WO2021020354A1 - Polyamide composite fiber and finished yarn - Google Patents

Polyamide composite fiber and finished yarn Download PDF

Info

Publication number
WO2021020354A1
WO2021020354A1 PCT/JP2020/028737 JP2020028737W WO2021020354A1 WO 2021020354 A1 WO2021020354 A1 WO 2021020354A1 JP 2020028737 W JP2020028737 W JP 2020028737W WO 2021020354 A1 WO2021020354 A1 WO 2021020354A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
composite fiber
crystalline
polyamide composite
yarn
Prior art date
Application number
PCT/JP2020/028737
Other languages
French (fr)
Japanese (ja)
Inventor
儒 黄
純郎 山口
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020541616A priority Critical patent/JPWO2021020354A1/ja
Priority to CN202080053997.0A priority patent/CN114207200A/en
Priority to EP20847355.3A priority patent/EP4006216A4/en
Priority to KR1020227002637A priority patent/KR20220038683A/en
Publication of WO2021020354A1 publication Critical patent/WO2021020354A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0206Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist by false-twisting
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • D02G3/047Blended or other yarns or threads containing components made from different materials including aramid fibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool

Definitions

  • the present invention relates to an eccentric core sheath type composite fiber made of polyamide and a processed yarn made of it.
  • polyamide fibers are softer and have a better touch than polyester fibers, and are widely used for clothing applications.
  • Single fiber yarns made of one type of polymer, such as nylon 6 and nylon 66, which are representative of polyamide fibers for clothing, have almost no elasticity in the fibers themselves, so they are given elasticity by false twisting or the like.
  • Patent Document 1 when the composite fiber described in Patent Document 1 is obtained from two types of polyamides having different properties, the stretchability is lost by passing through processing steps such as a refining step and a dyeing step due to the swelling property peculiar to the polyamide. In some cases, the product did not provide sufficient stretch. The same applies to the polyamide composite fiber described in Patent Document 2.
  • the moist heat of the scouring and dyeing processing of the woven and knitted fabric is performed.
  • wrinkles peculiar to polyamide fibers are likely to occur, and in the dry heat process of the heat setting process, it is difficult to remove the wrinkles formed in the moist heat process. Therefore, in order to maintain the quality of the woven and knitted article, the woven and knitted material is used in the moist heat process. It is necessary to process while applying tension to the fiber.
  • an object of the present invention is to solve the above-mentioned problems, and to provide a polyamide composite fiber capable of obtaining a woven or knitted fabric having excellent stretchability, and a processed yarn made of the polyamide composite fiber.
  • the polyamide composite fiber of the present invention is an eccentric core-sheath type polyamide composite fiber composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different compositions, and the temperature of the polyamide composite fiber is 30 ° C.
  • the amount of rigid amorphous of the above-mentioned polyamide composite fiber is 40 to 60%, and the expansion / contraction elongation rate is 30% or more.
  • the crystalline polyamide (A) is nylon 6 or a copolymer thereof.
  • the crystalline polyamide (B) is nylon 610 or a copolymer thereof.
  • the crystalline polyamide (A) is a core component and the crystalline polyamide (B) is a sheath component.
  • a processed yarn made of the above-mentioned polyamide composite fiber is obtained.
  • the expansion / contraction rate is 100% or more.
  • the present invention it is possible to obtain a polyamide composite fiber and a processed yarn from which a woven or knitted fabric having excellent stretchability can be obtained. Further, according to the present invention, even if moist heat or dry heat is applied in a state where a high tension is applied in the warp direction, the woven or knitted material contracts with a stress exceeding the binding force, and the crimpability is sufficiently exhibited in the warp direction. It is possible to obtain a polyamide composite fiber and a processed yarn which can give a woven or knitted fabric having excellent stretchability.
  • FIG. 1 is a model cross-sectional view illustrating a cross section of the eccentric core sheath type polyamide composite fiber of the present invention.
  • 2 (A) to 2 (C) are model cross-sectional views illustrating a cross section of another eccentric core sheath type polyamide composite fiber of the present invention.
  • the polyamide composite fiber of the present invention is an eccentric core-sheath type polyamide composite fiber composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different polymer compositions, and the temperature of the polyamide composite fiber is 30 ° C.
  • the polyamide composite fiber is characterized in that the water absorption rate after standing for 72 hours in an environment of relative humidity of 90 RH% is 5.0% or less, and the heat shrinkage stress is 0.15 cN / dtex or more.
  • the polyamide composite fiber of the present invention is an eccentric core-sheath type composite fiber, and is composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different polymer compositions.
  • the eccentric core-sheath type polyamide composite fiber refers to a composite fiber in which two or more types of polyamide form an eccentric core-sheath structure.
  • the polyamide composite fiber of the present invention needs to have a composite cross section formed by bonding two types of crystalline polyamides, and two types of crystalline polyamides having different polymer compositions are not substantially separated. It exists in a joined state.
  • it is an eccentric core sheath type in which the crystalline polyamide (A) is used as a core component, the crystalline polyamide (B) is used as a sheath component, and the crystalline polyamide (A) is covered with the crystalline polyamide (B). Is preferable.
  • the eccentricity referred to in the present invention means that the position of the center of gravity of the core component is different from the center of the cross section of the composite fiber in the cross section of the polyamide composite fiber.
  • FIG. 1 is a model cross-sectional view illustrating a cross section of the eccentric core sheath type polyamide composite fiber of the present invention (hereinafter, also referred to as “polyamide eccentric core sheath type composite fiber”).
  • the polyamide eccentric core sheath type composite fiber 10A is composed of a core component (crystalline polyamide (A)) 1 and a sheath component (crystalline polyamide (B)) 2, and is a core component crystalline polyamide.
  • the position of the center of gravity of (A) is different from the center of the cross section of the composite fiber.
  • 2 (A) to 2 (C) are model cross-sectional views illustrating the cross section of the other polyamide eccentric core sheath type composite fiber of the present invention.
  • 2 (A), 2 (B) and 2 (C) show the eccentric core sheath type core component (crystalline polyamide (A)) 1 and sheath component (crystalline polyamide (B)) 2, respectively.
  • the aspects of the polyamide eccentric core sheath type composite fibers 10B to 10C having different shape arrangement states are shown, and the position of the center of gravity of the crystalline polyamide (A), which is the core component, is different from the center of the composite fiber cross section as in FIG. ing.
  • mass ratio 6: 4 to 4: 6 in this way, the water absorption rate of the polyamide composite fiber of the present invention can be controlled to 5.0% or less, and the obtained woven or knitted fabric can be obtained. Is given excellent stretchability.
  • the polyamide composite fiber of the present invention is composed of two types of crystalline polyamides having different polymer compositions.
  • the crystalline polyamide is a polyamide that forms crystals and has a melting point, and is a polymer in which so-called hydrocarbon groups are linked to the main chain via an amide bond.
  • Specific examples of the crystalline polyamide include polypolyamide, polyhexamethylene adipamide, polyhexamethylene sebacamide, polytetramethylene adipamide, and condensation polymerization of 1,4-cyclohexanebis and a linear aliphatic dicarboxylic acid. Examples thereof include type polyamides and copolymers thereof or mixtures thereof. However, it is preferable to use a homopolyamide from the viewpoint of easy reproduction of a uniform system and stable function expression.
  • Examples of the crystalline polyamide (A) include nylon 6, nylon 66, nylon 4, nylon 610, nylon 11, nylon 12, and the like, and copolymers containing them as main components, which are different from the crystalline polyamide (B).
  • the crystalline polyamide (A) can contain components other than lactam, aminocarboxylic acid, diamine and dicarboxylic acid in its repeating structure as long as the effects of the present invention are not impaired. However, from the viewpoint of yarn-making property and strength, elastomers containing polyols and the like in the repeating structure are excluded.
  • the crystalline polyamide (A) is a polymer in which 90% or more of the repeating structure is a single lactam, an aminocarboxylic acid or a combination of diamine and dicarboxylic acid. It is preferable, more preferably 95% or more of the repeating structure. From the viewpoint of thermal stability, it is particularly preferable that such a component is nylon 6 or a copolymer thereof.
  • the crystalline polyamide (B) can be obtained, for example, by a combination of a dicarboxylic acid unit containing a sebacic acid unit as a main component and a diamine unit.
  • a dicarboxylic acid unit containing a sebacic acid unit as a main component and a diamine unit.
  • nylon 610 and its copolymer which have stable polymerizability, less yellowing of crimped yarn, and good dyeability, are most preferably used.
  • sebacic acid can be produced, for example, by refining from castor oil seeds, and is positioned as a plant-derived raw material.
  • dicarboxylic acid constituting the dicarboxylic acid unit other than the sebacic acid unit examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, phthalic acid, isophthalic acid, and terephthalic acid. These can be blended as long as the effects of the present invention are not impaired.
  • these dicarboxylic acids are preferably plant-derived dicarboxylic acids.
  • the copolymerization amount of the dicarboxylic acid unit other than the sebacic acid unit is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, and 0 to 10 mol% of the total dicarboxylic acid unit. Is a more preferable embodiment.
  • diamines constituting the diamine unit examples include diamines having 2 or more carbon atoms, preferably diamines having 4 to 12 carbon atoms, and specific examples thereof include putrecin, 1,5-pentanediamine, hexamethylenediamine, and trimethylenediamine. , Nonanediamine, methylpentanediamine, phenylenediamine, and ethanebutol. Further, these diamines are also preferably plant-derived diamines.
  • the crystalline polyamide (A) and the crystalline polyamide (B) include pigments, heat stabilizers, antioxidants, weathering agents, flame retardants, plasticizers, mold release agents, lubricants, and foaming agents. , Antistatic agent, moldability improving agent, strengthening agent and the like can be added and blended.
  • the polyamide composite fiber of the present invention needs to have a water absorption rate of 5.0% or less after being allowed to stand for 72 hours in an environment of a temperature of 30 ° C. and a relative humidity of 90 RH% (temperature 30 ° C. ⁇ relative humidity 90 RH%).
  • the water absorption rate referred to here is a value measured according to JIS L 1013.
  • the higher the water absorption rate the more the polyamide fiber tends to swell due to water content, and when the water absorption rate exceeds 5.0%, wrinkles and wrinkles are likely to occur in the scouring, relaxing treatment process, and dyeing process. Since it is usually stretched and processed, the stretchability is reduced.
  • the water absorption rate is preferably 4% or less. Further, although the lower limit of the water absorption rate cannot be specified, it is practically about 1.0%.
  • the water absorption rate can be controlled by the polymer selection of the crystalline polyamide (A) and the crystalline polyamide (B) and the core-sheath composite ratio.
  • the polyamide composite fiber of the present invention needs to have a heat shrinkage stress of 0.15 cN / dtex or more.
  • the heat shrinkage stress referred to here is a heat shrinkage stress measuring machine (for example, manufactured by Kanebo Engineering Co., Ltd., model "KE-2 type"), and the fiber threads to be measured are tied into a loop having a circumference of 16 cm to form a loop of the threads.
  • An initial load of 1/30 g of fineness (decitex) is applied, the temperature is measured from 40 ° C to 210 ° C at a heating rate of 100 ° C / min, and the peak value of the obtained thermal stress curve is the maximum thermal stress (cN /). It is measured as dtex).
  • the heat shrinkage stress is 0.15 cN / dtex or more, even if a wet heat treatment or a dry heat treatment is performed while a high tension is applied in the warp direction, the heat shrinks with a stress superior to the textile binding force.
  • a woven or knitted fabric that can sufficiently exhibit crimpability and has good stretchability can be obtained.
  • the heat shrinkage stress is less than 0.15 cN / dtex, sufficient crimping does not occur in the moist heat step of applying high tension, resulting in a woven or knitted fabric having poor stretchability.
  • the heat shrinkage stress is preferably 0.20 cN / dtex or more, and more preferably 0.25 cN / dtex or more. Further, if the heat shrinkage stress is too high, the stitches at the intersections of the woven fabrics are likely to be clogged and the stretchability is hindered. Therefore, the upper limit of the heat shrinkage stress is preferably 0.50 cN / dtex.
  • the thermal shrinkage stress can be controlled by using a high-viscosity polymer and controlling the amount of rigid amorphous fibers under the thermal drawing conditions of low spinning temperature and low spinning speed and high draw ratio.
  • the polyamide composite fiber of the present invention preferably has a rigid amorphous amount of 40 to 60%.
  • Rigid amorphous is an amorphous whose amount can be determined by the method described in the section of Examples, and is an intermediate state between a crystal and a movable amorphous (conventional complete amorphous). It is an amorphous substance in which the molecular motion is frozen even above the glass transition temperature (Tg) and becomes fluid at a temperature higher than Tg (for example, Minoru 10 o'clock, "DSC (3) -polymer". Glass Transition Behavior- ", Journal of the Textile Society (Fiber and Industry), Vol. 65, No. 10 (2009)).
  • the amount of rigid amorphous is represented by "100% -crystallinity-movable amorphous amount".
  • the polyamide composite fiber includes a crystalline portion, a rigid amorphous portion, and a movable amorphous portion.
  • the thermal shrinkage stress depends on the binding force of the rigid amorphous chain when the fiber structure is formed and the shrinkage of the mobile amorphous chain developed when the heat treatment is performed. By setting the amount of rigid amorphous in the above range, heat shrinkage stress can be developed.
  • the amount of rigid amorphous can be controlled by spinning.
  • the amount of rigid amorphous can be controlled by using a high-viscosity polymer and designing the manufacturing method, as well as the heat shrinkage stress.
  • the amount of rigid amorphous chain is 40% or more, the binding force of the rigid amorphous chain is exhibited, and a desired thermal shrinkage stress can be obtained without impairing the contractility of the mobile amorphous chain. Further, when the amount of rigid amorphous chain is 60% or less, the binding force of the rigid amorphous chain is exhibited, the contraction force of the mobile amorphous chain can be maintained, and a desired thermal contraction stress is obtained. be able to.
  • the amount of rigid amorphous is preferably 45 to 55%.
  • the polyamide composite fiber of the present invention preferably has a stretch elongation rate of 30% or more.
  • the expansion / contraction rate is an index of the crimpability of the raw yarn, and the higher the value, the higher the ability to develop crimp.
  • the fiber when the fiber is formed, a shrinkage difference occurs due to a difference in orientation between the crystalline polyamide (A) and the crystalline polyamide (B), and crimping occurs.
  • polyamide fibers are prone to wrinkles in the refining and dyeing processes of woven and knitted fabrics, and are processed in a state where high tension is applied in the warp direction in order to maintain the woven and knitted article position.
  • the shrinkage difference may decrease due to the influence of external force (high tension).
  • the raw yarn has a constant thermal shrinkage stress, so that the crimpability of the raw yarn can be maintained, and when the expansion / contraction rate is 30% or more, the stretchability is more excellent.
  • a woven or knitted fabric with is obtained.
  • the expansion / contraction ratio is more preferably 100 to 200%. Since the stretch elongation rate is expressed by the shrinkage difference between the crystalline polyamide (A) and the crystalline polyamide (B), the larger the shrinkage difference is, the higher the stretch stretch rate is.
  • the polyamide composite fiber of the present invention preferably has a total fineness of 20 to 120 dtex as a yarn.
  • the total fineness is more preferably 30 to 90 dtex.
  • the single fiber fineness of the polyamide composite fiber cannot be specified, it is usually used in the range of 1.0 to 5.0 dtex.
  • the relative viscosity of the crystalline polyamide (A) is preferably 3.1 to 3.8.
  • the relative viscosity of the crystalline polyamide (B) is preferably 2.6 to 2.8. It is more preferable that the relative viscosity ratio (A / B) of the crystalline polyamide (A) and the crystalline polyamide (B) is 1.2 to 1.4.
  • a crystalline polyamide having a relative viscosity in such a range By selecting a crystalline polyamide having a relative viscosity in such a range, a shrinkage difference appears after the heat treatment, a three-dimensional spiral structure is formed, and crimping occurs.
  • the polyamide is transferred from amorphous to crystalline by receiving heat of fusion.
  • the rate of transition from amorphous to crystal is slower than that of the crystalline polyamide (B) having a low relative viscosity.
  • the polyamide composite fiber of the present invention has a composite cross section formed by joining two types of crystalline polyamides, and the crystalline polyamide (A) as a core component is covered with the crystalline polyamide (B) as a sheath component. It is an eccentric core sheath type structure.
  • the above-mentioned crystalline polyamides having a relative viscosity difference are melted and composited in a spinning pack.
  • a cross section is formed, the polymer flow resistance is different when the base is discharged, and the difference in flow velocity tends to cause thread bending, resulting in poor operability. Therefore, in the production of the crystalline polyamide (A) and the crystalline polyamide (B) having different melt viscosities, by adopting the eccentric core sheath type structure of the present invention, stable production can be performed with ordinary equipment.
  • a method for producing a melt-spun polyamide composite fiber of the present invention by high-speed direct spinning will be described below as an example.
  • the crystalline polyamide (A) and the crystalline polyamide (B) are melted separately, weighed and transported using a gear pump, and a composite flow is formed so as to form a core-sheath structure by a normal method as it is, and an eccentric core is formed.
  • a sheath-type composite fiber spinneret the spinneret is discharged from the spinneret so as to have a cross section illustrated in FIG.
  • the discharged polyamide composite fiber yarn is cooled to 30 ° C. by blowing cooling air with a yarn cooling device such as a chimney.
  • the cooled yarn is refueled and converged by the refueling device, and is picked up by the take-up roller at 1500 to 4000 m / min, passed through the take-up roller and the draw roller, and at that time, the circumference of the take-up roller and the draw roller. Stretch at 1.5-3.0 times according to the rate ratio. Further, the yarn is heat-set by a drawing roller and wound into a package at a winding speed of 3000 m / min or more.
  • Crystalline polyamide (A) and crystalline polyamide (B) are melted separately, weighed and transported using a gear pump, and a composite flow is formed so as to take a core-sheath structure by the usual method, and the eccentric core is formed.
  • a sheath-type composite fiber spinneret the spinneret is discharged from the spinneret so as to have a cross section illustrated in FIG.
  • the discharged polyamide composite fiber yarn is cooled to 30 ° C. by blowing cooling air with a yarn cooling device such as a chimney.
  • the cooled yarn is refueled and converged by the refueling device, and is picked up by the take-up roller at 3000 to 4500 m / min, passed through the take-up roller and the draw roller, and at that time, the circumference of the take-up roller and the draw roller. Finely stretch at 1.0 to 1.2 times according to the speed ratio. Further, the yarn is wound on the package at a winding speed of 3000 m / min or more.
  • the spinning temperature is appropriately designed based on the melting point of the crystalline polyamide (A) having a high relative viscosity.
  • the spinning temperature is preferably 35 to 70 ° C. higher than the melting point of the crystalline polyamide (A), and more preferably 45 to 60 ° C. higher than the melting point.
  • the amount of rigid amorphous of the polyamide composite fiber of the present invention is increased, and the heat shrinkage stress and the elongation / elongation rate are improved.
  • the pick-up speed is preferably 1500 to 4000 m / min.
  • the amount of rigid amorphous of the polyamide composite fiber of the present invention is increased and the heat shrinkage stress is improved by performing thermal drawing using the take-up roller as a heating roller.
  • the draw ratio is preferably 1.5 to 3.0 times, more preferably 2.0 to 3.0 times.
  • the heat stretching temperature is preferably 30 to 90 ° C, more preferably 40 to 60 ° C.
  • the heat shrinkage stress of the polyamide composite fiber of the present invention can be appropriately designed.
  • the heat setting temperature is preferably 130 to 180 ° C.
  • the eccentric core sheath type polyamide composite fiber of the present invention is used for at least a part of the yarn.
  • the manufacturing method of yarn processing is not limited, and examples thereof include a mixed fiber method and a false twist processing method.
  • the fiber mixing method air blending, blending, composite false twisting and the like can be applied, but air blending is preferably used because the blending is easy to control and the manufacturing cost is low.
  • the false twisting method it is preferable to perform false twisting by using a pin type, a friction type, a belt type or the like according to the fineness and the number of twists.
  • the processed yarn made of the polyamide composite fiber of the present invention preferably has a stretch elongation rate of 100% or more.
  • a woven or knitted fabric having excellent stretchability can be obtained by combining sufficient crimping and crimping of the false twisted yarn.
  • the processed yarn made of the polyamide composite fiber of the present invention preferably has a stretch elongation rate of 100% or more.
  • the stretchable stretch woven knit is constructed by using at least a part of the polyamide composite fiber or the processed yarn of the present invention. According to the present invention, even when a high tension is applied in the warp yarn direction in the moist heat step, crimping can be sufficiently exhibited, and a woven or knitted fabric having excellent stretchability can be provided.
  • the stretchable stretchable knitted fabric made of the polyamide composite fiber or processed yarn of the present invention can be woven and knitted according to a known method. Moreover, the structure of the woven and knitted fabric is not limited.
  • the structure may be any of plain weave, twill structure, Zhu Xi structure and their modified structure, and mixed structure depending on the intended use.
  • a plain weave with many restraint points, a ripstop structure in which a flat structure and a stone grain, and a nanaco structure are combined is preferable.
  • the texture can be either a circular knitted fabric, an interlocked texture, a warp knitted half texture, a satin structure, a jacquard structure or their modified structure, or a mixed structure, depending on the intended use.
  • a single tricot knitted fabric such as a half-textured fabric is preferable because the knitted fabric is thin, stable, and has an excellent elongation rate.
  • the use of the woven or knitted fabric made of the polyamide composite fiber or the processed yarn of the present invention is not limited, but is preferably used for clothing, and more preferably represented by down jackets, windbreakers, golf wear, rainwear and the like. It is used for sports, casual wear and women's and men's clothing. In particular, it can be suitably used for sportswear and down jackets.
  • A. Melting point Thermal analysis was performed using Q1000 manufactured by TA Instruments, and data processing was performed by Universal Analysis 2000. The thermal analysis was carried out under nitrogen flow (50 mL / min) at a temperature range of -50 to 300 ° C, a temperature rise rate of 10 ° C / min, and a chip sample mass of about 5 g (calorie data is standardized by mass after measurement). .. The melting point was measured from the melting peak.
  • Relative viscosity 0.25 g of a polyamide chip sample was dissolved in 25 ml of sulfuric acid having a concentration of 98% by mass so as to be 1 g / 100 ml, and the flow time (T1) at a temperature of 25 ° C. was measured using an Ostwald viscometer. .. Subsequently, the flow time (T2) of sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid.
  • Total fineness According to JIS L1013.
  • a fiber sample was wound 200 times with a tension of 1/30 (g) using a measuring machine with a frame circumference of 1.125 m. Dry for 60 minutes at a temperature of 105 ° C, transfer to a desiccator, allow to cool for 30 minutes in a temperature of 20 ° C and a relative humidity of 55% RH, measure the mass of the skein, and calculate the mass per 10,000 m from the obtained value.
  • the total fineness of the fiber threads was calculated with the official moisture content as 4.5%. The measurement was performed 5 times, and the average value was taken as the total fineness.
  • D. Thermal shrinkage stress Using a KE-2 type heat shrink stress measuring machine manufactured by Kanebo Engineering Co., Ltd., a fiber sample was tied into a loop with a circumference of 16 cm, and an initial load of 1/30 g of the total fineness of the thread was applied to a temperature from 40 ° C to 210 ° C. The load when the temperature was changed at a temperature rising rate of 100 ° C./min was measured, and the peak value of the obtained thermal stress curve was taken as the thermal shrinkage stress.
  • Rigid amorphous amount The amount of rigid amorphous was measured using Q1000 manufactured by TA Instruments as a measuring device. The difference ( ⁇ Hm ⁇ Hc) between the heat of fusion ( ⁇ Hm) and the heat of cold crystallization ( ⁇ Hc) obtained from the differential scanning calorimetry (hereinafter abbreviated as DSC), and the specific heat difference ( ⁇ Cp) obtained from the temperature-modulated DSC measurement. ), Further, the theoretical value of 100% crystalline (completely crystalline) for polyamide and the theoretical value of 100% amorphous (completely amorphous) of polyamide were used.
  • ⁇ Hm0 is the amount of heat of fusion of the polyamide (perfect crystal).
  • ⁇ Cp0 is the specific heat difference of polyamide (completely amorphous) before and after the glass transition temperature (Tg).
  • the crystallinity (Xc) and the amount of movable amorphous (Xma) were determined based on the following equations (1) and (2).
  • the rigid amorphous amount (Xra) was calculated by the following equation (3). The amount of rigid amorphous was calculated from the average value obtained by measuring these twice.
  • (1) Xc (%) ( ⁇ Hm ⁇ Hc) / ⁇ Hm0 ⁇ 100
  • Xma (%) ⁇ Cp / ⁇ Cp0 ⁇ 100
  • Xra (%) 100- (Xc + Xma)
  • G. Strength and elongation The fiber sample was measured with "TENSILON” (registered trademark) manufactured by Orientec Co., Ltd., UCT-100 under the constant speed elongation conditions shown in JIS L1013 (Chemical fiber filament yarn test method, 2010). Elongation was determined from the elongation of the point showing the maximum strength on the tensile strength-elongation curve. The strength was defined as the value obtained by dividing the maximum strength by the fineness. The measurement was performed 10 times, and the average value was taken as the intensity and elongation.
  • a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret.
  • the threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then used by a take-up roller (room temperature 25 ° C.). It was taken up at 3700 m / min, stretched 1.1 times between stretching rollers (room temperature 25 ° C.), and then wound into a package at a winding speed of 4000 m / min.
  • a polyamide composite fiber yarn having 62 dtex12 filaments, a stretch elongation rate of 49%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.16 cN / dtex, and a rigid amorphous amount of 41% was obtained.
  • a disc false twist is performed under the condition of a twist number (D / Y) of 1.95 in a state where a heater temperature of 190 ° C. is applied to a 1.25 draw ratio, and expansion and contraction are performed.
  • a false twisted yarn having a ratio of 130% was obtained.
  • the obtained false twisted yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 1.
  • Example 2 62dtex12 filament, stretch elongation 53%, water absorption rate 3.
  • nylon 6 (N6) having a relative viscosity of 3.6 and a melting point of 222 ° C. was used as the crystalline polyamide (A).
  • Polyamide composite fiber yarns having an thermal shrinkage stress of 0.21 cN / dtex and a rigid amorphous amount of 46% were obtained.
  • the obtained polyamide composite fiber yarn was false-twisted in the same manner as in Example 1 to obtain a false-twisted yarn having a stretch elongation rate of 150%.
  • the obtained false twisted yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 1.
  • Example 3 62dtex12 filament, stretchable by the same method as in Example 1 except that a copolymer (N6 / N66) of nylon 6 and nylon 66 having a relative viscosity of 3.6 and a melting point of 200 ° C. was used as the crystalline polyamide (A).
  • Polyamide composite fiber threads having an elongation rate of 67%, a water absorption rate of 3.6%, a heat shrinkage stress of 0.25 cN / dtex, and a rigid amorphous amount of 53% were obtained.
  • the obtained polyamide composite fiber yarn was false-twisted in the same manner as in Example 1 to obtain a false-twisted yarn having a stretch elongation rate of 200%.
  • the obtained false twisted yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric had better stretchability than in Examples 1 and 2.
  • the results are shown in Table 1.
  • a copolymer (N6 / N66) of nylon 6 and nylon 66 having a relative viscosity of 3.6 and a melting point of 200 ° C. as the crystalline polyamide (A) has a relative viscosity of 2.7 and a melting point of 225 ° C. as the crystalline polyamide (B).
  • Nylon 610 (N610) was used.
  • Crystalline polyamide (A) is used as a core component
  • crystalline polyamide (B) is used as a sheath component, and each is melted
  • a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret.
  • the threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a non-hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then slightly heated and taken up by a roller (temperature 50 ° C.).
  • a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret.
  • the threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a non-hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then slightly heated and taken up by a roller (temperature 50 ° C.). ) was taken up at 1700 m / min, and after stretching 2.4 times between the heating and stretching rollers (heat setting temperature: 150 ° C.), the package was wound at a winding speed of 4000 m / min.
  • a polyamide composite fiber yarn having 62 dtex12 filaments, an expansion / contraction rate of 83%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.20 cN / dtex, and a rigid amorphous amount of 46% was obtained.
  • a woven fabric was formed using the obtained composite fiber threads as warp threads. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Polyamide composite fiber threads having a filament, a stretch elongation rate of 81%, a water absorption rate of 3.3%, a heat shrinkage stress of 0.18 cN / dtex, and a rigid amorphous amount of 45% were obtained.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Polyamide composite fiber threads having a filament, a stretch elongation rate of 87%, a water absorption rate of 4.3%, a heat shrinkage stress of 0.23 cN / dtex, and a rigid amorphous amount of 47% were obtained.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Example 8 A copolymer of nylon 6 (N6) having a relative viscosity of 3.6 and a melting point of 222 ° C. as the crystalline polyamide (A) and nylon 610 and nylon 510 having a relative viscosity of 2.7 and a melting point of 225 ° C. as the crystalline polyamide (B). 62dtex12 filament, expansion / contraction elongation 103%, water absorption rate 4.1%, heat shrinkage stress 0.20cN / dtex, rigid amorphous amount 46 in the same manner as in Example 5 except that (N610 / N510) was used. % Polyamide composite fiber threads were obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric had better stretchability than that of Example 5. The results are shown in Table 2.
  • Example 9 The same method as in Example 5 except that the material was picked up at 2050 m / min by a slightly heated take-up roller (50 ° C.) and stretched 2.0 times between the heat-stretching rollers (heat setting temperature: 150 ° C.).
  • a polyamide composite fiber yarn having 62 dtex12 filaments, a stretch elongation rate of 82%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.18 cN / dtex, and a rigid amorphous amount of 43% was obtained.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Example 10 62dtex12 filament, expansion / contraction elongation 82%, water absorption rate 3.8%, heat shrinkage stress 0.18cN / dtex, rigid amorphous amount 43% by the same method as in Example 5 except that the spinning temperature was set to 280 ° C.
  • Polyamide composite fiber yarn was obtained.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Example 11 62dtex12 filament, expansion / contraction elongation 95%, water absorption rate 3.8%, heat shrinkage stress 0.22cN / dtex, rigid amorphous amount 49% by the same method as in Example 5 except that the spinning temperature was set to 260 ° C.
  • Polyamide composite fiber yarn was obtained.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric.
  • the obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
  • Example 1 A 62dtex12 filament polyamide composite filament was obtained in the same manner as in Example 5 except that nylon 6 (N6) having a relative viscosity of 2.7 and a melting point of 222 ° C. was used as the crystalline polyamide (A).
  • the composite yarn of Comparative Example 1 having almost no difference in relative viscosity has a small shrinkage difference after heat treatment and a low expansion and contraction elongation rate of 13%, a heat shrinkage stress of 0.13 cN / dtex, and a rigid amorphous amount of 39. It was a low value of%.
  • the obtained polyamide composite fiber yarn was used as a warp, and the obtained woven fabric was inferior in stretchability. The results are shown in Table 2.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric in the same manner as in Example 5, but since wrinkles remained, the tension was increased in the warp direction to the extent that no wrinkles remained, and as a result, stretch was performed. A woven fabric with inferior properties was obtained. The results are shown in Table 2.
  • Polyamide composite fiber threads of 62dtex12 filaments were obtained in the same manner as in Example 5 except.
  • the polyamide composite fiber yarn of Comparative Example 3 produced by using polyamides having a high water absorption rate had a high water absorption rate of 6.2%.
  • the obtained polyamide composite fiber yarn was used as a warp to form a woven fabric in the same manner as in Example 5, but since wrinkles remained, the tension was increased in the warp direction to the extent that no wrinkles remained, and as a result, stretch was performed. A woven fabric with inferior properties was obtained. The results are shown in Table 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

The present invention addresses the problem of providing a polyamide composite fiber obtained from a woven or knitted fabric having excellent stretchability or a finished yarn comprising the same. This polyamide composite fiber is an eccentric core-in-sheath type of polyamide composite fiber comprising two kinds of crystalline polyamide (A) and crystalline polyamide (B) differing in composition from each other, wherein the water absorptivity and thermal contraction stress of the polyamide composite fiber after being left to stand still for 72 hours in an environment in which the temperature is 30℃ and the relative humidity is 90 RH% are 5.0% or less and 0.15 cN/dtex or more, respectively.

