JPWO2015140881A1 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JPWO2015140881A1
JPWO2015140881A1 JP2016508341A JP2016508341A JPWO2015140881A1 JP WO2015140881 A1 JPWO2015140881 A1 JP WO2015140881A1 JP 2016508341 A JP2016508341 A JP 2016508341A JP 2016508341 A JP2016508341 A JP 2016508341A JP WO2015140881 A1 JPWO2015140881 A1 JP WO2015140881A1
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
refrigeration cycle
cycle apparatus
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016508341A
Other languages
Japanese (ja)
Inventor
山下 浩司
浩司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsubishi Electric Corp filed Critical Asahi Glass Co Ltd
Publication of JPWO2015140881A1 publication Critical patent/JPWO2015140881A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Abstract

圧縮機10と、熱源側熱交換器12と、絞り装置16と、負荷側熱交換器15と、が冷媒配管で接続され、冷媒が循環する冷凍サイクルを備え、冷媒は1,1,2−トリフルオロエチレンで構成した単一冷媒または1,1,2−トリフルオロエチレンを含む混合冷媒であり、圧縮機10は、圧縮機シェル45に圧縮室47とモータ44とを有し、モータ44の絶縁材料に、樹脂材料を用いる。The compressor 10, the heat source side heat exchanger 12, the expansion device 16, and the load side heat exchanger 15 are connected by a refrigerant pipe and include a refrigeration cycle in which the refrigerant circulates. A single refrigerant composed of trifluoroethylene or a mixed refrigerant containing 1,1,2-trifluoroethylene. The compressor 10 has a compression chamber 47 and a motor 44 in a compressor shell 45. A resin material is used for the insulating material.

Description

本発明は、たとえばビル用マルチエアコン等に適用される空気調和装置等の冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus such as an air conditioner applied to, for example, a building multi-air conditioner.

ビル用マルチエアコン等のように、冷媒を循環する冷媒回路を構成して空気調和等を行う冷凍サイクル装置においては、一般的に、不燃性であるR410A、弱い可燃性を有するR32、強い可燃性を示すプロパン等の水素と炭素を含む物質が冷媒として用いられる。これらの物質は、大気中に放出された場合に、大気中で分解されて別の物質に変わるまでの寿命は異なるが、冷凍サイクル装置内においては、安定性が高く、数十年の長い間冷媒として使用することができる。   In a refrigeration cycle apparatus that forms a refrigerant circuit that circulates refrigerant and performs air conditioning, such as a multi air conditioner for buildings, generally R410A that is nonflammable, R32 that has weak flammability, strong flammability A substance containing hydrogen and carbon, such as propane, is used as the refrigerant. When these substances are released into the atmosphere, they have different lifetimes until they are decomposed in the atmosphere and changed to other substances. However, they are highly stable in the refrigeration cycle apparatus and have been used for a long period of several decades. It can be used as a refrigerant.

これに対して、水素と炭素を含む物質の中には、冷凍サイクル装置内においても安定性が悪く、冷媒としては使用し難いものも存在する。これらの安定性が悪い物質としては、たとえば、不均化反応を起こす性質のものがある。不均化とは、同一種類の物質同士が反応して別の物質に変化する性質のことである。たとえば、液状態等の隣り合う物質同士の距離が非常に近い状態で、冷媒に対して何らかの強いエネルギーが加わると、このエネルギーによって、不均化反応が起き、隣り合う物質同士が反応して、別の物質に変化してしまう。不均化反応が起きると、発熱し、急激な温度上昇が起き、そのため圧力が急激に上昇する可能性がある。たとえば、不均化反応を起こす性質の物質を冷凍サイクル装置の冷媒として用い、銅等の配管内に封入していると、配管が内部の冷媒の圧力上昇に耐え切れず、配管が破裂してしまう、等の事故が起きる可能性がある。この不均化反応を起こす性質の物質としては、たとえば、1,1,2−トリフルオロエチレン(HFO−1123)、アセチレン等が知られている。   On the other hand, some substances containing hydrogen and carbon have poor stability in the refrigeration cycle apparatus and are difficult to use as refrigerants. These substances having poor stability include, for example, substances that cause a disproportionation reaction. Disproportionation is the property that substances of the same type react to change to another substance. For example, when some strong energy is applied to the refrigerant in a state where the distance between adjacent substances such as a liquid state is very close, this energy causes a disproportionation reaction, and the adjacent substances react with each other, It changes to another substance. When the disproportionation reaction occurs, heat is generated and a rapid temperature rise occurs, so that the pressure may rise rapidly. For example, if a substance that causes a disproportionation reaction is used as a refrigerant in a refrigeration cycle device and is enclosed in a pipe such as copper, the pipe cannot withstand the pressure rise of the internal refrigerant, and the pipe will burst. Accidents may occur. As substances having such a disproportionation reaction, for example, 1,1,2-trifluoroethylene (HFO-1123), acetylene and the like are known.

また、1,1,2−トリフルオロエチレン(HFO−1123)を熱サイクル用作動媒体として用いる熱サイクルシステム(冷凍サイクル装置)が存在している(たとえば、特許文献1)。   There is also a thermal cycle system (refrigeration cycle apparatus) using 1,1,2-trifluoroethylene (HFO-1123) as a working medium for thermal cycle (for example, Patent Document 1).

WO12/157764号公報(第3頁、第12頁、図1等)WO12 / 157774 (3rd page, 12th page, FIG. 1 etc.)

特許文献1に記載されている熱サイクルシステム等の冷凍サイクル装置においては、熱サイクル用作動媒体として、1,1,2−トリフルオロエチレン(HFO−1123)を使用することが記載されている。1,1,2−トリフルオロエチレン(HFO−1123)は、不均化反応を起こす性質の物質である。そのまま冷媒として使用すると、何らかのエネルギーによって、隣り合う物質同士が反応して、別の物質に変化し、冷媒として機能しなくなるばかりか、急激な圧力上昇により配管破裂等の事故が起こる可能性がある。このため、冷媒として使用するためには、この不均化反応を起こさないように使用しなければならないという課題がある。そこで、この不均化反応を起こさせないための工夫が必要になるが、特許文献1等には、不均化反応を起こさせない装置等を実現する方法については、何ら記述されていない。   In a refrigeration cycle apparatus such as a thermal cycle system described in Patent Document 1, it is described that 1,1,2-trifluoroethylene (HFO-1123) is used as a thermal cycle working medium. 1,1,2-trifluoroethylene (HFO-1123) is a substance having a disproportionation reaction. If it is used as it is as a refrigerant, adjacent materials react with each other due to some energy and change into another material, which will not function as a refrigerant, and an accident such as a pipe rupture may occur due to a sudden rise in pressure. . For this reason, in order to use as a refrigerant | coolant, there exists a subject that it must be used so that this disproportionation reaction may not occur. Thus, a device for preventing this disproportionation reaction is required, but Patent Document 1 and the like do not describe any method for realizing an apparatus that does not cause the disproportionation reaction.

本発明は、上記の課題を解決するためになされたもので、冷媒が外部から受けるエネルギーを低減させ、不均化反応を起こす性質の物質を、安全に、冷媒として使用することができる冷凍サイクル装置を得るものである。   The present invention has been made to solve the above-described problem, and a refrigeration cycle that can safely use a substance having a property of causing a disproportionation reaction by reducing energy received from the outside of the refrigerant as a refrigerant. Get the device.

本発明に係る冷凍サイクル装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、が冷媒配管で接続され、冷媒が循環する冷凍サイクルを備え、冷媒は、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒であり、圧縮機は、密閉容器内に、圧縮室とモータとを有し、モータの絶縁材料に、樹脂材料を用いたものである。   A refrigeration cycle apparatus according to the present invention includes a refrigeration cycle in which a compressor, a first heat exchanger, a throttling device, and a second heat exchanger are connected by a refrigerant pipe and the refrigerant circulates. Is a single refrigerant composed of a substance having a disproportionation reaction or a mixed refrigerant in which another substance is mixed with a substance having a disproportionation reaction, and the compressor is compressed in a sealed container. It has a chamber and a motor, and a resin material is used as an insulating material for the motor.

本発明の冷凍サイクル装置は、1,1,2−トリフルオロエチレン(HFO−1123)等の不均化反応を起こす性質の物質が、不均化反応により、冷媒として使用できなくなったり、配管破裂等の事故が発生するのを防ぎ、安全に冷媒として使用することができる。   In the refrigeration cycle apparatus of the present invention, a material having a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) cannot be used as a refrigerant due to the disproportionation reaction, or a pipe is ruptured. It is possible to prevent the occurrence of accidents such as these and use it safely as a refrigerant.

本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図。Schematic which shows the example of installation of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の回路構成図。The circuit block diagram of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の冷房運転時の回路構成図。The circuit block diagram at the time of the air_conditionaing | cooling operation of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の暖房運転時の回路構成図。The circuit block diagram at the time of the heating operation of the refrigeration cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置の圧縮機の構成の概略図。Schematic of the structure of the compressor of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍サイクル装置のアキュムレータの構成の概略図。Schematic of the structure of the accumulator of the refrigerating-cycle apparatus which concerns on Embodiment 1 of this invention.

以下、発明の実施の形態に係る冷凍サイクル装置について図面等を参照しながら説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一またはこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。特に構成要素の組み合わせは、各実施の形態における組み合わせのみに限定するものではなく、他の実施の形態に記載した構成要素を別の実施の形態に適用することができる。さらに、添字で区別等している複数の同種の機器等について、特に区別したり、特定したりする必要がない場合には、添字を省略して記載する場合がある。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。   Hereinafter, a refrigeration cycle apparatus according to an embodiment of the invention will be described with reference to the drawings. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In particular, the combination of the components is not limited to the combination in each embodiment, and the components described in the other embodiments can be applied to another embodiment. Furthermore, when there is no need to distinguish or identify a plurality of similar devices that are distinguished by subscripts, the subscripts may be omitted. In the drawings, the size relationship of each component may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in the state, operation, etc. of the system, apparatus, and the like.

実施の形態1.
本発明の実施の形態1について、図面に基づいて説明する。図1は、本発明の実施の形態1に係る冷凍サイクル装置の設置例を示す概略図である。図1に示す冷凍サイクル装置は、冷媒を循環させる冷媒回路を構成して冷媒による冷凍サイクルを利用することで、運転モードとして冷房モードあるいは暖房モードのいずれかを選択できるものである。ここで、本実施の形態の冷凍サイクル装置は、空調対象空間(室内空間7)の空気調和を行う空気調和装置を例として説明する。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram illustrating an installation example of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The refrigeration cycle apparatus shown in FIG. 1 can select either a cooling mode or a heating mode as an operation mode by configuring a refrigerant circuit that circulates refrigerant and using a refrigerant refrigeration cycle. Here, the refrigeration cycle apparatus of the present embodiment will be described by taking an air conditioning apparatus that performs air conditioning of the air-conditioning target space (indoor space 7) as an example.

