JP6911318B2 - Blood test sensor chip, blood test device and blood test method - Google Patents

Blood test sensor chip, blood test device and blood test method Download PDF

Info

Publication number
JP6911318B2
JP6911318B2 JP2016191706A JP2016191706A JP6911318B2 JP 6911318 B2 JP6911318 B2 JP 6911318B2 JP 2016191706 A JP2016191706 A JP 2016191706A JP 2016191706 A JP2016191706 A JP 2016191706A JP 6911318 B2 JP6911318 B2 JP 6911318B2
Authority
JP
Japan
Prior art keywords
flow path
blood
light
blood test
sensor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016191706A
Other languages
Japanese (ja)
Other versions
JP2018054495A (en
Inventor
祐輝 三宅
祐輝 三宅
藤井 英之
英之 藤井
野田 哲也
哲也 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2016191706A priority Critical patent/JP6911318B2/en
Publication of JP2018054495A publication Critical patent/JP2018054495A/en
Application granted granted Critical
Publication of JP6911318B2 publication Critical patent/JP6911318B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

本発明は、血液検査に使用する血液検査用センサチップ、並びに、当該センサチップを使用した血液検査装置及び血液検査方法に関するものである。具体的には、血液中に存在する特定の物質の定量的測定を行うとともに、血液のヘマトクリット値をも計測する血液検査用センサチップ、並びに、当該センサチップを使用した血液検査装置及び血液検査方法に関するものである。 The present invention relates to a blood test sensor chip used for a blood test, and a blood test device and a blood test method using the sensor chip. Specifically, a blood test sensor chip that quantitatively measures a specific substance present in blood and also measures the hematocrit value of blood, and a blood test device and blood test method using the sensor chip. It is about.

血液中に存在する特定の物質(例えば、タンパク質、グルコースなど)の濃度等を測定して当該物質の情報を定量的に把握する血液検査は、種々の疾患の診断や治療において重要である。例えば、心筋細胞の壊死によりその細胞質に存在するトロポニンが血液中に逸脱することから、血液中のトロポニン濃度を把握することは、心筋梗塞の早期発見において大きな意味を持つ。 A blood test that quantitatively grasps information on a specific substance (for example, protein, glucose, etc.) present in blood by measuring the concentration of the substance is important in the diagnosis and treatment of various diseases. For example, since troponin present in the cytoplasm of a cardiomyocyte deviates into the blood due to necrosis of the cardiomyocyte, grasping the troponin concentration in the blood is of great significance in early detection of myocardial infarction.

血液中に存在する特定の物質(以下、標的物質とする。)の情報を取得する手段として、微細流路を有するセンサチップを利用した計測方法がある。当該微細流路の中には、標的物質と反応する反応系が設けられており、血液由来の試料液等が微細流路内に供給され反応系と接触した場合、標的物質と反応系との反応が進行する。当該反応の結果に基づいて、標的物質の濃度等に応じた情報を取得することができる。 As a means for acquiring information on a specific substance (hereinafter referred to as a target substance) existing in blood, there is a measurement method using a sensor chip having a fine flow path. A reaction system that reacts with the target substance is provided in the microchannel, and when a blood-derived sample solution or the like is supplied into the microchannel and comes into contact with the reaction system, the target substance and the reaction system The reaction proceeds. Based on the result of the reaction, information according to the concentration of the target substance and the like can be obtained.

しかしながら、血球を含有する全血を試料液として使用した場合、標的物質の濃度等に応じた情報の検出結果が血液のヘマトクリット値に大きく影響される。ヘマトクリット値とは、血液中に占める赤血球の容積の割合を示す数値である。そのため、標的物質の濃度等の情報を正確に検出するためには、ヘマトクリット値に基づいて検出結果を補正する必要があり、ヘマトクリット値を正確に把握しなければならない。 However, when whole blood containing blood cells is used as a sample solution, the detection result of information according to the concentration of the target substance and the like is greatly affected by the hematocrit value of blood. The hematocrit value is a numerical value indicating the ratio of the volume of red blood cells to the blood. Therefore, in order to accurately detect information such as the concentration of the target substance, it is necessary to correct the detection result based on the hematocrit value, and the hematocrit value must be accurately grasped.

そこで、特許文献1は、同一流路内において、血液中の特定成分の濃度を計測するとともに、血液のヘマトクリット値に基づいた補正値を光学的方法により計測し、計測された補正値に基づいて血液中の特定成分の濃度を補正する計測方法を提供している。 Therefore, Patent Document 1 measures the concentration of a specific component in blood in the same flow path, measures a correction value based on the hematocrit value of blood by an optical method, and based on the measured correction value. It provides a measurement method for correcting the concentration of a specific component in blood.

特許第4785611号公報Japanese Patent No. 4785611

微細流路を有するセンサチップを利用した計測方法において、吸光度など光学的方法によってヘマトクリット値を計測する場合は、試料液を通過した測定光を検出する必要があるため、測定光の光路長は微細流路の寸法により制限されざるを得ない。 In a measurement method using a sensor chip having a fine flow path, when measuring the hematocrit value by an optical method such as absorbance, it is necessary to detect the measurement light that has passed through the sample solution, so the optical path length of the measurement light is fine. It must be limited by the dimensions of the flow path.

そして、下記式1によれば、試料液の吸光度Aは、試料液のモル吸光係数εと、試料液の濃度Cと、光路長lとの積で表すことができる。すなわち、一定のモル吸光係数ε、且つ、一定の濃度C下において、試料液の吸光度Aは光路lが短くなるに連れて減少していく。なお、式1において、Aは試料液の吸光度、Iは透過光強度、Iは入射光強度、εは試料液のモル吸光係数、Cは試料液の濃度、lは光路長である。
A=−log(I/I)=ε・C・l (1)
Then, according to the following formula 1, the absorbance A of the sample solution can be expressed by the product of the molar extinction coefficient ε of the sample solution, the concentration C of the sample solution, and the optical path length l. That is, under a constant molar extinction coefficient ε and a constant concentration C, the absorbance A of the sample solution decreases as the optical path l becomes shorter. In Equation 1, A is the absorbance of the sample solution, I 1 is the transmitted light intensity, I 0 is the incident light intensity, ε is the molar extinction coefficient of the sample solution, C is the concentration of the sample solution, and l is the optical path length.
A = -log (I 1 / I 0 ) = ε ・ C ・ l (1)

反応系に標的物質を集中させ反応効率を向上させる観点から、流路の高さは、反応可能な領域になるべく一致させ、無駄な空間を無くすべく、小さくすることが望ましい。しかしながら、特許文献1に開示されている発明のように、流路の底面に反応系が設けられ、流路の高さが測定光の光路長となっている場合、流路の高さを小さくすると、測定光の光路も短くなり、既述の通りに試料液の吸光度が減少することから、ヘマトクリット値の測定精度が低下する。 From the viewpoint of concentrating the target substance in the reaction system and improving the reaction efficiency, it is desirable that the height of the flow path is made as uniform as possible in the reactionable region and reduced in order to eliminate wasted space. However, as in the invention disclosed in Patent Document 1, when the reaction system is provided on the bottom surface of the flow path and the height of the flow path is the optical path length of the measurement light, the height of the flow path is reduced. Then, the optical path of the measurement light is also shortened, and the absorbance of the sample solution is reduced as described above, so that the measurement accuracy of the hematocrit value is lowered.

一方、光路長を増やそうとして流路高さを大きくすると、式1によれば試料液の吸光度が増大するにもかかわらず、測定光が試料液中の夾雑物による吸収、散乱等の影響を受けやすくなるため、ヘマトクリット値を精度良く計測することは依然として実現されない。 On the other hand, if the height of the flow path is increased in an attempt to increase the optical path length, the measured light is affected by absorption and scattering by impurities in the sample solution, even though the absorbance of the sample solution is increased according to Equation 1. It is still not possible to measure the hematocrit value accurately because it is easily received.

特に、トロポニンのような血液中においてそもそも希少な物質を標的物質とする場合、前述した測定精度の影響が顕著に現れ、ヘマトクリット値を計測することができたとしても、それは十分な精度を有するものではないため、得られたヘマトクリット値による補正を行って標的物質の濃度など正確な情報が取得することはできない。 In particular, when a substance such as troponin, which is rare in the blood, is targeted as a target substance, the effect of the above-mentioned measurement accuracy is remarkable, and even if the hematocrit value can be measured, it has sufficient accuracy. Therefore, it is not possible to obtain accurate information such as the concentration of the target substance by correcting the obtained hematocrit value.

更に、特許文献1に開示されているような発明は、波長の異なる複数の光源を必要とするため、測定方法ないし測定装置の構成自体が煩雑にならざるを得ないという問題点もある。 Further, the invention as disclosed in Patent Document 1 requires a plurality of light sources having different wavelengths, so that there is a problem that the measuring method or the configuration of the measuring device itself has to be complicated.

本発明の血液検査用センサチップは、血液を流すための第1流路と、前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、を有することを特徴とする。 The sensor chip for a blood test of the present invention has a first flow path for flowing blood and a second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path. It is characterized by having a road.

本発明の血液検査装置は、血液を流すための第1流路と、前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、を有する血液検査用センサチップと、前記血液検査用センサチップに光を照射する投光部と、前記血液検査用センサチップから出射した光の光量を測定する計測部と、を有することを特徴とする。 The blood test apparatus of the present invention includes a first flow path for flowing blood and a second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path. It is characterized by having a blood test sensor chip having, a light projecting unit that irradiates the blood test sensor chip with light, and a measuring unit that measures the amount of light emitted from the blood test sensor chip. And.

本発明の血液検査方法は、血液を流すための第1流路と、前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、を有する血液検査用センサチップを用いて、前記血液中に存在する標的物質を含む試料液を、前記第1流路及び前記第2流路に供給し、前記第1流路を用いて前記標的物質の定量的計測を行うとともに、前記第2流路を用いて前記血液のヘマトクリット値を計測することを特徴とする。 The blood test method of the present invention includes a first flow path for flowing blood and a second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path. A sample solution containing a target substance present in the blood is supplied to the first flow path and the second flow path by using a blood test sensor chip having It is characterized in that the target substance is quantitatively measured and the hematocrit value of the blood is measured using the second flow path.

本発明によれば、同一流路内において、標的物質の定量的計測を行うとともに、血液のヘマトクリット値を精度良く計測することが可能となる。また、本発明によれば、標的物質の定量的計測と血液のヘマトクリット値の計測とを、単純化した装置又は方法により行うことが可能となる。 According to the present invention, it is possible to quantitatively measure a target substance and accurately measure a hematocrit value of blood in the same flow path. Further, according to the present invention, it is possible to perform quantitative measurement of a target substance and measurement of a hematocrit value of blood by a simplified device or method.

