ポリアミドと非晶性ポリアミドが相溶し、それぞれの重量比率が結晶性ポリアミド/非晶性ポリアミド=90/10〜50/50、沸騰水収縮率(B)が20〜50%、熱収縮応力(H)が0.15cN/dtex以上であることを特徴とする高収縮性ポリアミド繊維。
(2)総繊度が5〜80dtexであり単糸繊度が0.9〜3.0dtexであることを特徴とする(1)記載の高収縮性ポリアミド繊維。
(3)剛直非晶量が20〜45%であることを特徴とする(1)または(2)記載の高収縮性ポリアミド繊維。
(4)混繊糸の一部に(1)〜(3)いずれかに記載の高収縮性ポリアミド繊維を用いることを特徴とする混繊糸。
(5)織編物の一部に(1)〜(3)いずれかに記載の高収縮性ポリアミド繊維および/または(4)記載の混繊糸を用いることを特徴とする織編物。
である。In order to achieve the above object, the highly shrinkable polyamide fiber of the present invention mainly has the following constitution. That is,
(1) A fiber composed of a crystalline polyamide and an amorphous polyamide, wherein the crystalline polyamide and the amorphous polyamide are compatible, and the respective weight ratios are crystalline polyamide / amorphous polyamide = 90 / 10-10. A high-shrinkage polyamide fiber having a 50/50 boiling water shrinkage ratio (B) of 20 to 50% and a heat shrinkage stress (H) of 0.15 cN / dtex or more.
(2) The high shrinkage polyamide fiber according to (1), wherein the total fineness is 5 to 80 dtex and the single yarn fineness is 0.9 to 3.0 dtex.
(3) The highly shrinkable polyamide fiber according to (1) or (2), wherein the rigid amorphous amount is 20 to 45%.
(4) A blended yarn comprising the highly shrinkable polyamide fiber according to any one of (1) to (3) as a part of the blended yarn.
(5) A woven or knitted fabric characterized by using the highly shrinkable polyamide fiber according to any one of (1) to (3) and / or the mixed yarn according to (4) as a part of the woven or knitted fabric.
It is.
本発明の高収縮性ポリアミド繊維は、熱収縮応力(H)、沸騰水収縮率(B)が高く収縮特性に優れると共に、構成成分である結晶性ポリアミドおよび非晶性ポリアミドが相溶しているので、単糸細繊度化や高速紡糸することができる。熱収縮応力(H)、沸騰水収縮率(B)が高い収縮特性を有する高収縮性ポリアミド繊維によって、少なくとも一部に高収縮性ポリアミド繊維を用いた混繊糸は嵩高性を有し、少なくとも一部に高収縮性を有するポリアミド繊維および/又は混繊糸を用いた織編物は、ふくらみ感、ソフト感のある高密度な織編物とすることができる。 The highly shrinkable polyamide fiber of the present invention has high heat shrinkage stress (H) and boiling water shrinkage (B) and excellent shrinkage characteristics, and is compatible with crystalline polyamide and amorphous polyamide as constituent components. Therefore, single yarn fineness and high speed spinning can be achieved. The high-shrinkage polyamide fiber having high shrinkage property with high shrinkage stress (H) and boiling water shrinkage ratio (B), the mixed yarn using the high-shrinkage polyamide fiber at least partially has bulkiness, and at least A woven or knitted fabric using a polyamide fiber and / or mixed yarn having a high shrinkage in part can be a high-density woven or knitted fabric having a feeling of swelling and softness.
本発明の高収縮性ポリアミド繊維は、結晶性ポリアミドと非晶性ポリアミドからなる繊維である。結晶性ポリアミドは、結晶を形成し融点を有するポリアミドであり、いわゆる炭化水素基が主鎖にアミド結合を介して連結されたポリマーであり、ポリカプラミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリテトラメチレンアジパミド、1,4−シクロヘキサンビス(メチルアミン)と線状脂肪族ジカルボン酸との縮合重合型ポリアミドなど、及び、これらの共重合体もしくはこれらの混合物が挙げられる。ただし、均一な系を再現しやすく、安定した機能発現の点からホモのポリアミドを用いることが好ましい。 The highly shrinkable polyamide fiber of the present invention is a fiber composed of crystalline polyamide and amorphous polyamide. Crystalline polyamide is a polyamide that forms crystals and has a melting point, and is a polymer in which a so-called hydrocarbon group is connected to the main chain via an amide bond, and is composed of polycoupleramide, polyhexamethylene adipamide, polyhexamethylene sebaca. Examples thereof include amide, polytetramethylene adipamide, condensation-polymerized polyamide of 1,4-cyclohexanebis (methylamine) and linear aliphatic dicarboxylic acid, and a copolymer or a mixture thereof. However, it is preferable to use a homopolyamide in terms of easy reproduction of a uniform system and stable function expression.
結晶性ポリアミドは、ジアミン類、二塩基酸類からなる高分子量体であり、具体的なジアミン類としてはテトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−トリメチルヘキサメチレンジアミン、2,4,4−トリメチルヘキサメチレンジアミン、ビス−(4,4’−アミノシクロヘキシル)メタン、メタキシリレンジアミンなどがあげられる。二塩基酸類としてはグルタル酸、ピメリン酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジオン酸、ドデカジオン酸、ヘキサデカジオン酸、ヘキサデセンジオン酸、エイコサンジオン酸、ジグリコール酸、2,2,4−トリメチルアジピン酸、キシリレンジカルボン酸、1,4−シクロヘキサンジカルボン酸などが挙げられる。本発明の高収縮性ポリアミド繊維に用いる結晶性ポリアミドはいかなるものでもよいが、製造コスト、繊維の強度保持の両面からポリカプラミド、ポリヘキサメチレンアジパミドが好ましい。 Crystalline polyamide is a high molecular weight product composed of diamines and dibasic acids. Specific diamines include tetramethylene diamine, hexamethylene diamine, nonamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2 , 4-trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, bis- (4,4′-aminocyclohexyl) methane, metaxylylenediamine and the like. Dibasic acids include glutaric acid, pimelic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecadioic acid, hexadecadioic acid, hexadecenedioic acid, eicosandioic acid, diglycolic acid, 2, Examples include 2,4-trimethyladipic acid, xylylene dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, and the like. Any crystalline polyamide may be used for the highly shrinkable polyamide fiber of the present invention, but polycapramide and polyhexamethylene adipamide are preferred from the viewpoints of production cost and fiber strength retention.
本発明の高収縮性ポリアミド繊維における非結晶性ポリアミドは、結晶を形成せず融点をもたないポリアミドであり、例えば、イソフタル酸/テレフタル酸/ヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/ヘキサメチレンジアミン/ビス(3−メチル−4−アミノシクロヘキシル)メタンの重縮合体、イソフタル酸/2,2,4−トリメチルヘキサメチレンジアミン/2,2,4−トリメチルヘキサメチレンジアミンの重縮合体、テレフタル酸/2,2,4−トリメチルヘキサメチレンジアミン/2,2,4−トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/テレフタル酸/2,2,4−トリメチルヘキサメチレンジアミン/2,2,4−トリメチルヘキサメチレンジアミンの重縮合体、イソフタル酸/ビス(3−メチル−4−アミノシクロヘキシル)メタン/ω−ラウロラクタムの重縮合体、テレフタル酸/ビス(3−メチル−4−アミノシクロヘキシル)メタン/ω−ラウロラクタムの重縮合体等がある。また、これらの重縮合体を構成するテレフタル酸成分及び/又はイソフタル酸成分のベンゼン環が、アルキル基やハロゲン原子で置換されたものも含まれる。さらに、これらの非晶性ポリアミドは2種類以上併用してもよい。本発明の高収縮性ポリアミド繊維に用いる非晶性ポリアミドはいかなるものでもよいが、製造コスト、繊維の収縮特性の両面からイソフタル酸/テレフタル酸/ヘキサメチレンジアミンの重縮合体が好ましい。 The non-crystalline polyamide in the highly shrinkable polyamide fiber of the present invention is a polyamide which does not form crystals and does not have a melting point, such as a polycondensate of isophthalic acid / terephthalic acid / hexamethylenediamine, isophthalic acid / terephthalic acid / Hexamethylenediamine / bis (3-methyl-4-aminocyclohexyl) methane polycondensate, isophthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,2,4-trimethylhexamethylenediamine polycondensate Polycondensate of terephthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,2,4-trimethylhexamethylenediamine, isophthalic acid / terephthalic acid / 2,2,4-trimethylhexamethylenediamine / 2,2 , 4-Trimethylhexamethylenediamine polycondensate, isophthalic acid / Scan polycondensate of (3-methyl-4-aminocyclohexyl) methane / .omega.-laurolactam, there is a polycondensate of terephthalic acid / bis (3-methyl-4-aminocyclohexyl) methane / .omega.-laurolactam. Also included are those in which the benzene ring of the terephthalic acid component and / or isophthalic acid component constituting these polycondensates is substituted with an alkyl group or a halogen atom. Further, two or more of these amorphous polyamides may be used in combination. The amorphous polyamide used for the highly shrinkable polyamide fiber of the present invention may be any, but a polycondensate of isophthalic acid / terephthalic acid / hexamethylenediamine is preferred from the viewpoints of production cost and fiber shrinkage characteristics.
本発明の高収縮性ポリアミド繊維における、結晶性ポリアミドと非晶性ポリアミドの重量比率は、結晶性ポリアミド/非晶性ポリアミド=90/10〜50/50である。非晶性ポリアミドの重量比率が10重量%未満の場合、熱収縮応力(H)および沸騰水収縮率(B)の収縮特性が小さくなり、混繊糸を作製した際には、熱処理を施しても糸長差が発現しにくく十分な嵩高性を得ることができず、また、織物を作製した際には、熱処理を施しても十分に収縮されずふくらみ感、ソフト性のある高密度な織物を得ることができない。また、非晶性ポリアミドの重量比率が50重量%を超えると、熱収縮応力(H)および沸騰水収縮率(B)の収縮特性が高くなり過ぎ、熱処理後の織物の密度が過密になり、風合いが硬くなり、ふくらみ感、ソフト性に劣る。そのため、製造コスト、繊維の収縮特性の両面から結晶性ポリアミド/非晶性ポリアミド=80/20〜60/40であることが好ましく、70/30〜60/40であることがより好ましい。 The weight ratio of crystalline polyamide to amorphous polyamide in the highly shrinkable polyamide fiber of the present invention is crystalline polyamide / amorphous polyamide = 90/10 to 50/50. When the weight ratio of the amorphous polyamide is less than 10% by weight, the shrinkage characteristics of the heat shrinkage stress (H) and the boiling water shrinkage (B) are reduced. However, when the fabric is made, the fabric does not shrink sufficiently even if heat treatment is performed, and the fabric is soft and has a high density. Can't get. Moreover, when the weight ratio of the amorphous polyamide exceeds 50% by weight, the shrinkage characteristics of the heat shrinkage stress (H) and the boiling water shrinkage (B) become too high, and the density of the fabric after the heat treatment becomes too dense, The texture becomes stiff and inferior in swell and softness. Therefore, it is preferable that it is crystalline polyamide / amorphous polyamide = 80 / 20-60 / 40, and it is more preferable that it is 70 / 30-60 / 40 from both sides of manufacturing cost and the shrinkage | contraction characteristic of a fiber.