Description

ポリアミド複合繊維および加工糸Polyamide composite fiber and processed yarn
 本発明は、ポリアミドからなる偏心芯鞘型複合繊維およびそれからなる加工糸に関するものである。 The present invention relates to an eccentric core sheath type composite fiber made of polyamide and a processed yarn made of it.
 従来からポリアミド繊維は、ポリエステル繊維と比べて柔らかくタッチも良好であり、衣料用途に広く用いられている。衣料用ポリアミド繊維の代表であるナイロン6やナイロン66等で一種類のポリマーからなる単一繊維糸条は、繊維自体に伸縮性が殆どないため、仮撚加工等を行って伸縮性が付与され、伸縮性のある織編物用に使用されている。しかしながら、このような単一繊維糸条に仮撚加工等の加工を施したものでは、十分に満足できる伸縮性を有する織編物を得ることは困難であった。 Conventionally, polyamide fibers are softer and have a better touch than polyester fibers, and are widely used for clothing applications. Single fiber yarns made of one type of polymer, such as nylon 6 and nylon 66, which are representative of polyamide fibers for clothing, have almost no elasticity in the fibers themselves, so they are given elasticity by false twisting or the like. , Used for elastic woven and knitted fabrics. However, it has been difficult to obtain a woven or knitted fabric having sufficiently satisfactory elasticity by subjecting such a single fiber yarn to a process such as false twisting.
 そこで、弾性を有する繊維を用いることによって伸縮性のある織編物を得る方法や、または、性質の異なる2種類のポリマーを併用し、染色工程等の熱処理により捲縮を発現させる潜在捲縮性能を有する複合繊維とすることによって、伸縮性のある織編物を得る方法が提案されている(特許文献1参照。)。さらに、潜在捲縮性能を有するポリアミド複合繊維として、粘度差を有する2種類のポリアミドをサイドバイサイド型や偏心芯鞘型に配した複合繊維も提案されている(特許文献2参照。)。 Therefore, a method of obtaining elastic woven or knitted fabrics by using elastic fibers, or a latent crimping performance that develops crimping by heat treatment such as a dyeing process by using two kinds of polymers having different properties in combination. A method of obtaining a stretchable woven or knitted fabric by using a composite fiber having a structure has been proposed (see Patent Document 1). Further, as a polyamide composite fiber having latent crimping performance, a composite fiber in which two types of polyamides having different viscosities are arranged in a side-by-side type or an eccentric core sheath type has also been proposed (see Patent Document 2).
 また、非晶ポリアミドを含有する高熱収縮性ポリアミド複合繊維またはそれからなる加工糸とすることによって、経糸方向に高い張力をかけた状態で湿熱または乾熱処理しても、織編物の拘束力に勝る応力で収縮し、経糸方向に対して捲縮性を発現することができる複合繊維と加工糸が提案されている(特許文献3参照。)。 Further, by using a highly heat-shrinkable polyamide composite fiber containing an amorphous polyamide or a processed yarn made of the same, even if a wet heat or a dry heat treatment is performed while a high tension is applied in the warp yarn direction, the stress exceeds the binding force of the woven or knitted fabric. There have been proposed composite fibers and processed yarns that can shrink in the warp yarn direction and exhibit crimpability in the warp yarn direction (see Patent Document 3).
国際公開第2018/110523号International Publication No. 2018/110523 日本国特開2002-363827号公報Japanese Patent Application Laid-Open No. 2002-363827 国際公開第2017/221713号International Publication No. 2017/221713
 しかしながら、特許文献1に記載の複合繊維を性質の異なる2種類のポリアミドから得ると、ポリアミド独特の膨潤性のために、精錬工程や染色工程等の加工工程を通過することによりそのストレッチ性が失われ、製品においては十分なストレッチが得られないことがあった。また、特許文献2に記載のポリアミド複合繊維も同様である。 However, when the composite fiber described in Patent Document 1 is obtained from two types of polyamides having different properties, the stretchability is lost by passing through processing steps such as a refining step and a dyeing step due to the swelling property peculiar to the polyamide. In some cases, the product did not provide sufficient stretch. The same applies to the polyamide composite fiber described in Patent Document 2.
 さらには、このような特許文献2に記載のポリアミドから構成される複合繊維は、原糸や加工糸の状態では、捲縮性に優れるものであっても、織編物の精練や染色加工の湿熱工程において、ポリアミド繊維特有のシワ発生が起こりやすく、また熱セット工程の乾熱工程において湿熱工程でついたシワが取れにくいために、織編物品位を維持するために、湿熱工程においては織編物に張力を与えながらの加工が必要である。このように、特許文献2に記載のポリアミド複合繊維では、湿熱工程において織編物に張力をかけることにより、原糸や加工糸が持つ捲縮を十分に発現させることができず、結果的にストレッチ性に乏しい織編物となるという課題がある。 Furthermore, even if the composite fiber composed of the polyamide described in Patent Document 2 has excellent crimpability in the state of the raw yarn and the processed yarn, the moist heat of the scouring and dyeing processing of the woven and knitted fabric is performed. In the process, wrinkles peculiar to polyamide fibers are likely to occur, and in the dry heat process of the heat setting process, it is difficult to remove the wrinkles formed in the moist heat process. Therefore, in order to maintain the quality of the woven and knitted article, the woven and knitted material is used in the moist heat process. It is necessary to process while applying tension to the fiber. As described above, in the polyamide composite fiber described in Patent Document 2, the crimping of the raw yarn and the processed yarn cannot be sufficiently expressed by applying tension to the woven or knitted fabric in the moist heat process, resulting in stretching. There is a problem that the woven and knitted fabric has poor properties.
 また、特許文献3に記載の高熱収縮性ポリアミド複合繊維では、非晶ポリアミドポリマーが経時で吸湿結晶化を進めるため、収縮特性も経時で低下し、ストレッチ性の低い織編物となる場合がある。 Further, in the highly heat-shrinkable polyamide composite fiber described in Patent Document 3, since the amorphous polyamide polymer promotes moisture absorption and crystallization with time, the shrinkage property also deteriorates with time, and a woven or knitted fabric having low stretchability may be obtained.
 そこで本発明の目的は、上記の課題を解決せんとするものであって、優れたストレッチ性を持つ織編物が得られるポリアミド複合繊維およびそれからなる加工糸を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems, and to provide a polyamide composite fiber capable of obtaining a woven or knitted fabric having excellent stretchability, and a processed yarn made of the polyamide composite fiber.
 本発明のポリアミド複合繊維は、組成が互いに異なる2種類の結晶性ポリアミド(A)および結晶性ポリアミド(B)からなる偏心芯鞘型のポリアミド複合繊維であって、前記ポリアミド複合繊維を温度30℃および相対湿度90RH%の環境で72時間静置した後の吸水率が5.0%以下であり、かつ熱収縮応力が0.15cN/dtex以上であるポリアミド複合繊維である。
 本発明のポリアミド複合繊維の好ましい態様によれば、前記のポリアミド複合繊維の剛直非晶量は40~60%であり、伸縮伸長率は30%以上である。
 本発明のポリアミド複合繊維の好ましい態様によれば、前記の結晶性ポリアミド(A)は、ナイロン6またはその共重合体である。
 本発明のポリアミド複合繊維の好ましい態様によれば、前記の結晶性ポリアミド(B)は、ナイロン610またはその共重合体である。
 本発明のポリアミド複合繊維の好ましい態様によれば、前記結晶性ポリアミド(A)が芯成分であり、前記結晶性ポリアミド(B)が鞘成分である。
 本発明においては、前記のポリアミド複合繊維からなる加工糸が得られる。
 本発明の前記の加工糸の好ましい態様によれば、その伸縮伸長率は100%以上である。
The polyamide composite fiber of the present invention is an eccentric core-sheath type polyamide composite fiber composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different compositions, and the temperature of the polyamide composite fiber is 30 ° C. A polyamide composite fiber having a water absorption rate of 5.0% or less and a heat shrinkage stress of 0.15 cN / dtex or more after being allowed to stand for 72 hours in an environment with a relative humidity of 90 RH%.
According to a preferred embodiment of the polyamide composite fiber of the present invention, the amount of rigid amorphous of the above-mentioned polyamide composite fiber is 40 to 60%, and the expansion / contraction elongation rate is 30% or more.
According to a preferred embodiment of the polyamide composite fiber of the present invention, the crystalline polyamide (A) is nylon 6 or a copolymer thereof.
According to a preferred embodiment of the polyamide composite fiber of the present invention, the crystalline polyamide (B) is nylon 610 or a copolymer thereof.
According to a preferred embodiment of the polyamide composite fiber of the present invention, the crystalline polyamide (A) is a core component and the crystalline polyamide (B) is a sheath component.
In the present invention, a processed yarn made of the above-mentioned polyamide composite fiber is obtained.
According to the preferred embodiment of the processed yarn of the present invention, the expansion / contraction rate is 100% or more.
 本発明によれば、優れたストレッチ性を持つ織編物が得られるポリアミド複合繊維および加工糸を得ることができる。さらには、本発明によれば、経糸方向に高い張力をかけた状態で湿熱または乾熱しても、織編物の拘束力に勝る応力で収縮し、経糸方向に対して捲縮性を十分に発現することができ、優れたストレッチ性を持つ織編物が得られるポリアミド複合繊維および加工糸を得ることができる。 According to the present invention, it is possible to obtain a polyamide composite fiber and a processed yarn from which a woven or knitted fabric having excellent stretchability can be obtained. Further, according to the present invention, even if moist heat or dry heat is applied in a state where a high tension is applied in the warp direction, the woven or knitted material contracts with a stress exceeding the binding force, and the crimpability is sufficiently exhibited in the warp direction. It is possible to obtain a polyamide composite fiber and a processed yarn which can give a woven or knitted fabric having excellent stretchability.
図1は、本発明の偏心芯鞘型のポリアミド複合繊維の断面を例示するモデル断面図である。FIG. 1 is a model cross-sectional view illustrating a cross section of the eccentric core sheath type polyamide composite fiber of the present invention. 図2(A)~図2(C)は、本発明の他の偏心芯鞘型のポリアミド複合繊維の断面を例示するモデル断面図である。2 (A) to 2 (C) are model cross-sectional views illustrating a cross section of another eccentric core sheath type polyamide composite fiber of the present invention.
 以下、本発明のポリアミド複合繊維およびそれを用いた加工糸について説明する。
 尚、本明細書において、「質量」は「重量」と同義である。
Hereinafter, the polyamide composite fiber of the present invention and the processed yarn using the same will be described.
In addition, in this specification, "mass" is synonymous with "weight".
 本発明のポリアミド複合繊維は、ポリマー組成が互いに異なる2種類の結晶性ポリアミド(A)および結晶性ポリアミド(B)からなる偏心芯鞘型のポリアミド複合繊維であって、ポリアミド複合繊維を温度30℃および相対湿度90RH%の環境で72時間静置した後の吸水率が5.0%以下であり、かつ熱収縮応力が0.15cN/dtex以上であることを特徴とするポリアミド複合繊維である。 The polyamide composite fiber of the present invention is an eccentric core-sheath type polyamide composite fiber composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different polymer compositions, and the temperature of the polyamide composite fiber is 30 ° C. The polyamide composite fiber is characterized in that the water absorption rate after standing for 72 hours in an environment of relative humidity of 90 RH% is 5.0% or less, and the heat shrinkage stress is 0.15 cN / dtex or more.
 本発明のポリアミド複合繊維は、偏心芯鞘型の複合繊維であり、ポリマー組成が互いに異なる2種類の結晶性ポリアミド(A)および結晶性ポリアミド(B)により構成される。偏心芯鞘型のポリアミド複合繊維とは、2種類以上のポリアミドが偏芯した芯鞘構造を形成している複合繊維をいう。 The polyamide composite fiber of the present invention is an eccentric core-sheath type composite fiber, and is composed of two types of crystalline polyamide (A) and crystalline polyamide (B) having different polymer compositions. The eccentric core-sheath type polyamide composite fiber refers to a composite fiber in which two or more types of polyamide form an eccentric core-sheath structure.
 本発明のポリアミド複合繊維において、2種類の結晶性ポリアミドが接合してなる複合断面を有していることが必要であり、ポリマー組成が互いに異なる2種類の結晶性ポリアミドが実質的に分離せず接合された状態で存在する。本発明において、結晶性ポリアミド(A)を芯成分とし、結晶性ポリアミド(B)を鞘成分とし、結晶性ポリアミド(A)が結晶性ポリアミド(B)で覆われている偏心芯鞘型であることが好ましい。 The polyamide composite fiber of the present invention needs to have a composite cross section formed by bonding two types of crystalline polyamides, and two types of crystalline polyamides having different polymer compositions are not substantially separated. It exists in a joined state. In the present invention, it is an eccentric core sheath type in which the crystalline polyamide (A) is used as a core component, the crystalline polyamide (B) is used as a sheath component, and the crystalline polyamide (A) is covered with the crystalline polyamide (B). Is preferable.
 ここで、本発明で言う偏心とは、ポリアミド複合繊維の断面において、芯成分の重心点位置が複合繊維断面の中心と異なっていることを指している。 Here, the eccentricity referred to in the present invention means that the position of the center of gravity of the core component is different from the center of the cross section of the composite fiber in the cross section of the polyamide composite fiber.
 図1は、本発明の偏心芯鞘型のポリアミド複合繊維(以下、「ポリアミド偏心芯鞘型複合繊維」ともいう。)の断面を例示するモデル断面図である。図1において、ポリアミド偏心芯鞘型複合繊維10Aは、芯成分(結晶性ポリアミド(A))1と鞘成分(結晶性ポリアミド(B))2で構成されており、芯成分である結晶性ポリアミド(A)の重心点位置が複合繊維断面の中心と異なっている。 FIG. 1 is a model cross-sectional view illustrating a cross section of the eccentric core sheath type polyamide composite fiber of the present invention (hereinafter, also referred to as “polyamide eccentric core sheath type composite fiber”). In FIG. 1, the polyamide eccentric core sheath type composite fiber 10A is composed of a core component (crystalline polyamide (A)) 1 and a sheath component (crystalline polyamide (B)) 2, and is a core component crystalline polyamide. The position of the center of gravity of (A) is different from the center of the cross section of the composite fiber.
 また、図2(A)~図2(C)は、本発明の他のポリアミド偏心芯鞘型複合繊維の断面を例示するモデル断面図である。図2(A)、図2(B)および図2(C)は、それぞれ、偏心芯鞘型の芯成分(結晶性ポリアミド(A))1と鞘成分(結晶性ポリアミド(B))2の形状配置状態の異なるポリアミド偏心芯鞘型複合繊維10B~10Cの態様を示しており、図1と同様に、芯成分である結晶性ポリアミド(A)の重心点位置が複合繊維断面の中心と異なっている。 2 (A) to 2 (C) are model cross-sectional views illustrating the cross section of the other polyamide eccentric core sheath type composite fiber of the present invention. 2 (A), 2 (B) and 2 (C) show the eccentric core sheath type core component (crystalline polyamide (A)) 1 and sheath component (crystalline polyamide (B)) 2, respectively. The aspects of the polyamide eccentric core sheath type composite fibers 10B to 10C having different shape arrangement states are shown, and the position of the center of gravity of the crystalline polyamide (A), which is the core component, is different from the center of the composite fiber cross section as in FIG. ing.
 また、結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率は、結晶性ポリアミド(A):結晶性ポリアミド(B)=6:4~4:6(質量比)であることが好ましい態様である。質量比を好適にはこのように6:4~4:6とすることにより、本発明のポリアミド複合繊維の吸水率を5.0%以下に制御することができ、そして得られた織編物には優れたストレッチ性が与えられる。 The composite ratio of the crystalline polyamide (A) and the crystalline polyamide (B) is preferably crystalline polyamide (A): crystalline polyamide (B) = 6: 4 to 4: 6 (mass ratio). It is an aspect. By preferably setting the mass ratio to 6: 4 to 4: 6 in this way, the water absorption rate of the polyamide composite fiber of the present invention can be controlled to 5.0% or less, and the obtained woven or knitted fabric can be obtained. Is given excellent stretchability.
