JPWO2015140875A1 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JPWO2015140875A1
JPWO2015140875A1 JP2016508335A JP2016508335A JPWO2015140875A1 JP WO2015140875 A1 JPWO2015140875 A1 JP WO2015140875A1 JP 2016508335 A JP2016508335 A JP 2016508335A JP 2016508335 A JP2016508335 A JP 2016508335A JP WO2015140875 A1 JPWO2015140875 A1 JP WO2015140875A1
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
hfo1123
refrigeration apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016508335A
Other languages
Japanese (ja)
Inventor
池田 隆
隆 池田
佐多 裕士
裕士 佐多
悠介 有井
悠介 有井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Mitsubishi Electric Corp filed Critical Asahi Glass Co Ltd
Publication of JPWO2015140875A1 publication Critical patent/JPWO2015140875A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/072Intercoolers therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Lubricants (AREA)

Abstract

冷凍装置100は、HFO1123冷媒を含む冷媒を使用する冷凍装置100であって、第1圧縮機1と、中間熱交換器8と、第2圧縮機2と、凝縮器3と、サブクール熱交換器4と、膨張弁6と、蒸発器7とが順に接続された主冷媒回路と、サブクール熱交換器4と膨張弁6との間から分岐し、サブ膨張弁5を介して、中間熱交換器8と第2圧縮機2との間に接続されたバイパス冷媒回路10とを備える。The refrigeration apparatus 100 is a refrigeration apparatus 100 that uses a refrigerant including HFO1123 refrigerant, and includes a first compressor 1, an intermediate heat exchanger 8, a second compressor 2, a condenser 3, and a subcool heat exchanger. 4, the expansion valve 6, and the evaporator 7 are sequentially connected to the main refrigerant circuit, and between the subcool heat exchanger 4 and the expansion valve 6, and the intermediate heat exchanger is connected via the subexpansion valve 5. 8 and a bypass refrigerant circuit 10 connected between the second compressor 2.

Description

この発明は、冷凍装置に関する。   The present invention relates to a refrigeration apparatus.

従来の冷凍装置としては、蒸発温度が−40℃以下となるような用途に使用されるものとして、例えば、以下の特許文献1に示すような二段圧縮式冷凍装置が知られている。従来の二段圧縮式冷凍装置では、一般的に、R22冷媒またはR404A冷媒が使用されていた。   As a conventional refrigeration apparatus, for example, a two-stage compression refrigeration apparatus shown in the following Patent Document 1 is known as one that is used for applications in which the evaporation temperature is −40 ° C. or lower. In the conventional two-stage compression refrigeration apparatus, generally, an R22 refrigerant or an R404A refrigerant is used.

特開平3−217762号公報(第3頁、第1図)JP-A-3-217762 (page 3, FIG. 1)

しかしながら、R22冷媒およびR404A冷媒は、地球温暖化係数(GWP)が高いため、地球温暖化防止の観点から使用を控えることが望ましい。   However, since the R22 refrigerant and the R404A refrigerant have a high global warming potential (GWP), it is desirable to refrain from using them from the viewpoint of preventing global warming.

この発明は、上記の課題を解決するためになされたものであり、その目的は、蒸発温度が−40℃以下となるような用途での使用を実現し、且つ地球温暖化係数が低い冷媒を使用した冷凍装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a refrigerant that can be used in applications where the evaporation temperature is -40 ° C or lower and has a low global warming potential. The refrigeration apparatus used is obtained.

この発明に係る冷凍装置は、HFO1123冷媒を含む冷媒を使用する冷凍装置であって、第1圧縮機と、中間熱交換器と、第2圧縮機と、凝縮器と、サブクール熱交換器と、膨張弁と、蒸発器とが順に接続された主冷媒回路と、前記サブクール熱交換器と前記膨張弁との間から分岐し、サブ膨張弁を介して、前記中間熱交換器と前記第2圧縮機との間に接続されたバイパス冷媒回路とを備える。   The refrigeration apparatus according to the present invention is a refrigeration apparatus that uses a refrigerant including HFO1123 refrigerant, and includes a first compressor, an intermediate heat exchanger, a second compressor, a condenser, a subcool heat exchanger, A main refrigerant circuit in which an expansion valve and an evaporator are connected in sequence; a branch from between the subcool heat exchanger and the expansion valve; and the intermediate heat exchanger and the second compression through the subexpansion valve A bypass refrigerant circuit connected to the machine.