計測装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the measuring apparatus. 制御演算部のブロック図である。It is a block diagram of a control calculation part. センサチップの断面図である。It is sectional drawing of the sensor chip. 入射光及び各被測定光の光路を示す模式図である。It is a schematic diagram which shows the optical path of the incident light and each light to be measured. 計測装置の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation of a measuring apparatus. 透過率の測定可能範囲と入射光の光路長との相関関係を示すグラフである。It is a graph which shows the correlation between the measurable range of the transmittance and the optical path length of the incident light.

以下、図面を参照しながら本発明を実施するための一形態について説明する。なお、本実施形態は、標的物質の濃度を計測する方法として、抗原抗体反応を用いて標的物質を捕捉し、捕捉した標的物質に蛍光標識を付与し当該蛍光標識から発せられる蛍光強度を計測する表面プラズモン共鳴励起増強蛍光分光(SPFS)法を採用しているが、本発明はこの方法に限定されるものではない。例えば、標的物質の濃度の計測には、表面プラズモン共鳴(SPR)、蛍光イムノアッセイなどの方法を用いても良い。 Hereinafter, one embodiment for carrying out the present invention will be described with reference to the drawings. In this embodiment, as a method of measuring the concentration of the target substance, the target substance is captured by using an antigen-antibody reaction, a fluorescent label is attached to the captured target substance, and the fluorescence intensity emitted from the fluorescent label is measured. Although the surface plasmon resonance excitation enhanced fluorescence spectroscopy (SPFS) method is adopted, the present invention is not limited to this method. For example, a method such as surface plasmon resonance (SPR) or fluorescence immunoassay may be used to measure the concentration of the target substance.

(計測装置)
まずは、本実施形態に係る計測装置10の構成について説明する。
(Measuring device)
First, the configuration of the measuring device 10 according to the present embodiment will be described.

図1は、計測装置10の構成を示す模式図である。計測装置10は、血液中に存在するトロポニン(Tn)を標的物質とし、その濃度をSPFS法により計測するとともに、試料液の吸光度により血液のヘマトクリット(Hct)値をも計測するものである。ただし、標的物質としては、トロポニン以外にも、例えばシスタチン、Dダイマー(D-dimer)、BNP(B-type natriuretic peptide)、CRP(C-reactive protein)などを計測するようにしても良い。なお、試料液とは、受検者から直接に採取した血液、又はそれを、緩衝液などにより所望の濃度に希釈したものをいう。 FIG. 1 is a schematic view showing the configuration of the measuring device 10. The measuring device 10 targets troponin (Tn) present in blood as a target substance, measures the concentration thereof by the SPFS method, and also measures the hematocrit (Hct) value of blood by the absorbance of the sample solution. However, as the target substance, for example, cystatin, D-dimer, BNP (B-type natriuretic peptide), CRP (C-reactive protein) and the like may be measured in addition to troponin. The sample solution refers to blood collected directly from the examinee or a solution obtained by diluting the sample solution with a buffer solution or the like to a desired concentration.

図1に示すように、計測装置10は、投光部20と、計測部40と、制御演算部50と、搬送部80と、送液部90とからなる。計測の際、計測装置10本体にセンサチップ30が装着される。 As shown in FIG. 1, the measuring device 10 includes a light projecting unit 20, a measuring unit 40, a control calculation unit 50, a transport unit 80, and a liquid feeding unit 90. At the time of measurement, the sensor chip 30 is attached to the main body of the measuring device 10.

投光部20は、図示しない光源と、光源から発せられた入射光41をセンサチップ30の反射面31aの所定位置に誘導する光路を構築するための各光学素子(図示しない)と、センサチップ30の反射面31aから出射する反射光44を受けるためのフォトダイオード21とからなる。 The light projecting unit 20 includes a light source (not shown), each optical element (not shown) for constructing an optical path for guiding the incident light 41 emitted from the light source to a predetermined position on the reflection surface 31a of the sensor chip 30, and a sensor chip. It is composed of a photodiode 21 for receiving the reflected light 44 emitted from the reflecting surface 31a of the 30.

光源は、波長が200〜900nmの光を発生可能なレーザーダイオードであり、波長が500〜700nmの光を発生可能なものが特に好ましい。ただし、光源はレーザーダイオードに限定されず、波長が前述範囲内の光を発生可能なものであれば良い。例えば、波長が200〜900nmの光を発生可能なLEDであっても良い。光源が、波長が500〜700nmの光を発生可能なものである場合、光源から発せられた光は、Tnの濃度を計測するための励起光と、血液のHct値を計測するための測定光として兼用されることができる。これにより、1つの光源でTnの濃度と血液のHct値とを計測することが可能となり、計測装置を簡略化することが可能となる。ただし、異なる波長を発生可能な2つの光源を備え、計測の種別によって入射させる光源を選択可能なように構成されていても良い。 The light source is a laser diode capable of generating light having a wavelength of 200 to 900 nm, and a light source capable of generating light having a wavelength of 500 to 700 nm is particularly preferable. However, the light source is not limited to the laser diode, and may be any light source capable of generating light having a wavelength within the above range. For example, it may be an LED capable of generating light having a wavelength of 200 to 900 nm. When the light source is capable of generating light having a wavelength of 500 to 700 nm, the light emitted from the light source is the excitation light for measuring the Tn concentration and the measurement light for measuring the Hct value of blood. Can also be used as. This makes it possible to measure the Tn concentration and the Hct value of blood with one light source, and it is possible to simplify the measuring device. However, it may be configured so that it is provided with two light sources capable of generating different wavelengths and the light source to be incident can be selected depending on the type of measurement.

各光学素子は、図示しないが、Tnの濃度を計測する場合は、後述するトロポニン捕捉膜61の位置に対応するセンサチップ30の反射面31a上の領域に、Hct値を計測する場合はセンサチップ30の開口38に、所定の入射角θで入射するように入射光41を誘導する光路を形成している(センサチップ30の構造の詳細に関しては後述する)。ただし、これは光路を切り替えることで入射光41の当たる箇所を制御する場合である。各光学素子が一通りの光路のみ形成し、計測の種別によって光路を切り替えずに、センサチップ30を移動させて入射光41の当たる箇所を切り替えるように構成されていても良い。 Although not shown, each optical element is located in a region on the reflective surface 31a of the sensor chip 30 corresponding to the position of the troponin capturing film 61 described later when measuring the Tn concentration, and when measuring the Hct value, the sensor chip. An optical path for guiding the incident light 41 so as to be incident at a predetermined incident angle θ is formed in the opening 38 of the 30 (details of the structure of the sensor chip 30 will be described later). However, this is a case where the location where the incident light 41 hits is controlled by switching the optical path. Each optical element may form only one optical path, and the sensor chip 30 may be moved to switch the location where the incident light 41 hits without switching the optical path depending on the type of measurement.

フォトダイオード21は、反射光44の光路上に配置され、反射光44の光量を測定するものである。Tnの濃度を計測する場合、反射光44の光量が極小になる時の入射角たる共鳴角が、測定時の入射光41の入射角θとして特定される。なお、この場合、入射光41は、Tnに付与された蛍光標識を励起するいわゆる励起光として機能する。反射光44の光量によって入射光41(励起光)の入射角θの特定を行わない場合、フォトダイオード21を省略し、光吸収体等のものに置き換えても良い。 The photodiode 21 is arranged on the optical path of the reflected light 44 and measures the amount of light of the reflected light 44. When measuring the density of Tn, the resonance angle, which is the incident angle when the amount of reflected light 44 is minimized, is specified as the incident angle θ of the incident light 41 at the time of measurement. In this case, the incident light 41 functions as so-called excitation light that excites the fluorescent label given to Tn. When the incident angle θ of the incident light 41 (excitation light) is not specified by the amount of the reflected light 44, the photodiode 21 may be omitted and replaced with a light absorber or the like.

計測部40は、図示しないが、蛍光測定部と吸光度測定部と、2つの測定機構からなる。Tnの濃度を計測する場合、被測定光42は計測部40に出射し、蛍光測定部により光量が測定され、Hct値を計測する場合、被測定光42は計測部40に出射し、吸光度測定部により光量が測定される。 Although not shown, the measuring unit 40 includes a fluorescence measuring unit, an absorbance measuring unit, and two measuring mechanisms. When measuring the concentration of Tn, the light 42 to be measured is emitted to the measuring unit 40, the amount of light is measured by the fluorescence measuring unit, and when measuring the Hct value, the light 42 to be measured is emitted to the measuring unit 40 to measure the absorbance. The amount of light is measured by the unit.

蛍光測定部は、受光素子として、光電子増倍管を備える。光電子増倍管は、Tnの濃度を計測する場合の被測定光42の光路上に配置され、被測定光42の光量を測定する。なお、この場合、被測定光42は、Tnに付与された蛍光標識から発せられたいわゆる表面プラズモン励起蛍光(被測定光42a)である。被測定光42aの光量は、Tnの濃度の特定に用いられる。 The fluorescence measuring unit includes a photomultiplier tube as a light receiving element. The photomultiplier tube is arranged on the optical path of the light 42 to be measured when measuring the concentration of Tn, and measures the amount of light of the light 42 to be measured. In this case, the light 42 to be measured is so-called surface plasmon excitation fluorescence (light 42a to be measured) emitted from the fluorescent label given to Tn. The amount of light to be measured 42a is used to specify the concentration of Tn.

また、光電子増倍管は、散乱光43の光量をも測定するようにしても良い。この場合、散乱光43の光量は、Tnの濃度を計測する場合の入射光41の入射角θの特定に用いられ、散乱光43の光量が極大になる時の入射角たる増強角θrが、測定時の入射光41の入射角θとして特定される。入射光41の入射角θを、フォトダイオード21により既述のように特定する場合は、散乱光43の光量を測定する必要はない。 The photomultiplier tube may also measure the amount of scattered light 43. In this case, the amount of light of the scattered light 43 is used to specify the incident angle θ of the incident light 41 when measuring the concentration of Tn, and the enhancement angle θr, which is the incident angle when the amount of light of the scattered light 43 is maximized, is It is specified as the incident angle θ of the incident light 41 at the time of measurement. When the incident angle θ of the incident light 41 is specified by the photodiode 21 as described above, it is not necessary to measure the amount of scattered light 43.