 本発明のポリアミド複合繊維は、ポリマー組成が互いに異なる2種類の結晶性ポリアミドで構成されている。結晶性ポリアミドは、すなわち結晶を形成し融点を有するポリアミドであり、いわゆる炭化水素基が主鎖にアミド結合を介して連結されたポリマーである。結晶性ポリアミドとしては、具体的に、ポリカプラミド、ポリヘキサメチレンアジパミド、ポリヘキサメチレンセバカミド、ポリテトラメチレンアジパミド、1,4-シクロヘキサンビスと線状脂肪族ジカルボン酸との縮合重合型ポリアミドなど、および、これらの共重合体もしくはこれらの混合物等が挙げられる。ただし、均一な系を再現しやすく、安定した機能発現の点から、ホモのポリアミドを用いることが好ましい。 The polyamide composite fiber of the present invention is composed of two types of crystalline polyamides having different polymer compositions. The crystalline polyamide is a polyamide that forms crystals and has a melting point, and is a polymer in which so-called hydrocarbon groups are linked to the main chain via an amide bond. Specific examples of the crystalline polyamide include polypolyamide, polyhexamethylene adipamide, polyhexamethylene sebacamide, polytetramethylene adipamide, and condensation polymerization of 1,4-cyclohexanebis and a linear aliphatic dicarboxylic acid. Examples thereof include type polyamides and copolymers thereof or mixtures thereof. However, it is preferable to use a homopolyamide from the viewpoint of easy reproduction of a uniform system and stable function expression.
 結晶性ポリアミド(A)は、ナイロン6、ナイロン66、ナイロン4、ナイロン610、ナイロン11、ナイロン12等およびそれらを主成分とする共重合体等が挙げられ、結晶性ポリアミド(B)とは異なる種類のポリアミドである。結晶性ポリアミド(A)は、本発明の効果を阻害されない限り、その繰り返し構造にラクタム、アミノカルボン酸、ジアミンおよびジカルボン酸以外の成分を含有させることができる。ただし、製糸性や強度の面から、繰り返し構造にポリオール等を含むエラストマーは除かれる。 Examples of the crystalline polyamide (A) include nylon 6, nylon 66, nylon 4, nylon 610, nylon 11, nylon 12, and the like, and copolymers containing them as main components, which are different from the crystalline polyamide (B). A type of polyamide. The crystalline polyamide (A) can contain components other than lactam, aminocarboxylic acid, diamine and dicarboxylic acid in its repeating structure as long as the effects of the present invention are not impaired. However, from the viewpoint of yarn-making property and strength, elastomers containing polyols and the like in the repeating structure are excluded.
 また、製糸性、強度および防剥離性の観点から、結晶性ポリアミド(A)は、繰り返し構造の90%以上を単一のラクタム、アミノカルボン酸もしくは一組み合わせのジアミンおよびジカルボン酸とする重合体が好ましく、さらに好ましくは繰り返し構造の95%以上である。かかる成分は熱安定性の観点からナイロン6またはその共重合体であることが特に好ましい態様である。 Further, from the viewpoint of yarn-making property, strength and peeling resistance, the crystalline polyamide (A) is a polymer in which 90% or more of the repeating structure is a single lactam, an aminocarboxylic acid or a combination of diamine and dicarboxylic acid. It is preferable, more preferably 95% or more of the repeating structure. From the viewpoint of thermal stability, it is particularly preferable that such a component is nylon 6 or a copolymer thereof.
 また、結晶性ポリアミド(B)は、例えば、セバシン酸単位を主成分とするジカルボン酸単位とジアミン単位の組み合わせにより得られる。これらの中で、重合性が安定し捲縮加工糸の黄化が少なく、染色性が良好なナイロン610およびその共重合体が最も好ましく用いられる。ここで、セバシン酸は、例えば、ひまし油の種子から精製することにより製造することができ、植物由来原料と位置付けられる。 Further, the crystalline polyamide (B) can be obtained, for example, by a combination of a dicarboxylic acid unit containing a sebacic acid unit as a main component and a diamine unit. Of these, nylon 610 and its copolymer, which have stable polymerizability, less yellowing of crimped yarn, and good dyeability, are most preferably used. Here, sebacic acid can be produced, for example, by refining from castor oil seeds, and is positioned as a plant-derived raw material.
 セバシン酸単位以外のジカルボン酸単位を構成するジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、フタル酸、イソフタル酸、およびテレフタル酸などが挙げられ、本発明の効果を損なわない範囲でこれらを配合することができる。 Examples of the dicarboxylic acid constituting the dicarboxylic acid unit other than the sebacic acid unit include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, phthalic acid, isophthalic acid, and terephthalic acid. These can be blended as long as the effects of the present invention are not impaired.
 また、これらのジカルボン酸についても、植物由来のジカルボン酸であることが好ましい。上記のセバシン酸単位以外のジカルボン酸単位の共重合量としては、全ジカルボン酸単位中0~40モル%であることが好ましく、0~20モル%であることがより好ましく、0~10モル%であることがさらに好ましい態様である。 Also, these dicarboxylic acids are preferably plant-derived dicarboxylic acids. The copolymerization amount of the dicarboxylic acid unit other than the sebacic acid unit is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, and 0 to 10 mol% of the total dicarboxylic acid unit. Is a more preferable embodiment.
 ジアミン単位を構成するジアミンとしては、炭素数2以上のジアミン、好ましくは炭素数4~12のジアミンが挙げられ、具体的には、プトレシン、1,5-ペンタンジアミン、ヘキサメチレンジアミン、トリメチレンジアミン、ノナンジアミン、メチルペンタンジアミン、フェニレンジアミン、およびエタンブトールなどが挙げられる。また、これらのジアミンについても、植物由来のジアミンであることが好ましい。 Examples of the diamine constituting the diamine unit include diamines having 2 or more carbon atoms, preferably diamines having 4 to 12 carbon atoms, and specific examples thereof include putrecin, 1,5-pentanediamine, hexamethylenediamine, and trimethylenediamine. , Nonanediamine, methylpentanediamine, phenylenediamine, and ethanebutol. Further, these diamines are also preferably plant-derived diamines.
 また、必要に応じて、結晶性ポリアミド(A)と結晶性ポリアミド(B)には、顔料、熱安定剤、酸化防止剤、耐候剤、難燃剤、可塑剤、離型剤、滑剤、発泡剤、帯電防止剤、成形性改良剤、および強化剤等を添加配合して用いることができる。 In addition, if necessary, the crystalline polyamide (A) and the crystalline polyamide (B) include pigments, heat stabilizers, antioxidants, weathering agents, flame retardants, plasticizers, mold release agents, lubricants, and foaming agents. , Antistatic agent, moldability improving agent, strengthening agent and the like can be added and blended.
 本発明のポリアミド複合繊維は、温度30℃および相対湿度90RH%(温度30℃×相対湿度90RH%)の環境で、72時間静置した後の吸水率が5.0%以下であることが必要である。ここでいう吸水率とは、JIS L 1013に準じて測定される値である。温度30℃×相対湿度90RH%で72時間処理したときの吸水率を5.0%以下とすることにより、精錬工程されや染色加工工程などの湿熱条件下におけるポリアミド繊維の膨潤が小さく、これらの工程時の織編物の伸びが小さくなる。これにより、織編物に余分な張力をかけることなく精錬工程や染色加工工程などの工程を行うことが可能となる。その結果、優れたストレッチ性を持つ織編物が得られる。 The polyamide composite fiber of the present invention needs to have a water absorption rate of 5.0% or less after being allowed to stand for 72 hours in an environment of a temperature of 30 ° C. and a relative humidity of 90 RH% (temperature 30 ° C. × relative humidity 90 RH%). Is. The water absorption rate referred to here is a value measured according to JIS L 1013. By setting the water absorption rate when treated at a temperature of 30 ° C. and a relative humidity of 90 RH% for 72 hours to 5.0% or less, the swelling of the polyamide fibers under moist heat conditions such as a refining process and a dyeing process is small, and these The elongation of the woven and knitted fabric during the process is reduced. This makes it possible to perform processes such as a refining process and a dyeing process without applying extra tension to the woven or knitted material. As a result, a woven or knitted fabric having excellent stretchability can be obtained.
 これに対し吸水率が高くなるほど、ポリアミド繊維は含水で膨潤する傾向があり、吸水率が5.0%を超えると、精練やリラックス処理工程、および染色の工程でシワやシボが発生しやすく、通常は引き伸ばして加工するためストレッチ性が落ちる。 On the other hand, the higher the water absorption rate, the more the polyamide fiber tends to swell due to water content, and when the water absorption rate exceeds 5.0%, wrinkles and wrinkles are likely to occur in the scouring, relaxing treatment process, and dyeing process. Since it is usually stretched and processed, the stretchability is reduced.
 吸水率は、好ましくは4%以下である。また、吸水率の下限値は特定できないが、実施上は1.0%程度である。 The water absorption rate is preferably 4% or less. Further, although the lower limit of the water absorption rate cannot be specified, it is practically about 1.0%.
 吸水率は、結晶性ポリアミド(A)および結晶性ポリアミド(B)のポリマー選択と芯鞘複合比率により制御することができる。 The water absorption rate can be controlled by the polymer selection of the crystalline polyamide (A) and the crystalline polyamide (B) and the core-sheath composite ratio.
 本発明のポリアミド複合繊維は、熱収縮応力が0.15cN/dtex以上であることが必要である。ここでいう熱収縮応力とは、熱収縮応力測定機(例えば、カネボウエンジニアリング社製、型式「KE-2型」)を用い、測定する繊維糸条を結び周長16cmのループとし、糸条の繊度(デシテックス)の1/30gの初荷重を掛け、40℃から210℃の温度まで昇温速度100℃/分で測定して、得られた熱応力曲線のピーク値を最大熱応力(cN/dtex)として測定されるものである。 The polyamide composite fiber of the present invention needs to have a heat shrinkage stress of 0.15 cN / dtex or more. The heat shrinkage stress referred to here is a heat shrinkage stress measuring machine (for example, manufactured by Kanebo Engineering Co., Ltd., model "KE-2 type"), and the fiber threads to be measured are tied into a loop having a circumference of 16 cm to form a loop of the threads. An initial load of 1/30 g of fineness (decitex) is applied, the temperature is measured from 40 ° C to 210 ° C at a heating rate of 100 ° C / min, and the peak value of the obtained thermal stress curve is the maximum thermal stress (cN /). It is measured as dtex).
 熱収縮応力が0.15cN/dtex以上であることにより、経糸方向に高い張力をかけた状態で湿熱処理や乾熱処理しても、織物拘束力に勝る応力で収縮するため、経糸方向に対して捲縮性を十分に発現することができ、良好なストレッチ性を有する織編物を得ることができる。熱収縮応力が0.15cN/dtex未満の場合、高い張力をかける湿熱工程において、十分な捲縮が発現しないため、ストレッチ性に劣る織編物となる。 Since the heat shrinkage stress is 0.15 cN / dtex or more, even if a wet heat treatment or a dry heat treatment is performed while a high tension is applied in the warp direction, the heat shrinks with a stress superior to the textile binding force. A woven or knitted fabric that can sufficiently exhibit crimpability and has good stretchability can be obtained. When the heat shrinkage stress is less than 0.15 cN / dtex, sufficient crimping does not occur in the moist heat step of applying high tension, resulting in a woven or knitted fabric having poor stretchability.
 熱収縮応力は、好ましくは0.20cN/dtex以上であり、より好ましくは0.25cN/dtex以上である。また、熱収縮応力が高すぎると、織物の交錯点での目が詰まりやすくなり、ストレッチ性が阻害されるため、熱収縮応力の上限は0.50cN/dtexであることが好ましい。熱収縮応力は、高粘度ポリマーを使用すること、更に低紡糸温度および低紡速高延伸倍率の熱延伸条件で繊維の剛直非晶量を制御すること等により制御することができる。 The heat shrinkage stress is preferably 0.20 cN / dtex or more, and more preferably 0.25 cN / dtex or more. Further, if the heat shrinkage stress is too high, the stitches at the intersections of the woven fabrics are likely to be clogged and the stretchability is hindered. Therefore, the upper limit of the heat shrinkage stress is preferably 0.50 cN / dtex. The thermal shrinkage stress can be controlled by using a high-viscosity polymer and controlling the amount of rigid amorphous fibers under the thermal drawing conditions of low spinning temperature and low spinning speed and high draw ratio.
 本発明のポリアミド複合繊維は、剛直非晶量が40~60%であることが好ましい態様である。剛直非晶(Rigid amorphous)とは、実施例の項で説明する方法によって、その量が求められる非晶のことであり、結晶と可動非晶(Mobile amorphous;従来の完全非晶)の中間状態で、ガラス転移温度(Tg)以上でも分子運動が凍結しており、Tgよりも高い温度で流動状態となる非晶のことである(例えば、十時 稔,「DSC(3)-高分子のガラス転移挙動編-」,繊維学会誌(繊維と工業),Vol.65,No.10(2009)参照)。 The polyamide composite fiber of the present invention preferably has a rigid amorphous amount of 40 to 60%. Rigid amorphous is an amorphous whose amount can be determined by the method described in the section of Examples, and is an intermediate state between a crystal and a movable amorphous (conventional complete amorphous). It is an amorphous substance in which the molecular motion is frozen even above the glass transition temperature (Tg) and becomes fluid at a temperature higher than Tg (for example, Minoru 10 o'clock, "DSC (3) -polymer". Glass Transition Behavior- ", Journal of the Textile Society (Fiber and Industry), Vol. 65, No. 10 (2009)).
 剛直非晶量は、「100%-結晶化度-可動非晶量」で表される。本発明において、ポリアミド複合繊維には、結晶部と剛直非晶部と可動非晶部が含まれる。熱収縮応力は、繊維構造を形成した際の剛直非晶鎖の拘束力と、熱処理を施した際に発現する可動性をもつ非晶鎖の収縮性に依存する。剛直非晶量を上記の範囲とすることにより、熱収縮応力を発現させることができる。 The amount of rigid amorphous is represented by "100% -crystallinity-movable amorphous amount". In the present invention, the polyamide composite fiber includes a crystalline portion, a rigid amorphous portion, and a movable amorphous portion. The thermal shrinkage stress depends on the binding force of the rigid amorphous chain when the fiber structure is formed and the shrinkage of the mobile amorphous chain developed when the heat treatment is performed. By setting the amount of rigid amorphous in the above range, heat shrinkage stress can be developed.
 剛直非晶量は、紡糸で制御することができる。剛直非晶量は、熱収縮応力と同様に、高粘度ポリマー使用と製造方法の設計により制御することができる。 The amount of rigid amorphous can be controlled by spinning. The amount of rigid amorphous can be controlled by using a high-viscosity polymer and designing the manufacturing method, as well as the heat shrinkage stress.
 剛直非晶量が40%以上であることにより、剛直非晶鎖の拘束力が発現し、可動性をもつ非晶鎖の収縮性を損なうことなく、所望の熱収縮応力を得ることができる。また、剛直非晶量が60%以下であることにより、剛直非晶鎖の拘束力が発現し、可動性をもつ非晶鎖の収縮力を保持することができ、所望の熱収縮応力を得ることができる。剛直非晶量は、好ましくは45~55%である。 When the amount of rigid amorphous chain is 40% or more, the binding force of the rigid amorphous chain is exhibited, and a desired thermal shrinkage stress can be obtained without impairing the contractility of the mobile amorphous chain. Further, when the amount of rigid amorphous chain is 60% or less, the binding force of the rigid amorphous chain is exhibited, the contraction force of the mobile amorphous chain can be maintained, and a desired thermal contraction stress is obtained. be able to. The amount of rigid amorphous is preferably 45 to 55%.
 本発明のポリアミド複合繊維は、伸縮伸長率が30%以上であることが好ましい態様である。伸縮伸長率とは、原糸の捲縮性の指標であり、値が高いほど捲縮発現能力が高いことを示している。 The polyamide composite fiber of the present invention preferably has a stretch elongation rate of 30% or more. The expansion / contraction rate is an index of the crimpability of the raw yarn, and the higher the value, the higher the ability to develop crimp.
 本発明のポリアミド複合繊維は、繊維を形成した際、結晶性ポリアミド(A)と結晶性ポリアミド(B)の配向差によって収縮差が発現し捲縮が発現する。しかしながら、一般的にポリアミド繊維は、織編物の精錬や染色加工工程でシワが発生しやすく、織編物品位を維持するために、経糸方向に高い張力をかけた状態で加工を行うため、この収縮差が外力(高張力)の影響で低下する可能性がある。この収縮差を維持するため、原糸が一定の熱収縮応力を持つことにより、原糸の捲縮性を保持することができ、伸縮伸長率が30%以上であると、より優れたストレッチ性を持つ織編物が得られる。伸縮伸長率は、より好ましくは100~200%である。伸縮伸長率は、結晶性ポリアミド(A)と結晶性ポリアミド(B)の両成分の収縮差より発現するため、その収縮差がおおきければ大きいほど伸縮伸長率が高くなる。 In the polyamide composite fiber of the present invention, when the fiber is formed, a shrinkage difference occurs due to a difference in orientation between the crystalline polyamide (A) and the crystalline polyamide (B), and crimping occurs. However, in general, polyamide fibers are prone to wrinkles in the refining and dyeing processes of woven and knitted fabrics, and are processed in a state where high tension is applied in the warp direction in order to maintain the woven and knitted article position. The shrinkage difference may decrease due to the influence of external force (high tension). In order to maintain this shrinkage difference, the raw yarn has a constant thermal shrinkage stress, so that the crimpability of the raw yarn can be maintained, and when the expansion / contraction rate is 30% or more, the stretchability is more excellent. A woven or knitted fabric with is obtained. The expansion / contraction ratio is more preferably 100 to 200%. Since the stretch elongation rate is expressed by the shrinkage difference between the crystalline polyamide (A) and the crystalline polyamide (B), the larger the shrinkage difference is, the higher the stretch stretch rate is.