ここでいう重量比率とは、高収縮性ポリアミド繊維のプロトンNMRを測定し、アミド結合を形成するカルボキシル基のα位の水素に由来するシグナル(通常3ppm付近)のピーク面積(A)と、芳香族炭化水素に由来するシグナル(通常7ppm付近)のピーク面積(B)から結晶性ポリアミドと非晶性ポリアミドの繰り返し比を求める(A=結晶性ポリアミドの繰り返し数×2+非晶性ポリアミドの繰り返し数×2、B=非晶性ポリアミドの繰り返し数×4)。同じ高収縮性ポリアミド繊維について、質量分析を行うことで、ポリアミドの繰り返し単位の質量数を測定する。求めた繰り返し比とそれぞれのポリアミドの繰り返し単位の質量数の積から重量比率を算出されるものである。 The weight ratio here refers to a peak area (A) of a signal (usually around 3 ppm) derived from hydrogen at the α-position of a carboxyl group that forms an amide bond, as measured by proton NMR of a highly shrinkable polyamide fiber, and an aromatic The repeat ratio of the crystalline polyamide and the amorphous polyamide is determined from the peak area (B) of the signal derived from the aromatic hydrocarbon (usually around 7 ppm) (A = the number of repetitions of the crystalline polyamide × 2 + the number of repetitions of the amorphous polyamide) × 2, B = repetition number of amorphous polyamide × 4). The mass number of the repeating unit of polyamide is measured by performing mass spectrometry on the same highly shrinkable polyamide fiber. The weight ratio is calculated from the product of the obtained repetition ratio and the mass number of each polyamide repeating unit.
また高収縮性ポリアミド繊維には、必要に応じて、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤、発泡剤、帯電防止剤、成形性改良剤、強化剤等を添加してもよい。 For high-shrinkage polyamide fibers, pigments, heat stabilizers, antioxidants, weathering agents, flame retardants, plasticizers, mold release agents, lubricants, foaming agents, antistatic agents, moldability improving agents are added as necessary. A reinforcing agent or the like may be added.
本発明の高収縮性ポリアミド繊維は、結晶性ポリアミドと非晶性ポリアミドが互いに相溶している相溶系である。相溶系と非相溶系の判断は、3000倍のTEM観察結果において、直径10nm以上の分散相を有する海島の相分離構造が観察されたときは非相溶系、直径10nm以上の分散相を有する海島の相分離構造が観察されなかったときは相溶系と判定した。相溶系においては、繊維製造の際、紡糸口金吐出孔から溶融ポリマーを吐出した際の糸条の膨らみ(バラス効果)が小さく曳糸性に極めて優れ、これまでにない単糸細繊度化糸条の紡糸が可能となるばかりでなく、高速紡糸が可能となる。一方、非相溶系においては、バラス効果が大きく曳糸性に乏しく安定製糸できないため、単糸細繊度糸化や高速紡糸は実現できない。 The highly shrinkable polyamide fiber of the present invention is a compatible system in which crystalline polyamide and amorphous polyamide are compatible with each other. Judgment of compatible system and incompatible system is based on the result of 3000 times TEM observation, when a phase separation structure of a sea island having a dispersed phase having a diameter of 10 nm or more is observed, an incompatible system, a sea island having a dispersed phase having a diameter of 10 nm or more. When no phase separation structure was observed, it was determined as a compatible system. In compatible systems, during fiber production, when the molten polymer is discharged from the spinneret discharge hole, the swell of the yarn (ballast effect) is small and excellent in spinnability. This makes it possible to spin at a high speed. On the other hand, in the incompatible system, since the ballast effect is large and the spinnability is poor and stable spinning cannot be performed, it is impossible to realize single-fine fine yarn and high-speed spinning.
本発明の高収縮性ポリアミド繊維は、沸騰水収縮率(B)が20〜50%である。かかる範囲とすることにより、混繊糸を作製した際には、沸騰水やスチーム等で熱処理した際に収縮特性の異なる繊維との収縮差により糸長差が発現し、嵩高い混繊糸が得られる。また、織物を作製した際には、沸騰水やスチーム等で熱処理した際に十分に収縮しふくらみ感、ソフト感のある高密度な織物を得ることができる。沸騰水収縮率(B)が20%未満の場合、混繊糸を作製した際には、熱処理を施しても糸長差が発現しにくく十分な嵩高性を得ることができず、また、織物を作製した際には、熱処理を施しても十分に収縮されずふくらみ感、ソフト性のある高密度な織物を得ることができない。沸騰水収縮率(B)が50%を超えると、織物を作製した際には、熱処理を施した際に寸法変化が大きくなり過ぎ、織物の密度が過密になり、風合いが硬くなり、ふくらみ感、ソフト感が劣ることに加えて、織物の交錯点での目の詰まりかたに斑が生じ、収縮斑が生じるため、得られる織物の品位が劣る。高収縮性ポリアミド繊維の沸騰水収縮率(B)は好ましくは、25〜45%である。 The high-shrinkage polyamide fiber of the present invention has a boiling water shrinkage (B) of 20 to 50%. By making such a range, when a blended yarn is produced, when heat-treated with boiling water or steam, a yarn length difference is developed due to a shrinkage difference with a fiber having different shrinkage characteristics, and a bulky blended yarn is produced. can get. In addition, when the woven fabric is produced, it is possible to obtain a high-density woven fabric that is sufficiently contracted and swelled and soft when heat-treated with boiling water or steam. When the boiling water shrinkage (B) is less than 20%, when a blended yarn is produced, the yarn length difference is hardly exhibited even when heat treatment is performed, and sufficient bulkiness cannot be obtained. When the fabric is prepared, it is not sufficiently shrunk even if heat treatment is performed, and a high-density fabric with a feeling of swelling and softness cannot be obtained. When the boiling water shrinkage rate (B) exceeds 50%, when a woven fabric is produced, the dimensional change becomes too large when heat treatment is performed, the fabric density becomes too dense, the texture becomes hard, and the bulge is felt. In addition to being inferior in softness, spots are produced in the way the eyes are clogged at the intersection of the fabrics, resulting in shrinkage spots, resulting in inferior fabric quality. The boiling water shrinkage (B) of the highly shrinkable polyamide fiber is preferably 25 to 45%.
本発明の高収縮性ポリアミド繊維は、熱収縮応力(H)が0.15cN/dtex以上である。ここでいう熱収縮応力(H)とは、カネボウエンジニアリング社製KE−2型熱収縮応力測定機を用い、測定する繊維糸条を結び周長16cmのループとし、糸条の繊度(デシテックス)の1/30gの初荷重を掛け、昇温速度100℃/分で測定して、得られた熱応力曲線のピーク値を最大熱応力(cN/dtex)として測定されるものである。熱収縮応力(H)をかかる範囲とすることにより、混繊糸を作製した際には、沸騰水やスチーム等で熱処理した際に収縮特性の異なる繊維をひきつれて収縮することによって、より嵩高い混繊糸が得られる。また、織物を作製した際には、沸騰水やスチーム等で熱処理した際に収縮特性の異なる繊維を糸ひきつれて十分に収縮し、よりふくらみ感、ソフト性のある高密度な織物を得ることができる。0.15cN/dtex未満の場合、混繊糸を作製した際には、熱処理を施しても熱収縮応力(H)が足りず、糸長差が発現しにくく十分な嵩高性を得ることができず、また、織物を作製した際には、熱処理を施しても均一に収縮されず収縮斑を生じ、ふくらみ感、ソフト性のある高密度な織物を得ることができない。高収縮性ポリアミド繊維の熱収縮応力(H)は好ましくは0.20cN/dtex以上、より好ましくは0.25cN/dtex以上である。また、熱収縮応力が高くなりすぎると、織物を作製した際には、収縮するパワーが高くなり過ぎ、織物の交錯点での目が詰まりすぎるため、摩擦に弱くなり、毛羽や毛玉等が発生しやすくなるため、得られる織物の品位が低下する傾向がある。このため高収縮性ポリアミド繊維の熱収縮応力(H)の上限は好ましくは0.50cN/dtexである。 The highly shrinkable polyamide fiber of the present invention has a heat shrinkage stress (H) of 0.15 cN / dtex or more. The heat shrinkage stress (H) mentioned here is a KE-2 type heat shrinkage stress measuring machine manufactured by Kanebo Engineering Co., Ltd. The fiber yarn to be measured is tied into a loop with a circumference of 16 cm, and the yarn fineness (decitex) The initial load of 1/30 g is applied, the temperature is increased at a rate of 100 ° C./min, and the peak value of the obtained thermal stress curve is measured as the maximum thermal stress (cN / dtex). By making the heat shrinkage stress (H) in such a range, when a mixed fiber is produced, it is bulkier by pulling and contracting fibers having different shrinkage characteristics when heat-treated with boiling water or steam. A blended yarn is obtained. In addition, when fabrics are produced, when they are heat-treated with boiling water, steam, etc., fibers with different shrinkage characteristics are pulled tightly and sufficiently shrunk to obtain a dense fabric with a feeling of swelling and softness. it can. If it is less than 0.15 cN / dtex, the heat-shrinkage stress (H) is not sufficient even when heat treatment is performed, and the yarn length difference is difficult to be obtained and sufficient bulkiness can be obtained. In addition, when a woven fabric is produced, even if heat treatment is performed, the woven fabric is not uniformly contracted and shrinkage spots are generated, and a high-density woven fabric having a feeling of swelling and softness cannot be obtained. The heat shrinkage stress (H) of the highly shrinkable polyamide fiber is preferably 0.20 cN / dtex or more, more preferably 0.25 cN / dtex or more. Also, if the heat shrinkage stress becomes too high, when the woven fabric is produced, the shrinking power becomes too high, and the eyes at the intersection of the woven fabric are clogged too much. Since it becomes easy to generate | occur | produce, there exists a tendency for the quality of the obtained textiles to fall. For this reason, the upper limit of the heat shrinkage stress (H) of the highly shrinkable polyamide fiber is preferably 0.50 cN / dtex.
本発明の高収縮性ポリアミドは、沸騰水収縮率(B)と熱収縮応力(H)が前記範囲で収縮特性を発現することが重要である。つまり、沸騰水やスチーム等で熱処理した際の寸法変化を表す沸騰収縮率(B)と収縮するパワー(力)を表す熱収縮応力(H)を同時に満たすことが重要である。かかる範囲とすることにより、混繊糸を作製した際には、沸騰水やスチーム等で熱処理した際に収縮特性の異なる繊維との糸長差が発現し、さらに収縮特性の異なる繊維をひきつれて収縮することによって、より嵩高い混繊糸が得られる。また、織物を作製した際には、沸騰水やスチーム等で熱処理した際に収縮特性の異なる繊維を糸ひきつれて十分に収縮し、よりふくらみ感、ソフト性のある高密度な織物を得ることができる。 It is important that the high-shrinkage polyamide of the present invention exhibits shrinkage characteristics when the boiling water shrinkage (B) and the heat shrinkage stress (H) are within the above ranges. That is, it is important to simultaneously satisfy the boiling shrinkage rate (B) representing the dimensional change when heat-treated with boiling water, steam, or the like, and the heat shrinkage stress (H) representing the power (force) to shrink. By making such a range, when a mixed fiber is produced, when it is heat-treated with boiling water, steam or the like, a yarn length difference from a fiber having a different shrinkage characteristic is developed, and a fiber having a different shrinkage characteristic is further pulled. By shrinking, a bulky mixed yarn can be obtained. In addition, when fabrics are produced, when they are heat-treated with boiling water, steam, etc., fibers with different shrinkage characteristics are pulled tightly and sufficiently shrunk to obtain a dense fabric with a feeling of swelling and softness. it can.
