JPWO2016047027A1 - Fluorescence detection method and detection sample cell - Google Patents

Fluorescence detection method and detection sample cell Download PDF

Info

Publication number
JPWO2016047027A1
JPWO2016047027A1 JP2016549906A JP2016549906A JPWO2016047027A1 JP WO2016047027 A1 JPWO2016047027 A1 JP WO2016047027A1 JP 2016549906 A JP2016549906 A JP 2016549906A JP 2016549906 A JP2016549906 A JP 2016549906A JP WO2016047027 A1 JPWO2016047027 A1 JP WO2016047027A1
Authority
JP
Japan
Prior art keywords
sample
flow path
mixed phase
fluorescence
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016549906A
Other languages
Japanese (ja)
Other versions
JP6386062B2 (en
Inventor
大塚 尚
尚 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2016047027A1 publication Critical patent/JPWO2016047027A1/en
Application granted granted Critical
Publication of JP6386062B2 publication Critical patent/JP6386062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Abstract

【課題】蛍光標識と特異的に結合する被検出物質を捕捉する蛍光検出方法およびその検出用試料セルにおいて、捕捉する被検出物質の量を増加させ、高感度且つ検出時間の短縮を実現する。【解決手段】蛍光標識(F)と特異的に結合する抗原(A)を含有する試料液(S)を試料液流路(113)に流下させる。抗原(A)および蛍光標識(F)を含有しない混相液(G)を混相液流路(114)に流下させる。試料液(S)および混相液(G)を試料液流路(113)および混相液流路(114)のいずれの幅よりも狭い二相流流路(115)に導き、二相流流路(115)において、試料液(S)と混相液(G)との二相流を発生せしめ、試料液(S)を側壁(115a)に沿って流下させる。側壁(115a)に設けられた検出部(200)に蛍光標識(F)と特異的に結合した抗原(A)を捕捉させ、検出部(200)に励起光(L)を照射して蛍光を検出し、検出された蛍光に基づいて抗原(A)の存在量を検出する。【選択図】図4In a fluorescence detection method for capturing a substance to be detected that specifically binds to a fluorescent label and a sample cell for the detection, the amount of the substance to be detected to be captured is increased to achieve high sensitivity and a reduction in detection time. A sample solution (S) containing an antigen (A) that specifically binds to a fluorescent label (F) is caused to flow down to a sample solution channel (113). The mixed phase liquid (G) not containing the antigen (A) and the fluorescent label (F) is caused to flow down to the mixed phase liquid channel (114). The sample liquid (S) and the mixed phase liquid (G) are guided to the two-phase flow path (115) narrower than any of the sample liquid flow path (113) and the mixed phase liquid flow path (114), and the two-phase flow path In (115), a two-phase flow of the sample liquid (S) and the mixed phase liquid (G) is generated, and the sample liquid (S) flows down along the side wall (115a). The detection unit (200) provided on the side wall (115a) captures the antigen (A) specifically bound to the fluorescent label (F), and the detection unit (200) is irradiated with excitation light (L) to emit fluorescence. And detecting the abundance of the antigen (A) based on the detected fluorescence. [Selection] Figure 4

Description

本発明は蛍光検出方法および検出用試料セルに関する。より詳しくは、蛍光標識と特異的に結合する被検出物質をマイクロ流路に流下させ、マイクロ流路に設けた検出部に捕捉させ、励起光を照射して蛍光標識が発する蛍光を検出し、検出した蛍光の量に基づいて、被検出物質の存在量を検出する蛍光検出方法および検出用試料セルに関する。   The present invention relates to a fluorescence detection method and a detection sample cell. More specifically, the target substance that specifically binds to the fluorescent label is caused to flow down to the microchannel, captured by the detection unit provided in the microchannel, and the fluorescence emitted by the fluorescent label is detected by irradiating excitation light. The present invention relates to a fluorescence detection method and a detection sample cell for detecting the abundance of a substance to be detected based on the amount of fluorescence detected.

近年、病室や家庭等での検査を可能にするPOCT(Point Of Care Testing)検査が注目を集めている。このPOCT検査を実現するため、マイクロ流路を備えた検出用試料セルを用いた生化学検査の研究が盛んに行われている。   In recent years, a POCT (Point Of Care Testing) test that enables a test in a hospital room or at home has attracted attention. In order to realize this POCT inspection, research on biochemical inspection using a detection sample cell provided with a microchannel has been actively conducted.

マイクロ流路を利用する生化学検査としては蛍光法が広く用いられている。蛍光法は、特定波長の光に励起されて蛍光を発する蛍光標識、および蛍光標識と特異的に結合する被検出物質を含有する試料液をマイクロ流路に流下させ、マイクロ流路の一部に設けられた固体表面(固相)である検出部に捕捉させる。そして、蛍光標識と特異的に結合する被検出物質を捕捉した検出部に向けて励起光を照射し、蛍光標識が発する蛍光を検出し、検出した蛍光の量に基づいて、被検出物質の存在量を検出する方法である。   The fluorescence method is widely used as a biochemical test using a microchannel. In the fluorescence method, a sample liquid containing a fluorescent label that is excited by light of a specific wavelength and emits fluorescence, and a target substance that specifically binds to the fluorescent label is allowed to flow down into a microchannel, and a part of the microchannel It is made to capture by the detection part which is the provided solid surface (solid phase). Then, the excitation light is irradiated toward the detection unit that captures the target substance that specifically binds to the fluorescent label, the fluorescence emitted by the fluorescent label is detected, and the presence of the target substance is detected based on the detected amount of fluorescence. It is a method of detecting the quantity.

蛍光法には、感度の向上を図るため、検出部の表面から染み出すエバネッセント波を利用するエバネッセント蛍光法や、エバネッセント蛍光法の感度をさらに向上させるため、プラズモン共鳴による電場増強を利用した表面プラズモン増強蛍光法等が知られている。   In the fluorescence method, surface plasmon using electric field enhancement by plasmon resonance is used to further improve the sensitivity of the evanescent fluorescence method using the evanescent wave that oozes from the surface of the detection unit and the evanescent fluorescence method to improve the sensitivity. An enhanced fluorescence method and the like are known.

また、感度の向上を図るには、検出部に捕捉される被検出物質の量を増加させることも重要である。図7Aや図7Bに示されるような、検出部の表面に直交する方向に試料液を送液する技術(特許文献1)や、図8に示されるような、試料液を検出部上で往復させる送液技術(特許文献2)が提案されている。   In order to improve the sensitivity, it is also important to increase the amount of the substance to be detected captured by the detection unit. A technique (Patent Document 1) for feeding a sample solution in a direction orthogonal to the surface of the detection unit as shown in FIG. 7A and FIG. 7B, and a sample solution as shown in FIG. A liquid feeding technique (Patent Document 2) is proposed.

また、反応物質が固定された反応流路と、試料液を反応流路に導く試料注入流路と、試料液以外の流体を反応流路に導く他の流路を設け、反応流路内において、試料液以外の流体により試料液を反応物質側の一壁面に沿って流下させる技術(特許文献3)も提案されている。   In addition, a reaction channel in which the reactant is fixed, a sample injection channel that guides the sample solution to the reaction channel, and another channel that guides fluid other than the sample solution to the reaction channel are provided. There has also been proposed a technique (Patent Document 3) in which a sample solution is caused to flow down along one wall surface on the reactant side by a fluid other than the sample solution.

しかしながら、マイクロ流路内を流下する蛍光粒子は、図9に示すように、中央部分に偏って流下する傾向がある(非特許文献1)。したがって、蛍光粒子が検出部近傍を通過するように流下させることが望まれるが、技術的には確立されていない。なお、マイクロ流路を用いた微粒子を分離分級する手法については提案されている(非特許文献2および3)。   However, the fluorescent particles flowing down in the microchannel tend to flow down toward the central portion as shown in FIG. 9 (Non-Patent Document 1). Therefore, it is desired that the fluorescent particles flow down so as to pass through the vicinity of the detection unit, but this is not technically established. A method for separating and classifying fine particles using a microchannel has been proposed (Non-Patent Documents 2 and 3).

特開2011−257266号公報JP 2011-257266 A 国際公開WO2011/027851号International Publication WO2011 / 027851 特開2008−203158号公報JP 2008-203158 A

D.Ross et al., Anal. Chem. 2001, 73, 2509D. Ross et al., Anal. Chem. 2001, 73, 2509 山田真澄、関実 混相流 19巻2号(2005)pp.102-107 「マイクロフルイディクスを利用した微粒子の連続分離・分級」Masumi Yamada, Minoru Seki Multiphase flow Vol.19 No.2 (2005) pp.102-107 “Continuous separation and classification of fine particles using microfluidics” 山田真澄、関実 真空 Vol.49 No.7, 2006 pp.404-408 「マイクロ流路を用いた粒子の分級」Masami Yamada, Minoru Seki Vacuum Vol.49 No.7, 2006 pp.404-408 “Particle Classification Using Microchannels”

蛍光標識と特異的に結合する被検出物質を検出部に捕捉させるには、被検出物質を検出部の表面から100nm程度の領域まで近接させる必要がある。図10はマイクロ流路を流下する試料液の送液を示す模式図である。   In order for the detection part to capture the substance to be detected that specifically binds to the fluorescent label, it is necessary to bring the substance to be detected close to the region of about 100 nm from the surface of the detection part. FIG. 10 is a schematic diagram showing the feeding of the sample solution flowing down the microchannel.