 本発明のポリアミド複合繊維は、糸条としての総繊度が20~120dtexであることが好ましい態様である。特に、スポーツウエア、ダウンジャケット、アウター、およびインナー用途として用いる場合は、総繊度は30~90dtexであることがより好ましい。また、ポリアミド複合繊維の単繊維繊度は特定できないが、通常、1.0~5.0dtexの範囲で用いられる。 The polyamide composite fiber of the present invention preferably has a total fineness of 20 to 120 dtex as a yarn. In particular, when used for sportswear, down jackets, outerwear, and innerwear, the total fineness is more preferably 30 to 90 dtex. Further, although the single fiber fineness of the polyamide composite fiber cannot be specified, it is usually used in the range of 1.0 to 5.0 dtex.
 次に、本発明のポリアミド複合繊維の溶融紡糸による製造方法について説明する。
 本発明で用いられる結晶性ポリアミドにおいて、結晶性ポリアミド(A)の相対粘度は3.1~3.8とすることが好ましい。また、結晶性ポリアミド(B)の相対粘度は、2.6~2.8とすることが好ましい。結晶性ポリアミド(A)と結晶性ポリアミド(B)の相対粘度比(A/B)は、1.2~1.4とすることがさらに好ましい態様である。
Next, a method for producing the polyamide composite fiber of the present invention by melt spinning will be described.
In the crystalline polyamide used in the present invention, the relative viscosity of the crystalline polyamide (A) is preferably 3.1 to 3.8. The relative viscosity of the crystalline polyamide (B) is preferably 2.6 to 2.8. It is more preferable that the relative viscosity ratio (A / B) of the crystalline polyamide (A) and the crystalline polyamide (B) is 1.2 to 1.4.
 かかる範囲の相対粘度の結晶性ポリアミドを選択することにより、加熱処理後に、収縮差が発現し、3次元スパイラル構造が形成されて捲縮が発現する。また、製糸工程中、溶融熱を受けて、ポリアミドが非晶から結晶に転移する。このとき、相対粘度の高い結晶性ポリアミド(A)は分子拘束力が高いため、相対粘度の低い結晶性ポリアミド(B)よりも非晶から結晶に転移する速度が遅い。従って、口金吐出後、ポリアミドが非晶から結晶に転移中に冷却すると中間状態の剛直非晶が生成しやすく、複合繊維の剛直非晶量が増加し、熱収縮応力と伸縮伸長率が向上する。 By selecting a crystalline polyamide having a relative viscosity in such a range, a shrinkage difference appears after the heat treatment, a three-dimensional spiral structure is formed, and crimping occurs. In addition, during the silk-reeling process, the polyamide is transferred from amorphous to crystalline by receiving heat of fusion. At this time, since the crystalline polyamide (A) having a high relative viscosity has a high molecular binding force, the rate of transition from amorphous to crystal is slower than that of the crystalline polyamide (B) having a low relative viscosity. Therefore, when the polyamide is cooled during the transition from amorphous to crystalline after ejection of the base, rigid amorphous in an intermediate state is likely to be generated, the amount of rigid amorphous of the composite fiber is increased, and the thermal shrinkage stress and the elongation / elongation rate are improved. ..
 また、本発明のポリアミド複合繊維は、2種の結晶性ポリアミドが接合してなる複合断面を有し、芯成分である結晶性ポリアミド(A)が鞘成分である結晶性ポリアミド(B)で覆われている偏心芯鞘型構造である。結晶性ポリアミド(A)が鞘成分である結晶性ポリアミド(B)で覆われていない従来のサイドバイサイド型構造の場合、上述した相対粘度差のある結晶性ポリアミドを、それぞれ溶融し紡糸パック内で複合断面を形成し、口金吐出時、ポリマー流動抵抗が異なり、流動速度差により、糸曲がりが発生しやすく、操業性が悪化する。したがって、溶融粘度差がある結晶性ポリアミド(A)と結晶性ポリアミド(B)の製造において、本発明の偏心芯鞘型構造を採用することにより、通常設備で安定製造することができる。 Further, the polyamide composite fiber of the present invention has a composite cross section formed by joining two types of crystalline polyamides, and the crystalline polyamide (A) as a core component is covered with the crystalline polyamide (B) as a sheath component. It is an eccentric core sheath type structure. In the case of the conventional side-by-side structure in which the crystalline polyamide (A) is not covered with the crystalline polyamide (B) which is a sheath component, the above-mentioned crystalline polyamides having a relative viscosity difference are melted and composited in a spinning pack. A cross section is formed, the polymer flow resistance is different when the base is discharged, and the difference in flow velocity tends to cause thread bending, resulting in poor operability. Therefore, in the production of the crystalline polyamide (A) and the crystalline polyamide (B) having different melt viscosities, by adopting the eccentric core sheath type structure of the present invention, stable production can be performed with ordinary equipment.
 次に、本発明のポリアミド複合繊維の溶融紡糸および複合紡糸による製造方法について説明する。 Next, the method for producing the polyamide composite fiber of the present invention by melt spinning and composite spinning will be described.
 まず、本発明のポリアミド複合繊維の溶融紡糸の高速直接紡糸による製造方法について、次に例示説明する。
 結晶性ポリアミド(A)と結晶性ポリアミド(B)を別々に溶融し、ギヤポンプを用いて計量して輸送し、そのまま通常の方法で芯鞘構造をとるように複合流を形成して、偏心芯鞘型複合繊維用紡糸口金を用いて、図1に例示する断面となるように紡糸口金から吐出する。吐出されたポリアミド複合繊維糸条を、チムニー等の糸条冷却装置によって冷却風を吹き当てることにより30℃まで冷却する。続いて、冷却された糸条に対して、給油装置で給油するとともに収束し、引き取りローラーによって1500~4000m/分で引き取り、引き取りローラーと延伸ローラーを通過させ、その際引き取りローラーと延伸ローラーの周速度の比に従って1.5~3.0倍で延伸する。さらに、糸条を延伸ローラーにより熱セットし、3000m/分以上の巻き取り速度でパッケージに巻き取る。
First, a method for producing a melt-spun polyamide composite fiber of the present invention by high-speed direct spinning will be described below as an example.
The crystalline polyamide (A) and the crystalline polyamide (B) are melted separately, weighed and transported using a gear pump, and a composite flow is formed so as to form a core-sheath structure by a normal method as it is, and an eccentric core is formed. Using a sheath-type composite fiber spinneret, the spinneret is discharged from the spinneret so as to have a cross section illustrated in FIG. The discharged polyamide composite fiber yarn is cooled to 30 ° C. by blowing cooling air with a yarn cooling device such as a chimney. Subsequently, the cooled yarn is refueled and converged by the refueling device, and is picked up by the take-up roller at 1500 to 4000 m / min, passed through the take-up roller and the draw roller, and at that time, the circumference of the take-up roller and the draw roller. Stretch at 1.5-3.0 times according to the rate ratio. Further, the yarn is heat-set by a drawing roller and wound into a package at a winding speed of 3000 m / min or more.
 また別に、本発明のポリアミド複合繊維の溶融紡糸の高速直接紡糸による製造方法について、次に例示説明する。
 結晶性ポリアミド(A)と結晶性ポリアミド(B)を別々に溶融し、ギヤポンプを用いて計量して輸送し、そのまま通常の方法で芯鞘構造をとるように複合流を形成して、偏心芯鞘型複合繊維用紡糸口金を用いて、図1に例示する断面となるように紡糸口金から吐出する。吐出されたポリアミド複合繊維糸条を、チムニー等の糸条冷却装置によって冷却風を吹き当てることにより30℃まで冷却する。続いて、冷却された糸条に対して、給油装置で給油するとともに収束し、引き取りローラーによって3000~4500m/分で引き取り、引き取りローラーと延伸ローラーを通過させ、その際引き取りローラーと延伸ローラーの周速度の比に従って1.0~1.2倍で微延伸する。さらに、糸条を3000m/分以上の巻き取り速度でパッケージに巻き取る。
Separately, a method for producing the melt spinning of the polyamide composite fiber of the present invention by high-speed direct spinning will be described below as an example.
Crystalline polyamide (A) and crystalline polyamide (B) are melted separately, weighed and transported using a gear pump, and a composite flow is formed so as to take a core-sheath structure by the usual method, and the eccentric core is formed. Using a sheath-type composite fiber spinneret, the spinneret is discharged from the spinneret so as to have a cross section illustrated in FIG. The discharged polyamide composite fiber yarn is cooled to 30 ° C. by blowing cooling air with a yarn cooling device such as a chimney. Subsequently, the cooled yarn is refueled and converged by the refueling device, and is picked up by the take-up roller at 3000 to 4500 m / min, passed through the take-up roller and the draw roller, and at that time, the circumference of the take-up roller and the draw roller. Finely stretch at 1.0 to 1.2 times according to the speed ratio. Further, the yarn is wound on the package at a winding speed of 3000 m / min or more.
 特に、相対粘度の高い結晶性ポリアミド(A)の融点を基準に、紡糸温度を適切に設計する。紡糸温度が高くなると結晶部が増大し剛直非晶量が低下し、紡糸温度が低くなると可動非晶量が増大し剛直非晶量がやや低下する傾向がある。そのため、紡糸温度は結晶性ポリアミド(A)の融点より35~70℃高い温度であることが好ましく、45~60℃高い温度であることがより好ましい態様である。紡糸温度を適切に設定することにより、本発明のポリアミド複合繊維の剛直非晶量を制御することでき、所望の熱収縮応力と伸縮伸長率が得られる。 In particular, the spinning temperature is appropriately designed based on the melting point of the crystalline polyamide (A) having a high relative viscosity. When the spinning temperature is high, the crystal portion increases and the amount of rigid amorphous tends to decrease, and when the spinning temperature is low, the amount of movable amorphous tends to increase and the amount of rigid amorphous tends to decrease slightly. Therefore, the spinning temperature is preferably 35 to 70 ° C. higher than the melting point of the crystalline polyamide (A), and more preferably 45 to 60 ° C. higher than the melting point. By appropriately setting the spinning temperature, the amount of rigid amorphous of the polyamide composite fiber of the present invention can be controlled, and a desired heat shrinkage stress and stretch elongation rate can be obtained.
 また、ドラフト延伸(引取速度)を適切に設計することにより、本発明のポリアミド複合繊維の剛直非晶量が増加し、熱収縮応力と伸縮伸長率が向上する。引取速度は、1500~4000m/分であることが好ましい。 Further, by appropriately designing the draft drawing (take-up speed), the amount of rigid amorphous of the polyamide composite fiber of the present invention is increased, and the heat shrinkage stress and the elongation / elongation rate are improved. The pick-up speed is preferably 1500 to 4000 m / min.
 延伸糸を得る場合、引き取りローラーを加熱ローラーとして熱延伸を施すことにより、本発明のポリアミド複合繊維の剛直非晶量が増加し、熱収縮応力が向上する。延伸倍率は、1.5~3.0倍であることが好ましく、より好ましくは2.0~3.0倍である。また、熱延伸温度は、30~90℃であることが好ましく、より好ましくは40~60℃である。 When a drawn yarn is obtained, the amount of rigid amorphous of the polyamide composite fiber of the present invention is increased and the heat shrinkage stress is improved by performing thermal drawing using the take-up roller as a heating roller. The draw ratio is preferably 1.5 to 3.0 times, more preferably 2.0 to 3.0 times. The heat stretching temperature is preferably 30 to 90 ° C, more preferably 40 to 60 ° C.
 また、延伸ローラーを加熱ローラーとして熱セットを施すことにより、本発明のポリアミド複合繊維の熱収縮応力を適切に設計することができる。熱セット温度は、130~180℃であることが好ましい。 Further, by applying heat setting using the drawing roller as a heating roller, the heat shrinkage stress of the polyamide composite fiber of the present invention can be appropriately designed. The heat setting temperature is preferably 130 to 180 ° C.
 また、巻き取りまでの工程で公知の交絡装置を用い、交絡を施すことも可能である。必要であれば、複数回交絡を付与することで交絡数を上げることも可能である。さらには、巻き取り直前に、追加で油剤を付与することも可能である。 It is also possible to perform entanglement using a known entanglement device in the process up to winding. If necessary, it is possible to increase the number of entanglements by adding entanglements multiple times. Furthermore, it is also possible to add an additional oil agent immediately before winding.
 本発明のポリアミド複合繊維からなる加工糸は、本発明の偏心芯鞘型のポリアミド複合繊維を糸条の少なくとも一部に用いる。糸加工の製造方法は限定されるものではないが、例示すると、混繊法や仮撚加工法が挙げられる。混繊法としては、エア混繊、合撚および複合仮撚等が適用可能であるが、エア混繊が混繊の制御をし易くまた製造コストも低いため好ましく用いられる。仮撚加工法としては、繊度や撚り数に応じてピンタイプ、フリクションタイプおよびベルトタイプ等を用いて、仮撚を施すことが好ましい。 For the processed yarn made of the polyamide composite fiber of the present invention, the eccentric core sheath type polyamide composite fiber of the present invention is used for at least a part of the yarn. The manufacturing method of yarn processing is not limited, and examples thereof include a mixed fiber method and a false twist processing method. As the fiber mixing method, air blending, blending, composite false twisting and the like can be applied, but air blending is preferably used because the blending is easy to control and the manufacturing cost is low. As the false twisting method, it is preferable to perform false twisting by using a pin type, a friction type, a belt type or the like according to the fineness and the number of twists.
 本発明のポリアミド複合繊維からなる加工糸は、伸縮伸長率が100%以上であることが好ましい態様である。伸縮伸長率を100%以上とすることにより、十分な捲縮の発現と仮撚り糸の捲縮が相まって、優れたストレッチ性を持つ織編物が得られる。伸縮伸長率は高くなるほど捲縮性は増すが、加工シワが発生しやすくなり、シワ抑制のため経糸方向により高い張力をかけた状態で製造することになり、織編物のストレッチ性を阻害しやすくなるため、伸長伸縮率は120~200%であることがより好ましい態様である。 The processed yarn made of the polyamide composite fiber of the present invention preferably has a stretch elongation rate of 100% or more. By setting the expansion / contraction ratio to 100% or more, a woven or knitted fabric having excellent stretchability can be obtained by combining sufficient crimping and crimping of the false twisted yarn. The higher the stretchability and elongation rate, the higher the crimpability, but processing wrinkles are more likely to occur, and in order to suppress wrinkles, the product is manufactured with higher tension applied in the warp direction, which tends to hinder the stretchability of the woven or knitted fabric. Therefore, it is more preferable that the elongation / contraction ratio is 120 to 200%.
 本発明のポリアミド複合繊維からなる加工糸は、上記のとおり伸縮伸長率が100%以上であることが好ましい態様である。伸縮伸長織編物は、本発明のポリアミド複合繊維または加工糸を少なくとも一部に用いて構成される。本発明によれば、湿熱工程で経糸方向に対して高い張力をかけた場合であっても十分に捲縮を発現することができ、優れたストレッチ性を有する織編物を提供できる。 As described above, the processed yarn made of the polyamide composite fiber of the present invention preferably has a stretch elongation rate of 100% or more. The stretchable stretch woven knit is constructed by using at least a part of the polyamide composite fiber or the processed yarn of the present invention. According to the present invention, even when a high tension is applied in the warp yarn direction in the moist heat step, crimping can be sufficiently exhibited, and a woven or knitted fabric having excellent stretchability can be provided.
 本発明のポリアミド複合繊維または加工糸からなる伸縮伸長織編物は、公知の方法に従い製織および製編することが可能である。また、織編物の組織は限定されるものではない。 The stretchable stretchable knitted fabric made of the polyamide composite fiber or processed yarn of the present invention can be woven and knitted according to a known method. Moreover, the structure of the woven and knitted fabric is not limited.
 織物の場合、その組織は、使用される用途によって平組織、綾組織、朱子組織やそれらの変化組織、および混合組織のいずれであっても構わない。織物の地合いがしっかりしたふくらみ感のある織物とするには、拘束点の多い平組織や、平組織と石目、さらにはナナコ組織を組み合わせたリップストップ組織が好ましい。 In the case of woven fabrics, the structure may be any of plain weave, twill structure, Zhu Xi structure and their modified structure, and mixed structure depending on the intended use. In order to obtain a woven fabric with a firm texture and a feeling of swelling, a plain weave with many restraint points, a ripstop structure in which a flat structure and a stone grain, and a nanaco structure are combined is preferable.
 編物の場合、その組織は、使用される用途によって丸編地の天竺組織、インターロック組織、経編地のハーフ組織、サテン組織、ジャカード組織やそれらの変化組織、および混合組織のいずれであっても構わないが、編地が薄くて安定性が有り、かつ、伸長率にも優れる点からシングルトリコット編地のハーフ組織地などが好ましい。 In the case of knitted fabrics, the texture can be either a circular knitted fabric, an interlocked texture, a warp knitted half texture, a satin structure, a jacquard structure or their modified structure, or a mixed structure, depending on the intended use. However, a single tricot knitted fabric such as a half-textured fabric is preferable because the knitted fabric is thin, stable, and has an excellent elongation rate.