図1においては、本実施の形態に係る冷凍サイクル装置は、熱源機である1台の室外機1と、複数台の室内機2と、を有している。室外機1と室内機2とは、冷媒を導通する延長配管(冷媒配管)4で接続され、室外機1で生成された冷熱あるいは温熱は、室内機2に配送されるようになっている。   In FIG. 1, the refrigeration cycle apparatus according to the present embodiment includes one outdoor unit 1 that is a heat source unit and a plurality of indoor units 2. The outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 that conducts the refrigerant, and the cold or warm heat generated by the outdoor unit 1 is delivered to the indoor unit 2.

室外機1は、通常、ビル等の建物9の外の空間(たとえば、屋上等)である室外空間6に配置され、室内機2に冷熱または温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室等)である室内空間7に温調された空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。   The outdoor unit 1 is usually disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2. The indoor unit 2 is disposed at a position where air whose temperature is adjusted can be supplied to the indoor space 7 which is a space inside the building 9 (for example, a living room). Supply air.

図1に示すように、本実施の形態に係る冷凍サイクル装置においては、室外機1と各室内機2とが2本の延長配管4を用いて、それぞれ接続されている。   As shown in FIG. 1, in the refrigeration cycle apparatus according to the present embodiment, an outdoor unit 1 and each indoor unit 2 are connected to each other using two extension pipes 4.

なお、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではない。天井埋込型や天井吊下式等、室内空間7に直接またはダクト等により、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。   In addition, in FIG. 1, although the case where the indoor unit 2 is a ceiling cassette type is shown as an example, it is not limited to this. Any type may be used as long as heating air or cooling air can be blown directly into the indoor space 7 by a duct or the like, such as a ceiling-embedded type or a ceiling-suspended type.

図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室等の囲まれた空間に設置してもよい。また、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよい。さらに、水冷式の室外機1を用いて建物9の内部に設置するようにしてもよい。どのような場所に室外機1を設置するとしても、特段の問題が発生することはない。   In FIG. 1, the case where the outdoor unit 1 is installed in the outdoor space 6 is shown as an example, but the present invention is not limited to this. For example, the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. Further, if the waste heat can be exhausted outside the building 9 by the exhaust duct, it may be installed inside the building 9. Furthermore, you may make it install in the inside of the building 9 using the water-cooled outdoor unit 1. FIG. No matter what place the outdoor unit 1 is installed, no particular problem occurs.

また、室外機1及び室内機2の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る冷凍サイクル装置が設置される建物9に応じて台数を決定すればよい。   Further, the number of connected outdoor units 1 and indoor units 2 is not limited to the number shown in FIG. 1, but the number of units can be determined according to the building 9 in which the refrigeration cycle apparatus according to the present embodiment is installed. That's fine.

図2は、実施の形態1に係る冷凍サイクル装置(以下、冷凍サイクル装置100と称する)の回路構成の一例を示す回路構成図である。図2に基づいて、冷凍サイクル装置100の詳しい構成について説明する。図2に示すように、室外機1と室内機2とが、内部に冷媒が流れる延長配管(冷媒配管)4で接続されている。   FIG. 2 is a circuit configuration diagram showing an example of a circuit configuration of the refrigeration cycle apparatus (hereinafter referred to as the refrigeration cycle apparatus 100) according to Embodiment 1. Based on FIG. 2, the detailed structure of the refrigerating-cycle apparatus 100 is demonstrated. As shown in FIG. 2, the outdoor unit 1 and the indoor unit 2 are connected by an extension pipe (refrigerant pipe) 4 through which a refrigerant flows.

[室外機1]
室外機1には、圧縮機10と、四方弁等の第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレータ19とが冷媒配管で直列に接続されて搭載されている。
[Outdoor unit 1]
The outdoor unit 1 is mounted with a compressor 10, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 connected in series by a refrigerant pipe.

圧縮機10は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機等で構成するとよい。第1冷媒流路切替装置11は、暖房運転時における冷媒の流れと冷房運転時における冷媒の流れとを切り替えるものである。熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(または放熱器)として機能する。そして、第一の熱交換器となる熱源側熱交換器12は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、その冷媒を蒸発ガス化または凝縮液化するものである。熱源側熱交換器12は、室内空間7を冷房する運転の場合には凝縮器として作用する。また、室内空間7を暖房する運転の場合には蒸発器として作用する。アキュムレータ19は、圧縮機10の吸入側に設けられており、運転モード変化等により冷媒回路中で余剰となる冷媒を貯留するものである。   The compressor 10 sucks refrigerant and compresses the refrigerant to a high temperature and high pressure state. For example, the compressor 10 may be composed of an inverter compressor capable of capacity control. The first refrigerant flow switching device 11 switches the refrigerant flow during the heating operation and the refrigerant flow during the cooling operation. The heat source side heat exchanger 12 functions as an evaporator during heating operation, and functions as a condenser (or radiator) during cooling operation. The heat source side heat exchanger 12 serving as the first heat exchanger performs heat exchange between air supplied from a blower (not shown) and the refrigerant, and evaporates or condenses the refrigerant. is there. The heat source side heat exchanger 12 acts as a condenser in the operation of cooling the indoor space 7. Moreover, in the case of the driving | operation which heats the indoor space 7, it acts as an evaporator. The accumulator 19 is provided on the suction side of the compressor 10 and stores excess refrigerant in the refrigerant circuit due to an operation mode change or the like.

室外機1には、圧縮機10、第1冷媒流路切替装置11、熱源側熱交換器12、アキュムレータ19、高圧検出装置37、低圧検出装置38、及び、制御装置60が備えられている。また、圧縮機10は、たとえば、密閉容器内に圧縮室を有し、密閉容器内が低圧の冷媒圧雰囲気となり、密閉容器内の低圧冷媒を吸入して圧縮する低圧シェル構造のものを使用するか、あるいは、密閉容器内が高圧の冷媒圧雰囲気となり、圧縮室で圧縮された高圧冷媒を密閉容器内に吐出する高圧シェル構造のものを使用する。また、室外機1は、制御装置60を備えており、各種検出装置での検出情報、リモコンからの指示等に基づいて、機器の制御を行う。たとえば、圧縮機10の駆動周波数、送風機の回転数(ON/OFF含む)、第1冷媒流路切替装置11の切り替え等を制御し、後述する各運転モードを実行するようになっている。ここで、本実施の形態の制御装置60は、たとえばCPU(Central Processing Unit )等の制御演算処理手段を有するマイクロコンピュータ等で構成されている。また、記憶手段(図示せず)を有しており、制御等に係る処理手順をプログラムとしたデータを有している。そして、制御演算処理手段がプログラムのデータに基づく処理を実行して制御を実現する。   The outdoor unit 1 includes a compressor 10, a first refrigerant flow switching device 11, a heat source side heat exchanger 12, an accumulator 19, a high pressure detection device 37, a low pressure detection device 38, and a control device 60. The compressor 10 has, for example, a low-pressure shell structure that has a compression chamber in a sealed container, the inside of the sealed container has a low-pressure refrigerant pressure atmosphere, and sucks and compresses the low-pressure refrigerant in the sealed container. Alternatively, a high-pressure shell structure is used in which the inside of the sealed container becomes a high-pressure refrigerant pressure atmosphere and the high-pressure refrigerant compressed in the compression chamber is discharged into the sealed container. Moreover, the outdoor unit 1 includes a control device 60, and controls devices based on detection information from various detection devices, instructions from a remote controller, and the like. For example, the driving frequency of the compressor 10, the rotation speed of the blower (including ON / OFF), the switching of the first refrigerant flow switching device 11 and the like are controlled, and each operation mode described later is executed. Here, the control device 60 of the present embodiment is constituted by a microcomputer having a control arithmetic processing means such as a CPU (Central Processing Unit). Moreover, it has a memory | storage means (not shown) and has the data which made the process procedure regarding control etc. a program. Then, the control arithmetic processing means executes processing based on the program data to realize control.

[室内機2]
室内機2には、それぞれ第二の熱交換器となる負荷側熱交換器15が搭載されている。この負荷側熱交換器15は、延長配管4によって室外機1に接続するようになっている。この負荷側熱交換器15は、図示省略の送風機から供給される空気と冷媒との間で熱交換を行い、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。負荷側熱交換器15は、室内空間7を暖房する運転の場合には凝縮器として作用する。また、室内空間7を冷房する運転の場合には蒸発器として作用する。
[Indoor unit 2]
The indoor unit 2 is equipped with a load-side heat exchanger 15 serving as a second heat exchanger. The load side heat exchanger 15 is connected to the outdoor unit 1 by the extension pipe 4. The load-side heat exchanger 15 exchanges heat between air supplied from a blower (not shown) and a refrigerant, and generates heating air or cooling air to be supplied to the indoor space 7. . The load side heat exchanger 15 acts as a condenser in the case of an operation for heating the indoor space 7. Moreover, in the case of the driving | running which cools the indoor space 7, it acts as an evaporator.

この図2では、4台の室内機2が接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a〜室内機2dに応じて、負荷側熱交換器15も、紙面下側から負荷側熱交換器15a、負荷側熱交換器15b、負荷側熱交換器15c、負荷側熱交換器15dとして図示している。なお、図1と同様に、室内機2の接続台数を図2に示す4台に限定するものではない。   In FIG. 2, a case where four indoor units 2 are connected is shown as an example, and is illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Further, according to the indoor unit 2a to the indoor unit 2d, the load side heat exchanger 15 is also loaded from the lower side of the page with the load side heat exchanger 15a, the load side heat exchanger 15b, the load side heat exchanger 15c, and the load side heat exchange. It is shown as a container 15d. As in FIG. 1, the number of connected indoor units 2 is not limited to four as shown in FIG.

冷凍サイクル装置100が実行する各運転モードについて説明する。この冷凍サイクル装置100は、各室内機2からの指示に基づいて、室外機1の運転モードを冷房運転モードか暖房運転モードかのいずれかに決定する。すなわち、冷凍サイクル装置100は、室内機2の全部で同一運転(冷房運転か暖房運転)をすることができ、室内の温度調節を行う。なお、冷房運転モード、暖房運転モードのいずれにおいても、各室内機2の運転/停止は自由に行うことができる。   Each operation mode executed by the refrigeration cycle apparatus 100 will be described. The refrigeration cycle apparatus 100 determines the operation mode of the outdoor unit 1 to be either the cooling operation mode or the heating operation mode based on an instruction from each indoor unit 2. That is, the refrigeration cycle apparatus 100 can perform the same operation (cooling operation or heating operation) for all of the indoor units 2 and adjusts the indoor temperature. Note that each indoor unit 2 can be freely operated / stopped in both the cooling operation mode and the heating operation mode.