しかしながら、被検出物質(抗原)は、図10からも明らかなように、マイクロ流路内の中央付近に偏って流下され、大半の被検出物質は検出部の近傍の領域を通過しない。したがって、分散により検出部近傍に到達する被検出物の量は、試料液内の全被検出物質に対して、0.001パーセント程度に過ぎない。すなわち殆どの被検出物質が検出部に捕捉されず、高感度な検出が困難となる虞がある。   However, as can be seen from FIG. 10, the substance to be detected (antigen) flows down toward the center of the microchannel, and most of the substance to be detected does not pass through the region near the detection unit. Therefore, the amount of the detection object that reaches the vicinity of the detection unit due to the dispersion is only about 0.001% with respect to all the detection target substances in the sample liquid. That is, most of the substance to be detected is not captured by the detection unit, and it may be difficult to perform highly sensitive detection.

また、マイクロ流路の幅は、製造上の観点より、上記近傍領域より1000倍程広い100μm程度となり、中央付近に位置する被検出物質が、分散により検出部近傍に到達するには時間が掛かり、短時間での検出が困難となる虞もある。   In addition, the width of the microchannel is about 100 μm, which is about 1000 times wider than the neighboring region, from the viewpoint of manufacturing, and it takes time for the substance to be detected located near the center to reach the vicinity of the detecting unit due to dispersion. There is also a possibility that detection in a short time becomes difficult.

層流として流下する試料液に対しては、特許文献1および2のような、単に試料液を検出部に向けて送液する技術や、特許文献3のような、他の流体を用いて試料液を所望の方向に導く技術では、被検出物を短時間で検出部付近に移動させることは困難である。また、非特許文献1〜3には、蛍光法において、検出部に捕捉される被検出物質を増加させることについては何ら提言もされていない。   For the sample liquid flowing down as a laminar flow, a technique using a technique of simply feeding the sample liquid toward the detection unit, such as Patent Documents 1 and 2, or another fluid such as Patent Document 3 is used. In the technique for guiding the liquid in a desired direction, it is difficult to move the detection object to the vicinity of the detection unit in a short time. In addition, Non-Patent Documents 1 to 3 do not make any proposal about increasing the amount of the substance to be detected that is captured by the detection unit in the fluorescence method.

本発明は、上記事情に鑑み、検出部に捕捉される、蛍光標識と特異的に結合した被検出物の量を増加させ、高感度且つ検出時間の短縮を実現する蛍光検出法および検出用試料セルを提供することを目的とする。   In view of the above circumstances, the present invention provides a fluorescence detection method and a detection sample that increase the amount of an object to be detected that is specifically bound to a fluorescent label, which is captured by a detection unit, and realizes high sensitivity and shortened detection time. The purpose is to provide a cell.

上記課題を解決するため、本発明に係る蛍光検出方法は、被検出物質と特異的に結合する蛍光標識を用意し、被検出物質および蛍光標識を含有する試料液を試料液流路に流下させ、被検出物質および蛍光標識を含有しない混相液を混相液流路に流下させ、試料液流路より流下された試料液および混相液流路より流下された混相液を、試料液流路および混相液流路よりも幅の狭い二相流流路に導き、二相流流路において、試料液と混相液との二相流を発生せしめ、試料液を二相流流路の一側壁に沿って流下させ、一側壁に設けた検出部に蛍光標識と特異的に結合した被検出物質を捕捉させ、検出部に励起光を照射し、照射により蛍光標識が発する蛍光を検出し、検出した蛍光の量に基づいて被検出物質の存在量を検出する。   In order to solve the above problems, a fluorescence detection method according to the present invention provides a fluorescent label that specifically binds to a substance to be detected, and causes a sample liquid containing the substance to be detected and the fluorescent label to flow down into the sample liquid channel. The mixed phase liquid not containing the target substance and the fluorescent label is allowed to flow down to the mixed phase liquid flow path, and the sample liquid flown down from the sample liquid flow path and the mixed phase liquid flowed down from the multiphase liquid flow path into the sample liquid flow path and The two-phase flow channel is narrower than the liquid channel and a two-phase flow of the sample liquid and the mixed phase liquid is generated in the two-phase flow channel. The detection unit provided on one side wall captures the target substance specifically bound to the fluorescent label, irradiates the detection unit with excitation light, detects the fluorescence emitted by the fluorescent label by irradiation, and detects the detected fluorescence. The abundance of the substance to be detected is detected based on the amount of.

また、上記「照射により蛍光標識が発する蛍光」とは、励起光の照射により直接若しくは間接的に蛍光標識が励起されて発生する蛍光を意味する。また、上記「被検出物質の存在量を検出する」とは、被検出物質の存在の有無を含み、その存在量を定量的に検出する意味である。   In addition, the above-mentioned “fluorescence emitted from a fluorescent label by irradiation” means fluorescence generated by exciting the fluorescent label directly or indirectly by irradiation with excitation light. Further, the above-mentioned “detecting the abundance of the substance to be detected” means that the abundance of the substance to be detected is quantitatively detected including the presence or absence of the substance to be detected.

また、本発明に係る蛍光検出方法は、混相液流路として、試料液流路の幅以上の幅を有する流路を用いることが望ましい。   In the fluorescence detection method according to the present invention, it is desirable to use a flow channel having a width equal to or larger than the width of the sample liquid flow channel as the mixed phase liquid flow channel.

また、本発明に係る蛍光検出方法において、励起光の照射により検出部からエバネッセント光を染み出させ、エバネッセント光により蛍光標識が蛍光を発生させることが望ましい。   Further, in the fluorescence detection method according to the present invention, it is desirable that the evanescent light oozes out from the detection unit by irradiation of excitation light, and the fluorescent label generates fluorescence by the evanescent light.

また、本発明に係る蛍光検出方法において、検出部が金属膜を備え、金属膜に対して、全反射以上の入射角で励起光を照射することより、金属膜上に電場を増強する表面プラズモンを発生させることが望ましい。   Further, in the fluorescence detection method according to the present invention, the detection unit includes a metal film, and the surface plasmon that enhances the electric field on the metal film by irradiating the metal film with excitation light at an incident angle greater than or equal to total reflection. It is desirable to generate

また、本発明に係る蛍光検出方法において、蛍光標識として、励起光および蛍光を透過する透光性誘電体材料中に蛍光色素分子を内包してなる蛍光ビーズを用いることが望ましい。   In the fluorescence detection method according to the present invention, it is desirable to use, as a fluorescent label, fluorescent beads in which fluorescent dye molecules are encapsulated in a translucent dielectric material that transmits excitation light and fluorescence.

また、本発明に係る蛍光検出方法において、蛍光ビーズが親水性を有するものであり、混相液が1.8パーセント以上の濃度を有する生理食塩水であることが望ましい。ここで、「濃度」とは塩化ナトリウムの含有濃度を意味する。   In the fluorescence detection method according to the present invention, it is desirable that the fluorescent beads are hydrophilic and the mixed phase solution is physiological saline having a concentration of 1.8% or more. Here, “concentration” means the concentration of sodium chloride.

また、本発明に係る蛍光検出方法において、蛍光ビーズが親水性を有するものであり、混相液として有機溶媒を用いることが望ましい。   In the fluorescence detection method according to the present invention, the fluorescent beads are hydrophilic, and it is desirable to use an organic solvent as the mixed phase liquid.

また、本発明に係る蛍光検出方法において、蛍光ビーズを酸性または塩基性の官能基で表面修飾し、試料液のpHを官能基が電離分解できる値とし、混相液のpHを官能基が電離分解できない値とすることが望ましい。   Further, in the fluorescence detection method according to the present invention, the surface of the fluorescent beads is modified with an acidic or basic functional group, the pH of the sample solution is set to a value at which the functional group can undergo ionization decomposition, and the pH of the mixed phase liquid is ionized by the functional group. It is desirable to make the value impossible.

また、本発明に係る蛍光検出方法において、混相液に蛍光色素を有さないビーズを含有させ、混相液の単位体積当たりの蛍光ビーズの数を試料液の単位体積当たりの蛍光ビーズの数よりも多くすることが望ましい。   Further, in the fluorescence detection method according to the present invention, the mixed phase solution contains beads not having a fluorescent dye, and the number of fluorescent beads per unit volume of the mixed phase solution is greater than the number of fluorescent beads per unit volume of the sample solution. It is desirable to increase it.