 また、本発明のポリアミド複合繊維または加工糸からなる織編物の用途は限定されるものでないが、衣料用途が好ましく、より好ましくは、ダウンジャケット、ウインドブレイカー、ゴルフウエアー、レインウエアなどに代表されるスポーツ、カジュアルウェアや婦人紳士衣料用途である。特に、スポーツウエアおよびダウンジャケットに好適に用いることができる。 The use of the woven or knitted fabric made of the polyamide composite fiber or the processed yarn of the present invention is not limited, but is preferably used for clothing, and more preferably represented by down jackets, windbreakers, golf wear, rainwear and the like. It is used for sports, casual wear and women's and men's clothing. In particular, it can be suitably used for sportswear and down jackets.
 次に、実施例によって、本発明のポリアミド複合繊維および加工糸について、具体的に説明する。 Next, the polyamide composite fiber and the processed yarn of the present invention will be specifically described with reference to Examples.
 A.融点:
 TA Instruments社製Q1000を用いて熱分析を行い、Universal Analysis2000によってデータ処理を実施した。熱分析は、窒素流下(50mL/分)で、温度範囲-50~300℃、昇温速度10℃/分、チップ試料質量約5g(熱量データは測定後質量で規格化)で測定を実施した。融解ピークから融点を測定した。
A. Melting point:
Thermal analysis was performed using Q1000 manufactured by TA Instruments, and data processing was performed by Universal Analysis 2000. The thermal analysis was carried out under nitrogen flow (50 mL / min) at a temperature range of -50 to 300 ° C, a temperature rise rate of 10 ° C / min, and a chip sample mass of about 5 g (calorie data is standardized by mass after measurement). .. The melting point was measured from the melting peak.
 B.相対粘度:
 ポリアミドのチップ試料0.25gを、濃度98質量%の硫酸25mlに対して1g/100mlになるように溶解し、オストワルド型粘度計を用いて25℃の温度での流下時間(T1)を測定した。引き続き、濃度98質量%の硫酸のみの流下時間(T2)を測定した。T2に対するT1の比、すなわちT1/T2を硫酸相対粘度とした。
B. Relative viscosity:
0.25 g of a polyamide chip sample was dissolved in 25 ml of sulfuric acid having a concentration of 98% by mass so as to be 1 g / 100 ml, and the flow time (T1) at a temperature of 25 ° C. was measured using an Ostwald viscometer. .. Subsequently, the flow time (T2) of sulfuric acid having a concentration of 98% by mass was measured. The ratio of T1 to T2, that is, T1 / T2, was defined as the relative viscosity of sulfuric acid.
 C.総繊度:
 JIS L1013に準じた。繊維試料を、1/30(g)の張力で枠周1.125mの検尺機を用いて200回巻かせを作製した。105℃の温度で60分間乾燥しデシケーターに移し、温度20℃、相対湿度55%RH環境下で30分放冷し、かせの質量を測定して得られた値から10000m当たりの質量を算出し、公定水分率を4.5%として繊維糸条の総繊度を算出した。測定は5回行い、平均値を総繊度とした。
C. Total fineness:
According to JIS L1013. A fiber sample was wound 200 times with a tension of 1/30 (g) using a measuring machine with a frame circumference of 1.125 m. Dry for 60 minutes at a temperature of 105 ° C, transfer to a desiccator, allow to cool for 30 minutes in a temperature of 20 ° C and a relative humidity of 55% RH, measure the mass of the skein, and calculate the mass per 10,000 m from the obtained value. , The total fineness of the fiber threads was calculated with the official moisture content as 4.5%. The measurement was performed 5 times, and the average value was taken as the total fineness.
 D.熱収縮応力:
 カネボウエンジニアリング社製KE-2型熱収縮応力測定機を用い、繊維試料を結び周長16cmのループとし、糸条の総繊度の1/30gの初荷重を掛け、40℃から210℃の温度まで昇温速度100℃/分で温度変化させたときの荷重を測定して、得られた熱応力曲線のピーク値を熱収縮応力とした。
D. Thermal shrinkage stress:
Using a KE-2 type heat shrink stress measuring machine manufactured by Kanebo Engineering Co., Ltd., a fiber sample was tied into a loop with a circumference of 16 cm, and an initial load of 1/30 g of the total fineness of the thread was applied to a temperature from 40 ° C to 210 ° C. The load when the temperature was changed at a temperature rising rate of 100 ° C./min was measured, and the peak value of the obtained thermal stress curve was taken as the thermal shrinkage stress.
 E.伸縮伸長率:
 繊維試料をかせ取りし、90℃の温度の沸騰水に20分間浸した後、風乾し、2mg/dの荷重を30秒掛けて長さAを求め、次いで100mg/dの荷重を30秒掛けて長さBを求めた。次の式より伸縮伸長率を算出した。
  伸縮伸長率(%)=〔(B-A)/B〕×100
E. Expansion and contraction rate:
The fiber sample is squeezed, soaked in boiling water at a temperature of 90 ° C. for 20 minutes, air-dried, and a load of 2 mg / d is applied for 30 seconds to determine the length A, and then a load of 100 mg / d is applied for 30 seconds. The length B was calculated. The expansion / contraction rate was calculated from the following formula.
Expansion and contraction rate (%) = [(BA) / B] × 100
 F.剛直非晶量:
 剛直非晶量は、TA Instruments社製Q1000を測定機器として用いて測定した。示査走査熱量測定(以下、DSCと略す。)から得られた融解熱量(ΔHm)と冷結晶化熱量(ΔHc)の差(ΔHm-ΔHc)、温度変調DSC測定から得られた比熱差(ΔCp)、さらに、ポリアミドが100%結晶(完全結晶)の理論値とポリアミドが100%非晶(完全非晶)の理論値を用いた。ここで、ΔHm0は、ポリアミド(完全結晶)の溶融熱量である。また、ΔCp0は、ポリアミド(完全非晶)のガラス転移温度(Tg)前後での比熱差である。
 次式(1)と(2)に基づいて、結晶化度(Xc)と可動非晶量(Xma)を求めた。さらに、次式(3)により剛直非晶量(Xra)を算出した。なお、剛直非晶量は、これらを2回測定した平均値から算出した。
(1)Xc(%)=(ΔHm-ΔHc)/ΔHm0×100
(2)Xma(%)=ΔCp/ΔCp0×100
(3)Xra(%)=100-(Xc+Xma)
F. Rigid amorphous amount:
The amount of rigid amorphous was measured using Q1000 manufactured by TA Instruments as a measuring device. The difference (ΔHm−ΔHc) between the heat of fusion (ΔHm) and the heat of cold crystallization (ΔHc) obtained from the differential scanning calorimetry (hereinafter abbreviated as DSC), and the specific heat difference (ΔCp) obtained from the temperature-modulated DSC measurement. ), Further, the theoretical value of 100% crystalline (completely crystalline) for polyamide and the theoretical value of 100% amorphous (completely amorphous) of polyamide were used. Here, ΔHm0 is the amount of heat of fusion of the polyamide (perfect crystal). Further, ΔCp0 is the specific heat difference of polyamide (completely amorphous) before and after the glass transition temperature (Tg).
The crystallinity (Xc) and the amount of movable amorphous (Xma) were determined based on the following equations (1) and (2). Further, the rigid amorphous amount (Xra) was calculated by the following equation (3). The amount of rigid amorphous was calculated from the average value obtained by measuring these twice.
(1) Xc (%) = (ΔHm−ΔHc) / ΔHm0 × 100
(2) Xma (%) = ΔCp / ΔCp0 × 100
(3) Xra (%) = 100- (Xc + Xma)
 DSCおよび温度変調DSCの測定条件を、下記に示す。
(DSC測定)
 測定装置:TA Instruments社製 Q1000
 データ処理:TA Instruments社製 Universal Analysis 2000
 雰囲気:窒素流(50mL/min)
 試料量:約10mg
 試料容器:アルミニウム製標準容器
 温度と熱量校正:高純度インジウム(Tm=156.61℃、ΔHm=28.71J/g)
 温度範囲:約-50~300℃
 昇温速度:10℃/分 1回目の昇温過程(ファーストrun)
(温度変調DSC測定)
 測定装置:TA Instruments社製 Q1000
 データ処理:TA Instruments社製 Universal Analysis 2000
 雰囲気:窒素流(50mL/分)
 試料量:約5mg
 試料容器:アルミニウム製標準容器
 温度と熱量校正:高純度インジウム(Tm=156.61℃、ΔHm=28.71J/g)
 温度範囲:約-50~210℃
 昇温速度:2℃/分
The measurement conditions for DSC and temperature-modulated DSC are shown below.
(DSC measurement)
Measuring device: Q1000 manufactured by TA Instruments
Data processing: Universal Analysis 2000 manufactured by TA Instruments
Atmosphere: Nitrogen flow (50 mL / min)
Sample amount: Approximately 10 mg
Sample container: Standard aluminum container Temperature and calorific value Calibration: High-purity indium (Tm = 156.61 ° C., ΔHm = 28.71 J / g)
Temperature range: Approximately -50 to 300 ° C
Temperature rise rate: 10 ° C / min 1st temperature rise process (first run)
(Temperature modulated DSC measurement)
Measuring device: Q1000 manufactured by TA Instruments
Data processing: Universal Analysis 2000 manufactured by TA Instruments
Atmosphere: Nitrogen flow (50 mL / min)
Sample amount: Approximately 5 mg
Sample container: Standard aluminum container Temperature and calorific value Calibration: High-purity indium (Tm = 156.61 ° C., ΔHm = 28.71 J / g)
Temperature range: Approximately -50 to 210 ° C
Heating rate: 2 ° C / min
 G.強度および伸度:
 繊維試料をオリエンテック社製“TENSILON”(登録商標)、UCT-100でJIS L1013(化学繊維フィラメント糸試験方法、2010年)に示される定速伸長条件で測定した。伸度は、引張強さ-伸び曲線における最大強力を示した点の伸びから求めた。また、強度は、最大強力を繊度で除した値を強度とした。測定は10回行い、平均値を強度および伸度とした。
G. Strength and elongation:
The fiber sample was measured with "TENSILON" (registered trademark) manufactured by Orientec Co., Ltd., UCT-100 under the constant speed elongation conditions shown in JIS L1013 (Chemical fiber filament yarn test method, 2010). Elongation was determined from the elongation of the point showing the maximum strength on the tensile strength-elongation curve. The strength was defined as the value obtained by dividing the maximum strength by the fineness. The measurement was performed 10 times, and the average value was taken as the intensity and elongation.
 H.温度30℃、相対湿度90%RH環境下での吸水率:
 JIS-L-1013(2010年度版)に準じて、絶乾状態と温度30℃、相対湿度90%RHで72時間静置した後の質量を測定し、その水分率を測定した。
H. Water absorption rate under RH environment with temperature 30 ° C and relative humidity 90%:
According to JIS-L-1013 (2010 version), the mass was measured after standing in an absolute dry state at a temperature of 30 ° C. and a relative humidity of 90% RH for 72 hours, and the water content was measured.
 I.織物評価:
(a)緯糸の製造
 ポリカプロラクタム(N6)(相対粘度2.70、融点222℃)を使用し、口金吐出孔を12個有する紡糸口金を用いて、275℃の温度で溶融吐出させた。溶融吐出させた後、得られた糸条を冷却し、給油、交絡した後に2570m/分の引き取りローラーで引き取り、続いて1.7倍に延伸した後に155℃の温度で熱固定し、巻取速度4000m/分で70dtex12フィラメントのナイロン6糸条を得た。
I. Textile evaluation:
(A) Production of Weft A polycaprolactam (N6) (relative viscosity 2.70, melting point 222 ° C.) was used, and a spinneret having 12 spout holes was used for melt discharge at a temperature of 275 ° C. After melt-discharging, the obtained yarn is cooled, refueled and entangled, then picked up with a take-up roller of 2570 m / min, then stretched 1.7 times, heat-fixed at a temperature of 155 ° C., and wound up. Nylon 6 threads of 70 dtex 12 filaments were obtained at a speed of 4000 m / min.
(b)織物の製造
 実施例4~11および比較例1~3で得られた偏心芯鞘型ポリアミド複合糸を経糸(経糸密度90本/2.54cm)として用い、上記(a)で得られたナイロン6糸条を緯糸(緯糸密度90本/2.54cm)に用い、平織物(経糸/複合繊維)を製織した(目付け40g/cm)。また、実施例1~3で得られた偏心芯鞘型ポリアミド複合仮撚り加工糸を経糸(経糸密度90本/2.54cm)として用い、上記(a)で得られたナイロン6糸条を緯糸(緯糸密度90本/2.54cm)に用い、平織物(経糸/加工糸)を製織した(目付け40g/cm)。
 得られた織物を80℃の温度で20分間精練を行い、続いてKayanol Yellow N5G 1%owf、酢酸を用いてpH4に調整し、100℃の温度で30分間染色を行い、その後、80℃の温度で20分間Fix処理を行い、最後に風合いの改良のため170℃の温度で30秒間熱処理を行った。
(B) Production of Woven Fabric The eccentric core-sheath type polyamide composite yarns obtained in Examples 4 to 11 and Comparative Examples 1 to 3 were used as warp yarns (warp yarn density 90 yarns / 2.54 cm) and obtained in the above (a). A plain woven fabric (warp / composite fiber) was woven (meshing 40 g / cm 2 ) using 6 nylon threads as weft (weft density 90 / 2.54 cm). Further, the eccentric core sheath type polyamide composite false twisted yarns obtained in Examples 1 to 3 are used as warp yarns (warp yarn density 90 yarns / 2.54 cm), and the nylon 6 yarns obtained in the above (a) are used as weft yarns. It was used for (weft density 90 yarns / 2.54 cm), and a plain woven fabric (warp yarn / processed yarn) was woven (meshing 40 g / cm 2 ).
The obtained woven fabric is refined at a temperature of 80 ° C. for 20 minutes, then adjusted to pH 4 with Kayanol Yellow N5G 1% owf and acetic acid, dyed at a temperature of 100 ° C. for 30 minutes, and then at 80 ° C. Fix treatment was carried out at a temperature of 20 minutes, and finally heat treatment was carried out at a temperature of 170 ° C. for 30 seconds to improve the texture.
(c)織物の経糸方向の伸長率(ストレッチ性)
 引張試験機を用いて、実施例1~10および比較例1~4で得られた幅50mm×300mmの織物試料を、つかみ間隔200mmで織物の経糸方向に対して引張速度200mm/分、14.7Nまで伸長したときの伸長率を測定し、次の3段階「A」、「B」および「C」で評価した。15%以上を、ストレッチ性ありと判定した。
  A(良):20%以上
  B(可):15%以上20%未満
  C(不可):15%未満
(C) Stretchability in the warp direction of the woven fabric (stretchability)
Using a tensile tester, the woven fabric samples having a width of 50 mm × 300 mm obtained in Examples 1 to 10 and Comparative Examples 1 to 4 were held at a grip interval of 200 mm and a tensile speed of 200 mm / min in the warp yarn direction of the woven fabric. The elongation rate when extended to 7N was measured and evaluated in the following three stages "A", "B" and "C". 15% or more was judged to have stretchability.
A (good): 20% or more B (possible): 15% or more and less than 20% C (impossible): less than 15%
 [実施例1]
 結晶性ポリアミド(A)として相対粘度3.3、融点222℃のナイロン6(N6)を、結晶性ポリアミド(B)として相対粘度2.7、融点225℃のナイロン610(N610)を用いた。結晶性ポリアミド(A)を芯成分とし、結晶性ポリアミド(B)を鞘成分として、それぞれを溶融し、偏心芯鞘型複合繊維用紡糸口金(12孔、丸孔)を用いて、結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率(質量比)を、結晶性ポリアミド(A):結晶性ポリアミド(B)=5:5で溶融吐出した(紡糸温度270℃)。口金から吐出された糸条は、糸条冷却装置で糸条を冷却固化し、給油装置により含水油剤を給油後、流体交絡ノズル装置で交絡を付与した後、引き取りローラー(室温25℃)にて3700m/分で引き取り、延伸ローラー(室温25℃)間で1.1倍に延伸を行った後で、巻取速度4000m/分でパッケージに巻き取りをおこなった。62dtex12フィラメント、伸縮伸長率49%、吸水率3.8%、熱収縮応力0.16cN/dtex、剛直非晶量41%のポリアミド複合繊維糸条を得た。
 得られたポリアミド複合繊維糸条を用いて、190℃のヒーター温度で1.25延伸倍率を掛けた状態で、撚り数(D/Y)1.95の条件においてディスク仮撚りを行い、伸縮伸長率が130%の仮撚り加工糸を得た。得られた仮撚り加工糸を経糸として用いて織物を形成した。得られた織物はストレッチ性に優れていた。結果を表1に示す。
[Example 1]
Nylon 6 (N6) having a relative viscosity of 3.3 and a melting point of 222 ° C. was used as the crystalline polyamide (A), and nylon 610 (N610) having a relative viscosity of 2.7 and a melting point of 225 ° C. was used as the crystalline polyamide (B). Crystalline polyamide (A) is used as a core component, crystalline polyamide (B) is used as a sheath component, and each is melted, and a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret. The composite ratio (mass ratio) of (A) and the crystalline polyamide (B) was melt-discharged at a ratio of crystalline polyamide (A): crystalline polyamide (B) = 5: 5 (spinning temperature 270 ° C.). The threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then used by a take-up roller (room temperature 25 ° C.). It was taken up at 3700 m / min, stretched 1.1 times between stretching rollers (room temperature 25 ° C.), and then wound into a package at a winding speed of 4000 m / min. A polyamide composite fiber yarn having 62 dtex12 filaments, a stretch elongation rate of 49%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.16 cN / dtex, and a rigid amorphous amount of 41% was obtained.
Using the obtained polyamide composite fiber yarn, a disc false twist is performed under the condition of a twist number (D / Y) of 1.95 in a state where a heater temperature of 190 ° C. is applied to a 1.25 draw ratio, and expansion and contraction are performed. A false twisted yarn having a ratio of 130% was obtained. The obtained false twisted yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 1.
 [実施例2]
 結晶性ポリアミド(A)として相対粘度3.6、融点222℃のナイロン6(N6)を用いたこと以外は、実施例1と同じ方法で、62dtex12フィラメント、伸縮伸長率53%、吸水率3.8%、熱収縮応力0.21cN/dtex、および剛直非晶量46%のポリアミド複合繊維糸条を得た。
 得られたポリアミド複合繊維糸条を実施例1と同じ方法で、ディスク仮撚りを行い、伸縮伸長率150%の仮撚り加工糸を得た。得られた仮撚り加工糸を経糸として用いて織物を形成した。得られた織物はストレッチ性に優れていた。結果を表1に示す。
[Example 2]
62dtex12 filament, stretch elongation 53%, water absorption rate 3. In the same manner as in Example 1 except that nylon 6 (N6) having a relative viscosity of 3.6 and a melting point of 222 ° C. was used as the crystalline polyamide (A). Polyamide composite fiber yarns having an thermal shrinkage stress of 0.21 cN / dtex and a rigid amorphous amount of 46% were obtained.
