JPWO2015178069A6 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
JPWO2015178069A6
JPWO2015178069A6 JP2016520964A JP2016520964A JPWO2015178069A6 JP WO2015178069 A6 JPWO2015178069 A6 JP WO2015178069A6 JP 2016520964 A JP2016520964 A JP 2016520964A JP 2016520964 A JP2016520964 A JP 2016520964A JP WO2015178069 A6 JPWO2015178069 A6 JP WO2015178069A6
Authority
JP
Japan
Prior art keywords
gas barrier
layer
film
barrier layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016520964A
Other languages
Japanese (ja)
Other versions
JP6520932B2 (en
JPWO2015178069A1 (en
Inventor
孝博 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority claimed from PCT/JP2015/056867 external-priority patent/WO2015178069A1/en
Publication of JPWO2015178069A1 publication Critical patent/JPWO2015178069A1/en
Publication of JPWO2015178069A6 publication Critical patent/JPWO2015178069A6/en
Application granted granted Critical
Publication of JP6520932B2 publication Critical patent/JP6520932B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本発明は、高温高湿環境での耐久性に優れ、波長450nm付近の青色光の透過性に優れたガスバリア性フィルムを提供する。
本発明のガスバリア性フィルムは、(A)樹脂基材、(B)無機化合物を含む第1のガスバリア層、(C)ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、SiOwNx(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50〜1000nmの厚さを有する領域を有する第2のガスバリア層、ならびに(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層をこの順に含む。
The present invention provides a gas barrier film that is excellent in durability in a high-temperature and high-humidity environment and excellent in blue light transmittance around a wavelength of 450 nm.
The gas barrier film of the present invention has (A) a resin substrate, (B) a first gas barrier layer containing an inorganic compound, and (C) a coating film obtained by applying and drying a coating liquid containing polysilazane. A region formed by application and satisfying the composition range represented by SiOwNx (where 0.2 <w ≦ 0.55, 0.66 <x ≦ 0.75) and having a thickness of 50 to 1000 nm And (D) a layer containing a metal oxide whose oxidation-reduction potential is lower than that of silicon as a main component and having a refractive index of light having a wavelength of 450 nm of 2.0 or more in this order.

Description

本発明は、ガスバリア性フィルムに関する。  The present invention relates to a gas barrier film.

従来、プラスチック基板やフィルムの表面に、酸化アルミニウム、酸化マグネシウム、酸化ケイ素等の金属酸化物の薄膜を含む複数の層を積層して形成したガスバリア性フィルムは、水蒸気や酸素等の各種ガスの遮断を必要とする物品の包装、例えば、食品や工業用品および医薬品等の変質を防止するための包装用途に広く用いられている。  Conventionally, a gas barrier film formed by laminating a plurality of layers including thin films of metal oxides such as aluminum oxide, magnesium oxide, and silicon oxide on the surface of a plastic substrate or film is used to block various gases such as water vapor and oxygen. For example, it is widely used for packaging of articles that require the use of, for example, packaging for preventing deterioration of foods, industrial products, pharmaceuticals, and the like.

包装用途以外にも、ガスバリア性フィルムは、フレキシブル性を有する太陽電池素子、有機エレクトロルミネッセンス(EL)素子、液晶表示素子等のフレキシブル電子デバイスへの展開が要望され、多くの検討がなされている。しかし、これらフレキシブル電子デバイスにおいては、ガラス基材レベルの非常に高いガスバリア性が要求される。特に、85℃85%RHというような高温高湿環境で長期間保存しても、ダークスポットの発生が抑制された有機EL素子が求められている。また、ボトムエミッション型の有機EL素子においては、発光効率を向上させる観点から、特に波長450nm付近の青色光をより多く透過させる特性が求められている。  In addition to packaging applications, gas barrier films are required to be developed into flexible electronic devices such as flexible solar cell elements, organic electroluminescence (EL) elements, and liquid crystal display elements, and many studies have been made. However, these flexible electronic devices are required to have an extremely high gas barrier property at the glass substrate level. In particular, there is a demand for an organic EL device in which the generation of dark spots is suppressed even when stored for a long time in a high temperature and high humidity environment such as 85 ° C. and 85% RH. Further, in the bottom emission type organic EL element, from the viewpoint of improving the light emission efficiency, a characteristic of transmitting more blue light particularly in the vicinity of a wavelength of 450 nm is required.

ここで、特許文献1には、ポリシラザン化合物を含む層に炭化水素系化合物のイオンが注入されて得られる層を有する成形体が開示されている。また、特許文献2には、基材と、前記基材上に形成される窒素高濃度領域を有するシリコン含有膜と、を有する積層体が開示されている。  Here, Patent Document 1 discloses a molded body having a layer obtained by implanting hydrocarbon compound ions into a layer containing a polysilazane compound. Patent Document 2 discloses a laminate including a base material and a silicon-containing film having a high nitrogen concentration region formed on the base material.

国際公開第2011/122547号(US2014/0374665A1に対応)International Publication No. 2011/122547 (corresponding to US2014 / 0374665A1) 国際公開第2011/007543号(US2012/0107607A1に対応)International Publication No. 2011/007543 (corresponding to US2012 / 0107607A1)

しかしながら、上記特許文献1〜2に記載の成形体または積層体は、例えば85℃85%RHというような高温高湿環境での有機EL素子のダークスポット発生を抑制する高いガスバリア性を有していないという問題があった。また、上記特許文献1〜2に記載の成形体または積層体は、波長450nm付近の青色光の透過率が低く、該成形体または積層体を用いた電子デバイスの青色光の発光効率が低いという問題があった。  However, the molded article or laminate described in Patent Documents 1 and 2 have a high gas barrier property that suppresses the occurrence of dark spots in organic EL elements in a high temperature and high humidity environment such as 85 ° C. and 85% RH. There was no problem. Further, the molded body or laminate described in Patent Documents 1 and 2 have a low transmittance of blue light in the vicinity of a wavelength of 450 nm, and the light emission efficiency of blue light of an electronic device using the molded body or the laminate is low. There was a problem.

そこで本発明は、高温高湿環境での耐久性に優れ、波長450nm付近の青色光の透過性に優れるガスバリア性フィルムを提供することを目的とする。  Accordingly, an object of the present invention is to provide a gas barrier film that is excellent in durability in a high-temperature and high-humidity environment and excellent in blue light transmittance around a wavelength of 450 nm.

本発明者は、上記の課題を解決すべく、鋭意研究を行った。その結果、(A)樹脂基材上に、(B)無機化合物を含む第1のガスバリア層、(C)ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、特定の組成および厚さを有する領域を有する第2のガスバリア層、ならびに(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層、をこの順に含むガスバリア性フィルムにより、上記課題を解決することを見出した。上記知見に基づいて、本発明を完成した。  The present inventor has intensively studied to solve the above problems. As a result, energy is applied to the coating film obtained by applying and drying the coating liquid containing (B) the first gas barrier layer containing the inorganic compound and (C) the polysilazane on (A) the resin base material. A second gas barrier layer formed and having a region having a specific composition and thickness, and (D) a metal oxide having a lower redox potential than silicon as a main component, and having a refractive index of light having a wavelength of 450 nm It has been found that the above-mentioned problems can be solved by a gas barrier film containing layers of 2.0 or more in this order. Based on the above findings, the present invention has been completed.

すなわち、本発明は、(A)樹脂基材、(B)無機化合物を含む第1のガスバリア層、(C)ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50〜1000nmの厚さを有する領域を有する第2のガスバリア層、ならびに(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層、をこの順に含む、ガスバリア性フィルムである。That is, the present invention applies energy to a coating film obtained by applying and drying (A) a resin base material, (B) a first gas barrier layer containing an inorganic compound, and (C) a polysilazane. And satisfies the composition range represented by SiO w N x (where 0.2 <w ≦ 0.55, 0.66 <x ≦ 0.75) and has a thickness of 50 to 1000 nm. A second gas barrier layer having a region, and (D) a layer containing, as a main component, an oxide of a metal having a lower oxidation-reduction potential than silicon and having a refractive index of light having a wavelength of 450 nm of 2.0 or more in this order. A gas barrier film.

本発明に係る第1のガスバリア層を製造するために好適に利用することが可能な成膜装置の一例を示す模式図である。図1において、Sは成膜空間を;1aは基材を;1b、1cは成膜された基材を;10は送り出しロールを;11、12、13、14は搬送ロールを;15は第1成膜ロールを;16は第2成膜ロールを;17は巻取りロールを;18はガス供給管を;19はプラズマ発生用電源を;20、21は磁場発生装置を;30は真空チャンバを;40は真空ポンプを;41は制御部を、それぞれ示す。It is a schematic diagram which shows an example of the film-forming apparatus which can be utilized suitably in order to manufacture the 1st gas barrier layer concerning this invention. In FIG. 1, S is a film formation space; 1a is a base material; 1b and 1c are base materials on which a film is formed; 10 is a delivery roll; 11, 12, 13, and 14 are transport rolls; 1 is a film forming roll; 16 is a second film forming roll; 17 is a winding roll; 18 is a gas supply pipe; 19 is a power source for generating plasma; 20 and 21 are magnetic field generators; and 30 is a vacuum chamber 40 represents a vacuum pump; 41 represents a control unit. 本発明に係る第1のガスバリア層を製造するために好適に利用することが可能な成膜装置の他の例を示す模式図である。図2において、S、S’は成膜空間を;1aは基材を;1b、1c、1d、1eは成膜された基材を;10は送り出しロールを;11、12、12’、13、13’、14は搬送ロールを;15は第1成膜ロールを;16は第2成膜ロールを;15’は第3成膜ロールを;16’は第4成膜ロールを;17は巻取りロールを;18、18’はガス供給管を;19、19’はプラズマ発生用電源を;20、20’、21、21’は磁場発生装置を;30は真空チャンバを;40、40’は真空ポンプを;41は制御部を、それぞれ示す。It is a schematic diagram which shows the other example of the film-forming apparatus which can be utilized suitably in order to manufacture the 1st gas barrier layer based on this invention. In FIG. 2, S and S ′ are film forming spaces; 1 a is a base material; 1 b, 1 c, 1 d and 1 e are base materials on which a film is formed; 10 is a feeding roll; 11, 12, 12 ′ and 13. , 13 ′, 14 are transport rolls; 15 is a first film forming roll; 16 is a second film forming roll; 15 ′ is a third film forming roll; 16 ′ is a fourth film forming roll; 18, 18 'are gas supply pipes; 19, 19' is a power source for generating plasma; 20, 20 ', 21, 21' is a magnetic field generator; 30 is a vacuum chamber; 40, 40 'Indicates a vacuum pump; 41 indicates a control unit.

本発明は、(A)樹脂基材、(B)無機化合物を含む第1のガスバリア層、(C)ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50〜1000nmの厚さを有する領域を有する第2のガスバリア層、ならびに(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層、をこの順に含む、ガスバリア性フィルムである。このような構成を有する本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れ、波長450nm付近の青色光の透過性に優れる。The present invention is formed by applying energy to (A) a resin substrate, (B) a first gas barrier layer containing an inorganic compound, and (C) a coating liquid obtained by applying and drying a polysilazane coating liquid. A region satisfying a composition range represented by SiO w N x (where 0.2 <w ≦ 0.55, 0.66 <x ≦ 0.75) and having a thickness of 50 to 1000 nm. A second gas barrier layer having, and (D) a layer containing a metal oxide having a lower redox potential than silicon as a main component and having a refractive index of light having a wavelength of 450 nm of 2.0 or more in this order. It is a gas barrier film. The gas barrier film of the present invention having such a configuration is excellent in durability in a high-temperature and high-humidity environment, and excellent in blue light transmission around a wavelength of 450 nm.

なぜ、本発明のガスバリア性フィルムにより上記効果が得られるのか、詳細は不明であるが、下記のようなメカニズムが考えられる。なお、下記のメカニズムは推測によるものであり、本発明は下記メカニズムに何ら拘泥されるものではない。  The details of the reason why the above-described effects can be obtained by the gas barrier film of the present invention are not clear, but the following mechanism is conceivable. The following mechanism is based on speculation, and the present invention is not limited to the following mechanism.

すなわち、本発明に係る第2のガスバリア層は、上記SiOで表される組成範囲を満たす領域(以下、単に領域(c)とも称する)を有することで、ガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成されることにより、成膜時にパーティクル等の異物混入がほとんどなくなり、欠陥が非常に少ないガスバリア層を形成することが可能となる。しかし、この領域(c)は酸化に対して完全に安定ではなく、高温高湿環境では徐々に酸化されてガスバリア性が低下することがある。樹脂基材側からスポット的に漏出する水蒸気があり、この水蒸気により第2のガスバリア層はスポット的に酸化されて、ガスバリア性が低下した部位が形成される。例えば有機EL素子をガスバリア性フィルム上に形成する場合、前記のガスバリア性が低下した部位から、水蒸気が浸入してダークスポットになると考えられる。That is, the second gas barrier layer according to the present invention exhibits gas barrier properties by having a region satisfying the composition range represented by the SiO w N x (hereinafter also simply referred to as region (c)). Unlike the case where it is formed by a vapor phase film forming method, by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane, particles such as It is possible to form a gas barrier layer with almost no foreign matter and very few defects. However, this region (c) is not completely stable against oxidation and may be gradually oxidized in a high-temperature and high-humidity environment to lower the gas barrier property. There is water vapor that leaks in a spot manner from the resin base material side, and the second gas barrier layer is spot-oxidized by this water vapor to form a portion having a lowered gas barrier property. For example, when an organic EL element is formed on a gas barrier film, it is considered that water vapor permeates from the portion where the gas barrier property is lowered to become a dark spot.

本発明に係る(D)ケイ素よりも酸化還元電位の低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層(以下、単に「(D)層」とも称する)は、ガスバリア性はそれほど高くなく、有機EL素子のダークスポット低減に寄与するほどのガスバリア性はないと考えられる。しかしながら、該(D)層は、酸化還元電位が低い金属の酸化物を主成分として含んでおり、高温高湿環境では領域(c)を有する第2のガスバリア層よりも先に酸化されることになる。したがって、高温高湿環境における第2のガスバリア層表面の酸化抑制効果が発揮され、スポット的なガスバリア性の低下が生じにくくなると考えられる。よって、本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れる。  (D) a layer containing a metal oxide having a lower oxidation-reduction potential than silicon as a main component according to the present invention and having a refractive index of light having a wavelength of 450 nm of 2.0 or more (hereinafter simply referred to as “(D) layer”) Gas barrier property is not so high, and it is considered that there is no gas barrier property that contributes to the reduction of dark spots of the organic EL element. However, the layer (D) contains a metal oxide having a low oxidation-reduction potential as a main component, and is oxidized prior to the second gas barrier layer having the region (c) in a high temperature and high humidity environment. become. Therefore, it is considered that the effect of suppressing the oxidation of the surface of the second gas barrier layer in a high temperature and high humidity environment is exhibited, and the spot-like gas barrier property is hardly reduced. Therefore, the gas barrier film of the present invention is excellent in durability in a high temperature and high humidity environment.

また、本発明に係る(D)層は、波長450nmの光の屈折率は2.0以上である。このような屈折率を有する(D)層を備える本発明のガスバリア性フィルムは、波長450nm付近の光の透過性(光取り出し性)に優れ、該ガスバリア性フィルムを用いた電子デバイスは青色光の発光効率に優れたものとなる。  Further, the (D) layer according to the present invention has a refractive index of light having a wavelength of 450 nm of 2.0 or more. The gas barrier film of the present invention comprising the (D) layer having such a refractive index is excellent in light transmittance (light extraction property) in the vicinity of a wavelength of 450 nm, and an electronic device using the gas barrier film emits blue light. It is excellent in luminous efficiency.

以下、本発明の好ましい実施形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。  Hereinafter, preferred embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.

また、本明細書において、特記しない限り、操作および物性等の測定は室温(20〜25℃)/相対湿度40〜50%の条件で測定する。  In the present specification, unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.

[(A)樹脂基材]
本発明に係る樹脂基材(A)としては、具体的には、ポリエステル樹脂、メタクリル樹脂、メタクリル酸−マレイン酸共重合体、ポリスチレン樹脂、透明フッ素樹脂、ポリイミド、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、脂環式ポリオレフィン樹脂、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、シクロオレフィルンコポリマー、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂、アクリロイル化合物などの熱可塑性樹脂を含む基材が挙げられる。該樹脂基材は、単独でもまたは2種以上組み合わせても用いることができる。
[(A) Resin base material]
Specifically, as the resin base material (A) according to the present invention, polyester resin, methacrylic resin, methacrylic acid-maleic acid copolymer, polystyrene resin, transparent fluororesin, polyimide, fluorinated polyimide resin, polyamide resin, Polyamideimide resin, polyetherimide resin, cellulose acylate resin, polyurethane resin, polyetheretherketone resin, polycarbonate resin, alicyclic polyolefin resin, polyarylate resin, polyethersulfone resin, polysulfone resin, cycloolefin copolymer, fluorene Examples include substrates containing thermoplastic resins such as ring-modified polycarbonate resins, alicyclic modified polycarbonate resins, fluorene ring-modified polyester resins, and acryloyl compounds. These resin substrates can be used alone or in combination of two or more.

樹脂基材は耐熱性を有する素材からなることが好ましい。具体的には、線膨張係数が15ppm/K以上100ppm/K以下で、かつガラス転移温度(Tg)が100℃以上300℃以下の樹脂基材が使用される。該基材は、電子部品用途、ディスプレイ用積層フィルムとしての必要条件を満たしている。即ち、これらの用途に本発明に係るガスバリア性フィルムを用いる場合、ガスバリア性フィルムは、150℃以上の工程に曝されることがある。この場合、ガスバリア性フィルムにおける基材の線膨張係数が100ppm/Kを超えると、ガスバリア性フィルムを前記のような温度の工程に流す際に基板寸法が安定せず、熱膨張および収縮に伴い、遮断性性能が劣化する不都合や、あるいは、熱工程に耐えられないという不具合が生じやすくなる。15ppm/K未満では、フィルムがガラスのように割れてしまいフレキシビリティが劣化する場合がある。  The resin substrate is preferably made of a material having heat resistance. Specifically, a resin base material having a linear expansion coefficient of 15 ppm / K or more and 100 ppm / K or less and a glass transition temperature (Tg) of 100 ° C. or more and 300 ° C. or less is used. The base material satisfies the requirements for use as a laminated film for electronic parts and displays. That is, when the gas barrier film according to the present invention is used for these applications, the gas barrier film may be exposed to a process at 150 ° C. or higher. In this case, when the coefficient of linear expansion of the base material in the gas barrier film exceeds 100 ppm / K, the substrate dimensions are not stable when the gas barrier film is passed through the temperature process as described above, and thermal expansion and contraction occur. Inconvenience that the shut-off performance deteriorates or a problem that it cannot withstand the heat process is likely to occur. If it is less than 15 ppm / K, the film may break like glass and the flexibility may deteriorate.

基材のTgや線膨張係数は、添加剤などによって調整することができる。基材として用いることができる熱可塑性樹脂のより好ましい具体例としては、例えば、ポリエチレンテレフタレート(PET:70℃)、ポリエチレンナフタレート(PEN:120℃)、ポリカーボネート(PC:140℃)、脂環式ポリオレフィン(例えば日本ゼオン株式会社製、ゼオノア(登録商標)1600:160℃)、ポリアリレート(PAr:210℃)、ポリエーテルスルホン(PES:220℃)、ポリスルホン(PSF:190℃)、シクロオレフィンコポリマー(COC:特開2001−150584号公報に記載の化合物:162℃)、ポリイミド(例えば三菱ガス化学株式会社製、ネオプリム(登録商標):260℃)、フルオレン環変性ポリカーボネート(BCF−PC:特開2000−227603号公報に載の化合物:225℃)、脂環変性ポリカーボネート(IP−PC:特開2000−227603号公報に記載の化合物:205℃)、アクリロイル化合物(特開2002−80616号公報に記載の化合物:300℃以上)等が挙げられる(括弧内はTgを示す)。  The Tg and the linear expansion coefficient of the substrate can be adjusted with an additive or the like. More preferable specific examples of the thermoplastic resin that can be used as the substrate include, for example, polyethylene terephthalate (PET: 70 ° C.), polyethylene naphthalate (PEN: 120 ° C.), polycarbonate (PC: 140 ° C.), and alicyclic. Polyolefin (for example, ZEONOR (registered trademark) 1600: 160 ° C, manufactured by Nippon Zeon Co., Ltd.), polyarylate (PAr: 210 ° C), polyethersulfone (PES: 220 ° C), polysulfone (PSF: 190 ° C), cycloolefin copolymer (COC: Compound described in JP-A No. 2001-150584: 162 ° C.), polyimide (for example, Neoprim (registered trademark): 260 ° C. manufactured by Mitsubishi Gas Chemical Co., Ltd.), fluorene ring-modified polycarbonate (BCF-PC: JP In 2000-227603 Compound: 225 ° C.), alicyclic modified polycarbonate (IP-PC: compound described in JP 2000-227603 A: 205 ° C.), acryloyl compound (compound described in JP 2002-80616 A: 300 ° C. or higher) And the like (in the parentheses indicate Tg).

本発明に係るガスバリア性フィルムは、有機EL素子等の電子デバイスとして利用されることから、樹脂基材は透明であることが好ましい。すなわち、光線透過率が通常80%以上、好ましくは85%以上、さらに好ましくは90%以上である。光線透過率は、JIS K7105:1981に記載された方法、すなわち積分球式光線透過率測定装置を用いて全光線透過率および散乱光量を測定し、全光線透過率から拡散透過率を引いて算出することができる。  Since the gas barrier film according to the present invention is used as an electronic device such as an organic EL element, the resin base material is preferably transparent. That is, the light transmittance is usually 80% or more, preferably 85% or more, and more preferably 90% or more. The light transmittance is calculated by measuring the total light transmittance and the amount of scattered light using the method described in JIS K7105: 1981, that is, using an integrating sphere light transmittance measuring device, and subtracting the diffuse transmittance from the total light transmittance. can do.

ただし、本発明に係るガスバリア性フィルムをディスプレイ用途に用いる場合であっても、観察側に設置しない場合などは必ずしも透明性が要求されない。したがって、このような場合は、プラスチックフィルムとして不透明な材料を用いることもできる。不透明な材料としては、例えば、ポリイミド、ポリアクリロニトリル、公知の液晶ポリマーなどが挙げられる。  However, even when the gas barrier film according to the present invention is used for display applications, transparency is not necessarily required when it is not installed on the observation side. Therefore, in such a case, an opaque material can be used as the plastic film. Examples of the opaque material include polyimide, polyacrylonitrile, and known liquid crystal polymers.

樹脂基材は、表面の平滑性が高いものが好ましい。表面の平滑性としては、平均表面粗さ(Ra)が2nm以下であるものが好ましい。下限は特にないが、実用上、0.01nm以上であることが好ましい。必要に応じて、基材の表面を研磨し平滑性を向上させておいてもよい。  The resin base material preferably has a high surface smoothness. As the surface smoothness, those having an average surface roughness (Ra) of 2 nm or less are preferable. Although there is no particular lower limit, it is preferably 0.01 nm or more for practical use. If necessary, the surface of the substrate may be polished to improve smoothness.