本発明の高収縮性ポリアミド繊維は、総繊度が5〜80dtexであることが好ましい。特に、スポーツウエア、ダウンジャケット、アウターおよびインナー用基布として用いる際の布帛の強度と軽量性の観点から、8〜50dtexがより好ましく、さらに好ましくは8〜40dtexである。また、高収縮性ポリアミド繊維の単糸繊度は、0.9〜3.0dtexであることが好ましい。特に、スポーツウエア、ダウンジャケット、アウターおよびインナー用基布として用いる際の布帛の強度とソフト性の観点から、0.9〜2.0dtexがより好ましく、さらに好ましくは0.9〜1.3dtexである。単糸繊度が3.0dtex以上である場合、布帛が硬くごわついた着心地となってしまうが、単糸繊度が、前記範囲であるとき、沸騰水やスチーム等で熱処理した混繊糸を用いた縫製品あるいは高密度の織編物においても、着用した際に良好なソフト性が得られ快適な着心地が実現できる。 The highly shrinkable polyamide fiber of the present invention preferably has a total fineness of 5 to 80 dtex. In particular, 8 to 50 dtex is more preferable, and 8 to 40 dtex is more preferable from the viewpoint of the strength and lightness of the fabric when used as a sportswear, down jacket, outer and inner base fabric. Moreover, it is preferable that the single yarn fineness of a highly shrinkable polyamide fiber is 0.9-3.0 dtex. In particular, from the viewpoint of the strength and softness of the fabric when used as a sportswear, down jacket, outer and inner base fabric, 0.9 to 2.0 dtex is more preferable, and 0.9 to 1.3 dtex is more preferable. is there. When the single yarn fineness is 3.0 dtex or more, the fabric is hard and stiff, but when the single yarn fineness is within the above range, the mixed yarn that has been heat-treated with boiling water or steam is used. Even in the used sewn product or high-density woven or knitted fabric, good softness can be obtained when worn and comfortable comfort can be realized.
本発明の高収縮性ポリアミド繊維の強伸度は、衣料用途の場合、通常使用される強伸度であればよく、高次加工の観点から伸度25〜50%、強度2.5cN/dtex以上がより好ましい。 The high elongation of the highly shrinkable polyamide fiber of the present invention may be a high elongation that is usually used in the case of apparel. From the viewpoint of high-order processing, the elongation is 25 to 50% and the strength is 2.5 cN / dtex. The above is more preferable.
本発明の高収縮性ポリアミド繊維の長手方向の繊度ムラ(U%)は、衣料用途の織物として使用する場合、布帛のヨコムラ品位の観点から1.2%以下が好ましく、1.0%以下がより好ましい。さらに好ましくは0.8%以下である。 The fineness unevenness (U%) in the longitudinal direction of the highly shrinkable polyamide fiber of the present invention is preferably 1.2% or less, and 1.0% or less from the viewpoint of the Yokomura quality of the fabric when used as a woven fabric for clothing. More preferred. More preferably, it is 0.8% or less.
本発明の高収縮性ポリアミド繊維は、剛直非晶量が20〜45%であることが好ましい。剛直非晶量は、以下のとおり算出される値である。通常のDSC測定から得られた融解熱量と冷結晶化熱量の差(ΔHm−ΔHc)、温度変調DSC測定から得られた比熱差(ΔCp)を用いて、結晶性ポリアミド含有率を100%と仮定し、式(1)、(2)に基づいて、結晶化度(Xc)および可動非晶量(Xma)を求めた。さらに、式(3)より剛直非晶量(Xra)を算出した。なお、剛直非晶量は、温度変調DSCおよびDSCの2回測定の平均値より算出した。
Xc(%)=(ΔHm−ΔHc)/ΔHm0×100 (1)
Xma(%)=ΔCp/ΔCp0×100 (2)
Xra(%)=100−(Xc+Xma) (3)
ここで、ΔHm0およびΔCp0はそれぞれ、高収縮性ポリアミド繊維を構成する結晶性ポリアミドの融解熱量および非晶性ポリアミドのTg前後での比熱差である。The highly shrinkable polyamide fiber of the present invention preferably has a rigid amorphous amount of 20 to 45%. The rigid amorphous amount is a value calculated as follows. Assuming that the content of crystalline polyamide is 100% using the difference between the heat of fusion and the heat of cold crystallization (ΔHm−ΔHc) obtained from normal DSC measurement and the specific heat difference (ΔCp) obtained from temperature-modulated DSC measurement Based on the formulas (1) and (2), the crystallinity (Xc) and the movable amorphous amount (Xma) were obtained. Furthermore, the rigid amorphous amount (Xra) was calculated from the equation (3). The amount of rigid amorphous was calculated from the average value of two measurements of temperature-modulated DSC and DSC.
Xc (%) = (ΔHm−ΔHc) / ΔHm 0 × 100 (1)
Xma (%) = ΔCp / ΔCp 0 × 100 (2)
Xra (%) = 100− (Xc + Xma) (3)
Here, ΔHm 0 and ΔCp 0 are the heat of fusion of the crystalline polyamide constituting the highly shrinkable polyamide fiber and the specific heat difference before and after the Tg of the amorphous polyamide, respectively.
本発明の高収縮性ポリアミド繊維の剛直非晶量は、繊維構造を形成した際の結晶部の拘束力と、熱処理を施した際に可動性をもつ非晶部の収縮性に依存する。剛直非晶量をかかる範囲とすることにより、所望の沸騰水収縮率(B)と熱収縮応力(H)を発現させることができる。剛直非晶量を20%以上とすることで、結晶部の拘束力が発現し、可動性をもつ非晶部の収縮性を損なうことなく、所望の熱収縮応力(H)を得ることができる。また、45%以下とすることで、結晶部の拘束力が発現し非晶部の収縮するパワー(力)を保持することができ、所望の熱収縮応力(H)を得ることができる。 The rigid amorphous amount of the highly shrinkable polyamide fiber of the present invention depends on the restraining force of the crystal part when the fiber structure is formed and the shrinkability of the amorphous part that has mobility when subjected to heat treatment. By setting the rigid amorphous amount in such a range, a desired boiling water shrinkage rate (B) and heat shrinkage stress (H) can be expressed. By setting the amount of rigid amorphous to 20% or more, a desired heat shrinkage stress (H) can be obtained without deteriorating the shrinkage of the amorphous part having mobility by expressing the restraining force of the crystal part. . Moreover, by setting it as 45% or less, the restraint force of a crystal part expresses and the power (force | strength) which an amorphous part shrink | contracts can be hold | maintained, and desired heat contraction stress (H) can be obtained.
本発明の高収縮性ポリアミド繊維の溶融紡糸による製造方法について説明する。
溶融紡糸の溶融部について説明する。結晶性ポリアミドおよび非晶性ポリアミドを溶融するに際し、プレッシャーメルター法あるいはエクストルーダー法が挙げられる。紡糸パックへ流入した結晶性ポリアミドと非晶性ポリアミド混合ポリマーは、公知の紡糸口金より吐出される。また、溶融温度、紡糸温度(いわゆるポリマー配管や紡糸パックまわりの保温温度)は、ポリアミドの融点+20℃〜融点+60℃が好ましい。A method for producing the highly shrinkable polyamide fiber of the present invention by melt spinning will be described.
The melting part of melt spinning will be described. In melting crystalline polyamide and amorphous polyamide, a pressure melter method or an extruder method can be used. The crystalline polyamide and amorphous polyamide mixed polymer flowing into the spinning pack is discharged from a known spinneret. Further, the melting temperature and the spinning temperature (so-called temperature keeping temperature around the polymer pipe or spinning pack) are preferably a melting point of polyamide + 20 ° C to a melting point + 60 ° C.
結晶性ポリアミドと非晶性ポリアミドを混合する方法は、結晶性ポリアミドチップと非晶性ポリアミドチップ同士を混合するチップブレンド法、予め溶融混練により結晶性ポリアミドポリマーと非晶性ポリアミドポリマーを混合するマスターチップ法、溶融時にエクストルーダーにより結晶性ポリアミドポリマーと非晶性ポリアミドを混練する溶融混練法が挙げられる。相溶系を形成するためには、より強固に混練できるマスターチップ法、溶融混練法が好ましい。溶融混練では、短軸あるいは複軸のエクストルーダーにより強固に混練することがより好ましい。より具体的には、本発明で使用しうるスクリューエレメントの形状及びその組合せは、混練作用及び剪断作用の強いニーディングエレメント(ニーディングディスク、パドル)を一組以上使用することが好ましく、ポリマー吐出量Q(kg/h)とエクストルーダーの回転数N(rpm)の比であるQ/Nが0.01〜0.03の範囲であることが好ましい。かかる範囲とすることでポリマー同士を強く混練することで相溶系を実現することが可能となる。 The method of mixing the crystalline polyamide and the amorphous polyamide includes a chip blending method in which the crystalline polyamide chip and the amorphous polyamide chip are mixed together, and a master in which the crystalline polyamide polymer and the amorphous polyamide polymer are previously mixed by melt kneading. Examples thereof include a chip method and a melt kneading method in which a crystalline polyamide polymer and an amorphous polyamide are kneaded with an extruder during melting. In order to form a compatible system, a master chip method and a melt kneading method that can knead more firmly are preferable. In the melt-kneading, it is more preferable to knead firmly with a short-axis or double-axis extruder. More specifically, it is preferable to use one or more sets of kneading elements (kneading discs, paddles) having a strong kneading action and shearing action for the shape and combination of screw elements that can be used in the present invention. It is preferable that Q / N, which is the ratio of the amount Q (kg / h) and the extruder rotation speed N (rpm), is in the range of 0.01 to 0.03. By setting it as this range, it becomes possible to implement | achieve a compatible system by knead | mixing polymers strongly.
結晶性ポリアミドと非晶性ポリアミドを混合するとき、相溶化剤を配合することにより、結晶性ポリアミドおよび非晶性ポリアミドの相溶系をより安定化することができる。相溶化剤の具体的な例としては、エポキシ基、アミノ基、イソシアネート基、水酸基、メルカプト基、ウレイド基の中から選ばれた少なくとも1種の官能基を有するアルコキシシランなどの有機シラン化合物および多官能エポキシ化合物などが挙げられ、これらは2種以上同時に使用することもできる。相溶化剤の配合割合は結晶性ポリアミド100重量部に対して、0.01〜10重量部が好ましく、更に好ましくは0.1〜5重量部である。0.01重量部以上の添加量においては相溶性向上効果が得られ、10重量部以下は結晶性ポリアミドの溶融粘度の著しい増加がなく流動性を損なわないことから、かかる範囲とすることが好ましい。 When mixing the crystalline polyamide and the amorphous polyamide, the compatibility system of the crystalline polyamide and the amorphous polyamide can be further stabilized by adding a compatibilizing agent. Specific examples of the compatibilizer include organic silane compounds such as alkoxysilanes having at least one functional group selected from an epoxy group, an amino group, an isocyanate group, a hydroxyl group, a mercapto group, and a ureido group. A functional epoxy compound etc. are mentioned, These can also be used simultaneously 2 or more types. The blending ratio of the compatibilizer is preferably 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight with respect to 100 parts by weight of the crystalline polyamide. When the added amount is 0.01 parts by weight or more, a compatibility improving effect is obtained, and 10 parts by weight or less is preferable because the melt viscosity of the crystalline polyamide is not significantly increased and the fluidity is not impaired. .
本発明の高収縮性ポリアミド繊維の製造方法プロセスについて、紡糸−延伸工程を連続して行う方法(直接紡糸延伸法)、未延伸糸を一旦巻き取った後に延伸する方法(2工程法)、あるいは紡糸速度を3000m/min以上のように高速として実質的に延伸工程を省略する方法(高速紡糸法)等、いずれの方法においても製造可能であるが、高効率生産、製造コストの面から直接紡糸延伸法、高速紡糸法の一工程法が好ましい。
溶融紡糸の直接紡糸延伸法での製造について例示する。About the manufacturing method process of the highly shrinkable polyamide fiber of the present invention, a method in which a spinning-drawing step is continuously performed (direct spinning drawing method), a method in which an undrawn yarn is wound once and then drawn (two-step method), or Although it can be produced by any method such as a method in which the spinning speed is set to 3000 m / min or higher and the drawing process is substantially omitted (high-speed spinning method), direct spinning from the viewpoint of high-efficiency production and production cost. A one-step method of stretching and high speed spinning is preferred.