The obtained polyamide composite fiber yarn was false-twisted in the same manner as in Example 1 to obtain a false-twisted yarn having a stretch elongation rate of 150%. The obtained false twisted yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 1.
 [実施例3]
 結晶性ポリアミド(A)として相対粘度3.6、融点200℃のナイロン6とナイロン66の共重合品(N6/N66)を用いたこと以外は、実施例1と同じ方法で、62dtex12フィラメント、伸縮伸長率67%、吸水率3.6%、熱収縮応力0.25cN/dtex、剛直非晶量53%のポリアミド複合繊維糸条を得た。
 得られたポリアミド複合繊維糸条を実施例1と同じ方法で、ディスク仮撚りを行い、伸縮伸長率200%の仮撚り加工糸を得た。得られた仮撚り加工糸を経糸として用いて織物を形成した。得られた織物は、実施例1と実施例2よりも優れたストレッチ性が得られた。結果を表1に示す。
[Example 3]
62dtex12 filament, stretchable by the same method as in Example 1 except that a copolymer (N6 / N66) of nylon 6 and nylon 66 having a relative viscosity of 3.6 and a melting point of 200 ° C. was used as the crystalline polyamide (A). Polyamide composite fiber threads having an elongation rate of 67%, a water absorption rate of 3.6%, a heat shrinkage stress of 0.25 cN / dtex, and a rigid amorphous amount of 53% were obtained.
The obtained polyamide composite fiber yarn was false-twisted in the same manner as in Example 1 to obtain a false-twisted yarn having a stretch elongation rate of 200%. The obtained false twisted yarn was used as a warp to form a woven fabric. The obtained woven fabric had better stretchability than in Examples 1 and 2. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 [実施例4]
 結晶性ポリアミド(A)として相対粘度3.6、融点200℃のナイロン6とナイロン66の共重合品(N6/N66)を、結晶性ポリアミド(B)として相対粘度2.7、融点225℃のナイロン610(N610)を用いた。結晶性ポリアミド(A)を芯成分とし、結晶性ポリアミド(B)を鞘成分として、それぞれを溶融し、偏心芯鞘型複合繊維用紡糸口金(12孔、丸孔)を用いて、結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率(質量比)を、結晶性ポリアミド(A):結晶性ポリアミド(B)=5:5で溶融吐出した(紡糸温度270℃)。口金から吐出された糸条は、糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油後、流体交絡ノズル装置で交絡を付与した後、微加熱引き取りローラー(温度50℃)において1700m/分で引き取り、加熱延伸ローラー(熱セット温度:150℃)間で2.4倍に延伸を行った後で、巻取速度4000m/分でパッケージに巻き取りをおこなった。62dtex12フィラメント、伸縮伸長率117%、吸水率3.6%、熱収縮応力0.29cN/dtex、剛直非晶量55%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、実施例5よりも優れたストレッチ性が得られた。結果を表2に示す。
[Example 4]
A copolymer (N6 / N66) of nylon 6 and nylon 66 having a relative viscosity of 3.6 and a melting point of 200 ° C. as the crystalline polyamide (A) has a relative viscosity of 2.7 and a melting point of 225 ° C. as the crystalline polyamide (B). Nylon 610 (N610) was used. Crystalline polyamide (A) is used as a core component, crystalline polyamide (B) is used as a sheath component, and each is melted, and a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret. The composite ratio (mass ratio) of (A) and the crystalline polyamide (B) was melt-discharged at a ratio of crystalline polyamide (A): crystalline polyamide (B) = 5: 5 (spinning temperature 270 ° C.). The threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a non-hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then slightly heated and taken up by a roller (temperature 50 ° C.). ) Was taken up at 1700 m / min, and after stretching 2.4 times between the heating and stretching rollers (heat setting temperature: 150 ° C.), the package was wound at a winding speed of 4000 m / min. A polyamide composite fiber yarn having 62 dtex12 filaments, a stretch elongation rate of 117%, a water absorption rate of 3.6%, a heat shrinkage stress of 0.29 cN / dtex, and a rigid amorphous amount of 55% was obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric had better stretchability than that of Example 5. The results are shown in Table 2.
 [実施例5]
 結晶性ポリアミド(A)として相対粘度3.3、融点222℃のナイロン6(N6)を、結晶性ポリアミド(B)として相対粘度2.7、融点225℃のナイロン610(N610)を用いた。結晶性ポリアミド(A)を芯成分とし、結晶性ポリアミド(B)を鞘成分として、それぞれを溶融し、偏心芯鞘型複合繊維用紡糸口金(12孔、丸孔)を用いて、結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率を、結晶性ポリアミド(A):結晶性ポリアミド(B)=5:5で溶融吐出した(紡糸温度270℃)。口金から吐出された糸条は、糸条冷却装置で糸条を冷却固化し、給油装置により非含水油剤を給油後、流体交絡ノズル装置で交絡を付与した後、微加熱引き取りローラー(温度50℃)で1700m/分で引き取り、加熱延伸ローラー(熱セット温度:150℃)間で2.4倍に延伸を行った後で、巻取速度4000m/分でパッケージに巻き取りをおこなった。62dtex12フィラメント、伸縮伸長率83%、吸水率3.8%、熱収縮応力0.20cN/dtex、および剛直非晶量46%のポリアミド複合繊維糸条を得た。得られた複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 5]
Nylon 6 (N6) having a relative viscosity of 3.3 and a melting point of 222 ° C. was used as the crystalline polyamide (A), and nylon 610 (N610) having a relative viscosity of 2.7 and a melting point of 225 ° C. was used as the crystalline polyamide (B). Crystalline polyamide (A) is used as a core component, crystalline polyamide (B) is used as a sheath component, and each is melted, and a crystalline polyamide (12 holes, round holes) is used for an eccentric core sheath type composite fiber spinneret. The composite ratio of (A) and the crystalline polyamide (B) was melt-discharged at a ratio of crystalline polyamide (A): crystalline polyamide (B) = 5: 5 (spinning temperature 270 ° C.). The threads discharged from the mouthpiece are cooled and solidified by the thread cooling device, lubricated with a non-hydrous oil by the oil supply device, entangled by the fluid entanglement nozzle device, and then slightly heated and taken up by a roller (temperature 50 ° C.). ) Was taken up at 1700 m / min, and after stretching 2.4 times between the heating and stretching rollers (heat setting temperature: 150 ° C.), the package was wound at a winding speed of 4000 m / min. A polyamide composite fiber yarn having 62 dtex12 filaments, an expansion / contraction rate of 83%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.20 cN / dtex, and a rigid amorphous amount of 46% was obtained. A woven fabric was formed using the obtained composite fiber threads as warp threads. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [実施例6]
 結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率を、結晶性ポリアミド(A):結晶性ポリアミド(B)=4:6としたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率81%、吸水率3.3%、熱収縮応力0.18cN/dtex、剛直非晶量45%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 6]
62dtex12 in the same manner as in Example 5 except that the composite ratio of the crystalline polyamide (A) and the crystalline polyamide (B) was set to: crystalline polyamide (A): crystalline polyamide (B) = 4: 6. Polyamide composite fiber threads having a filament, a stretch elongation rate of 81%, a water absorption rate of 3.3%, a heat shrinkage stress of 0.18 cN / dtex, and a rigid amorphous amount of 45% were obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [実施例7]
 結晶性ポリアミド(A)と結晶性ポリアミド(B)の複合比率を、結晶性ポリアミド(A):結晶性ポリアミド(B)=6:4としたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率87%、吸水率4.3%、熱収縮応力0.23cN/dtex、剛直非晶量47%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 7]
62dtex12 in the same manner as in Example 5 except that the composite ratio of the crystalline polyamide (A) and the crystalline polyamide (B) was set to: crystalline polyamide (A): crystalline polyamide (B) = 6: 4. Polyamide composite fiber threads having a filament, a stretch elongation rate of 87%, a water absorption rate of 4.3%, a heat shrinkage stress of 0.23 cN / dtex, and a rigid amorphous amount of 47% were obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [実施例8]
 結晶性ポリアミド(A)として相対粘度3.6、融点222℃のナイロン6(N6)を、結晶性ポリアミド(B)として相対粘度2.7、融点225℃のナイロン610とナイロン510の共重合品(N610/N510)を用いたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率103%、吸水率4.1%、熱収縮応力0.20cN/dtex、剛直非晶量46%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、実施例5よりも優れたストレッチ性が得られた。結果を表2に示す。
[Example 8]
A copolymer of nylon 6 (N6) having a relative viscosity of 3.6 and a melting point of 222 ° C. as the crystalline polyamide (A) and nylon 610 and nylon 510 having a relative viscosity of 2.7 and a melting point of 225 ° C. as the crystalline polyamide (B). 62dtex12 filament, expansion / contraction elongation 103%, water absorption rate 4.1%, heat shrinkage stress 0.20cN / dtex, rigid amorphous amount 46 in the same manner as in Example 5 except that (N610 / N510) was used. % Polyamide composite fiber threads were obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric had better stretchability than that of Example 5. The results are shown in Table 2.
 [実施例9]
 微加熱引き取りローラー(50℃)にて2050m/分で引き取り、加熱延伸ローラー(熱セット温度:150℃)間で2.0倍に延伸を行ったこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率82%、吸水率3.8%、熱収縮応力0.18cN/dtex、剛直非晶量43%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 9]
The same method as in Example 5 except that the material was picked up at 2050 m / min by a slightly heated take-up roller (50 ° C.) and stretched 2.0 times between the heat-stretching rollers (heat setting temperature: 150 ° C.). A polyamide composite fiber yarn having 62 dtex12 filaments, a stretch elongation rate of 82%, a water absorption rate of 3.8%, a heat shrinkage stress of 0.18 cN / dtex, and a rigid amorphous amount of 43% was obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [実施例10]
 紡糸温度を280℃としたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率82%、吸水率3.8%、熱収縮応力0.18cN/dtex、剛直非晶量43%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 10]
62dtex12 filament, expansion / contraction elongation 82%, water absorption rate 3.8%, heat shrinkage stress 0.18cN / dtex, rigid amorphous amount 43% by the same method as in Example 5 except that the spinning temperature was set to 280 ° C. Polyamide composite fiber yarn was obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [実施例11]
 紡糸温度を260℃としたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率95%、吸水率3.8%、熱収縮応力0.22cN/dtex、剛直非晶量49%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に優れていた。結果を表2に示す。
[Example 11]
62dtex12 filament, expansion / contraction elongation 95%, water absorption rate 3.8%, heat shrinkage stress 0.22cN / dtex, rigid amorphous amount 49% by the same method as in Example 5 except that the spinning temperature was set to 260 ° C. Polyamide composite fiber yarn was obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was excellent in stretchability. The results are shown in Table 2.
 [比較例1]
 結晶性ポリアミド(A)として相対粘度2.7、融点222℃のナイロン6(N6)を用いたこと以外は、実施例5と同じ方法で、62dtex12フィラメントのポリアミド複合糸条を得た。相対粘度差のほとんどない比較例1の複合糸条は、加熱処理後の収縮差が小さくて伸縮伸長率13%と低い捲縮であり、熱収縮応力0.13cN/dtex、剛直非晶量39%と低い値であった。得られたポリアミド複合繊維糸条を経糸として用い、得られた織物は、ストレッチ性に劣っていた。結果を表2に示す。
[Comparative Example 1]
A 62dtex12 filament polyamide composite filament was obtained in the same manner as in Example 5 except that nylon 6 (N6) having a relative viscosity of 2.7 and a melting point of 222 ° C. was used as the crystalline polyamide (A). The composite yarn of Comparative Example 1 having almost no difference in relative viscosity has a small shrinkage difference after heat treatment and a low expansion and contraction elongation rate of 13%, a heat shrinkage stress of 0.13 cN / dtex, and a rigid amorphous amount of 39. It was a low value of%. The obtained polyamide composite fiber yarn was used as a warp, and the obtained woven fabric was inferior in stretchability. The results are shown in Table 2.
 [比較例2]
 ポリアミド(A)とポリアミド(B)の複合比率をポリアミド(A):ポリアミド(B)=7:3としたこと以外は、実施例5と同じ方法で、62dtex12フィラメントのポリアミド複合糸条を得た。吸水率の高いポリアミド(A)の比率を高くした比較例2のポリアミド複合糸条は、吸水率5.8%と高い値であった。得られたポリアミド複合繊維糸条を経糸として用い、実施例5と同様に織物を形成したが、シワが残ったため、シワが残らない程度に経方向に張力を高めに加工を行った結果、ストレッチ性に劣った織物が得られた。結果を表2に示す。
[Comparative Example 2]
A 62dtex12 filament polyamide composite yarn was obtained in the same manner as in Example 5 except that the composite ratio of the polyamide (A) and the polyamide (B) was set to polyamide (A): polyamide (B) = 7: 3. .. The polyamide composite yarn of Comparative Example 2 in which the ratio of the polyamide (A) having a high water absorption rate was increased had a high water absorption rate of 5.8%. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric in the same manner as in Example 5, but since wrinkles remained, the tension was increased in the warp direction to the extent that no wrinkles remained, and as a result, stretch was performed. A woven fabric with inferior properties was obtained. The results are shown in Table 2.
 [比較例3]
 結晶性ポリアミド(A)として相対粘度3.3、融点222℃のナイロン6(N6)を、結晶性ポリアミド(B)として相対粘度2.7、融点225℃のナイロン6(N6)を用いたこと以外は、実施例5と同じ方法で、62dtex12フィラメントのポリアミド複合繊維糸条を得た。吸水率の高いポリアミド同士を用いて作製した比較例3のポリアミド複合繊維糸条は、吸水率6.2%と高い値であった。得られたポリアミド複合繊維糸条を経糸として用い、実施例5と同様に織物を形成したが、シワが残ったため、シワが残らない程度に経方向に張力を高めに加工を行った結果、ストレッチ性に劣った織物が得られた。結果を表2に示す。
[Comparative Example 3]
Nylon 6 (N6) having a relative viscosity of 3.3 and a melting point of 222 ° C. was used as the crystalline polyamide (A), and nylon 6 (N6) having a relative viscosity of 2.7 and a melting point of 225 ° C. was used as the crystalline polyamide (B). Polyamide composite fiber threads of 62dtex12 filaments were obtained in the same manner as in Example 5 except. The polyamide composite fiber yarn of Comparative Example 3 produced by using polyamides having a high water absorption rate had a high water absorption rate of 6.2%. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric in the same manner as in Example 5, but since wrinkles remained, the tension was increased in the warp direction to the extent that no wrinkles remained, and as a result, stretch was performed. A woven fabric with inferior properties was obtained. The results are shown in Table 2.
 [比較例4]
 紡糸温度を300℃としたこと以外は、実施例5と同じ方法で、62dtex12フィラメント、伸縮伸長率53%、吸水率3.8%、熱収縮応力0.13cN/dtex、剛直非晶量36%のポリアミド複合繊維糸条を得た。得られたポリアミド複合繊維糸条を経糸として用いて織物を形成した。得られた織物は、ストレッチ性に劣っていた。結果を表2に示す。
[Comparative Example 4]
62dtex12 filament, expansion / contraction elongation 53%, water absorption rate 3.8%, heat shrinkage stress 0.13cN / dtex, rigid amorphous amount 36% by the same method as in Example 5 except that the spinning temperature was set to 300 ° C. Polyamide composite fiber yarn was obtained. The obtained polyamide composite fiber yarn was used as a warp to form a woven fabric. The obtained woven fabric was inferior in stretchability. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお、本出願は2019年7月31日付で出願された日本特許出願(特願2019-141540)に基づいており、その全体が引用により援用される。 Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications and modifications can be made without departing from the intent and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2019-141540) filed on July 31, 2019, and the entire application is incorporated by reference.
1:芯成分(結晶性ポリアミド(A))
2:鞘成分(結晶性ポリアミド(B))
10A~10D:ポリアミド偏心芯鞘型複合繊維
1: Core component (crystalline polyamide (A))
2: Sheath component (crystalline polyamide (B))
10A-10D: Polyamide eccentric sheath type composite fiber