冷凍サイクル装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転(停止も含む)を実行する冷房運転モード、及び、駆動している室内機2の全てが暖房運転(停止も含む)を実行する暖房運転モードがある。以下に、各運転モードについて、冷媒の流れとともに説明する。   The operation mode executed by the refrigeration cycle apparatus 100 includes a cooling operation mode in which all the driven indoor units 2 perform a cooling operation (including a stop), and all of the driven indoor units 2 are in a heating operation. There is a heating operation mode for executing (including stopping). Below, each operation mode is demonstrated with the flow of a refrigerant | coolant.

[冷房運転モード]
図3は、冷凍サイクル装置100の吐出温度が低い場合の冷房運転モード時における冷媒の流れを示す冷媒回路図である。この図3では、全部の負荷側熱交換器15において冷熱負荷が発生している場合を例に冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
[Cooling operation mode]
FIG. 3 is a refrigerant circuit diagram illustrating the refrigerant flow in the cooling operation mode when the discharge temperature of the refrigeration cycle apparatus 100 is low. In FIG. 3, the cooling operation mode will be described by taking as an example a case where a cooling load is generated in all the load-side heat exchangers 15. In FIG. 3, a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.

図3に示す冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒が熱源側熱交換器12へ流入するように切り替える。低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機10から吐出された高温高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧の液冷媒となり、室外機1から流出する。   In the cooling operation mode shown in FIG. 3, in the outdoor unit 1, the first refrigerant flow switching device 11 is switched so that the refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12. The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 10 flows into the heat source side heat exchanger 12 via the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, becomes a high-pressure liquid refrigerant, and flows out of the outdoor unit 1.

室外機1を流出した高圧の液冷媒は、延長配管4を通って、室内機2(2a〜2d)のそれぞれに流入する。室内機2(2a〜2d)に流入した高圧の液冷媒は、絞り装置16(16a〜16d)に流入して、絞り装置16(16a〜16d)で絞られて、減圧され、低温低圧の二相冷媒となる。さらに、蒸発器として作用する負荷側熱交換器15(15a〜15d)のそれぞれに流入し、負荷側熱交換器15の周囲を流通する空気から吸熱して、低温低圧のガス冷媒となる。そして、低温低圧のガス冷媒は、室内機2(2a〜2d)から流出し、延長配管4を通って再び室外機1へ流入し、第1冷媒流路切替装置11を通り、アキュムレータ19を介して、圧縮機10へ再度吸入される。   The high-pressure liquid refrigerant that has flowed out of the outdoor unit 1 passes through the extension pipe 4 and flows into each of the indoor units 2 (2a to 2d). The high-pressure liquid refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into the expansion device 16 (16a to 16d), is throttled and decompressed by the expansion device 16 (16a to 16d), It becomes a phase refrigerant. Furthermore, it flows into each of the load side heat exchangers 15 (15a to 15d) acting as an evaporator, absorbs heat from the air circulating around the load side heat exchanger 15, and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant flows out of the indoor unit 2 (2a to 2d), flows into the outdoor unit 1 again through the extension pipe 4, passes through the first refrigerant flow switching device 11, and passes through the accumulator 19. Then, it is sucked into the compressor 10 again.

このとき、絞り装置16a〜16dの開度(開口面積)は、負荷側熱交換器ガス冷媒温度検出装置28の検出温度と、室外機1の制御装置60から各室内機2の制御装置(図示せず)に通信で送信された蒸発温度と、の温度差(過熱度)が目標値に近づくように制御される。   At this time, the opening degree (opening area) of the expansion devices 16a to 16d depends on the detected temperature of the load-side heat exchanger gas refrigerant temperature detection device 28 and the control device 60 of each outdoor unit 2 from the control device 60 of the outdoor unit 1 (FIG. It is controlled so that the temperature difference (superheat degree) between the evaporation temperature transmitted by communication to the target value (not shown) approaches the target value.

なお、冷房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がないため、運転を停止させる。このとき、停止している室内機2に対応する絞り装置16は、全閉または冷媒が流れない小さい開度としておく。   Note that when the cooling operation mode is executed, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) without the heat load, and thus the operation is stopped. At this time, the expansion device 16 corresponding to the stopped indoor unit 2 is fully closed or set to a small opening at which the refrigerant does not flow.

[暖房運転モード]
図4は、冷凍サイクル装置100の暖房運転モード時における冷媒の流れを示す冷媒回路図である。この図4では、全部の負荷側熱交換器15において温熱負荷が発生している場合を例に暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒の流れる配管を示しており、冷媒の流れ方向を実線矢印で示している。
[Heating operation mode]
FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the refrigeration cycle apparatus 100 is in the heating operation mode. In FIG. 4, the heating operation mode will be described by taking as an example a case where a thermal load is generated in all the load side heat exchangers 15. In FIG. 4, a pipe indicated by a thick line indicates a pipe through which the refrigerant flows, and a flow direction of the refrigerant is indicated by a solid line arrow.

図4に示す暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10から吐出された冷媒を、熱源側熱交換器12を経由させずに室内機2へ流入させるように切り替える。低温低圧の冷媒が圧縮機10によって圧縮され、高温高圧のガス冷媒となって吐出され、第1冷媒流路切替装置11を通り、室外機1から流出する。室外機1から流出した高温高圧のガス冷媒は、延長配管4を通って室内機2(2a〜2d)のそれぞれに流入する。室内機2(2a〜2d)に流入した高温高圧のガス冷媒は、負荷側熱交換器15(15a〜15d)のそれぞれに流入し、負荷側熱交換器15(15a〜15d)の周囲を流通する空気に放熱しながら凝縮液化し、高温高圧の液冷媒となる。負荷側熱交換器15(15a〜15d)から流出した高温高圧の液冷媒は、絞り装置16(16a〜16d)に流入し、絞り装置16(16a〜16d)で絞られて、減圧され、低温低圧の二相冷媒となり、室内機2(2a〜2d)から流出する。室内機2から流出した低温低圧の二相冷媒は、延長配管4を通って再び室外機1へ流入する。   In the heating operation mode shown in FIG. 4, in the outdoor unit 1, the first refrigerant flow switching device 11 passes the refrigerant discharged from the compressor 10 to the indoor unit 2 without passing through the heat source side heat exchanger 12. Switch to allow inflow. The low-temperature and low-pressure refrigerant is compressed by the compressor 10 and discharged as a high-temperature and high-pressure gas refrigerant, passes through the first refrigerant flow switching device 11, and flows out of the outdoor unit 1. The high-temperature and high-pressure gas refrigerant flowing out of the outdoor unit 1 flows into the indoor units 2 (2a to 2d) through the extension pipe 4. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 (2a to 2d) flows into each of the load-side heat exchangers 15 (15a to 15d) and circulates around the load-side heat exchanger 15 (15a to 15d). It liquefies while radiating heat to the air, and becomes a high-temperature and high-pressure liquid refrigerant. The high-temperature and high-pressure liquid refrigerant that has flowed out of the load-side heat exchanger 15 (15a to 15d) flows into the expansion device 16 (16a to 16d), is throttled by the expansion device 16 (16a to 16d), is decompressed, and is cooled to a low temperature. It becomes a low-pressure two-phase refrigerant and flows out of the indoor unit 2 (2a to 2d). The low-temperature and low-pressure two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1 again through the extension pipe 4.

このとき、絞り装置16a〜16dの開度(開口面積)は、室外機1の制御装置60から各室内機2の制御装置(図示せず)に通信で送信された凝縮温度と、負荷側熱交換器液冷媒温度検出装置27の検出温度と、の温度差(過冷却度)が目標値に近づくように制御される。   At this time, the opening degree (opening area) of the expansion devices 16a to 16d is determined based on the condensation temperature transmitted from the control device 60 of the outdoor unit 1 to the control device (not shown) of each indoor unit 2 by communication and the load side heat. Control is performed so that the temperature difference (degree of supercooling) from the detected temperature of the exchanger liquid refrigerant temperature detecting device 27 approaches the target value.

室外機1に流入した低温低圧の二相冷媒は、熱源側熱交換器12に流入し、熱源側熱交換器12の周囲に流れる空気から吸熱し、蒸発して低温低圧のガス冷媒または低温低圧の乾き度の大きい二相冷媒となる。低温低圧のガス冷媒または二相冷媒は、第1冷媒流路切替装置11及びアキュムレータ19を介して、再び圧縮機10に吸入される。   The low-temperature and low-pressure two-phase refrigerant that has flowed into the outdoor unit 1 flows into the heat source side heat exchanger 12, absorbs heat from the air flowing around the heat source side heat exchanger 12, and evaporates to form a low-temperature and low-pressure gas refrigerant or low-temperature and low-pressure. It becomes a two-phase refrigerant with a large dryness. The low-temperature and low-pressure gas refrigerant or two-phase refrigerant is again sucked into the compressor 10 via the first refrigerant flow switching device 11 and the accumulator 19.

暖房運転モードを実行する際、熱負荷のない負荷側熱交換器15(サーモオフを含む)へは冷媒を流す必要がない。しかし、暖房運転モードにおいて、暖房負荷のない負荷側熱交換器15と対応する絞り装置16を全閉または冷媒が流れない小さい開度とすると、運転していない負荷側熱交換器15の内部で冷媒が周囲空気によって冷やされて凝縮し、冷媒が溜まり込んでしまい、冷媒回路全体として冷媒不足に陥ってしまう可能性がある。そこで、暖房運転時においては、熱負荷のない負荷側熱交換器15と対応する絞り装置16の開度(開口面積)は全開等の大きい開度にし、冷媒の溜まり込みを防止する。   When executing the heating operation mode, it is not necessary to flow the refrigerant to the load-side heat exchanger 15 (including the thermo-off) without a heat load. However, in the heating operation mode, if the expansion device 16 corresponding to the load-side heat exchanger 15 without the heating load is fully closed or has a small opening at which the refrigerant does not flow, There is a possibility that the refrigerant is cooled and condensed by the ambient air, and the refrigerant accumulates, resulting in a shortage of refrigerant in the entire refrigerant circuit. Therefore, during heating operation, the opening degree (opening area) of the expansion device 16 corresponding to the load-side heat exchanger 15 having no heat load is set to a large opening degree such as full opening to prevent accumulation of refrigerant.

また、第1冷媒流路切替装置11は、四方弁を用いるのが一般的であるが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。   The first refrigerant flow switching device 11 generally uses a four-way valve. However, the first refrigerant flow switching device 11 is not limited to this and uses a plurality of two-way flow switching valves and a plurality of three-way flow switching valves. You may comprise so that a refrigerant | coolant may flow into this.