吸光度測定部は、受光素子として、光電子増倍管を備える。ただし、吸光度測定部の受光素子としては、CMOS(complementary metal-oxide-semiconductor)やフォトダイオードなどを使用しても良い。光電子増倍管は、Hct値を計測する場合の被測定光42の光路上に配置され、被測定光42の光量を測定する。なお、この場合、被測定光42は、試料液を通過した入射光41(被測定光42b)である。被測定光42bの光量は、血液のHct値の特定に用いられる。 The absorbance measuring unit includes a photomultiplier tube as a light receiving element. However, CMOS (complementary metal-oxide-semiconductor), a photodiode, or the like may be used as the light receiving element of the absorbance measuring unit. The photomultiplier tube is arranged on the optical path of the light 42 to be measured when measuring the Hct value, and measures the amount of light of the light 42 to be measured. In this case, the light 42 to be measured is the incident light 41 (light 42b to be measured) that has passed through the sample liquid. The amount of light to be measured 42b is used to identify the Hct value of blood.

吸光度測定部の受光素子として、光電子増倍管又はフォトダイオードを使用する場合、吸光度測定部は、蛍光測定部の光電子増倍管又はフォトダイオード21を用いて受光するように構成されていても良い。いずれの場合においても、2つの測定機構を用意する必要がなくなる。 When a photomultiplier tube or a photodiode is used as the light receiving element of the absorbance measuring unit, the absorbance measuring unit may be configured to receive light using the photomultiplier tube or the photodiode 21 of the fluorescence measuring unit. .. In either case, it is not necessary to prepare two measuring mechanisms.

搬送部80は、センサチップ30を着脱自在に保持するホルダーと、自在に移動可能な搬送ステージとからなる。計測を行う際、センサチップ30がホルダーに装着される。搬送ステージは、ホルダーに装着されたセンサチップ30を移動させ、計測光路から離れた反応位置A、又は計測光路上に位置する測定位置Bに配置する(測定装置の動作の詳細については後述する)。 The transport unit 80 includes a holder that holds the sensor chip 30 in a detachable manner and a transport stage that can be freely moved. When performing the measurement, the sensor chip 30 is attached to the holder. The transport stage moves the sensor chip 30 mounted on the holder and arranges it at the reaction position A away from the measurement optical path or at the measurement position B located on the measurement optical path (details of the operation of the measuring device will be described later). ..

送液部90は、シリンジポンプと、シリンジポンプを駆動する駆動機構と、試料液など液体を一時的に保持するピペットチップを所定の位置に移動させる移動機構とからなる。 The liquid feeding unit 90 includes a syringe pump, a driving mechanism for driving the syringe pump, and a moving mechanism for moving a pipette tip that temporarily holds a liquid such as a sample liquid to a predetermined position.

シリンジポンプは、シリンジと、シリンジ内を往復運動可能なプランジャーとからなる。シリンジの先端にピペットチップが装着される。プランジャーの往復運動により液体が定量的に吸引又は吐出される。駆動機構は、プランジャーを往復運動させる手段であり、例えば、ステッピングモーターからなる。移動機構は、シリンジの先端に装着されたピペットチップを移動させる手段であり、例えば、ロボットアーム、2軸ステージ、又は上下動自在なターンテーブルからなる。 The syringe pump consists of a syringe and a plunger capable of reciprocating in the syringe. A pipette tip is attached to the tip of the syringe. The liquid is quantitatively sucked or discharged by the reciprocating motion of the plunger. The drive mechanism is a means for reciprocating the plunger, and includes, for example, a stepping motor. The moving mechanism is a means for moving the pipette tip attached to the tip of the syringe, and comprises, for example, a robot arm, a biaxial stage, or a turntable that can move up and down.

また、送液部90は、ピペットチップの先端の位置を検出する手段を更に有することが、センサチップ30におけるピペットチップの位置を相対的に調整する、及びセンサチップ30内の残液量を一定に管理する観点から好ましい。 Further, the liquid feeding unit 90 further has a means for detecting the position of the tip of the pipette tip, thereby relatively adjusting the position of the pipette tip on the sensor tip 30 and keeping the amount of residual liquid in the sensor tip 30 constant. It is preferable from the viewpoint of management.

制御演算部50は、CPUと、RAMと、記憶装置と(ROM、ハードディスク、不揮発性半導体メモリーなど)からなるコンピューターである。記憶装置には、制御演算部50に読取可能・実行可能なプログラムが格納されており、制御演算部50は、当該プログラムを実行することにより既述各部の動作を制御し所望の機能を実現させる。 The control calculation unit 50 is a computer including a CPU, a RAM, a storage device (ROM, a hard disk, a non-volatile semiconductor memory, etc.). The storage device stores a program that can be read and executed by the control calculation unit 50, and the control calculation unit 50 controls the operation of each of the above-described units by executing the program to realize a desired function. ..

図2は、制御演算部50のブロック図である。図2を用いて、制御演算部50の制御・演算機能について説明する。 FIG. 2 is a block diagram of the control calculation unit 50. The control / calculation function of the control calculation unit 50 will be described with reference to FIG.

制御演算部50は、図2に示すように、CPU51と、投光制御部52と、搬送制御部53と、送液駆動制御部54と、送液移動制御部55と、送液位置制御部56と、計測制御部57と、計測演算部58とを備える。 As shown in FIG. 2, the control calculation unit 50 includes a CPU 51, a light projection control unit 52, a transfer control unit 53, a liquid feed drive control unit 54, a liquid feed movement control unit 55, and a liquid feed position control unit. 56, a measurement control unit 57, and a measurement calculation unit 58 are provided.

CPU51は、計測全体の制御を行い、必要に応じて後述する各制御部又は演算部を作動させる。投光制御部52は、所定の光源を照射させ所定の位置に入射させる。搬送制御部53は、搬送部80の搬送ステージを、計測光路から離れた反応位置A、又は計測光路上に位置する測定位置Bに移動させる。送液駆動制御部54は、シリンジポンプのプランジャーを移動させ、所定の液体を所定量、所定速度で吸引又は吐出する。送液移動制御部55は、シリンジの先端に装着されたピペットチップを所定の位置に移動させる。送液位置制御部56は、ピペットチップの先端位置を検出しそれを微調整する。計測制御部57は、Tnの濃度を計測する場合の表面プラズモン励起蛍光(被測定光42a)の光量測定を行うか、又はHct値を計測する場合の試料液の吸光度測定を行うかによって、対応する計測機構を切り替える。計測演算部58は、表面プラズモン励起蛍光の光量からTnの濃度を算出する処理と、試料液の吸光度から血液のHct値を算出する処理と、その他データの補正処理等を行う。 The CPU 51 controls the entire measurement, and operates each control unit or calculation unit described later as necessary. The light projection control unit 52 irradiates a predetermined light source and incidents the light at a predetermined position. The transport control unit 53 moves the transport stage of the transport unit 80 to the reaction position A away from the measurement optical path or the measurement position B located on the measurement optical path. The liquid feed drive control unit 54 moves the plunger of the syringe pump to suck or discharge a predetermined liquid at a predetermined amount and at a predetermined speed. The liquid feed movement control unit 55 moves the pipette tip attached to the tip of the syringe to a predetermined position. The liquid feeding position control unit 56 detects the position of the tip of the pipette tip and fine-tunes it. The measurement control unit 57 responds depending on whether the surface plasmon excitation fluorescence (light 42a to be measured) is measured when measuring the Tn concentration or the absorbance of the sample solution is measured when measuring the Hct value. Switch the measurement mechanism to be used. The measurement calculation unit 58 performs a process of calculating the Tn concentration from the amount of light of surface plasmon excitation fluorescence, a process of calculating the Hct value of blood from the absorbance of the sample solution, a process of correcting other data, and the like.

以上により、Tnの濃度と血液のHct値とを、単純化した装置により行うことが可能となる。 As described above, the Tn concentration and the Hct value of blood can be determined by a simplified device.

(センサチップ)
次に、本実施形態に係るセンサチップ30の構造について説明する。
(Sensor chip)
Next, the structure of the sensor chip 30 according to the present embodiment will be described.

図3は、センサチップ30の断面図である。センサチップ30は、図3に示すように、底面部材32と、流路シート33と、流路蓋35とからなる。 FIG. 3 is a cross-sectional view of the sensor chip 30. As shown in FIG. 3, the sensor chip 30 includes a bottom surface member 32, a flow path sheet 33, and a flow path lid 35.

底面部材32は、台形を底面とする柱体である。ただし、底面部材32の形状は、これに限定されず、適宜変更することが可能である。図3に示すように、底面部材32は、支持部材32aと、プリズム32bとからなる。 The bottom member 32 is a prism having a trapezoidal bottom surface. However, the shape of the bottom surface member 32 is not limited to this, and can be changed as appropriate. As shown in FIG. 3, the bottom surface member 32 includes a support member 32a and a prism 32b.

支持部材32aは、アクリル樹脂からなる。ただし、支持部材32aの材料は、これに限定されず、入射光41に対して透明な材料であれば良い。プリズム32bは、入射光41に対して透明な誘電体からなる。プリズム32bの流路蓋35側の表面には、金属薄膜32cが形成されている。この金属薄膜32cが形成された領域に対応するプリズム32bの面を、反射面31aと称する。 The support member 32a is made of an acrylic resin. However, the material of the support member 32a is not limited to this, and may be any material that is transparent to the incident light 41. The prism 32b is made of a dielectric material that is transparent to the incident light 41. A metal thin film 32c is formed on the surface of the prism 32b on the flow path lid 35 side. The surface of the prism 32b corresponding to the region where the metal thin film 32c is formed is referred to as a reflective surface 31a.

金属薄膜32cは、金の薄膜である。ただし、金属薄膜32cの材料は、これに限定されず、表面プラズモン共鳴を生じさせる金属であれば良い。例えば、金、銀、銅、アルミニウム、又はこれらの合金を含むものであっても良い。金属薄膜32cの膜厚は、特に限定されるものではないが、30〜70nmの範囲内が好ましい。 The metal thin film 32c is a gold thin film. However, the material of the metal thin film 32c is not limited to this, and may be any metal that causes surface plasmon resonance. For example, it may contain gold, silver, copper, aluminum, or an alloy thereof. The film thickness of the metal thin film 32c is not particularly limited, but is preferably in the range of 30 to 70 nm.

流路シート33は、底面部材32と流路蓋35とを接合する接着剤としての機能も兼ねる。流路シート33には、図示しないが、微細流路60を形成するための細長い開口である流路溝が形成されている。流路溝は、例えば幅が0.1〜5mmであり、長さが10〜50mmである。 The flow path sheet 33 also functions as an adhesive for joining the bottom surface member 32 and the flow path lid 35. Although not shown, the flow path sheet 33 is formed with a flow path groove, which is an elongated opening for forming the fine flow path 60. The flow path groove has, for example, a width of 0.1 to 5 mm and a length of 10 to 50 mm.