また、上記に挙げた樹脂基材は、未延伸フィルムでもよく、延伸フィルムでもよい。当該樹脂基材は、従来公知の一般的な方法により製造することが可能である。これらの基材の製造方法については、国際公開第2013/002026号(US2014/0106151A1に対応)の段落「0051」〜「0055」に記載された事項を適宜採用することができる。  Moreover, the unstretched film may be sufficient as the resin base material quoted above, and a stretched film may be sufficient as it. The resin substrate can be produced by a conventionally known general method. Regarding the manufacturing method of these base materials, the items described in paragraphs “0051” to “0055” of International Publication No. 2013/002026 (corresponding to US2014 / 0106151A1) can be appropriately employed.

樹脂基材は、ハードコート層を有していてもよい。ハードコート層に含まれる材料の例としては、例えば、熱硬化性樹脂や活性エネルギー線硬化性樹脂が挙げられるが、成形が容易なことから、活性エネルギー線硬化性樹脂が好ましい。このような硬化性樹脂は、単独でもまたは2種以上組み合わせても用いることができる。  The resin base material may have a hard coat layer. Examples of the material contained in the hard coat layer include a thermosetting resin and an active energy ray curable resin, but an active energy ray curable resin is preferable because it is easy to mold. Such curable resins can be used singly or in combination of two or more.

活性エネルギー線硬化性樹脂とは、紫外線や電子線のような活性エネルギー線照射により架橋反応等を経て硬化する樹脂をいう。活性エネルギー線硬化性樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性エネルギー線を照射することによって硬化させて、活性エネルギー線硬化性樹脂層、すなわちハードコート層が形成される。活性エネルギー線硬化性樹脂としては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する紫外線硬化性樹脂が好ましい。予めハードコート層が形成されている市販の樹脂基材を用いてもよく、その具体例としては、例えば、商品名 KBフィルム(商標)125G1SBF(株式会社きもと製)等が挙げられる。  The active energy ray-curable resin refers to a resin that is cured through a crosslinking reaction or the like by irradiation with active energy rays such as ultraviolet rays and electron beams. As the active energy ray curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and cured by irradiating an active energy ray such as an ultraviolet ray or an electron beam to cure the active energy ray. A functional resin layer, that is, a hard coat layer is formed. Typical examples of the active energy ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and an ultraviolet curable resin that is cured by irradiation with ultraviolet rays is preferable. A commercially available resin base material on which a hard coat layer is formed in advance may be used. Specific examples thereof include trade name KB film (trademark) 125G1SBF (manufactured by Kimoto Co., Ltd.).

樹脂基材の表面は、密着性向上のための公知の種々の処理、例えばコロナ放電処理、火炎処理、酸化処理、またはプラズマ処理等を行っていてもよく、必要に応じて上記処理を組み合わせて行っていてもよい。  The surface of the resin substrate may be subjected to various known treatments for improving adhesion, such as corona discharge treatment, flame treatment, oxidation treatment, or plasma treatment, and the above treatments may be combined as necessary. May go.

該樹脂基材は、単層でもよいし2層以上の積層構造であってもよい。該樹脂基材が2層以上の積層構造である場合、各樹脂基材は同じ種類であってもよいし異なる種類であってもよい。  The resin substrate may be a single layer or a laminated structure of two or more layers. When the resin base material has a laminated structure of two or more layers, the resin base materials may be the same type or different types.

本発明に係る樹脂基材の厚さ(2層以上の積層構造である場合はその総厚)は、10〜200μmであることが好ましく、20〜150μmであることがより好ましい。  The thickness of the resin substrate according to the present invention (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 200 μm, and more preferably 20 to 150 μm.

[(B)第1のガスバリア層]
本発明のガスバリア性フィルムは、(A)樹脂基材上に、(B)無機化合物を含む第1のガスバリア層を有する。第1のガスバリア層を備えることにより、樹脂基材側から浸入する水蒸気を遮断することができ、高温高湿環境での耐久性が向上したガスバリア性フィルムとなる。
[(B) First gas barrier layer]
The gas barrier film of the present invention has (B) a first gas barrier layer containing an inorganic compound on (A) a resin substrate. By providing the first gas barrier layer, water vapor entering from the resin substrate side can be blocked, and a gas barrier film with improved durability in a high temperature and high humidity environment is obtained.

本発明に係る第1のガスバリア層は、無機化合物を含む。第1のガスバリア層に含まれる無機化合物としては、特に限定されないが、例えば、ケイ素またはケイ素よりも酸化還元電位が高い金属の酸化物、金属窒化物、金属炭化物、金属酸窒化物または金属酸炭化物が挙げられる。中でも、ガスバリア性能の点で、Si、In、Sn、Zn、Cu、およびCeから選ばれる1種以上の金属を含む、酸化物、窒化物、炭化物、酸窒化物または酸炭化物などを好ましく用いることができる。好適な無機化合物として、具体的には、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素、または酸炭化ケイ素が挙げられる。副次的な成分として他の元素を含有してもよい。  The first gas barrier layer according to the present invention contains an inorganic compound. Although it does not specifically limit as an inorganic compound contained in a 1st gas barrier layer, For example, the metal oxide, metal nitride, metal carbide, metal oxynitride, or metal oxycarbide whose oxidation-reduction potential is higher than silicon or silicon Is mentioned. Among these, oxides, nitrides, carbides, oxynitrides or oxycarbides containing one or more metals selected from Si, In, Sn, Zn, Cu, and Ce are preferably used in terms of gas barrier performance. Can do. Specific examples of suitable inorganic compounds include silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and silicon oxycarbide. You may contain another element as a secondary component.

第1のガスバリア層に含まれる無機化合物の含有量は特に限定されないが、第1のガスバリア層の全質量に対して50質量%以上であることが好ましく、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、第1のガスバリア層は無機化合物からなる)ことが最も好ましい。  The content of the inorganic compound contained in the first gas barrier layer is not particularly limited, but is preferably 50% by mass or more, more preferably 80% by mass or more with respect to the total mass of the first gas barrier layer. The content is more preferably 95% by mass or more, particularly preferably 98% by mass or more, and most preferably 100% by mass (that is, the first gas barrier layer is made of an inorganic compound).

第1のガスバリア層の形成方法としては、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成する方法や気相成膜法が挙げられる。中でも、湿度により酸化されにくく、高温高湿環境でも安定してガスバリア性を発揮することができる気相成膜法により形成されることが好ましい。  Examples of the method for forming the first gas barrier layer include a method in which energy is applied to a coating film obtained by applying and drying a coating liquid containing polysilazane and a gas phase film forming method. In particular, it is preferably formed by a vapor deposition method that is not easily oxidized by humidity and can stably exhibit gas barrier properties even in a high-temperature and high-humidity environment.

第1のガスバリア層の形成方法の一つであるポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成する方法において、エネルギーの印加の条件以外の形成条件(用いられるポリシラザンの種類、塗布液に用いられる溶媒、塗布液濃度、触媒の種類等)は、後述する(C)第2のガスバリア層の項で詳細に説明するため、ここでは説明を省略する。  In a method for applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane, which is one of the methods for forming the first gas barrier layer, formation conditions other than the conditions for applying energy ( The type of polysilazane used, the solvent used in the coating solution, the concentration of the coating solution, the type of catalyst, etc.) will be described in detail in the section of (C) the second gas barrier layer, which will be described later.

エネルギーを印加する方法としては、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましく、真空紫外線を照射することがより好ましい。  As a method for applying energy, a conversion reaction by a plasma treatment capable of a conversion reaction or an ultraviolet irradiation treatment is preferable, and vacuum ultraviolet irradiation is more preferable.

ガスバリア性を有さない樹脂基材に接するように、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成されるガスバリア層は、樹脂基材側から透過してくる水蒸気や酸素の影響で厚さ方向の樹脂基材側が酸化された組成、すなわち、SiO2.0〜2.4のような組成となる。一方、エネルギーを印加される層の表面側は、Siに対してNが約0.6以下、Oが約0.6以上のSiON組成となり、この領域が高いガスバリア性を有するとともに、本発明に係る領域(c)よりも良好な高温高湿条件での耐酸化性を有する。基材側組成と表面側組成とは明瞭な界面を有しており、かつ、本発明に係る領域(c)は形成されない。A gas barrier layer formed by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane so as to come into contact with a resin base material having no gas barrier property is transmitted from the resin base material side. It becomes a composition in which the resin base material side in the thickness direction is oxidized by the influence of water vapor and oxygen coming, that is, a composition such as SiO 2.0 to 2.4 . On the other hand, the surface side of the layer to which energy is applied has a SiON composition in which N is about 0.6 or less and O is about 0.6 or more with respect to Si, and this region has a high gas barrier property. It has better oxidation resistance under high temperature and high humidity conditions than the region (c). The substrate-side composition and the surface-side composition have a clear interface, and the region (c) according to the present invention is not formed.

第1のガスバリア層の好ましい形成方法である気相成膜法としては、物理気相成長法(PVD法)または化学気相成長法(CVD法)が挙げられる。  Examples of the vapor deposition method that is a preferable method for forming the first gas barrier layer include a physical vapor deposition method (PVD method) and a chemical vapor deposition method (CVD method).

以下、気相成膜法について説明する。  Hereinafter, the vapor deposition method will be described.

<気相成膜法>
物理気相成長法(Physical Vapor Deposition、PVD法)は、気相中で物質の表面に物理的手法により、目的とする物質、例えば、炭素膜等の薄膜を堆積する方法であり、例えば、スパッタ法(DCスパッタ法、RFスパッタ法、イオンビームスパッタ法、およびマグネトロンスパッタ法等)、真空蒸着法、イオンプレーティング法などが挙げられる。
<Gas deposition method>
The physical vapor deposition method (PVD method) is a method of depositing a target material, for example, a thin film such as a carbon film, on the surface of the material in a gas phase by a physical method. Examples thereof include a DC sputtering method, an RF sputtering method, an ion beam sputtering method, and a magnetron sputtering method, a vacuum deposition method, and an ion plating method.

化学気相成長法(Chemical Vapor Deposition、CVD法)は、基材上に、目的とする薄膜の成分を含む原料ガスを供給し、基材表面または気相での化学反応により膜を堆積する方法である。また、化学反応を活性化する目的で、プラズマなどを発生させる方法などがあり、熱CVD法、触媒化学気相成長法、光CVD法、真空プラズマCVD法、大気圧プラズマCVD法など公知のCVD方式等が挙げられる。特に限定されるものではないが、製膜速度や処理面積の観点から、真空プラズマCVD法または大気圧プラズマCVD法等のプラズマCVD法を適用することが好ましい。  The chemical vapor deposition (CVD) method is a method of depositing a film by a chemical reaction on the surface of the substrate or in the vapor phase by supplying a raw material gas containing a target thin film component onto the substrate. It is. In addition, for the purpose of activating the chemical reaction, there is a method of generating plasma or the like. Known CVD such as thermal CVD method, catalytic chemical vapor deposition method, photo CVD method, vacuum plasma CVD method, atmospheric pressure plasma CVD method, etc. The method etc. are mentioned. Although not particularly limited, it is preferable to apply a plasma CVD method such as a vacuum plasma CVD method or an atmospheric pressure plasma CVD method from the viewpoint of film forming speed and processing area.

例えば、ケイ素化合物を原料化合物として用い、分解ガスに酸素を用いれば、ケイ素酸化物が生成する。これはプラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。  For example, if a silicon compound is used as a raw material compound and oxygen is used as the decomposition gas, silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are accelerated at high speed in the plasma space, and the elements present in the plasma space are thermodynamic. This is because it is converted into an extremely stable compound in a very short time.

なお、以下では、成膜装置として、プラズマCVD法によって薄膜を形成する、対向ロール型のロール・トゥ・ロール成膜装置を使用して、第1のガスバリア層を製造する場合を例示して説明する。  In the following description, a case where the first gas barrier layer is manufactured by using a counter roll type roll-to-roll film forming apparatus that forms a thin film by a plasma CVD method will be described as an example of the film forming apparatus. To do.

図1および図2は、成膜装置の一例を示す概略構成図である。図2に例示した成膜装置101は、図1に例示した成膜装置100をタンデムに2台接合した構成を基本としている。ここでは、図2に例示した成膜装置を例にして第1のガスバリア層を形成する場合を説明するが、図2に記載の成膜装置に関する説明は、図1に記載の成膜装置に関する説明に対しても適宜参酌される。  1 and 2 are schematic configuration diagrams illustrating an example of a film forming apparatus. The film forming apparatus 101 illustrated in FIG. 2 has a basic structure in which two film forming apparatuses 100 illustrated in FIG. 1 are joined in tandem. Here, the case where the first gas barrier layer is formed will be described using the film forming apparatus illustrated in FIG. 2 as an example. However, the description relating to the film forming apparatus illustrated in FIG. 2 relates to the film forming apparatus illustrated in FIG. The explanation is also taken into consideration as appropriate.

図2に示す通り、成膜装置101は、送り出しロール10と、搬送ロール11〜14と、第1、第2、第3および第4成膜ロール15、16、15’、16’と、巻取りロール17と、ガス供給管18、18’と、プラズマ発生用電源19、19’と、磁場発生装置20、21、20’、21’と、真空チャンバ30と、真空ポンプ40、40’と、制御部41と、を有する。  As shown in FIG. 2, the film forming apparatus 101 includes a delivery roll 10, transport rolls 11 to 14, first, second, third, and fourth film forming rolls 15, 16, 15 ′, 16 ′, Take-off roll 17, gas supply pipes 18, 18 ', plasma generation power sources 19, 19', magnetic field generators 20, 21, 20 ', 21', vacuum chamber 30, vacuum pumps 40, 40 ' And a control unit 41.

送り出しロール10、搬送ロール11〜14、第1、第2、第3および第4成膜ロール15、16、15’、16’、および巻取りロール17は、真空チャンバ30に収容されている。  The delivery roll 10, the transport rolls 11 to 14, the first, second, third and fourth film forming rolls 15, 16, 15 ′, 16 ′ and the take-up roll 17 are accommodated in the vacuum chamber 30.

送り出しロール10は、予め巻き取られた状態で設置されている基材1aを搬送ロール11に向けて送り出す。送り出しロール10は、紙面に対して垂直方向に延在した円筒状のロールであり、図示しない駆動モーターにより反時計回りに回転(図2の矢印を参照)することにより、送り出しロール10に巻回された基材1aを搬送ロール11に向けて送り出す。  The feed roll 10 feeds the base material 1 a installed in a state of being wound in advance toward the transport roll 11. The delivery roll 10 is a cylindrical roll extending in a direction perpendicular to the paper surface, and is wound around the delivery roll 10 by rotating counterclockwise (see an arrow in FIG. 2) by a drive motor (not shown). The base material 1a is sent out toward the transport roll 11.

搬送ロール11〜14は、送り出しロール10と略平行な回転軸を中心に回転可能に構成された円筒状のロールである。搬送ロール11は、基材1aに適当な張力を付与しつつ、基材1aを送り出しロール10から第1成膜ロール15に搬送するためのロールである。搬送ロール12、13は、第1成膜ロール15で成膜された基材1bに適当な張力を付与しつつ、基材1bを第1成膜ロール15から第2成膜ロール16に搬送するためのロールである。搬送ロール12’、13’は、第3成膜ロール15’で成膜された基材1eに適当な張力を付与しつつ、基材1eを第3成膜ロール15’から第4成膜ロール16’に搬送するためのロールである。さらに、搬送ロール14は、第4成膜ロール16’で成膜された基材1cに適当な張力を付与しつつ、基材1cを第4成膜ロール16’から巻取りロール17に搬送するためのロールである。  The transport rolls 11 to 14 are cylindrical rolls configured to be rotatable around a rotation axis substantially parallel to the delivery roll 10. The transport roll 11 is a roll for transporting the base material 1 a from the feed roll 10 to the first film forming roll 15 while applying an appropriate tension to the base material 1 a. The conveyance rolls 12 and 13 convey the base material 1b from the first film formation roll 15 to the second film formation roll 16 while applying an appropriate tension to the base material 1b formed by the first film formation roll 15. It is a roll for. The transport rolls 12 ′ and 13 ′ apply the appropriate tension to the base material 1e formed by the third film forming roll 15 ′, while the base material 1e is transferred from the third film forming roll 15 ′ to the fourth film forming roll. It is a roll for conveying to 16 '. Furthermore, the conveyance roll 14 conveys the base material 1c from the fourth film formation roll 16 ′ to the take-up roll 17 while applying an appropriate tension to the base material 1c formed by the fourth film formation roll 16 ′. It is a roll for.

第1成膜ロール15および第2成膜ロール16は、送り出しロール10と略平行な回転軸を有し、互いに所定距離だけ離間して対向配置された成膜ロール対である。また、第3成膜ロール15’および第4成膜ロール16’も同様に、送り出しロール10と略平行な回転軸を有し、互いに所定距離だけ離間して対向配置された成膜ロール対である。第2成膜ロール16は、基材1bを成膜し、成膜された基材1dに適当な張力を付与しつつ、基材1dを第3成膜ロール15’へ搬送する。第4成膜ロール16’は、基材1eを成膜し、成膜された基材1cに適当な張力を付与しつつ、基材1cを搬送ロール14へ搬送する。  The first film-forming roll 15 and the second film-forming roll 16 are a pair of film-forming rolls that have a rotation axis substantially parallel to the delivery roll 10 and are opposed to each other by a predetermined distance. Similarly, the third film-forming roll 15 ′ and the fourth film-forming roll 16 ′ have a rotation axis that is substantially parallel to the delivery roll 10, and are formed by a pair of film-forming rolls that are opposed to each other by a predetermined distance. is there. The second film forming roll 16 forms the base material 1b and conveys the base material 1d to the third film forming roll 15 'while applying an appropriate tension to the formed base material 1d. The fourth film forming roll 16 ′ forms the base material 1 e and conveys the base material 1 c to the transport roll 14 while applying an appropriate tension to the formed base material 1 c.

図2に示す例では、第1成膜ロール15と第2成膜ロール16との離間距離は、点Aと点Bとを結ぶ距離であり、第3成膜ロール15’と第4成膜ロール16’との離間距離は、点A’と点B’とを結ぶ距離である。第1〜第4成膜ロール15、16、15’、16’は、導電性材料で形成された放電電極であり、第1成膜ロール15と第2成膜ロール16、第3成膜ロール15’と第4成膜ロール16’とは、それぞれは互いに絶縁されている。なお、第1〜第4成膜ロール15、16、15’、16’の材質や構成は、電極として所望の機能を達成できるように適宜選択することができる。  In the example shown in FIG. 2, the separation distance between the first film-forming roll 15 and the second film-forming roll 16 is a distance connecting the point A and the point B, and the third film-forming roll 15 ′ and the fourth film-forming roll. The separation distance from the roll 16 ′ is a distance connecting the point A ′ and the point B ′. The first to fourth film forming rolls 15, 16, 15 ′, 16 ′ are discharge electrodes formed of a conductive material, and the first film forming roll 15, the second film forming roll 16, and the third film forming roll. The 15 ′ and the fourth film forming roll 16 ′ are insulated from each other. The materials and configurations of the first to fourth film forming rolls 15, 16, 15 ′, 16 ′ can be appropriately selected so that a desired function can be achieved as an electrode.

さらに、第1〜第4成膜ロール15、16、15’、16’は、それぞれ独立に調温してもよい。第1〜第4成膜ロール15、16、15’、16’の温度は、特に制限されるものではないが、例えば−30〜100℃であるが、基材1aのガラス転移温度を超えて過度に高温に設定すると、基材が熱によって変形等を生じるおそれがある。  Further, the first to fourth film forming rolls 15, 16, 15 ', 16' may be independently temperature controlled. The temperature of the first to fourth film forming rolls 15, 16, 15 ′, 16 ′ is not particularly limited, but is, for example, −30 to 100 ° C., but exceeds the glass transition temperature of the base material 1a. If the temperature is set too high, the substrate may be deformed by heat.

第1〜第4成膜ロール15、16、15’、16’の内部には、磁場発生装置20、21、20’および21’が、各々設置されている。第1成膜ロール15と第2成膜ロール16とにはプラズマ発生用電源19により、第3成膜ロール15’と第4成膜ロール16’とにはプラズマ発生用電源19’により、プラズマ発生用の高周波電圧が印加される。それにより、第1成膜ロール15と第2成膜ロール16との間の成膜部S、または第3成膜ロール15’と第4成膜ロール16’との間の成膜部S’に電場が形成され、ガス供給管18または18’から供給される成膜ガスの放電プラズマが発生する。プラズマ発生用電源19が印加する電圧と、プラズマ発生用電源19’が印加する電圧とは、同一であってもよいが、異なっていてもよい。プラズマ発生用電源19または19’の電源周波数は任意に設定できるが、本構成の装置としては、例えば60〜100kHzであり、印加される電力は、有効成膜幅1mに対して、例えば1〜10kWである。  Magnetic field generators 20, 21, 20 'and 21' are installed in the first to fourth film forming rolls 15, 16, 15 'and 16', respectively. The first film forming roll 15 and the second film forming roll 16 are supplied with a plasma generating power source 19, and the third film forming roll 15 ′ and the fourth film forming roll 16 ′ are supplied with a plasma generating power supply 19 ′. A generating high frequency voltage is applied. Thereby, the film forming section S between the first film forming roll 15 and the second film forming roll 16 or the film forming section S ′ between the third film forming roll 15 ′ and the fourth film forming roll 16 ′. An electric field is formed in the film, and discharge plasma of the film forming gas supplied from the gas supply pipe 18 or 18 'is generated. The voltage applied by the plasma generating power supply 19 and the voltage applied by the plasma generating power supply 19 ′ may be the same or different. The power source frequency of the plasma generating power source 19 or 19 ′ can be arbitrarily set. However, the apparatus of this configuration is, for example, 60 to 100 kHz, and the applied power is, for example, 1 to 1 m with respect to the effective film forming width 1 m. 10 kW.

巻取りロール17は、送り出しロール10と略平行な回転軸を有し、基材1cを巻き取り、ロール状にして収容する。巻取りロール17は、図示しない駆動モーターにより反時計回りに回転(図2の矢印を参照)することにより、基材1cを巻き取る。  The take-up roll 17 has a rotation axis substantially parallel to the feed roll 10 and takes up the base material 1c and accommodates it in a roll shape. The take-up roll 17 takes up the substrate 1c by rotating counterclockwise by a drive motor (not shown) (see the arrow in FIG. 2).