この発明によれば、蒸発温度が−40℃以下となるような用途での使用を実現し、且つ地球温暖化係数が低い冷媒を使用した冷凍装置を得ることができる。   According to the present invention, it is possible to obtain a refrigeration apparatus that uses a refrigerant having a low global warming potential and that can be used in applications where the evaporation temperature is −40 ° C. or lower.

この発明の実施の形態1に係る冷凍装置の冷媒回路の一例を示す概略図である。It is the schematic which shows an example of the refrigerant circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. 図1に示す冷凍装置の冷凍サイクルを説明する模式図である。It is a schematic diagram explaining the refrigerating cycle of the freezing apparatus shown in FIG. HFO1123冷媒およびR32冷媒の混合冷媒中のR32冷媒の割合とその沸点との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the R32 refrigerant | coolant in the mixed refrigerant | coolant of HFO1123 refrigerant | coolant, and R32 refrigerant | coolant, and its boiling point. HFO1123冷媒およびR32冷媒の混合冷媒中のR32冷媒の割合とそのGWPとの関係を示すグラフである。It is a graph which shows the relationship between the ratio of R32 refrigerant | coolant in the mixed refrigerant | coolant of HFO1123 refrigerant | coolant, and R32 refrigerant | coolant, and its GWP. HFO1123冷媒およびHFO1234yf冷媒の混合冷媒中のHFO1234yf冷媒の割合とその沸点との関係を示すグラフである。It is a graph which shows the relationship between the ratio of the HFO1234yf refrigerant | coolant in the mixed refrigerant | coolant of HFO1123 refrigerant | coolant, and HFO1234yf refrigerant | coolant, and its boiling point. HFO1123冷媒およびHFO1234yf冷媒の混合冷媒中のHFO1234yf冷媒の割合とそのGWPとの関係を示すグラフである。It is a graph which shows the relationship between the ratio of the HFO1234yf refrigerant | coolant in the mixed refrigerant | coolant of HFO1123 refrigerant | coolant, and HFO1234yf refrigerant | coolant, and its GWP.

以下、図面を参照して、この発明の実施の形態について説明する。なお、各図中、同一または相当する部分には、同一符号を付して、その説明を適宜省略または簡略化する。また、各図に記載の構成について、その大きさおよび配置は、この発明の範囲内で適宜変更することができる。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate. Further, the size and arrangement of the configurations shown in the drawings can be appropriately changed within the scope of the present invention.

実施の形態1.
この実施の形態に係る冷凍装置100は、図1に示すように、第1圧縮機1と、中間熱交換器8と、第2圧縮機2と、凝縮器3と、サブクール熱交換器4と、膨張弁6と、蒸発器7とが順に接続された主冷媒回路を有する。また、冷凍装置100は、サブクール熱交換器4と膨張弁6との間から分岐し、サブ膨張弁5を介して、中間熱交換器8と第2圧縮機2との間に接続されたバイパス冷媒回路10を有する。
Embodiment 1 FIG.
As shown in FIG. 1, the refrigeration apparatus 100 according to this embodiment includes a first compressor 1, an intermediate heat exchanger 8, a second compressor 2, a condenser 3, and a subcool heat exchanger 4. The main refrigerant circuit has an expansion valve 6 and an evaporator 7 connected in order. Further, the refrigeration apparatus 100 branches from between the subcool heat exchanger 4 and the expansion valve 6, and is a bypass connected between the intermediate heat exchanger 8 and the second compressor 2 via the subexpansion valve 5. A refrigerant circuit 10 is provided.

この実施の形態に係る冷凍装置100は、例えば、庫内温度が−40℃以下となるような超低温冷蔵庫に適用される。第1圧縮機1と第2圧縮機2とは、それぞれがケーシングに収容された別々の圧縮機であっても良く、または、第1圧縮機1と第2圧縮機2とが1つのケーシングに収容され一体的に形成された圧縮機であっても良い。   The refrigeration apparatus 100 according to this embodiment is applied to, for example, an ultra-low temperature refrigerator whose inside temperature is −40 ° C. or lower. The first compressor 1 and the second compressor 2 may be separate compressors each housed in a casing, or the first compressor 1 and the second compressor 2 are combined into one casing. The compressor may be housed and integrally formed.