流路蓋35は、アクリル樹脂からなる構造体である。ただし、流路蓋35の材料は、これに限定されず、入射光41及び被測定光42に対して透明な材料であれば良い。これにより、入射光41及び被測定光42が流路蓋35を通過する際に、散乱が低減する。なお、被測定光42とは、Tnの濃度を計測する場合は表面プラズモン励起蛍光(被測定光42a)であり、Hct値を計測する場合は試料液を通過した入射光41(被測定光42b)である。また、流路蓋35の材料として成型性の良いものを使用すれば、Hct値を計測する場合の被測定光42bの所望の光路長を確保することができる。 The flow path lid 35 is a structure made of acrylic resin. However, the material of the flow path lid 35 is not limited to this, and may be any material that is transparent to the incident light 41 and the light to be measured 42. As a result, scattering is reduced when the incident light 41 and the light to be measured 42 pass through the flow path lid 35. The light 42 to be measured is surface plasmon-excited fluorescence (light 42a to be measured) when measuring the concentration of Tn, and the incident light 41 (light 42b to be measured) that has passed through the sample solution when measuring the Hct value. ). Further, if a material having good moldability is used as the material of the flow path lid 35, it is possible to secure a desired optical path length of the light to be measured 42b when measuring the Hct value.

流路蓋35は、流路シート33を介して底面部材32と接合される。流路蓋35と底面部材32とが接合された際に、流路シート33が流路蓋35の流路シート33側の底面と底面部材32の流路蓋35側の表面とに挟まれて、流路シート33に形成された流路溝が微細流路60となる。微細流路60の高さは、後述するように、流路蓋35の流路シート33側の底面の構造に応じて変化するが、例えば0.1〜6mmである。微細流路60内には、Tnとの反応場となるトロポニン捕捉膜61が設けられている。トロポニン捕捉膜61は、Tnと特異的に反応するトロポニン捕捉抗体が金属薄膜32cに固定されてなる。Tnの濃度を計測する場合、Tnを含んだ試料液を微細流路60内に供給すれば、試料液とトロポニン捕捉膜61とが接触することにより、Tnは、トロポニン捕捉抗体と反応して捕捉され、トロポニン捕捉膜61に留まる。 The flow path lid 35 is joined to the bottom surface member 32 via the flow path sheet 33. When the flow path lid 35 and the bottom surface member 32 are joined, the flow path sheet 33 is sandwiched between the bottom surface of the flow path lid 35 on the flow path sheet 33 side and the surface of the bottom surface member 32 on the flow path lid 35 side. The flow path groove formed in the flow path sheet 33 becomes the fine flow path 60. As will be described later, the height of the fine flow path 60 varies depending on the structure of the bottom surface of the flow path lid 35 on the flow path sheet 33 side, and is, for example, 0.1 to 6 mm. A troponin trapping membrane 61 that serves as a reaction field with Tn is provided in the microchannel 60. The troponin trapping membrane 61 is formed by immobilizing a troponin trapping antibody that specifically reacts with Tn on a metal thin film 32c. When measuring the concentration of Tn, if a sample solution containing Tn is supplied into the microchannel 60, the sample solution and the troponin capturing membrane 61 come into contact with each other, so that Tn is captured by reacting with the troponin capturing antibody. And stays on the troponin trapping membrane 61.

微細流路60一方端は、ピペットチップを挿入するためのインターフェース36と接続されており、微細流路60の他方端は、液体を流路内を往復させる時に液体が撹拌されるようにするための混合槽37と接続されている。液体とは、計測に使用される各種試薬や試料液等のことを言い、例えば、試料液、測定液、洗浄液、蛍光標識液である。インターフェース36の微細流路60と接続されない開口には、インターフェース密閉シール36aが貼り付けられており、混合槽37の微細流路60と接続されない開口には、混合槽シール37aが貼り付けられている。混合槽シール37aには通気性を確保するための通気孔37bが設けられている。 One end of the microchannel 60 is connected to an interface 36 for inserting a pipette tip, and the other end of the microchannel 60 is to allow the liquid to be agitated as it reciprocates in the flow path. It is connected to the mixing tank 37 of the above. The liquid refers to various reagents, sample liquids, etc. used for measurement, and is, for example, a sample liquid, a measurement liquid, a cleaning liquid, and a fluorescent labeling liquid. The interface sealing seal 36a is attached to the opening of the interface 36 that is not connected to the fine flow path 60, and the mixing tank seal 37a is attached to the opening that is not connected to the fine flow path 60 of the mixing tank 37. .. The mixing tank seal 37a is provided with a ventilation hole 37b for ensuring ventilation.

インターフェース密閉シール36aは、ポリウレタンからなるフィルムである。ただし、インターフェース密閉シール36aの材質は、これに限定されず、ピペットチップをインターフェース36の中に挿入した際、ピペットチップとインターフェース密閉シール36aとが互いに密着して、インターフェース36を、液体を微細流路60内に供給できる程度に密閉することができるものであれば良い。例えば、インターフェース密閉シール36aの材質は、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、中密度ポリエチレン(MDPE)、ナイロン、無延伸ポリプロピレン(CPP)、エチレン−ビニルアルコール共重合体(EVOH)、シリコーン、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)などであっても良い。 The interface sealing seal 36a is a film made of polyurethane. However, the material of the interface sealing seal 36a is not limited to this, and when the pipette tip is inserted into the interface 36, the pipette tip and the interface sealing seal 36a are in close contact with each other, and the liquid flows through the interface 36. Anything that can be sealed to the extent that it can be supplied into the road 60 may be used. For example, the material of the interface sealed seal 36a is low density polyethylene (LDPE), linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), nylon, unstretched polypropylene (CPP), ethylene-vinyl alcohol copolymer. (EVOH), silicone, polyvinyl alcohol (PVA), polyvinyl chloride (PVC) and the like may be used.

流路蓋35のインターフェース36側の底面には、微細流路60の高さを増やすための切り欠き38が設けられている。これにより、切り欠き38が設けられた箇所において、微細流路60の高さが、切り欠き38が設けられていない箇所より大きくなる。 A notch 38 for increasing the height of the fine flow path 60 is provided on the bottom surface of the flow path lid 35 on the interface 36 side. As a result, the height of the fine flow path 60 becomes larger in the portion where the notch 38 is provided than in the portion where the notch 38 is not provided.

図4は、入射光41及び被測定光42の光路を示す模式図である。図4に示すように、Tnの濃度を計測する場合、入射光41は、プリズム32bの図示しない入射面に入射し、微細流路60内に形成されたトロポニン捕捉膜61の位置に対応する反射面31a上の領域に当たるように入射され、被測定光42aは、計測部40に出射し、蛍光測定部にて光量が測定される。一方、Hct値を計測する場合、入射光41は、支持部材32aの流路蓋35側とは反対側の面から、微細流路60と切り欠き38とを通過するように入射され、被測定光42bは、計測部40に出射し、吸光度測定部にて光量が測定される。これにより、切り欠き38により微細流路60の高さが増えた分だけ、Hct値を計測する場合の入射光41の光路長が長くなる。 FIG. 4 is a schematic view showing the optical paths of the incident light 41 and the light to be measured 42. As shown in FIG. 4, when measuring the concentration of Tn, the incident light 41 is incident on an incident surface (not shown) of the prism 32b, and is reflected corresponding to the position of the troponin capturing film 61 formed in the fine flow path 60. The light is incident so as to hit the region on the surface 31a, the light 42a to be measured is emitted to the measuring unit 40, and the amount of light is measured by the fluorescence measuring unit. On the other hand, when measuring the Hct value, the incident light 41 is incident from the surface of the support member 32a opposite to the flow path lid 35 side so as to pass through the fine flow path 60 and the notch 38, and is measured. The light 42b is emitted to the measuring unit 40, and the amount of light is measured by the absorbance measuring unit. As a result, the optical path length of the incident light 41 when measuring the Hct value becomes longer by the amount that the height of the fine flow path 60 is increased by the notch 38.

このHct値を計測する場合の入射光41の光路長ともなる部分の微細流路60の高さは、詳細については後述するが、例えば、切り欠き38が設けられていない部分の微細流路60の高さが0.1〜1mmであるのに対して、0.1mmを超えて6mm以下であることが好ましい。ただし、切り欠き38を設ける箇所は、これに限定されず、Hct値を計測する際の入射光41の方向によって適宜変更することが可能である。また、切り欠き38が設けられていない流路蓋35の底面の部分に隣接する切り欠き38の部分は、図3に示すように、角を持たない滑らかな構造とすれば、試料液等の液体を微細流路60から回収した際に、液体が流路蓋35の底面に付着して微細流路60内に残留してしまうことを防止することができる。 The height of the microchannel 60 of the portion that also serves as the optical path length of the incident light 41 when measuring the Hct value will be described in detail later, but for example, the microchannel 60 of the portion where the notch 38 is not provided. The height of the light is 0.1 to 1 mm, whereas it is preferably more than 0.1 mm and 6 mm or less. However, the location where the notch 38 is provided is not limited to this, and can be appropriately changed depending on the direction of the incident light 41 when measuring the Hct value. Further, as shown in FIG. 3, if the portion of the notch 38 adjacent to the portion of the bottom surface of the flow path lid 35 in which the notch 38 is not provided has a smooth structure having no corners, the sample liquid or the like can be used. When the liquid is recovered from the fine flow path 60, it is possible to prevent the liquid from adhering to the bottom surface of the flow path lid 35 and remaining in the fine flow path 60.

また、センサチップ30は、1以上の液体収容部を有する図示しない試薬チップに着脱自在に構成されている。計測を行う際、センサチップ30は試薬チップに装着され、試薬チップごとに搬送部80のホルダーに装着される。ただし、センサチップ30は、必ずしも試薬チップと一体化する必要はなく、試薬チップとは別々に用意し、センサチップ30のみが搬送部80のホルダーに装着されるように構成しても良い。また、センサチップ30又は試薬チップに、ピペットチップを収納する機能を有しても良い。 Further, the sensor chip 30 is detachably configured on a reagent chip (not shown) having one or more liquid storage portions. When performing the measurement, the sensor chip 30 is attached to the reagent chip, and each reagent chip is attached to the holder of the transport unit 80. However, the sensor chip 30 does not necessarily have to be integrated with the reagent chip, and may be prepared separately from the reagent chip so that only the sensor chip 30 is mounted on the holder of the transport unit 80. Further, the sensor chip 30 or the reagent chip may have a function of accommodating the pipette tip.