送り出しロール10から送り出された基材1aは、送り出しロール10と巻き取りロール17との間で、搬送ロール11〜14、第1〜第4成膜ロール15、16、15’、16’に巻き掛けられることにより適当な張力を保ちつつ、これらの各ロールの回転により搬送される。なお、基材1a、1b、1c、1d、1e(以下、基材1a、1b、1c、1d、1eを「基材1a〜1e」とも総称する。)の搬送方向は矢印で示されている。基材1a〜1eの搬送速度(ラインスピード)(たとえば、図2の点Cや点C’における搬送速度)は、原料ガスの種類や真空チャンバ30内の圧力などに応じて適宜調整されうる。搬送速度は、送り出しロール10および巻取りロール17の駆動モーターの回転速度を制御部41によって制御することにより調整される。搬送速度を遅くすると、形成される領域の厚さが厚くなる。  The substrate 1a fed from the feed roll 10 is wound around the transport rolls 11 to 14 and the first to fourth film forming rolls 15, 16, 15 ′ and 16 ′ between the feed roll 10 and the take-up roll 17. It is conveyed by rotation of each of these rolls while maintaining an appropriate tension by being applied. In addition, the conveyance direction of the base materials 1a, 1b, 1c, 1d, and 1e (hereinafter, the base materials 1a, 1b, 1c, 1d, and 1e are also collectively referred to as “base materials 1a to 1e”) is indicated by arrows. . The conveyance speed (line speed) of the base materials 1a to 1e (for example, the conveyance speed at the point C or the point C ′ in FIG. The conveyance speed is adjusted by controlling the rotation speeds of the drive motors of the delivery roll 10 and the take-up roll 17 by the control unit 41. When the conveyance speed is decreased, the thickness of the formed region is increased.

また、この成膜装置を用いる場合、基材1a〜1eの搬送方向を図2の矢印で示す方向(以下、順方向と称する)とは反対方向(以下、逆方向と称する)に設定してガスバリア性フィルムの成膜工程を実行することもできる。具体的には、制御部41は、巻取りロール17によって基材1cが巻き取られた状態において、送り出しロール10および巻き取りロール17の駆動モーターの回転方向を上述の場合とは逆方向に回転するように制御する。このように制御すると、巻取りロール17から送り出された基材1cは、送り出しロール10と巻き取りロール17との間で、搬送ロール11〜14、第1〜第4成膜ロール15、16、15’、16’に巻き掛けられることにより適当な張力を保ちつつ、これらの各ロールの回転により逆方向に搬送される。  When this film forming apparatus is used, the transport direction of the base materials 1a to 1e is set to a direction (hereinafter referred to as a reverse direction) opposite to a direction indicated by an arrow in FIG. 2 (hereinafter referred to as a forward direction). A gas barrier film forming step can also be performed. Specifically, the control unit 41 rotates the rotation direction of the drive motors of the feed roll 10 and the take-up roll 17 in the direction opposite to that described above in a state where the substrate 1c is taken up by the take-up roll 17. Control to do. When controlled in this way, the base material 1c sent out from the take-up roll 17 is transported between the feed roll 10 and the take-up roll 17, and the transport rolls 11 to 14, the first to fourth film forming rolls 15 and 16, While being wound around 15 'and 16', appropriate tension is maintained, and the rolls are conveyed in the reverse direction by rotation of these rolls.

成膜装置101を用いて(B)第1のガスバリア層を形成する場合は、基材1aを順方向および逆方向に搬送して成膜部Sまたは成膜部S’を往復させることにより、(B)第1のガスバリア層の形成(成膜)工程を複数回繰り返すこともできる。  When (B) the first gas barrier layer is formed using the film forming apparatus 101, the substrate 1a is conveyed in the forward direction and the reverse direction, and the film forming unit S or the film forming unit S ′ is reciprocated, (B) The first gas barrier layer formation (film formation) step can be repeated a plurality of times.

ガス供給管18、18’は、真空チャンバ30内にプラズマCVDの原料ガスなどの成膜ガスを供給する。ガス供給管18は、成膜部Sの上方に第1成膜ロール15および第2成膜ロール16の回転軸と同じ方向に延在する管状の形状を有しており、複数箇所に設けられた開口部から成膜部Sに成膜ガスを供給する。ガス供給管18’も同様に、成膜部S’の上方に第3成膜ロール15’および第4成膜ロール16’の回転軸と同じ方向に延在する管状の形状を有しており、複数箇所に設けられた開口部から成膜部S’に成膜ガスを供給する。ガス供給管18から供給される成膜ガスとガス供給管18’から供給される成膜ガスとは同一でもよいが、異なっていてもよい。さらに、これらのガス供給管から供給される供給ガス圧についても、同一でもよいが異なっていてもよい。  The gas supply pipes 18 and 18 ′ supply a film forming gas such as a plasma CVD source gas into the vacuum chamber 30. The gas supply pipe 18 has a tubular shape extending in the same direction as the rotation axes of the first film forming roll 15 and the second film forming roll 16 above the film forming section S, and is provided at a plurality of locations. A film forming gas is supplied to the film forming part S from the opened opening. Similarly, the gas supply pipe 18 ′ has a tubular shape extending above the film forming section S ′ in the same direction as the rotation axes of the third film forming roll 15 ′ and the fourth film forming roll 16 ′. The film forming gas is supplied to the film forming part S ′ from the openings provided at a plurality of locations. The film forming gas supplied from the gas supply pipe 18 and the film forming gas supplied from the gas supply pipe 18 'may be the same or different. Further, the supply gas pressure supplied from these gas supply pipes may be the same or different.

原料ガスには、ケイ素化合物を使用することができる。ケイ素化合物としては、例えば、ヘキサメチルジシロキサン(HMDSO)、1,1,3,3−テトラメチルジシロキサンビニルトリメチルシラン、メチルトリメチルシラン、ヘキサメチルジシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、ジメチルジシラザン、トリメチルジシラザン、テトラメチルジシラザン、ペンタメチルジシラザン、ヘキサメチルジシラザン等が挙げられる。これ以外にも、特開2008−056967号公報の段落「0075」に記載の化合物を使用することもできる。これらのケイ素化合物の中でも、化合物の取り扱い易さや得られるガスバリア性フィルムの高いガスバリア性などの観点から、第1のガスバリア層の形成においては、HMDSOを使用することが好ましい。なお、これらのケイ素化合物は、2種以上が組み合わせて使用されてもよい。また、原料ガスには、ケイ素化合物の他にモノシランが含有されてもよい。  A silicon compound can be used as the source gas. Examples of the silicon compound include hexamethyldisiloxane (HMDSO), 1,1,3,3-tetramethyldisiloxane vinyltrimethylsilane, methyltrimethylsilane, hexamethyldisilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, Examples include propylsilane, phenylsilane, vinyltriethoxysilane, vinyltrimethoxysilane, tetramethoxysilane, dimethyldisilazane, trimethyldisilazane, tetramethyldisilazane, pentamethyldisilazane, hexamethyldisilazane, and the like. In addition to this, the compounds described in paragraph “0075” of JP2008-056967 A can also be used. Among these silicon compounds, it is preferable to use HMDSO in the formation of the first gas barrier layer from the viewpoint of easy handling of the compound and high gas barrier properties of the obtained gas barrier film. Two or more of these silicon compounds may be used in combination. The source gas may contain monosilane in addition to the silicon compound.

成膜ガスとしては、原料ガスの他に反応ガスが使用されてもよい。反応ガスとしては、原料ガスと反応して酸化物、窒化物などのケイ素化合物となるガスが選択される。薄膜として酸化物を形成するための反応ガスとしては、例えば、酸素ガス、オゾンガスを使用することができる。なお、これらの反応ガスは、2種以上を組み合わせて使用してもよい。  As the film forming gas, a reactive gas may be used in addition to the source gas. As the reaction gas, a gas that reacts with the raw material gas to become a silicon compound such as oxide or nitride is selected. As a reactive gas for forming an oxide as a thin film, for example, oxygen gas or ozone gas can be used. In addition, you may use these reaction gas in combination of 2 or more type.

成膜ガスとしては、原料ガスを真空チャンバ30内に供給するために、さらにキャリアガスが使用されてもよい。また、成膜ガスとして、プラズマを発生させるために、さらに放電用ガスが使用されてもよい。キャリアガスおよび放電ガスとしては、例えば、アルゴンなどの希ガス、および水素や窒素が使用される。  As the film forming gas, a carrier gas may be further used to supply the source gas into the vacuum chamber 30. Further, as a film forming gas, a discharge gas may be further used to generate plasma. As the carrier gas and the discharge gas, for example, a rare gas such as argon, hydrogen, or nitrogen is used.

磁場発生装置20、21は、第1成膜ロール15と第2成膜ロール16との間の成膜部Sに磁場を形成する部材であり、磁場発生装置20’、21’も同様に、第3成膜ロール15’と第4成膜ロール16’との間の成膜部S’に磁場を形成する部材である。これらの磁場発生装置20、20’、21、21’は、第1〜第4成膜ロール15、16、15’、16’の回転に追随せず、所定位置に格納されている。  The magnetic field generators 20 and 21 are members that form a magnetic field in the film forming unit S between the first film forming roll 15 and the second film forming roll 16, and the magnetic field generating apparatuses 20 ′ and 21 ′ are similarly configured. It is a member that forms a magnetic field in the film forming section S ′ between the third film forming roll 15 ′ and the fourth film forming roll 16 ′. These magnetic field generators 20, 20 ', 21, 21' do not follow the rotation of the first to fourth film forming rolls 15, 16, 15 ', 16', and are stored at predetermined positions.

真空チャンバ30は、送り出しロール10、搬送ロール11〜14、第1〜第4成膜ロール15、16、15’、16’、および巻取りロール17を密封して減圧された状態を維持する。真空チャンバ30内の圧力(真空度)は、原料ガスの種類などに応じて適宜調整することができる。成膜部SまたはS’の圧力は、0.1〜50Paであることが好ましい。  The vacuum chamber 30 maintains the decompressed state by sealing the delivery roll 10, the transport rolls 11 to 14, the first to fourth film forming rolls 15, 16, 15 ′, 16 ′, and the take-up roll 17. The pressure (degree of vacuum) in the vacuum chamber 30 can be adjusted as appropriate according to the type of source gas. The pressure of the film forming part S or S ′ is preferably 0.1 to 50 Pa.

真空ポンプ40、40’は、制御部41に通信可能に接続されており、制御部41の指令に従って真空チャンバ30内の圧力を適宜調整する。  The vacuum pumps 40 and 40 ′ are communicably connected to the control unit 41 and appropriately adjust the pressure in the vacuum chamber 30 in accordance with a command from the control unit 41.

制御部41は、成膜装置101の各構成要素を制御する。制御部41は、送り出しロール10および巻取りロール17の駆動モーターに接続されており、これらの駆動モーターの回転数を制御することにより、基材1aの搬送速度を調整する。また、駆動モーターの回転方向を制御することにより、基材1aの搬送方向を変更する。また、制御部41は、図示しない成膜ガスの供給機構と通信可能に接続されており、成膜ガスの各々の成分ガスの供給量を制御する。また、制御部41は、プラズマ発生用電源19、19’と通信可能に接続されており、プラズマ発生用電源19の出力電圧および出力周波数を制御する。さらに、制御部41は、真空ポンプ40、40’に通信可能に接続されており、真空チャンバ30内を所定の減圧雰囲気に維持するように真空ポンプ40を制御する。  The control unit 41 controls each component of the film forming apparatus 101. The control unit 41 is connected to the drive motors of the feed roll 10 and the take-up roll 17 and adjusts the conveyance speed of the substrate 1a by controlling the rotation speed of these drive motors. Moreover, the conveyance direction of the base material 1a is changed by controlling the rotation direction of the drive motor. The control unit 41 is connected to a film-forming gas supply mechanism (not shown) so as to be communicable, and controls the supply amount of each component gas of the film-forming gas. The control unit 41 is communicably connected to the plasma generation power sources 19 and 19 ′ and controls the output voltage and output frequency of the plasma generation power source 19. Further, the control unit 41 is communicably connected to the vacuum pumps 40 and 40 ′, and controls the vacuum pump 40 so as to maintain the inside of the vacuum chamber 30 in a predetermined reduced pressure atmosphere.

制御部41は、CPU(Central Processing Unit)、HDD(Hard Disk Drive)、RAM(Random Access Memory)、およびROM(Read Only Memory)を備える。HDDには、成膜装置101の各構成要素を制御して、ガスバリア性フィルムの製造方法を実現する手順を記述したソフトウェアプログラムが格納されている。そして、成膜装置101の電源が投入されると、上記ソフトウェアプログラムが上記RAMにロードされ上記CPUによって逐次的に実行される。また、上記ROMには、上記CPUが上記ソフトウェアプログラムを実行する際に使用する各種データおよびパラメーターが記憶されている。  The control unit 41 includes a CPU (Central Processing Unit), an HDD (Hard Disk Drive), a RAM (Random Access Memory), and a ROM (Read Only Memory). The HDD stores a software program describing a procedure for controlling each component of the film forming apparatus 101 and realizing a method for producing a gas barrier film. When the film forming apparatus 101 is turned on, the software program is loaded into the RAM and sequentially executed by the CPU. The ROM stores various data and parameters used when the CPU executes the software program.

該第1のガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。該第1のガスバリア層が2層以上の積層構造である場合、各第1のガスバリア層は同じ組成であってもよいし異なる組成であってもよい。  The first gas barrier layer may be a single layer or a laminated structure of two or more layers. When the first gas barrier layer has a laminated structure of two or more layers, the first gas barrier layers may have the same composition or different compositions.

第1のガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、特に制限されないが、5〜1000nmであることが好ましく、20〜500nmであることがより好ましい。この範囲であれば、生産性とガスバリア性との両立という利点が得られる。第1のガスバリア層の厚さは、TEM観察により測定することができる。  The thickness of the first gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is not particularly limited, but is preferably 5 to 1000 nm, and more preferably 20 to 500 nm. If it is this range, the advantage of coexistence of productivity and gas barrier property will be acquired. The thickness of the first gas barrier layer can be measured by TEM observation.

[(C)第2のガスバリア層]
本発明に係る(C)第2のガスバリア層は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50〜1000nmの厚さを有する領域(領域(c))を有する。エネルギーの印加により、第2のガスバリア層はガスバリア性を発現する。また、気相成膜法で形成される場合とは異なり、成膜時にパーティクル等の異物混入がないため、欠陥の非常に少ないガスバリア層となる。
[(C) Second gas barrier layer]
The (C) second gas barrier layer according to the present invention is formed by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane, and SiO w N x (where 0.2 < w ≦ 0.55, 0.66 <x ≦ 0.75), and a region (region (c)) having a thickness of 50 to 1000 nm is satisfied. By applying energy, the second gas barrier layer exhibits gas barrier properties. Further, unlike the case where the film is formed by the vapor deposition method, foreign substances such as particles are not mixed at the time of film formation, so that the gas barrier layer has very few defects.

領域(c)はガスバリア性も有するが、ゆるやかに浸入してきた水蒸気と反応することで水蒸気を捕捉する、いわゆるデシカントとしても機能する領域である。  The region (c) has a gas barrier property, but also functions as a so-called desiccant that captures water vapor by reacting with water that has entered slowly.

領域(c)の厚さは、50〜1000nmである。領域(c)の厚さが50nm未満であると、デシカントとして水蒸気と反応する化合物の総量が少なくなるため、捕捉できる水蒸気量も限られ、デバイスとして求められる耐用年数内にデシカント機能が失われ、ガスバリア性が低下する虞がある。一方、1000nmを超えると、例えば、エネルギーの印加による改質で領域(c)を形成する場合に、改質が不十分となりガスバリア性が低下する虞があるとともに、コスト増加にも繋がる。また、第2のガスバリア層においてのクラックの発生が懸念され、生産性も低下する。  The thickness of the region (c) is 50 to 1000 nm. When the thickness of the region (c) is less than 50 nm, since the total amount of the compound that reacts with water vapor as a desiccant is reduced, the amount of water vapor that can be captured is limited, and the desiccant function is lost within the service life required for the device. There is a possibility that the gas barrier property is lowered. On the other hand, if the thickness exceeds 1000 nm, for example, when the region (c) is formed by the modification by application of energy, the modification may be insufficient and the gas barrier property may be lowered, and the cost may be increased. In addition, the occurrence of cracks in the second gas barrier layer is a concern, and productivity is also reduced.

領域(c)の厚さは、好ましくは100〜300nmである。この範囲であれば、デバイスとして求められる耐用年数の間、良好なガスバリア性を維持できる効果や、コストを削減できる効果がさらに向上する。  The thickness of the region (c) is preferably 100 to 300 nm. Within this range, the effect of maintaining good gas barrier properties and the effect of reducing costs are further improved during the service life required for the device.

領域(c)は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成される第2のガスバリア層中に存在するのであれば、1つの連続した領域として存在する形態であってもよいし、2つ以上の複数の領域として存在する形態であってもよい。領域が2つ以上存在する場合は、全ての領域の厚さの和(総厚)が、上記の範囲になっていればよい。  If the region (c) is present in the second gas barrier layer formed by applying energy to the coating film obtained by applying and drying the coating liquid containing polysilazane, it is regarded as one continuous region. The form which exists may be sufficient as the form which exists as two or more several area | regions. When there are two or more regions, the sum of the thicknesses of all the regions (total thickness) only needs to be in the above range.

領域(c)におけるケイ素、酸素、および窒素の組成比や領域(c)の厚さは、当業者であれば任意の方法で調整することができる。例えば、ポリシラザンを含む塗布液の厚さ、塗布後の乾燥の程度、印加するエネルギー量(例えば、真空紫外線を照射してエネルギーを印加する場合は、照度、プラズマ密度、照射時間等を調整する)、エネルギー印加時の雰囲気(特に酸素濃度)等を調整すればよい。塗膜形成法の場合、印加するエネルギー量を小さくすれば、領域の組成比において酸素を少なくすることができる。また、ポリシラザンを含む塗布液の厚さを厚くすると、領域(c)の厚さが厚くなるため、当業者であれば目的とする領域の厚さに合わせて塗膜の厚さを調整できる。また、例えば、塗膜形成とエネルギーの印加とを交互に複数回行うことによって、上記組成および厚さを有する領域(c)を備えた第2のガスバリア層を形成してもよい。  A person skilled in the art can adjust the composition ratio of silicon, oxygen, and nitrogen in the region (c) and the thickness of the region (c) by any method. For example, the thickness of the coating solution containing polysilazane, the degree of drying after coating, and the amount of energy to be applied (for example, when irradiating vacuum ultraviolet rays to apply energy, the illuminance, plasma density, irradiation time, etc. are adjusted) The atmosphere (particularly the oxygen concentration) at the time of energy application may be adjusted. In the case of the coating film forming method, if the amount of energy to be applied is reduced, oxygen can be reduced in the composition ratio of the region. Further, when the thickness of the coating liquid containing polysilazane is increased, the thickness of the region (c) is increased, so that those skilled in the art can adjust the thickness of the coating film in accordance with the target region thickness. Further, for example, the second gas barrier layer including the region (c) having the above composition and thickness may be formed by alternately performing coating film formation and energy application a plurality of times.

領域(c)を含む本発明に係る第2のガスバリア層は、ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成される。なお、上記第1のガスバリア層の形成方法の一つであるポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成する方法において、形成条件(用いられるポリシラザンの種類、塗布液に用いられる溶媒、塗布液濃度、触媒の種類、エネルギーの印加条件、等)は、下記と同様である。但し、上記の理由により、第1のガスバリア層中には本発明に係る領域(c)は形成されず、たとえ、第1のガスバリア層と第2のガスバリア層とが同じ条件で形成されたとしても、第1のガスバリア層と第2のガスバリア層とは、明らかに異なる層となる。  The second gas barrier layer according to the present invention including the region (c) is formed by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane. In the method for forming the first gas barrier layer by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane, which is one of the methods for forming the first gas barrier layer, the formation conditions (of the polysilazane used) The type, the solvent used in the coating solution, the concentration of the coating solution, the type of catalyst, the energy application conditions, etc.) are the same as described below. However, for the above reason, the region (c) according to the present invention is not formed in the first gas barrier layer, even if the first gas barrier layer and the second gas barrier layer are formed under the same conditions. However, the first gas barrier layer and the second gas barrier layer are clearly different layers.

ポリシラザンとは、ケイ素−窒素結合を有するポリマーであり、Si−N、Si−H、N−H等の結合を有するSiO、Si、および両方の中間固溶体SiO等のセラミック前駆体無機ポリマーである。Polysilazane is a polymer having a silicon-nitrogen bond, and ceramics such as SiO 2 , Si 3 N 4 , and both intermediate solid solutions SiO x N y having bonds such as Si—N, Si—H, and N—H. It is a precursor inorganic polymer.

具体的には、ポリシラザンは、好ましくは下記の構造を有する。  Specifically, the polysilazane preferably has the following structure.

上記一般式(I)において、R、RおよびRは、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R、RおよびRは、それぞれ、同じであってもあるいは異なるものであってもよい。ここで、アルキル基としては、炭素原子数1〜8の直鎖、分岐鎖または環状のアルキル基が挙げられる。より具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、n−ヘプチル基、n−オクチル基、2−エチルヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基などがある。また、アリール基としては、炭素原子数6〜30のアリール基が挙げられる。より具体的には、フェニル基、ビフェニル基、ターフェニル基などの非縮合炭化水素基;ペンタレニル基、インデニル基、ナフチル基、アズレニル基、ヘプタレニル基、ビフェニレニル基、フルオレニル基、アセナフチレニル基、プレイアデニル基、アセナフテニル基、フェナレニル基、フェナントリル基、アントリル基、フルオランテニル基、アセフェナントリレニル基、アセアントリレニル基、トリフェニレニル基、ピレニル基、クリセニル基、ナフタセニル基などの縮合多環炭化水素基が挙げられる。(トリアルコキシシリル)アルキル基としては、炭素原子数1〜8のアルコキシ基で置換されたシリル基を有する炭素原子数1〜8のアルキル基が挙げられる。より具体的には、3−(トリエトキシシリル)プロピル基、3−(トリメトキシシリル)プロピル基などが挙げられる。上記R〜Rに場合によって存在する置換基は、特に制限はないが、例えば、アルキル基、ハロゲン原子、ヒドロキシル基(−OH)、メルカプト基(−SH)、シアノ基(−CN)、スルホ基(−SOH)、カルボキシル基(−COOH)、ニトロ基(−NO)などがある。なお、場合によって存在する置換基は、置換するR〜Rと同じとなることはない。例えば、R〜Rがアルキル基の場合には、さらにアルキル基で置換されることはない。これらのうち、好ましくは、R、RおよびRは、水素原子、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、フェニル基、ビニル基、3−(トリエトキシシリル)プロピル基または3−(トリメトキシシリルプロピル)基である。In the general formula (I), R 1 , R 2 and R 3 are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group. . At this time, R 1 , R 2 and R 3 may be the same or different. Here, as an alkyl group, a C1-C8 linear, branched or cyclic alkyl group is mentioned. More specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, neopentyl group, n -Hexyl group, n-heptyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl group, cyclohexyl group and the like. Moreover, as an aryl group, a C6-C30 aryl group is mentioned. More specifically, non-condensed hydrocarbon groups such as phenyl group, biphenyl group, terphenyl group; pentarenyl group, indenyl group, naphthyl group, azulenyl group, heptaenyl group, biphenylenyl group, fluorenyl group, acenaphthylenyl group, preadenenyl group , Condensed polycyclic hydrocarbon groups such as acenaphthenyl group, phenalenyl group, phenanthryl group, anthryl group, fluoranthenyl group, acephenanthrenyl group, aceantrirenyl group, triphenylenyl group, pyrenyl group, chrysenyl group, naphthacenyl group, etc. Can be mentioned. Examples of the (trialkoxysilyl) alkyl group include an alkyl group having 1 to 8 carbon atoms having a silyl group substituted with an alkoxy group having 1 to 8 carbon atoms. More specifically, 3- (triethoxysilyl) propyl group, 3- (trimethoxysilyl) propyl group and the like can be mentioned. The substituent optionally present in R 1 to R 3 is not particularly limited. For example, an alkyl group, a halogen atom, a hydroxyl group (—OH), a mercapto group (—SH), a cyano group (—CN), There are a sulfo group (—SO 3 H), a carboxyl group (—COOH), a nitro group (—NO 2 ), and the like. In addition, the substituent which exists depending on the case does not become the same as R < 1 > -R < 3 > to substitute. For example, when R 1 to R 3 are alkyl groups, they are not further substituted with an alkyl group. Of these, R 1 , R 2 and R 3 are preferably a hydrogen atom, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a phenyl group, a vinyl group, 3 -(Triethoxysilyl) propyl group or 3- (trimethoxysilylpropyl) group.