次に、図1および図2を用いて、冷凍装置100の動作について説明する。以下の説明において、高圧、中間圧または低圧とは、冷媒回路内における圧力の相対的な関係を表すものとする。温度についても同様であり、高温または低温とは、冷媒回路内における温度の相対的な関係を表す。   Next, operation | movement of the freezing apparatus 100 is demonstrated using FIG. 1 and FIG. In the following description, high pressure, intermediate pressure, or low pressure represents the relative relationship of pressure in the refrigerant circuit. The same applies to the temperature. The high temperature or the low temperature represents a relative relationship of the temperature in the refrigerant circuit.

第2圧縮機2から吐出された高温高圧のガス冷媒Eは、凝縮器3に流入する。凝縮器3では、凝縮器3内を流れる冷媒と凝縮器3の外側の凝縮側熱源との熱交換が行われる。熱交換が行われて凝縮器3から流出した冷媒Fは、サブクール熱交換器4にて冷却される。冷却されてサブクール熱交換器4から流出した冷媒Gは、膨張弁6へ流入する主冷媒とサブ膨張弁5へ流入する分岐冷媒とに分岐される。   The high-temperature and high-pressure gas refrigerant E discharged from the second compressor 2 flows into the condenser 3. In the condenser 3, heat exchange is performed between the refrigerant flowing in the condenser 3 and the condensation side heat source outside the condenser 3. The refrigerant F that has been subjected to heat exchange and has flowed out of the condenser 3 is cooled by the subcool heat exchanger 4. The refrigerant G cooled and flowing out from the subcool heat exchanger 4 is branched into a main refrigerant flowing into the expansion valve 6 and a branch refrigerant flowing into the sub expansion valve 5.

膨張弁6に流入した主冷媒は、低圧に減圧される。低圧に減圧されて膨張弁6から流出した冷媒Jは、蒸発器7に流入する。蒸発器7では、蒸発器7内を流れる冷媒と蒸発器7の外側の蒸発側熱源との熱交換が行われる。熱交換が行われて蒸発器7から流出した冷媒Aは、第1圧縮機1に吸入されて圧縮される。第1圧縮機1から吐出された中間圧の冷媒Bは、中間熱交換器8にて冷却される。冷却されて中間熱交換器8から流出した冷媒Cは、バイパス冷媒回路10を通った冷媒Iと合流する。   The main refrigerant that has flowed into the expansion valve 6 is decompressed to a low pressure. The refrigerant J that has been decompressed to a low pressure and has flowed out of the expansion valve 6 flows into the evaporator 7. In the evaporator 7, heat exchange is performed between the refrigerant flowing in the evaporator 7 and the evaporation side heat source outside the evaporator 7. The refrigerant A that has exchanged heat and has flowed out of the evaporator 7 is sucked into the first compressor 1 and compressed. The intermediate-pressure refrigerant B discharged from the first compressor 1 is cooled by the intermediate heat exchanger 8. The refrigerant C that has been cooled and has flowed out of the intermediate heat exchanger 8 merges with the refrigerant I that has passed through the bypass refrigerant circuit 10.

サブ膨張弁5に流入した分岐冷媒は、中間圧に減圧される。サブ膨張弁5で中間圧に減圧された冷媒Hは、サブクール熱交換器4にて、凝縮器3から流出した冷媒Fと熱交換が行われる。冷媒Fと熱交換を行ってサブクール熱交換器4から流出した冷媒Iは、中間熱交換器8にて冷却された冷媒Cと合流する。上記のように合流した冷媒Dは、第2圧縮機2に吸入されて圧縮される。   The branched refrigerant that has flowed into the sub expansion valve 5 is reduced to an intermediate pressure. The refrigerant H decompressed to an intermediate pressure by the sub expansion valve 5 is heat-exchanged with the refrigerant F flowing out of the condenser 3 in the subcool heat exchanger 4. The refrigerant I that exchanges heat with the refrigerant F and flows out of the subcool heat exchanger 4 joins the refrigerant C cooled by the intermediate heat exchanger 8. The refrigerant D merged as described above is sucked into the second compressor 2 and compressed.

上記のように構成された冷凍装置100に使用される冷媒は、地球温暖化防止の観点から、地球温暖化係数(GWP)が低いものが好適である。さらに、この実施の形態に係る冷凍装置100は、蒸発温度が−40℃以下となる環境で使用されるため、沸点が低い冷媒が好適である。そこで、この実施の形態に係る冷凍装置100では、HFO1123冷媒を含む冷媒が使用される。   The refrigerant used in the refrigeration apparatus 100 configured as described above preferably has a low global warming potential (GWP) from the viewpoint of preventing global warming. Furthermore, since the refrigeration apparatus 100 according to this embodiment is used in an environment where the evaporation temperature is −40 ° C. or lower, a refrigerant having a low boiling point is suitable. Therefore, in the refrigeration apparatus 100 according to this embodiment, a refrigerant including the HFO1123 refrigerant is used.