The production of melt spinning by the direct spinning drawing method will be exemplified.
紡糸口金から吐出されたポリアミド糸条は、通常の溶融紡糸と同様、冷却、固化され、給油した後に第一ゴデットローラーにて1500〜4000m/minで引き取り、第一ゴデットローラーと第二ゴデットローラー間にて1.0〜3.0倍で延伸を行った後で、3000m/min以上、好ましくは3500〜4500m/minでパッケージに巻き取る。 The polyamide yarn discharged from the spinneret is cooled, solidified and lubricated in the same manner as in ordinary melt spinning, and then taken up at 1500 to 4000 m / min by the first godet roller. After stretching at 1.0 to 3.0 times between the dead rollers, the film is wound around the package at 3000 m / min or more, preferably 3500 to 4500 m / min.
この際、第一ゴデットローラーと第二ゴデットローラー間の周速度の比率(延伸倍率)や、巻き取り速度(ワインダー速度)を適切に設計することにより、狙いとするポリアミド糸条の強伸度を得ることが可能となる。 At this time, by appropriately designing the ratio of the peripheral speed between the first godet roller and the second godet roller (stretching ratio) and the winding speed (winder speed), the target polyamide yarn is strongly stretched. The degree can be obtained.
また、第一ゴデットローラーを加熱ローラーとして熱延伸を施すことで、ポリマーの流動性を高くした延伸を実施してもよい。流動性を高めることで剛直非晶量を増加させ、結晶性ポリアミドと非晶性ポリアミドを適正な重量比率とすることで熱収縮応力(H)が向上する。 Moreover, you may implement the extending | stretching which made the fluidity | liquidity of the polymer high by giving a heat stretching with the 1st godet roller as a heating roller. By increasing the fluidity, the amount of rigid amorphous is increased, and the heat shrinkage stress (H) is improved by setting the crystalline polyamide and the amorphous polyamide to an appropriate weight ratio.
また、第二ゴデットローラーを加熱ローラーとして熱セットを施すことで、糸条の熱収縮応力(H)を適切に設計することができる。延伸後に熱セットを施すことで、可動非結晶量を減少させることで沸騰収縮率(B)を低減させることがでる。熱セット温度は110〜180℃であることが好ましい。 Moreover, the heat shrinkage stress (H) of the yarn can be appropriately designed by performing heat setting using the second godet roller as a heating roller. By performing heat setting after stretching, the boiling shrinkage (B) can be reduced by reducing the amount of movable amorphous. The heat setting temperature is preferably 110 to 180 ° C.
また、巻き取りまでの工程で公知の交絡装置を用い、交絡を施すことも可能である。必要であれば複数回交絡を付与することで交絡数を上げることも可能である。さらには、巻き取り直前に、追加で油剤を付与するのも可能である。 In addition, it is possible to perform entanglement using a known entanglement device in the process up to winding. If necessary, the number of confounding can be increased by giving confounding multiple times. Furthermore, it is also possible to add an oil agent immediately before winding.
本発明の混繊糸は、本発明の高収縮ポリアミド繊維を少なくとも一部に用いる。高収縮性ポリアミド繊維と収縮特性の異なる繊維と混繊することにより、沸騰水やスチーム等で熱処理した際の収縮特性差により糸長差が発現し、嵩高い混繊糸が得られる。ここでいう異収縮性を示す繊維とは、沸騰水やスチーム等で熱処理した際の沸騰水収縮率(B)の異なる繊維のことである。化学繊維、天然繊維に限定されるものではないが、化学繊維の例としては、ポリカプラミド、ポリヘキサメチレンアジパミドに代表されるポリアミド系繊維、ポリエチレンテレフタレートに代表されるポリエステル系繊維やポリプロピレンに代表されるポリオレフィン系繊維などである。衣料用途では、ポリアミド系繊維、ポリエステル系繊維が好ましい。スポーツウエア、ダウンジャケット、アウターおよびインナー用途では、ポリアミド系繊維がより好ましい。 The blended yarn of the present invention uses at least a part of the highly shrinkable polyamide fiber of the present invention. By blending with a highly shrinkable polyamide fiber and a fiber having different shrinkage characteristics, a yarn length difference appears due to a difference in shrinkage characteristics when heat-treated with boiling water, steam or the like, and a bulky blended yarn can be obtained. The fiber having different shrinkage referred to here is a fiber having a different boiling water shrinkage ratio (B) when heat-treated with boiling water or steam. Although not limited to chemical fibers and natural fibers, examples of chemical fibers include polyamide fibers typified by polycapramide and polyhexamethylene adipamide, polyester fibers typified by polyethylene terephthalate, and polypropylene typified by polypropylene. Polyolefin fiber and the like. For clothing use, polyamide fibers and polyester fibers are preferred. Polyamide fibers are more preferred for sportswear, down jacket, outer and inner applications.
また、本発明の高収縮性ポリアミド繊維と収縮特性の異なる繊維との沸騰水収縮率差は、10〜30%であることが、ソフト感とふくらみ感の点で好ましい。さらに好ましくは、沸騰水収縮率差が15〜30%であるとよい。 In addition, the difference in boiling water shrinkage between the highly shrinkable polyamide fiber of the present invention and the fiber having different shrinkage characteristics is preferably 10 to 30% from the viewpoint of soft feeling and swelling. More preferably, the difference in boiling water shrinkage is 15 to 30%.
また、本発明の高収縮性ポリアミド繊維と収縮特性の異なる繊維との熱収縮応力差は、0.10〜0.40cN/dtexであることが、ソフト感とふくらみ感の点で好ましい。さらに好ましくは、熱収縮応力差が0.15〜0.30cN/dtexであるとよい。 In addition, the difference in heat shrinkage stress between the highly shrinkable polyamide fiber of the present invention and the fiber having different shrinkage characteristics is preferably 0.10 to 0.40 cN / dtex in terms of soft feeling and bulge feeling. More preferably, the heat shrinkage stress difference is 0.15 to 0.30 cN / dtex.
本発明の混繊糸は、公知の方法に従い糸加工可能である。混繊法としては、エア混繊、合撚、複合仮撚等が適用可能であるが、エア混繊が混繊の制御をし易くまた製造コストも低く好ましい。エア混繊方法としてはインターレース加工、タスラン加工、旋回気流を利用した加工を挙げることができる。 The blended yarn of the present invention can be processed by a known method. As the fiber blending method, air fiber blending, synthetic twisting, composite false twisting and the like can be applied. However, air fiber blending is preferable because the fiber blending is easy to control and the manufacturing cost is low. Examples of the air-mixing method include interlace processing, Taslan processing, and processing using a swirling airflow.
本発明の織編物は、本発明の高収縮ポリアミド繊維および/又は混繊糸を少なくとも一部に用いる。高収縮性ポリアミド繊維と収縮特性の異なる繊維と製織、製編することにより、沸騰水やスチーム等で熱処理した際に、高収縮ポリアミド繊維が十分に収縮し、収縮特性の異なる繊維をひきつれて収縮し、ふくらみ感、ソフト性のある高密度な織編物が得られる。 The woven or knitted fabric of the present invention uses at least a part of the high-shrinkage polyamide fiber and / or mixed yarn of the present invention. By weaving and knitting with high-shrinkage polyamide fibers and fibers with different shrinkage characteristics, when heat-treated with boiling water or steam, etc., the high-shrinkage polyamide fibers shrink sufficiently, and the fibers with different shrinkage characteristics are pulled and shrunk. In addition, a high-density woven or knitted fabric with a feeling of swelling and softness can be obtained.
本発明の織編物は、公知の方法に従い製織、製編可能である。また、織編物の組織は限定されるものではない。織物の場合、その組織は、使用される用途によって平組織、綾組織、朱子組織やそれらの変化組織、混合組織のいずれであっても構わないが、織物の地合いがしっかりしたふくらみ感のある織物とするには、拘束点の多い平組織、平組識と石目、ナナコ組識を組み合わせたリップストップ組識が好ましい。編物の場合、その組織は、使用される用途によって丸編地の天竺組織、インターロック組織、経編地のハーフ組織、サテン組織、ジャカード組織やそれらの変化組織、混合組織のいずれであっても構わないが、編地が薄くて安定性が有り、かつ、伸長率にも優れる点からシングルトリコット編地のハーフ組織地などが好ましい。 The woven or knitted fabric of the present invention can be woven or knitted according to a known method. Moreover, the structure of the woven or knitted fabric is not limited. In the case of a woven fabric, the structure may be any of a plain structure, a twill structure, a satin structure, a changed structure thereof, or a mixed structure, but the texture of the woven fabric has a solid texture. In order to achieve this, a flat structure having many restraint points, a ripstop structure combining a flat structure, a stone structure, and a Nanako structure are preferable. In the case of a knitted fabric, the structure may be any of a round knitted fabric, interlocked fabric, warp knitted fabric half, satin, jacquard, or their modified or mixed tissue, depending on the intended use. However, a half-textured fabric such as a single tricot knitted fabric is preferable from the viewpoint that the knitted fabric is thin and stable and has an excellent elongation rate.
本発明の織編物を一部に用いる縫製品は、その用途を限定されるものでないが、衣料用が好ましく、より好ましくは、ダウンジャケット、ウインドブレイカー、ゴルフウエアー、レインウエアなどに代表されるスポーツ、カジュアルウェアや婦人紳士衣料である。特にスポーツウエア、ダウンジャケットに好適に用いることができる。 The use of the woven or knitted fabric of the present invention is not limited, but is preferably used for clothing, and more preferably sports such as down jackets, windbreakers, golf wear, and rain wear. Casual wear and ladies' men's clothing. In particular, it can be suitably used for sportswear and down jackets.
次に実施例によって本発明を具体的に説明する。
A.融点
示差走査熱量計(DSC)にTA Instrument社製Q1000を用いUniversal Analysis2000にてデータ処理を実施した。測定は窒素流下(50mL/min)で、温度範囲−50〜300℃、昇温速度10℃/min、試料重量約5g(熱量データは測定後重量で規格化)にて測定を実施した。融解ピークから融点を測定した。Next, the present invention will be described specifically by way of examples.
A. Melting | fusing point The data processing was implemented in Universal Analysis2000 using TA Instrument Q1000 for a differential scanning calorimeter (DSC). The measurement was carried out under a nitrogen flow (50 mL / min) at a temperature range of −50 to 300 ° C., a temperature increase rate of 10 ° C./min, and a sample weight of about 5 g (caloric data is normalized by weight after measurement). The melting point was measured from the melting peak.
B.相対粘度
試料0.25gを、濃度98質量%の硫酸25mlに対して1g/100mlになるように溶解し、オストワルド型粘度計を用いて25℃での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。B. Relative Viscosity 0.25 g of a sample was dissolved in 25 ml of sulfuric acid having a concentration of 98% by mass so as to be 1 g / 100 ml, and the flow time (T1) at 25 ° C. was measured using an Ostwald viscometer. Subsequently, the flow time (T2) of only sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as sulfuric acid relative viscosity.
C.総繊度、単糸繊度
JIS L1013に準じ総繊度および単糸繊度を測定した。繊維試料を、1/30(g)の張力で枠周1.125mの検尺機にて200回巻かせを作成する。105℃で60分乾燥しデシケーターに移し、20℃55RH環境下で30分放冷し、かせの重量を測定して得られた値から10000m当たりの重量を算出し、公定水分率を4.5%として繊維の総繊度を算出した。測定は4回行い、平均値を総繊度とした。また、総繊度をフィラメント数で除した値を単糸繊度とした。C. Total fineness and single yarn fineness The total fineness and single yarn fineness were measured according to JIS L1013. A fiber sample is wound 200 times with a measuring instrument having a frame circumference of 1.125 m with a tension of 1/30 (g). It was dried at 105 ° C for 60 minutes, transferred to a desiccator, allowed to cool in an environment of 20 ° C and 55RH for 30 minutes, and the weight per 10,000 m was calculated from the value obtained by measuring the weight of the skein. The total fineness of the fiber was calculated as%. The measurement was performed 4 times, and the average value was defined as the total fineness. The value obtained by dividing the total fineness by the number of filaments was defined as the single yarn fineness.