Claims (7)

  1.  組成が互いに異なる2種類の結晶性ポリアミド(A)および結晶性ポリアミド(B)からなる偏心芯鞘型のポリアミド複合繊維であって、前記ポリアミド複合繊維を温度30℃および相対湿度90RH%の環境で72時間静置した後の吸水率が5.0%以下であり、かつ熱収縮応力が0.15cN/dtex以上であるポリアミド複合繊維。 An eccentric core-sheath type polyamide composite fiber composed of two types of crystalline polyamide (A) and a crystalline polyamide (B) having different compositions, wherein the polyamide composite fiber is used in an environment of a temperature of 30 ° C. and a relative humidity of 90 RH%. A polyamide composite fiber having a water absorption rate of 5.0% or less and a heat shrinkage stress of 0.15 cN / dtex or more after being allowed to stand for 72 hours.
  2.  前記ポリアミド複合繊維の剛直非晶量が40~60%であり、伸縮伸長率が30%以上である、請求項1記載のポリアミド複合繊維。 The polyamide composite fiber according to claim 1, wherein the polyamide composite fiber has a rigid amorphous amount of 40 to 60% and a stretch elongation rate of 30% or more.
  3.  前記結晶性ポリアミド(A)が、ナイロン6またはその共重合体である、請求項1または2に記載のポリアミド複合繊維。 The polyamide composite fiber according to claim 1 or 2, wherein the crystalline polyamide (A) is nylon 6 or a copolymer thereof.
  4.  前記結晶性ポリアミド(B)が、ナイロン610またはその共重合体である、請求項1~3のいずれか1項に記載のポリアミド複合繊維。 The polyamide composite fiber according to any one of claims 1 to 3, wherein the crystalline polyamide (B) is nylon 610 or a copolymer thereof.
  5.  前記結晶性ポリアミド(A)が芯成分であり、前記結晶性ポリアミド(B)が鞘成分である、請求項1~4のいずれか1項に記載のポリアミド複合繊維。 The polyamide composite fiber according to any one of claims 1 to 4, wherein the crystalline polyamide (A) is a core component and the crystalline polyamide (B) is a sheath component.
  6.  請求項1~5のいずれか1項に記載のポリアミド複合繊維からなる加工糸。 A processed yarn made of the polyamide composite fiber according to any one of claims 1 to 5.
  7.  伸縮伸長率が100%以上である、請求項6に記載の加工糸。
     