以下の表1に示すように、この実施の形態で使用されるHFO1123冷媒は、地球温暖化係数が0であり、且つ沸点が−51℃である。したがって、HFO1123冷媒は、地球温暖化係数が低く且つ沸点が低いため、蒸発温度が−40℃以下となる環境で使用される冷媒として好適である。   As shown in Table 1 below, the HFO1123 refrigerant used in this embodiment has a global warming potential of 0 and a boiling point of −51 ° C. Therefore, since the HFO1123 refrigerant has a low global warming potential and a low boiling point, it is suitable as a refrigerant used in an environment where the evaporation temperature is −40 ° C. or lower.

なお、R22冷媒およびR404A冷媒は、HFO1123冷媒と比較して沸点が高く、且つ、地球温暖化係数が高いため、この実施の形態に係る冷凍装置100への使用には適していない。
R32冷媒は、HFO1123冷媒と比較して沸点が低いものの、地球温暖化係数が高いため、この実施の形態に係る冷凍装置100への使用には適していない。
CO2冷媒は、三重点が−56.6℃にあり、−56.6℃以下では固体(ドライアイス)となるため、この実施の形態に係る冷凍装置100への使用には適していない。
HFO1234yf冷媒は、沸点が−29.4℃であるため、蒸発温度が−40℃以下となる環境での使用には適していない。
Note that the R22 refrigerant and the R404A refrigerant have a higher boiling point and a higher global warming potential than the HFO1123 refrigerant, and thus are not suitable for use in the refrigeration apparatus 100 according to this embodiment.
Although the R32 refrigerant has a lower boiling point than the HFO1123 refrigerant, it has a high global warming potential, so it is not suitable for use in the refrigeration apparatus 100 according to this embodiment.
The CO2 refrigerant has a triple point of −56.6 ° C. and becomes solid (dry ice) at −56.6 ° C. or lower, and is not suitable for use in the refrigeration apparatus 100 according to this embodiment.
Since the HFO1234yf refrigerant has a boiling point of −29.4 ° C., it is not suitable for use in an environment where the evaporation temperature is −40 ° C. or lower.

Figure 2015140875
Figure 2015140875

HFO1123冷媒は、上記のように、地球温暖化係数が低く且つ沸点が低いため、蒸発温度が−40℃以下となる環境で使用される冷媒として好適である。しかしながら、HFO1123冷媒は、R32冷媒またはHFO1234yf冷媒と比較して、効率面ではまだ劣っており、且つHFO1123冷媒を単体で使用した場合には、不均化反応(自己分解反応)が発生する場合がある。そこで、この実施の形態では、HFO1123冷媒を他の冷媒と混合して使用する。   Since the HFO1123 refrigerant has a low global warming potential and a low boiling point as described above, it is suitable as a refrigerant used in an environment where the evaporation temperature is −40 ° C. or lower. However, the HFO1123 refrigerant is still inferior in efficiency compared with the R32 refrigerant or the HFO1234yf refrigerant, and when the HFO1123 refrigerant is used alone, a disproportionation reaction (self-decomposition reaction) may occur. is there. Therefore, in this embodiment, the HFO1123 refrigerant is used by mixing with other refrigerants.

この実施の形態では、例えば、HFO1123冷媒とR32冷媒とを混合した混合冷媒を使用する。R32冷媒は、表1に示すように、HFO1123冷媒よりも沸点が低い。したがって、表2および図3に示すように、R32冷媒の混合冷媒全体に占める混合割合(質量割合)を増やすことによって、沸点を低くすることができる。   In this embodiment, for example, a mixed refrigerant obtained by mixing HFO1123 refrigerant and R32 refrigerant is used. As shown in Table 1, the R32 refrigerant has a lower boiling point than the HFO1123 refrigerant. Therefore, as shown in Table 2 and FIG. 3, the boiling point can be lowered by increasing the mixing ratio (mass ratio) of the R32 refrigerant in the entire mixed refrigerant.