また、本発明に係る検出用試料セルは、本発明に係る蛍光検出方法に使用される検出用試料セルであって、試料液を流下させる試料液流路と、混相液を流下させる混相液流路と、試料流路の下流端および混相液流路の下流端に連通し且つ試料液流路および検出液流路のいずれの幅よりも狭い幅を有する二相流流路と、蛍光標識と特異的に結合した被検出物質を捕捉する、二相流流路の側壁の一部に設けられた検出部とを備えるものであってもよい。   In addition, the detection sample cell according to the present invention is a detection sample cell used in the fluorescence detection method according to the present invention, and includes a sample liquid flow path for flowing down the sample liquid and a mixed phase liquid flow for flowing down the mixed phase liquid. A two-phase flow channel communicating with the downstream end of the channel, the downstream end of the sample channel and the downstream end of the mixed phase liquid channel, and having a width narrower than any of the sample liquid channel and the detection liquid channel; It may be provided with a detection part provided in a part of the side wall of the two-phase flow channel that captures the specifically detected substance to be detected.

また、本発明に係る検出用試料セルにおいて、混相液流路の幅が試料液流路の幅以上であることが望ましい。   In the sample cell for detection according to the present invention, it is desirable that the width of the mixed phase liquid channel is equal to or larger than the width of the sample liquid channel.

また、本発明に係る検出用試料セルにおいて、二相流流路の幅が5μm以上100μm未満の範囲であることが望ましい。   In the detection sample cell according to the present invention, it is desirable that the width of the two-phase flow channel is in the range of 5 μm or more and less than 100 μm.

また、本発明に係る検出用試料セルにおいて、試料液流路の下流端と、混相液流路の下流端と、二相流流路の上流端とが互いに連通するものが望ましい。   In the detection sample cell according to the present invention, it is desirable that the downstream end of the sample liquid flow channel, the downstream end of the mixed phase liquid flow channel, and the upstream end of the two-phase flow flow channel communicate with each other.

また、本発明に係る検出用試料セルにおいて、試料液流路と二相流流路とのなす角度が、混相液流路と二相流流路とのなす角度と等しいことが望ましい。   In the sample cell for detection according to the present invention, it is desirable that the angle formed between the sample liquid channel and the two-phase flow channel is equal to the angle formed between the mixed phase liquid channel and the two-phase flow channel.

本発明の蛍光検出方法によれば、二相流流路において、試料液と混相液との二相流を発生せしめ、試料液を二相流流路の一側壁に沿って流下させ、一側壁に設けた検出部に蛍光標識と特異的に結合した被検出物質を捕捉させ、検出部に励起光を照射し、照射により蛍光標識が発する蛍光を検出し、検出した蛍光の量に基づいて被検出物質の存在量を検出するため、蛍光標識と特異的に結合する被検出物質が検出部側の側壁に沿って検出部近傍を流下され、検出部に捕捉される量が増加して高感度且つ検出時間の短縮を実現できる。   According to the fluorescence detection method of the present invention, a two-phase flow of a sample solution and a mixed phase solution is generated in a two-phase flow channel, and the sample solution is caused to flow down along one side wall of the two-phase flow channel. The detection unit provided in the apparatus captures the target substance specifically bound to the fluorescent label, irradiates the detection unit with excitation light, detects the fluorescence emitted by the fluorescent label by irradiation, and detects the target based on the detected amount of fluorescence. In order to detect the abundance of the detection substance, the detected substance that specifically binds to the fluorescent label flows down the vicinity of the detection section along the side wall on the detection section side, and the amount captured by the detection section increases, resulting in high sensitivity. In addition, the detection time can be shortened.

蛍光検出装置の模式図Schematic diagram of fluorescence detector 蛍光検出装置のブロック図Block diagram of fluorescence detector マイクロ流路内の模式図Schematic diagram inside the microchannel マイクロ流路の部分拡大図Partial enlarged view of microchannel 通常の検出用試料セルを用いた検出画像(その1)Detection image using a normal detection sample cell (Part 1) 通常の検出用試料セルを用いた検出画像(その2)Detection image using a normal detection sample cell (Part 2) 二相流流路を有する検出用試料セルを用いた検出画像(その1)Detection image using a detection sample cell having a two-phase flow channel (Part 1) 二相流流路を有する検出用試料セルを用いた検出画像(その2)Detection image using detection sample cell with two-phase flow channel (Part 2) 従来技術による試料液の送液を示す図(その1)Fig. 1 is a diagram showing sample liquid feeding according to the prior art (part 1). 従来技術による試料液の送液を示す図(その2)Fig. 2 is a diagram showing sample solution feeding according to the prior art (No. 2) 従来技術による試料液の送液を示す図(その3)FIG. 3 is a diagram showing sample liquid feeding by the prior art (No. 3) マイクロ流路内を流下する蛍光粒子の画像Image of fluorescent particles flowing down the microchannel マイクロ流路内を流下する試料液の送液を示す模式図Schematic diagram showing sample liquid flow down the microchannel

以下、図面を参照して本発明の一実施形態を詳細に説明する。本実施形態は、被検出物質としての抗原Aを検出する方法である。図1は本発明の実施形態に用いられる蛍光検出装置1の模式図である。図2は蛍光検出装置1のブロック図である。蛍光検出装置1は、一例として表面プラズモン増強蛍光法を利用した装置とする。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. This embodiment is a method for detecting antigen A as a substance to be detected. FIG. 1 is a schematic diagram of a fluorescence detection apparatus 1 used in an embodiment of the present invention. FIG. 2 is a block diagram of the fluorescence detection apparatus 1. As an example, the fluorescence detection device 1 is a device using a surface plasmon enhanced fluorescence method.

蛍光検出装置1には、抗原Aを含有する検体液を収容する検体容器KB、抗原Aを捕捉する検出用試料セル100およびノズルチップNCが装着される。検体液は、例えば血清、血漿、尿等であり、抗原Aとしては、例えばhCGが挙げられる。   The fluorescence detection apparatus 1 is equipped with a specimen container KB that contains a specimen liquid containing the antigen A, a detection sample cell 100 that captures the antigen A, and a nozzle chip NC. The sample liquid is, for example, serum, plasma, urine, and the like, and examples of the antigen A include hCG.

蛍光検出装置1は、ノズルチップNC等を駆動させる検体処理部11、検出用試料セル100に励起光を照射する光照射部12、励起光の照射により発生した蛍光を検出する蛍光検出部13、検出した蛍光数を計測して抗原Aの存在量を分析するデータ分析部14を備えている。   The fluorescence detection apparatus 1 includes a sample processing unit 11 that drives a nozzle chip NC and the like, a light irradiation unit 12 that irradiates the detection sample cell 100 with excitation light, a fluorescence detection unit 13 that detects fluorescence generated by the excitation light irradiation, A data analysis unit 14 for measuring the number of detected fluorescence and analyzing the abundance of the antigen A is provided.

検出用試料セル100は、マイクロ流路110が形成された基材100a、蛍光標識Fを含有する試薬を収容する試薬セル120、混相液Gを収容する混相液セル130、試料液Sを注入する注入ウェル140、混相液Gを注入する注入ウェル150、試料液Sおよび混相液Gを排出する排出ウェル160が形成された蓋材100b、マイクロ流路110の一部に設けられた、抗原Aを捕捉する検出部200を備えている。   The detection sample cell 100 injects a base material 100a on which a microchannel 110 is formed, a reagent cell 120 that contains a reagent containing a fluorescent label F, a mixed phase liquid cell 130 that contains a mixed phase liquid G, and a sample liquid S. The injection well 140, the injection well 150 for injecting the mixed phase solution G, the lid member 100b in which the discharge well 160 for discharging the sample solution S and the mixed phase solution G is formed, and the antigen A provided in a part of the microchannel 110 A detection unit 200 for capturing is provided.

基材100aには、ポリジメチルシロキサン(PDMS)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、シクロオレフィンを含む非晶性ポリオレフィン(APO)等の樹脂を用いることが望ましい。   As the base material 100a, it is desirable to use a resin such as polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polycarbonate (PC), or amorphous polyolefin (APO) containing cycloolefin.

蛍光標識Fは、抗原Aと特異的に結合し、励起光が照射されると蛍光を発するものである。また、混相液Gは抗原Aおよび蛍光標識Fを含有しない溶液である。試料液Sが体液由来、例えば血清、血漿、尿、鼻水の場合、混相液Gとしては、生理食塩水の通常の濃度(0.9パーセント程度)の2倍以上(1.8パーセント以上)の濃度を有する生理食塩水が挙げられ、具体的にはリン酸緩衝生理食塩水(PBS)を用いることが望ましい。   The fluorescent label F specifically binds to the antigen A and emits fluorescence when irradiated with excitation light. The mixed phase solution G is a solution that does not contain the antigen A and the fluorescent label F. When the sample solution S is derived from a body fluid, such as serum, plasma, urine, or runny nose, the mixed phase solution G is at least twice the normal concentration of saline (about 0.9 percent) (1.8 percent or more). Examples thereof include physiological saline having a concentration, and specifically, phosphate buffered saline (PBS) is preferably used.