[冷媒の種類]
冷凍サイクル装置100で使用する冷媒として、R32、R410A等のように、通常に冷媒として使用されている物質を使用する場合は、冷媒回路内での冷媒の安定性を改善するための工夫を施すことなく、このまま普通に使用すればよい。しかし、ここでは、冷媒として、Cで表され分子構造中に二重結合を1つ有する1,1,2−トリフルオロエチレン(HFO−1123)等の不均化反応を起こす性質の物質で構成した単一冷媒、または、不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒を用いるものとする。
[Type of refrigerant]
When using a substance that is normally used as a refrigerant, such as R32, R410A, etc., as a refrigerant used in the refrigeration cycle apparatus 100, devise to improve the stability of the refrigerant in the refrigerant circuit. Without any problem, it can be used normally. However, here, the refrigerant causes a disproportionation reaction such as 1,1,2-trifluoroethylene (HFO-1123) represented by C 2 H 1 F 3 and having one double bond in the molecular structure. A single refrigerant composed of a substance having a property or a mixed refrigerant obtained by mixing another substance with a substance having a property causing a disproportionation reaction is used.

混合冷媒を生成させるために、不均化反応を起こす性質の物質に混合させる物質としては、たとえば、Cで表されるテトラフルオロプロペン(CFCF=CHで表される2,3,3,3−テトラフルオロプロペンであるHFO−1234yf、CFCH=CHFで表される1,3,3,3−テトラフルオロ−1−プロペンであるHFO−1234ze等)、または、化学式がCHで表されるジフルオロメタン(HFC−32)等が用いられる。しかし、不均化反応を起こす性質の物質に混合させる物質は、これらに限るものではなく、HC−290(プロパン)等を混合させてもよく、冷凍サイクル装置100の冷媒として使用できる熱性能を有する物質であれば、どのようなものを用いてもよい。また、混合比は、どのような混合比としてもよい。To produce a mixed refrigerant, as the material to be mixed to the material properties causing disproportionation reaction, for example, represented by C 3 H 2-tetrafluoropropene represented by F 4 (CF 3 CF = CH 2 HFO-1234yf which is 2,3,3,3-tetrafluoropropene, HFO-1234ze which is 1,3,3,3-tetrafluoro-1-propene represented by CF 3 CH═CHF), or Difluoromethane (HFC-32) or the like whose chemical formula is represented by CH 2 F 2 is used. However, the substance to be mixed with the substance that causes the disproportionation reaction is not limited to these. HC-290 (propane) or the like may be mixed, and the thermal performance that can be used as the refrigerant of the refrigeration cycle apparatus 100 is improved. Any substance may be used as long as it has a substance. Further, the mixing ratio may be any mixing ratio.

不均化反応を起こす性質の物質は、そのまま冷媒として使用すると、外部からの何らかの強いエネルギーで、隣り合う物質同士が反応して、別の物質に変化する可能性がある。このため、冷媒回路において何の対策も行わずに不均化反応を起こす性質の物質を冷媒として使用すると、別の物質となって冷媒として機能しなくなるばかりか、発熱による急激な圧力上昇のため配管破裂等の事故が起こる可能性がある。この不均化反応は、液及び二相状態等の隣り合う物質同士の距離が非常に近い液状態の物質が存在する場所で、特に起こりやすいが、ガス状態においても、強いエネルギーが加わると不均化反応を起こす。そこで、冷媒として使用するためには、不均化反応を起こさないような工夫が必要となる。冷媒の不均化反応は、冷媒を構造物と衝突させたり、冷媒に電流を流したり等の、外部エネルギーにより起こる。   If a substance that causes a disproportionation reaction is used as a refrigerant as it is, there is a possibility that adjacent substances react with each other with some strong energy from the outside and change to another substance. For this reason, if a substance that causes a disproportionation reaction without using any countermeasure in the refrigerant circuit is used as a refrigerant, it will not function as a refrigerant as a separate substance, but also due to a sudden pressure increase due to heat generation. Accidents such as pipe rupture may occur. This disproportionation reaction is particularly likely to occur where there is a liquid state substance in which the distance between adjacent substances such as a liquid and a two-phase state is very close. Causes a leveling reaction. Therefore, in order to use it as a refrigerant, it is necessary to devise so as not to cause a disproportionation reaction. The disproportionation reaction of the refrigerant is caused by external energy such as the collision of the refrigerant with a structure or the passing of an electric current through the refrigerant.

[圧縮機10]
圧縮機10は、密閉型圧縮機を用いる。たとえば、高圧シェル型又は低圧シェル型の、ロータリー圧縮機又はスクロール圧縮機を用いる。図5は、本発明の実施の形態1に係る圧縮機10の構成の概略図である。図5は、圧縮機10を側面から見た側面図である。図5に示す圧縮機10は、高圧シェル型のロータリー式圧縮機である。圧縮機10は、冷媒を圧縮機10に流入させる流入管41、冷媒を圧縮機10から流出させる流出管42、冷媒を圧縮する圧縮部43、圧縮機10の駆動源であるモータ44、圧縮部43とモータ44とを覆う密閉容器である圧縮機シェル45とを備えている。モータ44は圧縮部43の上部に配置されている。
[Compressor 10]
The compressor 10 uses a hermetic compressor. For example, a high-pressure shell type or low-pressure shell type rotary compressor or scroll compressor is used. FIG. 5 is a schematic diagram of a configuration of the compressor 10 according to Embodiment 1 of the present invention. FIG. 5 is a side view of the compressor 10 as viewed from the side. The compressor 10 shown in FIG. 5 is a high pressure shell type rotary compressor. The compressor 10 includes an inflow pipe 41 through which the refrigerant flows into the compressor 10, an outflow pipe 42 through which the refrigerant flows out of the compressor 10, a compression unit 43 that compresses the refrigerant, a motor 44 that is a driving source of the compressor 10, and a compression unit 43 and a compressor shell 45 which is a sealed container covering the motor 44. The motor 44 is disposed on the upper portion of the compression unit 43.

モータ44は、ステータ48とロータ49とを備えている。ステータ48は、圧縮機シェル45に固定されている。ロータ49は、ステータ48の内側に配置され、軸50が連結されている。圧縮部43は、ローリングピストン51を備えている。ローリングピストン51は、ロータ49と同じ軸50に固定されており、ロータ49の回転がローリングピストン51に伝えられる。ローリングピストン51は、軸50に偏心して取り付けられている。   The motor 44 includes a stator 48 and a rotor 49. The stator 48 is fixed to the compressor shell 45. The rotor 49 is disposed inside the stator 48, and the shaft 50 is coupled thereto. The compression unit 43 includes a rolling piston 51. The rolling piston 51 is fixed to the same shaft 50 as the rotor 49, and the rotation of the rotor 49 is transmitted to the rolling piston 51. The rolling piston 51 is eccentrically attached to the shaft 50.

図5において、実線矢印は冷媒が流れる向きを示している。冷媒は、流入管41から圧縮機10に流入し、吸入ポート46を介して、圧縮部43の圧縮室47に流入する。圧縮室47は、軸50に偏心して取り付けられているローリングピストン51の作用により、ローリングピストン51の回転に応じて、容積が変化し、流入した冷媒を圧縮する。圧縮されて圧力が高まった高温高圧のガス冷媒は、圧縮室47から圧縮機シェル45内に噴出され、モータ44の周囲を流動して、流出管42から圧縮機10を流出する。   In FIG. 5, a solid line arrow indicates the direction in which the refrigerant flows. The refrigerant flows into the compressor 10 from the inflow pipe 41 and flows into the compression chamber 47 of the compression unit 43 through the suction port 46. The compression chamber 47 compresses the inflowing refrigerant by changing the volume according to the rotation of the rolling piston 51 by the action of the rolling piston 51 eccentrically attached to the shaft 50. The high-temperature and high-pressure gas refrigerant that has been compressed and increased in pressure is ejected from the compression chamber 47 into the compressor shell 45, flows around the motor 44, and flows out of the compressor 10 through the outflow pipe 42.

ここで、密閉型圧縮機の種類には、上述の高圧シェル型と低圧シェル型とが存在する。低圧シェル型の圧縮機10は、密閉容器である圧縮機シェル45内に圧縮部43とモータ44とを有する。低圧シェル型の圧縮機10に吸入した冷媒は、圧縮機シェル45内に流入し、圧縮機シェル45内は低圧冷媒雰囲気とされる。圧縮機シェル45内の冷媒を圧縮部43の圧縮室47が吸入して圧縮し、圧縮完了後、圧縮部43から圧縮機シェル45外へ吐出させるものである。低圧シェル型の圧縮機10においては、例えば、圧縮部43が上部に配置され、モータ44が下部に配置される。この低圧シェル型の圧縮機10では、圧縮機10に二相冷媒を流入させると、二相冷媒のうちの液成分は、圧縮室47に吸入される前に、圧縮機シェル45に流入した時点で分離され、圧縮部43の下部に配置されたモータ44の周囲を流れて、圧縮機10の下部まで落下する。モータ44の周囲には、分子間距離が短い液冷媒が流れるため、不均化反応が起きやすく、低圧シェル型の圧縮機10の圧縮機シェル45内は、冷媒の不均化反応が起きやすい状態にある。   Here, the above-described high-pressure shell type and low-pressure shell type exist as types of hermetic compressors. The low-pressure shell type compressor 10 includes a compression unit 43 and a motor 44 in a compressor shell 45 that is a hermetic container. The refrigerant sucked into the low-pressure shell type compressor 10 flows into the compressor shell 45, and the compressor shell 45 has a low-pressure refrigerant atmosphere. The refrigerant in the compressor shell 45 is sucked into the compression chamber 47 of the compressor 43 and compressed, and after the compression is completed, the refrigerant is discharged from the compressor 43 to the outside of the compressor shell 45. In the low-pressure shell type compressor 10, for example, the compression unit 43 is arranged at the upper part and the motor 44 is arranged at the lower part. In this low-pressure shell type compressor 10, when a two-phase refrigerant is caused to flow into the compressor 10, the liquid component of the two-phase refrigerant flows into the compressor shell 45 before being sucked into the compression chamber 47. And flows around the motor 44 arranged at the lower part of the compression unit 43 and falls to the lower part of the compressor 10. Since a liquid refrigerant with a short intermolecular distance flows around the motor 44, a disproportionation reaction is likely to occur, and a disproportionation reaction of the refrigerant is likely to occur in the compressor shell 45 of the low-pressure shell type compressor 10. Is in a state.