一方で、R32冷媒は、GWPが高いので、R32冷媒の混合割合を増やすと、表3および図4に示すように、GWPが高くなってしまう。例えば、この実施の形態では、混合冷媒のGWPを300以下にするので、R32冷媒の混合冷媒全体に占める質量割合は、43質量%以下である。また、不均化反応を発生させないように、R32冷媒の混合冷媒全体に占める質量割合を20質量%以上にする。したがって、HFO1123冷媒とR32冷媒との混合冷媒において、R32冷媒の混合冷媒全体に占める質量割合は、好適には、20質量%〜43質量%である。   On the other hand, since the R32 refrigerant has a high GWP, increasing the mixing ratio of the R32 refrigerant increases the GWP as shown in Table 3 and FIG. For example, in this embodiment, since the GWP of the mixed refrigerant is set to 300 or less, the mass ratio of the R32 refrigerant to the entire mixed refrigerant is 43 mass% or less. Further, the mass ratio of the R32 refrigerant to the entire mixed refrigerant is set to 20 mass% or more so as not to cause a disproportionation reaction. Therefore, in the mixed refrigerant of the HFO1123 refrigerant and the R32 refrigerant, the mass ratio of the R32 refrigerant to the whole mixed refrigerant is preferably 20% by mass to 43% by mass.

Figure 2015140875
Figure 2015140875

Figure 2015140875
Figure 2015140875

また、例えば、この実施の形態では、HFO1123冷媒とHFO1234yf冷媒とを混合した混合冷媒を使用する。HFO1234yf冷媒は、表1に示すように、HFO1123冷媒よりも沸点が高い。したがって、表4および図5に示すように、HFO1234yf冷媒の混合冷媒全体に占める混合割合を増やすことによって、沸点が高くなってしまう。例えば、この実施の形態では、混合冷媒の沸点を−40.8℃以下にするので、HFO1234yf冷媒の混合冷媒全体に占める質量割合は、49質量%以下である。なお、表5および図6に示すように、HFO1234yf冷媒は、GWPが0であるので、HFO1234yf冷媒の質量割合を多くしても、GWPは0である。   In addition, for example, in this embodiment, a mixed refrigerant obtained by mixing HFO1123 refrigerant and HFO1234yf refrigerant is used. As shown in Table 1, the HFO1234yf refrigerant has a boiling point higher than that of the HFO1123 refrigerant. Therefore, as shown in Table 4 and FIG. 5, increasing the mixing ratio of the HFO1234yf refrigerant in the entire mixed refrigerant increases the boiling point. For example, in this embodiment, since the boiling point of the mixed refrigerant is set to −40.8 ° C. or less, the mass ratio of the HFO1234yf refrigerant to the entire mixed refrigerant is 49% by mass or less. As shown in Table 5 and FIG. 6, the HFO1234yf refrigerant has a GWP of 0, so that the GWP is 0 even if the mass ratio of the HFO1234yf refrigerant is increased.

また、不均化反応を発生させないように、HFO1234yf冷媒の混合冷媒全体に占める質量割合を20質量%以上にする。したがって、HFO1123冷媒とHFO1234yf冷媒との混合冷媒において、HFO1234yf冷媒の混合冷媒全体に占める質量割合は、好適には、20%〜49%である。   Further, the mass ratio of the HFO1234yf refrigerant to the entire mixed refrigerant is set to 20 mass% or more so as not to cause a disproportionation reaction. Therefore, in the mixed refrigerant of the HFO1123 refrigerant and the HFO1234yf refrigerant, the mass ratio of the HFO1234yf refrigerant to the whole mixed refrigerant is preferably 20% to 49%.

Figure 2015140875
Figure 2015140875

Figure 2015140875
Figure 2015140875

上記のように、この実施の形態に係る冷凍装置100では、地球温暖化係数が低く且つ沸点が低いHFO1123冷媒を含む冷媒を使用している。したがって、この実施の形態に係る冷凍装置100は、蒸発温度が−40℃以下となるような用途に好適に適用することができ、且つ環境負荷が低減されている。   As described above, in the refrigeration apparatus 100 according to this embodiment, a refrigerant including the HFO 1123 refrigerant having a low global warming potential and a low boiling point is used. Therefore, the refrigeration apparatus 100 according to this embodiment can be suitably applied to uses in which the evaporation temperature is −40 ° C. or lower, and the environmental load is reduced.