マイクロ流路110には、検体処理部11により試料液Sおよび混相液Gが流下される。試料液Sは、ノズルチップNCが検体容器KBより検体液を抽出し、試薬セル120内で混合・撹拌して作製される。試料液Sは、蛍光標識Fと特異的に結合した抗原A、未結合状態の抗原Aおよび蛍光標識Fを含有する。   The sample liquid S and the mixed phase liquid G are flowed down into the microchannel 110 by the specimen processing unit 11. The sample liquid S is prepared by extracting the sample liquid from the sample container KB by the nozzle tip NC, and mixing and stirring in the reagent cell 120. The sample solution S contains the antigen A specifically bound to the fluorescent label F, the unbound antigen A, and the fluorescent label F.

図3は、マイクロ流路110内の検出部200近傍の模式図である。検出部200は、マイクロ流路の内壁の一部に成膜された金属膜201と、金属膜201に固定された一次抗体Bとから構成される。検出部200は、抗原抗体反応によって抗原Aに一次抗体Bが特異的に結合することにより、抗原Aを捕捉する。   FIG. 3 is a schematic diagram of the vicinity of the detection unit 200 in the microchannel 110. The detection unit 200 includes a metal film 201 formed on a part of the inner wall of the microchannel and a primary antibody B fixed to the metal film 201. The detection unit 200 captures the antigen A when the primary antibody B specifically binds to the antigen A by the antigen-antibody reaction.

一次抗体Bは、抗原Aの種類に応じて適宜調整可能である。例えばhCGである抗原Aに対しては、抗hCGモノクローナル抗体(Anti−hCG 5008 SP−5,Medix Biochemical社製)を用いることができる。そして、一次抗体Bは、末端をカルボキシル基化してアミノカップリング法を施すことにより、金属膜201上に固定される。   The primary antibody B can be appropriately adjusted according to the type of the antigen A. For example, for antigen A which is hCG, an anti-hCG monoclonal antibody (Anti-hCG 5008 SP-5, manufactured by Medix Biochemical) can be used. The primary antibody B is immobilized on the metal film 201 by subjecting the terminal to a carboxyl group and performing an amino coupling method.

蛍光標識Fは、蛍光ビーズFBと蛍光ビーズFBに固定された二次抗体Cとで構成される。二次抗体Cも抗原抗体反応により抗原Aと特異的に結合するものである。検出部200は、蛍光ビーズFBに固定された二次抗体Cと特異的に結合した抗原Aを一次抗体Bと特異的に結合させて捕捉する(サンドイッチ方式)。   The fluorescent label F includes a fluorescent bead FB and a secondary antibody C fixed to the fluorescent bead FB. Secondary antibody C also specifically binds to antigen A by an antigen-antibody reaction. The detection unit 200 captures the antigen A specifically bound to the secondary antibody C fixed to the fluorescent beads FB by specifically binding to the primary antibody B (sandwich method).

蛍光ビーズFBは、蛍光色素分子を、この蛍光色素分子から生じる蛍光を透過する材料で内包するビーズであることが望ましい。具体的に、蛍光ビーズFBは、ポリスチレン粒子を調液したポリスチレン溶液、蛍光色素の蛍光色素溶液をそれぞれ作製し、混合・エバポレートしながら含浸させた後、遠心分離を施して作製される。   The fluorescent beads FB are desirably beads that encapsulate fluorescent dye molecules with a material that transmits fluorescence generated from the fluorescent dye molecules. Specifically, the fluorescent beads FB are prepared by preparing a polystyrene solution prepared by mixing polystyrene particles and a fluorescent dye solution of a fluorescent dye, impregnating them while mixing and evaporating, and then performing centrifugation.

作製された蛍光ビーズFBの粒径はポリスチレン粒子の粒径と同一であり、且つ各蛍光ビーズFBの粒径は均一である。蛍光ビーズFBの粒径は、1μm以上5μm未満が望ましく、1μm以上3μm未満がより望ましい。蛍光ビーズFBとして、例えばBangs Laboratories,Inc社製の粒径が1μm、励起波長が660nm、蛍光波長が690nmのビーズを用いることができる。   The particle size of the produced fluorescent beads FB is the same as that of polystyrene particles, and the particle size of each fluorescent bead FB is uniform. The particle size of the fluorescent beads FB is preferably 1 μm or more and less than 5 μm, and more preferably 1 μm or more and less than 3 μm. As the fluorescent beads FB, for example, beads manufactured by Bangs Laboratories, Inc. having a particle diameter of 1 μm, an excitation wavelength of 660 nm, and a fluorescence wavelength of 690 nm can be used.

二次抗体Cも抗原Aに応じて適宜調整可能である。例えばhCGである抗原Aに対しては、抗hCGモノクローナル抗体(Anti−Alpha subunit 6601 SPR−5,Medix Biochemical社製)を用いることができる。二次抗体Cは、蛍光ビーズFBをカルボキシル基で表面修飾し、二次抗体Cの末端をアミノ基化してアミノカップリング法を施すことにより、蛍光ビーズFBに固定される。   The secondary antibody C can also be appropriately adjusted according to the antigen A. For example, for antigen A which is hCG, an anti-hCG monoclonal antibody (Anti-Alpha subunit 6601 SPR-5, manufactured by Medix Biochemical) can be used. The secondary antibody C is fixed to the fluorescent bead FB by surface-modifying the fluorescent bead FB with a carboxyl group, aminoating the end of the secondary antibody C, and performing an amino coupling method.

検出部200が、蛍光ビーズFBが固定された二次抗体Cと特異的に結合した抗原Aを捕捉した後、光照射部12が、検出部200の裏面側より励起光Lを全反射条件となる入射角度でプリズムを介して金属膜201に照射する。   After the detection unit 200 captures the antigen A specifically bound to the secondary antibody C to which the fluorescent beads FB are immobilized, the light irradiation unit 12 applies the excitation light L from the back side of the detection unit 200 to the total reflection condition. The metal film 201 is irradiated through the prism at an incident angle as follows.

励起光Lが照射されると、金属膜201上にエバネッセント波Eが滲み出す。このエバネッセント波Eと金属膜201の自由電子との速度が等しくなると、金属膜201上にプラズモン共鳴が励起され、光の吸収・表面プラズモン増強電場が発生する。そして、エバネッセント波Eにより蛍光ビーズFBが励起されて増強された蛍光を発する。なお、表面プラズモン増強電場は、金属膜201の表面より約200nm程度の範囲で発生する。   When the excitation light L is irradiated, the evanescent wave E oozes out on the metal film 201. When the velocities of the evanescent wave E and the free electrons of the metal film 201 become equal, plasmon resonance is excited on the metal film 201, and light absorption / surface plasmon enhanced electric field is generated. The fluorescent beads FB are excited by the evanescent wave E to emit enhanced fluorescence. The surface plasmon enhanced electric field is generated in the range of about 200 nm from the surface of the metal film 201.

蛍光ビーズFBが蛍光を発すると、蛍光検出部13が、蛍光を蛍光信号として検出する。蛍光検出部13としては、例えばフォトダイオード、CCD、CMOS等を用いることができる。また、蛍光検出部13は、励起光を遮断する不図示のフィルタを用いて、蛍光信号のみを検出する。   When the fluorescent beads FB emit fluorescence, the fluorescence detection unit 13 detects the fluorescence as a fluorescence signal. As the fluorescence detection unit 13, for example, a photodiode, CCD, CMOS, or the like can be used. The fluorescence detection unit 13 detects only the fluorescence signal using a filter (not shown) that blocks the excitation light.

蛍光検出部13が蛍光信号を検出すると、データ分析部14が、蛍光信号に基づいた検出画像を作成し、検出画像内の所定面積当たりの蛍光量を計測して抗原Aの存在数を分析する。   When the fluorescence detection unit 13 detects the fluorescence signal, the data analysis unit 14 creates a detection image based on the fluorescence signal, measures the amount of fluorescence per predetermined area in the detection image, and analyzes the number of antigens A present. .

データ分析部14は、試料液Sおよび混相液Gを流下させ、所定時間(例えば1分〜20分)経過した後に、抗原Aの存在数を分析してもよいし、試料液Sおよび混相液Gを流下させつつ、蛍光信号を一定間隔(例えば5分間)サンプリングすることにより、蛍光強度の時間変化率に基づいて抗原Aの存在数を分析してもよい(レート法)。   The data analysis unit 14 may cause the sample solution S and the mixed phase solution G to flow down and analyze the number of antigens A after a predetermined time (for example, 1 to 20 minutes) has passed. By sampling the fluorescence signal at regular intervals (for example, 5 minutes) while flowing down G, the number of antigens A present may be analyzed based on the temporal change rate of the fluorescence intensity (rate method).

検出用試料セル100のマイクロ流路110の構造およびその作用について説明する。図4はマイクロ流路110の部分拡大図を示す図である。   The structure of the micro flow path 110 of the detection sample cell 100 and its operation will be described. FIG. 4 is a diagram showing a partially enlarged view of the microchannel 110.