また、上記一般式(I)において、nは、整数であり、一般式(I)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。  In the general formula (I), n is an integer, and the polysilazane having the structure represented by the general formula (I) is determined to have a number average molecular weight of 150 to 150,000 g / mol. preferable.

上記一般式(I)で表される構造を有する化合物において、好ましい態様の一つは、R 、RおよびRのすべてが水素原子であるパーヒドロポリシラザンである。  In the compound having the structure represented by the general formula (I), one of preferable embodiments is R 1, R2And R3Is perhydropolysilazane, all of which are hydrogen atoms.

または、ポリシラザンとしては、下記一般式(II)で表される構造を有する。  Alternatively, polysilazane has a structure represented by the following general formula (II).

上記一般式(II)において、R1’、R2’、R3’、R4’、R5’およびR6’は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1’、R2’、R 、R4’、R5’およびR6’は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。In the general formula (II), R 1 ′ , R 2 ′ , R 3 ′ , R 4 ′ , R 5 ′ and R 6 ′ are each independently a hydrogen atom, a substituted or unsubstituted alkyl group, An aryl group, a vinyl group or a (trialkoxysilyl) alkyl group. In this case, R 1 ′ , R 2 ′ , R 3 , R 4 ′ , R 5 ′ and R 6 ′ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.

また、上記一般式(II)において、n’およびpは、整数であり、一般式(II)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n’およびpは、同じであってもあるいは異なるものであってもよい。  In the general formula (II), n ′ and p are integers, and the polysilazane having the structure represented by the general formula (II) is determined to have a number average molecular weight of 150 to 150,000 g / mol. It is preferred that Note that n ′ and p may be the same or different.

上記一般式(II)のポリシラザンのうち、R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’およびR5’が各々メチル基を表す化合物;R1’、R3’およびR6’が各々水素原子を表し、R2’、R4’が各々メチル基を表し、R5’がビニル基を表す化合物;R1’、R3’、R4’およびR6’が各々水素原子を表し、R2’およびR5’が各々メチル基を表す化合物が好ましい。Among the polysilazanes of the above general formula (II), R 1 ′ , R 3 ′ and R 6 ′ each represent a hydrogen atom, and R 2 ′ , R 4 ′ and R 5 ′ each represent a methyl group; R 1 ' , R 3' and R 6 ' each represents a hydrogen atom, R 2' , R 4 ' each represents a methyl group, and R 5' represents a vinyl group; R 1 ' , R 3' , R 4 A compound in which ' and R 6' each represent a hydrogen atom and R 2 ' and R 5' each represents a methyl group is preferred.

または、ポリシラザンとしては、下記一般式(III)で表される構造を有する。  Alternatively, polysilazane has a structure represented by the following general formula (III).

上記一般式(III)において、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ独立して、水素原子、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基である。この際、R1”、R2”、R3”、R4”、R5”、R6”、R7”、R8”およびR9”は、それぞれ、同じであってもあるいは異なるものであってもよい。上記における、置換または非置換の、アルキル基、アリール基、ビニル基または(トリアルコキシシリル)アルキル基は、上記一般式(I)の定義と同様であるため、説明を省略する。In the general formula (III), R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ are each independently A hydrogen atom, a substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group, wherein R 1 ″ , R 2 ″ , R 3 ″ , R 4 ″ , R 5 ″ , R 6 ″ , R 7 ″ , R 8 ″ and R 9 ″ may be the same or different. The substituted or unsubstituted alkyl group, aryl group, vinyl group or (trialkoxysilyl) alkyl group in the above is the same as the definition of the general formula (I), and thus the description is omitted.

また、上記一般式(III)において、n”、p”およびqは、整数であり、一般式(III)で表される構造を有するポリシラザンが150〜150,000g/モルの数平均分子量を有するように定められることが好ましい。なお、n”、p”およびqは、同じであってもあるいは異なるものであってもよい。  In the general formula (III), n ″, p ″ and q are integers, and the polysilazane having the structure represented by the general formula (III) has a number average molecular weight of 150 to 150,000 g / mol. It is preferable to be determined as follows. Note that n ″, p ″, and q may be the same or different.

上記一般式(III)のポリシラザンのうち、R1”、R3”およびR6”が各々水素原子を表し、R2”、R4”、R5”およびR8”が各々メチル基を表し、R9”が(トリエトキシシリル)プロピル基を表し、R7”がアルキル基または水素原子を表す化合物が好ましい。Of the polysilazanes of the above general formula (III), R 1 ″ , R 3 ″ and R 6 ″ each represent a hydrogen atom, and R 2 ″ , R 4 ″ , R 5 ″ and R 8 ″ each represent a methyl group. , R 9 ″ represents a (triethoxysilyl) propyl group, and R 7 ″ represents an alkyl group or a hydrogen atom.

一方、そのSiと結合する水素原子部分の一部がアルキル基等で置換されたオルガノポリシラザンは、メチル基等のアルキル基を有することにより下地である基材との接着性が改善され、かつ硬くてもろいポリシラザンによるセラミック膜に靭性を持たせることができ、より(平均)膜厚を厚くした場合でもクラックの発生が抑えられる利点がある。このため、用途に応じて適宜、これらパーヒドロポリシラザンとオルガノポリシラザンとを選択してよく、混合して使用することもできる。  On the other hand, the organopolysilazane in which a part of the hydrogen atom portion bonded to Si is substituted with an alkyl group or the like has improved adhesion to the base material as a base by having an alkyl group such as a methyl group and is hard. The ceramic film made of brittle polysilazane can be toughened, and there is an advantage that the occurrence of cracks can be suppressed even when the (average) film thickness is increased. For this reason, these perhydropolysilazane and organopolysilazane may be appropriately selected according to the application, and may be used in combination.

パーヒドロポリシラザンは、直鎖構造と6および8員環を中心とする環構造とが存在する構造と推定されている。その分子量は数平均分子量(Mn)で約600〜2000程度(ポリスチレン換算)で、液体または固体の物質があり、その状態は分子量により異なる。  Perhydropolysilazane is presumed to have a linear structure and a ring structure centered on 6- and 8-membered rings. Its molecular weight is about 600 to 2000 (polystyrene conversion) in terms of number average molecular weight (Mn), and there are liquid or solid substances, and the state varies depending on the molecular weight.

ポリシラザンは有機溶媒に溶解した溶液状態で市販されており、市販品をそのまま第2のガスバリア層形成用塗布液として使用することができる。ポリシラザン溶液の市販品としては、AZエレクトロニックマテリアルズ株式会社製の NN120−10、NN120−20、NAX120−20、NN110、NN310、NN320、NL110A、NL120A、NL120−20、NL150A、NP110、NP140、SP140等が挙げられる。  Polysilazane is commercially available in a solution in an organic solvent, and the commercially available product can be used as it is as the second gas barrier layer forming coating solution. Examples of commercially available polysilazane solutions include NN120-10, NN120-20, NAX120-20, NN110, NN310, NN320, NL110A, NL120A, NL120-20, NL150A, NP110, NP140, and SP140 manufactured by AZ Electronic Materials Co., Ltd. Is mentioned.

本発明で使用できるポリシラザンの別の例としては、以下に制限されないが、例えば、上記ポリシラザンにケイ素アルコキシドを反応させて得られるケイ素アルコキシド付加ポリシラザン(特開平5−238827号公報)、グリシドールを反応させて得られるグリシドール付加ポリシラザン(特開平6−122852号公報)、アルコールを反応させて得られるアルコール付加ポリシラザン(特開平6−240208号公報)、金属カルボン酸塩を反応させて得られる金属カルボン酸塩付加ポリシラザン(特開平6−299118号公報)、金属を含むアセチルアセトナート錯体を反応させて得られるアセチルアセトナート錯体付加ポリシラザン(特開平6−306329号公報)、金属微粒子を添加して得られる金属微粒子添加ポリシラザン(特開平7−196986号公報)等の、低温でセラミック化するポリシラザンが挙げられる。  Another example of the polysilazane that can be used in the present invention is not limited to the following. For example, a silicon alkoxide-added polysilazane obtained by reacting the above polysilazane with a silicon alkoxide (Japanese Patent Laid-Open No. 5-238827) or glycidol is reacted. Glycidol-added polysilazane (Japanese Patent Laid-Open No. 6-122852) obtained by reaction, alcohol-added polysilazane obtained by reacting alcohol (Japanese Patent Laid-Open No. 6-240208), metal carboxylate obtained by reacting metal carboxylate Addition polysilazane (JP-A-6-299118), acetylacetonate complex-added polysilazane (JP-A-6-306329) obtained by reacting a metal-containing acetylacetonate complex, metal obtained by adding metal fine particles Fine particle added polysila Emissions, such as (JP-A-7-196986), and a polysilazane ceramic at low temperatures.

ポリシラザンを用いる場合、エネルギー印加前の第2のガスバリア層中におけるポリシラザンの含有率としては、第2のガスバリア層の全質量を100質量%としたとき、100質量%でありうる。また、第2のガスバリア層がポリシラザン以外のものを含む場合には、層中におけるポリシラザンの含有率は、10質量%以上99質量%以下であることが好ましく、40質量%以上95質量%以下であることがより好ましく、特に好ましくは70質量%以上95質量%以下である。  When polysilazane is used, the content of polysilazane in the second gas barrier layer before energy application can be 100% by mass when the total mass of the second gas barrier layer is 100% by mass. When the second gas barrier layer contains a material other than polysilazane, the content of polysilazane in the layer is preferably 10% by mass or more and 99% by mass or less, and 40% by mass or more and 95% by mass or less. More preferably, it is 70 mass% or more and 95 mass% or less.

(第2のガスバリア層形成用塗布液)
第2のガスバリア層形成用塗布液を調製するための溶剤としては、ポリシラザンを溶解できるものであれば特に制限されないが、ポリシラザンと容易に反応してしまう水および反応性基(例えば、ヒドロキシル基、あるいはアミン基等)を含まず、ポリシラザンに対して不活性の有機溶剤が好ましく、非プロトン性の有機溶剤がより好ましい。具体的には、溶剤としては、非プロトン性溶剤;例えば、ペンタン、ヘキサン、シクロヘキサン、トルエン、キシレン、ソルベッソ、ターペン等の、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素溶媒;塩化メチレン、トリクロロエタン等のハロゲン炭化水素溶媒;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン等のケトン類;ジブチルエーテル、ジオキサン、テトラヒドロフラン等の脂肪族エーテル、脂環式エーテル等のエーテル類:例えば、テトラヒドロフラン、ジブチルエーテル、モノ−およびポリアルキレングリコールジアルキルエーテル(ジグライム類)などを挙げることができる。上記溶剤は、ポリシラザンの溶解度や溶剤の蒸発速度等の目的にあわせて選択され、単独で使用されてもまたは2種以上の混合物の形態で使用されてもよい。
(Second gas barrier layer forming coating solution)
The solvent for preparing the second gas barrier layer forming coating solution is not particularly limited as long as it can dissolve polysilazane, but water and reactive groups (for example, hydroxyl group, easily reacting with polysilazane). Alternatively, an organic solvent which does not contain an amine group and is inert to polysilazane is preferable, and an aprotic organic solvent is more preferable. Specifically, the solvent is an aprotic solvent; for example, carbon such as aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons such as pentane, hexane, cyclohexane, toluene, xylene, solvesso, terpenes, etc. Hydrogen solvents; Halogen hydrocarbon solvents such as methylene chloride and trichloroethane; Esters such as ethyl acetate and butyl acetate; Ketones such as acetone and methyl ethyl ketone; Aliphatic ethers such as dibutyl ether, dioxane and tetrahydrofuran; Alicyclic ethers and the like Ethers: Examples include tetrahydrofuran, dibutyl ether, mono- and polyalkylene glycol dialkyl ethers (diglymes), and the like. The solvent is selected according to purposes such as the solubility of polysilazane and the evaporation rate of the solvent, and may be used alone or in the form of a mixture of two or more.

第2のガスバリア層形成用塗布液におけるポリシラザンの濃度は、特に制限されず、層の膜厚や塗布液のポットライフによっても異なるが、好ましくは1〜80質量%、より好ましくは5〜50質量%、さらに好ましくは10〜40質量%である。  The concentration of polysilazane in the second gas barrier layer forming coating solution is not particularly limited, and varies depending on the film thickness of the layer and the pot life of the coating solution. %, More preferably 10 to 40% by mass.

第2のガスバリア層形成用塗布液は、改質を促進するために、触媒を含有することが好ましい。本発明に適用可能な触媒としては、塩基性触媒が好ましく、特に、N,N−ジエチルエタノールアミン、N,N−ジメチルエタノールアミン、トリエタノールアミン、トリエチルアミン、3−モルホリノプロピルアミン、N,N,N’,N’−テトラメチル−1,3−ジアミノプロパン、N,N,N’,N’−テトラメチル−1,6−ジアミノヘキサン等のアミン触媒、Ptアセチルアセトナート等のPt化合物、プロピオン酸Pd等のPd化合物、Rhアセチルアセトナート等のRh化合物等の金属触媒、N−複素環式化合物が挙げられる。これらのうち、アミン触媒を用いることが好ましい。この際添加する触媒の濃度としては、ケイ素化合物を基準としたとき、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%の範囲である。触媒添加量をこの範囲とすることで、反応の急激な進行よる過剰なシラノール形成、および膜密度の低下、膜欠陥の増大などを避けることができる。  The second gas barrier layer forming coating solution preferably contains a catalyst in order to promote reforming. As the catalyst applicable to the present invention, a basic catalyst is preferable, and in particular, N, N-diethylethanolamine, N, N-dimethylethanolamine, triethanolamine, triethylamine, 3-morpholinopropylamine, N, N, N ', N'-tetramethyl-1,3-diaminopropane, amine catalysts such as N, N, N', N'-tetramethyl-1,6-diaminohexane, Pt compounds such as Pt acetylacetonate, propion Examples thereof include metal catalysts such as Pd compounds such as acid Pd, Rh compounds such as Rh acetylacetonate, and N-heterocyclic compounds. Of these, it is preferable to use an amine catalyst. The concentration of the catalyst added at this time is preferably in the range of 0.1 to 10% by mass, more preferably 0.5 to 7% by mass, based on the silicon compound. By setting the addition amount of the catalyst within this range, it is possible to avoid excessive silanol formation due to rapid progress of the reaction, decrease in film density, increase in film defects, and the like.

第2のガスバリア層形成用塗布液には、必要に応じて下記に挙げる添加剤を用いることができる。例えば、セルロースエーテル類、セルロースエステル類;例えば、エチルセルロース、ニトロセルロース、セルロースアセテート、セルロースアセトブチレート等、天然樹脂;例えば、ゴム、ロジン樹脂等、合成樹脂;例えば、重合樹脂等、縮合樹脂;例えば、アミノプラスト、特に尿素樹脂、メラミンホルムアルデヒド樹脂、アルキド樹脂、アクリル樹脂、ポリエステルもしくは変性ポリエステル、エポキシド、ポリイソシアネートもしくはブロック化ポリイソシアネート、ポリシロキサン等である。  In the second gas barrier layer forming coating solution, the following additives may be used as necessary. For example, cellulose ethers, cellulose esters; for example, ethyl cellulose, nitrocellulose, cellulose acetate, cellulose acetobutyrate, etc., natural resins; for example, rubber, rosin resin, etc., synthetic resins; Aminoplasts, especially urea resins, melamine formaldehyde resins, alkyd resins, acrylic resins, polyesters or modified polyesters, epoxides, polyisocyanates or blocked polyisocyanates, polysiloxanes, and the like.

(第2のガスバリア層形成用塗布液を塗布する方法)
第2のガスバリア層形成用塗布液を塗布する方法としては、従来公知の適切な湿式塗布方法が採用され得る。具体例としては、スピンコート法、ロールコート法、フローコート法、インクジェット法、スプレーコート法、プリント法、ディップコート法、流延成膜法、バーコート法、ダイコート法、グラビア印刷法等が挙げられる。
(Method of applying the second gas barrier layer forming coating solution)
As a method of applying the second gas barrier layer forming coating solution, a conventionally known appropriate wet coating method may be employed. Specific examples include spin coating method, roll coating method, flow coating method, ink jet method, spray coating method, printing method, dip coating method, casting film forming method, bar coating method, die coating method, gravure printing method and the like. It is done.

塗布厚さは、好ましい厚さや目的に応じて適切に設定され得る。一例を挙げれば、乾燥後の塗布液(塗膜)の厚さ(複数回塗膜形成を行う場合は1回当たりの厚さ)は、好ましくは40nm以上1000nm以下であり、より好ましくは100nm以上300nm以下である。  The coating thickness can be appropriately set according to the preferred thickness and purpose. As an example, the thickness of the coating liquid (coating film) after drying (when forming a coating film a plurality of times, the thickness per one time) is preferably 40 nm or more and 1000 nm or less, more preferably 100 nm or more. 300 nm or less.

塗布液を塗布した後は、塗膜を乾燥させることが好ましい。塗膜を乾燥することによって、塗膜中に含有される有機溶媒を除去することができる。この際、塗膜に含有される有機溶媒は、すべてを乾燥させてもよいが、一部残存させていてもよい。一部の有機溶媒を残存させる場合であっても、好適な第2のガスバリア層が得られうる。なお、残存する溶媒は後に除去されうる。  After applying the coating solution, it is preferable to dry the coating film. By drying the coating film, the organic solvent contained in the coating film can be removed. At this time, all of the organic solvent contained in the coating film may be dried or may be partially left. Even when a part of the organic solvent is left, a suitable second gas barrier layer can be obtained. The remaining solvent can be removed later.

塗膜の乾燥温度は、適用する基材によっても異なるが、50〜200℃であることが好ましい。例えば、ガラス転移温度(Tg)が70℃のポリエチレンテレフタレート基材を基材として用いる場合には、乾燥温度は、熱による基材の変形等を考慮して150℃以下に設定することが好ましい。上記温度は、ホットプレート、オーブン、ファーネスなどを使用することによって設定されうる。乾燥時間は短時間に設定することが好ましく、例えば、乾燥温度が150℃である場合には30分以内に設定することが好ましい。また、乾燥雰囲気は、大気雰囲気下、窒素雰囲気下、アルゴン雰囲気下、真空雰囲気下、酸素濃度をコントロールした減圧雰囲気下等のいずれの条件であってもよい。  Although the drying temperature of a coating film changes also with the base material to apply, it is preferable that it is 50-200 degreeC. For example, when a polyethylene terephthalate base material having a glass transition temperature (Tg) of 70 ° C. is used as the base material, the drying temperature is preferably set to 150 ° C. or lower in consideration of deformation of the base material due to heat. The temperature can be set by using a hot plate, oven, furnace or the like. The drying time is preferably set to a short time. For example, when the drying temperature is 150 ° C., the drying time is preferably set within 30 minutes. The drying atmosphere may be any condition such as an air atmosphere, a nitrogen atmosphere, an argon atmosphere, a vacuum atmosphere, or a reduced pressure atmosphere with a controlled oxygen concentration.

第2のガスバリア層形成用塗布液を塗布して得られた塗膜は、エネルギーの印加前またはエネルギーの印加中に水分を除去する工程を含んでいてもよい。水分を除去する方法としては、低湿度環境を維持して除湿する形態が好ましい。低湿度環境における湿度は温度により変化するので、温度と湿度の関係は露点温度の規定により好ましい形態が示される。好ましい露点温度は4℃以下(温度25℃/湿度25%)で、より好ましい露点温度は−5℃以下(温度25℃/湿度10%)であり、維持される時間は第2のガスバリア層の膜厚によって適宜設定することが好ましい。第2のガスバリア層の膜厚が1.0μm以下の条件においては、露点温度は−5℃以下で、維持される時間は1分以上であることが好ましい。なお、露点温度の下限は特に制限されないが、通常、−50℃以上であり、−40℃以上であることが好ましい。改質処理前、あるいは改質処理中に水分を除去することによって、シラノールに転化した第2のガスバリア層の脱水反応を促進する観点から好ましい形態である。  The coating film obtained by applying the second gas barrier layer-forming coating solution may include a step of removing moisture before application of energy or during application of energy. As a method for removing moisture, a form of dehumidification while maintaining a low humidity environment is preferable. Since humidity in a low-humidity environment varies depending on temperature, a preferable form is shown for the relationship between temperature and humidity by defining the dew point temperature. A preferable dew point temperature is 4 ° C. or lower (temperature 25 ° C./humidity 25%), a more preferable dew point temperature is −5 ° C. or lower (temperature 25 ° C./humidity 10%), and the time to be maintained is that of the second gas barrier layer. It is preferable to set appropriately depending on the film thickness. Under the condition that the film thickness of the second gas barrier layer is 1.0 μm or less, it is preferable that the dew point temperature is −5 ° C. or less and the maintained time is 1 minute or more. The lower limit of the dew point temperature is not particularly limited, but is usually −50 ° C. or higher and preferably −40 ° C. or higher. From the viewpoint of promoting the dehydration reaction of the second gas barrier layer converted to silanol by removing water before or during the reforming treatment.

<エネルギーの印加>
続いて、上記のようにして形成された塗膜に対して、エネルギーを印加し、ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応を行い、第2のガスバリア層がガスバリア性を発現しうる無機薄膜への改質を行う。
<Application of energy>
Subsequently, energy is applied to the coating film formed as described above, and a conversion reaction of polysilazane to silicon oxide or silicon oxynitride is performed, so that the second gas barrier layer can exhibit gas barrier properties. Modification to inorganic thin film.