さらに、この実施の形態では、第1圧縮機1と第2圧縮機2とを有し、第1圧縮機1と第2圧縮機2との間に中間熱交換器8が設置されており、しかも、サブクール熱交換器4と膨張弁6との間から分岐し、サブ膨張弁5を介して、中間熱交換器8と第2圧縮機2との間に接続されたバイパス冷媒回路10を有する構成である。   Furthermore, in this embodiment, it has the 1st compressor 1 and the 2nd compressor 2, and the intermediate heat exchanger 8 is installed between the 1st compressor 1 and the 2nd compressor 2, Moreover, it has a bypass refrigerant circuit 10 branched from between the subcool heat exchanger 4 and the expansion valve 6 and connected between the intermediate heat exchanger 8 and the second compressor 2 via the subexpansion valve 5. It is a configuration.

したがって、この実施の形態では、第1圧縮機1から吐出される冷媒Bの温度および第2圧縮機2から吐出される冷媒Eの温度が高くなることを抑制することができる。
なぜなら、第1圧縮機1は高圧よりも低い中間圧まで冷媒を圧縮するものであるため、第1圧縮機1から吐出される冷媒Bの温度が高くなることが抑制されている。
また、第1圧縮機1から吐出された冷媒Bは、中間熱交換器8にて冷却される。そして、中間熱交換器8から流出した冷媒Cは、バイパス冷媒回路10を通った冷媒Iと合流してさらに冷却される。第2圧縮機2は、このように冷却された冷媒Dを吸入して圧縮するため、第2圧縮機2から吐出される冷媒Eの温度が高くなることが抑制されている。
上記のように、この実施の形態では、第1圧縮機1から吐出される冷媒Bの温度および第2圧縮機2から吐出される冷媒Eの温度が高くなることが抑制されているので、HFO1123冷媒を含む冷媒が、不均化反応を起こすおそれが抑制されている。
さらに、この実施の形態では、第1圧縮機1の吐出側ならびに第2圧縮機2の吸引側および吐出側で冷媒の温度が高くなることが抑制されているので、第1圧縮機1および第2圧縮機2の圧縮効率が向上されている。
Therefore, in this embodiment, it can suppress that the temperature of the refrigerant | coolant B discharged from the 1st compressor 1 and the temperature of the refrigerant | coolant E discharged from the 2nd compressor 2 become high.
Because the first compressor 1 compresses the refrigerant to an intermediate pressure lower than the high pressure, the temperature of the refrigerant B discharged from the first compressor 1 is suppressed from increasing.
The refrigerant B discharged from the first compressor 1 is cooled by the intermediate heat exchanger 8. And the refrigerant | coolant C which flowed out from the intermediate heat exchanger 8 merges with the refrigerant | coolant I which passed the bypass refrigerant circuit 10, and is further cooled. Since the second compressor 2 sucks and compresses the refrigerant D thus cooled, the temperature of the refrigerant E discharged from the second compressor 2 is suppressed from increasing.
As described above, in this embodiment, since the temperature of the refrigerant B discharged from the first compressor 1 and the temperature of the refrigerant E discharged from the second compressor 2 are suppressed, the HFO 1123 is suppressed. The risk that the refrigerant including the refrigerant causes a disproportionation reaction is suppressed.
Furthermore, in this embodiment, since the refrigerant temperature is suppressed from increasing on the discharge side of the first compressor 1 and on the suction side and discharge side of the second compressor 2, the first compressor 1 and the first compressor 1 2 The compression efficiency of the compressor 2 is improved.

なお、好適には、第1圧縮機1および第2圧縮機2はインバータによって駆動される。例えば、第1圧縮機1から吐出される冷媒Bの温度が120℃以下になるように、第1圧縮機1および第2圧縮機2の回転数が制御される。このように、冷媒Bの温度が高くなりすぎないように、第1圧縮機1および第2圧縮機2の回転数を制御することによって、冷媒Bの温度が高くなって、第1圧縮機1および第2圧縮機2が故障することを防止することができる。   Preferably, the first compressor 1 and the second compressor 2 are driven by an inverter. For example, the rotation speeds of the first compressor 1 and the second compressor 2 are controlled so that the temperature of the refrigerant B discharged from the first compressor 1 is 120 ° C. or less. Thus, by controlling the rotation speeds of the first compressor 1 and the second compressor 2 so that the temperature of the refrigerant B does not become too high, the temperature of the refrigerant B becomes higher, and the first compressor 1 And it can prevent that the 2nd compressor 2 fails.