マイクロ流路110は、注入ウェル140(図1参照)と連通して試料液Sを流下させる試料液流路113、注入ウェル150(図1参照)と連通して混相液Gを流下させる混相液流路114、試料液流路113の下流端および混相液流路114の下流端に連通する二相流流路115、二相流流路115の下流端および排出ウェル160(図1参照)に連通する排出流路116から構成される。   The micro flow channel 110 communicates with the injection well 140 (see FIG. 1) to allow the sample solution flow channel 113 to flow down, and the micro flow channel 110 communicates with the injection well 150 (see FIG. 1) to mix the mixed phase solution G. The flow path 114, the downstream end of the sample liquid flow path 113 and the downstream end of the mixed phase liquid flow path 114, the downstream end of the two phase flow path 115, and the discharge well 160 (see FIG. 1) It is comprised from the discharge flow path 116 which connects.

試料液流路113と二相流流路115とは角度θ1をなして連通し、混相液流路114と二相流流路115とは角度θ2をなして連通している。また、試料液流路113の下流端、混相液流路114の下流端、二相流流路115の上流端は互いに連通している。試料液流路113、混相液流路114および二相流流路115はそれぞれ一定幅の流路であるが、二相流流路115の幅d3は、試料液流路113の幅d1および混相液流路114の幅d2のいずれよりも狭くなっている。   The sample liquid channel 113 and the two-phase flow channel 115 communicate with each other at an angle θ1, and the mixed phase liquid channel 114 and the two-phase flow channel 115 communicate with each other at an angle θ2. Further, the downstream end of the sample liquid channel 113, the downstream end of the mixed phase liquid channel 114, and the upstream end of the two-phase flow channel 115 are in communication with each other. The sample liquid channel 113, the mixed phase liquid channel 114, and the two-phase flow channel 115 are channels having a constant width, but the width d3 of the two-phase flow channel 115 is equal to the width d1 of the sample liquid channel 113 and the mixed phase. The liquid channel 114 is narrower than any of the widths d2.

また、排出流路116は、角度θ3をなして下流方向に向けて幅が拡大する拡幅部116aと拡幅部116aに連通する定幅部116bとを有している。このように、試料液流路113、混相液流路114、二相流流路115および排出流路116は、いわゆるピンチド流路構造を構成するものである。   Further, the discharge flow path 116 has a widened portion 116a whose width increases toward the downstream direction at an angle θ3 and a constant width portion 116b that communicates with the widened portion 116a. As described above, the sample liquid flow path 113, the mixed phase liquid flow path 114, the two-phase flow flow path 115, and the discharge flow path 116 constitute a so-called pinched flow path structure.

また、検出部200は、二相流流路115の、試料液流路113側の側壁115aの一部に設けられている。検体処理部11が、試料液Sを注入ウェル140、混相液Gを注入ウェル150にそれぞれ注入して排出ウェル160に負圧を掛けることにより、試料液Sおよび混相液Gが同一の流速で試料液流路113および混相液流路114をそれぞれ流下し、二相流流路115に同時に導かれる。   The detection unit 200 is provided on a part of the side wall 115a of the two-phase flow channel 115 on the sample solution channel 113 side. The sample processing unit 11 injects the sample liquid S into the injection well 140 and the mixed phase liquid G into the injection well 150 and applies a negative pressure to the discharge well 160, whereby the sample liquid S and the mixed phase liquid G are sampled at the same flow rate. The liquid flow path 113 and the mixed phase liquid flow path 114 flow down, and are simultaneously guided to the two-phase flow flow path 115.

そして、二相流流路115に導かれた試料液Sおよび混相液Gは、ピンチド流路構造の作用により、二相流流路115において、試料液Sが側壁115a側に、混相液Gが反対側の側壁115b側にそれぞれ沿って二相流として流下する。   The sample liquid S and the mixed phase liquid G guided to the two-phase flow channel 115 are mixed with each other in the two-phase flow channel 115 by the action of the pinched channel structure. It flows down as a two-phase flow along the opposite side wall 115b side.

試料液Sに含有される、抗原A、蛍光標識Fおよび蛍光標識と特異的に結合した抗原Aは、試料液流路113においては、層流により中央部分に偏って流下されるが、二相流流路115に導かれると、いわゆるピンチドフローフラクショネーション法の原理により、抗原A、蛍光標識Fおよび蛍光標識Fと特異的に結合した抗原Aは、側壁115aに押し付けられながら流下される。   The antigen A, the fluorescent label F, and the antigen A specifically bound to the fluorescent label contained in the sample liquid S flow down toward the central portion due to laminar flow in the sample liquid flow path 113, but two phases When guided to the flow channel 115, the antigen A, the fluorescent label F, and the antigen A specifically bound to the fluorescent label F are caused to flow down while being pressed against the side wall 115a according to the principle of the so-called pinched flow fractionation method. .

したがって、試料液S内の蛍光標識Fと特異的に結合した抗原Aが、金属膜201の近傍を通過することになり、検出部200に捕捉される抗原Aの量を増加させることができる。なお、検出部200に未結合の抗原Aが捕捉された後に、側壁115aに沿って流下された未結合の蛍光標識Fと特異的に結合した抗原Aの量も増加する。   Therefore, the antigen A specifically bound to the fluorescent label F in the sample solution S passes through the vicinity of the metal film 201, and the amount of the antigen A captured by the detection unit 200 can be increased. Note that after the unbound antigen A is captured by the detection unit 200, the amount of the antigen A specifically bound to the unbound fluorescent label F flowing down along the side wall 115a also increases.

検出部200に捕捉されなかった蛍光標識Fと特異的に結合した抗原A、未結合の抗原Aおよび蛍光標識Fは排出流路116に導かれる。排出流路116においては、その大きさに応じて、未結合の蛍光標識Fおよび蛍光標識Fと特異的に結合した抗原Aからなるグループと未結合の抗原Aからなるグループとが、互いに異なる流下方向で流下され、排出ウェル160より排出される。   The antigen A specifically bound to the fluorescent label F that has not been captured by the detection unit 200, the unbound antigen A, and the fluorescent label F are guided to the discharge channel 116. Depending on the size of the discharge channel 116, the unbound fluorescent label F and the group consisting of the antigen A specifically bound to the fluorescent label F and the group consisting of the unbound antigen A flow different from each other. It flows down in the direction and is discharged from the discharge well 160.

また、二相流流路115に導く混相液Gの流量は、二相流流路115に導く試料液Sの量よりも多くすることが望ましい。これにより、二相流流路115において、試料液Sの幅が混相液Gの幅よりも狭くなり、蛍光標識Fと特異的に結合した抗原Aが検出部200に近接する確率が高くなり、検出部200に捕捉される抗原Aの量を増加させることができる。具体的には、混相液流路114の幅d2を試料液流路113の幅d1よりも広くすることが望ましい。なお、混相液流路114および二相流流路115内の全体で層流となるために試料液Sおよび混相液Gの流量を調整することが望ましい。具体的には、ハーゲン・ポアズイユ流れ(Hagen-Poiseuille flow)の式を用いて流速分布より各流量を算出することができる。   Further, it is desirable that the flow rate of the mixed phase liquid G led to the two-phase flow channel 115 is larger than the amount of the sample liquid S led to the two-phase flow channel 115. Thereby, in the two-phase flow channel 115, the width of the sample liquid S is narrower than the width of the mixed phase liquid G, and the probability that the antigen A specifically bound to the fluorescent label F is close to the detection unit 200 increases. The amount of antigen A captured by the detection unit 200 can be increased. Specifically, it is desirable that the width d2 of the mixed phase liquid flow path 114 is wider than the width d1 of the sample liquid flow path 113. Note that it is desirable to adjust the flow rates of the sample liquid S and the mixed phase liquid G in order to form a laminar flow throughout the mixed phase liquid path 114 and the two-phase flow path 115. Specifically, each flow rate can be calculated from the flow velocity distribution using the Hagen-Poiseuille flow equation.

また、二相流流路115において、試料液Sと混相液Gとからなる二相流が発生し易くするため、試料液流路113と二相流流路115とのなす角度θ1と混相液流路114と二相流流路115とのなす角度θ2とは等しいことが望ましい。また、角度θ1および角度θ2は110〜160度の範囲であることが望ましい。また、拡幅部116aの角度θ3は90度〜130度の範囲であることが望ましい。   Further, in order to facilitate the generation of a two-phase flow composed of the sample liquid S and the mixed phase liquid G in the two-phase flow path 115, the angle θ1 formed by the sample liquid path 113 and the two-phase flow path 115 and the mixed phase liquid are determined. It is desirable that the angle θ2 formed by the channel 114 and the two-phase flow channel 115 is equal. Further, it is desirable that the angle θ1 and the angle θ2 are in the range of 110 to 160 degrees. The angle θ3 of the widened portion 116a is preferably in the range of 90 degrees to 130 degrees.

また、二相流流路115の幅d3は、5μm以上100μm未満の範囲とすることが望ましく、5μm以上10μm未満とすることがより望ましい。また、試料液流路113の幅d1および混相液流路114の幅d2は、10μm以上2000μm未満とすることが望ましい。なお、試料液流路113、混相液流路114、二相流流路115および排出流路116は、それぞれ均一な深さを有し、その深さは互いに等しいものである。   The width d3 of the two-phase flow channel 115 is preferably in the range of 5 μm or more and less than 100 μm, and more preferably 5 μm or more and less than 10 μm. Further, it is desirable that the width d1 of the sample liquid channel 113 and the width d2 of the mixed phase liquid channel 114 are 10 μm or more and less than 2000 μm. The sample liquid channel 113, the mixed phase liquid channel 114, the two-phase flow channel 115, and the discharge channel 116 have uniform depths, and the depths are equal to each other.