また、高圧シェル型の圧縮機10は、先の説明のように構成されている。このため、圧縮室47で圧縮されて高温になったガス冷媒が、モータ44が露出している空間である圧縮機シェル45内に吐出される。冷媒の不均化反応は、分子間の距離が短い、液状体及び二相状態で起きやすいが、不均化反応は化学反応であり、化学反応は温度が高いと進みやすい(反応速度が速くなる)ことは広く知られている。従って、冷媒がガス状態であっても、温度が高ければ、不均化反応が起きやすく、高圧シェル型の圧縮機10の圧縮機シェル45内は、(低圧シェル型圧縮機程ではないが)冷媒の不均化反応が起きやすい状態にある。   The high-pressure shell type compressor 10 is configured as described above. For this reason, the gas refrigerant compressed to the high temperature by the compression chamber 47 is discharged into the compressor shell 45 which is a space where the motor 44 is exposed. The disproportionation reaction of the refrigerant is likely to occur in a liquid or two-phase state where the distance between the molecules is short, but the disproportionation reaction is a chemical reaction, and the chemical reaction tends to proceed at a higher temperature (the reaction rate is faster It is widely known. Accordingly, even if the refrigerant is in a gas state, if the temperature is high, a disproportionation reaction is likely to occur, and the inside of the compressor shell 45 of the high-pressure shell type compressor 10 is not as high as the low pressure shell type compressor. The refrigerant is prone to disproportionation.

以上述べた通り、低圧シェル型の圧縮機10の圧縮機シェル45内ではモータ44の周囲に分子間距離の小さい液冷媒が流れる。また、高圧シェル型の圧縮機10の圧縮機シェル45内には高温のガス冷媒が満たされている。このため、どちらの型の圧縮機10の場合においても、圧縮機シェル45内では冷媒の不均化反応が起きやすい状態にある。   As described above, the liquid refrigerant having a small intermolecular distance flows around the motor 44 in the compressor shell 45 of the low-pressure shell type compressor 10. The compressor shell 45 of the high-pressure shell type compressor 10 is filled with a high-temperature gas refrigerant. For this reason, in either type of compressor 10, the refrigerant disproportionation reaction is likely to occur in the compressor shell 45.

密閉型圧縮機である圧縮機10内では、モータ44は、低圧の冷媒雰囲気または高圧の冷媒雰囲気に露出されている。モータ44のステータ48及びロータ49には、電流が流れるため、絶縁処理が必要になる。モータ44を絶縁しないと、周囲の冷媒にも電流が流れてしまうことになり、漏電の危険があるばかりでなく、冷媒が電流のエネルギーにより不均化反応を起こしてしまう可能性がある。   In the compressor 10 that is a hermetic compressor, the motor 44 is exposed to a low-pressure refrigerant atmosphere or a high-pressure refrigerant atmosphere. Since current flows through the stator 48 and the rotor 49 of the motor 44, an insulation process is required. If the motor 44 is not insulated, the current flows through the surrounding refrigerant, which not only causes a risk of electric leakage, but the refrigerant may cause a disproportionation reaction due to the energy of the current.

モータ44の絶縁材料として、冷媒によって、物理的又は化学的に変性を受けない物質で、特に耐溶剤性、耐抽出性、熱的及び化学的安定性、耐発泡性を有する物質を用いるのがよい。モータ44の絶縁材料としては、ステータ48の巻き線の絶縁被覆材料、絶縁フィルム、巻き線を保持するインシュレーター、絶縁チューブ等があり、いずれも樹脂材料が用いられている。   As an insulating material for the motor 44, a substance that is not physically or chemically denatured by a refrigerant, particularly a substance having solvent resistance, extraction resistance, thermal and chemical stability, and foam resistance is used. Good. Examples of the insulating material for the motor 44 include an insulating coating material for the winding of the stator 48, an insulating film, an insulator for holding the winding, an insulating tube, and the like.

具体的に、ステータ48の巻き線の絶縁被覆材料には、ポリビニルフォルマール、ポリエステル、THEIC変性ポリエステル、ポリアミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミドのうちの1種類又は複数種類の物質が用いられている。また、ガラス転移温度が120℃以上のエナメル被覆を用いてもよい。   Specifically, one or more kinds of materials among polyvinyl formal, polyester, THEIC modified polyester, polyamide, polyamide imide, polyester imide, and polyester amide imide are used for the insulation coating material of the winding of the stator 48. ing. Moreover, you may use the enamel coating | cover whose glass transition temperature is 120 degreeC or more.

また、ステータ48の絶縁フィルムは、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリフェニレンサルファイド(PPS)、ポリブチレンテフタレート(PBT)のうちの1種類又は複数種類の物質が用いられている。インシュレーター等の巻き線を保持する絶縁材料には、ポリエーテルエーテルケトン(PEEK)、液晶ポリマー(LCP)のうちから選ばれる1種類又は複数種類の物質が用いられている。ワニスには、エポキシ樹脂が用いられている。さらに、ステータ48の絶縁チューブには、ポリテトラフルオロエチレン(PTFE)、四フッ化エチレン・六フッ化プロピレン共重合樹脂(FEP)のうちから選ばれる1種類又は複数種類の物質が用いられている。   The insulating film of the stator 48 is made of one or more kinds of materials selected from polyethylene terephthalate (PET), polyethylene naphthalate, polyphenylene sulfide (PPS), and polybutylene terephthalate (PBT). As an insulating material for holding a winding such as an insulator, one or more kinds of substances selected from polyetheretherketone (PEEK) and liquid crystal polymer (LCP) are used. Epoxy resin is used for the varnish. Further, one or more kinds of materials selected from polytetrafluoroethylene (PTFE) and tetrafluoroethylene / hexafluoropropylene copolymer resin (FEP) are used for the insulating tube of the stator 48. .

なお、先の説明のように、冷媒がガス状態であっても、温度が高ければ、圧縮機シェル45内は、不均化反応が起きやすい状態にある。不均化反応は、温度が高ければ高い程、反応が進みやすい(反応速度が速くなる)が、特に、50℃以上の温度では、化学反応である不均化反応が起きやすくなる。高圧シェル型の圧縮機10を備える冷凍サイクル装置においては、圧縮機10の圧縮機シェル45内の冷媒の温度は、起動時等の過渡状態を除けば、殆どの場合、50℃以上の温度になっている。しかし、この状態においても、上述のような圧縮機10のモータ44の絶縁を行っていれば、冷媒の不均化反応を抑制することができる。なお、80℃の状態では、更に不均化反応が起きやすい。   As described above, even if the refrigerant is in a gas state, if the temperature is high, the compressor shell 45 is likely to undergo a disproportionation reaction. In the disproportionation reaction, the higher the temperature, the easier the reaction proceeds (the reaction rate increases), but the disproportionation reaction, which is a chemical reaction, easily occurs particularly at a temperature of 50 ° C. or higher. In the refrigeration cycle apparatus including the high-pressure shell type compressor 10, the temperature of the refrigerant in the compressor shell 45 of the compressor 10 is almost 50 ° C. or more in most cases except for a transient state at the time of start-up. It has become. However, even in this state, if the motor 44 of the compressor 10 is insulated as described above, the disproportionation reaction of the refrigerant can be suppressed. In the state of 80 ° C., the disproportionation reaction is more likely to occur.

ここで、冷凍サイクルに、冷媒と相溶性を示す冷凍機油を使用することを考える。相溶性の冷凍機油に対する冷媒の溶解度は、同一圧力条件では、温度が低い方が溶解度が大きく、同一温度条件では、圧力が高い方が溶解度が大きい。冷媒が冷凍機油に溶解すると、冷媒の分子と分子との間に冷凍機油の分子が溶け込んで存在するようになる。すなわち、冷媒の冷凍機油に対する溶解度が大きいと、多くの冷媒の分子と分子との間に冷凍機油が存在することになる。冷媒の不均化反応は、隣接する冷媒の分子同士が反応する現象であり、冷媒と相溶性を有する冷凍機油を使用すれば、冷媒の分子と分子との間に冷凍機油の分子が存在するため、冷媒の不均化反応が、更に、起き難くなる。   Here, it is considered to use a refrigerating machine oil that is compatible with the refrigerant in the refrigeration cycle. Regarding the solubility of the refrigerant in the compatible refrigerating machine oil, the lower the temperature, the higher the solubility under the same pressure condition, and the higher the pressure, the higher the solubility under the same temperature condition. When the refrigerant is dissolved in the refrigerating machine oil, the refrigerating machine oil molecules are dissolved and exist between the refrigerant molecules. In other words, if the solubility of the refrigerant in the refrigerating machine oil is large, the refrigerating machine oil exists between many refrigerant molecules. The refrigerant disproportionation reaction is a phenomenon in which molecules of adjacent refrigerants react with each other. If refrigeration oil compatible with the refrigerant is used, the refrigeration oil molecules exist between the refrigerant molecules. Therefore, the disproportionation reaction of the refrigerant is further difficult to occur.

冷媒の不均化反応を抑制するためには、冷媒の冷凍機油に対する溶解度が大きい方がより効果が大きくなる。実用的には、冷媒が液状態または二相状態の場合において、冷媒の冷凍機油に対する溶解度が50wt%(重量%)以上であれば、多くの冷媒が冷凍機油に溶解するため、不均化反応を抑制できる。従って、圧縮機10として、低圧シェル型の圧縮機10を使用する場合、例えば、圧縮機シェル45内の冷媒の温度が0℃、かつ、圧力が、冷媒の温度が0℃での飽和圧力である状態で、冷媒の冷凍機油に対する溶解度が50wt%(重量%)以上であれば、二相冷媒が流入しても、冷媒の不均化反応を十分に抑制できる。   In order to suppress the disproportionation reaction of the refrigerant, the larger the solubility of the refrigerant in the refrigerating machine oil, the greater the effect. Practically, when the refrigerant is in a liquid state or a two-phase state, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight%) or more, a large amount of the refrigerant dissolves in the refrigerating machine oil, and thus the disproportionation reaction Can be suppressed. Therefore, when the low-pressure shell type compressor 10 is used as the compressor 10, for example, the refrigerant temperature in the compressor shell 45 is 0 ° C., and the pressure is a saturation pressure at which the refrigerant temperature is 0 ° C. In a state, if the solubility of the refrigerant in the refrigerating machine oil is 50 wt% (weight%) or more, the disproportionation reaction of the refrigerant can be sufficiently suppressed even if the two-phase refrigerant flows.