D.沸騰水収縮率(B)
繊維試料を50cmのループにし、繊度の1/30(g)の初荷重を掛けて長さAを求め、次いでフリーにして沸騰水中に30分間浸漬した後、自然乾燥し、再び繊度の1/30(g)の初荷重を掛けて長さBを求め、次の式で沸騰水収縮率(B)を算出した。
沸騰水収縮率(B)(%)=〔(A−B)/A〕×100D. Boiling water shrinkage (B)
The fiber sample is made into a loop of 50 cm, an initial load of 1/30 (g) of the fineness is applied to determine the length A, then freed and immersed in boiling water for 30 minutes, then air-dried, and again 1/1 of the fineness. The length B was determined by applying an initial load of 30 (g), and the boiling water shrinkage (B) was calculated by the following equation.
Boiling water shrinkage (B) (%) = [(A−B) / A] × 100
E.熱収縮応力(H)
カネボウエンジニアリング社製KE−2型熱収縮応力測定機を用い、測定する繊維糸条を結び周長16cmのループとし、糸条の繊度の1/30gの初荷重を掛け、室温から210℃まで昇温速度100℃/分で測定して、得られた熱応力曲線のピーク値を最大熱応力とした。E. Thermal contraction stress (H)
Using a KE-2 type heat shrinkage stress measuring machine manufactured by Kanebo Engineering Co., Ltd., tying the fiber yarn to be measured into a loop with a circumference of 16 cm, applying an initial load of 1/30 g of the fineness of the yarn, and rising from room temperature to 210 ° C Measurement was performed at a temperature rate of 100 ° C./min, and the peak value of the obtained thermal stress curve was defined as the maximum thermal stress.
F.剛直非晶量
剛直非晶量の測定方法は、通常のDSC測定から得られた融解熱量と冷結晶化熱量の差(ΔHm−ΔHc)、温度変調DSC測定から得られた比熱差(ΔCp)を用いて、結晶性ポリアミド含有率を100%と仮定し、式(1)、(2)に基づいて、結晶化度(Xc)および可動非晶量(Xma)を求めた。さらに、式(3)より剛直非晶量(Xra)を算出した。なお、剛直非晶量は、温度変調DSCおよびDSCの2回測定の平均値より算出した。
Xc(%)=(ΔHm−ΔHc)/ΔHm0×100 (1)
Xma(%)=ΔCp/ΔCp0×100 (2)
Xra(%)=100−(Xc+Xma) (3)
ここで、ΔHm0およびΔCp0はそれぞれ、結晶性ポリアミドの融解熱量および非晶性ポリアミドのTg前後での比熱差である。F. Rigid Amorphous Amount The measurement method for rigid amorphous amount is the difference between the heat of fusion obtained from normal DSC measurement and the heat of cold crystallization (ΔHm-ΔHc), and the specific heat difference obtained from temperature-modulated DSC measurement (ΔCp). The crystallinity (Xc) and the movable amorphous amount (Xma) were determined based on the formulas (1) and (2), assuming that the crystalline polyamide content was 100%. Furthermore, the rigid amorphous amount (Xra) was calculated from the equation (3). The amount of rigid amorphous was calculated from the average value of two measurements of temperature-modulated DSC and DSC.
Xc (%) = (ΔHm−ΔHc) / ΔHm 0 × 100 (1)
Xma (%) = ΔCp / ΔCp 0 × 100 (2)
Xra (%) = 100− (Xc + Xma) (3)
Here, ΔHm 0 and ΔCp 0 are the specific heat difference between the heat of fusion of the crystalline polyamide and the Tg of the amorphous polyamide, respectively.
また、通常DSCおよび温度変調DSCの測定条件は以下の条件で実施した。
(a)通常DSC
示差走査熱量計(DSC)にTA Instrument社製Q1000を用いUniversal Analysis2000にてデータ処理を実施した。測定は窒素流下(50mL/min)で、温度範囲−50〜300℃、昇温速度10℃/min、試料重量約5g(熱量データは測定後重量で規格化)にて測定を実施した。The measurement conditions for normal DSC and temperature modulation DSC were as follows.
(A) Normal DSC
Data processing was carried out with Universal Analysis 2000 using TA Instrument Q1000 in a differential scanning calorimeter (DSC). The measurement was carried out under a nitrogen flow (50 mL / min) at a temperature range of −50 to 300 ° C., a temperature increase rate of 10 ° C./min, and a sample weight of about 5 g (caloric data is normalized by weight after measurement).
(b)温度変調DSC
示差走査熱量計(DSC)にTA Instrument社製Q1000を用いUniversal Analysis2000にてデータ処理を実施した。測定は窒素流下(50mL/min)で、温度範囲−50〜270℃、昇温速度2℃/min、温度変調周期60秒、温度変調振幅±1℃、試料重量約5g(熱量データは測定後重量で規格化)にて測定を実施した。(B) Temperature modulation DSC
Data processing was carried out with Universal Analysis 2000 using TA Instrument Q1000 in a differential scanning calorimeter (DSC). Measurement is under nitrogen flow (50 mL / min), temperature range -50 to 270 ° C., temperature rising rate 2 ° C./min, temperature modulation period 60 seconds, temperature modulation amplitude ± 1 ° C., sample weight about 5 g (caloric data after measurement) Measurement was carried out by standardization by weight).
該手法は、加熱と冷却を一定の周期および振幅で繰り返しながら平均的に昇温して測定する方法であり、全体のDSC シグナル(Total Heat Flow:全熱流)を、ガラス転移などの可逆的な成分(Reversing Heat Flow)と、エンタルピー緩和、硬化反応、脱溶媒などの不可逆的な成分(Nonreversing Heat Flow)とに分離できる。ただし結晶の融解ピークは、可逆成分と、不可逆成分のどちらにも現れる。 This method is a method in which heating and cooling are repeated at a constant cycle and amplitude, and the temperature is increased on average, and the entire DSC signal (Total Heat Flow) is measured in a reversible manner such as glass transition. It can be separated into components (Reversing Heat Flow) and irreversible components (Non-Reversing Heat Flow) such as enthalpy relaxation, curing reaction, and desolvation. However, the melting peak of the crystal appears in both the reversible component and the irreversible component.
G.結晶性ポリアミド、非晶性ポリアミドの重量比率
(a)NMR測定
核磁気共鳴分光法(1H−NMR)を用いテトラメチルシラン(TMS)を内部標準物質(0ppm)として測定した。アミド結合を形成するカルボキシル基のα位の水素に由来するシグナル(通常3ppm付近)のピーク面積(A)と、芳香族炭化水素に由来するシグナル(通常7ppm付近)のピーク面積(B)から結晶性ポリアミドと非晶性ポリアミドの繰り返し比を求める(A=結晶性ポリアミドの繰り返し数×2+非晶性ポリアミドの繰り返し数×2、B=非晶性ポリアミドの繰り返し数×4)。G. Weight ratio of crystalline polyamide to amorphous polyamide (a) NMR measurement Tetramethylsilane (TMS) was measured as an internal standard substance (0 ppm) using nuclear magnetic resonance spectroscopy ( 1 H-NMR). Crystals from the peak area (A) of the signal (usually around 3 ppm) derived from the α-position hydrogen of the carboxyl group forming the amide bond and the peak area (B) of the signal derived from the aromatic hydrocarbon (usually around 7 ppm) The repetition ratio of the crystalline polyamide and the amorphous polyamide is determined (A = the number of repetitions of the crystalline polyamide × 2 + the number of repetitions of the amorphous polyamide × 2, B = the number of repetitions of the amorphous polyamide × 4).
(b)質量分析
マトリックス支援レーザー脱離イオン化質量分析(MALDI−MS)、飛行時間型質量分析法(TOF−MS)、飛行時間型マトリックス支援レーザー脱離イオン化質量分析(MALDI−TOF−MS)を用い繰り返し単位の質量数を決定した。(B) Mass spectrometry Matrix-assisted laser desorption / ionization mass spectrometry (MALDI-MS), time-of-flight mass spectrometry (TOF-MS), time-of-flight matrix-assisted laser desorption / ionization mass spectrometry (MALDI-TOF-MS) The mass number of the repeating unit used was determined.
(c)重量比率
結晶性ポリアミドの重量比率(%)=(A/2)×(結晶性ポリアミドの質量数)
非晶性ポリアミドの重量比率(%)=(A/2−B/4)×(非晶性ポリアミドの質量数)(C) Weight ratio Weight ratio of crystalline polyamide (%) = (A / 2) × (mass number of crystalline polyamide)
Amorphous polyamide weight ratio (%) = (A / 2−B / 4) × (mass number of amorphous polyamide)
H.相溶性
糸条をRuO4蒸気に曝し、糸と包埋樹脂との境界を明確にするためのコートをする。その後樹脂に包埋し、薄切片を製作、リンタングステン酸(PTA)水溶液で15min染色する。以上のようにして得られた観察対象物を、透過型電子顕微鏡(日立製作所製H−7100)を用い、加圧電圧100kVで観察した。観察倍率は3000倍で繊維横断面を観察した。TEM観察結果において、直径10nm以上の分散相を有する海島の相分離構造が観察されたときは非相溶系(×)、直径10nm以上の分散相を有する海島の相分離構造が観察されなかったときは相溶系(○)と判定した。H. Compatibility The yarn is exposed to RuO 4 vapor and coated to clarify the boundary between the yarn and the embedding resin. Thereafter, it is embedded in a resin, a thin section is produced, and stained with a phosphotungstic acid (PTA) aqueous solution for 15 min. The observation object obtained as described above was observed using a transmission electron microscope (H-7100, manufactured by Hitachi, Ltd.) at an applied voltage of 100 kV. The observation magnification was 3000 times and the fiber cross section was observed. In the TEM observation result, when a phase separation structure of a sea island having a dispersed phase having a diameter of 10 nm or more is observed, an incompatible system (×), when a phase separation structure of a sea island having a dispersion phase having a diameter of 10 nm or more is not observed Was determined to be a compatible system (◯).
I.紡糸性
ポリアミド糸条の紡糸性は、8時間の連続紡糸を行い、紡糸時の断糸が3回以上発生した場合は紡糸性不良(×)であると判定し、紡糸時の断糸が2回以下の場合は紡糸性良好(○)と判定した。I. Spinnability The spinnability of the polyamide yarn is determined by judging that it is a poor spinnability (x) when continuous spinning is performed for 8 hours and the yarn breakage occurs three times or more. In the case of less than the number of times, it was determined that the spinnability was good (◯).
J.繊度ムラ(U%)
繊維試料を、Zellweger Uster社製 USTER TESTER IIIで、試料長:250m、測定糸速度:50m/min、測定レンジ(12.5%HI)で1/2Inにて4回測定し、その平均値をU%値とした。J. et al. Fineness unevenness (U%)
The fiber sample was measured four times at 1 / 2In with ZELLweger Uster USTER TESTER III, sample length: 250 m, measurement yarn speed: 50 m / min, measurement range (12.5% HI), and the average value was measured. The U% value was used.