本実施形態の優位性について詳細に説明する。最初に、二相流路構造を有さないマイクロ流路が形成された通常の検出用試料セルを用いた分析結果を説明する。図5Aは、抗原Aのモル濃度が90pMの試料液Sを通常の検出用試料セルに15分間流下させた後の検出画像を示す。図5Bは、抗原Aのモル濃度が0pMの試料液Sを上記通常流路の検出用試料セルに15分間流下させた後の検出画像を示す。   The superiority of this embodiment will be described in detail. First, an analysis result using a normal detection sample cell in which a microchannel having no two-phase channel structure is formed will be described. FIG. 5A shows a detection image after the sample solution S having a molar concentration of antigen A of 90 pM is allowed to flow down to a normal detection sample cell for 15 minutes. FIG. 5B shows a detection image after the sample solution S having a molar concentration of antigen A of 0 pM is allowed to flow down to the detection sample cell in the normal channel for 15 minutes.

蛍光顕微鏡を用いて計測された蛍光数は、図5Aにおいては単位面積(1mm)当たり63個程度であった。図5Bの検出画像は抗原Aの存在量と相関する蛍光数を示す信号としての画像である。図5Bにおいては単位面積(1mm)当たり25個程度であった。図5Bの検出画像は、金属膜201に非特異的に吸着した蛍光標識Fが発する蛍光数を示すものであり、ノイズを示す画像である。試料液Sの量は100μL程度である。The number of fluorescence measured using a fluorescence microscope was about 63 per unit area (1 mm 2 ) in FIG. 5A. The detection image in FIG. 5B is an image as a signal indicating the number of fluorescence correlated with the abundance of the antigen A. In FIG. 5B, the number was about 25 per unit area (1 mm 2 ). The detection image in FIG. 5B shows the number of fluorescence emitted by the fluorescent label F nonspecifically adsorbed on the metal film 201, and is an image showing noise. The amount of the sample solution S is about 100 μL.

次に、本実施形態の検出用試料セル100を用いた分析結果を説明する。図6Aは、抗原Aのモル濃度が90pMの試料液Sおよび混相液Gを検出用試料セル100に2分間流下させた後の検出画像である。図6Bは、抗原Aのモル濃度が0pMの試料液Sおよび混相液Gを検出用試料セル100に2分間流下させた後の検出画像を示す。二相流流路115内の試料液Sの量は100μL程度であり、混相液Gの量は3000μL程度である。   Next, an analysis result using the detection sample cell 100 of the present embodiment will be described. FIG. 6A is a detection image after the sample solution S and the mixed phase solution G having the antigen A molar concentration of 90 pM are allowed to flow down to the detection sample cell 100 for 2 minutes. FIG. 6B shows a detection image after the sample solution S and the mixed phase solution G having the antigen A molar concentration of 0 pM are allowed to flow down to the detection sample cell 100 for 2 minutes. The amount of the sample liquid S in the two-phase flow channel 115 is about 100 μL, and the amount of the mixed phase liquid G is about 3000 μL.

計測された蛍光数は、図6Aにおいては単位面積(1mm)当たり8125個程度、図6Bにおいては単位面積(1mm)当たり156個程度であった。したがって、通常の検出用試料セルを用いた場合のS/N比が63/25となるのに対し、検出用試料セル100を用いた場合のS/N比は、8125/156となり、通常流路を用いた場合と比較して20倍程度の感度の向上を実現した。The measured number of fluorescence was about 8125 per unit area (1 mm 2 ) in FIG. 6A and about 156 per unit area (1 mm 2 ) in FIG. 6B. Therefore, the S / N ratio when using the normal detection sample cell is 63/25, whereas the S / N ratio when using the detection sample cell 100 is 8125/156, which is the normal flow rate. The sensitivity has been improved by about 20 times compared to the case of using a road.

また、検出用試料セル100を用いた場合、蛍光標識Fと特異的に結合した抗原Aが側壁115aに沿って流下されるため、通常流路を用いた場合のように、抗原Aが金属膜201の近傍まで分散されるのを待機する必要がない。したがって、試料液Sの流速を高速化させることが可能であり、試料液Sおよび混相液Gを2分間流下させた後に検出画像を得ることができ、検出時間の短縮も実現した。なお、検出用試料セル100を用いた方法において、通常流路を用いた方法と同様に、試料液Sおよび混相液Gを15分間流下させた後の画像では、通常流路の場合よりも100倍を超えるS/Nが確認された。   In addition, when the detection sample cell 100 is used, the antigen A specifically bound to the fluorescent label F flows down along the side wall 115a. There is no need to wait until the vicinity of 201 is distributed. Therefore, the flow rate of the sample liquid S can be increased, and a detection image can be obtained after the sample liquid S and the mixed phase liquid G have flowed down for 2 minutes, and the detection time can be shortened. In the method using the detection sample cell 100, as in the method using the normal flow path, the image after the sample liquid S and the mixed phase liquid G have flowed down for 15 minutes is 100 as compared with the case of the normal flow path. An S / N exceeding double was confirmed.

ここで、二相流流路115において、蛍光標識Fと特異的に結合した抗原Aが混相液Gに分散することを抑制することも、検出部200に捕捉される確率を向上させるものである。以下に、蛍光標識Fと特異的に結合した抗原Aが混相液Gに分散することを抑制できる本実施形態の第一〜第三の変形例を説明する。   Here, suppressing the dispersion of the antigen A specifically bound to the fluorescent label F in the mixed phase liquid G in the two-phase flow channel 115 also improves the probability of being captured by the detection unit 200. . Below, the 1st-3rd modification of this embodiment which can suppress that the antigen A specifically couple | bonded with the fluorescent label F disperse | distributes to the mixed phase liquid G is demonstrated.

第一の変形例は、混相液G内に蛍光色素を有さないポリスチレンビーズを含有させる方法である。そして、第一の変形例では、混相液G内の単位体積当たりのポリスチレンビーズの数を試料液内の単位体積当たりの蛍光ビーズFBの数よりも多くする。   The first modification is a method of incorporating polystyrene beads having no fluorescent dye in the mixed phase liquid G. In the first modification, the number of polystyrene beads per unit volume in the mixed phase liquid G is made larger than the number of fluorescent beads FB per unit volume in the sample liquid.

これにより、混相液Gのビーズの濃度、すなわち単位体積当たりに含有するビーズ濃度が、試料液Sのビーズ濃度よりも高くなる。したがって、試料液Sと混相液Gとのビーズの濃度の差により、蛍光ビーズFBが高濃度の混相液Gに分散され難くなり、その結果として、蛍光標識Fと特異的に結合した抗原Aの混相液Gへの分散も抑制される。   Thereby, the bead concentration of the mixed phase liquid G, that is, the bead concentration contained per unit volume, becomes higher than the bead concentration of the sample liquid S. Therefore, the difference in the bead concentration between the sample solution S and the mixed phase solution G makes it difficult for the fluorescent beads FB to be dispersed in the high concentration mixed phase solution G. As a result, the antigen A specifically bound to the fluorescent label F Dispersion in the mixed phase liquid G is also suppressed.

なお、第一の変形例では、混相液G内の蛍光色素を有さないポリスチレンビーズが、照射された励起光Lを散乱させてしまうため、データ分析部14は、前述のレート法よりも、試料液Sおよび混相液Gを所定時間経過した後に分析する方が望ましい。   In the first modified example, since the polystyrene beads that do not have the fluorescent dye in the mixed phase liquid G scatter the irradiated excitation light L, the data analysis unit 14 is more efficient than the rate method described above. It is preferable to analyze the sample liquid S and the mixed phase liquid G after a predetermined time has elapsed.

第二の変形例を説明する。第二の変形例は混相液Gとして有機溶媒を用いる方法である。蛍光ビーズFBは、前述の通り、官能基により表面修飾されている。官能基は、試料液S内でイオン化するため、蛍光ビーズFBの親水性を高くする。   A second modification will be described. The second modification is a method using an organic solvent as the mixed phase liquid G. As described above, the surface of the fluorescent bead FB is modified with a functional group. Since the functional group is ionized in the sample solution S, the hydrophilicity of the fluorescent beads FB is increased.

本実施形態では、前述の通り、酸性官能基であるカルボキシル基(−COOH)を用いており、このカルボキシル基は試料液S内ではCOO−にイオン化した状態となる。勿論、酸性官能基としてスルホン酸基等を用いても同様にイオン化した状態となる。   In this embodiment, as described above, a carboxyl group (—COOH) that is an acidic functional group is used, and this carboxyl group is ionized into COO— in the sample solution S. Of course, even if a sulfonic acid group or the like is used as the acidic functional group, the ionized state is similarly obtained.