この発明は、上記の実施の形態に限定されるものではなく、この発明の範囲内で種々に改変することができる。すなわち、上記の実施の形態の構成を適宜改良してもよく、また、少なくとも一部を他の構成に代替させてもよい。さらに、その配置について特に限定のない構成要件は、実施の形態で開示した配置に限らず、その機能を達成できる位置に配置することができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. That is, the configuration of the above embodiment may be improved as appropriate, or at least a part of the configuration may be replaced with another configuration. Further, the configuration requirements that are not particularly limited with respect to the arrangement are not limited to the arrangement disclosed in the embodiment, and can be arranged at a position where the function can be achieved.

例えば、上記の実施の形態では、HFO1123冷媒に、R32冷媒またはHFO1234yf冷媒を混合した例について説明したが、HFO1123冷媒に、R32冷媒およびHFO1234yf冷媒を混合しても良い。また、HFO1123冷媒に、R32冷媒およびHFO1234yf冷媒以外の他の冷媒を混合しても良い。   For example, in the above embodiment, an example in which the R32 refrigerant or the HFO1234yf refrigerant is mixed with the HFO1123 refrigerant has been described, but the RFO refrigerant and the HFO1234yf refrigerant may be mixed with the HFO1123 refrigerant. Further, the HFO1123 refrigerant may be mixed with other refrigerants other than the R32 refrigerant and the HFO1234yf refrigerant.

また、HFO1123冷媒を含む冷媒は、上記の実施の形態で説明した二段圧縮式冷媒回路のみならず、蒸発温度が−40℃以下となるような冷媒回路に好適に適用することができる。   In addition, the refrigerant including the HFO1123 refrigerant can be suitably applied not only to the two-stage compression refrigerant circuit described in the above embodiment, but also to a refrigerant circuit whose evaporation temperature is −40 ° C. or lower.

1 第1圧縮機、2 第2圧縮機、3 凝縮器、4 サブクール熱交換器、5 サブ膨張弁、6 膨張弁、7 蒸発器、8 中間熱交換器、10 バイパス冷媒回路、100 冷凍装置。   DESCRIPTION OF SYMBOLS 1 1st compressor, 2nd 2nd compressor, 3 condenser, 4 subcool heat exchanger, 5 subexpansion valve, 6 expansion valve, 7 evaporator, 8 intermediate heat exchanger, 10 bypass refrigerant circuit, 100 refrigeration apparatus.

この発明に係る冷凍装置は、HFO1123冷媒を含む混合冷媒を使用する冷凍装置であって、第1圧縮機と、中間熱交換器と、第2圧縮機と、凝縮器と、サブクール熱交換器と、膨張弁と、蒸発器とが順に接続された主冷媒回路と、前記サブクール熱交換器と前記膨張弁との間から分岐し、サブ膨張弁を介して、前記中間熱交換器と前記第2圧縮機との間に接続されたバイパス冷媒回路と、を備え、前記混合冷媒は、前記HFO1123冷媒とR32冷媒とを含み、前記R32冷媒の前記混合冷媒全体に占める質量割合が、20質量%〜43質量%であるThe refrigeration apparatus according to the present invention is a refrigeration apparatus that uses a mixed refrigerant containing HFO1123 refrigerant, and includes a first compressor, an intermediate heat exchanger, a second compressor, a condenser, and a subcool heat exchanger. A main refrigerant circuit in which an expansion valve and an evaporator are connected in sequence, a branch from between the subcool heat exchanger and the expansion valve, and the intermediate heat exchanger and the second through the subexpansion valve A bypass refrigerant circuit connected to a compressor , wherein the mixed refrigerant includes the HFO1123 refrigerant and the R32 refrigerant, and a mass ratio of the R32 refrigerant to the entire mixed refrigerant is 20% by mass to 43% by mass .

Claims (4)