なお、先に述べた通り、冷媒が液状態または二相状態である場合に、最も不均化反応が起きやすい。また、冷媒がガス状態であっても温度が高い状態、特に50℃以上、更に80℃以上、では化学反応である不均化反応が起きやすいが、冷媒が液状態または二相状態である場合の方が、より不均化反応が起きやすい。ガス状態の冷媒も相溶性の冷凍機油に溶解するが、高温のガス状態の不均化反応を抑制するために必要な溶解度は、液状態や二相状態に比べて、小さい値でよい。実用的には、冷媒がガス状態の場合において、溶解度が10wt%(重量%)以上であれば、十分高温のガス状態の冷媒の不均化反応を抑制できる。よって、圧縮機10として、高圧シェル型の圧縮機10を使用する場合、例えば、圧縮機シェル45内の冷媒の温度が80℃、かつ、圧力が、冷媒の温度が50℃での飽和圧力である状態で、冷媒の冷凍機油に対する溶解度が10wt%(重量%)以上であれば、冷媒の不均化反応を十分に抑制できる。   As described above, the disproportionation reaction is most likely to occur when the refrigerant is in a liquid state or a two-phase state. In addition, even when the refrigerant is in a gas state, a disproportionation reaction that is a chemical reaction is likely to occur in a high temperature state, particularly 50 ° C. or higher, and further 80 ° C. or higher. Is more prone to disproportionation reaction. Although the refrigerant in the gas state is also dissolved in the compatible refrigerating machine oil, the solubility required for suppressing the disproportionation reaction in the high temperature gas state may be smaller than that in the liquid state or the two-phase state. Practically, when the refrigerant is in a gas state, the disproportionation reaction of the refrigerant in a sufficiently high temperature gas state can be suppressed if the solubility is 10 wt% (weight%) or more. Therefore, when the high-pressure shell type compressor 10 is used as the compressor 10, for example, the temperature of the refrigerant in the compressor shell 45 is 80 ° C., and the pressure is a saturation pressure when the temperature of the refrigerant is 50 ° C. If the solubility of the refrigerant in the refrigerating machine oil is 10 wt% (wt%) or more, the disproportionation reaction of the refrigerant can be sufficiently suppressed.

また、本実施の形態の冷凍機油は、体積抵抗率が比較的大きい冷凍機油が用いられている。たとえば、冷凍機油の体積抵抗率は、20℃において2×1010Ω・m以上である。このため、冷凍機油として、相溶油を用いると、圧縮機10の圧縮機シェル45内での冷媒と冷凍機油の混合流体の体積抵抗率は、ある程度高い値になる。従って、圧縮機10においてモータ44からの漏れ電流が比較的少なくなり、更に、冷媒の不均化反応が起き難くなる。In addition, the refrigerating machine oil of the present embodiment uses a refrigerating machine oil having a relatively large volume resistivity. For example, the volume resistivity of refrigerating machine oil is 2 × 10 10 Ω · m or more at 20 ° C. For this reason, when compatible oil is used as the refrigerating machine oil, the volume resistivity of the mixed fluid of the refrigerant and the refrigerating machine oil in the compressor shell 45 of the compressor 10 becomes a high value to some extent. Therefore, the leakage current from the motor 44 in the compressor 10 becomes relatively small, and further, the refrigerant disproportionation reaction hardly occurs.

なお、冷凍機油としては、ポリオールエステル及びポリビニルエーテルのうちいずれかを主成分とするものが用いられる。ポリオールエステル及びポリビニルエーテルは、何れも、体積抵抗率が比較的高く、分子構造中に二重結合を1個有する冷媒に対して溶解しやすい相溶性を有する冷凍機油である。   In addition, as refrigeration oil, what has either a polyol ester and polyvinyl ether as a main component is used. Both the polyol ester and the polyvinyl ether are refrigerating machine oils having relatively high volume resistivity and compatibility with a refrigerant having one double bond in the molecular structure.

また、本実施の形態においては、圧縮機10の圧縮機シェル45内において、圧縮部43が下方、モータ44が上方にある場合を例に説明を行ったが、これに限るものではなく、圧縮部43が上方、モータ44が下方にあっても構わない。これは、高圧シェル型の圧縮機であっても、低圧シェル型の圧縮機であっても、同様である。   Further, in the present embodiment, the case where the compression unit 43 is below and the motor 44 is above in the compressor shell 45 of the compressor 10 has been described as an example, but the present invention is not limited to this. The part 43 may be on the upper side and the motor 44 may be on the lower side. This is the same whether it is a high-pressure shell type compressor or a low-pressure shell type compressor.

また、圧縮機10は、ロータリー式圧縮機である場合を例に説明を行ったが、これに限るものではなく、スクロール式圧縮機又はスクリュー式圧縮機等、どのような方式のものを用いてもよく、同様の効果を奏する。   Moreover, although the compressor 10 demonstrated the case where it was a rotary type compressor as an example, it is not restricted to this, What kind of thing, such as a scroll type compressor or a screw type compressor, is used. The same effect is obtained.

[アキュムレータ19]
図6は、本発明の実施の形態1に係るアキュムレータ19の構成の概略図である。図6はアキュムレータ19を側面から見た側面図である。アキュムレータ19は、流入管52、流出管53、流出管53に設けられた油戻し穴54、及び、アキュムレータ19のアキュムレータシェル55から構成され、流入管52及び流出管53がアキュムレータシェル55に挿入された構造となっている。図6において、実線矢印は冷媒が流れる向きを示している。冷媒は、流入管52から流入し、アキュムレータシェル55に開放されて容積が広げられ、その後、流出管53から流出する。この際、流出管53の入口は、流入管52の出口よりも高い位置であり、かつ、流入管52から流入した冷媒が慣性力及び重力で直接流出管53に流入しない位置に設置されている。
[Accumulator 19]
FIG. 6 is a schematic diagram of the configuration of the accumulator 19 according to Embodiment 1 of the present invention. FIG. 6 is a side view of the accumulator 19 as seen from the side. The accumulator 19 includes an inflow pipe 52, an outflow pipe 53, an oil return hole 54 provided in the outflow pipe 53, and an accumulator shell 55 of the accumulator 19, and the inflow pipe 52 and the outflow pipe 53 are inserted into the accumulator shell 55. It has a structure. In FIG. 6, a solid line arrow indicates the direction in which the refrigerant flows. The refrigerant flows in from the inflow pipe 52, is opened to the accumulator shell 55 to increase the volume, and then flows out from the outflow pipe 53. At this time, the inlet of the outflow pipe 53 is located at a position higher than the outlet of the inflow pipe 52, and the refrigerant flowing in from the inflow pipe 52 is installed at a position where it does not directly flow into the outflow pipe 53 due to inertial force and gravity. .

流入管52は、アキュムレータシェル55の上方から挿入され、アキュムレータシェル55内で横に曲げられ、流入管52の出口は、アキュムレータシェル55の内壁面から少し離れたアキュムレータシェル55の内壁面に接しない位置に、アキュムレータシェル55の内壁面に向けて設置されている。流入管52をアキュムレータシェル55の内壁面に向けることにより、流入管52から流入した冷媒を、アキュムレータシェル55の内壁面に衝突させて、二相冷媒の液成分及び冷凍機油をアキュムレータシェル55内で分離させ、重力によってアキュムレータシェル55の下方に貯留させる働きをする。   The inflow pipe 52 is inserted from above the accumulator shell 55 and bent sideways in the accumulator shell 55, and the outlet of the inflow pipe 52 does not contact the inner wall surface of the accumulator shell 55 that is slightly away from the inner wall surface of the accumulator shell 55. The accumulator shell 55 is installed at the position toward the inner wall surface. By directing the inflow pipe 52 toward the inner wall surface of the accumulator shell 55, the refrigerant flowing in from the inflow pipe 52 collides with the inner wall surface of the accumulator shell 55, and the liquid component of the two-phase refrigerant and the refrigerating machine oil are accumulated in the accumulator shell 55. It separates and acts to store below the accumulator shell 55 by gravity.

流出管53に設けられた油戻し穴54は、アキュムレータシェル55の下方に溜まった冷凍機油が溶解した冷媒液を流出管53内に流入させ、冷凍機油を圧縮機10に戻す働きをする。この時、冷媒が冷凍機油に溶解しているため、油戻し穴54からは、冷凍機油と一緒に冷媒も流出し、圧縮機10に吸入される。従って、圧縮機10には、乾き度が0を超え1未満の二相状態の冷媒が吸入される。よって、低圧シェル型の圧縮機を使用しており、冷凍サイクルに余剰冷媒が発生している場合、圧縮機シェル45内に、乾き度が0を超え1未満の二相状態の冷媒が流入し、この冷媒がモータ44の周囲に流れることになる。すなわち、アキュムレータ19の内部に油戻し穴54を備えていれば、乾き度が0を超え1未満の二相状態の冷媒が、圧縮機10に流入する。   The oil return hole 54 provided in the outflow pipe 53 functions to cause the refrigerant liquid dissolved in the refrigerating machine oil accumulated below the accumulator shell 55 to flow into the outflow pipe 53 and return the refrigerating machine oil to the compressor 10. At this time, since the refrigerant is dissolved in the refrigerating machine oil, the refrigerant flows out of the oil return hole 54 together with the refrigerating machine oil, and is sucked into the compressor 10. Accordingly, the two-phase refrigerant having a dryness exceeding 0 and less than 1 is sucked into the compressor 10. Therefore, when a low-pressure shell type compressor is used and surplus refrigerant is generated in the refrigeration cycle, a two-phase refrigerant having a dryness exceeding 0 and less than 1 flows into the compressor shell 45. This refrigerant flows around the motor 44. That is, if the oil return hole 54 is provided inside the accumulator 19, a two-phase refrigerant having a dryness exceeding 0 and less than 1 flows into the compressor 10.

アキュムレータ19には、冷房運転時は、低温低圧のガス冷媒が流入し、暖房運転時は、冷媒回路内に余剰冷媒が発生するため、気体と液体が混在した二相冷媒が流入する。なお、室内機2が複数あるマルチ型の空気調和装置等の冷凍サイクル装置においては、室内機2の運転台数変化等により、冷房運転時においても、余剰冷媒が発生し、アキュムレータ19に二相冷媒が流入する場合もある。   A low-temperature and low-pressure gas refrigerant flows into the accumulator 19 during the cooling operation, and a surplus refrigerant is generated in the refrigerant circuit during the heating operation, so a two-phase refrigerant mixed with gas and liquid flows. In a refrigeration cycle apparatus such as a multi-type air conditioner having a plurality of indoor units 2, surplus refrigerant is generated even during cooling operation due to a change in the number of operating indoor units 2, and the two-phase refrigerant is generated in the accumulator 19. May flow in.

ここで、本実施の形態では、縦方向(鉛直方向)に長い形状のアキュムレータシェル55を有するアキュムレータ19を図示しているが、横方向に長い構造のもの等、どのような形をしていてもよい。   Here, in the present embodiment, the accumulator 19 having the accumulator shell 55 having a shape elongated in the vertical direction (vertical direction) is illustrated. Also good.