K.混繊糸の評価
(a)鞘糸の製造
相対粘度2.70のポリカプロラクタム(N6)を使用し、口金吐出孔を60個有する紡糸口金から紡糸温度275℃で溶融吐出させた。溶融吐出させた後、糸条を冷却、給油、交絡した後に2560m/minのゴデローラーで引き取り、続いて1.7倍に延伸した後に155℃で熱固定し、巻取速度4000m/minで80dtex60フィラメントのナイロン6糸条を得た。なお、得られたナイロン6糸条は、繊度78.8dtex、強度4.0cN/dtex、伸度59%、沸騰水収縮率10%、熱収縮応力0.09cN/dtexであった。K. Evaluation of blended yarn (a) Production of sheath yarn Polycaprolactam (N6) having a relative viscosity of 2.70 was used and melt-discharged from a spinneret having 60 nozzle discharge holes at a spinning temperature of 275 ° C. After melt-discharging, the yarn is cooled, lubricated, entangled, taken up with a 2560 m / min godet roller, then stretched 1.7 times, heat-set at 155 ° C., and 80 dtex 60 filament at a winding speed of 4000 m / min. Nylon 6 yarn was obtained. The obtained nylon 6 yarn had a fineness of 78.8 dtex, a strength of 4.0 cN / dtex, an elongation of 59%, a boiling water shrinkage of 10%, and a heat shrinkage stress of 0.09 cN / dtex.
(b)混繊糸の製造
上記(a)で得られたナイロン6糸条と実施例1〜6および比較例1、5で得られたポリアミド糸条を、インターレース加工機を用いて、交絡圧2.0kg/cm2の交絡処理を施して混繊加工を行い、113dtexの混繊糸を得た。(B) Manufacture of blended yarn The nylon 6 yarn obtained in the above (a) and the polyamide yarn obtained in Examples 1 to 6 and Comparative Examples 1 and 5 were entangled using an interlace processing machine. 2.0 kg / cm 2 of entanglement treatment was performed to carry out blending processing to obtain a 113 dtex blended yarn.
(c)筒編地作製
混繊糸試料を、筒編機にて度目50となるように調整して筒編地を作製した。
得られた筒編地を80℃で20分精練を行い、続いてKayanol Yellow N5G 1%owf、酢酸を用いてpH4に調整し、100℃で30分間染色を行い、その後、80℃で20分間Fix処理を行い、最後に風合いの改良のため170℃で30秒間熱処理を行った。(C) Tube Knitted Fabric Fabrication A blended yarn sample was adjusted with a tube knitting machine so as to have a stitch of 50, and a tube knitted fabric was fabricated.
The obtained tubular knitted fabric is scoured at 80 ° C. for 20 minutes, then adjusted to pH 4 with Kayanol Yellow N5G 1% owf and acetic acid, dyed at 100 ° C. for 30 minutes, and then at 80 ° C. for 20 minutes. Fix treatment was performed, and finally heat treatment was performed at 170 ° C. for 30 seconds to improve the texture.
(d)筒編地評価
筒編地を熟練技術者(5名)の触感により嵩高感(ふくらみ感)それぞれについて、以下の5段階で実施した。各技術者の評価点の平均値の小数点一桁を四捨五入して、5点を◎、4点を○、3点を△、1〜2点を×とした。
5点:非常に優れる
4点:やや優れる
3点:どちらでもない
2点:やや劣る
1点:劣る 。(D) Evaluation of tubular knitted fabric The tubular knitted fabric was subjected to the following five stages for each of the bulky feeling (swelling feeling) by the tactile sensation of skilled technicians (5 persons). The average value of the evaluation points of each engineer was rounded off to one decimal place, 5 points were marked as ◎, 4 points as ◯, 3 points as Δ, and 1-2 points as ×.
5 points: Excellent 4 points: Slightly superior 3 points: Neither of them 2 points: Slightly inferior 1 point: Inferior
L.織物評価
(a)経糸の製造
相対粘度2.70のポリカプロラクタム(N6)を使用し、口金吐出孔を20個有する紡糸口金から紡糸温度275℃で溶融吐出させた。溶融吐出させた後、糸条を冷却、給油、交絡した後に2560m/minのゴデローラーで引き取り、続いて1.7倍に延伸した後に155℃で熱固定し、巻取速度4000m/minで22dtex20フィラメントのナイロン6糸条を得た。L. Textile Evaluation (a) Manufacture of warp Polycaprolactam (N6) having a relative viscosity of 2.70 was used and melt discharged from a spinneret having 20 nozzle discharge holes at a spinning temperature of 275 ° C. After melt-discharging, the yarn is cooled, lubricated, entangled, taken up with a 2560 m / min godet roller, then stretched 1.7 times, heat-set at 155 ° C., and 22 dtex 20 filament at a winding speed of 4000 m / min. Nylon 6 yarn was obtained.
(b)織物の製造
上記(a)で得られたナイロン6糸条を経糸(経糸密度90本/2.54cm)に用い、実施例および比較例で得られたポリアミド糸条を緯糸に用い平織物を製織した(目付け40g/cm2)。(B) Fabrication of woven fabric Nylon 6 yarn obtained in (a) above is used for warp (90 warp density / 2.54 cm), and polyamide yarn obtained in Examples and Comparative Examples is used for weft. The woven fabric was woven (weighing 40 g / cm 2 ).
得られた織物を80℃で20分精練を行い、続いてKayanol Yellow N5G 1%owf、酢酸を用いてpH4に調整し、100℃で30分間染色を行い、その後、80℃で20分間Fix処理を行い、最後に風合いの改良のため170℃で30秒間熱処理を行った。 The resulting fabric is scoured at 80 ° C. for 20 minutes, then adjusted to pH 4 using Kayanol Yellow N5G 1% owf and acetic acid, dyed at 100 ° C. for 30 minutes, and then subjected to Fix treatment at 80 ° C. for 20 minutes. Finally, heat treatment was performed at 170 ° C. for 30 seconds to improve the texture.
(c)織物評価
織物を熟練技術者(5名)の触感により高密度感、ソフト感およびふくらみ感それぞれについて、以下の5段階で実施した。各技術者の評価点の平均値の小数点一桁を四捨五入して、5点を◎、4点を○、3点を△、1〜2点を×とした。
5点:非常に優れる
4点:やや優れる
3点:どちらでもない
2点:やや劣る
1点:劣る 。(C) Evaluation of woven fabric The woven fabric was subjected to the following five stages for each of a high density feeling, a soft feeling and a bulging feeling by the tactile feeling of skilled technicians (5 persons). The average value of the evaluation points of each engineer was rounded off to one decimal place, 5 points were marked as ◎, 4 points as ◯, 3 points as Δ, and 1-2 points as ×.
5 points: Excellent 4 points: Slightly superior 3 points: Neither of them 2 points: Slightly inferior 1 point: Inferior
[実施例1]
結晶性ポリアミドとしてポリカプロラクタム(N6)(相対粘度ηr:2.62、融点222℃)と、非結晶性ポリアミドとしてイソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を、結晶性ポリアミド/非結晶性ポリアミドの重量比が90/10で2軸エクストルーダーを用い275℃でQ/N=0.017[Qは吐出量(kg/h)、Nはエクストルーダーの回転数(rpm)]にて溶融混練し、26孔、丸孔の吐出孔を有する紡糸口金を用いて溶融吐出した(紡糸温度275℃)。紡糸口金から吐出された糸条は、冷却固化し、給油、交絡後、非加熱の第一ゴデッドローラー(延伸温度:室温)で引き取り、加熱第二ゴデットローラー(熱セット温度:150℃)間で2.4倍に延伸を行なった後で、巻き取り速度(ワインダー速度)4000m/minでパッケージに巻き取りをおこない、33dtex26フィラメントのポリアミド糸条を得た。[Example 1]
Polycaprolactam (N6) (relative viscosity ηr: 2.62, melting point 222 ° C.) as a crystalline polyamide and isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine polycondensate as an amorphous polyamide A copolymer having an acid / terephthalic acid copolymer ratio of 7/3, a crystalline polyamide / non-crystalline polyamide weight ratio of 90/10, and a biaxial extruder at 275 ° C. and Q / N = 0.17 [Q is discharge rate (kg / h), N is extruder rotation speed (rpm)] and melt-kneaded, and melt discharge using a spinneret having 26 holes and round discharge holes (spinning temperature 275). ° C). The yarn discharged from the spinneret is cooled and solidified, lubricated, entangled, taken up by a non-heated first goded roller (drawing temperature: room temperature), and heated second godet roller (heat set temperature: 150 ° C.) After being stretched 2.4 times, the package was wound at a winding speed (winder speed) of 4000 m / min to obtain a polyamide yarn of 33 dtex 26 filaments.
[実施例2]
結晶性ポリアミド/非結晶性ポリアミドの重量比を80/20とし、80℃の延伸温度にて第一ゴデットローラーで引き取ったこと以外は、実施例1と同様に紡糸を実施し、33dtex26フィラメントのポリアミド糸条を得た。[Example 2]
Spinning was carried out in the same manner as in Example 1 except that the weight ratio of the crystalline polyamide / non-crystalline polyamide was 80/20 and the first godet roller was drawn at a stretching temperature of 80 ° C. A polyamide yarn was obtained.
[実施例3]
結晶性ポリアミド/非結晶性ポリアミドの重量比を70/30とし、80℃の延伸温度にて第一ゴデットローラーで引き取ったこと以外は、実施例1と同様に紡糸を実施し、33dtex26フィラメントのポリアミド糸条を得た。[Example 3]
Spinning was carried out in the same manner as in Example 1 except that the weight ratio of crystalline polyamide / non-crystalline polyamide was 70/30 and the first godet roller was drawn at a stretching temperature of 80 ° C. A polyamide yarn was obtained.
[実施例4]
結晶性ポリアミド/非結晶性ポリアミドの重量比を50/50とし、吐出量を変更し、給油、交絡をおこなった後、120℃の延伸温度にて第一ゴデッドローラーで引き取ったこと以外は、実施例1と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントの原糸を得た。[Example 4]
The weight ratio of crystalline polyamide / non-crystalline polyamide is 50/50, the discharge amount is changed, oiling and entanglement are performed, and then the first goded roller is drawn at a stretching temperature of 120 ° C. Spinning was carried out under the same spinning conditions as in Example 1 to obtain a 44 dtex 26 filament raw yarn.
[実施例5]
結晶性ポリアミドとして、ポリヘキサメチレンアジパミド(N66)(相対粘度ηr:2.82、融点263℃)を用い、非結晶性ポリアミドとして、イソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の重量比が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比を70/30とし、紡糸温度295℃、吐出量を変更し、給油、交絡をおこなった後、80℃の延伸温度にて第一ゴデッドローラーと加熱第二ゴデッドローラー(熱セット温度:150℃)との間で2.8倍に延伸して引き取ったこと以外は、実施例1と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントの原糸を得た。[Example 5]
Polyhexamethylene adipamide (N66) (relative viscosity ηr: 2.82, melting point 263 ° C.) is used as the crystalline polyamide, and isophthalic acid (6I) / terephthalic acid (6T) / hexamethylene is used as the amorphous polyamide. A polycondensate of diamine and a copolymer having an isophthalic acid / terephthalic acid weight ratio of 7/3, a crystalline polyamide / non-crystalline polyamide weight ratio of 70/30, a spinning temperature of 295 ° C., and a discharge rate After changing, refueling and entanglement, stretched 2.8 times between the first goded roller and heated second goded roller (heat set temperature: 150 ° C) at 80 ° C stretching temperature Spinning was carried out under the same spinning conditions as in Example 1 except that the yarn was taken out to obtain a 44 dtex 26 filament raw yarn.
[実施例6]
結晶性ポリアミドとして、ポリヘキサメチレンセバシミド(N610)(相対粘度ηr:2.82、融点219℃)を用い、紡糸温度を275℃に変更したこと以外は、実施例5と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントのポリアミド糸条を得た。[Example 6]
The same spinning conditions as in Example 5 except that polyhexamethylene sebacimide (N610) (relative viscosity ηr: 2.82, melting point 219 ° C.) was used as the crystalline polyamide, and the spinning temperature was changed to 275 ° C. Spinning was carried out to obtain a polyamide yarn of 44 dtex 26 filaments.