また、蛍光ビーズFBを塩基性官能基で表面修飾した場合も蛍光ビーズFBの親水性を高くする。例えばアミノ基(−NH)を用いると、試料液S内でNH+にイオン化した状態となる。勿論、塩基性官能基として4級アンモニウム基等を用いても同様にイオン化した状態となる。Further, when the fluorescent beads FB are surface-modified with a basic functional group, the hydrophilicity of the fluorescent beads FB is increased. For example, when an amino group (—NH 2 ) is used, the sample liquid S is ionized to NH 3 +. Of course, even when a quaternary ammonium group or the like is used as a basic functional group, the ionized state is similarly obtained.

したがって、混相液Gとして有機溶媒を用いると、蛍光ビーズFBにとって混相液Gは疎水的となり、その結果として、蛍光標識Fと特異的に結合した抗原Aの混相液Gへの分散が抑制される。具体的に、有機溶媒としてエタノール、メタノール、ジメチルスルホキシド(DMSO)を用いることができる。   Therefore, when an organic solvent is used as the mixed phase solution G, the mixed phase solution G becomes hydrophobic for the fluorescent beads FB, and as a result, dispersion of the antigen A specifically bound to the fluorescent label F into the mixed phase solution G is suppressed. . Specifically, ethanol, methanol, dimethyl sulfoxide (DMSO) can be used as the organic solvent.

第三の変形例を説明する。第三の変形例は官能基の種類に応じて混相液GのpHを調整する方法である。前述の通り、蛍光ビーズFBに官能基で表面修飾されると、試料液S内で官能基がイオン化した状態となる。そして、酸性官能基を用いると、蛍光ビーズFBはマイナスに帯電され、塩基性官能基を用いると、蛍光ビーズFBはプラスに帯電される。なお、試料液SのpHは、官能基のイオン化を施す程度の値であり、具体的にpHは7.4程度である。   A third modification will be described. The third modification is a method of adjusting the pH of the mixed phase liquid G according to the type of functional group. As described above, when the surface of the fluorescent beads FB is modified with a functional group, the functional group is ionized in the sample solution S. When the acidic functional group is used, the fluorescent bead FB is negatively charged. When the basic functional group is used, the fluorescent bead FB is positively charged. The pH of the sample solution S is a value at which functional groups are ionized, and specifically the pH is about 7.4.

第三の変形例では、混相液GのpH値を官能基がイオン化されないpHとする。具体的に、蛍光ビーズFBが酸性官能基で表面修飾される場合は、混相液GのpHを試料液SのpHよりも小さくし、蛍光ビーズFBが塩基性官能基で表面修飾される場合は、混相液GのpHを試料液のpHよりも大きくする。   In the third modification, the pH value of the mixed phase liquid G is set to a pH at which the functional group is not ionized. Specifically, when the surface of the fluorescent beads FB is modified with an acidic functional group, the pH of the mixed phase solution G is made lower than the pH of the sample solution S, and the surface of the fluorescent beads FB is modified with a basic functional group. The pH of the mixed phase solution G is made larger than the pH of the sample solution.

これにより、混相液Gの電荷濃度が試料液Sの電荷濃度より高くなる。したがって、試料液Sと混相液Gとの電荷濃度の差により、混相液G内では官能基が電荷分離し辛くなり、その結果として、蛍光標識Fと特異的に結合した抗原Aの混相液Gへの分散が抑制される。具体的に、蛍光ビーズFBが、酸性官能基で修飾される場合は混相液のpHを4未満にし、塩基性官能基で修飾される場合は混相液のpHが10を超えるようにすることが望ましい。   As a result, the charge concentration of the mixed phase solution G becomes higher than the charge concentration of the sample solution S. Therefore, due to the difference in charge concentration between the sample solution S and the mixed phase solution G, the functional group is difficult to separate in the mixed phase solution G, and as a result, the mixed phase solution G of the antigen A specifically bound to the fluorescent label F is obtained. Dispersion into is suppressed. Specifically, when the fluorescent bead FB is modified with an acidic functional group, the pH of the mixed phase solution is set to less than 4, and when the fluorescent bead FB is modified with a basic functional group, the pH of the mixed phase solution is set to exceed 10. desirable.

以上、本発明の好ましい実施の形態およびその変形例を説明したが、本発明は、これらの実施形態およびその変形例に限定されるものではない。すなわち本発明は、検出部に捕捉される抗原Aの量を増加させて、蛍光法の高感度を実現するものであるから、表面プラズモン増強蛍光法以外に、エバネッセント蛍光法、光導波路を用いた蛍光検出法、種々の蛍光検出方法に適用させることができる。   As mentioned above, although preferable embodiment and its modification of this invention were described, this invention is not limited to these embodiment and its modification. That is, the present invention increases the amount of antigen A captured by the detection unit and realizes high sensitivity of the fluorescence method. Therefore, in addition to the surface plasmon enhanced fluorescence method, the evanescent fluorescence method and the optical waveguide are used. The present invention can be applied to a fluorescence detection method and various fluorescence detection methods.

Claims (14)

被検出物質と特異的に結合する蛍光標識を用意し、
前記被検出物質および前記蛍光標識を含有する試料液を試料液流路に流下させ、
前記被検出物質および前記蛍光標識を含有しない混相液を混相液流路に流下させ、
前記試料液流路より流下された前記試料液および前記混相液流路より流下された前記混相液を、前記試料液流路および前記混相液流路よりも幅の狭い二相流流路に導き、前記二相流流路において、前記試料液と前記混相液との二相流を発生せしめ、前記試料液を前記二相流流路の一側壁に沿って流下させ、
前記一側壁に設けた検出部に前記蛍光標識と特異的に結合した前記被検出物質を捕捉させ、
前記検出部に励起光を照射し、
前記励起光の照射により前記蛍光標識が発する蛍光を検出し、
前記検出した蛍光の量に基づいて前記被検出物質の存在量を検出する蛍光検出方法。
Prepare a fluorescent label that specifically binds to the target substance,
Let the sample liquid containing the substance to be detected and the fluorescent label flow down to the sample liquid flow path;
Let the mixed phase liquid not containing the substance to be detected and the fluorescent label flow down to the mixed phase liquid flow path;
The sample liquid flowing down from the sample liquid flow path and the mixed phase liquid flowing down from the mixed phase liquid flow path are guided to a two-phase flow path narrower than the sample liquid flow path and the mixed phase liquid flow path. In the two-phase flow channel, a two-phase flow of the sample liquid and the mixed phase liquid is generated, and the sample liquid is caused to flow down along one side wall of the two-phase flow channel,
The detection unit provided on the one side wall captures the substance to be detected specifically bound to the fluorescent label;
Irradiating the detection unit with excitation light,
Detecting the fluorescence emitted by the fluorescent label upon irradiation with the excitation light;
A fluorescence detection method for detecting the abundance of the substance to be detected based on the detected amount of fluorescence.
前記混相液流路として、前記試料液流路の幅以上の幅を有する流路を用いる請求項1に記載の蛍光検出方法。   The fluorescence detection method according to claim 1, wherein a flow path having a width equal to or larger than the width of the sample liquid flow path is used as the mixed phase liquid flow path. 前記励起光を照射する工程において、前記励起光の照射により前記検出部からエバネッセント光を染み出させ、前記エバネッセント光により前記蛍光標識が前記蛍光を発する請求項1または2に記載の蛍光検出方法。   3. The fluorescence detection method according to claim 1, wherein, in the step of irradiating the excitation light, evanescent light is oozed out of the detection unit by irradiation of the excitation light, and the fluorescent label emits the fluorescence by the evanescent light. 前記検出部が金属膜を備え、
前記励起光を照射する工程が、前記金属膜に対して、全反射以上の入射角で前記励起光を照射することより、前記金属膜上に電場を増強する表面プラズモンを発生させる請求項3に記載の蛍光検出方法。
The detector comprises a metal film;
The step of irradiating the excitation light generates surface plasmons that enhance an electric field on the metal film by irradiating the metal film with the excitation light at an incident angle greater than or equal to total reflection. The fluorescence detection method as described.
前記蛍光標識として、前記励起光および前記蛍光を透過する透光性誘電体材料中に蛍光色素分子を内包してなる蛍光ビーズを用いる請求項1〜4のいずれか1項に記載の蛍光検出方法。   The fluorescence detection method according to any one of claims 1 to 4, wherein a fluorescent bead in which a fluorescent dye molecule is included in a translucent dielectric material that transmits the excitation light and the fluorescence is used as the fluorescent label. . 前記蛍光ビーズが親水性を有するものであり、前記混相液に1.8パーセント以上の濃度を有する生理食塩水を用いる請求項5に記載の蛍光検出方法。   The fluorescence detection method according to claim 5, wherein the fluorescent beads are hydrophilic, and physiological saline having a concentration of 1.8% or more is used for the mixed phase solution. 前記蛍光ビーズが親水性を有するものであり、前記混相液として有機溶媒を用いる請求項5に記載の蛍光検出方法。   The fluorescence detection method according to claim 5, wherein the fluorescent beads have hydrophilicity, and an organic solvent is used as the mixed phase liquid. 前記蛍光ビーズを酸性または塩基性の官能基で表面修飾し、前記試料液のpHを前記官能基が電離分解できる値とし、前記混相液のpHを前記官能基が電離分解できない値とする請求項5に記載の蛍光検出方法。   The surface of the fluorescent beads is modified with an acidic or basic functional group, the pH of the sample solution is set to a value at which the functional group can be ionized, and the pH of the mixed phase solution is set to a value at which the functional group cannot be ionized. 5. The fluorescence detection method according to 5. 前記混相液に蛍光色素を有さないビーズを含有させ、前記混相液の単位体積当たりの前記ビーズの数を前記試料液の単位体積当たりの前記蛍光ビーズの数よりも多くする請求項5に記載の蛍光検出方法。   6. The mixed phase solution includes beads not having a fluorescent dye, and the number of the beads per unit volume of the mixed phase solution is larger than the number of the fluorescent beads per unit volume of the sample solution. Fluorescence detection method. 請求項1〜9のいずれかに1項に記載の蛍光検出方法に使用される検出用試料セルであって、
前記試料液を流下させる試料液流路と、
前記混相液を流下させる混相液流路と、
前記試料流路の下流端と前記混相液流路の下流端とに連通し且つ前記試料液流路および前記検出液流路のいずれの幅よりも狭い幅を有する二相流流路と、
前記蛍光標識と特異的に結合した前記被検出物質を捕捉する、前記二相流流路の側壁の一部に設けられた検出部とを備えた検出用試料セル。
A detection sample cell used in the fluorescence detection method according to any one of claims 1 to 9,
A sample liquid flow path for flowing down the sample liquid;
A mixed phase liquid flow path for flowing down the mixed phase liquid;
A two-phase flow channel that communicates with the downstream end of the sample channel and the downstream end of the mixed-phase channel and has a width narrower than any of the sample solution channel and the detection solution channel;
A detection sample cell comprising: a detection unit provided on a part of a side wall of the two-phase flow channel that captures the substance to be detected specifically bound to the fluorescent label.
前記混相液流路の幅が前記試料液流路の幅以上である請求項10に記載の検出用試料セル。   The sample cell for detection according to claim 10, wherein the width of the mixed phase liquid channel is equal to or larger than the width of the sample liquid channel. 前記二相流流路の幅が5μm以上100μm未満の範囲である請求項10または11に記載の検出用試料セル。   The sample cell for detection according to claim 10 or 11, wherein a width of the two-phase flow channel is in a range of 5 µm or more and less than 100 µm. 前記試料液流路の下流端と、前記混相液流路の下流端と、前記二相流流路の上流端とが互いに連通する請求項10〜12のいずれか1項に記載の検出用試料セル。   The detection sample according to any one of claims 10 to 12, wherein a downstream end of the sample liquid flow path, a downstream end of the mixed phase liquid flow path, and an upstream end of the two-phase flow flow path communicate with each other. cell. 前記試料液流路と前記二相流流路とのなす角度が、前記混相液流路と前記二相流流路とのなす角度に等しい請求項13に記載の検出用試料セル。   The sample cell for detection according to claim 13, wherein an angle formed by the sample liquid flow path and the two-phase flow flow path is equal to an angle formed by the mixed-phase liquid flow path and the two-phase flow flow path.
JP2016549906A 2014-09-24 2015-08-17 Fluorescence detection method and detection sample cell Active JP6386062B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014193503 2014-09-24
JP2014193503 2014-09-24
PCT/JP2015/004059 WO2016047027A1 (en) 2014-09-24 2015-08-17 Fluorescence detecting method and sample cell for detection