試薬チップの各液体収容部は、標的物質(トロポニン)を含む検体と、検体を希釈するための希釈液と、測定に実際に使用される試料液と、抗体等の活性を維持するための測定液と、夾雑物等を洗浄するための洗浄液と、標的物質(トロポニン)に蛍光標識を付与するための蛍光標識液と、血液中の血球成分を溶かすための溶血剤と、使用済みの前述した各液体である廃液とをそれぞれ収容する。検体は、受検者から直接に採取した血液である。希釈液は、BSA(bovine serum albumin)、Antifoam SI、NaN3、CMD(carboxymethyl-dextran)、HAMA(human anti-mouse antibodies)阻害剤、PBST(phosphate buffered saline with Tween 20)からなる。試料液は、希釈液により希釈された検体である。測定液は、BSA、Antifoam SI、NaN、Tween 20、PBS(phosphate buffered saline)からなる。洗浄液は、Antifoam SI、NaN、PBSTからなる。蛍光標識液は、CF660を標識した2次抗体、PBSTからなる。 Each liquid container of the reagent chip contains a sample containing a target substance (troponin), a diluting solution for diluting the sample, a sample solution actually used for measurement, and measurement for maintaining the activity of an antibody or the like. The above-mentioned used liquid, a washing liquid for washing impurities, a fluorescent labeling liquid for imparting a fluorescent label to a target substance (troponin), a hemolytic agent for dissolving blood cell components in blood, and the above-mentioned used ones. Each liquid, waste liquid, is stored. The sample is blood collected directly from the examinee. The diluent comprises BSA (bovine serum albumin), Antifoam SI, NaN3, CMD (carboxymethyl-dextran), HAMA (human anti-mouse antibodies) inhibitor, and PBST (phosphate buffered saline with Tween 20). The sample solution is a sample diluted with a diluent. The measuring solution comprises BSA, Antifoam SI, NaN 3 , Tween 20, and PBS (phosphate buffered saline). The cleaning solution consists of Antifoam SI, NaN 3 , and PBST. The fluorescent labeling solution consists of PBST, a secondary antibody labeled with CF660.

(測定装置の動作)
次に、本実施形態に係る計測装置10の動作について説明する。図6は、計測装置10の動作を説明するためのフローチャートである。
(Operation of measuring device)
Next, the operation of the measuring device 10 according to the present embodiment will be described. FIG. 6 is a flowchart for explaining the operation of the measuring device 10.

まずは、Tn濃度計測用の試料液と、Hct値計測用の試料液とを調製する(ステップS101)。具体的には、試薬チップの液体収容部に予め収納された検体と希釈液とを用いて、検体を所望の濃度に希釈する。 First, a sample solution for measuring the Tn concentration and a sample solution for measuring the Hct value are prepared (step S101). Specifically, the sample is diluted to a desired concentration by using the sample and the diluent stored in advance in the liquid container of the reagent chip.

次に、微細流路60内を洗浄する(ステップS102)。具体的には、測定液を微細流路60内に供給し、微細流路60内を往復させる。測定液は、洗浄の機能も兼ねているため、これにより、微細流路60内が洗浄されるとともに、トロポニン捕捉膜61にトロポニン捕捉抗体の捕捉能力を長期間維持するための保護層が塗布されている場合、保護層が除去される。ただし、測定液の代わりに、洗浄液を用いて前述した微細流路60内の洗浄を行っても良い。また、トロポニン捕捉膜61に前述した保護層が塗布されておらず、且つ、微細流路60内及びトロポニン捕捉膜61が清潔である場合は、必ずしも洗浄を行う必要はない。 Next, the inside of the fine flow path 60 is washed (step S102). Specifically, the measuring liquid is supplied into the fine flow path 60 and reciprocates in the fine flow path 60. Since the measurement solution also has a cleaning function, the inside of the microchannel 60 is cleaned, and the troponin trapping membrane 61 is coated with a protective layer for maintaining the trapping ability of the troponin trapping antibody for a long period of time. If so, the protective layer is removed. However, instead of the measuring liquid, a cleaning liquid may be used to clean the inside of the fine flow path 60 described above. Further, when the protective layer described above is not applied to the troponin trapping film 61 and the inside of the fine flow path 60 and the troponin trapping film 61 are clean, it is not always necessary to perform cleaning.

次に、測定液を回収せずに、測定液が微細流路60に満たされたまま増強角を走査する増強測定を行う(ステップS103)。この際、センサチップ30は測定位置Bに配置される。具体的には、入射角θを変更しつつ入射光41を走査させ、散乱光43の光量が極大になる時の入射角たる増強角を、Tnの濃度を計測する場合の入射光41の入射角θとして特定する。ただし、既述の通りに、入射角θを変更しつつ入射光41を走査させ、反射光44の光量が極小になる時の入射角たる共鳴角を、測定時の入射光41の入射角θとして特定しても良い。 Next, without collecting the measurement liquid, the enhancement measurement is performed by scanning the enhancement angle while the measurement liquid is filled in the fine flow path 60 (step S103). At this time, the sensor chip 30 is arranged at the measurement position B. Specifically, the incident light 41 is scanned while changing the incident angle θ, and the incident light 41 is incident when the increasing angle, which is the incident angle when the amount of scattered light 43 is maximized, is measured and the Tn concentration is measured. Specify as an angle θ. However, as described above, the incident light 41 is scanned while changing the incident angle θ, and the resonance angle, which is the incident angle when the amount of reflected light 44 is minimized, is the incident angle θ of the incident light 41 at the time of measurement. It may be specified as.

次に、測定液を回収せずに、測定液が微細流路60に満たされたまま、Tnが存在しない時の蛍光強度を測定する蛍光ブランク測定を行う(ステップS104)。具体的には、トロポニン捕捉膜61の位置に対応する底面部材32の反射面31a上の領域に当たり、且つ、入射角θがステップS103にて特定された増強角となるように入射光41を入射させ、計測部40の蛍光測定部にて被測定光42aの光量を測定する。蛍光ブランク測定終了後、微細流路60内に供給された測定液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 Next, without collecting the measurement liquid, a fluorescence blank measurement is performed to measure the fluorescence intensity when Tn does not exist while the measurement liquid is filled in the fine flow path 60 (step S104). Specifically, the incident light 41 is incident so as to hit the region on the reflecting surface 31a of the bottom member 32 corresponding to the position of the troponin capturing film 61 and the incident angle θ is the enhancement angle specified in step S103. Then, the light amount of the light to be measured 42a is measured by the fluorescence measuring unit of the measuring unit 40. After the fluorescence blank measurement is completed, the measurement liquid supplied into the fine flow path 60 is recovered from the fine flow path 60 under the control of the control calculation unit 50, and is transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、Tnとトロポニン捕捉抗体とを結合させる1次反応を行う(ステップS105)。具体的には、Tn濃度計測用の試料液を微細流路60内に供給し、微細流路60内を往復させる。Tn濃度計測用の試料液中にはTnが存在するため、当該試料液が微細流路60に満たされた際、Tnはトロポニン捕捉膜61に存在するトロポニン捕捉抗体と接触し、特異的反応を起こして捕捉され、トロポニン捕捉膜61に留まる。反応に充分な時間が経過した後、当該試料液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 Next, a primary reaction for binding Tn to a troponin-capturing antibody is carried out (step S105). Specifically, the sample liquid for measuring the Tn concentration is supplied into the microchannel 60 and reciprocated in the microchannel 60. Since Tn is present in the sample solution for measuring the Tn concentration, when the sample solution is filled in the microchannel 60, Tn comes into contact with the troponin trapping antibody present in the troponin trapping membrane 61 and causes a specific reaction. It is raised and captured and stays on the troponin capture membrane 61. After a sufficient time has elapsed for the reaction, the sample liquid is recovered from the microchannel 60 under the control of the control calculation unit 50 and transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、微細流路60内に非特異的に吸着したTnや夾雑物などを除去するために、微細流路60内を洗浄する(ステップS106)。具体的には、洗浄液を微細流路60内に供給し、微細流路60内を往復させる。洗浄終了後、洗浄液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 Next, in order to remove Tn and impurities non-specifically adsorbed in the fine flow path 60, the inside of the fine flow path 60 is washed (step S106). Specifically, the cleaning liquid is supplied into the fine flow path 60 and reciprocates in the fine flow path 60. After the cleaning is completed, the cleaning liquid is collected from the fine flow path 60 under the control of the control calculation unit 50 and transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、トロポニン捕捉膜61に捕捉されたTnに蛍光標識を付与する2次反応を行う(ステップS107)。具体的には、試薬チップの液体収容部に予め収納された蛍光標識液を微細流路60内に供給し、微細流路60内を往復させる。蛍光標識液が微細流路60に満たされた際、蛍光標識液とトロポニン捕捉膜61とが接触し、蛍光標識液中に存在する標識用蛍光物質とトロポニン捕捉抗体に捕捉されたTnとが結合し、トロポニン捕捉抗体に捕捉されたTnに蛍光標識が付与される。反応に充分な時間が経過した後、蛍光標識液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 Next, a secondary reaction of imparting a fluorescent label to Tn captured by the troponin trapping membrane 61 is carried out (step S107). Specifically, the fluorescent labeling liquid previously stored in the liquid storage portion of the reagent chip is supplied into the microchannel 60 and reciprocated in the microchannel 60. When the microchannel 60 is filled with the fluorescent labeling solution, the fluorescent labeling solution and the troponin trapping film 61 come into contact with each other, and the fluorescent substance for labeling present in the fluorescent labeling solution and Tn captured by the troponin trapping antibody bind to each other. Then, the Tn captured by the troponin-capturing antibody is given a fluorescent label. After a sufficient time has elapsed for the reaction, the fluorescent labeling liquid is recovered from the microchannel 60 under the control of the control calculation unit 50 and transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、微細流路60内に非特異的に吸着した標識用蛍光物質や夾雑物などを除去するために、微細流路60内を洗浄する(ステップS108)。具体的には、洗浄液を微細流路60内に供給し、微細流路60内を往復させる。洗浄終了後、洗浄液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 Next, in order to remove the fluorescent substance for labeling, impurities, and the like that are non-specifically adsorbed in the fine flow path 60, the inside of the fine flow path 60 is washed (step S108). Specifically, the cleaning liquid is supplied into the fine flow path 60 and reciprocates in the fine flow path 60. After the cleaning is completed, the cleaning liquid is collected from the fine flow path 60 under the control of the control calculation unit 50 and transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、測定液を微細流路60内に供給し、トロポニン捕捉膜61に捕捉されたTnから発せられた蛍光のシグナルを測定する蛍光シグナル測定を行う(ステップS109)。具体的には、入射光41を、トロポニン捕捉膜61の位置に対応する底面部材32の反射面31a上の領域に当たり、且つ、入射角θがステップS103にて特定された増強角となるように入射させる。入射した入射光41は、底面部材32の反射面31aで反射されるが、反射する際、反射面31aから金属薄膜32c側にエバネッセント波が発生し浸透する。浸透したエバネッセント波の電場は、金属薄膜32cの表面プラズモンに共鳴し増強され、トロポニン捕捉膜61に捕捉されたTnに付与された蛍光標識を励起する。蛍光標識は、励起されると、表面プラズモン励起蛍光(被測定光42a)を放射する。制御演算部50は、計測部40の蛍光測定部に被測定光42aの光量を測定させ、測定された被測定光42aの光量に基づいてTnの濃度を特定する。 Next, the measurement liquid is supplied into the microchannel 60, and fluorescence signal measurement is performed to measure the fluorescence signal emitted from Tn captured by the troponin trapping membrane 61 (step S109). Specifically, the incident light 41 hits the region on the reflecting surface 31a of the bottom member 32 corresponding to the position of the troponin capturing film 61, and the incident angle θ is the enhancement angle specified in step S103. Make it incident. The incident light 41 is reflected by the reflecting surface 31a of the bottom surface member 32, but when reflected, an evanescent wave is generated from the reflecting surface 31a to the metal thin film 32c side and permeates. The electric field of the permeated evanescent wave resonates with the surface plasmon of the metal thin film 32c and is enhanced to excite the fluorescent label attached to Tn captured by the troponin trapping film 61. When the fluorescent label is excited, it emits surface plasmon excitation fluorescence (light to be measured 42a). The control calculation unit 50 causes the fluorescence measurement unit of the measurement unit 40 to measure the amount of light 42a to be measured, and specifies the concentration of Tn based on the measured amount of light 42a to be measured.