ポリシラザンの酸化ケイ素または酸窒化ケイ素等への転化反応は、公知の方法を適宜選択して適用することができる。改質処理としては、具体的には、プラズマ処理、紫外線照射処理、加熱処理が挙げられる。ただし、加熱処理による改質の場合、ケイ素化合物の置換反応による酸化ケイ素膜または酸窒化ケイ素層の形成には450℃以上の高温が必要であるため、プラスチック等のフレキシブル基板においては、適応が難しい。このため、熱処理は他の改質処理と組み合わせて行うことが好ましい。  The conversion reaction of polysilazane to silicon oxide or silicon oxynitride can be applied by appropriately selecting a known method. Specific examples of the modification treatment include plasma treatment, ultraviolet irradiation treatment, and heat treatment. However, in the case of modification by heat treatment, formation of a silicon oxide film or a silicon oxynitride layer by a substitution reaction of a silicon compound requires a high temperature of 450 ° C. or higher, so that it is difficult to adapt to a flexible substrate such as plastic. . For this reason, it is preferable to perform the heat treatment in combination with other reforming treatments.

したがって、改質処理としては、プラスチック基板への適応という観点から、より低温で、転化反応が可能なプラズマ処理や紫外線照射処理による転化反応が好ましい。以下、好ましい改質処理方法であるプラズマ処理、紫外線照射処理について説明する。  Therefore, as the modification treatment, from the viewpoint of adapting to a plastic substrate, a plasma treatment capable of a conversion reaction at a lower temperature or a conversion reaction by ultraviolet irradiation treatment is preferable. Hereinafter, plasma treatment and ultraviolet irradiation treatment, which are preferable modification treatment methods, will be described.

(プラズマ処理)
本発明において、改質処理として用いることのできるプラズマ処理は、公知の方法を用いることができるが、好ましくは大気圧プラズマ処理等をあげることが出来る。大気圧近傍でのプラズマCVD処理を行う大気圧プラズマCVD法は、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために成膜速度が速く、さらには通常のCVD法の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて均質の膜が得られる。
(Plasma treatment)
In the present invention, a known method can be used for the plasma treatment that can be used as the reforming treatment, and an atmospheric pressure plasma treatment or the like can be preferably used. The atmospheric pressure plasma CVD method, which performs plasma CVD processing near atmospheric pressure, does not need to be reduced in pressure and is more productive than the plasma CVD method under vacuum. The film speed is high, and further, under a high pressure condition under atmospheric pressure as compared with the conditions of a normal CVD method, the gas mean free process is very short, so that a very homogeneous film can be obtained.

大気圧プラズマ処理の場合は、放電ガスとしては窒素ガスまたは長周期型周期表の第18族原子を含むガス、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。  In the case of atmospheric pressure plasma treatment, as the discharge gas, nitrogen gas or a gas containing Group 18 atoms of the long-period periodic table, specifically helium, neon, argon, krypton, xenon, radon, or the like is used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.

(紫外線照射処理)
改質処理の方法の1つとして、紫外線照射による処理が好ましい。紫外線(紫外光と同義)によって生成されるオゾンや活性酸素原子は高い酸化能力を有しており、低温で高い緻密性と絶縁性を有する酸化ケイ素膜または酸窒化ケイ素膜を形成することが可能である。
(UV irradiation treatment)
As one of the modification treatment methods, treatment by ultraviolet irradiation is preferable. Ozone and active oxygen atoms generated by ultraviolet rays (synonymous with ultraviolet light) have high oxidation ability, and can form silicon oxide films or silicon oxynitride films with high density and insulation at low temperatures It is.

この紫外線照射により、基材が加熱され、セラミックス化(シリカ転化)に寄与するO とHOや、紫外線吸収剤、ポリシラザン自身が励起、活性化されるため、ポリシラザンが励起し、ポリシラザンのセラミックス化が促進され、また得られる第2のガスバリア層が一層緻密になる。紫外線照射は、塗膜形成後であればいずれの時点で実施しても有効である。  The substrate is heated by this ultraviolet irradiation, and O contributes to ceramicization (silica conversion). 2And H2O, the ultraviolet absorber, and the polysilazane itself are excited and activated, so that the polysilazane is excited to promote the conversion of the polysilazane into a ceramic, and the obtained second gas barrier layer becomes denser. Irradiation with ultraviolet rays is effective at any time after the formation of the coating film.

紫外線照射処理においては、常用されているいずれの紫外線発生装置を使用することも可能である。  In the ultraviolet irradiation treatment, any commonly used ultraviolet ray generator can be used.

なお、本発明でいう紫外線とは、一般には、10〜400nmの波長を有する電磁波をいうが、後述する真空紫外線(10〜200nm)処理以外の紫外線照射処理の場合は、好ましくは210〜375nmの紫外線を用いる。  The ultraviolet ray referred to in the present invention generally refers to an electromagnetic wave having a wavelength of 10 to 400 nm, but in the case of an ultraviolet irradiation treatment other than the vacuum ultraviolet ray (10 to 200 nm) treatment described later, it is preferably 210 to 375 nm. Use ultraviolet light.

紫外線の照射は、照射される第2のガスバリア層を担持している基材がダメージを受けない範囲で、照射強度や照射時間を設定することが好ましい。  In the irradiation with ultraviolet rays, it is preferable to set the irradiation intensity and the irradiation time in a range in which the substrate carrying the second gas barrier layer to be irradiated is not damaged.

基材としてプラスチックフィルムを用いた場合を例にとると、例えば、2kW(80W/cm×25cm)のランプを用い、基材表面の強度が20〜300mW/cm、好ましくは50〜200mW/cmになるように基材−紫外線照射ランプ間の距離を設定し、0.1秒〜10分間の照射を行うことができる。For example, when a plastic film is used as the substrate, for example, a 2 kW (80 W / cm × 25 cm) lamp is used, and the strength of the substrate surface is 20 to 300 mW / cm 2 , preferably 50 to 200 mW / cm. The distance between the substrate and the ultraviolet irradiation lamp is set so as to be 2, and irradiation can be performed for 0.1 second to 10 minutes.

一般に、紫外線照射処理時の基材温度が150℃以上になると、プラスチックフィルム等の場合には、基材が変形したり、その強度が劣化したりする等、基材の特性が損なわれることになる。しかしながら、ポリイミド等の耐熱性の高いフィルムの場合には、より高温での改質処理が可能である。したがって、この紫外線照射時の基材温度としては、一般的な上限はなく、基材の種類によって当業者が適宜設定することができる。また、紫外線照射雰囲気に特に制限はなく、空気中で実施すればよい。  In general, when the substrate temperature during ultraviolet irradiation treatment is 150 ° C. or more, in the case of a plastic film or the like, the properties of the substrate are impaired, such as deformation of the substrate or deterioration of its strength. Become. However, in the case of a film having high heat resistance such as polyimide, a modification treatment at a higher temperature is possible. Accordingly, there is no general upper limit for the substrate temperature at the time of ultraviolet irradiation, and it can be appropriately set by those skilled in the art depending on the type of substrate. Moreover, there is no restriction | limiting in particular in ultraviolet irradiation atmosphere, What is necessary is just to implement in air.

このような紫外線の発生手段としては、例えば、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、キセノンアークランプ、カーボンアークランプ、エキシマランプ(172nm、222nm、308nmの単一波長、例えば、ウシオ電機株式会社製、株式会社エム・ディ・コム製など)、UV光レーザー等が挙げられるが、特に限定されない。また、発生させた紫外線を第2のガスバリア層に照射する際には、効率向上と均一な照射を達成する観点から、発生源からの紫外線を反射板で反射させてから第2のガスバリア層に当てることが好ましい。  Examples of such ultraviolet ray generating means include metal halide lamps, high pressure mercury lamps, low pressure mercury lamps, xenon arc lamps, carbon arc lamps, and excimer lamps (single wavelengths of 172 nm, 222 nm, and 308 nm, for example, USHIO INC. Manufactured by M.D. Com Co., Ltd.), UV light laser, and the like, but are not particularly limited. In addition, when irradiating the generated ultraviolet light to the second gas barrier layer, from the viewpoint of achieving efficiency improvement and uniform irradiation, the ultraviolet light from the generation source is reflected by the reflector and then applied to the second gas barrier layer. It is preferable to apply.

紫外線照射は、バッチ処理にも連続処理にも適合可能であり、使用する基材の形状によって適宜選定することができる。例えば、バッチ処理の場合には、第2のガスバリア層を表面に有する積層体を上記のような紫外線発生源を具備した紫外線焼成炉で処理することができる。紫外線焼成炉自体は一般に知られており、例えば、アイグラフィクス株式会社製の紫外線焼成炉を使用することができる。また、第2のガスバリア層を表面に有する積層体が長尺フィルム状である場合には、これを搬送させながら上記のような紫外線発生源を具備した乾燥ゾーンで連続的に紫外線を照射することによりセラミックス化することができる。紫外線照射に要する時間は、使用する基材や第2のガスバリア層の組成、濃度にもよるが、一般に0.1秒〜10分であり、好ましくは0.5秒〜3分である。  The ultraviolet irradiation can be adapted to both batch processing and continuous processing, and can be appropriately selected depending on the shape of the substrate to be used. For example, in the case of batch processing, the laminated body having the second gas barrier layer on the surface can be processed in an ultraviolet baking furnace equipped with the ultraviolet ray generation source as described above. The ultraviolet baking furnace itself is generally known. For example, an ultraviolet baking furnace manufactured by I-Graphics Co., Ltd. can be used. Moreover, when the laminated body which has a 2nd gas barrier layer on the surface is a elongate film form, it irradiates with an ultraviolet-ray continuously in the drying zone provided with the above ultraviolet-ray generation sources, conveying this. Can be made into ceramics. The time required for ultraviolet irradiation is generally 0.1 seconds to 10 minutes, preferably 0.5 seconds to 3 minutes, although it depends on the composition and concentration of the substrate used and the second gas barrier layer.

(真空紫外線照射処理:エキシマ照射処理)
本発明において、最も好ましい改質処理方法は、真空紫外線照射による処理(エキシマ照射処理)である。真空紫外線照射による処理は、ポリシラザン化合物内の原子間結合力より大きい100〜200nmの光エネルギーを用い、好ましくは100〜180nmの波長の光エネルギーを用い、原子の結合を光量子プロセスと呼ばれる光子のみの作用により、直接切断しながら活性酸素やオゾンによる酸化反応を進行させることで、比較的低温(約200℃以下)で、酸化ケイ素膜の形成を行う方法である。なお、エキシマ照射処理を行う際は、上述したように熱処理を併用することが好ましい。
(Vacuum ultraviolet irradiation treatment: excimer irradiation treatment)
In the present invention, the most preferable modification treatment method is treatment by vacuum ultraviolet irradiation (excimer irradiation treatment). The treatment by vacuum ultraviolet irradiation uses light energy of 100 to 200 nm, preferably light energy with a wavelength of 100 to 180 nm, which is larger than the interatomic bonding force in the polysilazane compound, and bonds the atoms with only photons called photon processes. This is a method of forming a silicon oxide film at a relatively low temperature (about 200 ° C. or lower) by causing an oxidation reaction with active oxygen or ozone to proceed while cutting directly by action. In addition, when performing an excimer irradiation process, it is preferable to use heat processing together as mentioned above.

本発明においての放射線源は、100〜180nmの波長の光を発生させるものであればよいが、好適には約172nmに最大放射を有するエキシマラジエータ(例えば、Xeエキシマランプ)、約185nmに輝線を有する低圧水銀蒸気ランプ、並びに230nm以下の波長成分を有する中圧および高圧水銀蒸気ランプ、および約222nmに最大放射を有するエキシマランプである。  The radiation source in the present invention is not limited as long as it generates light having a wavelength of 100 to 180 nm, but is preferably an excimer radiator having a maximum emission at about 172 nm (for example, Xe excimer lamp), and has an emission line at about 185 nm. Low pressure mercury vapor lamps, and medium and high pressure mercury vapor lamps having a wavelength component of 230 nm or less, and excimer lamps having maximum emission at about 222 nm.

このうち、Xeエキシマランプは、波長の短い172nmの紫外線を単一波長で放射することから、発光効率に優れている。この光は、酸素の吸収係数が大きいため、微量な酸素でラジカルな酸素原子種やオゾンを高濃度で発生することができる。  Among these, the Xe excimer lamp emits ultraviolet light having a short wavelength of 172 nm at a single wavelength, and thus has excellent luminous efficiency. Since this light has a large oxygen absorption coefficient, it can generate radical oxygen atom species and ozone at a high concentration with a very small amount of oxygen.

また、波長の短い172nmの光のエネルギーは、有機物の結合を解離させる能力が高いことが知られている。この活性酸素やオゾンと紫外線放射が持つ高いエネルギーによって、短時間でポリシラザン塗膜の改質を実現できる。  Moreover, it is known that the energy of light having a short wavelength of 172 nm has a high ability to dissociate organic bonds. Due to the high energy possessed by the active oxygen, ozone and ultraviolet radiation, the polysilazane coating can be modified in a short time.

エキシマランプは光の発生効率が高いため、低い電力の投入で点灯させることが可能である。また、光による温度上昇の要因となる波長の長い光は発せず、紫外線領域で、すなわち短い波長でエネルギーを照射するため、解射対象物の表面温度の上昇が抑えられる特徴を持っている。このため、熱の影響を受けやすいとされるPETなどのフレシキブルフィルム材料に適している。  Since the excimer lamp has high light generation efficiency, it can be turned on with low power. In addition, light having a long wavelength that causes a temperature increase due to light is not emitted, and energy is irradiated in the ultraviolet region, that is, in a short wavelength, so that the increase in the surface temperature of the target object is suppressed. For this reason, it is suitable for flexible film materials such as PET that are easily affected by heat.

紫外線照射時の反応には、酸素が必要であるが、真空紫外線は、酸素による吸収があるため紫外線照射工程での効率が低下しやすいことから、真空紫外線の照射は、可能な限り酸素濃度および水蒸気濃度の低い状態で行うことが好ましい。すなわち、真空紫外線照射時の酸素濃度は、10〜20,000体積ppm(0.001〜2体積%)とすることが好ましく、50〜10,000体積ppm(0.005〜1体積%)とすることがより好ましい。また、転化プロセスの間の水蒸気濃度は、好ましくは1000〜4000体積ppmの範囲である。  Oxygen is required for the reaction at the time of ultraviolet irradiation, but since vacuum ultraviolet rays are absorbed by oxygen, the efficiency in the ultraviolet irradiation process tends to decrease. It is preferable to carry out in a state where the water vapor concentration is low. That is, the oxygen concentration at the time of vacuum ultraviolet irradiation is preferably 10 to 20,000 volume ppm (0.001 to 2 volume%), and preferably 50 to 10,000 volume ppm (0.005 to 1 volume%). More preferably. Also, the water vapor concentration during the conversion process is preferably in the range of 1000 to 4000 ppm by volume.

真空紫外線照射時に用いられる、照射雰囲気を満たすガスとしては乾燥不活性ガスとすることが好ましく、特にコストの観点から乾燥窒素ガスにすることが好ましい。酸素濃度の調整は照射庫内へ導入する酸素ガス、不活性ガスの流量を計測し、流量比を変えることで調整可能である。  As a gas that satisfies the irradiation atmosphere used at the time of irradiation with vacuum ultraviolet rays, a dry inert gas is preferable, and a dry nitrogen gas is particularly preferable from the viewpoint of cost. The oxygen concentration can be adjusted by measuring the flow rate of oxygen gas and inert gas introduced into the irradiation chamber and changing the flow rate ratio.

真空紫外線照射工程において、ポリシラザン塗膜が受ける塗膜面での該真空紫外線の照度は1mW/cm〜10W/cmであると好ましく、30mW/cm〜200mW/cmであることがより好ましく、50mW/cm〜160mW/cmであるとさらに好ましい。1mW/cm以上であれば、改質効率が向上し、10W/cm以下であれば、塗膜に生じ得るアブレーションや、基材へのダメージを低減することができる。In vacuum ultraviolet irradiation step, more that illuminance of the vacuum ultraviolet rays in the coated surface of the polysilazane coating film is subjected is preferable to be 1mW / cm 2 ~10W / cm 2 , a 30mW / cm 2 ~200mW / cm 2 preferably, further preferably at 50mW / cm 2 ~160mW / cm 2 . If it is 1 mW / cm 2 or more, the reforming efficiency is improved, and if it is 10 W / cm 2 or less, ablation that can occur in the coating film and damage to the substrate can be reduced.

塗膜面における真空紫外線の照射エネルギー量(照射量)は、100mJ/cm〜50J/cmであることが好ましく、200mJ/cm〜20J/cmであることがより好ましく、500mJ/cm〜10J/cmであることがさらに好ましい。100mJ/cm以上であれば、改質が十分となり、50J/cm以下であれば、過剰改質によるクラック発生や、基材の熱変形を抑制することができる。The amount of irradiation energy (irradiation amount) of vacuum ultraviolet rays on the coating surface is preferably 100 mJ / cm 2 to 50 J / cm 2 , more preferably 200 mJ / cm 2 to 20 J / cm 2 , and 500 mJ / cm 2. More preferably, it is 2 to 10 J / cm 2 . If it is 100 mJ / cm 2 or more, modification is sufficient, and if it is 50 J / cm 2 or less, generation of cracks due to excessive modification and thermal deformation of the substrate can be suppressed.

また、用いられる真空紫外線は、CO、COおよびCHの少なくとも一種を含むガスで形成されたプラズマにより発生させてもよい。さらに、CO、COおよびCHの少なくとも一種を含むガス(以下、炭素含有ガスとも称する)は、炭素含有ガスを単独で使用してもよいが、希ガスまたはHを主ガスとして、炭素含有ガスを少量添加することが好ましい。プラズマの生成方式としては容量結合プラズマなどが挙げられる。Further, the vacuum ultraviolet ray to be used may be generated by plasma formed of a gas containing at least one of CO, CO 2 and CH 4 . Further, as the gas containing at least one of CO, CO 2 and CH 4 (hereinafter also referred to as carbon-containing gas), the carbon-containing gas may be used alone, but carbon containing rare gas or H 2 as the main gas. It is preferable to add a small amount of the contained gas. Examples of plasma generation methods include capacitively coupled plasma.

なお、本発明に係る領域(c)の厚さ方向の組成分布および厚さは、下記のようなXPS(光電子分光法)分析を用いた方法で測定して求めることができる。  In addition, the composition distribution and thickness in the thickness direction of the region (c) according to the present invention can be obtained by measurement by a method using XPS (photoelectron spectroscopy) analysis as described below.

本発明に係る領域(c)のエッチングレートは組成によって異なるため、本発明においては、XPS分析での厚さは、SiO換算のエッチングレートを元にして一旦求めておき、同一試料の断面TEM画像をもとに、積層して形成した領域の各領域間の界面を特定して一領域当たりの厚さを求め、これをXPS分析から求めた厚さ方向の組成分布と比較しながら、厚さ方向の組成分布における各領域を特定し、それぞれに対応するXPS分析から求めた各領域の厚さと、断面TEM画像から求めた各領域の厚さが一致するように、XPS分析から求めた各領域の厚さに対して一律に係数をかけることで厚さ方向の補正を行っている。Since the etching rate of the region (c) according to the present invention varies depending on the composition, in the present invention, the thickness in the XPS analysis is obtained once based on the etching rate in terms of SiO 2 , and the cross-section TEM of the same sample. Based on the image, the interface between each region of the region formed by stacking is specified to determine the thickness per region, and this is compared with the composition distribution in the thickness direction obtained from XPS analysis. Each region in the longitudinal composition distribution is specified, and each thickness obtained from the XPS analysis so that the thickness of each region obtained from the XPS analysis corresponding to each region matches the thickness of each region obtained from the cross-sectional TEM image. Correction in the thickness direction is performed by uniformly applying a coefficient to the thickness of the region.

本発明におけるXPS分析は、下記の条件で行ったものであるが、装置や測定条件が変わっても本発明の主旨に即した測定方法であれば問題なく適用できるものである。  The XPS analysis in the present invention was performed under the following conditions, but even if the apparatus and measurement conditions are changed, any measurement method that conforms to the gist of the present invention can be applied without any problem.

本発明の主旨に即した測定方法とは、主に厚さ方向の解像度であり、測定点1点あたりのエッチング深さ(下記のスパッタイオンとデプスプロファイルの条件に相当)は1〜15nmであることが好ましく、1〜10nmであることがより好ましい。  The measurement method according to the gist of the present invention is mainly resolution in the thickness direction, and the etching depth per measurement point (corresponding to the conditions of the following sputter ion and depth profile) is 1 to 15 nm. It is preferable that the thickness is 1 to 10 nm.

《XPS分析条件》
・装置:アルバックファイ製QUANTERASXM
・X線源:単色化Al−Kα
・測定領域:Si2p、C1s、N1s、O1s
・スパッタイオン:Ar(2keV)
・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO 換算で、約2.8nmの厚さ分となるようにスパッタ時間を調整する
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いる。
  << XPS analysis conditions >>
  ・ Equipment: ULVAC-PHI QUANTERASXM
  ・ X-ray source: Monochromatic Al-Kα
  Measurement area: Si2p, C1s, N1s, O1s
  ・ Sputtering ion: Ar (2 keV)
  Depth profile: repeats measurement after sputtering for a certain time. One measurement is SiO 2Adjust the sputtering time so that the thickness is equivalent to approximately 2.8 nm.
  Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. Data processing uses MultiPak manufactured by ULVAC-PHI.

このようにして、第2のガスバリア層の膜厚方向の組成分布のプロファイルの一次データを得る。  In this way, primary data of the profile of the composition distribution in the film thickness direction of the second gas barrier layer is obtained.

また、各試料の断面をTEMで撮影し、積層構成の各膜厚を求める。上記で求めた膜厚方向の組成分布のプロファイルをTEM画像から求めた実膜厚データを用いて補正し、領域の膜厚方向の組成分布を得る。これを元に、領域(c)の厚さを求める。  Moreover, the cross section of each sample is image | photographed with TEM, and each film thickness of a laminated structure is calculated | required. The composition distribution profile in the film thickness direction obtained above is corrected using the actual film thickness data obtained from the TEM image to obtain the composition distribution in the film thickness direction of the region. Based on this, the thickness of the region (c) is obtained.

TEM画像により一領域当たりの厚さを求める方法は、ガスバリア性フィルムを、以下のFIB加工装置により薄片を作製した後、定法に従い断面TEM観察を行えばよい。このようにして、各領域の厚さを算出できる。FIB加工およびTEM観察に用いることができる一例を以下に示す。  As a method for obtaining the thickness per region from the TEM image, a gas barrier film may be prepared by observing a cross-section TEM according to a conventional method after producing a thin piece by the following FIB processing apparatus. In this way, the thickness of each region can be calculated. An example that can be used for FIB processing and TEM observation is shown below.

《FIB加工》
・装置:SII製SMI2050
・加工イオン:(Ga 30kV)
・試料厚み:100nm〜200nm
《TEM観察》
・装置:日本電子株式会社製JEM2000FX(加速電圧:200kV)。
《FIB processing》
・ Apparatus: SII SMI2050
・ Processed ions: (Ga 30 kV)
Sample thickness: 100 nm to 200 nm
<< TEM observation >>
Apparatus: JEM2000FX (acceleration voltage: 200 kV) manufactured by JEOL Ltd.