Publications (2)

Publication Number Publication Date
JPWO2016047027A1 true JPWO2016047027A1 (en) 2017-08-03
JP6386062B2 JP6386062B2 (en) 2018-09-05

Family

ID=55580581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016549906A Active JP6386062B2 (en) 2014-09-24 2015-08-17 Fluorescence detection method and detection sample cell

Country Status (2)

Country Link
JP (1) JP6386062B2 (en)
WO (1) WO2016047027A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911318B2 (en) * 2016-09-29 2021-07-28 コニカミノルタ株式会社 Blood test sensor chip, blood test device and blood test method
WO2019193878A1 (en) * 2018-04-06 2019-10-10 パナソニックIpマネジメント株式会社 Pathogen detection device and pathogen detection method
JP7251901B2 (en) * 2019-03-27 2023-04-04 日本無線株式会社 Antibody-antigen mixture detection method using surface acoustic wave sensor and surface acoustic wave sensor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109245A (en) * 2007-10-26 2009-05-21 Canon Inc Method and apparatus for detection
US20110177530A1 (en) * 2009-07-23 2011-07-21 Corcoran Robert C Methods and Compositions for Detection of Biological Materials Using Microfluidic Devices
JP2012122977A (en) * 2010-12-10 2012-06-28 Fujifilm Corp Analysis chip
JP2012143205A (en) * 2011-01-14 2012-08-02 Hitachi High-Technologies Corp Nucleic acid analyzer
JP2012189429A (en) * 2011-03-10 2012-10-04 Fujifilm Corp Detection method and detector
JP2013083631A (en) * 2011-09-26 2013-05-09 Fujifilm Corp Cortisol immunoassay using fluorescent particles
JP2013083632A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Method for measuring substance to be measured using fluorescent particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109245A (en) * 2007-10-26 2009-05-21 Canon Inc Method and apparatus for detection
US20110177530A1 (en) * 2009-07-23 2011-07-21 Corcoran Robert C Methods and Compositions for Detection of Biological Materials Using Microfluidic Devices
JP2012122977A (en) * 2010-12-10 2012-06-28 Fujifilm Corp Analysis chip
JP2012143205A (en) * 2011-01-14 2012-08-02 Hitachi High-Technologies Corp Nucleic acid analyzer
JP2012189429A (en) * 2011-03-10 2012-10-04 Fujifilm Corp Detection method and detector
JP2013083631A (en) * 2011-09-26 2013-05-09 Fujifilm Corp Cortisol immunoassay using fluorescent particles
JP2013083632A (en) * 2011-09-28 2013-05-09 Fujifilm Corp Method for measuring substance to be measured using fluorescent particle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NAKASHIMA M , ET.AL.: "PINCHED FLOW FRACTIONATION(PFF) FOR CONTINUOUS PARTICLE SEPARATION IN A MICROFLUIDIC DEVICE", MEMS 2004 TECHNICAL DIGEST, vol. 17TH, JPN6015050621, January 2004 (2004-01-01), pages 33 - 36, XP010767819, ISSN: 0003784873, DOI: 10.1109/MEMS.2004.1290515 *
山田真澄、関実: "マイクロ流路を用いた粒子の分級", 真空, vol. 第49巻、第7号, JPN6015050620, 2006, pages 404 - 408, ISSN: 0003784872 *

Also Published As

Publication number Publication date
WO2016047027A1 (en) 2016-03-31
JP6386062B2 (en) 2018-09-05

Similar Documents

Publication Publication Date Title
Van der Pol et al. Innovation in detection of microparticles and exosomes
US7386199B2 (en) Providing light to channels or portions
JP5295149B2 (en) Biological material analysis method and biological material analysis cell, chip and apparatus used therefor
US11709161B2 (en) Assays for detecting analytes in samples and kits and compositions related thereto
JP2017015732A (en) Sensitive immunoassays using coated nanoparticles
US20120178182A1 (en) Microfluidic device and analyte detection method using the same
US8440148B2 (en) Microfluidic device and microfluidic analysis equipment
JP2010181349A (en) Disposable chip type flow cell, and flow cytometer using the same
Hacohen et al. Analysis of egg white protein composition with double nanohole optical tweezers
JP5308390B2 (en) Test substance detection method and test substance detection apparatus
EP2873976A1 (en) Detection system of test substance
US20140377771A1 (en) Device and Method for Carrying out Haematological and Biochemical Measurements from a Biological Sample
Dunbar et al. Microsphere-based multiplex immunoassays: development and applications using Luminex® xMAP® technology
JP6386062B2 (en) Fluorescence detection method and detection sample cell
US20060018797A1 (en) Microfluidic separation of particles from fluid
JP2010112730A (en) Detecting method using flow passage type sensor chip, flow passage type sensor chip and manufacturing method for the same
Tsuyama et al. Detection and characterization of individual nanoparticles in a liquid by photothermal optical diffraction and nanofluidics
US20100261212A1 (en) Kinetics of molecular recognition mediated nanoparticle self-assembly
JP2007519896A (en) system
KR101993305B1 (en) Micro chip for analyzing fluids
US20120156687A1 (en) Nanoparticles with molecular recognition elements
US20110236262A1 (en) Biological substance detecting apparatus
JP5602053B2 (en) Test substance detection method, test substance detection chip and test substance detection apparatus used therefor
Wiklund et al. Ultrasound-enhanced immunoassays and particle sensors
JP2019007912A (en) Micro flow path chip, micro flow device, and measurement method of hemoglobin a1c concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170908

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180808

R150 Certificate of patent or registration of utility model

Ref document number: 6386062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250