蛍光シグナル測定終了後、測定液を回収せずに、測定液が微細流路60に満たされたまま、試料液が存在しない時に光路を通過した入射光41の光量を測定する吸光度ブランク測定を行う(ステップS110)。この吸光度ブランク測定を行うことにより、Hct由来の吸光度変化のみを計測することが可能となる。具体的には、入射光41を、支持部材32aの流路蓋35側とは反対側の面から、微細流路60と切り欠き38とを通過し、且つ、入射角θが0度となるように入射させ、計測部40の吸光度測定部にて、計測部40に光路上に存在する測定液を通過した入射光41の光量を測定する。ただし、この場合の入射角は、支持部材32aと微細流路60との界面の臨界角未満であれば良く、特に限定されるものではない。吸光度ブランク測定終了後、微細流路60内に供給された測定液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。 After the fluorescence signal measurement is completed, the absorbance blank measurement is performed to measure the amount of incident light 41 passing through the optical path when the sample solution is not present while the measurement solution is filled in the fine flow path 60 without collecting the measurement solution. (Step S110). By performing this absorbance blank measurement, it is possible to measure only the change in absorbance derived from Hct. Specifically, the incident light 41 passes through the fine flow path 60 and the notch 38 from the surface of the support member 32a opposite to the flow path lid 35 side, and the incident angle θ is 0 degrees. The light amount of the incident light 41 that has passed through the measuring liquid existing on the optical path is measured by the absorbance measuring unit of the measuring unit 40. However, the incident angle in this case is not particularly limited as long as it is less than the critical angle at the interface between the support member 32a and the fine flow path 60. After the absorbance blank measurement is completed, the measurement liquid supplied into the fine flow path 60 is recovered from the fine flow path 60 under the control of the control calculation unit 50, and is transferred to the liquid storage unit that stores the waste liquid of the reagent chip.

次に、予め調製され、試薬チップの液体収容部に収納されているHct値計測用の試料液に、溶血剤を添加して混合させる(ステップS111)。溶血剤を試料液に添加することにより、血液中の血球成分が溶解し、その濃度分布がより均一になるため、吸光度測定におけるノイズが低減される。 Next, a hemolytic agent is added to the sample solution for measuring the Hct value, which is prepared in advance and stored in the liquid container of the reagent chip, and mixed (step S111). By adding the hemolytic agent to the sample solution, the blood cell component in the blood is dissolved and the concentration distribution becomes more uniform, so that the noise in the absorbance measurement is reduced.

次に、溶血剤が添加されたHct値計測用の試料液を微細流路60内に供給し、当該試料液の吸光度を測定する吸光度シグナル測定を行う(ステップS112)。具体的には、入射光41を、支持部材32aの流路蓋35側とは反対側の面から、微細流路60と切り欠き38とを通過し、且つ、入射角θが0度となるように入射させる。ただし、この場合の入射角は、支持部材32aと微細流路60との界面の臨界角未満であれば良く、特に限定されるものではない。入射した入射光41は、光路上に存在する試料液を通過し、計測部40に出射する。制御演算部50は、計測部40の吸光度測定部に試料液を通過し出射した光(被測定光42b)の光量を測定させ、測定された被測定光42bの光量に基づいて血液のHct値を特定する。吸光度シグナル測定終了後、微細流路60内に供給された試料液は制御演算部50の制御により微細流路60から回収され、試薬チップの廃液を収容する液体収容部に移転される。センサチップ30は廃棄される。 Next, a sample solution for measuring the Hct value to which a hemolytic agent is added is supplied into the microchannel 60, and the absorbance signal is measured to measure the absorbance of the sample solution (step S112). Specifically, the incident light 41 passes through the fine flow path 60 and the notch 38 from the surface of the support member 32a opposite to the flow path lid 35 side, and the incident angle θ is 0 degrees. To make it incident. However, the incident angle in this case is not particularly limited as long as it is less than the critical angle at the interface between the support member 32a and the fine flow path 60. The incident light 41 passes through the sample liquid existing on the optical path and is emitted to the measuring unit 40. The control calculation unit 50 causes the absorbance measuring unit of the measuring unit 40 to measure the light amount of the light (measured light 42b) emitted through the sample solution, and the Hct value of blood is based on the measured light amount of the measured light 42b. To identify. After the measurement of the absorbance signal is completed, the sample liquid supplied into the fine flow path 60 is collected from the fine flow path 60 under the control of the control calculation unit 50, and is transferred to the liquid storage unit that stores the waste liquid of the reagent chip. The sensor chip 30 is discarded.

次に、制御演算部50は、蛍光ブランク測定及び吸光度ブランク測定の測定結果、並びに、蛍光シグナル測定及び吸光度シグナル測定により得られたTnの濃度及びHct値等に基づいて、Tn濃度の正確値を算出する後処理(ステップS113)を行い、計測を終了する。 Next, the control calculation unit 50 determines the accurate value of the Tn concentration based on the measurement results of the fluorescence blank measurement and the absorbance blank measurement, and the Tn concentration and the Hct value obtained by the fluorescence signal measurement and the absorbance signal measurement. The post-processing (step S113) for calculation is performed, and the measurement is completed.

また、本実施形態は、Hct値を計測する前にTnの濃度計測を行うことで、Hct値計測時にTnとトロポニン捕捉抗体とが反応してしまい、その後に行われるTnの濃度計測の計測精度を低下させてしまうことを防止することができる。ただし、本発明に係る測定方法は、この順序に限定されず、Tnとトロポニン捕捉抗体とが反応してしまうことを防止できれば、Tnの濃度計測の前にHct値の計測を行っても良い。 Further, in the present embodiment, by measuring the Tn concentration before measuring the Hct value, Tn reacts with the troponin-capturing antibody at the time of measuring the Hct value, and the measurement accuracy of the Tn concentration measurement performed thereafter is performed. Can be prevented from being lowered. However, the measuring method according to the present invention is not limited to this order, and the Hct value may be measured before measuring the Tn concentration as long as it can prevent the Tn from reacting with the troponin-capturing antibody.

以上により、切り欠き38を設けることでHct値を計測する場合の入射光41の光路長が長くなるため、同一流路内において、Tnの濃度を計測するとともに、血液のHct値を精度良く計測することができ、蛍光光量測定及び吸光度測定といった単純な方法によりTnの濃度を正確に計測することが可能となる。 As described above, since the optical path length of the incident light 41 when measuring the Hct value is increased by providing the notch 38, the Tn concentration is measured in the same flow path and the Hct value of blood is measured accurately. It is possible to accurately measure the Tn concentration by a simple method such as fluorescence light amount measurement and absorbance measurement.

(Hct値を計測する場合の入射光の光路長と試料液濃度との関係)
切り欠き38が設けられており、Hct値を計測する場合の入射光41の光路長ともなる部分の微細流路60の高さは、以下に説明するように、Hct値計測用の試料液の濃度に合わせて、吸光度の分解能が最適になるように調整することできる。
(Relationship between the optical path length of the incident light and the sample solution concentration when measuring the Hct value)
As described below, the height of the fine flow path 60 at the portion where the notch 38 is provided and which is also the optical path length of the incident light 41 when measuring the Hct value is the sample liquid for measuring the Hct value. The absorbance resolution can be adjusted to be optimal according to the concentration.

既述の通りに、Hct値は、試料液の吸光度に基づいて特定される。Hct値を計測する場合、被測定光42bの光量が実際に測定され、既述の式1により、被測定光42b強度と入射光41強度との比率(I/I)を算出し試料液の吸光度Aを算出する。なお、被測定光42b強度と入射光41強度との比率(I/I)は、試料液の透過率Tである。そのため、試料液の透過率Tを精度良く測定することができれば、得られる吸光度Aの精度も向上し、Hct値を精度良く計測することが可能となる。 As described above, the Hct value is specified based on the absorbance of the sample solution. When measuring the Hct value, the amount of light of the light to be measured 42b is actually measured, and the ratio (I 1 / I 0 ) of the intensity of the light to be measured 42b to the intensity of the incident light 41 is calculated by the above-mentioned equation 1 to obtain a sample. The absorbance A of the liquid is calculated. The ratio (I 1 / I 0 ) of the intensity of the light to be measured 42b and the intensity of the incident light 41 is the transmittance T of the sample liquid. Therefore, if the transmittance T of the sample liquid can be measured with high accuracy, the accuracy of the obtained absorbance A will be improved, and the Hct value can be measured with high accuracy.

図6は、透過率の測定可能範囲(Tmax−Tmin)と入射光41の光路長との相関関係を示すグラフである。 FIG. 6 is a graph showing the correlation between the measurable range of transmittance (Tmax-Tmin) and the optical path length of the incident light 41.

透過率の測定可能範囲(Tmax−Tmin)とは、人の血液のHct値の通常範囲にわたって分布する既知のHct値を有する複数の検体を、所定の希釈倍率で希釈し、希釈して得た複数の試料液を異なる光路長にて測定した場合、同一光路長にて測定して得た最大の透過率Tmaxと最小の透過率Tminとの差をいう。同一希釈倍率で希釈して得た複数の試料液を異なる光路長にて測定して得た個々の透過率の測定可能範囲(Tmax−Tmin)は、図6における同一希釈倍率の曲線をなす。 The measurable range of transmittance (Tmax-Tmin) is obtained by diluting a plurality of samples having a known Hct value distributed over a normal range of the Hct value of human blood at a predetermined dilution ratio. When a plurality of sample solutions are measured with different optical path lengths, it means the difference between the maximum transmittance Tmax and the minimum transmittance Tmin obtained by measuring with the same optical path length. The measurable range (Tmax-Tmin) of the individual transmittances obtained by measuring a plurality of sample solutions obtained by diluting at the same dilution ratio with different optical path lengths forms the curve of the same dilution ratio in FIG.