該第2のガスバリア層は、単層でもよいし2層以上の積層構造であってもよい。該第2のガスバリア層が2層以上の積層構造である場合、各第2のガスバリア層は同じ組成であってもよいし異なる組成であってもよい。  The second gas barrier layer may be a single layer or a laminated structure of two or more layers. When the second gas barrier layer has a laminated structure of two or more layers, the second gas barrier layers may have the same composition or different compositions.

第2のガスバリア層の厚さ(2層以上の積層構造である場合はその総厚)は、10〜1000nmであることが好ましく、50〜600nmであることがより好ましい。この範囲であれば、ガスバリア性と耐久性とのバランスが良好となり好ましい。第2のガスバリア層の厚さは、TEM観察により測定することができる。  The thickness of the second gas barrier layer (the total thickness in the case of a laminated structure of two or more layers) is preferably 10 to 1000 nm, and more preferably 50 to 600 nm. If it is this range, the balance of gas barrier property and durability becomes favorable and is preferable. The thickness of the second gas barrier layer can be measured by TEM observation.

[(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層]
本発明に係る(D)層は、ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である。このような(D)層は単独では、例えば、有機EL素子のダークスポットを低減させるだけの高いガスバリア性は有さないものの、高温高湿環境では領域(c)を有する第2のガスバリア層よりも先に酸化されることになる。したがって、高温高湿環境における第2のガスバリア層表面の酸化抑制効果が発揮され、スポット的なガスバリア性の低下が生じにくくなると考えられる。よって、該(D)層を備える本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れる。
[(D) Layer containing a metal oxide whose oxidation-reduction potential is lower than that of silicon as a main component and having a refractive index of light having a wavelength of 450 nm of 2.0 or more]
The (D) layer according to the present invention contains, as a main component, a metal oxide having a lower oxidation-reduction potential than silicon, and the refractive index of light having a wavelength of 450 nm is 2.0 or more. Such a layer (D) alone does not have, for example, a high gas barrier property sufficient to reduce the dark spots of the organic EL element, but in a high temperature and high humidity environment, the second gas barrier layer having the region (c). Will be oxidized first. Therefore, it is considered that the effect of suppressing the oxidation of the surface of the second gas barrier layer in a high temperature and high humidity environment is exhibited, and the spot-like gas barrier property is hardly reduced. Therefore, the gas barrier film of this invention provided with this (D) layer is excellent in durability in a high-temperature, high-humidity environment.

ここで、「ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含む」とは、ケイ素よりも酸化還元電位が低い金属の酸化物の含有量が、(D)層の全質量に対して50質量%以上であることを意味する。該含有量は、80質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが特に好ましく、100質量%である(すなわち、(D)層はケイ素よりも酸化還元電位が低い金属酸化物からなる)ことが最も好ましい。  Here, “comprising a metal oxide having a lower redox potential than silicon as a main component” means that the content of the metal oxide having a lower redox potential than silicon is the total mass of the layer (D). It means that it is 50% by mass or more. The content is more preferably 80% by mass or more, further preferably 95% by mass or more, particularly preferably 98% by mass or more, and 100% by mass (that is, the (D) layer. Is most preferably made of a metal oxide having a lower redox potential than silicon).

ケイ素よりも酸化還元電位が低い金属の具体例としては、例えば、ニオブ、タンタル、ジルコニウム、チタン、ハフニウム、マグネシウム、イットリウム、アルミニウム等が挙げられる。これら金属は、単独でもまたは2種以上混合して用いてもよい。  Specific examples of the metal having a lower redox potential than silicon include niobium, tantalum, zirconium, titanium, hafnium, magnesium, yttrium, and aluminum. These metals may be used alone or in combination of two or more.

これらの中でも、ニオブ、タンタル、ジルコニウム、およびチタンからなる群より選択される少なくとも1種の金属が好ましい。すなわち、(D)層は、ニオブ、タンタル、ジルコニウム、およびチタンからなる群より選択される少なくとも1種の金属の酸化物を主成分として含むことが好ましい。  Among these, at least one metal selected from the group consisting of niobium, tantalum, zirconium, and titanium is preferable. That is, the (D) layer preferably contains, as a main component, an oxide of at least one metal selected from the group consisting of niobium, tantalum, zirconium, and titanium.

主要な金属の標準酸化還元電位と、これらの金属の酸化物の波長450nmの光の屈折率を下表に示す。下記の金属の酸化物の波長450nmの光の屈折率は、例えば、分光エリプソメータを用いて測定することができる。  The standard oxidation-reduction potentials of major metals and the refractive indexes of light of these metal oxides having a wavelength of 450 nm are shown in the following table. The refractive index of light having a wavelength of 450 nm of the following metal oxide can be measured using, for example, a spectroscopic ellipsometer.

ニオブ、タンタル、ジルコニウム、およびチタンからなる群より選択される少なくとも1種の金属の酸化物は、単独で波長450nmの光の屈折率が2.0を超えるため、(D)層における波長450nmの光の屈折率を2.0以上に制御することが容易になるため好ましい。さらに、例えば、有機EL素子におけるダークスポットの発生をさらにより抑制できるという観点から、(D)層は、ニオブおよびタンタルの少なくとも一方の金属の酸化物を主成分として含むことがより好ましい。  The oxide of at least one metal selected from the group consisting of niobium, tantalum, zirconium, and titanium alone has a refractive index of light having a wavelength of 450 nm exceeding 2.0. Since it becomes easy to control the refractive index of light to 2.0 or more, it is preferable. Furthermore, for example, from the viewpoint that generation of dark spots in the organic EL element can be further suppressed, the layer (D) preferably contains an oxide of at least one of niobium and tantalum as a main component.

好ましい形態として、(D)層は、ケイ素よりも酸化還元電位が低い金属の酸化物であり、かつ波長450nmの光の屈折率が2.0以上である金属酸化物を主成分として含んでいれば、他の化合物を含んでもよい。他の化合物の例としては、例えば、ハフニウム、マグネシウム、イットリウム、アルミニウム等が挙げられる。これら他の化合物は、単独でもまたは2種以上混合しても用いることができる。  As a preferred embodiment, the layer (D) is a metal oxide having a redox potential lower than that of silicon and containing a metal oxide having a refractive index of light having a wavelength of 450 nm of 2.0 or more as a main component. For example, other compounds may be included. Examples of other compounds include hafnium, magnesium, yttrium, and aluminum. These other compounds can be used alone or in combination of two or more.

また、(D)層は、波長450nmの光の屈折率が2.0以上である。このような屈折率を有する(D)層を備える本発明のガスバリア性フィルムは、波長450nm付近の青色光の透過性(光取り出し性)に優れ、該ガスバリア性フィルムを用いた電子デバイスは青色光の発光効率に優れたものとなる。波長450nmの光の屈折率が2.0未満の場合、光取り出し性が低下する。(D)層の波長450nmの光の屈折率は、好ましくは2.05以上、より好ましくは2.10以上である。また該屈折率の上限値は、特に制限されないが、3.00以下であることが好ましく、2.90以下であることがより好ましい。  The (D) layer has a refractive index of light having a wavelength of 450 nm of 2.0 or more. The gas barrier film of the present invention including the (D) layer having such a refractive index is excellent in blue light transmittance (light extraction property) near a wavelength of 450 nm, and an electronic device using the gas barrier film is blue light. The light emission efficiency is excellent. When the refractive index of light having a wavelength of 450 nm is less than 2.0, the light extraction property is lowered. The refractive index of light having a wavelength of 450 nm of the layer (D) is preferably 2.05 or more, more preferably 2.10 or more. The upper limit of the refractive index is not particularly limited, but is preferably 3.00 or less, and more preferably 2.90 or less.

(D)層の波長450nmの光の屈折率は、具体的には、一般的な分光エリプソメータや、Scientific Computing International社製の非接触膜厚屈折率測定システムFilmTekシリーズ等を用いて測定することができる。また、(D)層の波長450nmの光の屈折率は、例えば、構成材料として波長450nmの光の屈折率が2.0以上である金属酸化物(例えば、ニオブ、タンタル、ジルコニウム、およびチタンからなる群より選択される少なくとも1種の金属の酸化物)であり、かつ完全酸化よりも酸化状態が低い(酸素が欠損している)化合物を主成分とするターゲットを用いたスパッタによる製膜で、酸素導入量を調整して酸化度を変化させる等の方法により制御することができる。  (D) Specifically, the refractive index of light having a wavelength of 450 nm can be measured using a general spectroscopic ellipsometer, a non-contact film thickness refractive index measurement system FilmTek series manufactured by Scientific Computing International, or the like. it can. In addition, the refractive index of light having a wavelength of 450 nm of the layer (D) is, for example, from a metal oxide (for example, niobium, tantalum, zirconium, and titanium) having a refractive index of light having a wavelength of 450 nm as a constituent material. An oxide of at least one metal selected from the group consisting of: a target having a compound whose main component is a compound having a lower oxidation state than that of complete oxidation (oxygen-deficient) as a main component. It can be controlled by adjusting the amount of oxygen introduced and changing the degree of oxidation.

(D)層の形成方法としては、特に制限されず、例えば、スパッタ法、蒸着法、イオンプレーティング法等の物理蒸着法(PVD)法、プラズマCVD(chemical vapordeposition)法、ALD(Atomic Layer Deposition)などの化学蒸着法が挙げられる。中でも、下部に備える第2のガスバリア層へのダメージを与えることなく成膜が可能となり、高い生産性を有することから、スパッタ法により形成することが好ましい。  The method for forming the (D) layer is not particularly limited, and examples thereof include physical vapor deposition (PVD) methods such as sputtering, vapor deposition, and ion plating, plasma CVD (chemical vapor deposition), and ALD (Atomic Layer Deposition). ) Or the like. In particular, the film formation is possible without damaging the second gas barrier layer provided in the lower part, and it is preferable to form the film by sputtering because it has high productivity.

スパッタ法による成膜は、DC(直流)スパッタ法、RF(高周波)スパッタ法、これらマグネトロンスパッタリングを組み合わせた方法、さらに中間的な周波数領域を用いたデュアルマグネトロン(DMS)スパッタ法などの従来技術を、単独でまたは2種以上組み合わせて用いることができる。また、金属モードと、酸化物モードの中間である遷移モードを利用した反応性スパッタ法も用いることができる。遷移領域となるようにスパッタ現象を制御することにより、高い成膜スピードで金属酸化物を成膜することが可能となるため好ましい。DCスパッタリングやDMSスパッタリングを行なう際には、そのターゲットにケイ素よりも酸化還元電位が低い金属を用い、さらに、プロセスガス中に酸素を導入することで、ケイ素よりも酸化還元電位が低い金属の酸化物の薄膜を形成することができる。また、RF(高周波)スパッタ法で成膜する場合は、ケイ素よりも酸化還元電位が低い金属の酸化物のターゲットを用いることができる。プロセスガスとしては、He、Ne、Ar、Kr、Xe等の不活性ガス、酸素、窒素、二酸化炭素、一酸化炭素のうち少なくとも1種等のプロセスガスを用いることができる。スパッタ法における成膜条件としては、印加電力、放電電流、放電電圧、時間等が挙げられるが、これらは、スパッタ装置や、膜の材料、膜厚等に応じて適宜選択することができる。  Film formation by sputtering uses conventional techniques such as DC (direct current) sputtering, RF (high frequency) sputtering, a combination of these magnetron sputtering, and dual magnetron (DMS) sputtering using an intermediate frequency region. These can be used alone or in combination of two or more. In addition, a reactive sputtering method using a transition mode that is intermediate between the metal mode and the oxide mode can also be used. By controlling the sputtering phenomenon so as to be in the transition region, a metal oxide film can be formed at a high film formation speed, which is preferable. When performing DC sputtering or DMS sputtering, a metal having a lower redox potential than silicon is used as the target, and oxygen is introduced into the process gas to oxidize a metal having a lower redox potential than silicon. A thin film of an object can be formed. In the case of forming a film by an RF (high frequency) sputtering method, a metal oxide target having a lower oxidation-reduction potential than silicon can be used. As the process gas, an inert gas such as He, Ne, Ar, Kr, or Xe, or at least one process gas selected from oxygen, nitrogen, carbon dioxide, and carbon monoxide can be used. Examples of film formation conditions in the sputtering method include applied power, discharge current, discharge voltage, time, and the like, which can be appropriately selected according to the sputtering apparatus, film material, film thickness, and the like.

中でも、成膜レートがより高く、より高い生産性を有することから、ケイ素よりも酸化還元電位が低い金属の酸化物をターゲットとして用いるスパッタ法が好ましい。  Among these, a sputtering method using a metal oxide having a lower oxidation-reduction potential than silicon as a target is preferable because it has a higher film formation rate and higher productivity.

(D)層は、単層でもよいし2層以上の積層構造であってもよい。該(D)層が2層以上の積層構造である場合、該(D)層は同じ組成であってもよいし異なる組成であってもよい。  The layer (D) may be a single layer or a laminated structure of two or more layers. When the (D) layer has a laminated structure of two or more layers, the (D) layer may have the same composition or different compositions.

(D)層の厚さ(2層以上の積層構造である場合はその総厚)は、特に制限されないが、1〜500nmであることが好ましく、5〜200nmであることがより好ましい。この範囲であれば、生産性の高い成膜タクトタイムの範囲内で、十分なガスバリア性向上効果が得られるという利点が得られる。  The thickness of the (D) layer (the total thickness in the case of a laminated structure of two or more layers) is not particularly limited, but is preferably 1 to 500 nm, and more preferably 5 to 200 nm. If it is this range, the advantage that sufficient gas-barrier property improvement effect is acquired within the range of the film-forming tact time with high productivity is acquired.

[種々の機能を有する層]
本発明に係るガスバリア性フィルムにおいては、種々の機能を有する層を設けることができる。
[Layers with various functions]
In the gas barrier film according to the present invention, layers having various functions can be provided.

(アンカーコート層)
本発明に係るガスバリア層(第1のガスバリア層、第2のガスバリア層)を形成する側の樹脂基材の表面には、ガスバリア層との密着性の向上を目的として、アンカーコート層を形成してもよい。
(Anchor coat layer)
An anchor coat layer is formed on the surface of the resin substrate on the side on which the gas barrier layer (first gas barrier layer, second gas barrier layer) according to the present invention is formed for the purpose of improving adhesion with the gas barrier layer. May be.

アンカーコート層に用いられるアンカーコート剤としては、ポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、エチレンビニルアルコール樹脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹脂、変性シリコン樹脂、およびアルキルチタネート等を単独でまたは2種以上組み合わせて使用することができる。  As anchor coating agents used for the anchor coat layer, polyester resins, isocyanate resins, urethane resins, acrylic resins, ethylene vinyl alcohol resins, vinyl modified resins, epoxy resins, modified styrene resins, modified silicon resins, alkyl titanates, etc. are used alone Or in combination of two or more.

これらのアンカーコート剤には、従来公知の添加剤を加えることもできる。そして、上記のアンカーコート剤は、ロールコート、グラビアコート、ナイフコート、ディップコート、スプレーコート等の公知の方法により支持体上にコーティングし、溶剤、希釈剤等を乾燥除去することによりアンカーコーティングすることができる。上記のアンカーコート剤の塗布量としては、0.1〜5.0g/m(乾燥状態)程度が好ましい。Conventionally known additives can be added to these anchor coating agents. The above-mentioned anchor coating agent is coated on the support by a known method such as roll coating, gravure coating, knife coating, dip coating, spray coating, etc., and anchor coating is performed by drying and removing the solvent, diluent, etc. be able to. The application amount of the anchor coating agent is preferably about 0.1 to 5.0 g / m 2 (dry state).

また、アンカーコート層は、物理蒸着法または化学蒸着法といった気相法により形成することもできる。例えば、特開2008−142941号公報に記載のように、接着性等を改善する目的で酸化珪素を主体とした無機膜を形成することもできる。あるいは、特開2004−314626号公報に記載されているようなアンカーコート層を形成することで、その上に気相法により無機薄膜を形成する際に、基材側から発生するガスをある程度遮断して、無機薄膜の組成を制御するといった目的でアンカーコート層を形成することもできる。  The anchor coat layer can also be formed by a vapor phase method such as physical vapor deposition or chemical vapor deposition. For example, as described in JP-A-2008-142941, an inorganic film mainly composed of silicon oxide can be formed for the purpose of improving adhesion and the like. Alternatively, by forming an anchor coat layer as described in Japanese Patent Application Laid-Open No. 2004-314626, when an inorganic thin film is formed thereon by a vapor phase method, the gas generated from the substrate side is blocked to some extent. Thus, an anchor coat layer can be formed for the purpose of controlling the composition of the inorganic thin film.

また、アンカーコート層の厚さは、特に制限されないが、0.5〜10μm程度が好ましい。  The thickness of the anchor coat layer is not particularly limited, but is preferably about 0.5 to 10 μm.

(平滑層)
本発明に係るガスバリア性フィルムにおいては、樹脂基材と第1のガスバリア層との間に、平滑層を有してもよい。本発明に用いられる平滑層は突起等が存在する樹脂基材の粗面を平坦化し、あるいは、樹脂基材に存在する突起により透明無機化合物層に生じた凹凸やピンホールを埋めて平坦化するために設けられる。このような平滑層は、基本的には感光性材料、または、熱硬化性材料を硬化させて作製される。
(Smooth layer)
The gas barrier film according to the present invention may have a smooth layer between the resin substrate and the first gas barrier layer. The smooth layer used in the present invention flattens the rough surface of the resin base material on which protrusions and the like exist, or flattens the unevenness and pinholes generated in the transparent inorganic compound layer by the protrusions existing on the resin base material. Provided for. Such a smooth layer is basically produced by curing a photosensitive material or a thermosetting material.

平滑層の感光性材料としては、例えば、ラジカル反応性不飽和化合物を有するアクリレート化合物を含有する樹脂組成物、アクリレート化合物とチオール基を有するメルカプト化合物を含有する樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート、ポリエチレングリコールアクリレート、グリセロールメタクリレート等の多官能アクリレートモノマーを溶解させた樹脂組成物等が挙げられる。具体的には、JSR株式会社製のUV硬化型有機/無機ハイブリッドハードコート材 OPSTAR(登録商標)シリーズを用いることができる。また、上記のような樹脂組成物の任意の混合物を使用することも可能であり、光重合性不飽和結合を分子内に1個以上有する反応性のモノマーを含有している感光性樹脂であれば特に制限はない。  As the photosensitive material of the smooth layer, for example, a resin composition containing an acrylate compound having a radical reactive unsaturated compound, a resin composition containing an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, Examples thereof include a resin composition in which a polyfunctional acrylate monomer such as polyester acrylate, polyether acrylate, polyethylene glycol acrylate, or glycerol methacrylate is dissolved. Specifically, a UV curable organic / inorganic hybrid hard coating material OPSTAR (registered trademark) series manufactured by JSR Corporation can be used. It is also possible to use an arbitrary mixture of the above resin compositions, and any photosensitive resin containing a reactive monomer having one or more photopolymerizable unsaturated bonds in the molecule can be used. There are no particular restrictions.

熱硬化性材料として具体的には、クラリアント社製のトゥットプロムシリーズ(有機ポリシラザン)、セラミックコート株式会社製のSP COAT耐熱クリアー塗料、株式会社アデカ製のナノハイブリッドシリコーン、DIC株式会社製のユニディック(登録商標)V−8000シリーズ、EPICLON(登録商標) EXA−4710(超高耐熱性エポキシ樹脂)、信越化学工業株式会社製の各種シリコン樹脂、日東紡株式会社製の無機・有機ナノコンポジット材料SSGコート、アクリルポリオールとイソシアネートプレポリマーとからなる熱硬化性ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。この中でも特に耐熱性を有するエポキシ樹脂ベースの材料であることが好ましい。  Specific examples of thermosetting materials include TutProm Series (Organic Polysilazane) manufactured by Clariant, SP COAT heat-resistant clear paint manufactured by Ceramic Co., Ltd., Nanohybrid Silicone manufactured by Adeka, and Unidic manufactured by DIC. (Registered trademark) V-8000 series, EPICLON (registered trademark) EXA-4710 (ultra-high heat resistant epoxy resin), various silicon resins manufactured by Shin-Etsu Chemical Co., Ltd., inorganic / organic nanocomposite material SSG manufactured by Nittobo Co., Ltd. Examples include coats, thermosetting urethane resins composed of acrylic polyols and isocyanate prepolymers, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, and silicon resins. Among these, an epoxy resin-based material having heat resistance is particularly preferable.

平滑層の形成方法は、特に制限はないが、スピンコーティング法、スプレー法、ブレードコーティング法、ディップ法等のウエットコーティング法、あるいは、蒸着法等のドライコーティング法により形成することが好ましい。  The method for forming the smooth layer is not particularly limited, but is preferably formed by a wet coating method such as a spin coating method, a spray method, a blade coating method, or a dip method, or a dry coating method such as an evaporation method.

平滑層の形成では、上述の感光性樹脂に、必要に応じて酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を加えることができる。また、平滑層の積層位置に関係なく、いずれの平滑層においても、成膜性向上および膜のピンホール発生防止等のために適切な樹脂や添加剤を使用してもよい。  In the formation of the smooth layer, additives such as an antioxidant, an ultraviolet absorber, and a plasticizer can be added to the above-described photosensitive resin as necessary. In addition, regardless of the position where the smooth layer is laminated, in any smooth layer, an appropriate resin or additive may be used for improving the film formability and preventing the generation of pinholes in the film.

平滑層の厚さとしては、フィルムの耐熱性を向上させ、フィルムの光学特性のバランス調整を容易にする観点から、1〜10μmの範囲が好ましく、さらに好ましくは、2μm〜7μmの範囲にすることが好ましい。  The thickness of the smooth layer is preferably in the range of 1 to 10 μm, more preferably in the range of 2 to 7 μm from the viewpoint of improving the heat resistance of the film and facilitating the balance adjustment of the optical properties of the film. Is preferred.

平滑層の平滑性は、JIS B 0601:2001で規定される表面粗さで表現される値で、十点平均粗さRzが、10nm以上、30nm以下であることが好ましい。この範囲であれば、バリア層を塗布形式で塗布した場合であっても、ワイヤーバー、ワイヤレスバー等の塗布方式で、平滑層表面に塗工手段が接触する場合であっても塗布性が損なわれることが少なく、また、塗布後の凹凸を平滑化することも容易である。  The smoothness of the smooth layer is a value expressed by the surface roughness specified by JIS B 0601: 2001, and the ten-point average roughness Rz is preferably 10 nm or more and 30 nm or less. If it is this range, even if it is a case where a barrier layer is apply | coated with an application | coating form, even if it is a case where a coating means contacts the smooth layer surface by application methods, such as a wire bar and a wireless bar, applicability | paintability will be impaired. In addition, it is easy to smooth the unevenness after coating.