HFO1123冷媒を含む冷媒を使用する冷凍装置であって、
第1圧縮機と、中間熱交換器と、第2圧縮機と、凝縮器と、サブクール熱交換器と、膨張弁と、蒸発器とが順に接続された主冷媒回路と、
前記サブクール熱交換器と前記膨張弁との間から分岐し、サブ膨張弁を介して、前記中間熱交換器と前記第2圧縮機との間に接続されたバイパス冷媒回路と、を備える冷凍装置。
A refrigeration apparatus that uses refrigerant including HFO1123 refrigerant,
A main refrigerant circuit in which a first compressor, an intermediate heat exchanger, a second compressor, a condenser, a subcool heat exchanger, an expansion valve, and an evaporator are connected in order;
A refrigeration apparatus comprising: a bypass refrigerant circuit branched from between the subcool heat exchanger and the expansion valve and connected between the intermediate heat exchanger and the second compressor via the subexpansion valve .
前記冷媒は、前記HFO1123冷媒に、R32冷媒またはHFO1234yf冷媒を混合した混合冷媒である請求項1記載の冷凍装置。   The refrigeration apparatus according to claim 1, wherein the refrigerant is a mixed refrigerant obtained by mixing the HFO1123 refrigerant with an R32 refrigerant or an HFO1234yf refrigerant. 前記混合冷媒は、前記HFO1123冷媒と前記R32冷媒との混合冷媒であり、
前記R32冷媒の前記混合冷媒全体に占める質量割合が、20質量%〜43質量%である請求項2記載の冷凍装置。
The mixed refrigerant is a mixed refrigerant of the HFO1123 refrigerant and the R32 refrigerant,
The refrigerating apparatus according to claim 2, wherein a mass ratio of the R32 refrigerant to the entire mixed refrigerant is 20 mass% to 43 mass%.
前記混合冷媒は、前記HFO1123冷媒と前記HFO1234yf冷媒との混合冷媒であり、
前記HFO1234yf冷媒の前記混合冷媒全体に占める質量割合が、20質量%〜49質量%である請求項2記載の冷凍装置。
The mixed refrigerant is a mixed refrigerant of the HFO1123 refrigerant and the HFO1234yf refrigerant,
The refrigerating apparatus according to claim 2, wherein a mass ratio of the HFO1234yf refrigerant to the entire refrigerant mixture is 20 mass% to 49 mass%.
JP2016508335A 2014-03-17 2014-03-17 Refrigeration equipment Pending JPWO2015140875A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057033 WO2015140875A1 (en) 2014-03-17 2014-03-17 Refrigeration device

Publications (1)

Publication Number Publication Date
JPWO2015140875A1 true JPWO2015140875A1 (en) 2017-04-06

Family

ID=54143901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016508335A Pending JPWO2015140875A1 (en) 2014-03-17 2014-03-17 Refrigeration equipment

Country Status (2)

Country Link
JP (1) JPWO2015140875A1 (en)
WO (1) WO2015140875A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300023A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2012255603A (en) * 2011-06-09 2012-12-27 Denso Corp Refrigeration cycle
JP2014029257A (en) * 2012-07-04 2014-02-13 Fuji Electric Co Ltd Refrigerant circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009300023A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device
WO2012157764A1 (en) * 2011-05-19 2012-11-22 旭硝子株式会社 Working medium and heat-cycle system
JP2012255603A (en) * 2011-06-09 2012-12-27 Denso Corp Refrigeration cycle
JP2014029257A (en) * 2012-07-04 2014-02-13 Fuji Electric Co Ltd Refrigerant circuit device

Also Published As

Publication number Publication date
WO2015140875A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
US10254014B2 (en) Centrifugal chiller
US10101060B2 (en) Cooling system
JP2009133585A (en) Refrigerating device
US10168069B2 (en) Air-conditioning apparatus
ES2938761T3 (en) refrigeration cycle device
JP6188918B2 (en) Refrigeration equipment
PE20160061A1 (en) COMPRESSORS WITH INTEGRATED MULTIPLIER FOR PRE-COOLING IN LNG APPLICATIONS
JP5186949B2 (en) Refrigeration equipment
JP2018077041A (en) Multistage heat pump having two-stage expansion structure using co2 refrigerant, and circulation method thereof
JP2012141131A (en) Refrigerating apparatus
JP2016031183A (en) Two-stage compression type refrigerating device
WO2014199445A1 (en) Refrigerating device
JP6253370B2 (en) Refrigeration cycle equipment
JP2005180866A (en) Binary refrigerating device
JP6522156B2 (en) Compressor for dual refrigeration unit and dual refrigeration unit
US20220003461A1 (en) Refrigeration cycle device
JP2009257705A (en) Refrigerating apparatus
JP6223545B2 (en) Refrigeration equipment
WO2015140875A1 (en) Refrigeration device
JP5895662B2 (en) Refrigeration equipment
JP5403047B2 (en) Refrigeration equipment
JP2009270496A (en) Compressor and refrigerating cycle using it
WO2013084431A1 (en) Air conditioner
JP2006125790A (en) Air conditioner
JP6372778B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180130