透過率の測定可能範囲(Tmax−Tmin)が大きければ、測定によって得られる吸光度Aの精度、ひいてはHct値の精度が向上し、既存の設備を改造などすることなくHct値を精度良く計測することが可能となる。すなわち、透過率の測定可能範囲(Tmax−Tmin)は、測定によって得られる吸光度Aの分解能を反映した指標の1つである。 If the measurable range (Tmax-Tmin) of the transmittance is large, the accuracy of the absorbance A obtained by the measurement and the accuracy of the Hct value are improved, and the Hct value can be measured accurately without modifying the existing equipment. Is possible. That is, the measurable range of transmittance (Tmax-Tmin) is one of the indexes reflecting the resolution of the absorbance A obtained by the measurement.

表1は、各希釈倍率において、透過率の測定可能範囲(Tmax−Tmin)が15%以上となる時の光路長の最大値(最大光路長)と、その最小値(最小光路長)と、それらと試料液の濃度C(希釈倍率の逆数)とのそれぞれの積C・l(最小積C・lmin及び最大積C・lmax)とを表すものである。既述の式1によれば、試料液の吸光度Aは、試料液のモル吸光係数εと、試料液の濃度Cと、光路長lとの積で表すことができることから、一定のε下では、試料液の吸光度Aは、試料液の濃度Cと光路長lとの積C・lに比例する。従って、同一希釈倍率において、最小積C・lminと最大積C・lmaxとは、吸光度Aを、透過率の測定可能範囲(Tmax−Tmin)が15%以上となる条件下で測定可能な条件として、試料液濃度Cと光路長lとの2つの要因を含んだ指標である積C・lの下限と上限を、それぞれ表している。すなわち、同一希釈倍率において、積C・lが最小積C・lmin以上で最大積C・lmax以下となるように光路長lを設定すれば、透過率の測定可能範囲(Tmax−Tmin)が15%以上となるように試料液の吸光度Aを測定することができ、Hct値を精度良く計測することが可能となる。 Table 1 shows the maximum value (maximum optical path length) and the minimum value (minimum optical path length) of the optical path length when the measurable range (Tmax-Tmin) of the transmittance is 15% or more at each dilution ratio. It represents the respective product C · l (minimum product C · lmin and maximum product C · lmax) of them and the concentration C (reciprocal of the dilution ratio) of the sample solution. According to the above-mentioned equation 1, the absorbance A of the sample solution can be expressed by the product of the molar extinction coefficient ε of the sample solution, the concentration C of the sample solution, and the optical path length l. The absorbance A of the sample solution is proportional to the product C · l of the concentration C of the sample solution and the optical path length l. Therefore, at the same dilution ratio, the minimum product C. lmin and the maximum product C. lmax are conditions in which the absorbance A can be measured under the condition that the measurable range (Tmax-Tmin) of the transmittance is 15% or more. , The lower limit and the upper limit of the product C · l, which is an index including the two factors of the sample liquid concentration C and the optical path length l, are shown, respectively. That is, if the optical path length l is set so that the product C · l is equal to or more than the minimum product C · lmin and equal to or less than the maximum product C · lmax at the same dilution ratio, the measurable range of transmittance (Tmax-Tmin) is 15. The absorbance A of the sample solution can be measured so as to be% or more, and the Hct value can be measured with high accuracy.

Figure 0006911318
Figure 0006911318

更に、表1から分かるように、各希釈倍率における測定可能範囲(Tmax−Tmin)が15%以上となる積C・lの範囲の共通部分は、各最小積C・lminの中の最大値である26と、各最大積C・lmaxの中の最小値である156とにより規定される。この共通部分の範囲内に、すなわち、積C・lが26以上で156以下となるように光路長lを設定すれば、検体を1.5倍以上で24倍以下のどの希釈倍率で希釈して調製したものを試料液として使用しても、透過率の測定可能範囲(Tmax−Tmin)が15%以上となるように試料液の吸光度Aを測定することができ、Hct値を精度良く計測することが可能となる。ただし、各積C・lの具体的な数値は、厳密に限定されるものではなく、多少の誤差があっても、同様の効果を奏するものである。 Further, as can be seen from Table 1, the intersection of the product C ・ l range in which the measurable range (Tmax-Tmin) at each dilution ratio is 15% or more is the maximum value in each minimum product C ・ lmin. It is defined by 26 and 156, which is the minimum value in each maximum product C · lmax. If the optical path length l is set within the range of this common portion, that is, the product C · l is 26 or more and 156 or less, the sample is diluted at a dilution ratio of 1.5 times or more and 24 times or less. Even if the prepared sample solution is used as the sample solution, the absorbance A of the sample solution can be measured so that the measurable range (Tmax-Tmin) of the transmittance is 15% or more, and the Hct value can be measured accurately. It becomes possible to do. However, the specific numerical values of each product C and l are not strictly limited, and the same effect can be obtained even if there is some error.

一方、図6から分かるように、光路長lが増加するにつれて測定可能範囲(Tmax−Tmin)が大きくなるが、各希釈倍率下では、測定可能範囲(Tmax−Tmin)が最大となり、ひいては吸光度Aの分解能が最適となる最適光路長がそれぞれ存在する。表2は、希釈倍率が1.5倍、3倍及び6倍の場合における最適光路長を表すものである。これらの希釈倍率において、入射光41の光路長lを、表2に示す各々の最適光路長(具体的には、希釈倍率が1.5倍の場合は175μm、希釈倍率が3倍の場合は350μm、希釈倍率が6倍の場合は700μm)とすれば、その環境下において得られる最大の分解能にて吸光度Aを測定することができ、Hct値の精度を確保することが可能となる。ただし、最適光路長の具体的な数値は、厳密に限定されるものではなく、多少の誤差があっても、同様の効果を奏する。 On the other hand, as can be seen from FIG. 6, the measurable range (Tmax-Tmin) increases as the optical path length l increases, but under each dilution ratio, the measurable range (Tmax-Tmin) becomes maximum, and thus the absorbance A. There is an optimum optical path length for which the resolution of is optimal. Table 2 shows the optimum optical path lengths when the dilution ratios are 1.5 times, 3 times, and 6 times. At these dilution ratios, the optical path length l of the incident light 41 is set to the optimum optical path lengths shown in Table 2 (specifically, 175 μm when the dilution ratio is 1.5 times, and 175 μm when the dilution ratio is 3 times). If it is 350 μm and 700 μm when the dilution ratio is 6 times), the absorbance A can be measured with the maximum resolution obtained in that environment, and the accuracy of the Hct value can be ensured. However, the specific numerical value of the optimum optical path length is not strictly limited, and the same effect can be obtained even if there is some error.

Figure 0006911318
Figure 0006911318

10 計測装置
20 投光部
30 センサチップ
40 計測部
50 制御演算部
80 搬送部
90 送液部
32 底面部材
32a 支持部材
32b プリズム
32c 金属薄膜
33 流路シート
35 流路蓋
38 切り欠き
60 微細流路
61 トロポニン捕捉膜
41 入射光
42 被測定光
43 散乱光
44 反射光
10 Measuring device 20 Floodlight 30 Sensor chip 40 Measuring unit 50 Control calculation unit 80 Transport unit 90 Liquid transfer unit 32 Bottom member 32a Support member 32b Prism 32c Metal thin film 33 Flow path sheet 35 Flow path lid 38 Notch 60 Fine flow path 61 Troponin capture film 41 Incident light 42 Measured light 43 Scattered light 44 Reflected light

Claims (21)