[実施例7]
結晶性ポリアミドとしてポリカプロラクタム(相対粘度ηr:2.62、融点222℃)を用い、非結晶性ポリアミドとしてイソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が60/40、相溶化剤(多官能エポキシ化合物:ビスフェノールF型エポキシ樹脂)を2重量%添加して、2軸エクストルーダーを用い275℃でQ/N=0.017[Qは吐出量(kg/h)、Nはエクストルーダーの回転数(rpm)]にて溶融混練しマスターチップを作製した。得られたマスターチップを、26孔、丸孔の吐出孔を有する紡糸口金を用いて溶融吐出した(紡糸温度275℃)。紡糸口金から吐出された糸条は、冷却固化し、給油の後、800m/minの引き取り速度で一旦巻き取り未延伸糸を得た。続いて、3.6倍で延伸し、熱板熱固定(熱セット温度:170℃)の後、600m/minでパッケージに巻き取りを行い、66dtex26フィラメントのポリアミド糸条を2工程法で得た。[Example 7]
Polycaprolactam (relative viscosity ηr: 2.62, melting point 222 ° C.) was used as the crystalline polyamide, and isophthalic acid / isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine polycondensate as the amorphous polyamide. A copolymer having a copolymerization ratio of terephthalic acid of 7/3 is used, the weight ratio of crystalline polyamide / amorphous polyamide is 60/40, and a compatibilizing agent (polyfunctional epoxy compound: bisphenol F type epoxy resin) is 2 % By weight, using a twin screw extruder at 275 ° C., Q / N = 0.177 [Q is discharge rate (kg / h), N is the number of revolutions of the extruder (rpm)] A chip was produced. The obtained master chip was melted and discharged (spinning temperature 275 ° C.) using a spinneret having 26 holes and round holes. The yarn discharged from the spinneret was cooled and solidified, and after refueling, a wound undrawn yarn was obtained once at a take-up speed of 800 m / min. Subsequently, the film was stretched at a magnification of 3.6 times, heat-heated (heat set temperature: 170 ° C.), and wound on a package at 600 m / min to obtain a polyamide yarn of 66 dtex 26 filament by a two-step method. .
[実施例8]
吐出量を変更し、10孔、丸孔の吐出孔を有する紡糸口金、延伸倍率を3.8倍に変更した以外は実施例7と同様の紡糸条件において紡糸、延伸を実施し、33dtex10フィラメントのポリアミド糸条を得た。[Example 8]
Spinning and drawing were carried out under the same spinning conditions as in Example 7 except that the discharge amount was changed, the spinneret having 10 holes and round holes and the draw ratio was changed to 3.8 times. A polyamide yarn was obtained.
[実施例9]
吐出量を変更し、延伸倍率を3.8倍に変更した以外は実施例7と同様の紡糸条件において紡糸、延伸を実施し、88dtex26フィラメントのポリアミド糸条を得た。[Example 9]
Spinning and drawing were carried out under the same spinning conditions as in Example 7 except that the discharge amount was changed and the draw ratio was changed to 3.8 times to obtain a polyamide yarn of 88 dtex 26 filaments.
[実施例10]
結晶性ポリアミドとして、ポリカプロラクタム(相対粘度ηr:2.62)を用い、非結晶性ポリアミドとしてテレフタル酸(6T)/2,2,4−トリメチルヘキサメチレンジアミン重縮合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が60/40とした以外は実施例7と同様の紡糸条件において紡糸、延伸を実施し、66dtex26フィラメントのポリアミド糸条を得た。[Example 10]
Polycaprolactam (relative viscosity ηr: 2.62) is used as the crystalline polyamide, and terephthalic acid (6T) / 2,2,4-trimethylhexamethylenediamine polycondensate is used as the amorphous polyamide. Spinning and drawing were performed under the same spinning conditions as in Example 7 except that the weight ratio of the amorphous polyamide was 60/40, to obtain a 66 dtex 26 filament polyamide yarn.
[実施例11]
140℃の延伸温度にて第一ゴデッドローラーで引き取ったこと、加熱第二ゴデットローラー(熱セット温度:150℃)間で1.3倍に延伸を行なった後で、巻き取り速度(ワインダー速度)4400m/minでパッケージに巻き取りをおこなったこと以外は、実施例4と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントの原糸を得た。[Example 11]
After being drawn by the first godet roller at a stretching temperature of 140 ° C. and stretched 1.3 times between the heated second godet rollers (heat setting temperature: 150 ° C.), the winding speed (winder) Speed) Spinning was carried out under the same spinning conditions as in Example 4 except that the package was wound at 4400 m / min to obtain a 44 dtex 26 filament raw yarn.
[比較例1]
結晶性ポリアミド/非結晶性ポリアミドの重量比を95/5とした以外は、実施例1と同様の紡糸条件において紡糸を実施し、33dtex26フィラメントのポリアミド糸条を得た。[Comparative Example 1]
Spinning was carried out under the same spinning conditions as in Example 1 except that the weight ratio of crystalline polyamide / amorphous polyamide was 95/5 to obtain a polyamide yarn of 33 dtex 26 filaments.
[比較例2]
結晶性ポリアミドとして、ポリカプロラクタムとヘキサメチレンアジパミドの共重合体でポリカプロラクタムとヘキサメチレンアジパミドの共重合比率が85/15の共重合体(相対粘度ηr:2.69、融点198℃)を用い、非結晶ポリアミドとしてイソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が70/30、2軸エクストルーダーを用い275℃でQ/N=0.017[Qは吐出量(kg/h)、Nはエクストルーダーの回転数(rpm)]にて溶融混練し、マスターチップを作製した。得られたマスターチップを吐出量を変更して紡糸した以外は、実施例7と同様の紡糸条件において紡糸、延伸を実施し、44dtex26フィラメントのポリアミド糸条を得た。[Comparative Example 2]
As a crystalline polyamide, a copolymer of polycaprolactam and hexamethylene adipamide having a copolymerization ratio of polycaprolactam and hexamethylene adipamide of 85/15 (relative viscosity ηr: 2.69, melting point 198 ° C. ), A polycondensate of isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine as a non-crystalline polyamide and a copolymer having a copolymerization ratio of isophthalic acid / terephthalic acid of 7/3. The weight ratio of polyamide / amorphous polyamide is 70/30 and Q / N = 0.177 at 275 ° C. using a biaxial extruder, Q is the discharge rate (kg / h), and N is the rotation speed of the extruder (rpm )] To prepare a master chip. Except that the obtained master chip was spun at a different discharge rate, spinning and drawing were performed under the same spinning conditions as in Example 7 to obtain a polyamide yarn of 44 dtex 26 filaments.
[比較例3]
結晶性ポリアミドとして、ポリカプロラクタムとヘキサメチレンアジパミドの共重合体でポリカプロラクタムとヘキサメチレンアジパミドの共重合比率が85/15の共重合体(相対粘度ηr:2.69、融点:198℃)を用い、非結晶性ポリアミドとして、イソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が70/30、相溶化剤(多官能エポキシ化合物:ビスフェノールF型エポキシ樹脂)を2重量%添加、吐出量を変更した以外は、実施例5と同様の紡糸条件において紡糸を実施し、88dtex26フィラメントのポリアミド糸条を得た。[Comparative Example 3]
As a crystalline polyamide, a copolymer of polycaprolactam and hexamethylene adipamide having a copolymerization ratio of polycaprolactam and hexamethylene adipamide of 85/15 (relative viscosity ηr: 2.69, melting point: 198 ° C), and a non-crystalline polyamide is a polycondensate of isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine, with a copolymerization ratio of isophthalic acid / terephthalic acid of 7/3. Example 5 except that the weight ratio of crystalline polyamide / non-crystalline polyamide is 70/30, 2% by weight of a compatibilizer (polyfunctional epoxy compound: bisphenol F type epoxy resin) is added, and the discharge amount is changed. Spinning was carried out under similar spinning conditions to obtain a polyamide yarn having 88 dtex 26 filaments.
[比較例4]
結晶性ポリアミドとして、ポリカプロラクタムとヘキサメチレンアジパミドの共重合体でポリカプロラクタムとヘキサメチレンアジパミドの共重合比率が85/15の共重合体(相対粘度ηr:2.69、融点:198℃)を用い、非晶性ポリアミドとして、イソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が70/30とした以外は、実施例5と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントのポリアミド糸条を得ようとした。[Comparative Example 4]
As a crystalline polyamide, a copolymer of polycaprolactam and hexamethylene adipamide having a copolymerization ratio of polycaprolactam and hexamethylene adipamide of 85/15 (relative viscosity ηr: 2.69, melting point: 198 ° C), and a non-crystalline polyamide is a polycondensate of isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine, with a copolymerization ratio of isophthalic acid / terephthalic acid of 7/3. Spinning was carried out under the same spinning conditions as in Example 5 except that the weight ratio of crystalline polyamide / amorphous polyamide was 70/30, and an attempt was made to obtain a polyamide yarn of 44 dtex 26 filaments.
[比較例5]
結晶性ポリアミドとして、ポリカプロラクタム(相対粘度ηr:2.62、融点:222℃)を用い、非結晶性ポリアミドとして、イソフタル酸(6I)/テレフタル酸(6T)/ヘキサメチレンジアミンの重縮合体でイソフタル酸/テレフタル酸の共重合比率が7/3の共重合体を用い、結晶性ポリアミド/非結晶性ポリアミドの重量比が30/70とした以外は、実施例4と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントのポリアミド糸条を得た。[Comparative Example 5]
Polycaprolactam (relative viscosity ηr: 2.62, melting point: 222 ° C.) is used as the crystalline polyamide, and polycondensate of isophthalic acid (6I) / terephthalic acid (6T) / hexamethylenediamine is used as the amorphous polyamide. Spinning under the same spinning conditions as in Example 4 except that a copolymer having a copolymerization ratio of isophthalic acid / terephthalic acid of 7/3 was used and the weight ratio of crystalline polyamide / amorphous polyamide was 30/70. And a polyamide yarn of 44 dtex 26 filaments was obtained.
[比較例6]
結晶性ポリアミドとして、ポリカプロラクタム(相対粘度ηr:2.62、融点:222℃)と、ナイロンMXD6(三菱ガス化学製、相対粘度ηr:2.70、融点:237℃)を、ポリカプロラクタム/ナイロンMXD6重量比が50/50とした以外は、実施例4と同様の紡糸条件において紡糸を実施し、44dtex26フィラメントのポリアミド糸条を得た。[Comparative Example 6]
Polycaprolactam (relative viscosity ηr: 2.62, melting point: 222 ° C.) and nylon MXD6 (manufactured by Mitsubishi Gas Chemical Co., Ltd., relative viscosity ηr: 2.70, melting point: 237 ° C.) as crystalline polyamide, polycaprolactam / nylon Spinning was carried out under the same spinning conditions as in Example 4 except that the MXD6 weight ratio was 50/50, and a 44 dtex 26 filament polyamide yarn was obtained.
表1に実施例1〜11、比較例1〜6のポリマー組成と製糸条件、表2に原糸特性と織物評価結果、表3に原糸特性と混繊糸評価結果を示した。 Table 1 shows polymer compositions and spinning conditions of Examples 1 to 11 and Comparative Examples 1 to 6, Table 2 shows raw yarn characteristics and fabric evaluation results, and Table 3 shows raw yarn characteristics and mixed yarn evaluation results.