[電子デバイス本体]
本発明のガスバリア性フィルムは、空気中の化学成分(酸素、水、窒素酸化物、硫黄酸化物、オゾン等)によって性能が劣化するデバイスに好ましく適用できる。すなわち、本発明は、本発明のガスバリア性フィルムと、上記(D)層の上記第2のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、を含む電子デバイスを提供する。
[Electronic device body]
The gas barrier film of the present invention can be preferably applied to a device whose performance is deteriorated by chemical components (oxygen, water, nitrogen oxide, sulfur oxide, ozone, etc.) in the air. That is, the present invention provides an electronic device comprising the gas barrier film of the present invention and an electronic device body formed on the surface of the (D) layer opposite to the surface having the second gas barrier layer. provide.

本発明の電子デバイスに用いられる電子デバイス本体の例としては、例えば、有機エレクトロルミネッセンス素子(有機EL素子)、液晶表示素子(LCD)、薄膜トランジスタ、タッチパネル、電子ペーパー、太陽電池(PV)等を挙げることができる。本発明の効果がより効率的に得られるという観点から、該電子デバイス本体は有機EL素子または太陽電池が好ましく、有機EL素子がより好ましい。  Examples of the electronic device body used in the electronic device of the present invention include, for example, an organic electroluminescence element (organic EL element), a liquid crystal display element (LCD), a thin film transistor, a touch panel, electronic paper, a solar cell (PV), and the like. be able to. From the viewpoint that the effects of the present invention can be obtained more efficiently, the electronic device body is preferably an organic EL element or a solar cell, and more preferably an organic EL element.

以下、具体的な電子デバイス本体の一例として有機EL素子およびこれを用いた有機ELパネルについて説明する。  Hereinafter, an organic EL element and an organic EL panel using the same will be described as an example of a specific electronic device body.

下記では有機EL素子の層構成の好ましい具体例を示すが、本発明はこれらに限定されない。  Although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.

(1)陽極/発光層/陰極
(2)陽極/正孔輸送層/発光層/陰極
(3)陽極/発光層/電子輸送層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/陽極バッファー層(正孔注入層)/正孔輸送層/発光層/電子輸送層/陰極バッファー層(電子注入層)/陰極
(陽極)
有機EL素子における陽極(透明電極)としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In−ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
(1) Anode / light emitting layer / cathode (2) Anode / hole transport layer / light emitting layer / cathode (3) Anode / light emitting layer / electron transport layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) Anode / anode buffer layer (hole injection layer) / hole transport layer / light emitting layer / electron transport layer / cathode buffer layer (electron injection layer) / cathode (anode)
As the anode (transparent electrode) in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.

陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜として形成し、その薄膜をフォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。  For the anode, these electrode materials may be formed as a thin film by a method such as vapor deposition or sputtering, and the thin film may be formed into a desired shape pattern by photolithography, or if the pattern accuracy is not required ( The pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.

この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましい。また、陽極としてのシート抵抗は数百Ω/□以下が好ましい。また、陽極の膜厚は材料にもよるが、通常10〜1000nm、好ましくは10〜200nmの範囲で選ばれる。  When light emission is taken out from the anode, it is desirable that the transmittance be larger than 10%. The sheet resistance as the anode is preferably several hundred Ω / □ or less. Moreover, although the film thickness of an anode is based also on material, it is 10-1000 nm normally, Preferably it is chosen in the range of 10-200 nm.

(陰極)
有機EL素子における陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物およびこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性および酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が陰極として好適である。
(cathode)
As the cathode in the organic EL element, a material having a small work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are suitable as the cathode.

陰極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましい。また、陰極の膜厚は通常10nm〜5μm、好ましくは50〜200nmの範囲で選ばれる。なお、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば、発光輝度が向上し好都合である。  The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The sheet resistance as a cathode is preferably several hundred Ω / □ or less. The film thickness of the cathode is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm. In order to transmit the emitted light, if either the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.

また、陰極の説明で挙げた上記金属を1〜20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。  Moreover, after manufacturing the said metal quoted by description of the cathode with the film thickness of 1-20 nm, the transparent transparent or semi-transparent cathode is produced by producing the electroconductive transparent material quoted by description of the anode on it. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.

(注入層:電子注入層、正孔注入層)
注入層には電子注入層と正孔注入層があり、電子注入層と正孔注入層を必要に応じて設け、陽極と発光層または正孔輸送層の間、および陰極と発光層または電子輸送層との間に存在させる。
(Injection layer: electron injection layer, hole injection layer)
The injection layer includes an electron injection layer and a hole injection layer. An electron injection layer and a hole injection layer are provided as necessary, and between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport. Exist between the layers.

注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123〜166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。  An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).

陽極バッファー層(正孔注入層)は、特開平9−45479号公報、特開平9−260062号公報、特開平8−288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。  The details of the anode buffer layer (hole injection layer) are also described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, and the like. Examples thereof include a phthalocyanine buffer layer typified by phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.

陰極バッファー層(電子注入層)は、特開平6−325871号公報、特開平9−17574号公報、特開平10−74586号公報等にもその詳細が記載されており、具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが、その膜厚は0.1nm〜5μmの範囲が好ましい。  Details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium Metal buffer layer typified by aluminum and aluminum, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. Is mentioned. The buffer layer (injection layer) is desirably a very thin film, and although it depends on the material, the film thickness is preferably in the range of 0.1 nm to 5 μm.

(発光層)
有機EL素子における発光層は、電極(陰極、陽極)または電子輸送層、正孔輸送層から注入されてくる電子および正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
(Light emitting layer)
The light emitting layer in the organic EL element is a layer that emits light by recombination of electrons and holes injected from the electrode (cathode, anode) or electron transport layer, hole transport layer, and the light emitting portion is the light emitting layer. It may be in the layer or the interface between the light emitting layer and the adjacent layer.

有機EL素子の発光層には、以下に示すドーパント化合物(発光ドーパント)とホスト化合物(発光ホスト)が含有されることが好ましい。これにより、より一層発光効率を高くすることができる。  The light emitting layer of the organic EL device preferably contains the following dopant compound (light emitting dopant) and host compound (light emitting host). Thereby, the luminous efficiency can be further increased.

(発光ドーパント)
発光ドーパントは、大きく分けて蛍光を発光する蛍光性ドーパントとリン光を発光するリン光性ドーパントの2種類がある。
(Luminescent dopant)
There are two types of luminescent dopants: a fluorescent dopant that emits fluorescence and a phosphorescent dopant that emits phosphorescence.

蛍光性ドーパントの代表例としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。  Representative examples of fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes. Stilbene dyes, polythiophene dyes, rare earth complex phosphors, and the like.

リン光性ドーパントの代表例としては、好ましくは元素の周期表で第8族、第9族、第10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物であり、中でも最も好ましいのはイリジウム化合物である。発光ドーパントは複数種の化合物を混合して用いてもよい。  As a typical example of the phosphorescent dopant, preferably a complex compound containing a metal of Group 8, Group 9, or Group 10 in the periodic table of elements, more preferably an iridium compound or an osmium compound, Of these, iridium compounds are the most preferred. The light emitting dopant may be used by mixing a plurality of kinds of compounds.

(発光ホスト)
発光ホスト(単にホストとも言う)とは、2種以上の化合物で構成される発光層中にて混合比(質量)の最も多い化合物のことを意味し、それ以外の化合物については「ドーパント化合物(単に、ドーパントとも言う)」という。例えば、発光層を化合物A、化合物Bという2種で構成し、その混合比がA:B=10:90であれば化合物Aがドーパント化合物であり、化合物Bがホスト化合物である。さらに発光層を化合物A、化合物B、化合物Cの3種から構成し、その混合比がA:B:C=5:10:85であれば、化合物A、化合物Bがドーパント化合物であり、化合物Cがホスト化合物である。
(Light emitting host)
A light-emitting host (also simply referred to as a host) means a compound having the largest mixing ratio (mass) in a light-emitting layer composed of two or more kinds of compounds. It is also simply called a dopant). For example, if the light emitting layer is composed of two types of compound A and compound B and the mixing ratio is A: B = 10: 90, compound A is a dopant compound and compound B is a host compound. Furthermore, if a light emitting layer is comprised from 3 types of a compound A, a compound B, and the compound C and the mixing ratio is A: B: C = 5: 10: 85, the compound A and the compound B are dopant compounds, and a compound C is a host compound.

発光ホストとしては構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの、またはカルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す)等が挙げられる。中でも、カルボリン誘導体、ジアザカルバゾール誘導体等が好ましく用いられる。  The light emitting host is not particularly limited in terms of structure, but is typically a basic skeleton such as a carbazole derivative, a triarylamine derivative, an aromatic borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, or an oligoarylene compound. Or a carboline derivative or a diazacarbazole derivative (herein, a diazacarbazole derivative is one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom) For example). Of these, carboline derivatives, diazacarbazole derivatives and the like are preferably used.

そして、発光層は上記化合物を、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。発光層としての膜厚は特に制限はないが、通常は5nm〜5μm、好ましくは5〜200nmの範囲で選ばれる。この発光層はドーパント化合物やホスト化合物が1種または2種以上からなる単層構造であってもよいし、あるいは同一組成または異種組成の複数層からなる積層構造であってもよい。  The light emitting layer can be formed by depositing the above compound by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Although the film thickness as a light emitting layer does not have a restriction | limiting in particular, Usually, 5 nm-5 micrometers, Preferably it is chosen in the range of 5-200 nm. This light emitting layer may have a single layer structure in which the dopant compound and the host compound are one kind or two or more kinds, or may have a laminated structure made up of a plurality of layers having the same composition or different compositions.

(正孔輸送層)
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
(Hole transport layer)
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.

正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体およびピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型−Si、p型−SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。  The hole transport material has any one of hole injection or transport and electron barrier properties, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers. The above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.

正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。この正孔輸送層は上記材料の1種または2種以上からなる単層構造であってもよい。  The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. Although there is no restriction | limiting in particular about the film thickness of a positive hole transport layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.

(電子輸送層)
電子輸送層とは電子を輸送する機能を有する電子輸送材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
(Electron transport layer)
The electron transport layer is made of an electron transport material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.

電子輸送材料としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタンおよびアントロン誘導体、オキサジアゾール誘導体等が挙げられる。さらに、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。さらにこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、8−キノリノール誘導体の金属錯体、例えば、トリス(8−キノリノール)アルミニウム(Alq3)、トリス(5,7−ジクロロ−8−キノリノール)アルミニウム、トリス(5,7−ジブロモ−8−キノリノール)アルミニウム、トリス(2−メチル−8−キノリノール)アルミニウム、トリス(5−メチル−8−キノリノール)アルミニウム、ビス(8−キノリノール)亜鉛(Znq)等、およびこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、正孔注入層、正孔輸送層と同様に、n型−Si、n型−SiC等の無機半導体も電子輸送材料として用いることができる。  The electron transport material only needs to have a function of transmitting electrons injected from the cathode to the light emitting layer, and the material can be selected and used from conventionally known compounds. Examples include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq3), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum. Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), and the like, and the central metal of these metal complexes is In, Mg, Metal complexes replaced with Cu, Ca, Sn, Ga or Pb can also be used as the electron transport material. In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. Similarly to the hole injection layer and the hole transport layer, an inorganic semiconductor such as n-type-Si or n-type-SiC can also be used as the electron transport material.

電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm〜5μm程度、好ましくは5〜200nmである。電子輸送層は上記材料の1種または2種以上からなる単層構造であってもよい。  The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Although there is no restriction | limiting in particular about the film thickness of an electron carrying layer, Usually, 5 nm-about 5 micrometers, Preferably it is 5-200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.

(有機EL素子の作製方法)
有機EL素子の作製方法について説明する。
(Method for producing organic EL element)
A method for manufacturing the organic EL element will be described.

ここでは有機EL素子の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製方法について説明する。  Here, as an example of the organic EL element, a method for manufacturing an organic EL element including an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.

まず、ガスバリア性フィルム上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10〜200nmの膜厚になるように、例えば、蒸着やスパッタリング、プラズマCVD等の方法により形成させ、陽極を作製する。  First, a desired electrode material, for example, a thin film made of an anode material is formed on a gas barrier film so as to have a thickness of 1 μm or less, preferably 10 to 200 nm, for example, by vapor deposition, sputtering, plasma CVD, or the like. To produce an anode.

次に、その上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層の有機化合物薄膜を形成させる。この有機化合物薄膜の成膜方法としては、蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、真空蒸着法、スピンコート法、インクジェット法、印刷法が特に好ましい。さらに層毎に異なる成膜法を適用してもよい。成膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50〜450℃、真空度10−6〜10−2Pa、蒸着速度0.01〜50nm/秒、基板温度−50〜300℃、膜厚0.1nm〜5μm、好ましくは5〜200nmの範囲で適宜選ぶことが望ましい。Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer, which are organic EL element materials, is formed thereon. As a method for forming this organic compound thin film, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method), etc., but a homogeneous film is easily obtained and pinholes are not easily generated. From the point of view, the vacuum deposition method, the spin coating method, the ink jet method, and the printing method are particularly preferable. Further, different film forming methods may be applied for each layer. When a vapor deposition method is employed for film formation, the vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a vacuum degree of 10 −6 to 10 −2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within the range of 50 nm / second, substrate temperature −50 to 300 ° C., film thickness 0.1 nm to 5 μm, preferably 5 to 200 nm.

これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは50〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。  After these layers are formed, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 50 to 200 nm, and a cathode is provided. Thus, a desired organic EL element can be obtained.

この有機EL素子の作製は、一回の真空引きで一貫して陽極、正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる成膜法を施しても構わない。その際、作業を乾燥不活性ガス雰囲気下で行う等の配慮が必要となる。また、作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。  The organic EL device is preferably manufactured from the anode and the hole injection layer to the cathode consistently by a single evacuation, but may be taken out halfway and subjected to different film forming methods. At that time, it is necessary to consider that the work is performed in a dry inert gas atmosphere. In addition, it is also possible to reverse the production order and produce the cathode, the electron injection layer, the electron transport layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode in this order.

このようにして得られた有機EL素子を備える多色の表示装置(有機ELパネル)に、直流電圧を印加する場合には、陽極をプラス、陰極をマイナスの極性として電圧2〜40V程度を印加すると発光が観測できる。また、交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。  When a DC voltage is applied to a multicolor display device (organic EL panel) provided with the organic EL element thus obtained, a voltage of about 2 to 40 V is applied with the positive polarity of the anode and the negative polarity of the cathode. Then luminescence can be observed. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.

本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。  The effects of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.

〔樹脂基材〕
両面ハードコート付きPETフィルム(全厚み:136μm、PET厚み:125μm、株式会社きもと製、商品名:KBフィルム(商標)125G1SBF)を用いた。
[Resin substrate]
A PET film with a double-sided hard coat (total thickness: 136 μm, PET thickness: 125 μm, manufactured by Kimoto Co., Ltd., trade name: KB film (trademark) 125G1SBF) was used.

〔第1のガスバリア層の形成〕
特許第4268195号公報に記載の対向する成膜ロールからなる成膜部を有する装置を2台つなげたタイプ(第1成膜部、第2成膜部を有する)のロール・トゥ・ロール型CVD成膜装置を用いた(図2参照)。有効成膜幅を1000mmとし、成膜条件は、搬送速度、第一成膜部、第二成膜部それぞれの原料ガス(HMDSO)の供給量、酸素ガスの供給量、真空度、印加電力、電源の周波数、成膜回数(装置のパス数)で調整した。1パス目に対して、2パス目は基材を巻き戻す方向に搬送しているが、パス方向が異なる場合でも、最初に通過する成膜部を第一成膜部、次に通過する成膜部を第二成膜部とした。
[Formation of first gas barrier layer]
Roll-to-roll type CVD in which two apparatuses each having a film forming unit composed of opposing film forming rolls described in Japanese Patent No. 4268195 are connected (having a first film forming unit and a second film forming unit) A film forming apparatus was used (see FIG. 2). The effective film formation width is 1000 mm, and the film formation conditions are: conveyance speed, supply amount of source gas (HMDSO) of each of the first film formation unit and the second film formation unit, supply amount of oxygen gas, degree of vacuum, applied power, The frequency was adjusted by the frequency of the power supply and the number of film formation (number of passes of the apparatus). In contrast to the first pass, the substrate is transported in the direction of rewinding the substrate in the second pass. However, even when the pass directions are different, the first film forming unit passes through the first film forming unit, and the component that passes next. The film part was used as the second film forming part.

その他の条件として、電源周波数は84kHz、成膜ロールの温度はすべて30℃とした。用いる基材は、成膜面と反対面に耐熱性の保護フィルムを貼合して巻き取ったものを用いた。両面に成膜する場合は、片面成膜後の基材の成膜済面にさらに耐熱性の保護フィルムを貼合し、次いで、次の成膜面である反対面の保護フィルムを剥離して巻き取ったものを用いた。膜厚は断面TEM観察で求めた。  As other conditions, the power supply frequency was 84 kHz, and the film forming roll temperatures were all 30 ° C. As the substrate used, a substrate obtained by pasting and winding a heat-resistant protective film on the surface opposite to the film formation surface was used. In the case of film formation on both sides, a heat-resistant protective film is further bonded to the film-formed surface of the base material after single-sided film formation, and then the protective film on the opposite surface, which is the next film formation surface, is peeled off. What was wound up was used. The film thickness was determined by cross-sectional TEM observation.

第1成膜部および第2成膜部の成膜条件を、下記表1に示す。また、表1のV4の条件では、マグネトロンスパッタ法により第1のガスバリア層を形成した。  The film forming conditions of the first film forming unit and the second film forming unit are shown in Table 1 below. Under the conditions of V4 in Table 1, the first gas barrier layer was formed by magnetron sputtering.

〔第2のガスバリア層の形成〕
第2のガスバリア層は、下記に示すようなポリシラザンを含む塗布液を塗布し塗布膜を形成した後、真空紫外線照射による改質を行って形成した。
[Formation of Second Gas Barrier Layer]
The second gas barrier layer was formed by applying a coating liquid containing polysilazane as shown below to form a coating film, and then performing modification by vacuum ultraviolet irradiation.

パーヒドロポリシラザンを20質量%含むジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NN120−20)と、アミン触媒(N,N,N',N'−テトラメチル−1,6−ジアミノヘキサン(TMDAH))を含むパーヒドロポリシラザン20質量%のジブチルエーテル溶液(AZエレクトロニックマテリアルズ株式会社製、NAX120−20)とを、4:1(質量比)の割合で混合し、さらに乾燥膜厚調整のためジブチルエーテルで適宜希釈し、塗布液を調製した。  Dibutyl ether solution containing 20% by mass of perhydropolysilazane (manufactured by AZ Electronic Materials Co., Ltd., NN120-20) and amine catalyst (N, N, N ′, N′-tetramethyl-1,6-diaminohexane (TMDAH) )) And a perhydropolysilazane 20 mass% dibutyl ether solution (manufactured by AZ Electronic Materials Co., Ltd., NAX120-20) at a ratio of 4: 1 (mass ratio), and further for dry film thickness adjustment A coating solution was prepared by appropriately diluting with dibutyl ether.

第1のガスバリア層を形成した樹脂基材をシート状に切り出して準備した。塗膜形成は、すでに形成済みの第1のガスバリア層面に行った。スピンコート法により塗布液を下記表2に示す乾燥膜厚になるよう塗布し、80℃で2分間乾燥した。次いで、乾燥した塗膜に対して、波長172nmのXeエキシマランプを用い、下記表2に示す酸素濃度、および照射エネルギーの条件で、真空紫外線照射処理を施して第2のガスバリア層を形成した。  The resin base material on which the first gas barrier layer was formed was prepared by cutting it into a sheet. The coating film was formed on the surface of the first gas barrier layer that had already been formed. The coating solution was applied by spin coating so as to have a dry film thickness shown in Table 2 below, and dried at 80 ° C. for 2 minutes. Next, the dried coating film was subjected to a vacuum ultraviolet ray irradiation treatment using an Xe excimer lamp with a wavelength of 172 nm under the conditions of oxygen concentration and irradiation energy shown in Table 2 below to form a second gas barrier layer.

成膜条件の詳細を、下記表2に示す。  Details of the film forming conditions are shown in Table 2 below.

第2のガスバリア層が備える領域(c)の厚さ方向の組成分布は、以下のようなXPS分析を用いた方法で測定して求めた。  The composition distribution in the thickness direction of the region (c) included in the second gas barrier layer was determined by measurement using the following XPS analysis method.

(XPS分析条件)
・装置:アルバックファイ製QUANTERASXM
・X線源:単色化Al−Kα
・測定領域:Si2p、C1s、N1s、O1s
・スパッタイオン:Ar(2keV)
・デプスプロファイル:一定時間スパッタ後、測定を繰り返す。1回の測定は、SiO 換算で約2.8nmの厚さ分となるようにスパッタ時間を調整した
・定量:バックグラウンドをShirley法で求め、得られたピーク面積から相対感度係数法を用いて定量した。データ処理は、アルバックファイ社製のMultiPakを用いた。
  (XPS analysis conditions)
  ・ Equipment: ULVAC-PHI QUANTERASXM
  ・ X-ray source: Monochromatic Al-Kα
  Measurement area: Si2p, C1s, N1s, O1s
  ・ Sputtering ion: Ar (2 keV)
  Depth profile: repeats measurement after sputtering for a certain time. One measurement is SiO 2Sputtering time was adjusted so that the thickness was equivalent to about 2.8 nm.
  Quantification: The background was determined by the Shirley method, and quantified using the relative sensitivity coefficient method from the obtained peak area. For data processing, MultiPak manufactured by ULVAC-PHI was used.

このようにして、第2のガスバリア層における膜厚方向の組成分布のプロファイルの一次データを得た。得られた膜厚方向の組成分布のプロファイルを、TEM画像から求めた実膜厚データを用いて補正し、膜厚方向の組成分布を得て、領域(c)の厚さを求めた。  In this way, primary data of the profile of the composition distribution in the film thickness direction in the second gas barrier layer was obtained. The obtained profile of the composition distribution in the film thickness direction was corrected using the actual film thickness data obtained from the TEM image, the composition distribution in the film thickness direction was obtained, and the thickness of the region (c) was determined.

第2のガスバリア層の膜厚は断面TEM観察で求めた。  The film thickness of the second gas barrier layer was determined by cross-sectional TEM observation.

〔(D)層の形成〕
(D)層は、マグネトロンスパッタ装置を用い、下記表3に示すターゲットおよび条件により形成した。また、(D)層の屈折率は、分光エリプソメータを用いて測定した。
[(D) Formation of layer]
The layer (D) was formed using a magnetron sputtering apparatus with the targets and conditions shown in Table 3 below. The refractive index of the (D) layer was measured using a spectroscopic ellipsometer.

(比較例1)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP4の条件で第2のガスバリア層を形成し、ガスバリア性フィルム(試料No.1)を作製した。
(Comparative Example 1)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, a second gas barrier layer was formed on the first gas barrier layer under the conditions of P4 in Table 2 above to produce a gas barrier film (sample No. 1).