血液を流すための第1流路と、
前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、
前記第1流路または前記第2流路の一端に接続されている混合槽と、
を有し、
前記第1流路と前記第2流路とは連続していることを特徴とする血液検査用センサチップ。
The first flow path for blood flow and
A second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path,
With a mixing tank connected to the first flow path or one end of the second flow path,
Have a,
A sensor chip for a blood test, wherein the first flow path and the second flow path are continuous.
血液を流すための第1流路と、
前記第1流路の上流又は下流に位置し、切り欠きが設けられることにより前記第1流路よりも流路の高さが高い第2流路と、
を有することを特徴とする血液検査用センサチップ。
The first flow path for blood flow and
A second flow path located upstream or downstream of the first flow path and having a notch so that the height of the flow path is higher than that of the first flow path.
A sensor chip for a blood test characterized by having.
前記第1流路中の前記血液に対して第1測定を行い、前記血液に関する第1情報を取得し、
前記第2流路中の前記血液に対して第2測定を行い、前記血液に関する第2情報を取得することを特徴とする請求項1または2に記載の血液検査用センサチップ。
The first measurement is performed on the blood in the first flow path, and the first information about the blood is acquired.
The sensor chip for a blood test according to claim 1 or 2, wherein the second measurement is performed on the blood in the second flow path and the second information about the blood is acquired.
前記第1情報は、前記血液中に存在する標的物質の濃度であり、
前記第2情報は、前記血液のヘマトクリット値であることを特徴とする請求項3に記載の血液検査用センサチップ。
The first information is the concentration of the target substance present in the blood.
The sensor chip for a blood test according to claim 3, wherein the second information is a hematocrit value of the blood.
前記第1流路と前記第2流路とは、底面が同じ平面であることを特徴とする請求項1から4のいずれか一項に記載の血液検査用センサチップ。 The sensor chip for a blood test according to any one of claims 1 to 4, wherein the first flow path and the second flow path have the same flat surface. 波長が200〜900nmの光を通す材料からなることを特徴とする請求項1から5のいずれか一項に記載の血液検査用センサチップ。 The sensor chip for a blood test according to any one of claims 1 to 5, wherein the sensor chip is made of a material that transmits light having a wavelength of 200 to 900 nm. アクリル樹脂からなることを特徴とする請求項6に記載の血液検査用センサチップ。 The sensor chip for a blood test according to claim 6, which is made of an acrylic resin. 前記第1流路の幅が0.1〜1mmであり、前記第2流路の幅が0.1mmを超え6mm以下であることを特徴とする請求項1から7のいずれか一項に記載の血液検査用センサチップ。 The invention according to any one of claims 1 to 7, wherein the width of the first flow path is 0.1 to 1 mm, and the width of the second flow path is more than 0.1 mm and 6 mm or less. Sensor chip for blood tests. 前記第1流路の底面に、前記血液中に存在する標的物質と反応して前記標的物質を留める反応系が設けられていることを特徴とする請求項1から8のいずれか一項に記載の血液検査用センサチップ。 The invention according to any one of claims 1 to 8, wherein a reaction system that reacts with the target substance existing in the blood and retains the target substance is provided on the bottom surface of the first flow path. Sensor chip for blood tests. 血液を流すための第1流路と、前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、を有する血液検査用センサチップと、
前記血液検査用センサチップに光を照射する投光部と、
前記血液検査用センサチップから出射した光の光量を測定する計測部と、
前記投光部の動作を制御する制御部と、
を有し、
前記第1流路と前記第2流路とは連続しており、
前記制御部は、前記第2流路の幅を前記光が通過するように、前記投光部に前記光を照射させることを特徴とする血液検査装置。
A blood test sensor chip having a first flow path for flowing blood and a second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path. When,
A light projecting unit that irradiates the blood test sensor chip with light,
A measuring unit that measures the amount of light emitted from the blood test sensor chip, and
A control unit that controls the operation of the light projecting unit and
Have,
The first flow path and the second flow path are continuous,
The control unit is a blood test device characterized in that the light projecting unit is irradiated with the light so that the light passes through the width of the second flow path.
前記制御部は前記計測部の動作を更に制御することを特徴とする請求項10に記載の血液検査装置。 The blood test apparatus according to claim 10, wherein the control unit further controls the operation of the measurement unit. 前記制御部は、前記第2流路の幅を前記光が通過するように、又は、前記第1流路に前記光が当たるように、前記投光部の動作を切り替えることを特徴とする請求項10または11に記載の血液検査装置。 The control unit is characterized in that the operation of the light projecting unit is switched so that the light passes through the width of the second flow path or the light hits the first flow path. Item 10. The blood test apparatus according to Item 10. 前記計測部は、前記第2流路の幅を通過した前記光の光量を測定し、
前記制御部は、前記第2流路の幅を通過した前記光の光量に基づいて前記血液のヘマトクリット値を計測することを特徴とする請求項10から12のいずれか一項に記載の血液検査装置。
The measuring unit measures the amount of light that has passed through the width of the second flow path, and measures the amount of light.
The blood test according to any one of claims 10 to 12, wherein the control unit measures the hematocrit value of the blood based on the amount of light passing through the width of the second flow path. Device.
前記血液検査用センサチップは、前記第1流路の底面に、前記血液中に存在する標的物質と反応して前記標的物質を留める反応系が設けられていることを特徴とする請求項10から13のいずれか一項に記載の血液検査装置。 10. The blood test sensor chip is characterized in that a reaction system that reacts with a target substance existing in the blood and retains the target substance is provided on the bottom surface of the first flow path. 13. The blood test apparatus according to any one of 13. 前記制御部は、前記反応系の反応結果に基づいて前記標的物質の濃度測定を行うことを特徴とする請求項14に記載の血液検査装置。 The blood test apparatus according to claim 14, wherein the control unit measures the concentration of the target substance based on the reaction result of the reaction system. 血液を流すための第1流路と、前記第1流路の上流又は下流に位置し、前記第1流路よりも流路の幅が広い第2流路と、を有する血液検査用センサチップを用いて、
前記血液中に存在する標的物質を含む試料液を、前記第1流路及び前記第2流路に供給し、
前記第1流路を用いて前記標的物質の定量的計測を行うとともに、前記第2流路を用いて前記血液のヘマトクリット値を計測することを特徴とする血液検査方法。
A blood test sensor chip having a first flow path for flowing blood and a second flow path located upstream or downstream of the first flow path and having a wider flow path than the first flow path. Using,
A sample solution containing the target substance present in the blood is supplied to the first flow path and the second flow path.
A blood test method characterized by quantitatively measuring the target substance using the first flow path and measuring the hematocrit value of the blood using the second flow path.
前記血液検査用センサチップに、前記第2流路の幅を通過するように光を照射して、前記試料液の吸光度を測定することで前記血液のヘマトクリット値を計測することを特徴とする請求項16に記載の血液検査方法。 A claim characterized in that the hematocrit value of the blood is measured by irradiating the sensor chip for a blood test with light so as to pass through the width of the second flow path and measuring the absorbance of the sample solution. Item 16. The blood test method according to item 16. 前記第1流路の底面に、前記標的物質と反応して前記標的物質を留める反応系を設けて、前記反応系の反応結果に基づいて前記標的物質の濃度を行うことを特徴とする請求項16又は17に記載の血液検査方法。 The claim is characterized in that a reaction system that reacts with the target substance and retains the target substance is provided on the bottom surface of the first flow path, and the concentration of the target substance is determined based on the reaction result of the reaction system. The blood test method according to 16 or 17. 前記試料液は、受検者から直接に採取した血液を希釈して得たものであり、
前記第2流路の幅と、前記試料液における前記血液の濃度とは、前記試料液における前記血液の濃度が0.0417以上0.6667以下である場合、下記式(1)に示す関係にあることを特徴とする請求項16から18のいずれか一項に記載の血液検査方法。
26<C・l<156 (1)
なお、上記式(1)において、Cは前記試料液における前記血液の濃度で、即ち前記試料液を得るための前記血液の希釈倍率の逆数であり、lは前記第2流路の幅で、単位がμmである。
The sample solution was obtained by diluting blood collected directly from the examinee.
The width of the second flow path and the concentration of the blood in the sample solution have a relationship represented by the following formula (1) when the concentration of the blood in the sample solution is 0.0417 or more and 0.6667 or less. The blood test method according to any one of claims 16 to 18, characterized in that there is.
26 <C ・ l <156 (1)
In the above formula (1), C is the concentration of the blood in the sample solution, that is, the inverse of the dilution ratio of the blood for obtaining the sample solution, and l is the width of the second flow path. The unit is μm.
前記試料液を得るための前記血液の希釈倍率が1.5倍、即ち前記試料液における前記血液の濃度が0.6667である場合、前記第2流路の幅を175μmとし、
前記試料液を得るための前記血液の希釈倍率が3倍、即ち前記試料液における前記血液の濃度が0.3333である場合、前記第2流路の幅を350μmとし、
前記試料液を得るための前記血液の希釈倍率が6倍、即ち前記試料液における前記血液の濃度が0.1667である場合、前記第2流路の幅を700μmとすることを特徴とする請求項19に記載の血液検査方法。
When the dilution ratio of the blood for obtaining the sample solution is 1.5 times, that is, the concentration of the blood in the sample solution is 0.6667, the width of the second flow path is set to 175 μm.
When the dilution ratio of the blood for obtaining the sample solution is 3 times, that is, the concentration of the blood in the sample solution is 0.3333, the width of the second flow path is set to 350 μm.
When the dilution ratio of the blood for obtaining the sample solution is 6 times, that is, the concentration of the blood in the sample solution is 0.1667, the width of the second flow path is 700 μm. Item 19. The blood test method according to item 19.
前記血液のヘマトクリット値を計測する前に、前記標的物質の定量的計測を行うことを特徴とする請求項16から20のいずれか一項に記載の血液検査方法。 The blood test method according to any one of claims 16 to 20, wherein the target substance is quantitatively measured before measuring the hematocrit value of the blood.
JP2016191706A 2016-09-29 2016-09-29 Blood test sensor chip, blood test device and blood test method Active JP6911318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191706A JP6911318B2 (en) 2016-09-29 2016-09-29 Blood test sensor chip, blood test device and blood test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191706A JP6911318B2 (en) 2016-09-29 2016-09-29 Blood test sensor chip, blood test device and blood test method

Publications (2)

Publication Number Publication Date
JP2018054495A JP2018054495A (en) 2018-04-05
JP6911318B2 true JP6911318B2 (en) 2021-07-28

Family

ID=61834040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191706A Active JP6911318B2 (en) 2016-09-29 2016-09-29 Blood test sensor chip, blood test device and blood test method

Country Status (1)

Country Link
JP (1) JP6911318B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516035B1 (en) 2018-03-22 2019-05-22 日本電気株式会社 Irrigation water amount measuring device, irrigation water amount measuring method, and program
US20210318326A1 (en) * 2018-08-06 2021-10-14 Konica Minolta, Inc. Method for measuring brain natriuretic peptide and kit for measuring brain natriuretic peptide

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586743B2 (en) * 1995-10-09 2004-11-10 アークレイ株式会社 Measurement method with corrected hematocrit value
JP4785611B2 (en) * 2006-05-11 2011-10-05 アークレイ株式会社 Method and apparatus for measuring the concentration of a specific component in a blood sample
JP2011080769A (en) * 2009-10-02 2011-04-21 Rohm Co Ltd Disk-like analyzing chip and measuring system using the same
JP2011137673A (en) * 2009-12-28 2011-07-14 Panasonic Corp Analyzing device, analysis apparatus using the same, and analysis method
KR20110080067A (en) * 2010-01-04 2011-07-12 엘지전자 주식회사 Cartridge for sample assay and cartridge reader for sample assay
JP6369330B2 (en) * 2012-12-19 2018-08-08 コニカミノルタ株式会社 Sensor chip and SPFS immunofluorescence measurement system using the same
JP6386062B2 (en) * 2014-09-24 2018-09-05 富士フイルム株式会社 Fluorescence detection method and detection sample cell
CN115615795A (en) * 2015-01-12 2023-01-17 仪器实验室公司 System for spatial separation of particles in particle-containing solutions for biomedical sensing and detection

Also Published As

Publication number Publication date
JP2018054495A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6369533B2 (en) Measuring method and measuring device
JP6888548B2 (en) Measuring method
JP6856074B2 (en) Measuring method, measuring device and measuring system
JP6801656B2 (en) Detection device and detection method
WO2017057136A1 (en) Surface plasmon-field enhanced fluorescence spectroscopy and measurement kit
JP6690655B2 (en) Liquid delivery method, detection system and detection apparatus for performing the same
JP6911318B2 (en) Blood test sensor chip, blood test device and blood test method
WO2017082069A1 (en) Reaction method
JP6848975B2 (en) Measuring method
WO2016031412A1 (en) Reaction method, detection method, and detection device
JPWO2016132945A1 (en) Reaction method and reaction apparatus
JP6838612B2 (en) Inspection chip and inspection system
JP6922907B2 (en) Reaction methods, as well as reaction systems and equipment that perform this.
JPWO2016093039A1 (en) Detection chip and detection method
JP6642592B2 (en) Liquid sending method, and detection system and detection device for performing the same
JP6627778B2 (en) Detection device and detection method
JP6943262B2 (en) Liquid feeding system, inspection system and liquid feeding method
JP6481371B2 (en) Detection method and detection kit
JPWO2018179950A1 (en) Sensor chip for sample detection system
JP6493412B2 (en) Detection apparatus and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190327

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210621

R150 Certificate of patent or registration of utility model

Ref document number: 6911318

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350