表2の結果から明らかなように、本発明の実施例1〜11のポリアミド糸条を一部(緯糸)に用いた織物は、熱処理工程を経ることで、経糸と緯糸の収縮差によって緯糸が収縮する作用と、緯糸が経糸をひきつれて収縮する作用の相乗効果により優れた収縮を発現し、衣料用に好適なふくらみ感、ソフト感のある高密度な織物が得られた。 As is apparent from the results in Table 2, the woven fabric using the polyamide yarns of Examples 1 to 11 of the present invention as a part (weft) is subjected to a heat treatment process, so that the weft is caused by a difference in shrinkage between the warp and the weft. A high-density woven fabric that exhibits excellent shrinkage due to a synergistic effect of the shrinking action and the action of the wefts pulling the warp and shrinking, and is suitable for apparel and has a soft and soft feeling.
表3の結果から明らかなように、本発明の実施例1〜6のポリアミド糸条を一部に用いた混繊糸は、熱処理工程を経ることで、芯糸と鞘糸の収縮差によって芯糸が収縮する作用と、芯糸が鞘糸をひきつれて収縮する作用の相乗効果により優れた収縮を発現し、嵩高い混繊糸が得られた。 As is apparent from the results in Table 3, the blended yarn using part of the polyamide yarns of Examples 1 to 6 of the present invention is subjected to a heat treatment process, so that the core is different from the core yarn and the sheath yarn due to the shrinkage difference. An excellent shrinkage was expressed by a synergistic effect of the action of the yarn shrinking and the action of the core yarn pulling the sheath yarn to shrink, and a bulky mixed yarn was obtained.
実施例1〜4では、結晶性ポリアミドと非晶性ポリアミドの重量比を適切に調整し相溶させることによって、適切な沸騰水収縮率(B)と熱収縮応力(H)とすることにより、優れた嵩高性のある混繊糸が得られた。また、衣料用に好適なふくらみ感、ソフト感のある高密度な織物が得られることがわかる。 In Examples 1 to 4, by appropriately adjusting the weight ratio of the crystalline polyamide and the amorphous polyamide and making them compatible with each other, by setting an appropriate boiling water shrinkage rate (B) and heat shrinkage stress (H), An excellent bulky mixed fiber was obtained. Moreover, it turns out that the high-density fabric with the feeling of swelling and softness suitable for clothes is obtained.
実施例7〜9では、適切な総繊度および単糸繊度とすることによって、衣料用に好適なふくらみ感、ソフト感のある高密度な織物が得られることがわかる。 In Examples 7-9, it turns out that the high-density fabric with the feeling of swelling and softness suitable for clothes is obtained by setting it as the appropriate total fineness and single yarn fineness.
また、本発明の実施例1〜11のポリアミド糸条は、結晶性ポリアミドと非晶性ポリアミドの重量比を適切に調整したり、さらに相溶化剤を用いるなど相溶系とすることによって、単糸細繊度化と高速製糸を実現した。また、得られたポリアミド糸条は、U%が小さく繊度ムラが小さいことがわかる。 In addition, the polyamide yarns of Examples 1 to 11 of the present invention can be obtained by appropriately adjusting the weight ratio of the crystalline polyamide and the amorphous polyamide or by using a compatibilizer such as using a compatibilizer. Achieved finer and higher speed yarn production. Further, it can be seen that the obtained polyamide yarn has a small U% and small unevenness in fineness.
比較例1では、非晶性ポリアミド重量比が少ないために、熱収縮応力(H)と沸騰水収縮率(B)いずれも低く、嵩高性に劣った混繊糸であった。また、十分な密度も得られず、ふくらみ感に劣った織物であった。 In Comparative Example 1, since the amorphous polyamide weight ratio was small, the heat shrinkage stress (H) and the boiling water shrinkage rate (B) were both low, and the blended yarn was inferior in bulkiness. Moreover, sufficient density was not obtained, and the fabric was inferior in feeling of swelling.
比較例2、3では、結晶性ポリアミドと非晶性ポリアミドの固化速度に大きな差異があるため、結晶性ポリアミドと非晶性ポリアミドの相溶性が乏しく、熱収縮応力(H)が低く、十分な密度も得られず、ふくらみ感に劣った織物であった。特に、総繊度の太い比較例3の織物はソフト感にも劣っていた。また、得られたポリアミド糸条は、U%が高く繊度ムラが認められた。 In Comparative Examples 2 and 3, since there is a large difference in the solidification rate between the crystalline polyamide and the amorphous polyamide, the compatibility between the crystalline polyamide and the amorphous polyamide is poor, the heat shrinkage stress (H) is low, and sufficient The density was not obtained, and the fabric was inferior in swelling. In particular, the fabric of Comparative Example 3 having a large total fineness was inferior in soft feeling. Further, the obtained polyamide yarn had a high U%, and unevenness in fineness was observed.
比較例4では、単糸繊度の細いポリアミド糸条の高速製糸を試みたが、結晶性ポリアミドと非晶性ポリアミドの相溶性が乏しいために、紡糸口金より吐出した際の糸条の膨らみ(バラス効果)が大きく、曳糸性に非常に乏しく安定製糸できず、ポリアミド糸条を採取することができなかった。 In Comparative Example 4, high-speed spinning of a polyamide yarn having a fine single yarn fineness was attempted. However, since the compatibility between crystalline polyamide and amorphous polyamide is poor, the swelling of the yarn when discharged from the spinneret (ballast) (Effect) was large, the spinnability was very poor, stable yarn could not be produced, and polyamide yarn could not be collected.
比較例5では、非晶性ポリアミド重量比が多いために、沸騰水収縮率(B)が高く、熱処理工程で芯糸が収縮しすぎて衣料用に不適な嵩高性の混繊糸であった。また、熱処理工程で緯糸が収縮しすぎて密度が過密になり、ふくらみ感、ソフト感に劣っていた。 In Comparative Example 5, since the amorphous polyamide weight ratio was large, the boiling water shrinkage ratio (B) was high, and the core yarn was too shrunk in the heat treatment step, which was a bulky mixed yarn unsuitable for clothing. . In addition, the weft yarn contracted too much in the heat treatment process, resulting in an excessively dense density, which was inferior to the bulge and softness.
比較例6では、ポリアミド糸条が、2種類の結晶性ポリアミドから構成されるため、熱収縮応力(H)が低く、十分な密度も得られず、ふくらみ感に劣った織物であった。 In Comparative Example 6, since the polyamide yarn was composed of two types of crystalline polyamide, the heat shrinkage stress (H) was low, sufficient density was not obtained, and the fabric was inferior in swell.
Claims (5)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014265190 | 2014-12-26 | ||
JP2014265190 | 2014-12-26 | ||
PCT/JP2015/085198 WO2016104278A1 (en) | 2014-12-26 | 2015-12-16 | High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2016104278A1 true JPWO2016104278A1 (en) | 2017-10-05 |
Family
ID=56150303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016512722A Pending JPWO2016104278A1 (en) | 2014-12-26 | 2015-12-16 | Highly shrinkable polyamide fiber and blended yarn and woven / knitted fabric using the same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2016104278A1 (en) |
TW (1) | TW201632665A (en) |
WO (1) | WO2016104278A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017204047A1 (en) * | 2016-05-26 | 2019-03-22 | 東レ株式会社 | Highly heat-shrinkable polyamide fiber and mixed yarn and woven fabric using the same |
JP2017222955A (en) * | 2016-06-17 | 2017-12-21 | 東レ株式会社 | Split polyamide polyester composite fiber and woven/knit fabric |
JP6812674B2 (en) * | 2016-06-24 | 2021-01-13 | 東レ株式会社 | Main yarn of woven knitted fabric and polyamide core sheath type mixed yarn |
KR102363120B1 (en) * | 2016-07-26 | 2022-02-15 | 도레이 카부시키가이샤 | Polyamide multifilament and lace knitting and stockings using same |
JP6822210B2 (en) * | 2017-02-24 | 2021-01-27 | 東レ株式会社 | High heat shrinkable polyamide fibers, mixed yarns and woven and knitted fabrics |
KR102649461B1 (en) * | 2018-04-25 | 2024-03-20 | 도레이 카부시키가이샤 | Polyamide fibers and knitted fabrics, and methods for producing polyamide fibers |
CN111621904B (en) * | 2019-02-28 | 2021-12-31 | 福懋兴业股份有限公司 | Elastic fabric containing nylon 6,6 crimped fiber and manufacturing method thereof |
EP4006216A4 (en) * | 2019-07-31 | 2024-03-20 | Toray Industries, Inc. | Polyamide composite fiber and finished yarn |
CN117813427A (en) * | 2021-08-30 | 2024-04-02 | 小松美特料株式会社 | Fiber fabric and method for dyeing fiber fabric |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH042814A (en) * | 1990-04-17 | 1992-01-07 | Teijin Ltd | Polyamide multifilament yarn having high shrinkage and production thereof |
JPH0625917A (en) * | 1992-07-03 | 1994-02-01 | Mitsubishi Rayon Co Ltd | Polyamide fiber |
JP2000073231A (en) * | 1998-08-27 | 2000-03-07 | Unitika Ltd | Highly shrinkable nylon fiber and its production |
JP4648814B2 (en) * | 2005-10-07 | 2011-03-09 | Kbセーレン株式会社 | High shrinkage multifilament, high-density fabric using the same, and method for producing high-density fabric |
-
2015
- 2015-12-16 WO PCT/JP2015/085198 patent/WO2016104278A1/en active Application Filing
- 2015-12-16 JP JP2016512722A patent/JPWO2016104278A1/en active Pending
- 2015-12-24 TW TW104143494A patent/TW201632665A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW201632665A (en) | 2016-09-16 |
WO2016104278A1 (en) | 2016-06-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2016104278A1 (en) | Highly shrinkable polyamide fiber and blended yarn and woven / knitted fabric using the same | |
WO2017204047A1 (en) | Highly heat-shrinkable polyamide fibers, and filament-mixed yarn and woven or knit fabric each including same | |
KR100760796B1 (en) | Stretchable polymeric fibers and articles produced therefrom | |
JPWO2017221713A1 (en) | High heat-shrinkable polyamide composite fibers and processed yarns, and woven and knitted fabrics using them | |
TWI693311B (en) | Hygroscopic core-sheath composite yarn and manufacturing method thereof | |
JP3259740B2 (en) | Stretched polyamide fiber for artificial hair | |
JP6822210B2 (en) | High heat shrinkable polyamide fibers, mixed yarns and woven and knitted fabrics | |
JP2017226941A (en) | Woven or knitted fabric and initial yarn for polyamide sheath-core type blended yarn | |
CN104321473A (en) | A fiber made of alloy resin composition of polyester | |
JP2001288621A (en) | Polyester-based conjugate fiber | |
TW380171B (en) | Elastic fibre | |
JP2017222955A (en) | Split polyamide polyester composite fiber and woven/knit fabric | |
JP7189667B2 (en) | Method for manufacturing stretchable fabric | |
JP2013209785A (en) | Latent crimpable polyester conjugated fiber yarn | |
WO2021020354A1 (en) | Polyamide composite fiber and finished yarn | |
JP2000328359A (en) | Production of polyester blended yarn | |
JP2001159030A (en) | Conjugate polyamide fiber | |
JP2007046212A (en) | Conjugate yarn and fabric product containing the same | |
JP4699072B2 (en) | Stretch polyester composite fiber | |
JP2006124851A (en) | Highly hygroscopic polyamide combined filament yarn with different shrinkage percentage and method for producing the same | |
JPH04327214A (en) | Conjugate fiber | |
KR101422399B1 (en) | A Thick and thin yarn comprising an alloy resin composition of Polyamide and Polyester resin and its preparation method | |
JP2006111990A (en) | Highly hygroscopic polyamide fiber having excellent extension recovery rate and method for producing the same | |
JPH1037022A (en) | Random latent crimpable yarn | |
JP2000008224A (en) | Crimpable polyester conjugate fiber and its production |