(比較例2)
上記表2のP4の条件を2回繰り返して第2のガスバリア層を形成したこと以外は、比較例1と同様にして、ガスバリア性フィルム(試料No.2)を作製した。
(Comparative Example 2)
A gas barrier film (sample No. 2) was produced in the same manner as in Comparative Example 1 except that the conditions of P4 in Table 2 were repeated twice to form a second gas barrier layer.

(実施例1)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP4の条件で第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM1の条件で(D)層を形成し、ガスバリア性フィルム(試料No.3)を作製した。
Example 1
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, a second gas barrier layer was formed on the first gas barrier layer under the conditions of P4 in Table 2 above. Further, a layer (D) was formed on the second gas barrier layer under the condition of M1 in Table 3 above, and a gas barrier film (sample No. 3) was produced.

(比較例3)
樹脂基材の一方の面上に、上記表1のV3の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP2の条件で第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM2の条件で(D)層を形成し、ガスバリア性フィルム(試料No.4)を作製した。
(Comparative Example 3)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V3 in Table 1 above. Next, a second gas barrier layer was formed on the first gas barrier layer under the conditions of P2 in Table 2 above. Further, a layer (D) was formed on the second gas barrier layer under the condition of M2 in Table 3 above, to produce a gas barrier film (sample No. 4).

(実施例2)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP3の条件で第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM3の条件で(D)層を形成し、ガスバリア性フィルム(試料No.5)を作製した。
(Example 2)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, a second gas barrier layer was formed on the first gas barrier layer under the conditions of P3 in Table 2 above. Further, a layer (D) was formed on the second gas barrier layer under the condition of M3 in Table 3 above, to produce a gas barrier film (sample No. 5).

(実施例3)
樹脂基材の一方の面上に、上記表1のV1の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP4の条件を2回繰り返して第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM2の条件で(D)層を形成し、ガスバリア性フィルム(試料No.6)を作製した。
(Example 3)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V1 in Table 1 above. Next, on the first gas barrier layer, the conditions of P4 in Table 2 were repeated twice to form a second gas barrier layer. Further, a layer (D) was formed on the second gas barrier layer under the condition of M2 in Table 3 above, and a gas barrier film (Sample No. 6) was produced.

(実施例4)
樹脂基材の一方の面上に、上記表2のP4の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP4の条件を2回繰り返して第2のガスバリア層を形成した。さらに、第2のガスバリア層の上に、上記表3のM1の条件で(D)層を形成し、ガスバリア性フィルム(試料No.7)を作製した。
Example 4
A first gas barrier layer was formed on one surface of the resin substrate under the conditions of P4 in Table 2 above. Next, on the first gas barrier layer, the conditions of P4 in Table 2 were repeated twice to form a second gas barrier layer. Further, a layer (D) was formed on the second gas barrier layer under the conditions of M1 in Table 3 above, and a gas barrier film (Sample No. 7) was produced.

(実施例5)
樹脂基材の一方の面上に、上記表1のV4の条件で第1のガスバリア層を形成した。次いで、この第1のガスバリア層の上に、上記表2のP4の条件で第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM2の条件で(D)層を形成し、ガスバリア性フィルム(試料No.8)を作製した。
(Example 5)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V4 in Table 1 above. Next, a second gas barrier layer was formed on the first gas barrier layer under the conditions of P4 in Table 2 above. Further, the (D) layer was formed on the second gas barrier layer under the condition of M2 in Table 3 above, and a gas barrier film (Sample No. 8) was produced.

(実施例6)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、上記表2のP4の条件を3回繰り返し、第2のガスバリア層を形成した。さらに、第2のガスバリア層の上に、上記表3のM1の条件で(D)層を形成し、ガスバリア性フィルム(試料No.9)を作製した。
(Example 6)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, the conditions of P4 in Table 2 were repeated three times to form a second gas barrier layer. Further, a layer (D) was formed on the second gas barrier layer under the conditions of M1 in Table 3 above, to produce a gas barrier film (sample No. 9).

(実施例7)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、上記表2のP4の条件を2回繰り返して第2のガスバリア層を形成した。さらに、第2のガスバリア層の上に、上記表3のM4の条件で(D)層を形成し、ガスバリア性フィルム(試料No.10)を作製した。
(Example 7)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, the conditions of P4 in Table 2 were repeated twice to form a second gas barrier layer. Further, a layer (D) was formed on the second gas barrier layer under the condition of M4 in Table 3 above, and a gas barrier film (Sample No. 10) was produced.

(実施例8)
上記表3のM4の条件に代わって、上記表3のM5の条件で(D)層を形成したこと以外は、実施例7と同様にして、ガスバリア性フィルム(試料No.11)を作製した。
(Example 8)
A gas barrier film (sample No. 11) was produced in the same manner as in Example 7 except that the layer (D) was formed under the condition M5 in Table 3 instead of the condition M4 in Table 3 above. .

(実施例9)
上記表3のM4の条件に代わって、上記表3のM6の条件で(D)層を形成したこと以外は、実施例7と同様にして、ガスバリア性フィルム(試料No.12)を作製した。
Example 9
A gas barrier film (sample No. 12) was produced in the same manner as in Example 7 except that the layer (D) was formed under the condition M6 in Table 3 instead of the condition M4 in Table 3 above. .

(比較例4)
樹脂基材の一方の面上に、上記表1のV2の条件で第1のガスバリア層を形成した。次いで、上記表2のP5の条件を3回繰り返して第2のガスバリア層を形成した。さらに第2のガスバリア層の上に、上記表3のM2の条件で(D)層を形成し、ガスバリア性フィルム(試料No.13)を作製した。
(Comparative Example 4)
A first gas barrier layer was formed on one surface of the resin base material under the conditions of V2 in Table 1 above. Next, the conditions of P5 in Table 2 were repeated three times to form a second gas barrier layer. Further, a layer (D) was formed on the second gas barrier layer under the condition of M2 in Table 3 above, and a gas barrier film (Sample No. 13) was produced.

(比較例5)
上記表3のM1の条件に代わって、上記表3のM7の条件で(D)層を形成したこと以外は、実施例1と同様にして、ガスバリア性フィルム(試料No.14)を作製した。
(Comparative Example 5)
A gas barrier film (Sample No. 14) was produced in the same manner as in Example 1 except that the layer (D) was formed under the condition M7 in Table 3 instead of the condition M1 in Table 3 above. .

実施例および比較例で得られた各層の構成を下記表4に示す。  Table 4 below shows the structure of each layer obtained in Examples and Comparative Examples.

≪有機EL素子の作製方法≫
実施例1〜9および比較例1〜5で得られたガスバリア性フィルムを用い、下記に示すような方法で、発光領域の面積が5cm×5cmとなるように、ボトムエミッション型の有機エレクトロルミネッセンス素子(有機EL素子)を作製した。
≪Method for manufacturing organic EL element≫
Using the gas barrier films obtained in Examples 1 to 9 and Comparative Examples 1 to 5, a bottom emission type organic electroluminescence device was formed by the method shown below so that the area of the light emitting region was 5 cm × 5 cm. (Organic EL element) was produced.

(下地層、第1電極の形成)
ガスバリア性フィルムを、市販の真空蒸着装置の基材ホルダーに固定し、化合物118をタングステン製の抵抗加熱ボートに入れ、これら基材ホルダーと加熱ボートとを真空蒸着装置の第1真空槽内に取り付けた。また、タングステン製の抵抗加熱ボートに銀(Ag)を入れ、真空蒸着装置の第2真空槽内に取り付けた。
(Formation of underlayer and first electrode)
The gas barrier film is fixed to a substrate holder of a commercially available vacuum deposition apparatus, compound 118 is placed in a resistance heating boat made of tungsten, and the substrate holder and the heating boat are attached in the first vacuum chamber of the vacuum deposition apparatus. It was. Moreover, silver (Ag) was put into the resistance heating boat made from tungsten, and it attached in the 2nd vacuum chamber of a vacuum evaporation system.

次に、真空蒸着装置の第1真空槽を4×10−4Paまで減圧した後、化合物118の入った加熱ボートに通電して加熱し、蒸着速度0.1nm/秒〜0.2nm/秒で第1電極の下地層を厚さ10nmで設けた。Next, after depressurizing the first vacuum chamber of the vacuum deposition apparatus to 4 × 10 −4 Pa, the heating boat containing the compound 118 was energized and heated, and the deposition rate was 0.1 nm / second to 0.2 nm / second. The underlayer of the first electrode was provided with a thickness of 10 nm.

次に、下地層まで形成した基材を真空のまま第2真空槽に移し、第2真空槽を4×10 −4Paまで減圧した後、銀の入った加熱ボートを通電して加熱した。これにより、蒸着速度0.1nm/秒〜0.2nm/秒で厚さ8nmの銀からなる第1電極を形成した。  Next, the base material formed up to the base layer is transferred to the second vacuum chamber while being vacuumed, and the second vacuum chamber is moved to 4 × 10. -4After reducing the pressure to Pa, the heating boat containing silver was energized and heated. Thus, a first electrode made of silver having a thickness of 8 nm was formed at a deposition rate of 0.1 nm / second to 0.2 nm / second.

(有機機能層〜第2電極)
引き続き、市販の真空蒸着装置を用い、真空度1×10−4Paまで減圧した後、基材を移動させながら化合物HT−1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。
(Organic functional layer-second electrode)
Subsequently, the pressure was reduced to 1 × 10 −4 Pa using a commercially available vacuum deposition apparatus, and then the compound HT-1 was deposited at a deposition rate of 0.1 nm / second while moving the base material. A transport layer (HTL) was provided.

次に、化合物A−3(青色発光ドーパント)、化合物A−1(緑色発光ドーパント)、化合物A−2(赤色発光ドーパント)および化合物H−1(ホスト化合物)を、化合物A−3が膜厚に対し線形に35質量%から5質量%になるように場所により蒸着速度を変化させ、化合物A−1と化合物A−2とは膜厚に依存することなく各々0.2質量%の濃度になるように、蒸着速度0.0002nm/秒で、化合物H−1は64.6質量%から94.6質量%になるように場所により蒸着速度を変化させて、厚さ70nmになるよう共蒸着し発光層を形成した。  Next, compound A-3 (blue light-emitting dopant), compound A-1 (green light-emitting dopant), compound A-2 (red light-emitting dopant) and compound H-1 (host compound), compound A-3 is film thickness In contrast, the vapor deposition rate was changed depending on the location so that it was linearly from 35% by mass to 5% by mass, and Compound A-1 and Compound A-2 each had a concentration of 0.2% by mass without depending on the film thickness. Thus, at a deposition rate of 0.0002 nm / second, the vapor deposition rate was changed depending on the location so that the compound H-1 was 64.6% by mass to 94.6% by mass, so that the thickness was 70 nm. A light emitting layer was formed.

その後、化合物ET−1を膜厚30nmに蒸着して電子輸送層を形成し、さらにフッ化カリウム(KF)を厚さ2nmで形成した。さらに、アルミニウム110nmを蒸着して第2電極を形成した。  Thereafter, Compound ET-1 was deposited to a thickness of 30 nm to form an electron transport layer, and potassium fluoride (KF) was further formed to a thickness of 2 nm. Furthermore, aluminum 110nm was vapor-deposited and the 2nd electrode was formed.

なお、上記化合物118、化合物HT−1、化合物A−1〜3、化合物H−1、および化合物ET−1は、以下に示す化合物である。  The compound 118, compound HT-1, compound A-1 to compound 3, compound H-1, and compound ET-1 are the compounds shown below.

(固体封止)
次に、封止部材として厚さ25μmのアルミ箔を使用し、このアルミ箔の片面に封止樹脂層として熱硬化型のシート状接着剤(エポキシ系樹脂)を厚さ20μmで貼合した封止部材を用いて、第2電極までを作製した試料に重ね合わせた。このとき、第1電極および第2電極の引き出し電極の端部が外に出るように、封止部材の接着剤形成面と、素子の有機機能層面とを連続的に重ね合わせた。
(Solid sealing)
Next, an aluminum foil with a thickness of 25 μm is used as a sealing member, and a thermosetting sheet adhesive (epoxy resin) is bonded as a sealing resin layer on one surface of the aluminum foil with a thickness of 20 μm. The stopper member was used to superimpose the sample up to the second electrode. At this time, the adhesive forming surface of the sealing member and the organic functional layer surface of the element were continuously overlapped so that the ends of the lead electrodes of the first electrode and the second electrode were exposed.

次いで、試料を減圧装置内に配置し、90℃で0.1MPaの減圧条件下で、重ね合わせた基材と封止部材とに押圧をかけて5分間保持した。続いて、試料を大気圧環境に戻し、さらに120℃で30分間加熱して接着剤を硬化させた。  Next, the sample was placed in a decompression device, and the laminated base material and the sealing member were pressed and held for 5 minutes under a decompression condition of 0.1 MPa at 90 ° C. Subsequently, the sample was returned to an atmospheric pressure environment and further heated at 120 ° C. for 30 minutes to cure the adhesive.

上記封止工程は、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920:2002に準拠し、測定した清浄度がクラス100で、露点温度が−80℃以下、酸素濃度0.8ppm以下の大気圧で行った。なお、陽極、陰極からの引き出し配線等の形成に関する記載は省略してある。  The sealing step is performed under atmospheric pressure and in a nitrogen atmosphere with a water content of 1 ppm or less in accordance with JIS B 9920: 2002. The measured cleanliness is class 100, the dew point temperature is −80 ° C. or less, and the oxygen concentration is 0.00. It was performed at an atmospheric pressure of 8 ppm or less. In addition, the description regarding formation of the lead-out wiring from an anode and a cathode is abbreviate | omitted.

このようにして、発光領域が5cm×5cmサイズの電子デバイスを、1水準について4枚作製した。  In this manner, four electronic devices having a light emitting region size of 5 cm × 5 cm were manufactured for one level.

(ダークスポット(DS)の評価)
上記のようにして得られた有機EL素子を85℃、85%RHの環境下で200時間通電を行い、発生しているダークスポットについて、円換算直径が300μm以上であるダークスポットの発生個数を4枚のデバイスの平均で求めた。
(Dark spot (DS) evaluation)
The organic EL device obtained as described above was energized for 200 hours in an environment of 85 ° C. and 85% RH, and the number of dark spots with a circular equivalent diameter of 300 μm or more was determined for the generated dark spots. The average was obtained for four devices.

(波長450nmにおける発光効率改善)
第2のガスバリア層の上に(D)層を設けたことによる、波長450nmの光の発光効率改善効果の有無を評価した。(D)層を設けていないガスバリア性フィルムを用いた有機ELデバイスの波長450nmにおける発光を100としたとき、(D)層を設けた以外は、同一の構成であるガスバリア性フィルムを用いた際の有機EL素子の波長450nmにおける発光を相対値で示した。この値が102以上であれば改善効果ありとして、下記表5に○で示した。98未満であれば劣化として、下記表5に×で示した。98〜102であれば変化なしとし、下記表5に−で示した。なお、比較例4は、第2のガスバリア層にクラックが生じたため、評価ができなかった。
(Improved luminous efficiency at a wavelength of 450 nm)
The presence or absence of the light emission efficiency improvement effect of the light of wavelength 450nm by having provided (D) layer on the 2nd gas barrier layer was evaluated. (D) When the light emission at a wavelength of 450 nm of an organic EL device using a gas barrier film having no layer is defined as 100, when a gas barrier film having the same configuration is used except that the (D) layer is provided The light emission at a wavelength of 450 nm of the organic EL element was shown as a relative value. If this value is 102 or more, it indicates that there is an improvement effect, and is shown in the following Table 5 as ◯. If it was less than 98, it was shown as x in Table 5 below as deterioration. If it was 98-102, it was set as there was no change and it showed by-in the following Table 5. Note that Comparative Example 4 could not be evaluated because a crack occurred in the second gas barrier layer.

以上の評価結果を下記表5に示す。  The above evaluation results are shown in Table 5 below.

上記表5から明らかなように、本発明のガスバリア性フィルムは、高温高湿環境での耐久性に優れ、かつ波長450nm付近の青色光の透過性に優れる。特に、実施例6は、ダークスポットが発生しなかったが、これは、領域(c)が厚いためと思われる。領域(c)は水分捕捉能を有し、割れない範囲で厚いほど、ダークスポット発生までの時間を長くすることができる。したがって、電子デバイスに求められる耐用期間を超える水分捕捉能(時間換算)を有していれば、実質的にダークスポットは発生しないと言える。  As apparent from Table 5 above, the gas barrier film of the present invention is excellent in durability in a high-temperature and high-humidity environment and excellent in blue light transmission around a wavelength of 450 nm. In particular, in Example 6, no dark spot was generated, which is probably because the region (c) is thick. The region (c) has a moisture capturing ability, and the thicker it is in the range where it does not break, the longer the time until dark spots are generated. Therefore, it can be said that a dark spot is not substantially generated if it has a moisture capturing ability (time conversion) that exceeds the service life required for an electronic device.

さらに、本出願は、2014年5月20日に出願された日本特許出願番号2014−104698号に基づいており、その開示内容は、参照され、全体として、組み入れられている。  Furthermore, this application is based on Japanese Patent Application No. 2014-104698 filed on May 20, 2014, the disclosure of which is referred to and incorporated in its entirety.

Claims (5)

(A)樹脂基材、
(B)無機化合物を含む第1のガスバリア層、
(C)ポリシラザンを含有する塗布液を塗布および乾燥して得られる塗膜にエネルギーを印加して形成され、SiO(ただし、0.2<w≦0.55、0.66<x≦0.75)で表される組成範囲を満たし、かつ、50〜1000nmの厚さを有する領域を有する第2のガスバリア層、ならびに
(D)ケイ素よりも酸化還元電位が低い金属の酸化物を主成分として含み、波長450nmの光の屈折率が2.0以上である層、
をこの順に含む、ガスバリア性フィルム。
(A) resin base material,
(B) a first gas barrier layer containing an inorganic compound,
(C) formed by applying energy to a coating film obtained by applying and drying a coating liquid containing polysilazane; and SiO w N x (where 0.2 <w ≦ 0.55, 0.66 <x A second gas barrier layer satisfying the composition range represented by ≦ 0.75) and having a region having a thickness of 50 to 1000 nm, and (D) an oxide of a metal having a lower redox potential than silicon. A layer containing as a main component and having a refractive index of light having a wavelength of 450 nm of 2.0 or more,
A gas barrier film containing the materials in this order.
前記(D)層は、ニオブ、タンタル、ジルコニウム、およびチタンからなる群より選択される少なくとも1種の金属の酸化物を主成分として含む、請求項1に記載のガスバリア性フィルム。  2. The gas barrier film according to claim 1, wherein the (D) layer contains, as a main component, an oxide of at least one metal selected from the group consisting of niobium, tantalum, zirconium, and titanium. 前記(D)層は、ニオブおよびタンタルの少なくとも一方の金属の酸化物を主成分として含む、請求項2に記載のガスバリア性フィルム。  The gas barrier film according to claim 2, wherein the layer (D) contains an oxide of at least one of niobium and tantalum as a main component. 前記第2のガスバリア層の形成におけるエネルギーの印加が真空紫外線を照射することにより行われる、請求項1〜3のいずれか1項に記載のガスバリア性フィルム。  The gas barrier film according to any one of claims 1 to 3, wherein application of energy in the formation of the second gas barrier layer is performed by irradiation with vacuum ultraviolet rays. 請求項1〜4のいずれか1項に記載のガスバリア性フィルムと、
前記(D)層の前記第2のガスバリア層を有する面とは反対側の面上に形成される電子デバイス本体と、
を含む電子デバイス。
The gas barrier film according to any one of claims 1 to 4,
An electronic device body formed on a surface of the (D) layer opposite to the surface having the second gas barrier layer;
Including electronic devices.
JP2016520964A 2014-05-20 2015-03-09 Gas barrier film Expired - Fee Related JP6520932B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014104698 2014-05-20
JP2014104698 2014-05-20
PCT/JP2015/056867 WO2015178069A1 (en) 2014-05-20 2015-03-09 Gas barrier film

Publications (3)

Publication Number Publication Date
JPWO2015178069A1 JPWO2015178069A1 (en) 2017-04-20
JPWO2015178069A6 true JPWO2015178069A6 (en) 2017-04-20
JP6520932B2 JP6520932B2 (en) 2019-05-29

Family

ID=54553746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016520964A Expired - Fee Related JP6520932B2 (en) 2014-05-20 2015-03-09 Gas barrier film

Country Status (2)

Country Link
JP (1) JP6520932B2 (en)
WO (1) WO2015178069A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018021021A1 (en) * 2016-07-28 2019-05-09 コニカミノルタ株式会社 Gas barrier film, gas barrier film using the same, electronic device using the same, and method for producing gas barrier film
JP7285431B2 (en) * 2019-05-30 2023-06-02 住友金属鉱山株式会社 Vacuum deposition apparatus and vacuum deposition method
CN110911586B (en) * 2019-12-03 2022-02-18 江苏集萃有机光电技术研究所有限公司 OLED panel, preparation method of OLED panel and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849790B2 (en) * 2012-03-14 2016-02-03 コニカミノルタ株式会社 Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP6107819B2 (en) * 2012-04-26 2017-04-05 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
WO2014092085A1 (en) * 2012-12-14 2014-06-19 コニカミノルタ株式会社 Gas barrier film, method for manufacturing same, and electronic device using same
WO2014189060A1 (en) * 2013-05-22 2014-11-27 コニカミノルタ株式会社 Gas barrier film and electronic device using same

Similar Documents

Publication Publication Date Title
JP5533585B2 (en) Gas barrier film manufacturing method, gas barrier film, and electronic device
JP5862707B2 (en) Gas barrier film, element device and method for producing gas barrier film
JP6156388B2 (en) Method for producing gas barrier film, gas barrier film and electronic device
JP5857452B2 (en) Barrier film manufacturing method
WO2016039060A1 (en) Gas barrier film and organic electroluminescent element
JP6229506B2 (en) Gas barrier film and electronic device using the same
WO2014073438A1 (en) Electronic device and gas barrier film fabrication method
WO2016009801A1 (en) Gas barrier film and electronic device
JPWO2016009801A6 (en) Gas barrier film and electronic device
JP5884531B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP2014201032A (en) Gas barrier film and method for producing the same
JP5849790B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
JP6520932B2 (en) Gas barrier film
JP2014201033A (en) Gas barrier film and method for producing the same
JPWO2015178069A6 (en) Gas barrier film
JP5892030B2 (en) Method for producing gas barrier film and gas barrier film
JP5761005B2 (en) Water vapor barrier film manufacturing method, water vapor barrier film and electronic device
WO2014189060A1 (en) Gas barrier film and electronic device using same
JP2016087951A (en) Gas barrier film, production method for gas barrier film, and electronic device
JP6102986B2 (en) Method for producing water vapor barrier film, water vapor barrier film, electronic device and organic electroluminescence panel
JP6287634B2 (en) Gas barrier film, method for producing the same, and electronic device using the same
WO2014126063A1 (en) Organic electroluminescent element and method for manufacturing organic electroluminescent element
JP2013039706A (en) Method for producing steam barrier film, steam barrier film and electronic equipment