また、本実施の形態では、冷媒回路中に余剰冷媒を貯留するアキュムレータ19を備える場合について説明をしたが、延長配管4が短い場合、室内機2の台数が1台である場合等のように、余剰冷媒が少ない場合は、アキュムレータ19を備えていなくてもよい。なお、アキュムレータ19を備えていない場合は、運転状態によっては、二相冷媒が直接圧縮機10に流入することになる。   Moreover, although this Embodiment demonstrated the case where the accumulator 19 which stores an excess refrigerant | coolant in a refrigerant circuit was provided, when the extension piping 4 is short, when the number of indoor units 2 is one, etc. When the surplus refrigerant is small, the accumulator 19 may not be provided. When the accumulator 19 is not provided, the two-phase refrigerant flows directly into the compressor 10 depending on the operating state.

[延長配管4]
以上説明したように、本実施の形態に係る冷凍サイクル装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と室内機2とを接続する延長配管4には冷媒が流れている。
[Extended piping 4]
As described above, the refrigeration cycle apparatus 100 according to the present embodiment has several operation modes. In these operation modes, the refrigerant flows through the extension pipe 4 that connects the outdoor unit 1 and the indoor unit 2.

なお、高圧検出装置37,低圧検出装置38は、冷凍サイクル高圧と低圧を目標値に制御するために設置されているが、飽和温度を検出する温度検出装置でもよい。   The high pressure detection device 37 and the low pressure detection device 38 are installed to control the refrigeration cycle high pressure and low pressure to target values, but may be a temperature detection device that detects a saturation temperature.

また、第1冷媒流路切替装置11は四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。   Moreover, although the 1st refrigerant | coolant flow path switching device 11 was shown as if it were a four-way valve, it is not restricted to this, It uses the two-way flow path switching valve and the three-way flow path switching valve similarly, You may comprise so that a refrigerant | coolant may flow.

また、一般的に、熱源側熱交換器12及び負荷側熱交換器15a〜15dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではない。たとえば負荷側熱交換器15a〜15dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができる。放熱あるいは吸熱をできる構造のものであればどんな熱交換器でも用いることができる。   Moreover, generally, the heat source side heat exchanger 12 and the load side heat exchangers 15a to 15d are equipped with a blower, and in many cases, condensation or evaporation is promoted by blowing, but this is not restrictive. . For example, as the load side heat exchangers 15a to 15d, a panel heater using radiation can be used, and as the heat source side heat exchanger 12, a water-cooled type in which heat is transferred by water or antifreeze. Things can also be used. Any heat exchanger having a structure capable of radiating or absorbing heat can be used.

また、ここでは、負荷側熱交換器15a〜15dが4つである場合を例に説明を行ったが、幾つ接続してもよい。更に、室外機1が複数接続され、1つの冷凍サイクルを構成していてもよい。   Moreover, although the case where the load side heat exchangers 15a-15d are four was demonstrated to the example here, you may connect how many. Further, a plurality of outdoor units 1 may be connected to constitute one refrigeration cycle.

また、室内機2が冷房運転か暖房運転のいずれかの運転のみを行う冷房暖房切替型の冷凍サイクル装置100を例に説明を行ったが、これに限定するものではない。たとえば、室内機2が冷房運転と暖房運転のいずれかの運転を任意に選択でき、システム全体として、冷房運転を行う室内機2と暖房運転を行う室内機2との混在運転を行うことができる冷凍サイクル装置にも適用することができ、同様の効果を奏する。   Further, although the explanation has been given by taking the cooling / heating switching type refrigeration cycle apparatus 100 in which the indoor unit 2 performs only the cooling operation or the heating operation as an example, the present invention is not limited to this. For example, the indoor unit 2 can arbitrarily select one of a cooling operation and a heating operation, and the entire system can perform a mixed operation of the indoor unit 2 that performs the cooling operation and the indoor unit 2 that performs the heating operation. The present invention can also be applied to a refrigeration cycle apparatus and has the same effect.

また、室内機2が1つだけ接続できるルームエアコン等の空気調和装置、ショーケースやユニットクーラを接続する冷凍装置等にも適用することができ、冷凍サイクルを使用する冷凍サイクル装置であれば、同様の効果を奏する。   In addition, it can be applied to an air conditioner such as a room air conditioner to which only one indoor unit 2 can be connected, a refrigeration apparatus to which a showcase or a unit cooler is connected, and any refrigeration cycle apparatus using a refrigeration cycle The same effect is produced.

また、負荷側熱交換器15として、水又は不凍液等と熱交換を行うプレート式熱交換器等を用い、熱交換した水又は不凍液等を、室内機2に循環させ、空調対象空間に温調された空気を供給するように構成された冷凍サイクル装置であっても構わない。   Further, as the load-side heat exchanger 15, a plate heat exchanger or the like for exchanging heat with water or antifreeze liquid is used, and the heat-exchanged water or antifreeze liquid is circulated through the indoor unit 2 to control the temperature in the air conditioning target space. It may be a refrigeration cycle apparatus configured to supply the conditioned air.

1 熱源機(室外機)、2a、2b、2c、2d 室内機、4 延長配管(冷媒配管)、6 室外空間、7 室内空間、8 天井裏等の室外空間及び室内空間とは別の空間、9 ビル等の建物、10 圧縮機、11 第1冷媒流路切替装置(四方弁)、12 熱源側熱交換器、15、15a、15b、15c、15d 負荷側熱交換器、16、16a、16b、16c、16d 絞り装置、19 アキュムレータ、27 負荷側熱交換器液冷媒温度検出装置、28 負荷側熱交換器ガス冷媒温度検出装置、37 高圧検出装置、38 低圧検出装置、41 流入管、42 流出管、43 圧縮部、44 モータ、45 圧縮機シェル、46 吸入ポート、47 圧縮室、48 ステータ、49 ロータ、50 軸、51 ローリングピストン、52 流入管、53 流出管、54 油戻し穴、55 アキュムレータシェル、60 制御装置、100 冷凍サイクル装置。   1 Heat source unit (outdoor unit), 2a, 2b, 2c, 2d indoor unit, 4 extension pipe (refrigerant pipe), 6 outdoor space, 7 indoor space, 8 space other than outdoor space and indoor space such as the ceiling, 9 Building, 10 Compressor, 11 First refrigerant flow switching device (four-way valve), 12 Heat source side heat exchanger, 15, 15a, 15b, 15c, 15d Load side heat exchanger, 16, 16a, 16b 16c, 16d Throttle device, 19 Accumulator, 27 Load side heat exchanger liquid refrigerant temperature detection device, 28 Load side heat exchanger gas refrigerant temperature detection device, 37 High pressure detection device, 38 Low pressure detection device, 41 Inflow pipe, 42 Outflow Pipe, 43 Compression section, 44 Motor, 45 Compressor shell, 46 Suction port, 47 Compression chamber, 48 Stator, 49 Rotor, 50 shaft, 51 Rolling piston, 52 Inflow pipe, 53 Outflow pipe, 54 oil return hole, 55 accumulator shell, 60 control device, 100 refrigeration cycle device.

本発明に係る冷凍サイクル装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、が冷媒配管で接続され、冷媒が循環する冷凍サイクルを備え、冷媒は、1,1,2−トリフルオロエチレンで構成した単一冷媒または1,1,2−トリフルオロエチレンに別の物質を混合させた混合冷媒であり、圧縮機は、密閉容器内に、圧縮室とモータとを有し、密閉容器内に冷媒を流入させ、密閉容器内の冷媒を圧縮室で圧縮し、圧縮した冷媒を密閉容器外へ吐出させる低圧シェル型圧縮機であり、圧縮機の密閉容器内に、乾き度が0を超え1未満の二相状態の冷媒を流入させる運転状態を有し、冷凍サイクルには、冷媒と相溶性を有する冷凍機油が充填されており、冷凍機油は、冷媒の温度が0℃、かつ、冷媒の圧力が、冷媒の温度が0℃での飽和圧力である状態において、冷媒に対する溶解度が50重量%以上であり、モータの絶縁材料に、樹脂材料を用いたものである。
また、本発明に係る冷凍サイクル装置は、圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、が冷媒配管で接続され、冷媒が循環する冷凍サイクルを備え、冷媒は、1,1,2−トリフルオロエチレンで構成した単一冷媒または1,1,2−トリフルオロエチレンに別の物質を混合させた混合冷媒であり、圧縮機は、密閉容器内に、圧縮室とモータとを有し、圧縮室に冷媒を流入させ、圧縮室に流入した冷媒を圧縮室で圧縮し、圧縮した冷媒を密閉容器内へ吐出し、密閉容器内の冷媒を密閉容器外へ吐出させる高圧シェル型圧縮機であり、圧縮機の圧縮室から密閉容器内に、50℃以上の冷媒を吐出する運転状態を有し、冷凍サイクルには、冷媒と相溶性を有する冷凍機油が充填されており、冷凍機油は、冷媒の温度が80℃、かつ、冷媒の圧力が、冷媒の温度が50℃での飽和圧力である状態において、冷媒に対する溶解度が10重量%以上であり、モータの絶縁材料に、樹脂材料を用いたものである。
A refrigeration cycle apparatus according to the present invention includes a refrigeration cycle in which a compressor, a first heat exchanger, a throttling device, and a second heat exchanger are connected by a refrigerant pipe and the refrigerant circulates. is 1,1,2 is a mixed refrigerant obtained by mixing different substances in a single refrigerant or 1,1,2-trifluoro-ethylene configured in trifluoroethylene, compressor, in a sealed container, the compression A low-pressure shell compressor that has a chamber and a motor, allows refrigerant to flow into the sealed container, compresses the refrigerant in the sealed container in the compression chamber, and discharges the compressed refrigerant to the outside of the sealed container. A closed container has an operation state in which a two-phase refrigerant having a dryness of more than 0 and less than 1 is allowed to flow. The refrigerating cycle is filled with refrigerating machine oil having compatibility with the refrigerant. The refrigerant temperature is 0 ° C. and the refrigerant pressure is In a state where the saturation pressure is 0 ° C., the solubility in the refrigerant is 50% by weight or more, and a resin material is used as the motor insulating material.
The refrigeration cycle apparatus according to the present invention includes a refrigeration cycle in which a compressor, a first heat exchanger, a throttling device, and a second heat exchanger are connected by a refrigerant pipe and the refrigerant circulates. The refrigerant is a single refrigerant composed of 1,1,2-trifluoroethylene or a mixed refrigerant in which another substance is mixed with 1,1,2-trifluoroethylene, and the compressor is placed in a sealed container. A compression chamber and a motor, the refrigerant flows into the compression chamber, the refrigerant flowing into the compression chamber is compressed in the compression chamber, the compressed refrigerant is discharged into the sealed container, and the refrigerant in the sealed container is Refrigerating machine oil that is a high-pressure shell type compressor that is discharged to the outside, has an operation state in which a refrigerant of 50 ° C. or higher is discharged from a compression chamber of the compressor into a sealed container, and is compatible with the refrigerant in the refrigeration cycle The refrigerator oil has a refrigerant temperature of 80 ° C, One, the pressure of the refrigerant is, in a state the temperature of the refrigerant is a saturated pressure at 50 ° C., and a solubility of the refrigerant is less than 10% by weight, the insulating material of the motor, in which a resin material.