    The processed yarn according to claim 6, wherein the expansion / contraction elongation rate is 100% or more.
PCT/JP2020/028737 2019-07-31 2020-07-27 Polyamide composite fiber and finished yarn WO2021020354A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020541616A JPWO2021020354A1 (en) 2019-07-31 2020-07-27
CN202080053997.0A CN114207200A (en) 2019-07-31 2020-07-27 Polyamide composite fiber and processed yarn
EP20847355.3A EP4006216A4 (en) 2019-07-31 2020-07-27 Polyamide composite fiber and finished yarn
KR1020227002637A KR20220038683A (en) 2019-07-31 2020-07-27 Polyamide Composite Fibers and Processed Yarns

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-141540 2019-07-31
JP2019141540 2019-07-31

Publications (1)

Publication Number Publication Date
WO2021020354A1 true WO2021020354A1 (en) 2021-02-04

Family

ID=74229147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028737 WO2021020354A1 (en) 2019-07-31 2020-07-27 Polyamide composite fiber and finished yarn

Country Status (6)

Country Link
EP (1) EP4006216A4 (en)
JP (1) JPWO2021020354A1 (en)
KR (1) KR20220038683A (en)
CN (1) CN114207200A (en)
TW (1) TW202113178A (en)
WO (1) WO2021020354A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028514A (en) * 1983-04-11 1985-02-13 モンサント・コンパニ− Torque free filament
JPH10266020A (en) * 1997-03-27 1998-10-06 Toray Monofilament Co Ltd Conjugate monofilament and its production
JP2000290837A (en) * 1999-04-06 2000-10-17 Unitika Ltd Latently crimpable polyamide yarn and its production
JP2001159030A (en) * 1999-11-29 2001-06-12 Toray Ind Inc Conjugate polyamide fiber
JP2002363827A (en) 2001-06-06 2002-12-18 Unitika Ltd Latent crimping polyamide yarn and method for producing the same
JP2009057679A (en) * 2008-10-16 2009-03-19 Unitika Ltd Polyamide latent crimp yarn
WO2015129735A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Crimped polyamide yarn, and woven or knit fabric employing same
WO2017221713A1 (en) 2016-06-22 2017-12-28 東レ株式会社 High-temperature-shrinkable polyamide composite fiber, textured yarn, and textile partially using such polyamide composite fiber and textured yarn
WO2018110523A1 (en) 2016-12-14 2018-06-21 東レ株式会社 Eccentric core-sheath composite fiber and combined filament yarn
JP2019141540A (en) 2018-02-15 2019-08-29 エイブル株式会社 Apparatus for releasing chlorine dioxide gas

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008129678A1 (en) * 2007-04-18 2008-10-30 Kb Seiren, Ltd. Splittable conjugate fiber
BR112012005904A2 (en) * 2009-09-16 2019-09-24 Teijin Ltd fiber and fiber structure
WO2016104278A1 (en) * 2014-12-26 2016-06-30 東レ株式会社 High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric
KR102465144B1 (en) * 2015-05-22 2022-11-10 도레이 카부시키가이샤 Hygroscopic core-sheath composite yarn and its manufacturing method
JP6699403B2 (en) * 2016-06-30 2020-05-27 東レ株式会社 Composite polyamide fiber for false twist

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6028514A (en) * 1983-04-11 1985-02-13 モンサント・コンパニ− Torque free filament
JPH10266020A (en) * 1997-03-27 1998-10-06 Toray Monofilament Co Ltd Conjugate monofilament and its production
JP2000290837A (en) * 1999-04-06 2000-10-17 Unitika Ltd Latently crimpable polyamide yarn and its production
JP2001159030A (en) * 1999-11-29 2001-06-12 Toray Ind Inc Conjugate polyamide fiber
JP2002363827A (en) 2001-06-06 2002-12-18 Unitika Ltd Latent crimping polyamide yarn and method for producing the same
JP2009057679A (en) * 2008-10-16 2009-03-19 Unitika Ltd Polyamide latent crimp yarn
WO2015129735A1 (en) * 2014-02-26 2015-09-03 東レ株式会社 Crimped polyamide yarn, and woven or knit fabric employing same
WO2017221713A1 (en) 2016-06-22 2017-12-28 東レ株式会社 High-temperature-shrinkable polyamide composite fiber, textured yarn, and textile partially using such polyamide composite fiber and textured yarn
WO2018110523A1 (en) 2016-12-14 2018-06-21 東レ株式会社 Eccentric core-sheath composite fiber and combined filament yarn
JP2019141540A (en) 2018-02-15 2019-08-29 エイブル株式会社 Apparatus for releasing chlorine dioxide gas

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4006216A4
TODOKI MINORU: "DSC (3)-Glass transition behavior of polymers", JOURNAL OF THE TEXTILE SOCIETY (FIBERS AND INDUSTRY, vol. 65, no. 10, 2009

Also Published As

Publication number Publication date
KR20220038683A (en) 2022-03-29
CN114207200A (en) 2022-03-18
EP4006216A1 (en) 2022-06-01
TW202113178A (en) 2021-04-01
JPWO2021020354A1 (en) 2021-02-04
EP4006216A4 (en) 2024-03-20

Similar Documents

Publication Publication Date Title
JP5160679B2 (en) Composite effect yarn and its fabric
WO2016104278A1 (en) High-shrinkage polyamide fibers, combined-filament yarn using same in portion thereof, and woven or knitted fabric
CN109072491B (en) High heat-shrinkable polyamide fiber, and combined filament yarn and woven fabric using same
JP6090546B1 (en) Hygroscopic core-sheath composite yarn and method for producing the same
TWI728131B (en) High heat-shrinkable polyamide composite fiber and processed yarn, and use them in some woven fabrics
WO2022018960A1 (en) Woven/knitted fabric and garment containing same
WO2021020354A1 (en) Polyamide composite fiber and finished yarn
CN118647759A (en) Crimped fiber
JP7189667B2 (en) Method for manufacturing stretchable fabric
JP3786004B2 (en) Aliphatic polyester resin composition, molded article and method for producing the same
JP6822210B2 (en) High heat shrinkable polyamide fibers, mixed yarns and woven and knitted fabrics
JP3506129B2 (en) False twisted yarn and method for producing the same
JP2001159030A (en) Conjugate polyamide fiber
WO2024185439A1 (en) Polyester composite fiber, polyester false-twist textured yarn, and production methods therefor
JP4380519B2 (en) Method for producing soft stretch yarn
JP4687091B2 (en) Soft stretch yarn and fabric
JP4021794B2 (en) Composite fiber for textile and its manufacturing method
JP3719258B2 (en) Soft stretch yarn, production method and fabric
JP2003138437A (en) Polylactic acid false twist textured yarn having excellent bulkiness and stretchability
JP2009019305A (en) Moisture-absorbing and crimping conjugated fiber

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541616

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20847355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020847355

Country of ref document: EP

Effective date: 20220228