Claims (10)

圧縮機と、第一の熱交換器と、絞り装置と、第二の熱交換器と、が冷媒配管で接続され、冷媒が循環する冷凍サイクルを備え、
前記冷媒は、不均化反応を起こす性質の物質で構成した単一冷媒または不均化反応を起こす性質の物質に別の物質を混合させた混合冷媒であり、
前記圧縮機は、密閉容器内に、圧縮室とモータとを有し、
前記モータの絶縁材料に、樹脂材料を用いた冷凍サイクル装置。
The compressor, the first heat exchanger, the expansion device, and the second heat exchanger are connected by a refrigerant pipe, and include a refrigeration cycle in which the refrigerant circulates.
The refrigerant is a single refrigerant composed of a substance having a disproportionation reaction or a mixed refrigerant in which another substance is mixed with a substance having a disproportionation reaction,
The compressor has a compression chamber and a motor in a sealed container,
A refrigeration cycle apparatus using a resin material as an insulating material of the motor.
前記不均化反応を起こす性質の物質は、1,1,2−トリフルオロエチレンである請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the substance having a disproportionation reaction is 1,1,2-trifluoroethylene. 前記モータの絶縁材料は、ポリビニルフォルマール、ポリエステル、THEIC変性ポリエステル、ポリアミド、ポリアミドイミド、ポリエステルイミド、ポリエステルアミドイミド、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリブチレンテフタレート、ポリエーテルエーテルケトン、液晶ポリマー、エポキシ樹脂、ポリテトラフルオロエチレン、四フッ化エチレン・六フッ化プロピレン共重合樹脂の群から選ばれる1または複数の物質が用いられている請求項1または請求項2に記載の冷凍サイクル装置。   The insulating material of the motor is polyvinyl formal, polyester, THEIC modified polyester, polyamide, polyamideimide, polyesterimide, polyesteramideimide, polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polybutylene terephthalate, polyether ether ketone, liquid crystal The refrigeration cycle apparatus according to claim 1 or 2, wherein one or more substances selected from the group consisting of a polymer, an epoxy resin, polytetrafluoroethylene, and a tetrafluoroethylene / hexafluoropropylene copolymer resin are used. . 前記圧縮機は、前記密閉容器内に前記冷媒を流入させ、前記密閉容器内の冷媒を前記圧縮室で圧縮し、圧縮した前記冷媒を前記密閉容器外へ吐出させる低圧シェル型圧縮機であり、
前記圧縮機の前記密閉容器内に、乾き度が0を超え1未満の二相状態の前記冷媒を流入させる運転状態を有する請求項1〜請求項3のいずれか一項に記載の冷凍サイクル装置。
The compressor is a low-pressure shell compressor that causes the refrigerant to flow into the sealed container, compresses the refrigerant in the sealed container in the compression chamber, and discharges the compressed refrigerant to the outside of the sealed container;
The refrigeration cycle apparatus according to any one of claims 1 to 3, further comprising an operation state in which the refrigerant in a two-phase state with a dryness exceeding 0 and less than 1 is allowed to flow into the sealed container of the compressor. .
前記圧縮機は、前記圧縮室に前記冷媒を流入させ、前記圧縮室に流入した前記冷媒を前記圧縮室で圧縮し、圧縮した前記冷媒を前記密閉容器内へ吐出し、前記密閉容器内の前記冷媒を前記密閉容器外へ吐出させる高圧シェル型圧縮機であり、
前記圧縮機の前記圧縮室から前記密閉容器内に、50℃以上の前記冷媒を吐出する運転状態を有する請求項1〜請求項3のいずれか一項に記載の冷凍サイクル装置。
The compressor causes the refrigerant to flow into the compression chamber, compresses the refrigerant flowing into the compression chamber in the compression chamber, discharges the compressed refrigerant into the sealed container, and A high-pressure shell-type compressor that discharges the refrigerant out of the sealed container;
4. The refrigeration cycle apparatus according to claim 1, wherein the refrigeration cycle apparatus has an operation state in which the refrigerant of 50 ° C. or more is discharged from the compression chamber of the compressor into the sealed container.
前記冷凍サイクルには、前記冷媒と相溶性を有する冷凍機油が充填されている請求項1〜請求項5のいずれか一項に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein the refrigeration cycle is filled with refrigeration oil having compatibility with the refrigerant. 前記冷凍機油は、ポリオールエステル及びポリビニルエーテルのうちいずれかを主成分とする請求項6に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 6, wherein the refrigerating machine oil has one of a polyol ester and a polyvinyl ether as a main component. 前記冷凍機油は、体積抵抗率が20℃において2×1010Ω・m以上のものである請求項6または請求項7に記載の冷凍サイクル装置。The refrigeration cycle apparatus according to claim 6 or 7, wherein the refrigerating machine oil has a volume resistivity of 2 x 10 10 Ω · m or more at 20 ° C. 前記冷凍機油は、前記冷媒の温度が0℃、かつ、前記冷媒の圧力が、前記冷媒の温度が0℃での飽和圧力である状態において、前記冷媒に対する溶解度が50重量%以上である、請求項4、請求項4に従属する請求項6、請求項4に従属する請求項7、のいずれか一項に記載の冷凍サイクル装置。   The refrigerating machine oil has a solubility in the refrigerant of 50% by weight or more in a state where the temperature of the refrigerant is 0 ° C. and the pressure of the refrigerant is a saturation pressure when the temperature of the refrigerant is 0 ° C. The refrigeration cycle apparatus according to any one of claims 4 and 6 dependent on claim 4 and claim 4 and claim 7 dependent on claim 4. 前記冷凍機油は、前記冷媒の温度が80℃、かつ、前記冷媒の圧力が、前記冷媒の温度が50℃での飽和圧力である状態において、前記冷媒に対する溶解度が10重量%以上である、請求項5、請求項5に従属する請求項6、請求項5に従属する請求項7、のいずれか一項に記載の冷凍サイクル装置。   The refrigerating machine oil has a solubility in the refrigerant of 10% by weight or more in a state where the temperature of the refrigerant is 80 ° C. and the pressure of the refrigerant is a saturation pressure at a temperature of the refrigerant of 50 ° C. The refrigeration cycle apparatus according to any one of claim 5, claim 6 dependent on claim 5, and claim 7 dependent on claim 5.
JP2016508341A 2014-03-17 2014-03-17 Refrigeration cycle equipment Pending JPWO2015140881A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057041 WO2015140881A1 (en) 2014-03-17 2014-03-17 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
JPWO2015140881A1 true JPWO2015140881A1 (en) 2017-04-06

Family

ID=54143907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508341A Pending JPWO2015140881A1 (en) 2014-03-17 2014-03-17 Refrigeration cycle equipment

Country Status (5)

Country Link
US (1) US20170074561A1 (en)
EP (1) EP3121535A1 (en)
JP (1) JPWO2015140881A1 (en)
CN (1) CN106104169A (en)
WO (1) WO2015140881A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016059698A1 (en) * 2014-10-16 2016-04-21 三菱電機株式会社 Refrigeration cycle device
JP2018025372A (en) * 2016-07-27 2018-02-15 パナソニック株式会社 Refrigeration cycle apparatus
CN114001471A (en) * 2018-05-18 2022-02-01 大金工业株式会社 Refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180933A (en) * 1993-12-21 1995-07-18 Mitsubishi Electric Corp Refrigerating cycle device
WO2009116282A1 (en) * 2008-03-18 2009-09-24 ダイキン工業株式会社 Freezing device
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
JP2012131994A (en) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp Working fluid composition for refrigerator machine, and refrigerating machine oil
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013140010A (en) * 2011-09-30 2013-07-18 Daikin Industries Ltd Refrigeration device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4836305B2 (en) * 2000-02-16 2011-12-14 ダイキン工業株式会社 Refrigeration equipment
MY125381A (en) * 2000-03-10 2006-07-31 Sanyo Electric Co Refrigerating device utilizing carbon dioxide as a refrigerant.
JP5824628B2 (en) * 2011-06-29 2015-11-25 パナソニックIpマネジメント株式会社 Refrigeration cycle apparatus and hot water generating apparatus having the same
JP5887902B2 (en) * 2011-12-14 2016-03-16 パナソニック株式会社 Refrigeration cycle equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180933A (en) * 1993-12-21 1995-07-18 Mitsubishi Electric Corp Refrigerating cycle device
WO2009116282A1 (en) * 2008-03-18 2009-09-24 ダイキン工業株式会社 Freezing device
JP2010156524A (en) * 2009-01-05 2010-07-15 Mitsubishi Electric Corp Refrigerating cycle device
JP2012131994A (en) * 2010-11-30 2012-07-12 Jx Nippon Oil & Energy Corp Working fluid composition for refrigerator machine, and refrigerating machine oil
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2013140010A (en) * 2011-09-30 2013-07-18 Daikin Industries Ltd Refrigeration device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MATERIAL SAFETY DATA SHEET, JPN7017001881, 23 May 2005 (2005-05-23), US, pages IDENTITY, SECTION IV, ISSN: 0003575664 *

Also Published As

Publication number Publication date
CN106104169A (en) 2016-11-09
US20170074561A1 (en) 2017-03-16
WO2015140881A1 (en) 2015-09-24
EP3121535A1 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
CN111201411B (en) Refrigerating device
US10508847B2 (en) Refrigeration apparatus
US9459013B2 (en) Air-conditioning apparatus with safety measure for ventilation of inflammable refrigerant from heat exchanger
EP3764025B1 (en) Refrigeration cycle apparatus
WO2014128830A1 (en) Air conditioning device
US20140360218A1 (en) Air-conditioning apparatus
US20210348820A1 (en) Heat load processing system
JP5908183B1 (en) Air conditioner
WO2015140880A1 (en) Compressor and refrigeration cycle apparatus
WO2015140885A1 (en) Refrigeration cycle apparatus
WO2015140887A1 (en) Refrigeration cycle apparatus
WO2015140881A1 (en) Refrigeration cycle apparatus
JP5618801B2 (en) Air conditioner
US10852007B2 (en) Heat pump device
WO2015140878A1 (en) Accumulator and refrigeration cycle apparatus
WO2016038659A1 (en) Refrigeration cycle apparatus
JPWO2015136707A1 (en) Air conditioner
KR20140103262A (en) Air conditioner
GB2543206A (en) Refrigeration cycle device
WO2015140877A1 (en) Throttling device and refrigeration cycle device
JP7139850B2 (en) refrigeration cycle equipment
WO2023002522A1 (en) Air-conditioning device and method for installing air-conditioning device
JP7019070B2 (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180109